Sample records for frames orfs encoding

  1. Characterization of the 5’- and 3’-terminal subgenomic RNAs produced by a capillovirus: evidence for a CP subgenomic RNA

    USDA-ARS?s Scientific Manuscript database

    The members of Capillovirus genus encode two overlapping open reading frames (ORFs): ORF1 encodes a large polyprotein containing the domains of replication-associated proteins plus a coat protein (CP), and ORF2 encodes a movement protein, located within ORF1 in a different reading frame. Organizatio...

  2. Large-scale, multi-genome analysis of alternate open reading frames in bacteria and archaea.

    PubMed

    Veloso, Felipe; Riadi, Gonzalo; Aliaga, Daniela; Lieph, Ryan; Holmes, David S

    2005-01-01

    Analysis of over 300,000 annotated genes in 105 bacterial and archaeal genomes reveals an unexpectedly high frequency of large (>300 nucleotides) alternate open reading frames (ORFs). Especially notable is the very high frequency of alternate ORFs in frames +3 and -1 (where the annotated gene is defined as frame +1). The occurrence of alternate ORFs is correlated with genomic G+C content and is strongly influenced by synonymous codon usage bias. The frequency of alternate ORFs in frame -1 is also influenced by the occurrence of codons encoding leucine and serine in frame +1. Although some alternate ORFs have been shown to encode proteins, many others are probably not expressed because they lack appropriate signals for transcription and translation. These latter can be mis-annotated by automatic gene finding programs leading to errors in public databases. Especially prone to mis-annotation is frame -1, because it exhibits a potential codon usage and theoretical capacity to encode proteins with an amino acid composition most similar to real genes. Some alternate ORFs are conserved across bacterial or archaeal species, and can give rise to misannotated "conserved hypothetical" genes, while others are unique to a genome and are misidentified as "hypothetical orphan" genes, contributing significantly to the orphan gene paradox.

  3. DNA sequence analysis of a 10 624 bp fragment of the left arm of chromosome XV from Saccharomyces cerevisiae reveals a RNA binding protein, a mitochondrial protein, two ribosomal proteins and two new open reading frames.

    PubMed

    Lafuente, M J; Gamo, F J; Gancedo, C

    1996-09-01

    We have determined the sequence of a 10624 bp DNA segment located in the left arm of chromosome XV of Saccharomyces cerevisiae. The sequence contains eight open reading frames (ORFs) longer than 100 amino acids. Two of them do not present significant homology with sequences found in the databases. The product of ORF o0553 is identical to the protein encoded by the gene SMF1. Internal to it there is another ORF, o0555 that is apparently expressed. The proteins encoded by ORFs o0559 and o0565 are identical to ribosomal proteins S19.e and L18 respectively. ORF o0550 encodes a protein with an RNA binding signature including RNP motifs and stretches rich in asparagine, glutamine and arginine.

  4. A novel helper phage enabling construction of genome-scale ORF-enriched phage display libraries.

    PubMed

    Gupta, Amita; Shrivastava, Nimisha; Grover, Payal; Singh, Ajay; Mathur, Kapil; Verma, Vaishali; Kaur, Charanpreet; Chaudhary, Vijay K

    2013-01-01

    Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.

  5. Analysis of the DNA sequence of a 15,500 bp fragment near the left telomere of chromosome XV from Saccharomyces cerevisiae reveals a putative sugar transporter, a carboxypeptidase homologue and two new open reading frames.

    PubMed

    Gamo, F J; Lafuente, M J; Casamayor, A; Ariño, J; Aldea, M; Casas, C; Herrero, E; Gancedo, C

    1996-06-15

    We report the sequence of a 15.5 kb DNA segment located near the left telomere of chromosome XV of Saccharomyces cerevisiae. The sequence contains nine open reading frames (ORFs) longer than 300 bp. Three of them are internal to other ones. One corresponds to the gene LGT3 that encodes a putative sugar transporter. Three adjacent ORFs were separated by two stop codons in frame. These ORFs presented homology with the gene CPS1 that encodes carboxypeptidase S. The stop codons were not found in the same sequence derived from another yeast strain. Two other ORFs without significant homology in databases were also found. One of them, O0420, is very rich in serine and threonine and presents a series of repeated or similar amino acid stretches along the sequence.

  6. Open reading frames in a 4556 nucleotide sequence within MDV-1 BamHI-D DNA fragment: evidence for splicing of mRNA from a new viral glycoprotein gene.

    PubMed

    Becker, Y; Asher, Y; Tabor, E; Davidson, I; Malkinson, M

    1994-01-01

    A DNA segment of the MDV-1 BamHI-D fragment was sequenced, and the open reading frames (ORFs) present in the 4556 nucleotide fragment were analyzed by computer programs. Computer analysis identified 19 putative ORFs in the sequence ranging from a coding capacity of 37 amino acids (aa) (ORF-1a) to 684aa (ORF-1). The special properties of four ORFs (1a, 1, 2, and 3) were investigated. Two adjacent ORFs, ORF-1a and ORF-1, were found by computer analysis to have the properties of two introns encoding a glycoprotein: ORF-1a encodes an aa sequence with the properties of a signal peptide, and ORF-1 encodes a polypeptide with a membrane anchor domain and putative N-glycosylation sites in the aa sequence. ORF-1a and ORF-1 were found to be transcribed in MDV-1-infected cells. Two RNA transcripts were detected: a precursor RNA and its spliced form. Both are transcribed from a promoter located 5' to ORF-1a, and splice donor and acceptor sites are used to splice the mRNA after cleavage of a 71-nucleotide sequence. This finding suggest that ORF-1a and ORF-1 are two introns of a new MDV-1 glycoprotein gene. The DNA sequence containing ORF-1 was transiently expressed in COS-1 cells, and the viral protein produced in these cells was found to react with anti-MDV serotype-1 Antigen B-specific monoclonal antibodies. These studies indicate that the protein encoded by ORF-1 has antigenic properties resembling Antigen B of MDV-1. A gene homologous to ORF-1 was detected in the genome of both MDV-2(SB1) and MDV-3(HVT), which serve as commercial vaccine strains. Two additional ORFs were noted in the 4556 nucleotide sequence: ORF-2, which encodes a 333 aa polypeptide initiating in the UL and terminating in the TRL prior to the putative origin of replication, and ORF-3, which encodes a 155 aa polypeptide that is partly homologous to the phosphoprotein pp38 encoded by the BamHI-H sequence. The 65 N-terminal aa of the two gene products are identical, both being derived from the nucleotide sequences in the TRL and IRL, respectively. Additional homologous aa sequences are the hydrophobic aa domain in the middle of both proteins. The functions of ORF-2, ORF-3, and additional ORFs are under study.

  7. Overlapping reading frames at the LYS5 locus in the yeast Yarrowia lipolytica.

    PubMed Central

    Xuan, J W; Fournier, P; Declerck, N; Chasles, M; Gaillardin, C

    1990-01-01

    Mutants affected at the LYS5 locus of Yarrowia lipolytica lack detectable dehydrogenase (SDH) activity. The LYS5 gene has previously been cloned, and we present here the sequence of the 2.5-kilobase-pair (kb) DNA fragment complementing the lys5 mutation. Two large antiparallel open reading frames (ORF1 and ORF2) were observed, flanked by potential transcription signals. Both ORFs appear to be transcribed, but several lines of evidence suggest that only ORF2 is translated and encodes SDH. (i) The global amino acid compositions of Saccharomyces cerevisiae SDH and of the putative ORF2 product are similar and that of ORF1 is dissimilar. (ii) An in-frame translational fusion of ORF2 with the Escherichia coli lacZ gene was introduced into yeast cells and resulted in a beta-galactosidase activity regulated similarly to SDH; no beta-galactosidase activity was obtained with an in-frame fusion of ORF1 with lacZ. (iii) The introduction of a stop codon at the beginning of ORF2 prevented SDH expression in yeast cells, whereas no phenotypic effect was observed when ORF1 translation was blocked. Images PMID:2388625

  8. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication.

    PubMed

    Hirata, Hisae; Yamaji, Yasuyuki; Komatsu, Ken; Kagiwada, Satoshi; Oshima, Kenro; Okano, Yukari; Takahashi, Shuichiro; Ugaki, Masashi; Namba, Shigetou

    2010-09-01

    The first open-reading frame (ORF) of the genus Capillovirus encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP), while other viruses in the family Flexiviridae have separate ORFs encoding these proteins. To investigate the role of the full-length ORF1 polyprotein of capillovirus, we generated truncation mutants of ORF1 of apple stem grooving virus by inserting a termination codon into the variable region located between the putative Rep- and CP-coding regions. These mutants were capable of systemic infection, although their pathogenicity was attenuated. In vitro translation of ORF1 produced both the full-length polyprotein and the smaller Rep protein. The results of in vivo reporter assays suggested that the mechanism of this early termination is a ribosomal -1 frame-shift occurring downstream from the conserved Rep domains. The mechanism of capillovirus gene expression and the very close evolutionary relationship between the genera Capillovirus and Trichovirus are discussed. Copyright (c) 2010. Published by Elsevier B.V.

  9. Expression of Human Hemojuvelin (HJV) Is Tightly Regulated by Two Upstream Open Reading Frames in HJV mRNA That Respond to Iron Overload in Hepatic Cells

    PubMed Central

    Onofre, Cláudia; Tomé, Filipa; Barbosa, Cristina; Silva, Ana Luísa

    2015-01-01

    The gene encoding human hemojuvelin (HJV) is one of the genes that, when mutated, can cause juvenile hemochromatosis, an early-onset inherited disorder associated with iron overload. The 5′ untranslated region of the human HJV mRNA has two upstream open reading frames (uORFs), with 28 and 19 codons formed by two upstream AUGs (uAUGs) sharing the same in-frame stop codon. Here we show that these uORFs decrease the translational efficiency of the downstream main ORF in HeLa and HepG2 cells. Indeed, ribosomal access to the main AUG is conditioned by the strong uAUG context, which results in the first uORF being translated most frequently. The reach of the main ORF is then achieved by ribosomes that resume scanning after uORF translation. Furthermore, the amino acid sequences of the uORF-encoded peptides also reinforce the translational repression of the main ORF. Interestingly, when iron levels increase, translational repression is relieved specifically in hepatic cells. The upregulation of protein levels occurs along with phosphorylation of the eukaryotic initiation factor 2α. Nevertheless, our results support a model in which the increasing recognition of the main AUG is mediated by a tissue-specific factor that promotes uORF bypass. These results support a tight HJV translational regulation involved in iron homeostasis. PMID:25666510

  10. Open reading frame 5 (ORF5), encoding a ferredoxinlike protein, and nifQ are cotranscribed with nifE, nifN, nifX, and ORF4 in Rhodobacter capsulatus.

    PubMed Central

    Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W

    1989-01-01

    DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit. PMID:2708314

  11. An Upstream Open Reading Frame Is Essential for Feedback Regulation of Ascorbate Biosynthesis in Arabidopsis

    PubMed Central

    Laing, William A.; Martínez-Sánchez, Marcela; Wright, Michele A.; Bulley, Sean M.; Brewster, Di; Dare, Andrew P.; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C.; Hellens, Roger P.

    2015-01-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. PMID:25724639

  12. An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis.

    PubMed

    Laing, William A; Martínez-Sánchez, Marcela; Wright, Michele A; Bulley, Sean M; Brewster, Di; Dare, Andrew P; Rassam, Maysoon; Wang, Daisy; Storey, Roy; Macknight, Richard C; Hellens, Roger P

    2015-03-01

    Ascorbate (vitamin C) is an essential antioxidant and enzyme cofactor in both plants and animals. Ascorbate concentration is tightly regulated in plants, partly to respond to stress. Here, we demonstrate that ascorbate concentrations are determined via the posttranscriptional repression of GDP-l-galactose phosphorylase (GGP), a major control enzyme in the ascorbate biosynthesis pathway. This regulation requires a cis-acting upstream open reading frame (uORF) that represses the translation of the downstream GGP open reading frame under high ascorbate concentration. Disruption of this uORF stops the ascorbate feedback regulation of translation and results in increased ascorbate concentrations in leaves. The uORF is predicted to initiate at a noncanonical codon (ACG rather than AUG) and encode a 60- to 65-residue peptide. Analysis of ribosome protection data from Arabidopsis thaliana showed colocation of high levels of ribosomes with both the uORF and the main coding sequence of GGP. Together, our data indicate that the noncanonical uORF is translated and encodes a peptide that functions in the ascorbate inhibition of translation. This posttranslational regulation of ascorbate is likely an ancient mechanism of control as the uORF is conserved in GGP genes from mosses to angiosperms. © 2015 American Society of Plant Biologists. All rights reserved.

  13. The complete nucleotide sequence and genome organization of a novel betaflexivirus infecting Citrullus lanatus.

    PubMed

    Xin, Min; Zhang, Peipei; Liu, Wenwen; Ren, Yingdang; Cao, Mengji; Wang, Xifeng

    2017-10-01

    The complete nucleotide sequence of a novel positive single-stranded (+ss) RNA virus, tentatively named watermelon virus A (WVA), was determined using a combination of three methods: RNA sequencing, small RNA sequencing, and Sanger sequencing. The full genome of WVA is comprised of 8,372 nucleotides (nt), excluding the poly (A) tail, and contains four open reading frames (ORFs). The largest ORF, ORF1 encodes a putative replication-associated polyprotein (RP) with three conserved domains. ORF2 and ORF4 encode a movement protein (MP) and coat protein (CP), respectively. The putative product encoded by ORF3, of an estimated molecular mass of 25 kDa, has no significant similarity with other proteins. Identity and phylogenetic analysis indicate that WVA is a new virus, closely related to members of the family Betaflexiviridae. However, the final taxonomic allocation of WVA within the family is yet to be determined.

  14. Asynchronous accumulation of lettuce infectious yellows virus RNAs 1 and 2 and identification of an RNA 1 trans enhancer of RNA 2 accumulation.

    PubMed

    Yeh, H H; Tian, T; Rubio, L; Crawford, B; Falk, B W

    2000-07-01

    Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation.

  15. Asynchronous Accumulation of Lettuce Infectious Yellows Virus RNAs 1 and 2 and Identification of an RNA 1 trans Enhancer of RNA 2 Accumulation

    PubMed Central

    Yeh, Hsin-Hung; Tian, Tongyan; Rubio, Luis; Crawford, Brett; Falk, Bryce W.

    2000-01-01

    Time course and mutational analyses were used to examine the accumulation in protoplasts of progeny RNAs of the bipartite Crinivirus, Lettuce infectious yellow virus (LIYV; family Closteroviridae). Hybridization analyses showed that simultaneous inoculation of LIYV RNAs 1 and 2 resulted in asynchronous accumulation of progeny LIYV RNAs. LIYV RNA 1 progeny genomic and subgenomic RNAs could be detected in protoplasts as early as 12 h postinoculation (p.i.) and accumulated to high levels by 24 h p.i. The LIYV RNA 1 open reading frame 2 (ORF 2) subgenomic RNA was the most abundant of all LIYV RNAs detected. In contrast, RNA 2 progeny were not readily detected until ca. 36 h p.i. Mutational analyses showed that in-frame stop codons introduced into five of seven RNA 2 ORFs did not affect accumulation of progeny LIYV RNA 1 or RNA 2, confirming that RNA 2 does not encode proteins necessary for LIYV RNA replication. Mutational analyses also supported that LIYV RNA 1 encodes proteins necessary for replication of LIYV RNAs 1 and 2. A mutation introduced into the LIYV RNA 1 region encoding the overlapping ORF 1B and ORF 2 was lethal. However, mutations introduced into only LIYV RNA 1 ORF 2 resulted in accumulation of progeny RNA 1 near or equal to wild-type RNA 1. In contrast, the RNA 1 ORF 2 mutants did not efficiently support the trans accumulation of LIYV RNA 2. Three distinct RNA 1 ORF 2 mutants were analyzed and all exhibited a similar phenotype for progeny LIYV RNA accumulation. These data suggest that the LIYV RNA 1 ORF 2 encodes a trans enhancer for RNA 2 accumulation. PMID:10846054

  16. Molecular cloning and nucleotide sequences of the genes for two essential proteins constituting a novel enzyme system for heptaprenyl diphosphate synthesis.

    PubMed

    Koike-Takeshita, A; Koyama, T; Obata, S; Ogura, K

    1995-08-04

    The genes encoding two dissociable components essential for Bacillus stearothermophilus heptaprenyl diphosphate synthase (all-trans-hexparenyl-diphosphate:isopentenyl-diphosphate hexaprenyl-trans-transferase, EC 2.5.1.30) were cloned, and their nucleotide sequences were determined. Sequence analyses revealed the presence of three open reading frames within 2,350 base pairs, designated as ORF-1, ORF-2, and ORF-3 in order of nucleotide sequence, which encode proteins of 220, 234, and 323 amino acids, respectively. Deletion experiments have shown that expression of the enzymatic activity requires the presence of ORF-1 and ORF-3, but ORF-2 is not essential. As a result, this enzyme was proved genetically to consist of two different protein compounds with molecular masses of 25 kDa (Component I) and 36 kDa (Component II), encoded by two of the three tandem genes. The protein encoded by ORF-1 has no similarity to any protein so far registered. However, the protein encoded by ORF-3 shows a 32% similarity to the farnesyl diphosphate synthase of the same bacterium and has seven highly conserved regions that have been shown typical in prenyltransferases (Koyama, T., Obata, S., Osabe, M., Takeshita, A., Yokoyama, K., Uchida, M., Nishino, T., and Ogura, K. (1993) J. Biochem. (Tokyo) 113, 355-363).

  17. Identification of 9α-Hydroxy-17-Oxo-1,2,3,4,10,19-Hexanorandrostan-5-Oic Acid in Steroid Degradation by Comamonas testosteroni TA441 and Its Conversion to the Corresponding 6-En-5-Oyl Coenzyme A (CoA) Involving Open Reading Frame 28 (ORF28)- and ORF30-Encoded Acyl-CoA Dehydrogenases

    PubMed Central

    Hayashi, Toshiaki; Koshino, Hiroyuki; Malon, Michal; Hirota, Hiroshi; Kudo, Toshiaki

    2014-01-01

    Comamonas testosteroni TA441 degrades steroids via aromatization and meta-cleavage of the A ring, followed by hydrolysis, and produces 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid as an intermediate compound. Herein, we identify a new intermediate compound, 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid. Open reading frame 28 (ORF28)- and ORF30-encoded acyl coenzyme A (acyl-CoA) dehydrogenase was shown to convert the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid to the CoA ester of 9α-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrost-6-en-5-oic acid. A homology search of the deduced amino acid sequences suggested that the ORF30-encoded protein is a member of the acyl-CoA dehydrogenase_fadE6_17_26 family, whereas the deduced amino acid sequence of ORF28 showed no significant similarity to specific acyl-CoA dehydrogenase family proteins. Possible steroid degradation gene clusters similar to the cluster of TA441 appear in bacterial genome analysis data. In these clusters, ORFs similar to ORFs 28 and 30 are often found side by side and ordered in the same manner as ORFs 28 and 30. PMID:25092028

  18. Transcriptional mapping of the varicella-zoster virus regulatory genes encoding open reading frames 4 and 63.

    PubMed Central

    Kinchington, P R; Vergnes, J P; Defechereux, P; Piette, J; Turse, S E

    1994-01-01

    Four of the 68 varicella-zoster virus (VZV) unique open reading frames (ORFs), i.e., ORFs 4, 61, 62, and 63, encode proteins that influence viral transcription and are considered to be positional homologs of herpes simplex virus type 1 (HSV-1) immediate-early (IE) proteins. In order to identify the elements that regulate transcription of VZV ORFs 4 and 63, the encoded mRNAs were mapped in detail. For ORF 4, a major 1.8-kb and a minor 3.0-kb polyadenylated [poly(A)+] RNA were identified, whereas ORF 63-specific probes recognized 1.3- and 1.9-kb poly(A)+ RNAs. Probes specific for sequences adjacent to the ORFs and mapping of the RNA 3' ends indicated that the ORF 4 RNAs were 3' coterminal, whereas the RNAs for ORF 63 represented two different termination sites. S1 nuclease mapping and primer extension analyses indicated a single transcription initiation site for ORF 4 at 38 bp upstream of the ORF start codon. For ORF 63, multiple transcriptional start sites at 87 to 95, 151 to 153, and (tentatively) 238 to 243 bp upstream of the ORF start codon were identified. TATA box motifs at good positional locations were found upstream of all mapped transcription initiation sites. However, no sequences resembling the TAATGARAT motif, which confers IE regulation upon HSV-1 IE genes, were found. The finding of the absence of this motif was supported through analyses of the regulatory sequences of ORFs 4 and 63 in transient transfection assays alongside those of ORFs 61 and 62. Sequences representing the promoters for ORFs 4, 61, and 63 were all stimulated by VZV infection but failed to be stimulated by coexpression with the HSV-1 transactivator Vmw65. In contrast, the promoter for ORF 62, which contains TAATGARAT motifs, was activated by VZV infection and coexpression with Vmw65. These results extend the transcriptional knowledge for VZV and suggest that ORFs 4 and 63 contain regulatory signals different from those of the ORF 62 and HSV-1 IE genes. Images PMID:8189496

  19. Molecular comparison of the structural proteins encoding gene clusters of two related Lactobacillus delbrueckii bacteriophages.

    PubMed Central

    Vasala, A; Dupont, L; Baumann, M; Ritzenthaler, P; Alatossava, T

    1993-01-01

    Virulent phage LL-H and temperate phage mv4 are two related bacteriophages of Lactobacillus delbrueckii. The gene clusters encoding structural proteins of these two phages have been sequenced and further analyzed. Six open reading frames (ORF-1 to ORF-6) were detected. Protein sequencing and Western immunoblotting experiments confirmed that ORF-3 (g34) encoded the main capsid protein Gp34. The presence of a putative late promoter in front of the phage LL-H g34 gene was suggested by primer extension experiments. Comparative sequence analysis between phage LL-H and phage mv4 revealed striking similarities in the structure and organization of this gene cluster, suggesting that the genes encoding phage structural proteins belong to a highly conservative module. Images PMID:8497043

  20. Translational and structural requirements of the early nodulin gene enod40, a short-open reading frame-containing RNA, for elicitation of a cell-specific growth response in the alfalfa root cortex.

    PubMed

    Sousa, C; Johansson, C; Charon, C; Manyani, H; Sautter, C; Kondorosi, A; Crespi, M

    2001-01-01

    A diversity of mRNAs containing only short open reading frames (sORF-RNAs; encoding less than 30 amino acids) have been shown to be induced in growth and differentiation processes. The early nodulin gene enod40, coding for a 0.7-kb sORF-RNA, is expressed in the nodule primordium developing in the root cortex of leguminous plants after infection by symbiotic bacteria. Ballistic microtargeting of this gene into Medicago roots induced division of cortical cells. Translation of two sORFs (I and II, 13 and 27 amino acids, respectively) present in the conserved 5' and 3' regions of enod40 was required for this biological activity. These sORFs may be translated in roots via a reinitiation mechanism. In vitro translation products starting from the ATG of sORF I were detectable by mutating enod40 to yield peptides larger than 38 amino acids. Deletion of a Medicago truncatula enod40 region between the sORFs, spanning a predicted RNA structure, did not affect their translation but resulted in significantly decreased biological activity. Our data reveal a complex regulation of enod40 action, pointing to a role of sORF-encoded peptides and structured RNA signals in developmental processes involving sORF-RNAs.

  1. ORF43 of Maize rayado fino virus is dispensable for systemic infection of maize and transmission by leafhoppers

    USDA-ARS?s Scientific Manuscript database

    Maize rayado fino virus (MRFV) possesses an open reading frame (ORF) encoding a protein with predicted mass of 43 kDa (ORF43) that has been postulated to be a viral movement protein. Using a clone of MRFV (pMRFV-US) from which infectious RNA can be produced, point mutations were introduced to eithe...

  2. Characterisation of IS153, an IS3-family insertion sequence isolated from Lactobacillus sanfranciscensis and its use for strain differentiation.

    PubMed

    Ehrmann, M A; Vogel, R E

    2001-11-01

    An insertion sequence has been identified in the genome of Lactobacillus sanfranciscensis DSM 20451T as segment of 1351 nucleotides containing 37-bp imperfect terminal inverted repeats. The sequence of this element encodes two out of phase, overlapping open reading frames, orfA and orfB, from which three putative proteins are produced. OrfAB is a transframe protein produced by -1 translational frame shifting between orf A and orf B that is presumed to be the transposase. The large orfAB of this element encodes a 342 amino acid protein that displays similarities with transposases encoded by bacterial insertion sequences belonging to the IS3 family. In L. sanfranciscensis type strain DSM 20451T multiple truncated IS elements were identified. Inverse PCR was used to analyze target sites of four of these elements, but except of their highly AT rich character not any sequence specificity was identified so far. Moreover, no flanking direct repeats were identified. Multiple copies of IS153 were detected by hybridization in other strains of L. sanfranciscensis. Resulting hybridization patterns were shown to differentiate between organisms at strain level rather than a probe targeted against the 16S rDNA. With a PCR based approach IS153 or highly similar sequences were detected in L. acidophilus, L. casei, L. malefermentans, L. plantarum, L. hilgardii, L. collinoides L. farciminis L. sakei and L. salivarius, L. reuteri as well as in Enterococcus faecium, Pediococcus acidilactici and P. pentosaceus.

  3. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57.

    PubMed Central

    Gaisser, S; Trefzer, A; Stockert, S; Kirschning, A; Bechthold, A

    1997-01-01

    A 65-kb region of DNA from Streptomyces viridochromogenes Tü57, containing genes encoding proteins involved in the biosynthesis of avilamycins, was isolated. The DNA sequence of a 6.4-kb fragment from this region revealed four open reading frames (ORF1 to ORF4), three of which are fully contained within the sequenced fragment. The deduced amino acid sequence of AviM, encoded by ORF2, shows 37% identity to a 6-methylsalicylic acid synthase from Penicillium patulum. Cultures of S. lividans TK24 and S. coelicolor CH999 containing plasmids with ORF2 on a 5.5-kb PstI fragment were able to produce orsellinic acid, an unreduced version of 6-methylsalicylic acid. The amino acid sequence encoded by ORF3 (AviD) is 62% identical to that of StrD, a dTDP-glucose synthase from S. griseus. The deduced amino acid sequence of AviE, encoded by ORF4, shows 55% identity to a dTDP-glucose dehydratase (StrE) from S. griseus. Gene insertional inactivation experiments of aviE abolished avilamycin production, indicating the involvement of aviE in the biosynthesis of avilamycins. PMID:9335272

  5. Complete nucleotide sequence of jasmine virus H, a new member of the family Tombusviridae.

    PubMed

    Zhuo, Tao; Zhu, Li-Juan; Lu, Cheng-Cong; Jiang, Chao-Yang; Chen, Zi-Yin; Zhang, Guangzhi; Wang, Zong-Hua; Jovel, Juan; Han, Yan-Hong

    2018-03-01

    Jasmine virus H (JaVH) is a novel virus associated with symptoms of yellow mosaic on jasmine. The JaVH genome is 3,867 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on genomic and phylogenetic analysis, JaVH is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.

  6. Identification of the cleavage sites of the RNA2-encoded polyproteins for two members of the genus Torradovirus by N-terminal sequencing of the virion capsid proteins.

    PubMed

    Ferriol, I; Silva Junior, D M; Nigg, J C; Zamora-Macorra, E J; Falk, B W

    2016-11-01

    Torradoviruses, family Secoviridae, are emergent bipartite RNA plant viruses. RNA1 is ca. 7kb and has one open reading frame (ORF) encoding for the protease, helicase and RNA-dependent RNA polymerase (RdRp). RNA2 is ca. 5kb and has two ORFs. RNA2-ORF1 encodes for a putative protein with unknown function(s). RNA2-ORF2 encodes for a putative movement protein and three capsid proteins. Little is known about the replication and polyprotein processing strategies of torradoviruses. Here, the cleavage sites in the RNA2-ORF2-encoded polyproteins of two torradoviruses, Tomato marchitez virus isolate M (ToMarV-M) and tomato chocolate spot virus, were determined by N-terminal sequencing, revealing that the amino acid (aa) at the -1 position of the cleavage sites is a glutamine. Multiple aa sequence comparison confirmed that this glutamine is conserved among other torradoviruses. Finally, site-directed mutagenesis of conserved aas in the ToMarV-M RdRp and protease prevented substantial accumulation of viral coat proteins or RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Identification and characterization of the gltK gene encoding a membrane-associated glucose transport protein of pseudomonas aeruginosa.

    PubMed

    Adewoye, L O; Worobec, E A

    2000-08-08

    The Pseudomonas aeruginosa oprB gene encodes the carbohydrate-selective OprB porin, which translocates substrate molecules across the outer membrane to the periplasmic glucose-binding protein. We identified and cloned two open reading frames (ORFs) flanking the oprB gene but are not in operonic arrangement with the oprB gene. The downstream ORF encodes a putative polypeptide homologous to members of a family of transcriptional repressors, whereas the oprB gene is preceded by an ORF encoding a putative product, which exhibits strong homology to several carbohydrate transport ATP-binding cassette (ABC) proteins. The genomic copy of the upstream ORF was mutagenized by homologous recombination. Analysis of the deletion mutant in comparison with the wild type revealed a significant reduction in [14C] glucose transport activity in the mutant strain, suggesting that this ORF likely encodes the inner membrane component of the glucose ABC transporter. It is thus designated gltK gene to reflect its homology to the Pseudomona fluorescens mtlK and its involvement in the high-affinity glucose transport system. Multiple alignment analysis revealed that the P. aeruginosa gltK gene product is a member of the MalK subfamily of ABC proteins.

  8. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis.

    PubMed

    Music, Nedzad; Gagnon, Carl A

    2010-12-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.

  9. A selfish genetic element confers non-Mendelian inheritance in rice.

    PubMed

    Yu, Xiaowen; Zhao, Zhigang; Zheng, Xiaoming; Zhou, Jiawu; Kong, Weiyi; Wang, Peiran; Bai, Wenting; Zheng, Hai; Zhang, Huan; Li, Jing; Liu, Jiafan; Wang, Qiming; Zhang, Long; Liu, Kai; Yu, Yang; Guo, Xiuping; Wang, Jiulin; Lin, Qibing; Wu, Fuqing; Ren, Yulong; Zhu, Shanshan; Zhang, Xin; Cheng, Zhijun; Lei, Cailin; Liu, Shijia; Liu, Xi; Tian, Yunlu; Jiang, Ling; Ge, Song; Wu, Chuanyin; Tao, Dayun; Wang, Haiyang; Wan, Jianmin

    2018-06-08

    Selfish genetic elements are pervasive in eukaryote genomes, but their role remains controversial. We show that qHMS7 , a major quantitative genetic locus for hybrid male sterility between wild rice ( Oryza meridionalis ) and Asian cultivated rice ( O. sativa ), contains two tightly linked genes [ Open Reading Frame 2 ( ORF2 ) and ORF3 ]. ORF2 encodes a toxic genetic element that aborts pollen in a sporophytic manner, whereas ORF3 encodes an antidote that protects pollen in a gametophytic manner. Pollens lacking ORF3 are selectively eliminated, leading to segregation distortion in the progeny. Analysis of the genetic sequence suggests that ORF3 arose first, followed by gradual functionalization of ORF2 Furthermore, this toxin-antidote system may have promoted the differentiation and/or maintained the genome stability of wild and cultivated rice. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Direct Detection of Alternative Open Reading Frames Translation Products in Human Significantly Expands the Proteome

    PubMed Central

    Vanderperre, Benoît; Lucier, Jean-François; Bissonnette, Cyntia; Motard, Julie; Tremblay, Guillaume; Vanderperre, Solène; Wisztorski, Maxence; Salzet, Michel; Boisvert, François-Michel; Roucou, Xavier

    2013-01-01

    A fully mature mRNA is usually associated to a reference open reading frame encoding a single protein. Yet, mature mRNAs contain unconventional alternative open reading frames (AltORFs) located in untranslated regions (UTRs) or overlapping the reference ORFs (RefORFs) in non-canonical +2 and +3 reading frames. Although recent ribosome profiling and footprinting approaches have suggested the significant use of unconventional translation initiation sites in mammals, direct evidence of large-scale alternative protein expression at the proteome level is still lacking. To determine the contribution of alternative proteins to the human proteome, we generated a database of predicted human AltORFs revealing a new proteome mainly composed of small proteins with a median length of 57 amino acids, compared to 344 amino acids for the reference proteome. We experimentally detected a total of 1,259 alternative proteins by mass spectrometry analyses of human cell lines, tissues and fluids. In plasma and serum, alternative proteins represent up to 55% of the proteome and may be a potential unsuspected new source for biomarkers. We observed constitutive co-expression of RefORFs and AltORFs from endogenous genes and from transfected cDNAs, including tumor suppressor p53, and provide evidence that out-of-frame clones representing AltORFs are mistakenly rejected as false positive in cDNAs screening assays. Functional importance of alternative proteins is strongly supported by significant evolutionary conservation in vertebrates, invertebrates, and yeast. Our results imply that coding of multiple proteins in a single gene by the use of AltORFs may be a common feature in eukaryotes, and confirm that translation of unconventional ORFs generates an as yet unexplored proteome. PMID:23950983

  11. Translation of the mRNA of the maize transcriptional activator Opaque-2 is inhibited by upstream open reading frames present in the leader sequence.

    PubMed Central

    Lohmer, S; Maddaloni, M; Motto, M; Salamini, F; Thompson, R D

    1993-01-01

    The protein encoded by the Opaque-2 (O2) gene is a transcription factor, translated from an mRNA that possesses an unusually long 5' leader sequence containing three upstream open reading frames (uORFs). The efficiency of translation of O2 mRNA has been tested in vivo by a transient assay in which the level of activation of the b32 promoter, a natural target of O2 protein, is measured. We show that uORF-less O2 alleles possess a higher transactivation value than the wild-type allele and that the reduction in transactivation due to the uORFs is a cis-dominant effect. The data presented indicate that both uORF1 and uORF2 are involved in the reducing effect and suggest that both are likely to be translated. PMID:8439744

  12. Solenopsis invicta virus 3: mapping of structural proteins, ribosomal frameshifting, and similarities to Acyrthosiphon pisum virus and Kelp fly virus.

    PubMed

    Valles, Steven M; Bell, Susanne; Firth, Andrew E

    2014-01-01

    Solenopsis invicta virus 3 (SINV-3) is a positive-sense single-stranded RNA virus that infects the red imported fire ant, Solenopsis invicta. We show that the second open reading frame (ORF) of the dicistronic genome is expressed via a frameshifting mechanism and that the sequences encoding the structural proteins map to both ORF2 and the 3' end of ORF1, downstream of the sequence that encodes the RNA-dependent RNA polymerase. The genome organization and structural protein expression strategy resemble those of Acyrthosiphon pisum virus (APV), an aphid virus. The capsid protein that is encoded by the 3' end of ORF1 in SINV-3 and APV is predicted to have a jelly-roll fold similar to the capsid proteins of picornaviruses and caliciviruses. The capsid-extension protein that is produced by frameshifting, includes the jelly-roll fold domain encoded by ORF1 as its N-terminus, while the C-terminus encoded by the 5' half of ORF2 has no clear homology with other viral structural proteins. A third protein, encoded by the 3' half of ORF2, is associated with purified virions at sub-stoichiometric ratios. Although the structural proteins can be translated from the genomic RNA, we show that SINV-3 also produces a subgenomic RNA encoding the structural proteins. Circumstantial evidence suggests that APV may also produce such a subgenomic RNA. Both SINV-3 and APV are unclassified picorna-like viruses distantly related to members of the order Picornavirales and the family Caliciviridae. Within this grouping, features of the genome organization and capsid domain structure of SINV-3 and APV appear more similar to caliciviruses, perhaps suggesting the basis for a "Calicivirales" order.

  13. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  14. The Env-like open reading frame of the baculovirus-integrated retrotransposon TED encodes a retrovirus-like envelope protein.

    PubMed

    Ozers, M S; Friesen, P D

    1996-12-15

    TED is a 7.5-kbp member of the gypsy family of retrotransposons that was first identified by its integration within the baculovirus DNA genome. This lepidopteran (moth) transposon contains three retrovirus-like genes, including functional gag and pol that yield reverse transcriptase-containing virus-like particles. To identify and characterize the product(s) of the third env-like open reading frame, TED ORF3 was expressed in homologous lepidopteran cells by using a baculovirus vector, vENV. Immunoblots and immunoprecipitations with antiserum raised against a bacterial ORF3-fusion protein detected two ORF3-encoded proteins, p68env and gp75env. On the basis of selective incorporation of [3H]mannose and inhibition of modification by tunicamycin which blocks N-linked glycosylation, gp75env is a glycoprotein derived from core precursor p68env. As predicted by the presence of a transmembrane domain near the carboxyl terminus, both p68env and gp75env were associated with heavy membranes of vENV-infected cells. Thus, TED ORF3 encodes a membrane glycoprotein with properties characteristic of retroviral env proteins. These data are consistent with the hypothesis that TED is an invertebrate retrovirus. Moreover, TED integration within the baculovirus genome provides an example of retroelement-mediated acquisition of host genes that may contribute to virus evolution.

  15. High-Molecular-Mass Multi-c-Heme Cytochromes from Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; DiSpirito, Alan A.

    1999-01-01

    The polypeptide and structural gene for a high-molecular-mass c-type cytochrome, cytochrome c553O, was isolated from the methanotroph Methylococcus capsulatus Bath. Cytochrome c553O is a homodimer with a subunit molecular mass of 124,350 Da and an isoelectric point of 6.0. The heme c concentration was estimated to be 8.2 ± 0.4 mol of heme c per subunit. The electron paramagnetic resonance spectrum showed the presence of multiple low spin, S = 1/2, hemes. A degenerate oligonucleotide probe synthesized based on the N-terminal amino acid sequence of cytochrome c553O was used to identify a DNA fragment from M. capsulatus Bath that contains occ, the gene encoding cytochrome c553O. occ is part of a gene cluster which contains three other open reading frames (ORFs). ORF1 encodes a putative periplasmic c-type cytochrome with a molecular mass of 118,620 Da that shows approximately 40% amino acid sequence identity with occ and contains nine c-heme-binding motifs. ORF3 encodes a putative periplasmic c-type cytochrome with a molecular mass of 94,000 Da and contains seven c-heme-binding motifs but shows no sequence homology to occ or ORF1. ORF4 encodes a putative 11,100-Da protein. The four ORFs have no apparent similarity to any proteins in the GenBank database. The subunit molecular masses, arrangement and number of hemes, and amino acid sequences demonstrate that cytochrome c553O and the gene products of ORF1 and ORF3 constitute a new class of c-type cytochrome. PMID:9922265

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzeng, W.-P.; Frey, Teryl K.

    Rubella virus (RUB) replicons are derivatives of the RUB infectious cDNA clone that retain the nonstructural open reading frame (NS-ORF) that encodes the replicase proteins but not the structural protein ORF (SP-ORF) that encodes the virion proteins. RUB defective interfering (DI) RNAs contain deletions within the SP-ORF and thus resemble replicons. DI RNAs often retain the 5' end of the capsid protein (C) gene that has been shown to modulate virus-specific RNA synthesis. However, when replicons either with or without the C gene were passaged serially in the presence of wt RUB as a source of the virion proteins, itmore » was found that neither replicon was maintained and DI RNAs were generated. The majority DI RNA species contained in-frame deletions in the SP-ORF leading to a fusion between the 5' end of the C gene and the 3' end of the E1 glycoprotein gene. DI infectious cDNA clones were constructed and transcripts from these DI infectious cDNA clones were maintained during serial passage with wt RUB. The C-E1 fusion protein encoded by the DI RNAs was synthesized and was required for maintenance of the DI RNA during serial passage. This is the first report of a functional novel gene product resulting from deletion during DI RNA generation. Thus far, the role of the C-E1 fusion protein in maintenance of DI RNAs during serial passage remained elusive as it was found that the fusion protein diminished rather than enhanced DI RNA synthesis and was not incorporated into virus particles.« less

  17. Identification of herpes simplex virus type 1 proteins encoded within the first 1.5 kb of the latency-associated transcript.

    PubMed

    Henderson, Gail; Jaber, Tareq; Carpenter, Dale; Wechsler, Steven L; Jones, Clinton

    2009-09-01

    Expression of the first 1.5 kb of the latency-associated transcript (LAT) that is encoded by herpes simplex virus type 1 (HSV-1) is sufficient for wild-type (wt) levels of reactivation from latency in small animal models. Peptide-specific immunoglobulin G (IgG) was generated against open reading frames (ORFs) that are located within the first 1.5 kb of LAT coding sequences. Cells stably transfected with LAT or trigeminal ganglionic neurons of mice infected with a LAT expressing virus appeared to express the L2 or L8 ORF. Only L2 ORF expression was readily detected in trigeminal ganglionic neurons of latently infected mice.

  18. Complete nucleotide sequence of clematis chlorotic mottle virus, a new member of the family Tombusviridae.

    PubMed

    McLaughlin, Margaret; Lockhart, Ben; Jordan, Ramon; Denton, Geoff; Mollov, Dimitre

    2017-05-01

    Clematis chlorotic mottle virus (ClCMV) is a previously undescribed virus associated with symptoms of yellow mottling and veining, chlorotic ring spots, line pattern mosaics, and flower distortion and discoloration on ornamental Clematis. The ClCMV genome is 3,880 nt in length with five open reading frames (ORFs) encoding a 27-kDa protein (ORF 1), an 87-kDa replicase protein (ORF 2), two centrally located movement proteins (ORF 3 and 4), and a 37-kDa capsid protein (ORF 5). Based on morphological, genomic, and phylogenetic analysis, ClCMV is predicted to be a member of the genus Pelarspovirus in the family Tombusviridae.

  19. Cloning, sequencing, and analysis of the griseusin polyketide synthase gene cluster from Streptomyces griseus.

    PubMed Central

    Yu, T W; Bibb, M J; Revill, W P; Hopwood, D A

    1994-01-01

    A fragment of DNA was cloned from the Streptomyces griseus K-63 genome by using genes (act) for the actinorhodin polyketide synthase (PKS) of Streptomyces coelicolor as a probe. Sequencing of a 5.4-kb segment of the cloned DNA revealed a set of five gris open reading frames (ORFs), corresponding to the act PKS genes, in the following order: ORF1 for a ketosynthase, ORF2 for a chain length-determining factor, ORF3 for an acyl carrier protein, ORF5 for a ketoreductase, and ORF4 for a cyclase-dehydrase. Replacement of the gris genes with a marker gene in the S. griseus genome by using a single-stranded suicide vector propagated in Escherichia coli resulted in loss of the ability to produce griseusins A and B, showing that the five gris genes do indeed encode the type II griseusin PKS. These genes, encoding a PKS that is programmed differently from those for other aromatic PKSs so far available, will provide further valuable material for analysis of the programming mechanism by the construction and analysis of strains carrying hybrid PKS. Images PMID:8169211

  20. Porcine parvovirus: DNA sequence and genome organization.

    PubMed

    Ranz, A I; Manclús, J J; Díaz-Aroca, E; Casal, J I

    1989-10-01

    We have determined the nucleotide sequence of an almost full-length clone of porcine parvovirus (PPV). The sequence is 4973 nucleotides (nt) long. The 3' end of virion DNA shows a Y-shaped configuration homologous to rodent parvoviruses. The 5' end of virion DNA shows a repetition of 127 nt at the carboxy terminus of the capsid proteins. The overall organization of the PPV genome is similar to those of other autonomous parvoviruses. There are two large open reading frames (ORFs) that almost entirely cover the genome, both located in the same frame of the complementary strand. The left ORF encodes the non-structural protein NS1 and the right ORF encodes the capsid proteins (VP1, VP2 and VP3). Promoter analysis, location of splicing sites and putative amino acid sequences for the viral proteins show a high homology of PPV with feline panleukopenia virus and canine parvoviruses (FPV and CPV) and rodent parvovirus. Therefore we conclude that PPV is related to the Kilham rat virus (KRV) group of autonomous parvoviruses formed by KRV, minute virus of mice, Lu III, H-1, FPV and CPV.

  1. The Genome of S-PM2, a “Photosynthetic” T4-Type Bacteriophage That Infects Marine Synechococcus Strains

    PubMed Central

    Mann, Nicholas H.; Clokie, Martha R. J.; Millard, Andrew; Cook, Annabel; Wilson, William H.; Wheatley, Peter J.; Letarov, Andrey; Krisch, H. M.

    2005-01-01

    Bacteriophage S-PM2 infects several strains of the abundant and ecologically important marine cyanobacterium Synechococcus. A large lytic phage with an isometric icosahedral head, S-PM2 has a contractile tail and by this criterion is classified as a myovirus (1). The linear, circularly permuted, 196,280-bp double-stranded DNA genome of S-PM2 contains 37.8% G+C residues. It encodes 239 open reading frames (ORFs) and 25 tRNAs. Of these ORFs, 19 appear to encode proteins associated with the cell envelope, including a putative S-layer-associated protein. Twenty additional S-PM2 ORFs have homologues in the genomes of their cyanobacterial hosts. There is a group I self-splicing intron within the gene encoding the D1 protein. A total of 40 ORFs, organized into discrete clusters, encode homologues of T4 proteins involved in virion morphogenesis, nucleotide metabolism, gene regulation, and DNA replication and repair. The S-PM2 genome encodes a few surprisingly large (e.g., 3,779 amino acids) ORFs of unknown function. Our analysis of the S-PM2 genome suggests that many of the unknown S-PM2 functions may be involved in the adaptation of the metabolism of the host cell to the requirements of phage infection. This hypothesis originates from the identification of multiple phage-mediated modifications of the host's photosynthetic apparatus that appear to be essential for maintaining energy production during the lytic cycle. PMID:15838046

  2. Nucleotide sequence and phylogenetic analysis of Cucurbit yellow stunting disorder virus RNA 2.

    PubMed

    Livieratos, Ioannis C; Coutts, Robert H A

    2002-06-01

    The complete nucleotide sequence of Cucurbit yellow stunting disorder virus (CYSDV) RNA 2, a whitefly (Bemisia tabaci)-transmitted closterovirus with a bi-partite genome, is reported. CYSDV RNA 2 is 7,281 nucleotides long and contains the closterovirus hallmark gene array with a similar arrangement to the prototype member of the genus Crinivirus, Lettuce infectious yellows virus (LIYV). CYSDV RNA 2 contains open reading frames (ORFs) potentially encoding in a 5' to 3' direction for proteins of 5 kDa (ORF 1; hydrophobic protein), 62 kDa (ORF 2; heat shock protein 70 homolog, HSP70h), 59 kDa (ORF 3; protein of unknown function), 9 kDa (ORF 4; protein of unknown function), 28.5 kDa (ORF 5; coat protein, CP), 53 kDa (ORF 6; coat protein minor, CPm), and 26.5 kDa (ORF 7; protein of unknown function). Pairwise comparisons of CYSDV RNA 2-encoded proteins (HSP70h, p59 and CPm) among the closteroviruses showed that CYSDV is closely related to LIYV. Phylogenetic analysis based on the amino acid sequence of the HSP70h, indicated that CYSDV clusters with other members of the genus Crinivirus, and it is related to Little cherry virus-1 (LChV-1), but is distinct from the aphid- or mealybug-transmitted closteroviruses.

  3. Complementary DNA sequences encoding the multimammate rat MHC class II DQ alpha and beta chains and cross-species sequence comparison in rodents.

    PubMed

    de Bellocq, J Goüy; Leirs, H

    2009-09-01

    Sequences of the complete open reading frame (ORF) for rodents major histocompatibility complex (MHC) class II genes are rare. Multimammate rat (Mastomys natalensis) complementary DNA (cDNA) encoding the alpha and beta chains of MHC class II DQ gene was cloned from a rapid amplifications of cDNA Emds (RACE) cDNA library. The ORFs consist of 801 and 771 bp encoding 266 and 256 amino acid residues for DQB and DQA, respectively. The genomic structure of Mana-DQ genes is globally analogous to that described for other rodents except for the insertion of a serine residue in the signal peptide of Mana-DQB, which is unique among known rodents.

  4. Five unique open reading frames of infectious laryngotracheitis virus are expressed during infection but are dispensable for virus replication in cell culture.

    PubMed

    Veits, Jutta; Mettenleiter, Thomas C; Fuchs, Walter

    2003-06-01

    The chicken alphaherpesvirus infectious laryngotracheitis virus (ILTV) exhibits several unique genetic features including an internal inversion of a conserved part of the unique long genome region. At one end, this inversion is preceded by a cluster of five open reading frames (ORFs) of 335-411 codons, designated ORF A to ORF E, that are not present in any other known herpesvirus genome. In this report we analysed expression of these genes and identified the corresponding viral RNA and protein products. Northern blot analyses showed 3'-coterminal transcripts of ORFs A and B, and monocistronic mRNAs of ORFs C and D. ORF E is part of a 3'-coterminal transcription unit that includes the conserved glycoprotein H and thymidine kinase genes. Monospecific antisera obtained after immunization of rabbits with bacterial fusion proteins allowed detection of the protein products of ORF A (40 kDa), ORF B (34 kDa), ORF C (38 and 30 kDa), ORF D (41 kDa) and ORF E (44 kDa) in ILTV-infected cells. For functional analyses, five virus recombinants possessing deletions within the individual ORFs and concomitant insertions of a reporter gene cassette encoding green fluorescent protein were generated. All virus mutants were replication competent in cell culture, but exhibited reduced virus titres or plaque sizes when compared to wild-type ILTV. These findings indicate that the ILTV-specific ORF A to ORF E genes might be important for virus replication in the natural host organism.

  5. Functional endogenous LINE-1 retrotransposons are expressed and mobilized in rat chloroleukemia cells.

    PubMed

    Kirilyuk, Alexander; Tolstonog, Genrich V; Damert, Annette; Held, Ulrike; Hahn, Silvia; Löwer, Roswitha; Buschmann, Christian; Horn, Axel V; Traub, Peter; Schumann, Gerald G

    2008-02-01

    LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.

  6. Intron open reading frames as mobile elements and evolution of a group I intron.

    PubMed

    Sellem, C H; Belcour, L

    1997-05-01

    Group I introns are proposed to have become mobile following the acquisition of open reading frames (ORFs) that encode highly specific DNA endonucleases. This proposal implies that intron ORFs could behave as autonomously mobile entities. This was supported by abundant circumstantial evidence but no experiment of ORF transfer from an ORF-containing intron to its ORF-less counterpart has been described. In this paper we present such experiments, which demonstrate the efficient mobility of the mitochondrial nad1-i4-orf1 between two Podospora strains. The homing of this mobile ORF was accompanied by a bidirectional co-conversion that did not systematically involve the whole intron sequence. Orf1 acquisition would be the most recent step in the evolution of the nad1-i4 intron, which has resulted in many strains of Podospora having an intron with two ORFs (biorfic) and four splicing pathways. We show that two of the splicing events that operate in this biorfic intron, as evidenced by PCR experiments, are generated by a 5'-alternative splice site, which is most probably a remnant of the monoorfic ancestral form of the intron. We propose a sequential evolution model that is consistent with the four organizations of the corresponding nad1 locus that we found among various species of the Pyrenomycete family; these organizations consist of no intron, an intron alone, a monoorfic intron, and a biorfic intron.

  7. The microprotein Minion controls cell fusion and muscle formation

    PubMed Central

    Zhang, Qiao; Vashisht, Ajay A.; O'Rourke, Jason; Corbel, Stéphane Y; Moran, Rita; Romero, Angelica; Miraglia, Loren; Zhang, Jia; Durrant, Eric; Schmedt, Christian; Sampath, Srinath C.; Sampath, Srihari C.

    2017-01-01

    Although recent evidence has pointed to the existence of small open reading frame (smORF)-encoded microproteins in mammals, their function remains to be determined. Skeletal muscle development requires fusion of mononuclear progenitors to form multinucleated myotubes, a critical but poorly understood process. Here we report the identification of Minion (microprotein inducer of fusion), a smORF encoding an essential skeletal muscle specific microprotein. Myogenic progenitors lacking Minion differentiate normally but fail to form syncytial myotubes, and Minion-deficient mice die perinatally and demonstrate a marked reduction in fused muscle fibres. The fusogenic activity of Minion is conserved in the human orthologue, and co-expression of Minion and the transmembrane protein Myomaker is sufficient to induce cellular fusion accompanied by rapid cytoskeletal rearrangement, even in non-muscle cells. These findings establish Minion as a novel microprotein required for muscle development, and define a two-component programme for the induction of mammalian cell fusion. Moreover, these data also significantly expand the known functions of smORF-encoded microproteins. PMID:28569745

  8. Deep transcriptome annotation enables the discovery and functional characterization of cryptic small proteins

    PubMed Central

    Delcourt, Vivian; Lucier, Jean-François; Gagnon, Jules; Beaudoin, Maxime C; Vanderperre, Benoît; Breton, Marc-André; Motard, Julie; Jacques, Jean-François; Brunelle, Mylène; Gagnon-Arsenault, Isabelle; Fournier, Isabelle; Ouangraoua, Aida; Hunting, Darel J; Cohen, Alan A; Landry, Christian R; Scott, Michelle S

    2017-01-01

    Recent functional, proteomic and ribosome profiling studies in eukaryotes have concurrently demonstrated the translation of alternative open-reading frames (altORFs) in addition to annotated protein coding sequences (CDSs). We show that a large number of small proteins could in fact be coded by these altORFs. The putative alternative proteins translated from altORFs have orthologs in many species and contain functional domains. Evolutionary analyses indicate that altORFs often show more extreme conservation patterns than their CDSs. Thousands of alternative proteins are detected in proteomic datasets by reanalysis using a database containing predicted alternative proteins. This is illustrated with specific examples, including altMiD51, a 70 amino acid mitochondrial fission-promoting protein encoded in MiD51/Mief1/SMCR7L, a gene encoding an annotated protein promoting mitochondrial fission. Our results suggest that many genes are multicoding genes and code for a large protein and one or several small proteins. PMID:29083303

  9. Expression of putative pathogenicity-related genes in Xylella fastidiosa grown at low and high cell density conditions in vitro.

    PubMed

    Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine

    2003-05-16

    Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.

  10. LTR-Retrotransposons from Bdelloid Rotifers Capture Additional ORFs Shared between Highly Diverse Retroelement Types.

    PubMed

    Rodriguez, Fernando; Kenefick, Aubrey W; Arkhipova, Irina R

    2017-04-11

    Rotifers of the class Bdelloidea, microscopic freshwater invertebrates, possess a highlydiversified repertoire of transposon families, which, however, occupy less than 4% of genomic DNA in the sequenced representative Adineta vaga . We performed a comprehensive analysis of A. vaga retroelements, and found that bdelloid long terminal repeat (LTR)retrotransposons, in addition to conserved open reading frame (ORF) 1 and ORF2 corresponding to gag and pol genes, code for an unusually high variety of ORF3 sequences. Retrovirus-like LTR families in A. vaga belong to four major lineages, three of which are rotiferspecific and encode a dUTPase domain. However only one lineage contains a canonical env like fusion glycoprotein acquired from paramyxoviruses (non-segmented negative-strand RNA viruses), although smaller ORFs with transmembrane domains may perform similar roles. A different ORF3 type encodes a GDSL esterase/lipase, which was previously identified as ORF1 in several clades of non-LTR retrotransposons, and implicated in membrane targeting. Yet another ORF3 type appears in unrelated LTR-retrotransposon lineages, and displays strong homology to DEDDy-type exonucleases involved in 3'-end processing of RNA and single-stranded DNA. Unexpectedly, each of the enzymatic ORF3s is also associated with different subsets of Penelope -like Athena retroelement families. The unusual association of the same ORF types with retroelements from different classes reflects their modular structure with a high degree of flexibility, and points to gene sharing between different groups of retroelements.

  11. The baculovirus-integrated retrotransposon TED encodes gag and pol proteins that assemble into viruslike particles with reverse transcriptase.

    PubMed Central

    Lerch, R A; Friesen, P D

    1992-01-01

    TED is a lepidopteran retrotransposon found inserted within the DNA genome of the Autographa californica nuclear polyhedrosis virus mutant, FP-D. To examine the proteins and functions encoded by this representative of the gypsy family of retrotransposons, the gag- and pol-like open reading frames (ORFs 1 and 2) were expressed in homologous lepidopteran cells by using recombinant baculovirus vectors. Expression of ORF 1 resulted in synthesis of an abundant TED-specific protein (Pr55gag) that assembled into viruslike particles with a diameter of 55 to 60 nm. Expression of ORF 2, requiring a -1 translational frameshift, resulted in synthesis of a protease that mediated cleavage of Pr55gag to generate p37, the major protein component of the resulting particles. Expression of ORF 2 also produced reverse transcriptase that associated with these particles. Both protease and reverse transcriptase activities mapped to domains within ORF 2 that contain sequence similarities with the corresponding functional domains of the pol gene of the vertebrate retroviruses. These results indicated that TED ORFs 1 and 2 functionally resemble the retrovirus gag and pol genes and demonstrated for the first time that an invertebrate member of the gypsy family of elements encodes active forms of the structural and enzymatic functions necessary for transposition via an RNA intermediate. TED integration within the baculovirus genome thus represents one of the first examples of transposon-mediated transfer of host-derived genes to an eukaryotic virus. Images PMID:1371168

  12. Cloning, Sequencing, and Functional Analysis of an Iterative Type I Polyketide Synthase Gene Cluster for Biosynthesis of the Antitumor Chlorinated Polyenone Neocarzilin in “Streptomyces carzinostaticus”

    PubMed Central

    Otsuka, Miyuki; Ichinose, Koji; Fujii, Isao; Ebizuka, Yutaka

    2004-01-01

    Neocarzilins (NCZs) are antitumor chlorinated polyenones produced by “Streptomyces carzinostaticus” var. F-41. The gene cluster responsible for the biosynthesis of NCZs was cloned and characterized. DNA sequence analysis of a 33-kb region revealed a cluster of 14 open reading frames (ORFs), three of which (ORF4, ORF5, and ORF6) encode type I polyketide synthase (PKS), which consists of four modules. Unusual features of the modular organization is the lack of an obvious acyltransferase domain on modules 2 and 4 and the presence of longer interdomain regions more than 200 amino acids in length on each module. Involvement of the PKS genes in NCZ biosynthesis was demonstrated by heterologous expression of the cluster in Streptomyces coelicolor CH999, which produced the apparent NCZ biosynthetic intermediates dechloroneocarzillin A and dechloroneocarzilin B. Disruption of ORF5 resulted in a failure of NCZ production, providing further evidence that the cluster is essential for NCZ biosynthesis. Mechanistic consideration of NCZ formation indicates the iterative use of at least one module of the PKS, which subsequently releases its product by decarboxylation to generate an NCZ skeleton, possibly catalyzed by a type II thioesterase encoded by ORF7. This is a novel type I PKS system of bacterial origin for the biosynthesis of a reduced polyketide chain. Additionally, the protein encoded by ORF3, located upstream of the PKS genes, closely resembles the FADH2-dependent halogenases involved in the formation of halometabolites. The ORF3 protein could be responsible for the halogenation of NCZs, presenting a unique example of a halogenase involved in the biosynthesis of an aliphatic halometabolite. PMID:15328113

  13. Complete genome sequence of keunjorong mosaic virus, a potyvirus from Cynanchum wilfordii.

    PubMed

    Nam, Moon; Lee, Joo-Hee; Choi, Hong Soo; Lim, Hyoun-Sub; Moon, Jae Sun; Lee, Su-Heon

    2013-08-01

    We have determined the complete genome sequence of keunjorong mosaic virus (KjMV). The KjMV genome is composed of 9,611 nucleotides, excluding the 3'-terminal poly(A) tail. It contains two open reading frames (ORFs), with the large one encoding a polyprotein of 3,070 amino acids and the small overlapping ORF encoding a PIPO protein of 81 amino acids. The KjMV genome shared the highest nucleotide sequence identity (57.5  %) with pepper mottle virus and freesia mosaic virus, two members of the genus Potyvirus. Based on the phylogenetic relatedness to known potyviruses, KjMV appears to be a member of a new species in the genus Potyvirus.

  14. Intracellular localization of varicella-zoster virus ORF39 protein and its functional relationship to glycoprotein K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govero, Jennifer; Hall, Susan; Heineman, Thomas C.

    2007-02-20

    Varicella-zoster virus (VZV) encodes two multiply inserted membrane proteins, open reading frame (ORF) 39 protein (ORF39p) and glycoprotein K (gK). The HSV-1 homologs of these proteins are believed to act in conjunction with each other during viral egress and cell-cell fusion, and they directly influence each other's intracellular trafficking. However, ORF39p and VZV gK have received very limited study largely due to difficulties in producing antibodies to these highly hydrophobic proteins. To overcome this obstacle, we introduced epitope tags into both ORF39p and gK and examined their intracellular distributions in transfected and infected cells. Our data demonstrate that both ORF39pmore » and gK accumulate predominately in the ER of cultured cells when expressed in the absence of other VZV proteins or when coexpressed in isolation from other VZV proteins. Therefore, the transport of VZV ORF39p and gK does not exhibit the functional interdependence seen in their HSV-1 homologs. However, during infection, the primary distributions of ORF39p and gK shift from the ER to the Golgi, and they are also found in the plasma membrane indicating that their intracellular trafficking during infection depends on other VZV-encoded proteins. During infection, ORF39p and gK tightly colocalize with VZV envelope glycoproteins B, E and H; however, the coexpression of ORF39p or gK with other individual viral glycoproteins is insufficient to alter the transport of either ORF39p or gK.« less

  15. An operon from Lactobacillus helveticus composed of a proline iminopeptidase gene (pepI) and two genes coding for putative members of the ABC transporter family of proteins.

    PubMed

    Varmanen, P; Rantanen, T; Palva, A

    1996-12-01

    A proline iminopeptidase gene (pepI) of an industrial Lactobacillus helveticus strain was cloned and found to be organized in an operon-like structure of three open reading frames (ORF1, ORF2 and ORF3). ORF1 was preceded by a typical prokaryotic promoter region, and a putative transcription terminator was found downstream of ORF3, identified as the pepI gene. Using primer-extension analyses, only one transcription start site, upstream of ORF1, was identifiable in the predicted operon. Although the size of mRNA could not be judged by Northern analysis either with ORF1-, ORF2- or pepI-specific probes, reverse transcription-PCR analyses further supported the operon structure of the three genes. ORF1, ORF2 and ORF3 had coding capacities for 50.7, 24.5 and 33.8 kDa proteins, respectively. The ORF3-encoded PepI protein showed 65% identity with the PepI proteins from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus delbrueckii subsp. lactis. The ORF1-encoded protein had significant homology with several members of the ABC transporter family but, with two distinct putative ATP-binding sites, it would represent an unusual type among the bacterial ABC transporters. ORF2 encoded a putative integral membrane protein also characteristic of the ABC transporter family. The pepI gene was overexpressed in Escherichia coli. Purified PepI hydrolysed only di and tripeptides with proline in the first position. Optimum PepI activity was observed at pH 7.5 and 40 degrees C. A gel filtration analysis indicated that PepI is a dimer of M(r) 53,000. PepI was shown to be a metal-independent serine peptidase having thiol groups at or near the active site. Kinetic studies with proline-p-nitroanilide as substrate revealed Km and Vmax values of 0.8 mM and 350 mmol min-1 mg-1, respectively, and a very high turnover number of 135,000 s-1.

  16. Translation of 5′ leaders is pervasive in genes resistant to eIF2 repression

    PubMed Central

    Fahey, Ciara; Kenny, Elaine M; Terenin, Ilya M; Dmitriev, Sergey E; Cormican, Paul; Morris, Derek W; Shatsky, Ivan N; Baranov, Pavel V

    2015-01-01

    Eukaryotic cells rapidly reduce protein synthesis in response to various stress conditions. This can be achieved by the phosphorylation-mediated inactivation of a key translation initiation factor, eukaryotic initiation factor 2 (eIF2). However, the persistent translation of certain mRNAs is required for deployment of an adequate stress response. We carried out ribosome profiling of cultured human cells under conditions of severe stress induced with sodium arsenite. Although this led to a 5.4-fold general translational repression, the protein coding open reading frames (ORFs) of certain individual mRNAs exhibited resistance to the inhibition. Nearly all resistant transcripts possess at least one efficiently translated upstream open reading frame (uORF) that represses translation of the main coding ORF under normal conditions. Site-specific mutagenesis of two identified stress resistant mRNAs (PPP1R15B and IFRD1) demonstrated that a single uORF is sufficient for eIF2-mediated translation control in both cases. Phylogenetic analysis suggests that at least two regulatory uORFs (namely, in SLC35A4 and MIEF1) encode functional protein products. DOI: http://dx.doi.org/10.7554/eLife.03971.001 PMID:25621764

  17. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species.

    PubMed Central

    Gouin, E; Mengaud, J; Cossart, P

    1994-01-01

    Most known Listeria monocytogenes virulence genes cluster within a 9.6-kb chromosomal region. This region is flanked on one end by two uncharacterized open reading frames (ORF A and ORF B) and ldh, an ORF presumably encoding the L. monocytogenes lactate dehydrogenase (J.-A. Vazquez-Boland, C. Kocks, S. Dramsi, H. Ohayon, C. Geoffroy, J. Mengaud, and P. Cossart, Infect. Immun. 60:219-230, 1992). We report here that the other end is flanked by prs, and ORF homologous to phosphoribosyl PPi synthetase genes. ORF B and prs were detected in all Listeria species and thus delimit the virulence region. This virulence gene cluster was detected exclusively in hemolytic Listeria species, Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Images PMID:8039927

  18. The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus.

    PubMed Central

    Gustafson, G; Armour, S L

    1986-01-01

    The complete nucleotide sequence of RNA beta from the type strain of barley stripe mosaic virus (BSMV) has been determined. The sequence is 3289 nucleotides in length and contains four open reading frames (ORFs) which code for proteins of Mr 22,147 (ORF1), Mr 58,098 (ORF2), Mr 17,378 (ORF3), and Mr 14,119 (ORF4). The predicted N-terminal amino acid sequence of the polypeptide encoded by the ORF nearest the 5'-end of the RNA (ORF1) is identical (after the initiator methionine) to the published N-terminal amino acid sequence of BSMV coat protein for 29 of the first 30 amino acids. ORF2 occupies the central portion of the coding region of RNA beta and ORF3 is located at the 3'-end. The ORF4 sequence overlaps the 3'-region of ORF2 and the 5'-region of ORF3 and differs in codon usage from the other three RNA beta ORFs. The coding region of RNA beta is followed by a poly(A) tract and a 238 nucleotide tRNA-like structure which are common to all three BSMV genomic RNAs. Images PMID:3754962

  19. Specific Increase of Protein Levels by Enhancing Translation Using Antisense Oligonucleotides Targeting Upstream Open Frames.

    PubMed

    Liang, Xue-Hai; Shen, Wen; Crooke, Stanley T

    2017-01-01

    A number of diseases are caused by low levels of key proteins; therefore, increasing the amount of specific proteins in human bodies is of therapeutic interest. Protein expression is downregulated by some structural or sequence elements present in the 5' UTR of mRNAs, such as upstream open reading frames (uORF). Translation initiation from uORF(s) reduces translation from the downstream primary ORF encoding the main protein product in the same mRNA, leading to a less efficient protein expression. Therefore, it is possible to use antisense oligonucleotides (ASOs) to specifically inhibit translation of the uORF by base-pairing with the uAUG region of the mRNA, redirecting translation machinery to initiate from the primary AUG site. Here we review the recent findings that translation of specific mRNAs can be enhanced using ASOs targeting uORF regions. Appropriately designed and optimized ASOs are highly specific, and they act in a sequence- and position-dependent manner, with very minor off-target effects. Protein levels can be increased using this approach in different types of human and mouse cells, and, importantly, also in mice. Since uORFs are present in around half of human mRNAs, the uORF-targeting ASOs may thus have valuable potential as research tools and as therapeutics to increase the levels of proteins for a variety of genes.

  20. Immune responses of mice immunized by DNA plasmids encoding PCV2 ORF 2 gene, porcine IL-15 or the both.

    PubMed

    Dong, Bo; Feng, Jing; Lin, Hai; Li, Lanxiang; Su, Dingding; Tu, Di; Zhu, Weijuan; Yang, Qing; Ren, Xiaofeng

    2013-11-19

    Porcine circovirus type 2 (PCV2) is associated with many kinds of diseases including postweaning multisystemic wasting syndrome (PMWS). It affects the immune system of swine and causes huge epidemic losses every year. In our previous study, we provided evidence that DNA plasmid bearing porcine IL-15 (pVAX-pIL-15) might serve as an immune enhancer for DNA plasmid encoding porcine reproductive and respiratory syndrome virus GP5 gene. In this study, PCV2 open reading frame (ORF)2 gene was cloned into the eukaryotic expression vector pVAX, resulting in the plasmid pVAX-PCV2-ORF2. Transient expression of the plasmid in BHK-21 cells could be detected using immunofluorescence assay. Experimental mice were divided into 5 groups and immunized with PBS, pVAX, pVAX-pIL-15, pVAX-PCV2-ORF2 or pVAX-pIL-15 plus pVAX-PCV2-ORF2. The results showed that the mice co-inoculated with pVAX-PCV2-ORF2 plus pVAX-pIL-15 had higher humoral and cellular immune responses than the others. In addition, DNA plasmid bearing PCV2 ORF2 gene had a protective effect against challenge with PCV2 in mice which could be promoted with the utilization of pIL-15. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. African swine fever virus encodes two genes which share significant homology with the two largest subunits of DNA-dependent RNA polymerases.

    PubMed Central

    Yáñez, R J; Boursnell, M; Nogal, M L; Yuste, L; Viñuela, E

    1993-01-01

    A random sequencing strategy applied to two large SalI restriction fragments (SB and SD) of the African swine fever virus (ASFV) genome revealed that they might encode proteins similar to the two largest RNA polymerase subunits of eukaryotes, poxviruses and Escherichia coli. After further mapping by dot-blot hybridization, two large open reading frames (ORFs) were completely sequenced. The first ORF (NP1450L) encodes a protein of 1450 amino acids with extensive similarity to the largest subunit of RNA polymerases. The second one (EP1242L) codes for a protein of 1242 amino acids similar to the second largest RNA polymerase subunit. Proteins NP1450L and EP1242L are more similar to the corresponding subunits of eukaryotic RNA polymerase II than to those of vaccinia virus, the prototype poxvirus, which shares many functional characteristics with ASFV. ORFs NP1450L and EP1242L are mainly expressed late in ASFV infection, after the onset of DNA replication. Images PMID:8506138

  2. A Survey of Protein Structures from Archaeal Viruses

    PubMed Central

    Dellas, Nikki; Lawrence, C. Martin; Young, Mark J.

    2013-01-01

    Viruses that infect the third domain of life, Archaea, are a newly emerging field of interest. To date, all characterized archaeal viruses infect archaea that thrive in extreme conditions, such as halophilic, hyperthermophilic, and methanogenic environments. Viruses in general, especially those replicating in extreme environments, contain highly mosaic genomes with open reading frames (ORFs) whose sequences are often dissimilar to all other known ORFs. It has been estimated that approximately 85% of virally encoded ORFs do not match known sequences in the nucleic acid databases, and this percentage is even higher for archaeal viruses (typically 90%–100%). This statistic suggests that either virus genomes represent a larger segment of sequence space and/or that viruses encode genes of novel fold and/or function. Because the overall three-dimensional fold of a protein evolves more slowly than its sequence, efforts have been geared toward structural characterization of proteins encoded by archaeal viruses in order to gain insight into their potential functions. In this short review, we provide multiple examples where structural characterization of archaeal viral proteins has indeed provided significant functional and evolutionary insight. PMID:25371334

  3. Genomic sequence of mandarin fish rhabdovirus with an unusual small non-transcriptional ORF.

    PubMed

    Tao, Jian-Jun; Zhou, Guang-Zhou; Gui, Jian-Fang; Zhang, Qi-Ya

    2008-03-01

    The complete genome of mandarin fish Siniperca chuatsi rhabdovirus (SCRV) was cloned and sequenced. It comprises 11,545 nucleotides and contains five genes encoding the nucleoprotein N, the phosphoprotein P, the matrix protein M, the glycoprotein G, and the RNA-dependent RNA polymerase protein L. At the 3' and 5' termini of SCRV genome, leader and trailer sequences show inverse complementarity. The N, P, M and G proteins share the highest sequence identities (ranging from 14.8 to 41.5%) with the respective proteins of rhabdovirus 903/87, the L protein has the highest identity with those of vesiculoviruses, especially with Chandipura virus (44.7%). Phylogenetic analysis of L proteins showed that SCRV clustered with spring vireamia of carp virus (SVCV) and was most closely related to viruses in the genus Vesiculovirus. In addition, an overlapping open reading frame (ORF) predicted to encode a protein similar to vesicular stomatitis virus C protein is present within the P gene of SCRV. Furthermore, an unoverlapping small ORF downstream of M ORF within M gene is predicted (tentatively called orf4). Therefore, the genomic organization of SCRV can be proposed as 3' leader-N-P/C-M-(orf4)-G-L-trailer 5'. Orf4 transcription or translation products could not be detected by northern or Western blot, respectively, though one similar mRNA band to M mRNA was found. This is the first report on one small unoverlapping ORF in M gene of a fish rhabdovirus.

  4. Characterization of Coffee ringspot virus-Lavras: A model for an emerging threat to coffee production and quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalho, T.O.; Figueira, A.R.; Sotero, A.J.

    2014-09-15

    The emergence of viruses in Coffee (Coffea arabica and Coffea canephora), the most widely traded agricultural commodity in the world, is of critical concern. The RNA1 (6552 nt) of Coffee ringspot virus is organized into five open reading frames (ORFs) capable of encoding the viral nucleocapsid (ORF1p), phosphoprotein (ORF2p), putative cell-to-cell movement protein (ORF3p), matrix protein (ORF4p) and glycoprotein (ORF5p). Each ORF is separated by a conserved intergenic junction. RNA2 (5945 nt), which completes the bipartite genome, encodes a single protein (ORF6p) with homology to RNA-dependent RNA polymerases. Phylogenetic analysis of L protein sequences firmly establishes CoRSV as a membermore » of the recently proposed Dichorhavirus genus. Predictive algorithms, in planta protein expression, and a yeast-based nuclear import assay were used to determine the nucleophillic character of five CoRSV proteins. Finally, the temperature-dependent ability of CoRSV to establish systemic infections in an initially local lesion host was quantified. - Highlights: • We report genome sequence determination for Coffee ringspot virus (CoRSV). • CoRSV should be considered a member of the proposed Dichorhavirus genus. • We report temperature-dependent systemic infection of an initially local lesion host. • We report in planta protein and localization data for five CoRSV proteins. • In silico predictions of the CoRSV proteins were validated using in vivo assays.« less

  5. Transcriptional analysis of Penaeus stylirostris densovirus genes

    USDA-ARS?s Scientific Manuscript database

    Penaeus stylirostris densovirus (PstDNV) genome contains three open reading frames (ORFs), left, middle, and right, which encode a non-structural (NS) protein, an unknown protein, and a capsid protein (CP), respectively. Transcription mapping revealed that P2, P11 and P61 promoters transcribe the le...

  6. Two Novel Hypovirulence-Associated Mycoviruses in the Phytopathogenic Fungus Botrytis cinerea: Molecular Characterization and Suppression of Infection Cushion Formation

    PubMed Central

    Hao, Fangmin; Ding, Ting; Wu, Mingde; Zhang, Jing; Yang, Long; Chen, Weidong; Li, Guoqing

    2018-01-01

    Botrytis cinerea is a necrotrophic fungus causing disease on many important agricultural crops. Two novel mycoviruses, namely Botrytis cinerea hypovirus 1 (BcHV1) and Botrytis cinerea fusarivirus 1 (BcFV1), were fully sequenced. The genome of BcHV1 is 10,214 nt long excluding a poly-A tail and possesses one large open reading frame (ORF) encoding a polyprotein possessing several conserved domains including RNA-dependent RNA polymerase (RdRp), showing homology to hypovirus-encoded polyproteins. Phylogenetic analysis indicated that BcHV1 may belong to the proposed genus Betahypovirus in the viral family Hypoviridae. The genome of BcFV1 is 8411 nt in length excluding the poly A tail and theoretically processes two major ORFs, namely ORF1 and ORF2. The larger ORF1 encoded polypeptide contains protein domains of an RdRp and a viral helicase, whereas the function of smaller ORF2 remains unknown. The BcFV1 was phylogenetically clustered with other fusariviruses forming an independent branch, indicating BcFV1 was a member in Fusariviridae. Both BcHV1 and BcFV1 were capable of being transmitted horizontally through hyphal anastomosis. Infection by BcHV1 alone caused attenuated virulence without affecting mycelial growth, significantly inhibited infection cushion (IC) formation, and altered expression of several IC-formation-associated genes. However, wound inoculation could fully rescue the virulence phenotype of the BcHV1 infected isolate. These results indicate the BcHV1-associated hypovirulence is caused by the viral influence on IC-formation-associated pathways. PMID:29757259

  7. Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales

    PubMed Central

    Viswanathan, Vandana; Narjala, Anushree; Ravichandran, Aravind; Jayaprasad, Suvratha

    2017-01-01

    The order Sphingomonadales, containing the families Erythrobacteraceae and Sphingomonadaceae, is a relatively less well-studied phylogenetic branch within the class Alphaproteobacteria. Prophage elements are present in most bacterial genomes and are important determinants of adaptive evolution. An “intact” prophage was predicted within the genome of Sphingomonas hengshuiensis strain WHSC-8 and was designated Prophage IWHSC-8. Loci homologous to the region containing the first 22 open reading frames (ORFs) of Prophage IWHSC-8 were discovered among the genomes of numerous Sphingomonadales. In 17 genomes, the homologous loci were co-located with an ORF encoding a putative superoxide dismutase. Several other lines of molecular evidence implied that these homologous loci represent an ancient temperate bacteriophage integration, and this horizontal transfer event pre-dated niche-based speciation within the order Sphingomonadales. The “stabilization” of prophages in the genomes of their hosts is an indicator of “fitness” conferred by these elements and natural selection. Among the various ORFs predicted within the conserved prophages, an ORF encoding a putative proline-rich outer membrane protein A was consistently present among the genomes of many Sphingomonadales. Furthermore, the conserved prophages in six Sphingomonas sp. contained an ORF encoding a putative spermidine synthase. It is possible that one or more of these ORFs bestow selective fitness, and thus the prophages continue to be vertically transferred within the host strains. Although conserved prophages have been identified previously among closely related genera and species, this is the first systematic and detailed description of orthologous prophages at the level of an order that contains two diverse families and many pigmented species. PMID:28201618

  8. Strategies and Challenges in Identifying Function for Thousands of sORF-Encoded Peptides in Meiosis.

    PubMed

    Hollerer, Ina; Higdon, Andrea; Brar, Gloria A

    2017-09-20

    Recent genomic analyses have revealed pervasive translation from formerly unrecognized short open reading frames (sORFs) during yeast meiosis. Despite their short length, which has caused these regions to be systematically overlooked by traditional gene annotation approaches, meiotic sORFs share many features with classical genes, implying the potential for similar types of cellular functions. We found that sORF expression accounts for approximately 10-20% of the cellular translation capacity in yeast during meiotic differentiation and occurs within well-defined time windows, suggesting the production of relatively abundant peptides with stage-specific meiotic roles from these regions. Here, we provide arguments supporting this hypothesis and discuss sORF similarities and differences, as a group, to traditional protein coding regions, as well as challenges in defining their specific functions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Open Reading Frame E3-10.9K of Subspecies B1 Human Adenoviruses Encodes a Family of Late Orthologous Proteins That Vary in Their Predicted Structural Features and Subcellular Localization ▿

    PubMed Central

    Frietze, Kathryn M.; Campos, Samuel K.; Kajon, Adriana E.

    2010-01-01

    Subspecies B1 human adenoviruses (HAdV-B1s) are important causative agents of acute respiratory disease, but the molecular bases of their distinct pathobiology are still poorly understood. Marked differences in genetic content between HAdV-B1s and the well-characterized HAdV-Cs that may contribute to distinct pathogenic properties map to the E3 region. Between the highly conserved E3-19K and E3-10.4K/RIDα open reading frames (ORFs), and in the same location as the HAdV-C ADP/E3-11.6K ORF, HAdV-B1s carry ORFs E3-20.1K and E3-20.5K and a polymorphic third ORF, designated E3-10.9K, that varies in the size of its predicted product among HAdV-B1 serotypes and genomic variants. As an initial effort to define the function of the E3-10.9K ORF, we carried out a biochemical characterization of E3-10.9K-encoded orthologous proteins and investigated their expression in infected cells. Sequence-based predictions suggested that E3-10.9K orthologs with a hydrophobic domain are integral membrane proteins. Ectopically expressed, C-terminally tagged (with enhanced green fluorescent protein [EGFP]) E3-10.9K and E3-9K localized primarily to the plasma membrane, while E3-7.7K localized primarily to a juxtanuclear compartment that could not be identified. EGFP fusion proteins with a hydrophobic domain were N and O glycosylated. EGFP-tagged E3-4.8K, which lacked the hydrophobic domain, displayed diffuse cellular localization similar to that of the EGFP control. E3-10.9K transcripts from the major late promoter were detected at late time points postinfection. A C-terminally hemagglutinin-tagged version of E3-9K was detected by immunoprecipitation at late times postinfection in the membrane fraction of mutant virus-infected cells. These data suggest a role for ORF E3-10.9K-encoded proteins at late stages of HAdV-B1 replication, with potentially important functional implications for the documented ORF polymorphism. PMID:20739542

  10. The Protein Phosphatases of Synechocystis sp. Strain PCC 6803: Open Reading Frames sll1033 and sll1387 Encode Enzymes That Exhibit both Protein-Serine and Protein-Tyrosine Phosphatase Activity In Vitro.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ruiliang; Potters, M B.; Shi, Liang

    2005-09-01

    The open reading frames (ORFs) encoding two potential protein-serine/threonine phosphatases from the cyanobacterium Synechocystis sp. strain PCC 6803 were cloned and their protein products expressed in Escherichia coli cells. The product of ORF sll1033, SynPPM3, is a homologue of the PPM family of protein-serine/threonine phosphatases found in all eukaryotes as well as many members of the Bacteria. Surprisingly, the recombinant protein phosphatase dephosphorylated phosphotyrosine- as well as phosphoserine-containing proteins in vitro. While kinetic analyses indicate that the enzyme was more efficient at dephosphorylating the latter, replacement of Asp(608) by asparagine enhanced activity toward a phosphotyrosine-containing protein fourfold. The product ofmore » ORF sll1387, SynPPP1, is the sole homolog of the PPP family of protein phosphatases encoded by the genome of Synechocystis sp. strain PCC 6803. Like many other bacterial PPPs, the enzyme dephosphorylated phosphoserine- and phosphotyrosine-containing proteins with comparable efficiencies. However, while previously described PPPs from prokaryotic organisms required the addition of exogenous metal ion cofactors, such as Mg(2+) or Mn(2+), for activity, recombinantly produced SynPPP1 displayed near-maximal activity in the absence of added metals. Inductively coupled plasma mass spectrometry indicated that recombinant SynPPP1 contained significant quantities, 0.32 to 0.44 mol/mole total, of Mg and Mn. In this respect, the cyanobacterial enzyme resembled eukaryotic members of the PPP family, which are metalloproteins. mRNA encoding SynPPP1 or SynPPM3 could be detected in cells grown under many, but not all, environmental conditions.« less

  11. Open Reading Frame S/L of Varicella-Zoster Virus Encodes a Cytoplasmic Protein Expressed in Infected Cells

    PubMed Central

    Kemble, George W.; Annunziato, Paula; Lungu, Octavian; Winter, Ruth E.; Cha, Tai-An; Silverstein, Saul J.; Spaete, Richard R.

    2000-01-01

    We report the discovery of a novel gene in the varicella-zoster virus (VZV) genome, designated open reading frame (ORF) S/L. This gene, located at the left end of the prototype VZV genome isomer, expresses a polyadenylated mRNA containing a splice within the 3′ untranslated region in virus-infected cells. Sequence analysis reveals significant differences between the ORF S/Ls of wild-type and attenuated strains of VZV. Antisera raised to a bacterially expressed portion of ORF S/L reacted specifically with a 21-kDa protein synthesized in cells infected with a VZV clinical isolate and with the original vaccine strain of VZV (Oka-ATCC). Cells infected with other VZV strains, including a wild-type strain that has been extensively passaged in tissue culture and commercially produced vaccine strains of Oka, synthesize a family of proteins ranging in size from 21 to 30 kDa that react with the anti-ORF S/L antiserum. MeWO cells infected with recombinant VZV harboring mutations in the C-terminal region of the ORF S/L gene lost adherence to the stratum and adjacent cells, resulting in an altered plaque morphology. Immunohistochemical analysis of VZV-infected cells demonstrated that ORF S/L protein localizes to the cytoplasm. ORF S/L protein was present in skin lesions of individuals with primary or reactivated infection and in the neurons of a dorsal root ganglion during virus reactivation. PMID:11070031

  12. Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus

    PubMed Central

    Di, Han; Madden, Joseph C.; Morantz, Esther K.; Tang, Hsin-Yao; Graham, Rachel L.; Baric, Ralph S.

    2017-01-01

    Members of the order Nidovirales express their structural protein ORFs from a nested set of 3′ subgenomic mRNAs (sg mRNAs), and for most of these ORFs, a single genomic transcription regulatory sequence (TRS) was identified. Nine TRSs were previously reported for the arterivirus Simian hemorrhagic fever virus (SHFV). In the present study, which was facilitated by next-generation sequencing, 96 SHFV body TRSs were identified that were functional in both infected MA104 cells and macaque macrophages. The abundance of sg mRNAs produced from individual TRSs was consistent over time in the two different cell types. Most of the TRSs are located in the genomic 3′ region, but some are in the 5′ ORF1a/1b region and provide alternative sources of nonstructural proteins. Multiple functional TRSs were identified for the majority of the SHFV 3′ ORFs, and four previously identified TRSs were found not to be the predominant ones used. A third of the TRSs generated sg mRNAs with variant leader–body junction sequences. Sg mRNAs encoding E′, GP2, or ORF5a as their 5′ ORF as well as sg mRNAs encoding six previously unreported alternative frame ORFs or 14 previously unreported C-terminal ORFs of known proteins were also identified. Mutation of the start codon of two C-terminal ORFs in an infectious clone reduced virus yield. Mass spectrometry detected one previously unreported protein and suggested translation of some of the C-terminal ORFs. The results reveal the complexity of the transcriptional regulatory mechanism and expanded coding capacity for SHFV, which may also be characteristic of other nidoviruses. PMID:29073030

  13. The Varicella-zoster virus DNA encapsidation genes: Identification and characterization of the putative terminase subunits

    PubMed Central

    Visalli, Robert J.; Nicolosi, Denise M.; Irven, Karen L.; Goshorn, Bradley; Khan, Tamseel; Visalli, Melissa A.

    2007-01-01

    The putative DNA encapsidation genes encoded by open reading frames (ORFs) 25, 26, 30, 34, 43, 45/42 and 54 were cloned from Varicella-zoster virus (VZV) strain Ellen. Sequencing revealed that the Ellen ORFs were highly conserved at the amino acid level when compared to those of nineteen previously published VZV isolates. Additionally, RT-PCR provided the first evidence that ORF45/42 was expressed as a spliced transcript in VZV-infected cells. All seven ORFs were expressed in vitro and full length products were identified using a C-terminal V5 epitope tag. The in vitro products of the putative VZV terminase subunits encoded by ORFs 30 and 45/42 proved useful in protein-protein interaction assays. Previous studies have reported the formation of a heterodimeric terminase complex involved in DNA encapsidation for both herpes simplex virus-type 1 (HSV-1) and human cytomegalovirus (HCMV). Here we report that the C-terminal portion of exon II of ORF45/42 (ORF42-C269) interacted in GST-pull down experiments with in vitro synthesized ORF30 and ORF45/42. The interactions were maintained in the presence of anionic detergents and in buffers of increasing ionic strength. Cells transiently transfected with epitope tagged ORF45/42 or ORF30 showed primarily cytoplasmic staining. In contrast, an antiserum directed to the N-terminal portion of ORF45 showed nearly exclusive nuclear localization of the ORF45/42 gene product in infected cells. An ORF30 specific antiserum detected an 87 kDa protein in both the cytoplasmic and nuclear fractions of VZV infected cells. The results were consistent with the localization and function of herpesviral terminase subunits. This is the first study aimed at the identification and characterization of the VZV DNA encapsidation gene products. PMID:17868947

  14. Characterization of GM-CSF-inhibitory factor and Uracil DNA glycosylase encoding genes from camel pseudocowpoxvirus.

    PubMed

    Nagarajan, G; Swami, Shelesh Kumar; Dahiya, Shyam Singh; Narnaware, S D; Mehta, S C; Singh, P K; Singh, Raghvendar; Tuteja, F C; Patil, N V

    2015-06-01

    The present study describes the PCR amplification of GM-CSF-inhibitory factor (GIF) and Uracil DNA glycosylase (UDG) encoding genes of pseudocowpoxvirus (PCPV) from the Indian Dromedaries (Camelus dromedarius) infected with contagious ecthyma using the primers based on the corresponding gene sequences of human PCPV and reindeer PCPV, respectively. The length of GIF gene of PCPV obtained from camel is 795 bp and due to the addition of one cytosine residue at position 374 and one adenine residue at position 516, the open reading frame (ORF) got altered, resulting in the production of truncated polypeptide. The ORF of UDG encoding gene of camel PCPV is 696 bp encoding a polypeptide of 26.0 kDa. Comparison of amino acid sequence homologies of GIF and UDG of camel PCPV revealed that the camel PCPV is closer to ORFV and PCPV (reference stains of both human and reindeer), respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Identification of a novel plant amalgavirus (Amalgavirus, Amalgaviridae) genome sequence in Cistus incanus.

    PubMed

    Goh, C J; Park, D; Lee, J S; Sebastiani, F; Hahn, Y

    2018-01-01

    Amalgaviridae is a family of double-stranded, monosegmented RNA viruses that are associated with plants, fungi, microsporidians, and animals. A sequence contig derived from the transcriptome of a eudicot, Cistus incanus (the family Cistaceae; commonly known as hoary rockrose), was identified as the genome sequence of a novel plant RNA virus and named Cistus incanus RNA virus 1 (CiRV1). Sequence comparison and phylogenetic analysis indicated that CiRV1 is a novel species of the genus Amalgavirus in the family Amalgaviridae. The CiRV1 genome contig has two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. An ORF1+2 fusion protein, which functions in viral RNA replication, is produced by a +1 programmed ribosomal frameshifting (PRF) mechanism. A +1 PRF motif UUU_CGU, which matches the conserved amalgavirus +1 PRF consensus sequence UUU_CGN, was found at the boundary of CiRV1 ORF1 and ORF2. Comparison of 25 amalgavirus ORF1+2 fusion proteins revealed that only three different positions within a 13-amino acid segment were recurrently used at the boundary, possibly being selected so as not to interfere with correct folding and function of the fusion protein. CiRV1 is the first virus found to be associated with the Cistus species and may be useful for studying amalgaviruses.

  16. Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites.

    PubMed

    Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo

    2018-04-01

    The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass ( Zostera marina ) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae . They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses.

  17. Identification of Two Novel Amalgaviruses in the Common Eelgrass (Zostera marina) and in Silico Analysis of the Amalgavirus +1 Programmed Ribosomal Frameshifting Sites

    PubMed Central

    Park, Dongbin; Goh, Chul Jun; Kim, Hyein; Hahn, Yoonsoo

    2018-01-01

    The genome sequences of two novel monopartite RNA viruses were identified in a common eelgrass (Zostera marina) transcriptome dataset. Sequence comparison and phylogenetic analyses revealed that these two novel viruses belong to the genus Amalgavirus in the family Amalgaviridae. They were named Zostera marina amalgavirus 1 (ZmAV1) and Zostera marina amalgavirus 2 (ZmAV2). Genomes of both ZmAV1 and ZmAV2 contain two overlapping open reading frames (ORFs). ORF1 encodes a putative replication factory matrix-like protein, while ORF2 encodes a RNA-dependent RNA polymerase (RdRp) domain. The fusion protein (ORF1+2) of ORF1 and ORF2, which mediates RNA replication, was produced using the +1 programmed ribosomal frameshifting (PRF) mechanism. The +1 PRF motif sequence, UUU_CGN, which is highly conserved among known amalgaviruses, was also found in ZmAV1 and ZmAV2. Multiple sequence alignment of the ORF1+2 fusion proteins from 24 amalgaviruses revealed that +1 PRF occurred only at three different positions within the 13-amino acid-long segment, which was surrounded by highly conserved regions on both sides. This suggested that the +1 PRF may be constrained by the structure of fusion proteins. Genome sequences of ZmAV1 and ZmAV2, which are the first viruses to be identified in common eelgrass, will serve as useful resources for studying evolution and diversity of amalgaviruses. PMID:29628822

  18. Two T7-like Bacteriophages, K5-2 and K5-4, Each Encodes Two Capsule Depolymerases: Isolation and Functional Characterization.

    PubMed

    Hsieh, Pei-Fang; Lin, Hsiao-Hsuan; Lin, Tzu-Lung; Chen, Yi-Yin; Wang, Jin-Town

    2017-07-04

    Two Klebsiella bacteriophages K5-2 and K5-4, which are able to infect and grow on either capsular types K30/K69 and K5 or K8 and K5 of Klebsiella strains, were isolated and characterized. Each phage contained two open reading frames (ORFs), which encoded two putative capsule depolymerases, respectively. The first ORF encoded tail fiber proteins, which have K30/K69 depolymerase and K8 depolymerase activities. The second ORF encoded hypothetical proteins, which are almost identical in amino acid sequences, and have K5 depolymerase activity. Alcian blue staining of enzyme-treated capsular polysaccharides (CPS) showed that purified depolymerases can cleave purified Klebsiella CPS in vitro and liberate monosaccharaides. Capsule K5 deletion mutants were not lysed by either phage, suggesting that the capsule was essential for phage infection. Bacterial killing was observed when incubated Klebsiella strains with phages but not with purified depolymerases. Treatment with the K5-4 phage significantly increased the survival of mice infected with a K. pneumoniae K5 strain. In conclusion, two dual host-specific Klebsiella phages and their tailspikes exhibit capsule depolymerase activity were characterized. Each phage and phage-encoded depolymerase has specificity for capsular type K30/K69, K8 or K5, and could be used for the typing and treatment of K. pneumoniae infection.

  19. Novel Protective Antigens Expressed by Trypanosoma cruzi Amastigotes Provide Immunity to Mice Highly Susceptible to Chagas' Disease▿

    PubMed Central

    Silveira, Eduardo L. V.; Claser, Carla; Haolla, Filipe A. B.; Zanella, Luiz G.; Rodrigues, Mauricio M.

    2008-01-01

    Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease. PMID:18579696

  20. Novel protective antigens expressed by Trypanosoma cruzi amastigotes provide immunity to mice highly susceptible to Chagas' disease.

    PubMed

    Silveira, Eduardo L V; Claser, Carla; Haolla, Filipe A B; Zanella, Luiz G; Rodrigues, Mauricio M

    2008-08-01

    Earlier studies have demonstrated in A/Sn mice highly susceptible to Chagas' disease protective immunity against lethal Trypanosoma cruzi infection elicited by vaccination with an open reading frame (ORF) expressed by amastigotes. In our experiments, we used this mouse model to search for other amastigote-expressed ORFs with a similar property. Fourteen ORFs previously determined to be expressed in this developmental stage were individually inserted into a eukaryotic expression vector containing a nucleotide sequence that encoded a mammalian secretory signal peptide. Immunization with 13 of the 14 ORFs induced specific antibodies which recognized the amastigotes. Three of those immune sera also reacted with trypomastigotes and epimastigotes. After a lethal challenge with Y strain trypomastigotes, the vast majority of plasmid-injected mice succumbed to infection. In some cases, a significant delay in mortality was observed. Only two of these ORFs provided protective immunity against the otherwise lethal infection caused by trypomastigotes of the Y or Colombia strain. These ORFs encode members of the trans-sialidase family of surface antigens related to the previously described protective antigen amastigote surface protein 2 (ASP-2). Nevertheless, at the level of antibody recognition, no cross-reactivity was observed between the ORFs and the previously described ASP-2 from the Y strain. In immunofluorescence analyses, we observed the presence of epitopes related to both proteins expressed by amastigotes of seven different strains. In conclusion, our approach allowed us to successfully identify two novel protective ORFs which we consider interesting for future studies on the immune response to Chagas' disease.

  1. FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions

    PubMed Central

    Li, Hui; Xiao, Li; Zhang, Lili; Wu, Jiarui; Wei, Bin; Sun, Ninghui; Zhao, Yi

    2018-01-01

    smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs) played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP) which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP. PMID:29675032

  2. Complete genome sequence of yam chlorotic necrosis virus, a novel macluravirus infecting yam

    USDA-ARS?s Scientific Manuscript database

    Complete genomic sequence of a novel member of the genus Macluravirus was determined from yam plants with chlorotic and necrotic symptoms in China. The genomic RNA consists of 8,261 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing one long open reading frame (ORF) encoding a larg...

  3. Alternative splicing by participation of the group II intron ORF in extremely halotolerant and alkaliphilic Oceanobacillus iheyensis.

    PubMed

    Chee, Gab-Joo; Takami, Hideto

    2011-01-01

    Group II introns inserted into genes often undergo splicing at unexpected sites, and participate in the transcription of host genes. We identified five copies of a group II intron, designated Oi.Int, in the genome of an extremely halotolerant and alkaliphilic bacillus, Oceanobacillus iheyensis. The Oi.Int4 differs from the Oi.Int3 at four bases. The ligated exons of the Oi.Int4 could not be detected by RT-PCR assays in vivo or in vitro although group II introns can generally self-splice in vitro without the involvement of an intron-encoded open reading frame (ORF). In the Oi.Int4 mutants with base substitutions within the ORF, ligated exons were detected by in vitro self-splicing. It was clear that the ligation of exons during splicing is affected by the sequence of the intron-encoded ORF since the splice sites corresponded to the joining sites of the intron. In addition, the mutant introns showed unexpected multiple products with alternative 5' splice sites. These findings imply that alternative 5' splicing which causes a functional change of ligated exons presumably has influenced past adaptations of O. iheyensis to various environmental changes.

  4. A Bacteriophage-Related Chimeric Marine Virus Infecting Abalone

    PubMed Central

    Zhuang, Jun; Cai, Guiqin; Lin, Qiying; Wu, Zujian; Xie, Lianhui

    2010-01-01

    Marine viruses shape microbial communities with the most genetic diversity in the sea by multiple genetic exchanges and infect multiple marine organisms. Here we provide proof from experimental infection that abalone shriveling syndrome-associated virus (AbSV) can cause abalone shriveling syndrome. This malady produces histological necrosis and abnormally modified macromolecules (hemocyanin and ferritin). The AbSV genome is a 34.952-kilobase circular double-stranded DNA, containing putative genes with similarity to bacteriophages, eukaryotic viruses, bacteria and endosymbionts. Of the 28 predicted open reading frames (ORFs), eight ORF-encoded proteins have identifiable functional homologues. The 4 ORF products correspond to a predicted terminase large subunit and an endonuclease in bacteriophage, and both an integrase and an exonuclease from bacteria. The other four proteins are homologous to an endosymbiont-derived helicase, primase, single-stranded binding (SSB) protein, and thymidylate kinase, individually. Additionally, AbSV exhibits a common gene arrangement similar to the majority of bacteriophages. Unique to AbSV, the viral genome also contains genes associated with bacterial outer membrane proteins and may lack the structural protein-encoding ORFs. Genomic characterization of AbSV indicates that it may represent a transitional form of microbial evolution from viruses to bacteria. PMID:21079776

  5. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector

    PubMed Central

    2013-01-01

    Background Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. Results We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit’s component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. Conclusions We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins. PMID:23957834

  6. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector.

    PubMed

    Buj, Raquel; Iglesias, Noa; Planas, Anna M; Santalucía, Tomàs

    2013-08-20

    Valuable clone collections encoding the complete ORFeomes for some model organisms have been constructed following the completion of their genome sequencing projects. These libraries are based on Gateway cloning technology, which facilitates the study of protein function by simplifying the subcloning of open reading frames (ORF) into any suitable destination vector. The expression of proteins of interest as fusions with functional modules is a frequent approach in their initial functional characterization. A limited number of Gateway destination expression vectors allow the construction of fusion proteins from ORFeome-derived sequences, but they are restricted to the possibilities offered by their inbuilt functional modules and their pre-defined model organism-specificity. Thus, the availability of cloning systems that overcome these limitations would be highly advantageous. We present a versatile cloning toolkit for constructing fully-customizable three-part fusion proteins based on the MultiSite Gateway cloning system. The fusion protein components are encoded in the three plasmids integral to the kit. These can recombine with any purposely-engineered destination vector that uses a heterologous promoter external to the Gateway cassette, leading to the in-frame cloning of an ORF of interest flanked by two functional modules. In contrast to previous systems, a third part becomes available for peptide-encoding as it no longer needs to contain a promoter, resulting in an increased number of possible fusion combinations. We have constructed the kit's component plasmids and demonstrate its functionality by providing proof-of-principle data on the expression of prototype fluorescent fusions in transiently-transfected cells. We have developed a toolkit for creating fusion proteins with customized N- and C-term modules from Gateway entry clones encoding ORFs of interest. Importantly, our method allows entry clones obtained from ORFeome collections to be used without prior modifications. Using this technology, any existing Gateway destination expression vector with its model-specific properties could be easily adapted for expressing fusion proteins.

  7. endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1.

    PubMed Central

    Cavicchioli, R; East, P D; Watson, K

    1991-01-01

    The complete nucleotide sequence of endAFS, an endoglucanase gene isolated from the ruminal anaerobe Fibrobacter succinogenes AR1, was determined. endAFS encodes two overlapping open reading frames (ORF1 and ORF2), and it was proposed that a -1 ribosomal frameshift was required to allow contiguous synthesis of a 453-amino-acid endoglucanase. A proline- and threonine-rich region at the C terminus of ORF1 and rare codons for arginine and threonine were coincident with the proposed frameshift site. ENDAFS is proposed to be a member of subgroup 1 of family E endoglucanases, of which endoglucanases from Thermomonospora fusca and Persea americana (avocado) are also members. Endoglucanases from Clostridium thermocellum and Pseudomonas fluorescens form subgroup 2. Images PMID:1708767

  8. Translational control of Nrf2 within the open reading frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Leal, Oscar, E-mail: operez@temple.edu; Barrero, Carlos A.; Merali, Salim, E-mail: smerali@temple.edu

    2013-07-19

    Highlights: •Identification of a novel Nrf2 translational repression mechanism. •The repressor is within the 3′ portion of the Nrf2 ORF. •The translation of Nrf2 or eGFP is reduced by the regulatory element. •The translational repression can be reversed with synonymous codon substitutions. •The molecular mechanism requires the mRNA sequence, but not the encoded amino acids. -- Abstract: Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is a transcription factor that is essential for the regulation of an effective antioxidant and detoxifying response. The regulation of its activity can occur at transcription, translation and post-translational levels. Evidence suggests that under environmental stressmore » conditions, new synthesis of Nrf2 is required – a process that is regulated by translational control and is not fully understood. Here we described the identification of a novel molecular process that under basal conditions strongly represses the translation of Nrf2 within the open reading frame (ORF). This mechanism is dependent on the mRNA sequence within the 3′ portion of the ORF of Nrf2 but not in the encoded amino acid sequence. The Nrf2 translational repression can be reversed with the use of synonymous codon substitutions. This discovery suggests an additional layer of control to explain the reason for the low Nrf2 concentration under quiescent state.« less

  9. Production and pathogenicity of hepatitis C virus core gene products

    PubMed Central

    Li, Hui-Chun; Ma, Hsin-Chieh; Yang, Chee-Hing; Lo, Shih-Yen

    2014-01-01

    Hepatitis C virus (HCV) is a major cause of chronic liver diseases, including steatosis, cirrhosis and hepatocellular carcinoma, and its infection is also associated with insulin resistance and type 2 diabetes mellitus. HCV, belonging to the Flaviviridae family, is a small enveloped virus whose positive-stranded RNA genome encoding a polyprotein. The HCV core protein is cleaved first at residue 191 by the host signal peptidase and further cleaved by the host signal peptide peptidase at about residue 177 to generate the mature core protein (a.a. 1-177) and the cleaved peptide (a.a. 178-191). Core protein could induce insulin resistance, steatosis and even hepatocellular carcinoma through various mechanisms. The peptide (a.a. 178-191) may play a role in the immune response. The polymorphism of this peptide is associated with the cellular lipid drop accumulation, contributing to steatosis development. In addition to the conventional open reading frame (ORF), in the +1 frame, an ORF overlaps with the core protein-coding sequence and encodes the alternative reading frame proteins (ARFP or core+1). ARFP/core+1/F protein could enhance hepatocyte growth and may regulate iron metabolism. In this review, we briefly summarized the current knowledge regarding the production of different core gene products and their roles in viral pathogenesis. PMID:24966583

  10. Decoding sORF translation - from small proteins to gene regulation.

    PubMed

    Cabrera-Quio, Luis Enrique; Herberg, Sarah; Pauli, Andrea

    2016-11-01

    Translation is best known as the fundamental mechanism by which the ribosome converts a sequence of nucleotides into a string of amino acids. Extensive research over many years has elucidated the key principles of translation, and the majority of translated regions were thought to be known. The recent discovery of wide-spread translation outside of annotated protein-coding open reading frames (ORFs) came therefore as a surprise, raising the intriguing possibility that these newly discovered translated regions might have unrecognized protein-coding or gene-regulatory functions. Here, we highlight recent findings that provide evidence that some of these newly discovered translated short ORFs (sORFs) encode functional, previously missed small proteins, while others have regulatory roles. Based on known examples we will also speculate about putative additional roles and the potentially much wider impact that these translated regions might have on cellular homeostasis and gene regulation.

  11. Identification of critical residues in Hepatitis E virus macro domain involved in its interaction with viral methyltransferase and ORF3 proteins

    PubMed Central

    Anang, Saumya; Subramani, Chandru; Nair, Vidya P.; Kaul, Sheetal; Kaushik, Nidhi; Sharma, Chandresh; Tiwari, Ashutosh; Ranjith-Kumar, CT; Surjit, Milan

    2016-01-01

    Hepatitis E virus (HEV) is a major cause of hepatitis in normal and organ transplant individuals. HEV open reading frame-1 encodes a polypeptide comprising of the viral nonstructural proteins as well as domains of unknown function such as the macro domain (X-domain), V, DUF3729 and Y. The macro domain proteins are ubiquitously present from prokaryotes to human and in many positive-strand RNA viruses, playing important roles in multiple cellular processes. Towards understanding the function of the HEV macro domain, we characterized its interaction partners among other HEV encoded proteins. Here, we report that the HEV X-domain directly interacts with the viral methyltransferase and the ORF3 proteins. ORF3 association with the X-domain was mediated through two independent motifs, located within its N-terminal 35aa (amino acids) and C-terminal 63-123aa. Methyltransferase interaction domain was mapped to N-terminal 30-90aa. The X-domain interacted with both ORF3 and methyltransferase through its C-terminal region, involving 66th,67th isoleucine and 101st,102nd leucine, conserved across HEV genotypes. Furthermore, ORF3 and methyltransferase competed with each other for associating with the X-domain. These findings provide molecular understanding of the interaction between the HEV macro domain, methyltransferase and ORF3, suggesting an important role of the macro domain in the life cycle of HEV. PMID:27113483

  12. Cloning and Expression of the Erwinia carotovora subsp. carotovora Gene Encoding the Low-Molecular-Weight Bacteriocin Carocin S1▿

    PubMed Central

    Chuang, Duen-yau; Chien, Yung-chei; Wu, Huang-Pin

    2007-01-01

    The purpose of this study was to clone the carocin S1 gene and express it in a non-carocin-producing strain of Erwinia carotovora. A mutant, TH22-10, which produced a high-molecular-weight bacteriocin but not a low-molecular-weight bacteriocin, was obtained by Tn5 insertional mutagenesis using H-rif-8-2 (a spontaneous rifampin-resistant mutant of Erwinia carotovora subsp. carotovora 89-H-4). Using thermal asymmetric interlaced PCR, the DNA sequence from the Tn5 insertion site and the DNA sequence of the contiguous 2,280-bp region were determined. Two complete open reading frames (ORF), designated ORF2 and ORF3, were identified within the sequence fragment. ORF2 and ORF3 were identified with the carocin S1 genes, caroS1K (ORF2) and caroS1I (ORF3), which, respectively, encode a killing protein (CaroS1K) and an immunity protein (CaroS1I). These genes were homologous to the pyocin S3 gene and the pyocin AP41 gene. Carocin S1 was expressed in E. carotovora subsp. carotovora Ea1068 and replicated in TH22-10 but could not be expressed in Escherichia coli (JM101) because a consensus sequence resembling an SOS box was absent. A putative sequence similar to the consensus sequence for the E. coli cyclic AMP receptor protein binding site (−312 bp) was found upstream of the start codon. Production of this bacteriocin was also induced by glucose and lactose. The homology search results indicated that the carocin S1 gene (between bp 1078 and bp 1704) was homologous to the pyocin S3 and pyocin AP41 genes in Pseudomonas aeruginosa. These genes encode proteins with nuclease activity (domain 4). This study found that carocin S1 also has nuclease activity. PMID:17071754

  13. Combination of Bottom-up 2D-LC-MS and Semi-top-down GelFree-LC-MS Enhances Coverage of Proteome and Low Molecular Weight Short Open Reading Frame Encoded Peptides of the Archaeon Methanosarcina mazei.

    PubMed

    Cassidy, Liam; Prasse, Daniela; Linke, Dennis; Schmitz, Ruth A; Tholey, Andreas

    2016-10-07

    The recent discovery of an increasing number of small open reading frames (sORF) creates the need for suitable analytical technologies for the comprehensive identification of the corresponding gene products. For biological and functional studies the knowledge of the entire set of proteins and sORF gene products is essential. Consequently in the present study we evaluated analytical approaches that will allow for simultaneous analysis of widest parts of the proteome together with the predicted sORF. We performed a full proteome analysis of the methane producing archaeon Methanosarcina mazei strain Gö1 cytosolic proteome using a high/low pH reversed phase LC-MS bottom-up approach. The second analytical approach was based on semi-top-down strategy, encompassing a separation at intact protein level using a GelFree system, followed by digestion and LC-MS analysis. A high overlap in identified proteins was found for both approaches yielding the most comprehensive coverage of the cytosolic proteome of this organism achieved so far. The application of the second approach in combination with an adjustment of the search criteria for database searches further led to a significant increase of sORF peptide identifications, finally allowing to detect and identify 28 sORF gene products.

  14. Functional characterization of the triple gene block 1 (TGB1) gene of Pepino mosaic virus in tomato

    USDA-ARS?s Scientific Manuscript database

    Pepino mosaic virus (PepMV) has caused serious economic losses to many greenhouse tomato productions around the world. This potexvirus genome contains five major open reading frames (ORFs) encoding for a 164-kDa RNA-dependent RNA polymerase (RdRp), three triple gene block (TGB) proteins of 26, 14 an...

  15. Complete genome sequence of Paris mosaic necrosis virus, a distinct member of the genus Potyvirus

    USDA-ARS?s Scientific Manuscript database

    The complete genomic sequence of a novel potyvirus was determined from Paris polyphylla var. yunnanensis. Its genomic RNA consists of 9,660 nucleotides (nt) excluding the 3’-terminal poly (A) tail, containing a single open reading frame (ORF) encoding a large polyprotein. The virus shares 52.1-69.7%...

  16. Characterization of a novel single-stranded RNA virus, closely related to fusariviruses, infecting the plant pathogenic fungus Alternaria brassicicola.

    PubMed

    Zhong, Jie; Shang, Hong Hong; Zhu, Chuan Xia; Zhu, Jun Zi; Zhu, Hong Jian; Hu, Yan; Gao, Bi Da

    2016-06-02

    The alternaria blackspot of rapeseed is one of the most prominent diseases of rapeseed. It is caused by three species of the genus Alternaria: Alternaria brassicicola, Alternaria brassicae, and Alternaria raphanin. Here we report a novel positive-sense RNA virus from an A. brassicicola strain 817-14. The virus has a 6639 nucleotide (nt) long genome, excluding a poly (A)-tail, and was predicted to contain three putative open reading frames (ORF1, ORF2, and ORF3). The large ORF1 encoded a 174-kDa polyprotein (composed of 1522 amino acid residues) containing a conserved RNA-dependent RNA polymerase (RdRp) domain and a helicase domain. The other two smaller ORFs encoded polypeptides with unknown function. Homology search and phylogenetic analysis, based on the RdRp and helicase domains, suggest that this virus is related to and grouped with Sclerotinia sclerotiorum fusarivirus 1 (SsFV1), Rosellinia necatrix fusarivirus 1 (RnFV1), Fusarium graminearum virus-DK21 (FgV1), and Penicillium roqueforti RNA mycovirus 1 (PrRV1), all of which belong to a newly proposed family Fusariviridae. For this study, we designed the virus as "Alternaria brassicicola fusarivirus 1" (AbFV1). Virus elimination revealed that AbFV1 has no conspicuous impact on the biological properties of its host. Copyright © 2016. Published by Elsevier B.V.

  17. Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames.

    PubMed Central

    Stallmeyer, B; Drugeon, G; Reiss, J; Haenni, A L; Mendel, R R

    1999-01-01

    A universal molybdenum-containing cofactor (MoCo) is essential for the activity of all human molybdoenzymes, including sulphite oxidase. The free cofactor is highly unstable, and all organisms share a similar biosynthetic pathway. The involved enzymes exhibit homologies, even between bacteria and humans. We have exploited these homologies to isolate a cDNA for the heterodimeric molybdopterin (MPT)-synthase. This enzyme is necessary for the conversion of an unstable precursor into molybdopterin, the organic moiety of MoCo. The corresponding transcript shows a bicistronic structure, encoding the small and large subunits of the MPT-synthase in two different open reading frames (ORFs) that overlap by 77 nucleotides. In various human tissues, only one size of mRNA coinciding with the bicistronic transcript was detected. In vitro translation and mutagenesis experiments demonstrated that each ORF is translated independently, leading to the synthesis of a 10-kDa protein and a 21-kDa protein for the small and large subunits, respectively, and indicated that the 3'-proximal ORF of the bicistronic transcript is translated by leaky scanning. PMID:10053003

  18. ORF157 from the Archaeal Virus Acidianus Filamentous Virus 1 Defines a New Class of Nuclease▿

    PubMed Central

    Goulet, Adeline; Pina, Mery; Redder, Peter; Prangishvili, David; Vera, Laura; Lichière, Julie; Leulliot, Nicolas; van Tilbeurgh, Herman; Ortiz-Lombardia, Miguel; Campanacci, Valérie; Cambillau, Christian

    2010-01-01

    Acidianus filamentous virus 1 (AFV1) (Lipothrixviridae) is an enveloped filamentous virus that was characterized from a crenarchaeal host. It infects Acidianus species that thrive in the acidic hot springs (>85°C and pH <3) of Yellowstone National Park, WY. The AFV1 20.8-kb, linear, double-stranded DNA genome encodes 40 putative open reading frames whose sequences generally show little similarity to other genes in the sequence databases. Because three-dimensional structures are more conserved than sequences and hence are more effective at revealing function, we set out to determine protein structures from putative AFV1 open reading frames (ORF). The crystal structure of ORF157 reveals an α+β protein with a novel fold that remotely resembles the nucleotidyltransferase topology. In vitro, AFV1-157 displays a nuclease activity on linear double-stranded DNA. Alanine substitution mutations demonstrated that E86 is essential to catalysis. AFV1-157 represents a novel class of nuclease, but its exact role in vivo remains to be determined. PMID:20200253

  19. Characterization of two distinct dual specificity phosphatases encoded in alternative open reading frames of a single gene located on human chromosome 10q22.2.

    PubMed

    Chen, Hsu-Hsin; Luche, Ralf; Wei, Bo; Tonks, Nicholas K

    2004-10-01

    Dual specificity phosphatases (DSPs) are members of the protein-tyrosine phosphatase superfamily that dephosphorylate both phosphotyrosine and phosphoserine/threonine residues in vitro. Many DSPs have been found to play important roles in various aspects of cellular function and to be involved in human disease. We have identified a gene located on human chromosome 10q22.2, which utilizes alternative open reading frames (ORFs) to encode the following two distinct DSPs: the previously described testis and skeletal muscle-specific dual specificity phosphatase (TMDP) and a novel DSP, muscle-restricted dual specificity phosphatase (MDSP). Use of alternative ORFs encoding distinct proteins from a single gene is extremely rare in eukaryotes, and in all previously reported cases the two proteins produced from one gene are unrelated. To our knowledge this is the first example of a gene from which two distinct proteins of the same family are expressed using alternative ORFs. Here we provide evidence that both MDSP and TMDP proteins are expressed in vivo and are restricted to specific tissues, skeletal muscle and testis, respectively. Most interestingly, the protein expression profiles of both MDSP and TMDP during mouse postnatal development are strikingly similar. MDSP is expressed at very low levels in myotubes and early postnatal muscle. TMDP is not detectable in testis lysate in the first 3 weeks of life. The expression of both MDSP and TMDP proteins was markedly increased at approximately the 3rd week after birth and continued to increase gradually into adulthood, implying that the physiological functions of both DSPs are specific to the mature/late-developing organs. The conserved gene structure and the similarity in postnatal expression profile of these two proteins suggest biological significance of the unusual gene arrangement.

  20. Translation of the first upstream ORF in the hepatitis B virus pregenomic RNA modulates translation at the core and polymerase initiation codons

    PubMed Central

    Chen, Augustine; Kao, Y. F.; Brown, Chris M.

    2005-01-01

    The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins. PMID:15731337

  1. A novel totivirus-like virus isolated from bat guano.

    PubMed

    Yang, Xinglou; Zhang, Yunzhi; Ge, Xingyi; Yuan, Junfa; Shi, Zhengli

    2012-06-01

    Previous metagenomic analysis indicated that numerous insect viruses exist in bat guano. In this study, we isolated a novel double-stranded RNA virus, a tentative member of the family Totiviridae, designated Tianjin totivirus (ToV-TJ), from bat feces. The virus is an icosahedral particle with a diameter of 40-43 nm, and it causes cytopathic effect in Sf9, Hz, and C6/36 cell lines. Full-length genomic sequence analysis showed that ToV-TJ shares high similarity with the totivirus OMRV-AK4, which was recently isolated from mosquitoes in Japan. The full-length genome of the ToV-TJ was 7611 bp and contained two predicted non-overlapping open reading frames (ORFs): ORF1, encoding the capsid protein (CP), and ORF2, encoding an RNA-dependent RNA polymerase. Bioassay of ToV-TJ by feeding on the larvae of Spodoptera exigua and Helicoverpa armigera (Hubner) suggests that this virus is not infectious for these two larvae in vivo. Sequences similar to that of ToV-TJ have been detected in bat feces sampled in Yunnan and Hainan Provinces, suggesting that this virus is widely distributed.

  2. Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation.

    PubMed

    Renovell, Agueda; Gago, Selma; Ruiz-Ruiz, Susana; Velázquez, Karelia; Navarro, Luis; Moreno, Pedro; Vives, Mari Carmen; Guerri, José

    2010-10-25

    Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides -67 and +50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the +1 guanylate and the +2 adenylate are important for CP-sgRNA synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. The complete genomic sequence of egg drop syndrome virus strain AAV-2.

    PubMed

    Jin, Q; Zeng, L; Yang, F; Li, M; Hou, Y

    1999-12-01

    In the search for the genome of egg drop syndrome virus (EDSV-76) Chinese strain AAV-2, part of restriction endonuclease physical map is analyzed, the complete genomic library is organized. On basis of this, the complete genome nucleotide sequences (32 838 bp in length, including terminal structures) are determined. The data analysis shows: compared with the other Adenoviruses, strain AAV-2 has more disparity on genomic structure and the distribution of open reading frame (ORF). There are no clear E1, E3 and E4 regions in AAV-2 genome. Two segments located at both ends of genome (1.1 kb and 8.3 kb in length respectively) have no homology with the other adenovirus genomes. In addition, strain AAV-2 genome lacks ORFs encoding ElA, pV and pIX, which are common ORFs encoding early, lately proteins in Adenovirus. This reveals differences between EDSA-76, the sole standard strain of group III Avian Adenoviruses, and the other Avian Adenoviruses for the first time. It will help the search for Avian Adenovirus and will also help the search of all Adenoviruses.

  4. Functions and impact of tal-like genes in animals with regard to applied aspects.

    PubMed

    Zhu, Min; Hu, Xiaolong; Cao, Guangli; Xue, Renyu; Gong, Chengliang

    2018-06-16

    A large number of DNAs in eukaryote genomes can code for atypical transcripts, and their functions are controversial. It has been reported that the transcripts contain many small open reading frames (sORFs), which were originally considered as non-translatable RNAs. However, increasing evidence has suggested that some of these sORFs can encode for small peptides and some are conserved across large evolutionary distances. It has been reported that the small peptides have functions and may be involved in varieties of cellular processes, playing important roles in development, physiology, and metabolism. Among the sORFs, studies of the non-canonical gene polished rice/tarsal-less (pri/tal) in Drosophila and mille-pattes(mlpt) in Tribolium have been more thoroughly studied. The genes similar to pri/tal in other species have been defined as the tarsal-less-related gene family, tal-like gene. In this review, we described recent progress in the discovery and functional characterization of the small peptides encoded by the tal-like gene and their possible functional potentials.

  5. Identification and elucidation of in vivo function of two alanine racemases from Pseudomonas putida KT2440.

    PubMed

    Duque, Estrella; Daddaoua, Abdelali; Cordero, Baldo F; De la Torre, Jesús; Antonia Molina-Henares, Maria; Ramos, Juan-Luis

    2017-10-01

    The genome of Pseudomonas putida KT2440 contains two open reading frames (ORFs), PP_3722 and PP_5269, that encode proteins with a Pyridoxal phosphate binding motif and a high similarity to alanine racemases. Alanine racemases play a key role in the biosynthesis of D-alanine, a crucial amino acid in the peptidoglycan layer. For these ORFs, we generated single and double mutants and found that inactivation of PP_5269 resulted in D-alanine auxotrophy, while inactivation of PP_3722 did not. Furthermore, as expected, the PP_3722/PP_5269 double mutant was a strict auxotroph for D-alanine. These results indicate that PP_5269 is an alr allele and that it is the essential alanine racemase in P. putida. We observed that the PP_5269 mutant grew very slowly, while the double PP_5269/PP_3722 mutant did not grow at all. This suggests that PP_3722 may replace PP_5269 in vivo. In fact, when the ORF encoding PP_3772 was cloned into a wide host range expression vector, ORF PP_3722 successfully complemented P. putida PP_5269 mutants. We purified both proteins to homogeneity and while they exhibit similar K M values, the V max of PP_5269 is fourfold higher than that of PP_3722. Here, we propose that PP_5269 and PP_3722 encode functional alanine racemases and that these genes be named alr-1 and alr-2 respectively. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Human T-Cell Lymphotropic Virus Type 1 Open Reading Frame II-Encoded p30II Is Required for In Vivo Replication: Evidence of In Vivo Reversion

    PubMed Central

    Silverman, Lee R.; Phipps, Andrew J.; Montgomery, Andrew; Ratner, Lee; Lairmore, Michael D.

    2004-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and exhibits high genetic stability in vivo. HTLV-1 contains four open reading frames (ORFs) in its pX region. ORF II encodes two proteins, p30II and p13II, both of which are incompletely characterized. p30II localizes to the nucleus or nucleolus and has distant homology to the transcription factors Oct-1, Pit-1, and POU-M1. In vitro studies have demonstrated that at low concentrations, p30II differentially regulates cellular and viral promoters through an interaction with CREB binding protein/p300. To determine the in vivo significance of p30II, we inoculated rabbits with cell lines expressing either a wild-type clone of HTLV-1 (ACH.1) or a clone containing a mutation in ORF II, which eliminated wild-type p30II expression (ACH.30.1). ACH.1-inoculated rabbits maintained higher HTLV-1-specific antibody titers than ACH.30.1-inoculated rabbits, and all ACH.1-inoculated rabbits were seropositive for HTLV-1, whereas only two of six ACH.30.1-inoculated rabbits were seropositive. Provirus could be consistently PCR amplified from peripheral blood mononuclear cell (PBMC) DNA in all ACH.1-inoculated rabbits but in only three of six ACH.30.1-inoculated rabbits. Quantitative competitive PCR indicated higher PBMC proviral loads in ACH.1-inoculated rabbits. Interestingly, sequencing of ORF II from PBMC of provirus-positive ACH.30.1-inoculated rabbits revealed a reversion to wild-type sequence with evidence of early coexistence of mutant and wild-type sequence. Our data provide evidence that HTLV-1 must maintain its key accessory genes to survive in vivo and that in vivo pressures select for maintenance of wild-type ORF II gene products during the early course of infection. PMID:15047799

  7. Identification of structural proteins of koi herpesvirus.

    PubMed

    Fuchs, Walter; Granzow, Harald; Dauber, Malte; Fichtner, Dieter; Mettenleiter, Thomas C

    2014-12-01

    As a prerequisite for development of improved vaccines and diagnostic tools for control of the fish pathogen koi herpesvirus, or cyprinid herpesvirus 3 (CyHV-3), we have started to identify putative viral envelope and capsid proteins. The complete or partial CyHV-3 open reading frames ORF25, ORF65, ORF92, ORF99, ORF136, ORF138, ORF146, ORF148, and ORF149 were expressed as bacterial fusion proteins, which were then used for preparation of monospecific rabbit antisera. All of the sera that were obtained detected their target proteins in cells transfected with the corresponding eukaryotic expression plasmids. However, only the type I membrane proteins pORF25, pORF65, pORF99, pORF136 and pORF149 and the major capsid protein pORF92 were sufficiently abundant and immunogenic to permit unambiguous detection in CyHV-3-infected cells. In indirect immunofluorescence tests (IIFT), sera from naturally or experimentally CyHV-3-infected carp and koi predominantly reacted with cells transfected with expression plasmids encoding pORF25, pORF65, pORF148, and pORF149, which represent a family of related CyHV-3 membrane proteins. Moreover, several neutralizing monoclonal antibodies raised against CyHV-3 virions proved to be specific for pORF149 in IIFT of transfected cells and in immunoelectron microscopic analysis of CyHV-3 particles. Since pORF149 appears to be an immunorelevant envelope protein of CyHV-3, a recombinant baculovirus was generated for its expression in insect cells, and pORF149 was shown to be incorporated into pseudotyped baculovirus particles, which might be suitable as diagnostic tools or subunit vaccines.

  8. The Apis mellifera Filamentous Virus Genome

    PubMed Central

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D.; de Miranda, Joachim R.; Neumann, Peter

    2015-01-01

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family. PMID:26184284

  9. The Apis mellifera Filamentous Virus Genome.

    PubMed

    Gauthier, Laurent; Cornman, Scott; Hartmann, Ulrike; Cousserans, François; Evans, Jay D; de Miranda, Joachim R; Neumann, Peter

    2015-07-09

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  10. A novel sweet potato potyvirus open reading frame (ORF) is expressed via polymerase slippage and suppresses RNA silencing

    PubMed Central

    Untiveros, Milton; Olspert, Allan; Artola, Katrin

    2016-01-01

    Summary The single‐stranded, positive‐sense RNA genome of viruses in the genus Potyvirus encodes a large polyprotein that is cleaved to yield 10 mature proteins. The first three cleavage products are P1, HCpro and P3. An additional short open reading frame (ORF), called pipo, overlaps the P3 region of the polyprotein ORF. Four related potyviruses infecting sweet potato (Ipomoea batatas) are predicted to contain a third ORF, called pispo, which overlaps the 3′ third of the P1 region. Recently, pipo has been shown to be expressed via polymerase slippage at a conserved GA6 sequence. Here, we show that pispo is also expressed via polymerase slippage at a GA6 sequence, with higher slippage efficiency (∼5%) than at the pipo site (∼1%). Transient expression of recombinant P1 or the ‘transframe’ product, P1N‐PISPO, in Nicotiana benthamiana suppressed local RNA silencing (RNAi), but only P1N‐PISPO inhibited short‐distance movement of the silencing signal. These results reveal that polymerase slippage in potyviruses is not limited to pipo expression, but can be co‐opted for the evolution and expression of further novel gene products. PMID:26757490

  11. Identification of an essential virulence gene of cyprinid herpesvirus 3.

    PubMed

    Boutier, Maxime; Gao, Yuan; Vancsok, Catherine; Suárez, Nicolás M; Davison, Andrew J; Vanderplasschen, Alain

    2017-09-01

    The genus Cyprinivirus consists of a growing list of phylogenetically related viruses, some of which cause severe economic losses to the aquaculture industry. The archetypal member, cyprinid herpesvirus 3 (CyHV-3) causes mass mortalities worldwide in koi and common carp. A CyHV-3 mutant was described previously that is attenuated in vivo by a deletion affecting two genes (ORF56 and ORF57). The relative contributions of ORF56 and ORF57 to the safety and efficacy profile of this vaccine candidate have now been assessed by analysing viruses individually deleted for ORF56 or ORF57. Inoculation of these viruses into carp demonstrated that the absence of ORF56 did not affect virulence, whereas the absence of ORF57 led to an attenuation comparable to, though slightly less than, that of the doubly deleted virus. To demonstrate further the role of ORF57 as a key virulence factor, a mutant retaining the ORF57 region but unable to express the ORF57 protein was produced by inserting multiple in-frame stop codons into the coding region. Analysis of this virus in vivo revealed a safety and efficacy profile comparable to that of the doubly deleted virus. These findings show that ORF57 encodes an essential CyHV-3 virulence factor. They also indicate that ORF57 orthologues in other cypriniviruses may offer promising targets for the rational design of attenuated recombinant vaccines. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Characterization of interleukin-8 receptors in non-human primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, V.; Coto, E.; Gonzalez-Roces, S.

    Interleukin-8 is a chemokine with a potent neutrophil chemoatractant activity. In humans, two different cDNAs encoding human IL8 receptors designated IL8RA and IL8RB have been cloned. IL8RA binds IL8, while IL8RB binds IL8 as well as other {alpha}-chemokines. Both human IL8Rs are encoded by two genes physically linked on chromosome 2. The IL8RA and IL8RB genes have open reading frames (ORF) lacking introns. By direct sequencing of the polymerase chain reaction products, we sequenced the IL8R genes of cell lines from four non-human primates: chimpanzee, gorilla, orangutan, and macaca. The IL8RB encodes an ORF in the four non-human primates, showingmore » 95%-99% similarity to the human IL8RB sequence. The IL8RA homologue in gorilla and chimpanzee consisted of two ORF 98%-99% identical to the human sequence. The macaca and orangutan IL8RA homologues are pseudogenes: a 2 base pair insertion generated a sequence with several stop codons. In addition, we describe the physical linkage of these genes in the four non-human primates and discuss the evolutionary implications of these findings. 25 refs., 5 figs., 3 tabs.« less

  13. Transcriptional Downregulation of ORF50/Rta by Methotrexate Inhibits the Switch of Kaposi's Sarcoma-Associated Herpesvirus/Human Herpesvirus 8 from Latency to Lytic Replication

    PubMed Central

    Curreli, Francesca; Cerimele, Francesca; Muralidhar, Sumitra; Rosenthal, Leonard J.; Cesarman, Ethel; Friedman-Kien, Alvin E.; Flore, Ornella

    2002-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cellular dihydrofolate reductase (DHFR) homologue. Methotrexate (MTX), a potent anti-inflammatory agent, inhibits cellular DHFR activity. We investigated the effect of noncytotoxic doses of MTX on latency and lytic KSHV replication in two KSHV-infected primary effusion lymphoma cell lines (BC-3 and BC-1) and in MTX-resistant BC-3 cells (MTX-R-BC-3 cells). Treatment with MTX completely prevented tetradecanoyl phorbol acetate-induced viral DNA replication and strongly decreased viral lytic transcript levels, even in MTX-resistant cells. However, the same treatment had no effect on transcription of cellular genes and KSHV latent genes. One of the lytic transcripts inhibited by MTX, ORF50/Rta (open reading frame), is an immediate-early gene encoding a replication-transcription activator required for expression of other viral lytic genes. Therefore, transcription of genes downstream of ORF50/Rta was inhibited, including those encoding the viral G-protein-coupled receptor (GPCR), viral interleukin-6, and K12/kaposin, which have been shown to be transforming in vitro and oncogenic in mice. Resistance to MTX has been documented in cultured cells and also in patients treated with this drug. However, MTX showed an inhibitory activity even in MTX-R-BC-3 cells. Two currently available antiherpesvirus drugs, cidofovir and foscarnet, had no effect on the transcription of these viral oncogenes and ORF50/Rta. MTX is the first example of a compound shown to downregulate the expression of ORF50/Rta and therefore prevent viral transforming gene transcription. Given that the expression of these genes may be important for tumor development, MTX could play a role in the future management of KSHV-associated malignancies. PMID:11967335

  14. Analysis of the complete genome of peach chlorotic mottle virus: identification of non-AUG start codons, in vitro coat protein expression, and elucidation of serological cross-reactions.

    PubMed

    James, D; Varga, A; Croft, H

    2007-01-01

    The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.

  15. Mrp--a new auxiliary gene essential for optimal expression of methicillin resistance in Staphylococcus aureus.

    PubMed

    Wu, S W; De Lencastre, H

    1999-01-01

    Screening of a library of Tn551 insertional mutants selected for reduction in the methicillin resistance level of the parental Staphylococcus aureus strain COL resulted in the isolation of mutant RUSA266 in which the minimal inhibitory concentration (MIC) of the parent was reduced from 1,600 to 1.5 micrograms/mL. Cloning and sequencing of the vicinity of the insertion site omega 726 identified an open reading frame (orf1365) encoding a very large polypeptide of more than 1,365 amino acids. A unique feature of the deduced amino acid sequence was the presence of multiple tandem repeats of 75 amino acids in the polypeptide, reminiscent of the structure of high-molecular-weight cell-surface proteins EF* and Emb identified in some streptococcal strains. Mutant RUSA266 with the inactivated gene, which we shall provisionally refer to as mrp (for multiple repeat polypeptide), produced a peptidoglycan with altered muropeptide composition, and both the reduced antibiotic resistance and the altered cell wall composition were co-transduced in back-crosses into the parental strain COL. Additional sequencing upstream of mrp has revealed that this gene was part of a five-gene cluster occupying a 9.2-kb region of the staphylococcal chromosome and was composed of glmM (directly upstream of mrp), two open reading frames orf310 and orf269 coding for two hypothetical proteins, and the gene encoding the staphylococcal arginase (arg). Transcriptional analysis demonstrated that the five genes in the cluster were transcribed together.

  16. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    PubMed

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector.

  17. Effects of the Deletion of Early Region 4 (E4) Open Reading Frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on Virus-Host Cell Interaction, Transgene Expression, and Immunogenicity of Replicating Adenovirus HIV Vaccine Vectors

    PubMed Central

    Thomas, Michael A.; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A.; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a replicating Ad vector. PMID:24143187

  18. SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome.

    PubMed

    Shi, Chong-Shan; Qi, Hai-Yan; Boularan, Cedric; Huang, Ning-Na; Abu-Asab, Mones; Shelhamer, James H; Kehrl, John H

    2014-09-15

    Coronaviruses (CoV) have recently emerged as potentially serious pathogens that can cause significant human morbidity and death. The severe acute respiratory syndrome (SARS)-CoV was identified as the etiologic agent of the 2002-2003 international SARS outbreak. Yet, how SARS evades innate immune responses to cause human disease remains poorly understood. In this study, we show that a protein encoded by SARS-CoV designated as open reading frame-9b (ORF-9b) localizes to mitochondria and causes mitochondrial elongation by triggering ubiquitination and proteasomal degradation of dynamin-like protein 1, a host protein involved in mitochondrial fission. Also, acting on mitochondria, ORF-9b targets the mitochondrial-associated adaptor molecule MAVS signalosome by usurping PCBP2 and the HECT domain E3 ligase AIP4 to trigger the degradation of MAVS, TRAF3, and TRAF 6. This severely limits host cell IFN responses. Reducing either PCBP2 or AIP4 expression substantially reversed the ORF-9b-mediated reduction of MAVS and the suppression of antiviral transcriptional responses. Finally, transient ORF-9b expression led to a strong induction of autophagy in cells. The induction of autophagy depended upon ATG5, a critical autophagy regulator, but the inhibition of MAVS signaling did not. These results indicate that SARS-CoV ORF-9b manipulates host cell mitochondria and mitochondrial function to help evade host innate immunity. This study has uncovered an important clue to the pathogenesis of SARS-CoV infection and illustrates the havoc that a small ORF can cause in cells.

  19. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome

    PubMed Central

    Pinaud, Laurie; Ferrari, Mariana L.; Friedman, Robin; Jehmlich, Nico; von Bergen, Martin; Phalipon, Armelle; Sansonetti, Philippe J.

    2017-01-01

    Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed. PMID:29073283

  20. Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.I.

    PubMed

    Chen, Yi-Ywan M; Burne, Robert A

    2003-12-01

    Ureases are multisubunit enzymes requiring Ni(2+) for activity. The low pH-inducible urease gene cluster in Streptococcus salivarius 57.I is organized as an operon, beginning with ureI, followed by ureABC (structural genes), and ureEFGD (accessory genes). Urease biogenesis also requires a high-affinity Ni(2+) uptake system. By searching the partial genome sequence of a closely related organism, Streptococcus thermophilus LMG18311, three open reading frame (ORFs) homologous to those encoding proteins involved in cobalamin biosynthesis and cobalt transport (cbiMQO) were identified immediately 3' to the ure operon. To determine whether these genes were involved in urease biogenesis by catalyzing Ni(2+) uptake in S. salivarius, regions 3' to ureD were amplified by PCRs from S. salivarius by using primers identical to the S. thermophilus sequences. Sequence analysis of the products revealed three ORFs. Reverse transcriptase PCR was used to demonstrate that the ORFs are transcribed as part of the ure operon. Insertional inactivation of ORF1 with a polar kanamycin marker completely abolished urease activity and the ability to accumulate (63)Ni(2+) during growth. Supplementation of the growth medium with NiCl(2) at concentrations as low as 2.5 micro M partially restored urease activity in the mutant. Both wild-type and mutant strains showed enhanced urease activity when exogenous Ni(2+) was provided at neutral pH. Enhancement of urease activity by adding nickel was regulated at the posttranslational level. Thus, ORF1, ORF2, and ORF3 are part of the ure operon, and these genes, designated ureM, ureQ, and ureO, respectively, likely encode a Ni(2+)-specific ATP-binding cassette transporter.

  1. Chromatin Immunoprecipitation and Microarray Analysis Suggest Functional Cooperation between Kaposi's Sarcoma-Associated Herpesvirus ORF57 and K-bZIP

    PubMed Central

    Hunter, Olga V.; Sei, Emi; Richardson, R. Blake

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430

  2. Molecular characterization of Banana streak virus isolate from Musa Acuminata in China.

    PubMed

    Zhuang, Jun; Wang, Jian-Hua; Zhang, Xin; Liu, Zhi-Xin

    2011-12-01

    Banana streak virus (BSV), a member of genus Badnavirus, is a causal agent of banana streak disease throughout the world. The genetic diversity of BSVs from different regions of banana plantations has previously been investigated, but there are relatively few reports of the genetic characteristic of episomal (non-integrated) BSV genomes isolated from China. Here, the complete genome, a total of 7722bp (GenBank accession number DQ092436), of an isolate of Banana streak virus (BSV) on cultivar Cavendish (BSAcYNV) in Yunnan, China was determined. The genome organises in the typical manner of badnaviruses. The intergenic region of genomic DNA contains a large stem-loop, which may contribute to the ribosome shift into the following open reading frames (ORFs). The coding region of BSAcYNV consists of three overlapping ORFs, ORF1 with a non-AUG start codon and ORF2 encoding two small proteins are individually involved in viral movement and ORF3 encodes a polyprotein. Besides the complete genome, a defective genome lacking the whole RNA leader region and a majority of ORF1 and which encompasses 6525bp was also isolated and sequenced from this BSV DNA reservoir in infected banana plants. Sequence analyses showed that BSAcYNV has closest similarity in terms of genome organization and the coding assignments with an BSV isolate from Vietnam (BSAcVNV). The corresponding coding regions shared identities of 88% and -95% at nucleotide and amino acid levels, respectively. Phylogenetic analysis also indicated BSAcYNV shared the closest geographical evolutionary relationship to BSAcVNV among sequenced banana streak badnaviruses.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Purnima; Gunalan, Vithiagaran; Liu Boping

    Severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) caused a severe outbreak in several regions of the world in 2003. The SARS-CoV genome is predicted to contain 14 functional open reading frames (ORFs). The first ORF (1a and 1b) encodes a large polyprotein that is cleaved into nonstructural proteins (nsp). The other ORFs encode for four structural proteins (spike, membrane, nucleocapsid and envelope) as well as eight SARS-CoV-specific accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b). In this report we have cloned the predicted nsp8 gene and the ORF6 gene of the SARS-CoV and studied their abilities tomore » interact with each other. We expressed the two proteins as fusion proteins in the yeast two-hybrid system to demonstrate protein-protein interactions and tested the same using a yeast genetic cross. Further the strength of the interaction was measured by challenging growth of the positive interaction clones on increasing gradients of 2-amino trizole. The interaction was then verified by expressing both proteins separately in-vitro in a coupled-transcription translation system and by coimmunoprecipitation in mammalian cells. Finally, colocalization experiments were performed in SARS-CoV infected Vero E6 mammalian cells to confirm the nsp8-ORF6 interaction. To the best of our knowledge, this is the first report of the interaction between a SARS-CoV accessory protein and nsp8 and our findings suggest that ORF6 protein may play a role in virus replication.« less

  4. Mining for Micropeptides.

    PubMed

    Makarewich, Catherine A; Olson, Eric N

    2017-09-01

    Advances in computational biology and large-scale transcriptome analyses have revealed that a much larger portion of the genome is transcribed than was previously recognized, resulting in the production of a diverse population of RNA molecules with both protein-coding and noncoding potential. Emerging evidence indicates that several RNA molecules have been mis-annotated as noncoding and in fact harbor short open reading frames (sORFs) that encode functional peptides and that have evaded detection until now due to their small size. sORF-encoded peptides (SEPs), or micropeptides, have been shown to have important roles in fundamental biological processes and in the maintenance of cellular homeostasis. These small proteins can act independently, for example as ligands or signaling molecules, or they can exert their biological functions by engaging with and modulating larger regulatory proteins. Given their small size, micropeptides may be uniquely suited to fine-tune complex biological systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Characterization of bafilomycin biosynthesis in Kitasatospora setae KM-6054 and comparative analysis of gene clusters in Actinomycetales microorganisms.

    PubMed

    Nara, Ayako; Hashimoto, Takuya; Komatsu, Mamoru; Nishiyama, Makoto; Kuzuyama, Tomohisa; Ikeda, Haruo

    2017-05-01

    Bafilomycins A 1 , C 1 and B 1 (setamycin) produced by Kitasatospora setae KM-6054 belong to the plecomacrolide family, which exhibit antibacterial, antifungal, antineoplastic and immunosuppressive activities. An analysis of gene clusters from K. setae KM-6054 governing the biosynthesis of bafilomycins revealed that it contains five large open reading frames (ORFs) encoding the multifunctional polypeptides of bafilomycin polyketide synthases (PKSs). These clustered PKS genes, which are responsible for bafilomycin biosynthesis, together encode 11 homologous sets of enzyme activities, each catalyzing a specific round of polyketide chain elongation. The region contains an additional 13 ORFs spanning a distance of 73 287 bp, some of which encode polypeptides governing other key steps in bafilomycin biosynthesis. Five ORFs, BfmB, BfmC, BfmD, BfmE and BfmF, were involved in the formation of methoxymalonyl-acyl carrier protein (ACP). Two possible regulatory genes, bfmR and bfmH, were found downstream of the above genes. A gene-knockout analysis revealed that BfmR was only a transcriptional regulator for the transcription of bafilomycin biosynthetic genes. Two genes, bfmI and bfmJ, were found downstream of bfmH. An analysis of these gene-disruption mutants in addition to an enzymatic analysis of BfmI and BfmJ revealed that BfmJ activated fumarate and BfmI functioned as a catalyst to form a fumaryl ester at the C21 hydroxyl residue of bafilomycin A 1 . A comparative analysis of bafilomycin gene clusters in K. setae KM-6054, Streptomyces lohii JCM 14114 and Streptomyces griseus DSM 2608 revealed that each ORF of both gene clusters in two Streptomyces strains were quite similar to each other. However, each ORF of gene cluster in K. setae KM-6054 was of lower similarity to that of corresponding ORF in the two Streptomyces species.

  6. Tula hantavirus isolate with the full-length ORF for nonstructural protein NSs survives for more consequent passages in interferon-competent cells than the isolate having truncated NSs ORF.

    PubMed

    Jääskeläinen, Kirsi M; Plyusnina, Angelina; Lundkvist, Ake; Vaheri, Antti; Plyusnin, Alexander

    2008-01-11

    The competitiveness of two Tula hantavirus (TULV) isolates, TULV/Lodz and TULV/Moravia, was evaluated in interferon (IFN) -competent and IFN-deficient cells. The two isolates differ in the length of the open reading frame (ORF) encoding the nonstructural protein NSs, which has previously been shown to inhibit IFN response in infected cells. In IFN-deficient Vero E6 cells both TULV isolates survived equally well. In contrast, in IFN-competent MRC5 cells TULV/Lodz isolate, that possesses the NSs ORF for the full-length protein of 90 aa, survived for more consequent passages than TULV/Moravia isolate, which contains the ORF for truncated NSs protein (66-67 aa). Our data show that expression of a full-length NSs protein is beneficial for the virus survival and competitiveness in IFN-competent cells and not essential in IFN-deficient cells. These results suggest that the N-terminal aa residues are important for the full activity of the NSs protein.

  7. Genome of turbot rhabdovirus exhibits unusual non-coding regions and an additional ORF that could be expressed in fish cell.

    PubMed

    Zhu, Ruo-Lin; Lei, Xiao-Ying; Ke, Fei; Yuan, Xiu-Ping; Zhang, Qi-Ya

    2011-02-01

    Genomic sequence of Scophthalmus maximus rhabdovirus (SMRV) isolated from diseased turbot has been characterized. The complete genome of SMRV comprises 11,492 nucleotides and encodes five typical rhabdovirus genes N, P, M, G and L. In addition, two open reading frames (ORF) are predicted overlapping with P gene, one upstream of P and smaller than P (temporarily called Ps), and another in P gene which may encodes a protein similar to the vesicular stomatitis virus C protein. The C ORF is contained within the P ORF. The five typical proteins share the highest sequence identities (48.9%) with the corresponding proteins of rhabdoviruses in genus Vesiculovirus. Phylogenetic analysis of partial L protein sequence indicates that SMRV is close to genus Vesiculovirus. The first 13 nucleotides at the ends of the SMRV genome are absolutely inverse complementarity. The gene junctions between the five genes show conserved polyadenylation signal (CATGA(7)) and intergenic dinucleotide (CT) followed by putative transcription initiation sequence A(A/G)(C/G)A(A/G/T), which are different from known rhabdoviruses. The entire Ps ORF was cloned and expressed, and used to generate polyclonal antibody in mice. One obvious band could be detected in SMRV-infected carp leucocyte cells (CLCs) by anti-Ps/C serum via Western blot, and the subcellular localization of Ps-GFP fusion protein exhibited cytoplasm distribution as multiple punctuate or doughnut shaped foci of uneven size. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Erwinia carotovora subsp. carotovora extracellular protease: characterization and nucleotide sequence of the gene.

    PubMed Central

    Kyöstiö, S R; Cramer, C L; Lacy, G H

    1991-01-01

    The prt1 gene encoding extracellular protease from Erwinia carotovora subsp. carotovora EC14 in cosmid pCA7 was subcloned to create plasmid pSK1. The partial nucleotide sequence of the insert in pSK1 (1,878 bp) revealed a 1,041-bp open reading frame (ORF1) that correlated with protease activity in deletion mutants. ORF1 encodes a polypeptide of 347 amino acids with a calculated molecular mass of 38,826 Da. Escherichia coli transformed with pSK1 or pSK23, a subclone of pSK1, produces a protease (Prt1) intracellularly with a molecular mass of 38 kDa and a pI of 4.8. Prt1 activity was inhibited by phenanthroline, suggesting that it is a metalloprotease. The prt1 promoter was localized between 173 and 1,173 bp upstream of ORF1 by constructing transcriptional lacZ fusions. Primer extension identified the prt1 transcription start site 205 bp upstream of ORF1. The deduced amino acid sequence of ORF1 showed significant sequence identity to metalloproteases from Bacillus thermoproteolyticus (thermolysin), B. subtilis (neutral protease), Legionella pneumophila (metalloprotease), and Pseudomonas aeruginosa (elastase). It has less sequence similarity to metalloproteases from Serratia marcescens and Erwinia chrysanthemi. Locations for three zinc ligands and the active site for E. carotovora subsp. carotovora protease were predicted from thermolysin. Images FIG. 2 FIG. 5 FIG. 6 FIG. 8 FIG. 9 PMID:1917878

  9. Molecular characterization of a novel luteovirus infecting apple by next-generation sequencing.

    PubMed

    Shen, Pan; Tian, Xin; Zhang, Song; Ren, Fang; Li, Ping; Yu, Yun-Qi; Li, Ruhui; Zhou, Changyong; Cao, Mengji

    2018-03-01

    A new single-stranded positive-sense RNA virus, which shares the highest nucleotide (nt) sequence identity of 53.4% with the genome sequence of cherry-associated luteovirus South Korean isolate (ChALV-SK, genus Luteovirus), was discovered in this work. It is provisionally named apple-associated luteovirus (AaLV). The complete genome sequence of AaLV comprises 5,890 nt and contains eight open reading frames (ORFs), in a very similar arrangement that is typical of members of the genus Luteovirus. When compared with other members of the family Luteoviridae, ORF1 of AaLV was found to encompass another ORF, ORF1a, which encodes a putative 32.9-kDa protein. The ORF1-ORF2 region (RNA-dependent RNA polymerase, RdRP) showed the greatest amino acid (aa) sequence identity (59.7%) to that of cherry-associated luteovirus Czech Republic isolate (ChALV-CZ, genus Luteovirus). The results of genome sequence comparisons and phylogenetic analysis, suggest that AaLV should be a member of a novel species in the genus Luteovirus. To our knowledge, it is the sixth member of the genus Luteovirus reported to naturally infect rosaceous plants.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caberoy, Nora B.; Zhou, Yixiong; Alvarado, Gabriela

    To efficiently elucidate the biological roles of phosphatidylserine (PS), we developed open-reading-frame (ORF) phage display to identify PS-binding proteins. The procedure of phage panning was optimized with a phage clone expressing MFG-E8, a well-known PS-binding protein. Three rounds of phage panning with ORF phage display cDNA library resulted in {approx}300-fold enrichment in PS-binding activity. A total of 17 PS-binding phage clones were identified. Unlike phage display with conventional cDNA libraries, all 17 PS-binding clones were ORFs encoding 13 real proteins. Sequence analysis revealed that all identified PS-specific phage clones had dimeric basic amino acid residues. GST fusion proteins were expressedmore » for 3 PS-binding proteins and verified for their binding activity to PS liposomes, but not phosphatidylcholine liposomes. These results elucidated previously unknown PS-binding proteins and demonstrated that ORF phage display is a versatile technology capable of efficiently identifying binding proteins for non-protein molecules like PS.« less

  11. Nucleotide sequence analysis reveals linked N-acetyl hydrolase, thioesterase, transport, and regulatory genes encoded by the bialaphos biosynthetic gene cluster of Streptomyces hygroscopicus.

    PubMed Central

    Raibaud, A; Zalacain, M; Holt, T G; Tizard, R; Thompson, C J

    1991-01-01

    Nucleotide sequence analysis of a 5,000-bp region of the bialaphos antibiotic production (bap) gene cluster defined five open reading frames (ORFs) which predicted structural genes in the order bah, ORF1, ORF2, and ORF3 followed by the regulatory gene, brpA (H. Anzai, T. Murakami, S. Imai, A. Satoh, K. Nagaoka, and C.J. Thompson, J. Bacteriol. 169:3482-3488, 1987). The four structural genes were translationally coupled and apparently cotranscribed from an undefined promoter(s) under the positive control of the brpA gene product. S1 mapping experiments indicated that brpA was transcribed by two promoters (brpAp1 and brpAp2) which initiate transcription 150 and 157 bp upstream of brp A within an intergenic region and at least one promoter further upstream within the bap gene cluster (brpAp3). All three transcripts were present at low levels during exponential growth and increased just before the stationary phase. The levels of the brpAp3 band continued to increase at the onset of stationary phase, whereas brpAp1-and brpAp2-protected fragments showed no further change. BrpA contained a possible helix-turn-helix motif at its C terminus which was similar to the C-terminal regulatory motif found in the receiver component of a family of two-component transcriptional activator proteins. This motif was not associated with the N-terminal domain conserved in other members of the family. The structural gene cluster sequenced began with bah, encoding a bialaphos acetylhydrolase which removes the N-acetyl group from bialaphos as one of the final steps in the biosynthetic pathway. The observation that Bah was similar to a rat and to a bacterial (Acinetobacter calcoaceticus) lipase probably reflects the fact that the ester bonds of triglycerides and the amide bond linking acetate to phosphinothricin are similar and hydrolysis is catalyzed by structurally related enzymes. This was followed by two regions encoding ORF1 and ORF2 which were similar to each other (48% nucleotide identity, 31% amino acid identity), as well as to GrsT, a protein encoded by a gene located adjacent to gramicidin S synthetase in Bacillus brevis, and to vertebrate (mallard duck and rat) thioesterases. The amino acid sequence and hydrophobicity profile of ORF3 indicated that it was related to a family of membrane transport proteins. It was strikingly similar to the citrate uptake protein encoded by the transposon Tn3411. Images PMID:2066341

  12. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human.

    PubMed

    Bontems, Franck; Fish, Richard J; Borlat, Irene; Lembo, Frédérique; Chocu, Sophie; Chalmel, Frédéric; Borg, Jean-Paul; Pineau, Charles; Neerman-Arbez, Marguerite; Bairoch, Amos; Lane, Lydie

    2014-01-01

    Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.

  13. Tissue specific expression of the retinoic acid receptor-beta 2: regulation by short open reading frames in the 5'-noncoding region

    PubMed Central

    1994-01-01

    The 40-S subunit of eukaryotic ribosomes binds to the capped 5'-end of mRNA and scans for the first AUG in a favorable sequence context to initiate translation. Most eukaryotic mRNAs therefore have a short 5'- untranslated region (5'-UTR) and no AUGs upstream of the translational start site; features that seem to assure efficient translation. However, approximately 5-10% of all eukaryotic mRNAs, particularly those encoding for regulatory proteins, have complex leader sequences that seem to compromise translational initiation. The retinoic-acid- receptor-beta 2 (RAR beta 2) mRNA is such a transcript with a long (461 nucleotides) 5'-UTR that contains five, partially overlapping, upstream open reading frames (uORFs) that precede the major ORF. We have begun to investigate the function of this complex 5'-UTR in transgenic mice, by introducing mutations in the start/stop codons of the uORFs in RAR beta 2-lacZ reporter constructs. When we compared the expression patterns of mutant and wild-type constructs we found that these mutations affected expression of the downstream RAR beta 2-ORF, resulting in an altered regulation of RAR beta 2-lacZ expression in heart and brain. Other tissues were unaffected. RNA analysis of adult tissues demonstrated that the uORFs act at the level of translation; adult brains and hearts of transgenic mice carrying a construct with either the wild-type or a mutant UTR, had the same levels of mRNA, but only the mutant produced protein. Our study outlines an unexpected role for uORFs: control of tissue-specific and developmentally regulated gene expression. PMID:7962071

  14. Molecular Analysis of the Locus Responsible for Production of Plantaricin S, a Two-Peptide Bacteriocin Produced by Lactobacillus plantarum LPCO10

    PubMed Central

    Stephens, Sarah K.; Floriano, Belén; Cathcart, Declan P.; Bayley, Susan A.; Witt, Valerie F.; Jiménez-Díaz, Rufino; Warner, Philip J.; Ruiz-Barba, José Luis

    1998-01-01

    A 4.5-kb region of chromosomal DNA carrying the locus responsible for the production of plantaricin S, a two-peptide bacteriocin produced by Lactobacillus plantarum LPCO10 (R. Jiménez-Díaz, J. L. Ruiz-Barba, D. P. Cathcart, H. Holo, I. F. Nes, K. H. Sletten, and P. J. Warner, Appl. Environ. Microbiol. 61:4459–4463, 1995), has been cloned, and the nucleotide sequence has been elucidated. Two genes, designated plsA and plsB and encoding peptides α and β, respectively, of plantaricin S, plus an open reading frame (ORF), ORF2, were found to be organized in an operon. Northern blot analysis showed that these genes are cotranscribed, giving a ca. 0.7-kb mRNA, whose transcription start point was determined by primer extension. Nucleotide sequences of plsA and plsB revealed that both genes are translated as bacteriocin precursors which include N-terminal leader sequences of the double-glycine type. The role of ORF2 is unknown at the moment, although it might be expected to encode an immunity protein of the type described for other bacteriocin operons. In addition, several other potential ORFs have been found, including some which may be responsible for the regulation of bacteriocin production. Two of them, ORF8 and ORF14, show strong homology with histidine protein kinase and response regulator genes, respectively, which have been found to be involved in the regulation of the production of other bacteriocins from lactic acid bacteria. A third ORF, ORF5, shows homology with gene agrB from Staphylococcus aureus, which is involved in the mechanism of regulation of the virulence phenotype in this species. Thus, an agr-like regulatory system for the production of plantaricin S is postulated. PMID:9572965

  15. Donkey Orchid Symptomless Virus: A Viral ‘Platypus’ from Australian Terrestrial Orchids

    PubMed Central

    Wylie, Stephen J.; Li, Hua; Jones, Michael G. K.

    2013-01-01

    Complete and partial genome sequences of two isolates of an unusual new plant virus, designated Donkey orchid symptomless virus (DOSV) were identified using a high-throughput sequencing approach. The virus was identified from asymptomatic plants of Australian terrestrial orchid Diuris longifolia (Common donkey orchid) growing in a remnant forest patch near Perth, western Australia. DOSV was identified from two D. longifolia plants of 264 tested, and from at least one plant of 129 Caladenia latifolia (pink fairy orchid) plants tested. Phylogenetic analysis of the genome revealed open reading frames (ORF) encoding seven putative proteins of apparently disparate origins. A 69-kDa protein (ORF1) that overlapped the replicase shared low identity with MPs of plant tymoviruses (Tymoviridae). A 157-kDa replicase (ORF2) and 22-kDa coat protein (ORF4) shared 32% and 40% amino acid identity, respectively, with homologous proteins encoded by members of the plant virus family Alphaflexiviridae. A 44-kDa protein (ORF3) shared low identity with myosin and an autophagy protein from Squirrelpox virus. A 27-kDa protein (ORF5) shared no identity with described proteins. A 14-kDa protein (ORF6) shared limited sequence identity (26%) over a limited region of the envelope glycoprotein precursor of mammal-infecting Crimea-Congo hemorrhagic fever virus (Bunyaviridae). The putative 25-kDa movement protein (MP) (ORF7) shared limited (27%) identity with 3A-like MPs of members of the plant-infecting Tombusviridae and Virgaviridae. Transmissibility was shown when DOSV systemically infected Nicotiana benthamiana plants. Structure and organization of the domains within the putative replicase of DOSV suggests a common evolutionary origin with ‘potexvirus-like’ replicases of viruses within the Alphaflexiviridae and Tymoviridae, and the CP appears to be ancestral to CPs of allexiviruses (Alphaflexiviridae). The MP shares an evolutionary history with MPs of dianthoviruses, but the other putative proteins are distant from plant viruses. DOSV is not readily classified in current lower order virus taxa. PMID:24223974

  16. Characterization of chromosomal regions conserved in Yersinia pseudotuberculosis and lost by Yersinia pestis.

    PubMed

    Pouillot, Flavie; Fayolle, Corinne; Carniel, Elisabeth

    2008-10-01

    The transformation of the enteropathogenic bacterium Yersinia pseudotuberculosis into the plague bacillus, Yersinia pestis, has been accompanied by extensive genetic loss. This study focused on chromosomal regions conserved in Y. pseudotuberculosis and lost during its transformation into Y. pestis. An extensive PCR screening of 78 strains of the two species identified five regions (R1 to R5) and four open reading frames (ORFs; orf1 to orf4) that were conserved in Y. pseudotuberculosis and absent from Y. pestis. Their conservation in Y. pseudotuberculosis suggests a positive selective pressure and a role during the life cycle of this species. Attempts to delete two ORFs (orf3 and orf4) from the chromosome of strain IP32953 were unsuccessful, indicating that they are essential for its viability. The seven remaining loci were individually deleted from the IP32953 chromosome, and the ability of each mutant to grow in vitro and to kill mice upon intragastric infection was evaluated. Four loci (orf1, R2, R4, and R5) were not required for optimal growth or virulence of Y. pseudotuberculosis. In contrast, orf2, encoding a putative pseudouridylate synthase involved in RNA stability, was necessary for the optimal growth of IP32953 at 37 degrees C in a chemically defined medium (M63S). Deletion of R1, a region predicted to encode the methionine salvage pathway, altered the mutant pathogenicity, suggesting that the availability of free methionine is severely restricted in vivo. R3, a region composed mostly of genes of unknown functions, was necessary for both optimal growth of Y. pseudotuberculosis at 37 degrees C in M63S and for virulence. Therefore, despite their loss in Y. pestis, five of the nine Y. pseudotuberculosis-specific chromosomal loci studied play a role in the survival, growth, or virulence of this species.

  17. Organization of the hao gene cluster of Nitrosomonas europaea: genes for two tetraheme c cytochromes.

    PubMed

    Bergmann, D J; Arciero, D M; Hooper, A B

    1994-06-01

    The organization of genes for three proteins involved in ammonia oxidation in Nitrosomonas europaea has been investigated. The amino acid sequence of the N-terminal region and four heme-containing peptides produced by proteolysis of the tetraheme cytochrome c554 of N. europaea were determined by Edman degradation. The gene (cycA) encoding this cytochrome is present in three copies per genome (H. McTavish, F. LaQuier, D. Arciero, M. Logan, G. Mundfrom, J.A. Fuchs, and A. B. Hooper, J. Bacteriol. 175:2445-2447, 1993). Three clones, representing at least two copies of cycA, were isolated and sequenced by the dideoxy-chain termination procedure. In both copies, the sequences of 211 amino acids derived from the gene sequence are identical and include all amino acids predicted by the proteolytic peptides. In two copies, the cycA open reading frame (ORF) is followed closely (three bases in one copy) by a second ORF predicted to encode a 28-kDa tetraheme c cytochrome not previously characterized but similar to the nirT gene product of Pseudomonas stutzeri. In one copy of the cycA gene cluster, the second ORF is absent.

  18. A novel monopartite dsRNA virus isolated from the phytopathogenic fungus Ustilaginoidea virens and ancestrally related to a mitochondria-associated dsRNA in the green alga Bryopsis.

    PubMed

    Zhang, Tingting; Jiang, Yinhui; Dong, Wubei

    2014-08-01

    In this study, we describe a novel mycovirus isolated from Ustilaginoidea virens, which was designated Ustilaginoidea virens nonsegmented virus 1 (UvNV-1). The sequence analysis revealed that UvNV-1 has two open reading frames (ORFs). ORF1 encodes an unknown protein, which is similar to the hypothetical protein BN7_5177 of Wickerhamomyces ciferrii. ORF2 encodes a putative RNA-dependent RNA polymerase (RdRp), which is most closely related to Bryopsis mitochondria-associated dsRNA (BDRM) and is likely expressed by a +1 ribosomal frameshift within the sequence CCC_UUU_CGA. The phylogenetic analysis of the RdRp of UvNV-1 showed that UvNV-1 represents a new virus taxon of mycoviruses with a partitivirus-like lineage that is classified into the family of picorna-like viruses. Based on northern hybridization, UvNV-1 was found to be common to U. virens from different geographic locations in China. The biological comparison of virus-free and infected fungal strains revealed that UvNV-1 is likely to be cryptic to its host. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. In Silico Pattern-Based Analysis of the Human Cytomegalovirus Genome

    PubMed Central

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T.; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-01-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/). PMID:12634390

  20. In silico pattern-based analysis of the human cytomegalovirus genome.

    PubMed

    Rigoutsos, Isidore; Novotny, Jiri; Huynh, Tien; Chin-Bow, Stephen T; Parida, Laxmi; Platt, Daniel; Coleman, David; Shenk, Thomas

    2003-04-01

    More than 200 open reading frames (ORFs) from the human cytomegalovirus genome have been reported as potentially coding for proteins. We have used two pattern-based in silico approaches to analyze this set of putative viral genes. With the help of an objective annotation method that is based on the Bio-Dictionary, a comprehensive collection of amino acid patterns that describes the currently known natural sequence space of proteins, we have reannotated all of the previously reported putative genes of the human cytomegalovirus. Also, with the help of MUSCA, a pattern-based multiple sequence alignment algorithm, we have reexamined the original human cytomegalovirus gene family definitions. Our analysis of the genome shows that many of the coded proteins comprise amino acid combinations that are unique to either the human cytomegalovirus or the larger group of herpesviruses. We have confirmed that a surprisingly large portion of the analyzed ORFs encode membrane proteins, and we have discovered a significant number of previously uncharacterized proteins that are predicted to be G-protein-coupled receptor homologues. The analysis also indicates that many of the encoded proteins undergo posttranslational modifications such as hydroxylation, phosphorylation, and glycosylation. ORFs encoding proteins with similar functional behavior appear in neighboring regions of the human cytomegalovirus genome. All of the results of the present study can be found and interactively explored online (http://cbcsrv.watson.ibm.com/virus/).

  1. Cloning and sequence analysis of the Antheraea pernyi nucleopolyhedrovirus gp64 gene.

    PubMed

    Wang, Wenbing; Zhu, Shanying; Wang, Liqun; Yu, Feng; Shen, Weide

    2005-12-01

    Frequent outbreaks of the purulence disease of Chinese oak silkworm are reported in Middle and Northeast China. The disease is produced by the pathogen Antheraea pernyi nucleopolyhedrovirus (AnpeNPV). To obtain molecular information of the virus, the polyhedra of AnpeNPV were purified and characterized. The genomic DNA of AnpeNPV was extracted and digested with HindIII. The genome size of AnpeNPV is estimated at 128 kb. Based on the analysis of DNA fragments digested with HindIII, 23 fragments were bigger than 564 bp. A genomic library was generated using HindIII and the positive clones were sequenced and analysed. The gp64 gene, encoding the baculovirus envelope protein GP64, was found in an insert. The nucleotide sequence analysis indicated that the AnpeNPV gp64 gene consists of a 1,530 nucleotide open reading frame (ORF), encoding a protein of 509 amino acids. Of the eight gp64 homologues, the AnpeNPV gp64 ORF shared the most sequence similarity with the gp64 gene of Anticarsia gemmatalis NPV, but not Bombyx mori NPV. The upstream region of the AnpeNPV gp64 ORF encoded the conserved transcriptional elements for early and late stage of the viral infection cycle. These results indicated that AnpeNPV belongs to group I NPV and was far removed in molecular phylogeny from the BmNPV.

  2. Characterization of Nora Virus Structural Proteins via Western Blot Analysis.

    PubMed

    Ericson, Brad L; Carlson, Darby J; Carlson, Kimberly A

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses.

  3. Characterization of Nora Virus Structural Proteins via Western Blot Analysis

    PubMed Central

    Ericson, Brad L.; Carlson, Darby J.

    2016-01-01

    Nora virus is a single stranded RNA picorna-like virus with four open reading frames (ORFs). The coding potentials of the ORFs are not fully characterized, but ORF3 and ORF4 are believed to encode the capsid proteins (VP3, VP4a, VP4b, and VP4c) comprising the virion. To determine the polypeptide composition of Nora virus virions, polypeptides from purified virus were compared to polypeptides detected in Nora virus infected Drosophila melanogaster. Nora virus was purified from infected flies and used to challenge mice for the production of antisera. ORF3, ORF4a, ORF4b, and ORF4c were individually cloned and expressed in E. coli; resultant recombinant proteins purified and were used to make monospecific antisera. Antisera were evaluated via Western blot against whole virus particles and Nora virus infected fly lysates. Viral purification yielded two particle types with densities of ~1.31 g/mL (empty particles) and ~1.33 g/mL (complete virions). Comparison of purified virus polypeptide composition to Nora virus infected D. melanogaster lysate showed the number of proteins in infected cell lysates is less than purified virus. Our results suggest the virion is composed of 6 polypeptides, VP3, VP4a, two forms of VP4b, and two forms of VP4c. This polypeptide composition is similar to other small RNA insect viruses. PMID:27298753

  4. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition

    PubMed Central

    Moldovan, John B.; Moran, John V.

    2015-01-01

    Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. PMID:25951186

  5. Comprehensive Peptide Analysis of Mouse Brain Striatum Identifies Novel sORF-Encoded Polypeptides.

    PubMed

    Budamgunta, Harshavardhan; Olexiouk, Volodimir; Luyten, Walter; Schildermans, Karin; Maes, Evelyne; Boonen, Kurt; Menschaert, Gerben; Baggerman, Geert

    2018-04-30

    Bio-active peptides are involved in the regulation of most physiological processes in the body. Classical bio-active peptides (CBAPs) are cleaved from a larger precursor protein and stored in secretion vesicles from which they are released in the extracellular space. Recently, another non-classical type of bio-active peptides (NCBAPs) have gained interest. These typically are not secreted but instead appear to be translated from short open reading frames (sORF) and released directly into the cytoplasm. In contrast to CBAPs, these peptides are involved in the regulation of intra-cellular processes such as transcriptional control, calcium handling and DNA repair. However, bio-chemical evidence for the translation of sORFs remains elusive. Comprehensive analysis of sORF-encoded polypeptides (SEPs) is hampered by a number of methodological and biological challenges: the low molecular mass (many 4-10 kDa), the low abundance, transient expression and complications in data analysis. We developed a strategy to address a number of these issues. Our strategy is to exclude false positive identifications. in total sample, we identified 926 peptides originated from 37 known (neuro)peptide precursors in mouse striatum,. In addition, four SEPs were identified including NoBody, a SEP that was previously discovered in humans and three novel SEPS from 5' untranslated transcript regions (UTRs). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Discovery of a protein phosphatase activity encoded in the genome of bacteriophage lambda. Probable identity with open reading frame 221.

    PubMed

    Cohen, P T; Cohen, P

    1989-06-15

    Infection of Escherichia coli with phage lambda gt10 resulted in the appearance of a protein phosphatase with activity towards 32P-labelled casein. Activity reached a maximum near the point of cell lysis and declined thereafter. The phosphatase was stimulated 30-fold by Mn2+, while Mg2+ and Ca2+ were much less effective. Activity was unaffected by inhibitors 1 and 2, okadaic acid, calmodulin and trifluoperazine, distinguishing it from the major serine/threonine-specific protein phosphatases of eukaryotic cells. The lambda phosphatase was also capable of dephosphorylating other substrates in the presence of Mn2+, although activity towards 32P-labelled phosphorylase was 10-fold lower, and activity towards phosphorylase kinase and glycogen synthase 25 50-fold lower than with casein. No casein phosphatase activity was present in either uninfected cells, or in E. coli infected with phage lambda gt11. Since lambda gt11 lacks part of the open reading frame (orf) 221, previously shown to encode a protein with sequence similarity to protein phosphatase-1 and protein phosphatase-2A of mammalian cells [Cohen, Collins, Coulson, Berndt & da Cruz e Silva (1988) Gene 69, 131-134], the results indicate that ORF221 is the protein phosphatase detected in cells infected with lambda gt10. Comparison of the sequence of ORF221 with other mammalian protein phosphatases defines three highly conserved regions which are likely to be essential for function. The first of these is deleted in lambda gt11.

  7. Molecular Screening Tools to Study Arabidopsis Transcription Factors

    PubMed Central

    Wehner, Nora; Weiste, Christoph; Dröge-Laser, Wolfgang

    2011-01-01

    In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast trans activation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta. PMID:22645547

  8. Efficient identification of tubby-binding proteins by an improved system of T7 phage display.

    PubMed

    Caberoy, Nora B; Zhou, Yixiong; Jiang, Xiaoyu; Alvarado, Gabriela; Li, Wei

    2010-01-01

    Mutation in the tubby gene causes adult-onset obesity, progressive retinal, and cochlear degeneration with unknown mechanism. In contrast, mutations in tubby-like protein 1 (Tulp1), whose C-terminus is highly homologous to tubby, only lead to retinal degeneration. We speculate that their diverse N-terminus may define their distinct disease profile. To elucidate the binding partners of tubby, we used tubby N-terminus (tubby-N) as bait to identify unknown binding proteins with open-reading-frame (ORF) phage display. T7 phage display was engineered with three improvements: high-quality ORF phage display cDNA library, specific phage elution by protease cleavage, and dual phage display for sensitive high throughput screening. The new system is capable of identifying unknown bait-binding proteins in as fast as approximately 4-7 days. While phage display with conventional cDNA libraries identifies high percentage of out-of-frame unnatural short peptides, all 28 tubby-N-binding clones identified by ORF phage display were ORFs. They encode 16 proteins, including 8 nuclear proteins. Fourteen proteins were analyzed by yeast two-hybrid assay and protein pull-down assay with ten of them independently verified. Comparative binding analyses revealed several proteins binding to both tubby and Tulp1 as well as one tubby-specific binding protein. These data suggest that tubby-N is capable of interacting with multiple nuclear and cytoplasmic protein binding partners. These results demonstrated that the newly-engineered ORF phage display is a powerful technology to identify unknown protein-protein interactions. (c) 2009 John Wiley & Sons, Ltd.

  9. Ultra-deep sequencing of ribosome-associated poly-adenylated RNA in early Drosophila embryos reveals hundreds of conserved translated sORFs.

    PubMed

    Li, Hongmei; Hu, Chuansheng; Bai, Ling; Li, Hua; Li, Mingfa; Zhao, Xiaodong; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-12-01

    There is growing recognition that small open reading frames (sORFs) encoding peptides shorter than 100 amino acids are an important class of functional elements in the eukaryotic genome, with several already identified to play critical roles in growth, development, and disease. However, our understanding of their biological importance has been hindered owing to the significant technical challenges limiting their annotation. Here we combined ultra-deep sequencing of ribosome-associated poly-adenylated RNAs with rigorous conservation analysis to identify a comprehensive population of translated sORFs during early Drosophila embryogenesis. In total, we identify 399 sORFs, including those previously annotated but without evidence of translational capacity, those found within transcripts previously classified as non-coding, and those not previously known to be transcribed. Further, we find, for the first time, evidence for translation of many sORFs with different isoforms, suggesting their regulation is as complex as longer ORFs. Furthermore, many sORFs are found not associated with ribosomes in late-stage Drosophila S2 cells, suggesting that many of the translated sORFs may have stage-specific functions during embryogenesis. These results thus provide the first comprehensive annotation of the sORFs present during early Drosophila embryogenesis, a necessary basis for a detailed delineation of their function in embryogenesis and other biological processes. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Identification of a novel gene cluster participating in menaquinone (vitamin K2) biosynthesis. Cloning and sequence determination of the 2-heptaprenyl-1,4-naphthoquinone methyltransferase gene of Bacillus stearothermophilus.

    PubMed

    Koike-Takeshita, A; Koyama, T; Ogura, K

    1997-05-09

    We recently described the isolation and sequence analysis of a DNA region containing the genes of Bacillus stearothermophilus heptaprenyl diphosphate synthase, which catalyzes the synthesis of the prenyl side chain of menaquinone-7 of this bacterium. Sequence analyses revealed the presence of three open reading frames (ORFs), designated as ORF-1, ORF-2, and ORF-3, and the structural genes of the heptaprenyl diphosphate synthase were proved to consist of ORF-1 (heps-1) and ORF-3 (heps-2) (Koike-Takeshita, A., Koyama, T., Obata, S., and Ogura, K. (1995) J. Biol. Chem. 270, 18396-18400). The predicted amino acid sequence of ORF-2 (234 amino acids) contains a methyltransferase consensus sequence and shows a 22% identity with UbiG of Escherichia coli, which catalyzes S-adenosyl-L-methionine-dependent methylation of 2-octaprenyl-3-methyl-5-hydroxy-6-methoxy-1,4-benzoquinone. These pieces of information led us to identify the ORF-2 gene product. The cell-free homogenate of the transformant of E. coli with an expression vector of ORF-2 catalyzed the incorporation of S-adenosyl-L-methionine into menaquinone-8, indicating that ORF-2 encodes 2-heptaprenyl-1,4-naphthoquinone methyltransferase, which participates in the terminal step of the menaquinone biosynthesis. Thus it is concluded that the ORF-1, ORF-2, and ORF-3 genes, designated heps-1, menG, and heps-2, respectively, form another cluster involved in menaquinone biosynthesis in addition to the cluster of menB, menC, menD, and menE already identified in the Bacillus subtilis and E. coli chromosomes.

  11. Negative and Translation Termination-Dependent Positive Control of FLI-1 Protein Synthesis by Conserved Overlapping 5′ Upstream Open Reading Frames in Fli-1 mRNA

    PubMed Central

    Sarrazin, Sandrine; Starck, Joëlle; Gonnet, Colette; Doubeikovski, Alexandre; Melet, Fabrice; Morle, François

    2000-01-01

    The proto-oncogene Fli-1 encodes a transcription factor of the ets family whose overexpression is associated with multiple virally induced leukemias in mouse, inhibits murine and avian erythroid cell differentiation, and induces drastic perturbations of early development in Xenopus. This study demonstrates the surprisingly sophisticated regulation of Fli-1 mRNA translation. We establish that two FLI-1 protein isoforms (of 51 and 48 kDa) detected by Western blotting in vivo are synthesized by alternative translation initiation through the use of two highly conserved in-frame initiation codons, AUG +1 and AUG +100. Furthermore, we show that the synthesis of these two FLI-1 isoforms is regulated by two short overlapping 5′ upstream open reading frames (uORF) beginning at two highly conserved upstream initiation codons, AUG −41 and GUG −37, and terminating at two highly conserved stop codons, UGA +35 and UAA +15. The mutational analysis of these two 5′ uORF revealed that each of them negatively regulates FLI-1 protein synthesis by precluding cap-dependent scanning to the 48- and 51-kDa AUG codons. Simultaneously, the translation termination of the two 5′ uORF appears to enhance 48-kDa protein synthesis, by allowing downstream reinitiation at the 48-kDa AUG codon, and 51-kDa protein synthesis, by allowing scanning ribosomes to pile up and consequently allowing upstream initiation at the 51-kDa AUG codon. To our knowledge, this is the first example of a cellular mRNA displaying overlapping 5′ uORF whose translation termination appears to be involved in the positive control of translation initiation at both downstream and upstream initiation codons. PMID:10757781

  12. Characterization and developmental expression of genes encoding the early carotenoid biosynthetic enzymes in Citrus paradisi Macf.

    PubMed

    Costa, Marcio G C; Moreira, Cristina D; Melton, John R; Otoni, Wagner C; Moore, Gloria A

    2012-02-01

    In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.

  13. Cloning and Sequence Analysis of Vibrio halioticoli Genes Encoding Three Types of Polyguluronate Lyase.

    PubMed

    Sugimura; Sawabe; Ezura

    2000-01-01

    The alginate lyase-coding genes of Vibrio halioticoli IAM 14596(T), which was isolated from the gut of the abalone Haliotis discus hannai, were cloned using plasmid vector pUC 18, and expressed in Escherichia coli. Three alginate lyase-positive clones, pVHB, pVHC, and pVHE, were obtained, and all clones expressed the enzyme activity specific for polyguluronate. Three genes, alyVG1, alyVG2, and alyVG3, encoding polyguluronate lyase were sequenced: alyVG1 from pVHB was composed of a 1056-bp open reading frame (ORF) encoding 352 amino acid residues; alyVG2 gene from pVHC was composed of a 993-bp ORF encoding 331 amino acid residues; and alyVG3 gene from pVHE was composed of a 705-bp ORF encoding 235 amino acid residues. Comparison of nucleotide and deduced amino acid sequences among AlyVG1, AlyVG2, and AlyVG3 revealed low homologies. The identity value between AlyVG1 and AlyVG2 was 18.7%, and that between AlyVG2 and AlyVG3 was 17.0%. A higher identity value (26.0%) was observed between AlyVG1 and AlyVG3. Sequence comparison among known polyguluronate lyases including AlyVG1, AlyVG2, and AlyVG3 also did not reveal an identical region in these sequences. However, AlyVG1 showed the highest identity value (36.2%) and the highest similarity (73.3%) to AlyA from Klebsiella pneumoniae. A consensus region comprising nine amino acid (YFKAGXYXQ) in the carboxy-terminal region previously reported by Mallisard and colleagues was observed only in AlyVG1 and AlyVG2.

  14. Annotation and sequence diversity of transposable elements in common bean (Phaseolus vulgaris).

    PubMed

    Gao, Dongying; Abernathy, Brian; Rohksar, Daniel; Schmutz, Jeremy; Jackson, Scott A

    2014-01-01

    Common bean (Phaseolus vulgaris) is an important legume crop grown and consumed worldwide. With the availability of the common bean genome sequence, the next challenge is to annotate the genome and characterize functional DNA elements. Transposable elements (TEs) are the most abundant component of plant genomes and can dramatically affect genome evolution and genetic variation. Thus, it is pivotal to identify TEs in the common bean genome. In this study, we performed a genome-wide transposon annotation in common bean using a combination of homology and sequence structure-based methods. We developed a 2.12-Mb transposon database which includes 791 representative transposon sequences and is available upon request or from www.phytozome.org. Of note, nearly all transposons in the database are previously unrecognized TEs. More than 5,000 transposon-related expressed sequence tags (ESTs) were detected which indicates that some transposons may be transcriptionally active. Two Ty1-copia retrotransposon families were found to encode the envelope-like protein which has rarely been identified in plant genomes. Also, we identified an extra open reading frame (ORF) termed ORF2 from 15 Ty3-gypsy families that was located between the ORF encoding the retrotransposase and the 3'LTR. The ORF2 was in opposite transcriptional orientation to retrotransposase. Sequence homology searches and phylogenetic analysis suggested that the ORF2 may have an ancient origin, but its function is not clear. These transposon data provide a useful resource for understanding the genome organization and evolution and may be used to identify active TEs for developing transposon-tagging system in common bean and other related genomes.

  15. Construction and Screening of a Lentiviral Secretome Library.

    PubMed

    Liu, Tao; Jia, Panpan; Ma, Huailei; Reed, Sean A; Luo, Xiaozhou; Larman, H Benjamin; Schultz, Peter G

    2017-06-22

    Over 2,000 human proteins are predicted to be secreted, but the biological function of the many of these proteins is still unknown. Moreover, a number of these proteins may act as new therapeutic agents or be targets for the development of therapeutic antibodies. To further explore the extracellular proteome, we have developed a secretome-enriched open reading frame (ORF) library that can be readily screened for autocrine activity in cell-based phenotypic or reporter assays. Next-generation sequencing (NGS) and database analysis predict that the library contains approximately 900 ORFs encoding known secreted proteins (accounting for 77.8% of the library), as well as genes encoding potentially unknown secreted proteins. In a proof-of-principle study, human TF-1 cells were screened for proliferative factors, and the known cytokine GMCSF was identified as a dominant hit. This library offers a relatively low-cost and straightforward approach for functional autocrine screens of secreted proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Complete Genomic Sequence of Pepper Yellow Leaf Curl Virus (PYLCV) and Its Implications for Our Understanding of Evolution Dynamics in the Genus Polerovirus

    PubMed Central

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range. PMID:23936244

  17. The complete genomic sequence of pepper yellow leaf curl virus (PYLCV) and its implications for our understanding of evolution dynamics in the genus polerovirus.

    PubMed

    Dombrovsky, Aviv; Glanz, Eyal; Lachman, Oded; Sela, Noa; Doron-Faigenboim, Adi; Antignus, Yehezkel

    2013-01-01

    We determined the complete sequence and organization of the genome of a putative member of the genus Polerovirus tentatively named Pepper yellow leaf curl virus (PYLCV). PYLCV has a wider host range than Tobacco vein-distorting virus (TVDV) and has a close serological relationship with Cucurbit aphid-borne yellows virus (CABYV) (both poleroviruses). The extracted viral RNA was subjected to SOLiD next-generation sequence analysis and used as a template for reverse transcription synthesis, which was followed by PCR amplification. The ssRNA genome of PYLCV includes 6,028 nucleotides encoding six open reading frames (ORFs), which is typical of the genus Polerovirus. Comparisons of the deduced amino acid sequences of the PYLCV ORFs 2-4 and ORF5, indicate that there are high levels of similarity between these sequences to ORFs 2-4 of TVDV (84-93%) and to ORF5 of CABYV (87%). Both PYLCV and Pepper vein yellowing virus (PeVYV) contain sequences that point to a common ancestral polerovirus. The recombination breakpoint which is located at CABYV ORF3, which encodes the viral coat protein (CP), may explain the CABYV-like sequences found in the genomes of the pepper infecting viruses PYLCV and PeVYV. Two additional regions unique to PYLCV (PY1 and PY2) were identified between nucleotides 4,962 and 5,061 (ORF 5) and between positions 5,866 and 6,028 in the 3' NCR. Sequence analysis of the pepper-infecting PeVYV revealed three unique regions (Pe1-Pe3) with no similarity to other members of the genus Polerovirus. Genomic analyses of PYLCV and PeVYV suggest that the speciation of these viruses occurred through putative recombination event(s) between poleroviruses co-infecting a common host(s), resulting in the emergence of PYLCV, a novel pathogen with a wider host range.

  18. E4orf1 Limits the Oncolytic Potential of the E1B-55K Deletion Mutant Adenovirus▿

    PubMed Central

    Thomas, Michael A.; Broughton, Robin S.; Goodrum, Felicia D.; Ornelles, David A.

    2009-01-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G1 phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G1 restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3′-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function. PMID:19129452

  19. E4orf1 limits the oncolytic potential of the E1B-55K deletion mutant adenovirus.

    PubMed

    Thomas, Michael A; Broughton, Robin S; Goodrum, Felicia D; Ornelles, David A

    2009-03-01

    Clinical trials have shown oncolytic adenoviruses to be tumor selective with minimal toxicity toward normal tissue. The virus ONYX-015, in which the gene encoding the early region 1B 55-kDa (E1B-55K) protein is deleted, has been most effective when used in combination with either chemotherapy or radiation therapy. Therefore, improving the oncolytic nature of tumor-selective adenoviruses remains an important objective for improving this form of cancer therapy. Cells infected during the G(1) phase of the cell cycle with the E1B-55K deletion mutant virus exhibit a reduced rate of viral late protein synthesis, produce fewer viral progeny, and are less efficiently killed than cells infected during the S phase. Here we demonstrate that the G(1) restriction imposed on the E1B-55K deletion mutant virus is due to the viral oncogene encoded by open reading frame 1 of early region 4 (E4orf1). E4orf1 has been reported to signal through the phosphatidylinositol 3'-kinase pathway leading to the activation of Akt, mTOR, and p70 S6K. Evidence presented here shows that E4orf1 may also induce the phosphorylation of Akt and p70 S6K in a manner that depends on Rac1 and its guanine nucleotide exchange factor Tiam1. Accordingly, agents that have been reported to disrupt the Tiam1-Rac1 interaction or to prevent phosphorylation of the ribosomal S6 kinase partially alleviated the E4orf1 restriction to late viral protein synthesis and enhanced tumor cell killing by the E1B-55K mutant virus. These results demonstrate that E4orf1 limits the oncolytic nature of a conditionally replicating adenovirus such as ONYX-015. The therapeutic value of similar oncolytic adenoviruses may be improved by abrogating E4orf1 function.

  20. Isolation and characterization of Solenopsis invicta virus 3, a new positive-strand RNA virus infecting the red imported fire ant, Solenopsis invicta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valles, Steven M., E-mail: Steven.Valles@ars.usda.go; Hashimoto, Yoshifumi

    2009-06-05

    We report the discovery of a new virus from the red imported fire ant, Solenopsis invicta. Solenopsis invicta virus 3 (SINV-3) represents the third virus discovered from this ant species using the metagenomics approach. The single (positive)-strand RNA, monopartite, bicistronic genome of SINV-3 was sequenced in entirety (GenBank accession number (FJ528584)), comprised of 10,386 nucleotides, and polyadenylated at the 3' terminus. This genome size was confirmed by Northern analysis. The genome revealed 2 large open reading frames (ORFs) in the sense orientation with an untranslated region (UTR) at each end and between the two ORFs. The 5' proximal ORF (ORFmore » 1) encoded a predicted protein of 299.1 kDa (2580 amino acids). The 3' proximal ORF (ORF 2) encoded a predicted protein of 73.2 kDa (651 amino acids). RNA-dependent RNA polymerase (RdRp), helicase, and protease domains were recognized in ORF 1. SDS-PAGE separation of purified SINV-3 particles yielded 2 bands (ostensibly capsid proteins) with a combined molecular mass of 77.3 kDa which was similar to the mass predicted by ORF 2 (73.2 kDa). Phylogenetic analysis of the conserved amino acid sequences containing domains I to VIII of the RdRp from dicistroviruses, iflaviruses, plant small RNA viruses, picornaviruses, and 4 unassigned positive-strand RNA viruses revealed a trichotomous phenogram with SINV-3 and Kelp fly virus comprising a unique cluster. Electron microscopic examination of negatively stained samples of SINV-3 revealed isometric particles with apparent projections and a diameter of 27.3 +- 1.3 nm. SINV-3 was successfully transmitted to uninfected workers by feeding. The minus (replicative) strand of SINV-3 was detected in worker ants indicating replication of the virus. The possibility of using SINV-3 as a microbial control agent for fire ants is discussed.« less

  1. A transposase strategy for creating libraries of circularly permuted proteins.

    PubMed

    Mehta, Manan M; Liu, Shirley; Silberg, Jonathan J

    2012-05-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions.

  2. A transposase strategy for creating libraries of circularly permuted proteins

    PubMed Central

    Mehta, Manan M.; Liu, Shirley; Silberg, Jonathan J.

    2012-01-01

    A simple approach for creating libraries of circularly permuted proteins is described that is called PERMutation Using Transposase Engineering (PERMUTE). In PERMUTE, the transposase MuA is used to randomly insert a minitransposon that can function as a protein expression vector into a plasmid that contains the open reading frame (ORF) being permuted. A library of vectors that express different permuted variants of the ORF-encoded protein is created by: (i) using bacteria to select for target vectors that acquire an integrated minitransposon; (ii) excising the ensemble of ORFs that contain an integrated minitransposon from the selected vectors; and (iii) circularizing the ensemble of ORFs containing integrated minitransposons using intramolecular ligation. Construction of a Thermotoga neapolitana adenylate kinase (AK) library using PERMUTE revealed that this approach produces vectors that express circularly permuted proteins with distinct sequence diversity from existing methods. In addition, selection of this library for variants that complement the growth of Escherichia coli with a temperature-sensitive AK identified functional proteins with novel architectures, suggesting that PERMUTE will be useful for the directed evolution of proteins with new functions. PMID:22319214

  3. Interaction of infectious spleen and kidney necrosis virus ORF119L with PINCH leads to dominant-negative inhibition of integrin-linked kinase and cardiovascular defects in zebrafish.

    PubMed

    Yuan, Ji-Min; He, Bai-Liang; Yang, Lu-Yun; Guo, Chang-Jun; Weng, Shao-Ping; Li, Shengwen Calvin; He, Jian-Guo

    2015-01-01

    Infectious spleen and kidney necrosis virus (ISKNV) is the type species of the Megalocytivirus genus, Iridoviridae family, causing a severe systemic disease with high mortality in mandarin fish (Siniperca chuatsi) in China and Southeast Asia. At present, the pathogenesis of ISKNV infection is still not fully understood. Based on a genome-wide bioinformatics analysis of ISKNV-encoded proteins, we found that ISKNV open reading frame 119L (ORF119L) is predicted to encode a three-ankyrin-repeat (3ANK)-domain-containing protein, which shows high similarity to the dominant negative form of integrin-linked kinase (ILK); i.e., viral ORF119L lacks the ILK kinase domain. Thus, we speculated that viral ORF119L might affect the host ILK complex. Here, we demonstrated that viral ORF119L directly interacts with particularly interesting Cys-His-rich protein (PINCH) and affects the host ILK-PINCH interaction in vitro in fathead minnow (FHM) cells. In vivo ORF119L overexpression in zebrafish (Danio rerio) embryos resulted in myocardial dysfunctions with disintegration of the sarcomeric Z disk. Importantly, ORF119L overexpression in zebrafish highly resembles the phenotype of endogenous ILK inhibition, either by overexpressing a dominant negative form of ILK or by injecting an ILK antisense morpholino oligonucleotide. Intriguingly, ISKNV-infected mandarin fish develop disorganized sarcomeric Z disks in cardiomyocytes. Furthermore, phosphorylation of AKT, a downstream effector of ILK, was remarkably decreased in ORF119L-overexpressing zebrafish embryos. With these results, we show that ISKNV ORF119L acts as a domain-negative inhibitor of the host ILK, providing a novel mechanism for the megalocytivirus pathogenesis. Our work is the first to show the role of a dominant negative inhibitor of the host ILK from ISKNV (an iridovirus). Mechanistically, the viral ORF119L directly binds to the host PINCH, attenuates the host PINCH-ILK interaction, and thus impairs ILK signaling. Intriguingly, ORF119L-overexpressing zebrafish embryos and ISKNV-infected mandarin fish develop similar disordered sarcomeric Z disks in cardiomyocytes. These findings provide a novel mechanism for megalocytivirus pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. A crustacean Ca2+-binding protein with a glutamate-rich sequence promotes CaCO3 crystallization.

    PubMed

    Endo, Hirotoshi; Takagi, Yasuaki; Ozaki, Noriaki; Kogure, Toshihiro; Watanabe, Toshiki

    2004-11-15

    The DD4 mRNA of the penaeid prawn Penaeus japonicus was shown previously to be expressed in the epidermis adjacent to the exoskeleton specifically during the post-moult period, when calcification of the exoskeleton took place. The encoded protein possessed a Ca2+-binding site, suggesting its involvement in the calcification of the exoskeleton. In the present study, an additional ORF (open reading frame) of 289 amino acids was identified at the 5' end of the previous ORF. The newly identified part of the encoded protein included a region of approx. 120 amino acids that was highly rich in glutamate residues, and contained one or more Ca2+-binding sites. In an immunohistochemical study, signals were detected within calcified regions in the endocuticular layer of the exoskeleton. Bacterially expressed partial segments of the protein induced CaCO3 crystallization in vitro. Finally, a reverse transcription-PCR study showed that the expression was limited to an early part of the post-moult period, preceding significant calcification of the exoskeleton. These observations argue for the possibility that the encoded protein, renamed crustocalcin (CCN), promotes formation of CaCO3 crystals in the exoskeleton by inducing nucleation.

  5. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase.

    PubMed

    Morris, V L; Jackson, D P; Grattan, M; Ainsworth, T; Cuppels, D A

    1995-04-01

    Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant.

  6. Cardiomyopathy Syndrome of Atlantic Salmon (Salmo salar L.) Is Caused by a Double-Stranded RNA Virus of the Totiviridae Family▿

    PubMed Central

    Haugland, Øyvind; Mikalsen, Aase B.; Nilsen, Pål; Lindmo, Karine; Thu, Beate J.; Eliassen, Trygve M.; Roos, Norbert; Rode, Marit; Evensen, Øystein

    2011-01-01

    Cardiomyopathy syndrome (CMS) of farmed and wild Atlantic salmon (Salmo salar L.) is a disease of yet unknown etiology characterized by a necrotizing myocarditis involving the atrium and the spongious part of the heart ventricle. Here, we report the identification of a double-stranded RNA virus likely belonging to the family Totiviridae as the causative agent of the disease. The proposed name of the virus is piscine myocarditis virus (PMCV). On the basis of the RNA-dependent RNA polymerase (RdRp) sequence, PMCV grouped with Giardia lamblia virus and infectious myonecrosis virus of penaeid shrimp. The genome size of PMCV is 6,688 bp, with three open reading frames (ORFs). ORF1 likely encodes the major capsid protein, while ORF2 encodes the RdRp, possibly expressed as a fusion protein with the ORF1 product. ORF3 seems to be translated as a separate protein not described for any previous members of the family Totiviridae. Following experimental challenge with cell culture-grown virus, histopathological changes are observed in heart tissue by 6 weeks postchallenge (p.c.), with peak severity by 9 weeks p.c. Viral genome levels detected by real-time reverse transcription (RT)-PCR peak earlier at 6 to 7 weeks p.c. The virus genome is detected by in situ hybridization in degenerate cardiomyocytes from clinical cases of CMS. Virus genome levels in the hearts from clinical field cases correlate well with the severity of histopathological changes in heart tissue. The identification of the causative agent for CMS is important for improved disease surveillance and disease control and will serve as a basis for vaccine development against the disease. PMID:21411528

  7. Isolation and sequence analysis of the Pseudomonas syringae pv. tomato gene encoding a 2,3-diphosphoglycerate-independent phosphoglyceromutase.

    PubMed Central

    Morris, V L; Jackson, D P; Grattan, M; Ainsworth, T; Cuppels, D A

    1995-01-01

    Pseudomonas syringae pv. tomato DC3481, a Tn5-induced mutant of the tomato pathogen DC3000, cannot grow and elicit disease symptoms on tomato seedlings. It also cannot grow on minimal medium containing malate, citrate, or succinate, three of the major organic acids found in tomatoes. We report here that this mutant also cannot use, as a sole carbon and/or energy source, a wide variety of hexoses and intermediates of hexose catabolism. Uptake studies have shown that DC3481 is not deficient in transport. A 3.8-kb EcoRI fragment of DC3000 DNA, which complements the Tn5 mutation, has been cloned and sequenced. The deduced amino acid sequences of two of the three open reading frames (ORFs) present on this fragment, ORF2 and ORF3, had no significant homology with sequences in the GenBank databases. However, the 510-amino-acid sequence of ORF1, the site of the Tn5 insertion, strongly resembled the deduced amino acid sequences of the Bacillus subtilis and Zea mays genes encoding 2,3-diphosphoglycerate (DPG)-independent phosphoglyceromutase (PGM) (52% identity and 72% similarity and 37% identity and 57% similarity, respectively). PGMs not requiring the cofactor DPG are usually found in plants and algae. Enzyme assays confirmed that P. syringae PGM activity required an intact ORF1. Not only is DC3481 the first PGM-deficient pseudomonad mutant to be described, but the P. syringae pgm gene is the first gram-negative bacterial gene identified that appears to code for a DPG-independent PGM. PGM activity appears essential for the growth and pathogenicity of P. syringae pv. tomato on its host plant. PMID:7896694

  8. Carbon source-dependent expansion of the genetic code in bacteria

    PubMed Central

    Prat, Laure; Heinemann, Ilka U.; Aerni, Hans R.; Rinehart, Jesse; O’Donoghue, Patrick; Söll, Dieter

    2012-01-01

    Despite the fact that the genetic code is known to vary between organisms in rare cases, it is believed that in the lifetime of a single cell the code is stable. We found Acetohalobium arabaticum cells grown on pyruvate genetically encode 20 amino acids, but in the presence of trimethylamine (TMA), A. arabaticum dynamically expands its genetic code to 21 amino acids including pyrrolysine (Pyl). A. arabaticum is the only known organism that modulates the size of its genetic code in response to its environment and energy source. The gene cassette pylTSBCD, required to biosynthesize and genetically encode UAG codons as Pyl, is present in the genomes of 24 anaerobic archaea and bacteria. Unlike archaeal Pyl-decoding organisms that constitutively encode Pyl, we observed that A. arabaticum controls Pyl encoding by down-regulating transcription of the entire Pyl operon under growth conditions lacking TMA, to the point where no detectable Pyl-tRNAPyl is made in vivo. Pyl-decoding archaea adapted to an expanded genetic code by minimizing TAG codon frequency to typically ∼5% of ORFs, whereas Pyl-decoding bacteria (∼20% of ORFs contain in-frame TAGs) regulate Pyl-tRNAPyl formation and translation of UAG by transcriptional deactivation of genes in the Pyl operon. We further demonstrate that Pyl encoding occurs in a bacterium that naturally encodes the Pyl operon, and identified Pyl residues by mass spectrometry in A. arabaticum proteins including two methylamine methyltransferases. PMID:23185002

  9. Comparative genomic sequence analysis of novel Helicoverpa armigera nucleopolyhedrovirus (NPV) isolated from Kenya and three other previously sequenced Helicoverpa spp. NPVs.

    PubMed

    Ogembo, Javier Gordon; Caoili, Barbara L; Shikata, Masamitsu; Chaeychomsri, Sudawan; Kobayashi, Michihiro; Ikeda, Motoko

    2009-10-01

    A newly cloned Helicoverpa armigera nucleopolyhedrovirus (HearNPV) from Kenya, HearNPV-NNg1, has a higher insecticidal activity than HearNPV-G4, which also exhibits lower insecticidal activity than HearNPV-C1. In the search for genes and/or nucleotide sequences that might be involved in the observed virulence differences among Helicoverpa spp. NPVs, the entire genome of NNg1 was sequenced and compared with previously sequenced genomes of G4, C1 and Helicoverpa zea single-nucleocapsid NPV (Hz). The NNg1 genome was 132,425 bp in length, with a total of 143 putative open reading frames (ORFs), and shared high levels of overall amino acid and nucleotide sequence identities with G4, C1 and Hz. Three NNg1 ORFs, ORF5, ORF100 and ORF124, which were shared with C1, were absent in G4 and Hz, while NNg1 and C1 were missing a homologue of G4/Hz ORF5. Another three ORFs, ORF60 (bro-b), ORF119 and ORF120, and one direct repeat sequence (dr) were unique to NNg1. Relative to the overall nucleotide sequence identity, lower sequence identities were observed between NNg1 hrs and the homologous hrs in the other three Helicoverpa spp. NPVs, despite containing the same number of hrs located at essentially the same positions on the genomes. Differences were also observed between NNg1 and each of the other three Helicoverpa spp. NPVs in the diversity of bro genes encoded on the genomes. These results indicate several putative genes and nucleotide sequences that may be responsible for the virulence differences observed among Helicoverpa spp., yet the specific genes and/or nucleotide sequences responsible have not been identified.

  10. Identification of ATM mutations using extended RT-PCR and restriction endonuclease fingerprinting, and elucidation of the repertoire of A-T mutations in Israel.

    PubMed

    Gilad, S; Khosravi, R; Harnik, R; Ziv, Y; Shkedy, D; Galanty, Y; Frydman, M; Levi, J; Sanal, O; Chessa, L; Smeets, D; Shiloh, Y; Bar-Shira, A

    1998-01-01

    Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by neurodegeneration, immunodeficiency, cancer predisposition, and radiation sensitivity. The responsible gene, ATM, has an extensive genomic structure and encodes a large transcript with a 9.2 kb open reading frame (ORF). A-T mutations are extremely variable and most of them are private. We streamlined a high throughput protocol for the search for ATM mutations. The entire ATM ORF is amplified in a single RT-PCR step requiring a minimal amount of RNA. The product can serve for numerous nested PCRs in which overlapping portions of the ORF are further amplified and subjected to restriction endonuclease fingerprinting (REF) analysis. Splicing errors are readily detectable during the initial amplification of each portion. Using this protocol, we identified 5 novel A-T mutations and completed the elucidation of the molecular basis of A-T in the Israeli population.

  11. Molecular cloning and expression of the hyu genes from Microbacterium liquefaciens AJ 3912, responsible for the conversion of 5-substituted hydantoins to alpha-amino acids, in Escherichia coli.

    PubMed

    Suzuki, Shun'ichi; Takenaka, Yasuhiro; Onishi, Norimasa; Yokozeki, Kenzo

    2005-08-01

    A DNA fragment from Microbacterium liquefaciens AJ 3912, containing the genes responsible for the conversion of 5-substituted-hydantoins to alpha-amino acids, was cloned in Escherichia coli and sequenced. Seven open reading frames (hyuP, hyuA, hyuH, hyuC, ORF1, ORF2, and ORF3) were identified on the 7.5 kb fragment. The deduced amino acid sequence encoded by the hyuA gene included the N-terminal amino acid sequence of the hydantoin racemase from M. liquefaciens AJ 3912. The hyuA, hyuH, and hyuC genes were heterologously expressed in E. coli; their presence corresponded with the detection of hydantoin racemase, hydantoinase, and N-carbamoyl alpha-amino acid amido hydrolase enzymatic activities respectively. The deduced amino acid sequences of hyuP were similar to those of the allantoin (5-ureido-hydantoin) permease from Saccharomyces cerevisiae, suggesting that hyuP protein might function as a hydantoin transporter.

  12. Tula and Puumala hantavirus NSs ORFs are functional and the products inhibit activation of the interferon-beta promoter.

    PubMed

    Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander

    2007-10-01

    The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.

  13. Cloning and expression of delta-1-pyrroline-5-carboxylate dehydrogenase in Escherichia coli DH5α improves phosphate solubilization.

    PubMed

    Gong, Mingbo; Tang, Chaoxi; Zhu, Changxiong

    2014-11-01

    A primary cDNA library of Penicillium oxalicum I1 was constructed using the switching mechanism at the 5' end of the RNA transcript (SMART) technique. A total of 106 clones showed halos in tricalcium phosphate (TCP) medium, and clone I-40 showed clear halos. The full-length cDNA of clone I-40 was 1355 bp with a complete open reading frame (ORF) of 1032 bp, encoding a protein of 343 amino acids. Multiple alignment analysis revealed a high degree of homology between the ORF of clone I-40 and delta-1-pyrroline-5-carboxylate dehydrogenase (P5CDH) of other fungi. The ORF expression vector was constructed and transformed into Escherichia coli DH5α. The transformant (ORF-1) with the P5CDH gene secreted organic acid in medium with TCP as the sole source of phosphate. Acetic acid and α-ketoglutarate were secreted in 4 and 24 h, respectively. ORF-1 decreased the pH of the medium from 6.62 to 3.45 and released soluble phosphate at 0.172 mg·mL(-1) in 28 h. Expression of the P. oxalicum I1 p5cdh gene in E. coli could enhance organic acid secretion and phosphate-solubilizing ability.

  14. Reevaluation of the Coding Potential and Proteomic Analysis of the BAC Derived Rhesus Cytomegalovirus Strain 68-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malouli, Daniel; Nakayasu, Ernesto S.; Viswanathan, Kasinath

    2012-09-01

    Cytomegaloviruses are highly host restricted resulting in co-speciation with their hosts. As a natural pathogen of rhesus macaques (RM), Rhesus Cytomegalovirus (RhCMV) has therefore emerged as a highly relevant experimental model for pathogenesis and vaccine development due to its close evolutionary relationship to human CMV (HCMV). To date, most in vivo experiments performed with RhCMV employed strain 68-1 cloned as bacterial artificial chromosome (BAC). However, the complete genome sequence of the 68-1 BAC has not been determined. Furthermore, the gene content of the RhCMV genome is unknown and previous open reading frame (ORF) predictions relied solely on uninterrupted ORFs withmore » an arbitrary cutoff of 300bp. To obtain a more precise picture of the actual proteins encoded by the most commonly used molecular clone of RhCMV we re-evaluated the RhCMV 68-1 BAC-genome by whole genome shotgun sequencing and determined the protein content of the resulting RhCMV virions by proteomics. By additionally comparing the RhCMV genome to that of several closely related Old World Monkey (OWM) CMVs we were able to filter out many unlikely ORFs and obtain a simplified map of the RhCMV genome. This comparative genomics analysis eliminated many genes previously characterized as RhCMV-specific while consolidating a high conservation of ORFs among OWM-CMVs and between RhCMV and HCMV. Moreover, virion proteomics independently validated the revised ORF predictions since only proteins encoded by predicted ORFs could be detected. Taken together these data suggest a much higher conservation of genome and virion structure between CMVs of humans, apes and OWMs than previously assumed. Remarkably, BAC-derived RhCMV is able to establish and maintain persistent infection despite the lack of multiple genes homologous to HCMV genes involved in tissue tropism.« less

  15. Production of Candida antaractica Lipase B Gene Open Reading Frame using Automated PCR Gene Assembly Protocol on Robotic Workcell & Expression in Ethanologenic Yeast for use as Resin-Bound Biocatalyst in Biodiesel Production

    USDA-ARS?s Scientific Manuscript database

    A synthetic Candida antarctica lipase B (CALB) gene open reading frame (ORF) for expression in yeast was produced using an automated PCR assembly and DNA purification protocol on an integrated robotic workcell. The lycotoxin-1 (Lyt-1) C3 variant gene ORF was added in-frame with the CALB ORF to pote...

  16. Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development.

    PubMed

    Li, Wei-Dong; Huang, Min; Lü, Wen-Gang; Chen, Xiao; Shen, Ming-Hui; Li, Xiang-Min; Wang, Rong-Xia; Ke, Cai-Huan

    2015-01-01

    The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone.

  17. Involvement of Antizyme Characterized from the Small Abalone Haliotis diversicolor in Gonadal Development

    PubMed Central

    Lü, Wen-Gang; Chen, Xiao; Shen, Ming-Hui; Li, Xiang-Min; Wang, Rong-Xia; Ke, Cai-Huan

    2015-01-01

    The small abalone Haliotis diversicolor is an economically important mollusk that is widely cultivated in Southern China. Gonad precocity may affect the aquaculture of small abalone. Polyamines, which are small cationic molecules essential for cellular proliferation, may affect gonadal development. Ornithine decarboxylase (ODC) and antizyme (AZ) are essential elements of a feedback circuit that regulates cellular polyamines. This paper presents the molecular cloning and characterization of AZ from small abalone. Sequence analysis showed that the cDNA sequence of H. diversicolor AZ (HdiODCAZ) consisted of two overlapping open reading frames (ORFs) and conformed to the +1 frameshift property of the frame. Thin Layer chromatography (TLC) analysis suggested that the expressed protein encoded by +1 ORF2 was the functional AZ that targets ODC to 26S proteasome degradation. The result demonstrated that the expression level of AZ was higher than that of ODC in the ovary of small abalone. In addition, the expression profiles of ODC and AZ at the different development stages of the ovary indicated that these two genes might be involved in the gonadal development of small abalone. PMID:26313647

  18. Elements in the murine c-mos messenger RNA 5'-untranslated region repress translation of downstream coding sequences.

    PubMed

    Steel, L F; Telly, D L; Leonard, J; Rice, B A; Monks, B; Sawicki, J A

    1996-10-01

    Murine c-mos transcripts isolated from testes have 5'-untranslated regions (5'UTRs) of approximately 300 nucleotides with a series of four overlapping open reading frames (ORFs) upstream of the AUG codon that initiates the Mos ORF. Ovarian c-mos transcripts have shorter 5'UTRs (70-80 nucleotides) and contain only 1-2 of the upstream ORFs (uORFs). To test whether these 5'UTRs affect translational efficiency, we have constructed plasmids for the expression of chimeric transcripts with a mos-derived 5'UTR fused to the Escherichia coli beta-galactosidase coding region. Translational efficiency has been evaluated by measuring beta-galactosidase activity NIH3T3 cells transiently transfected with these plasmids and with plasmids where various mutations have been introduced into the 5'UTR. We show that the 5'UTR characteristic of testis-specific c-mos mRNA strongly represses translation relative to the translation of transcripts that contain a 5'UTR derived from beta-globin mRNA, and this is mainly due to the four uORFs. Each of the four upstream AUG triplets can be recognized as a start site for translation, and no single uAUG dominates the repressive effect. The uORFs repress translation by a mechanism that is not affected by the amino acid sequence in the COOH-terminal region of the uORF-encoded peptides. The very short uORF (AUGUGA) present in ovary-specific transcripts does not repress translation. Staining of testis sections from transgenic mice carrying chimeric beta-galactosidase transgene constructs, which contain a mos 5'UTR with or without the uATGs, suggests that the uORFs can dramatically change the pattern of expression in spermatogenic cells.

  19. Sequence analysis of ORF IV RTBV isolated from tungro infected Oryza sativa L. cv Ciherang

    NASA Astrophysics Data System (ADS)

    Hastilestari, Bernadetta Rina; Astuti, Dwi; Estiati, Amy; Nugroho, Satya

    2015-09-01

    The Effort to increase rice production is often constrained by pest and disease such as Tungro. The Tungro disease is caused by the joint infection with two dissimilar viruses; a bacil-form-DNA virus, the Rice tungro bacilliform virus(RTBV) and the spherical RNA virus, Rice tungro spherical virus (RTSV) and transmitted by Green leafhopper (Nephotettix virescens). The symptom of disease is caused by the presence of RTBV. The genome of RTBV consists of four Open reading frames (ORFs) which encode functional proteins. Of the four, ORF IV is unique because it exists only in RTBV. The most efficient method of generating disease resistance plants is to look for natural sources of resistance genes in wild or germplasm and then transfer the gene and the accompanying resistance in cultivated crop varieties. The aim of this study is, therefore, to isolate and analyze of 1170 bp gene of ORF 4 of Tungro virus isolated from an Indonesian rice cultivar, Ciherang (Oryza sativa L. cv Indica). DNA sequencing analysis using BLAST showed 94% similarity with the reference sequence gen bank Acc.M65026.1. The comparisons and mutation analysis of DNA sequences were discussed in this research.

  20. Genomic sequence of Heliothis virescens ascovirus 3g isolated from Spodoptera exigua.

    PubMed

    Huang, Guo-Hua; Wang, Yun-Sheng; Wang, Xing; Garretson, Tyler A; Dai, Liang-Ying; Zhang, Chuan-Xi; Cheng, Xiao-Wen

    2012-11-01

    Heliothis virescens ascovirus 3a (HvAV-3a), a member of the family Ascoviridae, has the highest diversity among ascovirus species that have been reported in Australia, Indonesia, China, and the United States. To understand the diversity and origin of this important ascovirus, the complete genome of the HvAV Indonesia strain (HvAV-3g), isolated from Spodoptera exigua, was determined to be 199,721 bp, with a G+C content of 45.9%. Therefore, HvAV-3g has the largest genome among the reported ascovirus genomes to date. There are 194 predicted open reading frames (ORFs) encoding proteins of 50 or more amino acid residues. In comparison to HvAV-3e reported from Australia, HvAV-3g has all the ORFs in HvAV-3e with 6 additional ORFs unique to HvAV-3g, including 1 peptidase C26 gene with the highest identity to Drosophila spp. and 2 gas vesicle protein U (GvpU) genes with identities to Bacillus megaterium. The five unique homologous regions (hrs) and 25 baculovirus repeat ORFs (bro) of HvAV-3g are highly variable.

  1. Identification and characterization of mobile genetic elements LINEs from Brassica genome.

    PubMed

    Nouroz, Faisal; Noreen, Shumaila; Khan, Muhammad Fiaz; Ahmed, Shehzad; Heslop-Harrison, J S Pat

    2017-09-05

    Among transposable elements (TEs), the LTR retrotransposons are abundant followed by non-LTR retrotransposons in plant genomes, the lateral being represented by LINEs and SINEs. Computational and molecular approaches were used for the characterization of Brassica LINEs, their diversity and phylogenetic relationships. Four autonomous and four non-autonomous LINE families were identified and characterized from Brassica. Most of the autonomous LINEs displayed two open reading frames, ORF1 and ORF2, where ORF1 is a gag protein domain, while ORF2 encodes endonuclease (EN) and a reverse transcriptase (RT). Three of four families encoded an additional RNase H (RH) domain in pol gene common to 'R' and 'I' type of LINEs. The PCR analyses based on LINEs RT fragments indicate their high diversity and widespread occurrence in tested 40 Brassica cultivars. Database searches revealed the homology in LINE sequences in closely related genera Arabidopsis indicating their origin from common ancestors predating their separation. The alignment of 58 LINEs RT sequences from Brassica, Arabidopsis and other plants depicted 4 conserved domains (domain II-V) showing similarity to previously detected domains. Based on RT alignment of Brassica and 3 known LINEs from monocots, Brassicaceae LINEs clustered in separate clade, further resolving 4 Brassica-Arabidopsis specific families in 2 sub-clades. High similarities were observed in RT sequences in the members of same family, while low homology was detected in members across the families. The investigation led to the characterization of Brassica specific LINE families and their diversity across Brassica species and their cultivars. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cloning and Characterization of the Pyrrolomycin Biosynthetic Gene Clusters from Actinosporangium vitaminophilum ATCC 31673 and Streptomyces sp. Strain UC 11065▿

    PubMed Central

    Zhang, Xiujun; Parry, Ronald J.

    2007-01-01

    The pyrrolomycins are a family of polyketide antibiotics, some of which contain a nitro group. To gain insight into the nitration mechanism associated with the formation of these antibiotics, the pyrrolomycin biosynthetic gene cluster from Actinosporangium vitaminophilum was cloned. Sequencing of ca. 56 kb of A. vitaminophilum DNA revealed 35 open reading frames (ORFs). Sequence analysis revealed a clear relationship between some of these ORFs and the biosynthetic gene cluster for pyoluteorin, a structurally related antibiotic. Since a gene transfer system could not be devised for A. vitaminophilum, additional proof for the identity of the cloned gene cluster was sought by cloning the pyrrolomycin gene cluster from Streptomyces sp. strain UC 11065, a transformable pyrrolomycin producer. Sequencing of ca. 26 kb of UC 11065 DNA revealed the presence of 17 ORFs, 15 of which exhibit strong similarity to ORFs in the A. vitaminophilum cluster as well as a nearly identical organization. Single-crossover disruption of two genes in the UC 11065 cluster abolished pyrrolomycin production in both cases. These results confirm that the genetic locus cloned from UC 11065 is essential for pyrrolomycin production, and they also confirm that the highly similar locus in A. vitaminophilum encodes pyrrolomycin biosynthetic genes. Sequence analysis revealed that both clusters contain genes encoding the two components of an assimilatory nitrate reductase. This finding suggests that nitrite is required for the formation of the nitrated pyrrolomycins. However, sequence analysis did not provide additional insights into the nitration process, suggesting the operation of a novel nitration mechanism. PMID:17158935

  3. Identification and characterization of Kaposi's sarcoma-associated herpesvirus open reading frame 11 promotor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lei

    2008-01-01

    Open reading frame 11 (ORF11) of Kaposi's sarcoma-associated herpesvirus belongs to a herpesviral homologous protein family shared by some members of the gamma- herpesvirus subfamily. Little is known about this ORF11 homologous protein family. We have characterized an unknown open reading frame, ORF11, located adjacent and in the opposite orientation to a well-characterized viral IL-6 gene. Northern blot analysis reveals that ORF11 is expressed during the KSHV lytic cycle with delayed-early transcription kinetics. We have determined the 5{prime} and 3{prime} untranslated region of the unspliced ORF11 transcript and identified both the transcription start site and the transcription termination site. Coremore » promoter region, representing ORF11 promoter activity, was mapped to a 159nt fragment 5{prime} most proximal to the transcription start site. A functional TATA box was identified in the core promoter region. Interestingly, we found that ORF11 transcriptional activation is not responsive to Rta, the KSHV lytic switch protein. We also discovered that part of the ORF11 promoter region, the 209nt fragment upstream of the transcription start site, was repressed by phorbol esters. Our data help to understand transcription regulation of ORF11 and to elucidate roles of ORF11 in KSHV pathogenesis and life cycle.« less

  4. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells

    PubMed Central

    Nakagawa, K.; Lokugamage, K.G.; Makino, S.

    2017-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623

  5. An experimental and computational evolution-based method to study a mode of co-evolution of overlapping open reading frames in the AAV2 viral genome.

    PubMed

    Kawano, Yasuhiro; Neeley, Shane; Adachi, Kei; Nakai, Hiroyuki

    2013-01-01

    Overlapping open reading frames (ORFs) in viral genomes undergo co-evolution; however, how individual amino acids coded by overlapping ORFs are structurally, functionally, and co-evolutionarily constrained remains difficult to address by conventional homologous sequence alignment approaches. We report here a new experimental and computational evolution-based methodology to address this question and report its preliminary application to elucidating a mode of co-evolution of the frame-shifted overlapping ORFs in the adeno-associated virus (AAV) serotype 2 viral genome. These ORFs encode both capsid VP protein and non-structural assembly-activating protein (AAP). To show proof of principle of the new method, we focused on the evolutionarily conserved QVKEVTQ and KSKRSRR motifs, a pair of overlapping heptapeptides in VP and AAP, respectively. In the new method, we first identified a large number of capsid-forming VP3 mutants and functionally competent AAP mutants of these motifs from mutant libraries by experimental directed evolution under no co-evolutionary constraints. We used Illumina sequencing to obtain a large dataset and then statistically assessed the viability of VP and AAP heptapeptide mutants. The obtained heptapeptide information was then integrated into an evolutionary algorithm, with which VP and AAP were co-evolved from random or native nucleotide sequences in silico. As a result, we demonstrate that these two heptapeptide motifs could exhibit high degeneracy if coded by separate nucleotide sequences, and elucidate how overlap-evoked co-evolutionary constraints play a role in making the VP and AAP heptapeptide sequences into the present shape. Specifically, we demonstrate that two valine (V) residues and β-strand propensity in QVKEVTQ are structurally important, the strongly negative and hydrophilic nature of KSKRSRR is functionally important, and overlap-evoked co-evolution imposes strong constraints on serine (S) residues in KSKRSRR, despite high degeneracy of the motifs in the absence of co-evolutionary constraints.

  6. Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster.

    PubMed

    Gustafsson, Robert; Berntsson, Ronnie P-A; Martínez-Carranza, Markel; El Tekle, Geniver; Odegrip, Richard; Johnson, Eric A; Stenmark, Pål

    2017-11-01

    Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 Å, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids. © 2017 Federation of European Biochemical Societies.

  7. Complete Genome Sequence of Zucchini Yellow Mosaic Virus Strain Kurdistan, Iran.

    PubMed

    Maghamnia, Hamid Reza; Hajizadeh, Mohammad; Azizi, Abdolbaset

    2018-03-01

    The complete genome sequence of Zucchini yellow mosaic virus strain Kurdistan (ZYMV-Kurdistan) infecting squash from Iran was determined from 13 overlapping fragments. Excluding the poly (A) tail, ZYMV-Kurdistan genome consisted of 9593 nucleotides (nt), with 138 and 211 nt at the 5' and 3' non-translated regions, respectively. It contained two open-reading frames (ORFs), the large ORF encoding a polyprotein of 3080 amino acids (aa) and the small overlapping ORF encoding a P3N-PIPO protein of 74 aa. This isolate had six unique aa differences compared to other ZYMV isolates and shared 79.6-98.8% identities with other ZYMV genome sequences at the nt level and 90.1-99% identities at the aa level. A phylogenetic tree of ZYMV complete genomic sequences showed that Iranian and Central European isolates are closely related and form a phylogenetically homogenous group. All values in the ratio of substitution rates at non-synonymous and synonymous sites ( d N / d S ) were below 1, suggestive of strong negative selection forces during ZYMV protein history. This is the first report of complete genome sequence information of the most prevalent virus in the west of Iran. This study helps our understanding of the genetic diversity of ZYMV isolates infecting cucurbit plants in Iran, virus evolution and epidemiology and can assist in designing better diagnostic tools.

  8. Novel rod-shaped viruses isolated from garlic, Allium sativum, possessing a unique genome organization.

    PubMed

    Sumi, S; Tsuneyoshi, T; Furutani, H

    1993-09-01

    Rod-shaped flexuous viruses were partially purified from garlic plants (Allium sativum) showing typical mosaic symptoms. The genome was shown to be composed of RNA with a poly(A) tail of an estimated size of 10 kb as shown by denaturing agarose gel electrophoresis. We constructed cDNA libraries and screened four independent clones, which were designated GV-A, GV-B, GV-C and GV-D, using Northern and Southern blot hybridization. Nucleotide sequence determination of the cDNAs, two of which correspond to nearly one-third of the virus genomic RNA, shows that all of these viruses possess an identical genomic structure and that also at least four proteins are encoded in the viral cDNA, their M(r)s being estimated to be 15K, 27K, 40K and 11K. The 15K open reading frame (ORF) encodes the core-like sequence of a zinc finger protein preceded by a cluster of basic amino acid residues. The 27K ORF probably encodes the viral coat protein (CP), based on both the existence of some conserved sequences observed in many other rod-shaped or flexuous virus CPs and an overall amino acid sequence similarity to potexvirus and carlavirus CPs. The 11K ORF shows significant amino acid sequence similarities to the corresponding 12K proteins of the potexviruses and carlaviruses. On the other hand, the 40K ORF product does not resemble any other plant virus gene products reported so far. The genomic organization in the 3' region of the garlic viruses resembles, but clearly differs from, that of carlaviruses. Phylogenetic analysis based upon the amino acid sequence of the viral capsid protein also indicates that the garlic viruses have a unique and distinct domain different from those of the potexvirus and carlavirus groups. The results suggest that the garlic viruses described here belong to an unclassified and new virus group closely related to the carlaviruses.

  9. Caldicellulosiruptor Core and Pangenomes Reveal Determinants for Noncellulosomal Thermophilic Deconstruction of Plant Biomass

    PubMed Central

    Blumer-Schuette, Sara E.; Giannone, Richard J.; Zurawski, Jeffrey V.; Ozdemir, Inci; Ma, Qin; Yin, Yanbin; Xu, Ying; Kataeva, Irina; Poole, Farris L.; Adams, Michael W. W.; Hamilton-Brehm, Scott D.; Elkins, James G.; Larimer, Frank W.; Land, Miriam L.; Hauser, Loren J.; Cottingham, Robert W.; Hettich, Robert L.

    2012-01-01

    Extremely thermophilic bacteria of the genus Caldicellulosiruptor utilize carbohydrate components of plant cell walls, including cellulose and hemicellulose, facilitated by a diverse set of glycoside hydrolases (GHs). From a biofuel perspective, this capability is crucial for deconstruction of plant biomass into fermentable sugars. While all species from the genus grow on xylan and acid-pretreated switchgrass, growth on crystalline cellulose is variable. The basis for this variability was examined using microbiological, genomic, and proteomic analyses of eight globally diverse Caldicellulosiruptor species. The open Caldicellulosiruptor pangenome (4,009 open reading frames [ORFs]) encodes 106 GHs, representing 43 GH families, but only 26 GHs from 17 families are included in the core (noncellulosic) genome (1,543 ORFs). Differentiating the strongly cellulolytic Caldicellulosiruptor species from the others is a specific genomic locus that encodes multidomain cellulases from GH families 9 and 48, which are associated with cellulose-binding modules. This locus also encodes a novel adhesin associated with type IV pili, which was identified in the exoproteome bound to crystalline cellulose. Taking into account the core genomes, pangenomes, and individual genomes, the ancestral Caldicellulosiruptor was likely cellulolytic and evolved, in some cases, into species that lost the ability to degrade crystalline cellulose while maintaining the capacity to hydrolyze amorphous cellulose and hemicellulose. PMID:22636774

  10. Mitochondrial Intronic Open Reading Frames in Podospora: Mobility and Consecutive Exonic Sequence Variations

    PubMed Central

    Sellem, C. H.; d'Aubenton-Carafa, Y.; Rossignol, M.; Belcour, L.

    1996-01-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. PMID:8725226

  11. Mitochondrial intronic open reading frames in Podospora: mobility and consecutive exonic sequence variations.

    PubMed

    Sellem, C H; d'Aubenton-Carafa, Y; Rossignol, M; Belcour, L

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optional sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences. In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group 1 intronic ORFs are mobile elements and that their transfer, and concomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes.

  12. Physical Mapping of bchG, orf427, and orf177 in the Photosynthesis Gene Cluster of Rhodobacter sphaeroides: Functional Assignment of the Bacteriochlorophyll Synthetase Gene

    PubMed Central

    Addlesee, Hugh A.; Fiedor, Leszek; Hunter, C. Neil

    2000-01-01

    The purple photosynthetic bacterium Rhodobacter sphaeroides has within its genome a cluster of photosynthesis-related genes approximately 41 kb in length. In an attempt to identify genes involved in the terminal esterification stage of bacteriochlorophyll biosynthesis, a previously uncharacterized 5-kb region of this cluster was sequenced. Four open reading frames (ORFs) were identified, and each was analyzed by transposon mutagenesis. The product of one of these ORFs, bchG, shows close homologies with (bacterio)chlorophyll synthetases, and mutants in this gene were found to accumulate bacteriopheophorbide, the metal-free derivative of the bacteriochlorophyll precursor bacteriochlorophyllide, suggesting that bchG is responsible for the esterification of bacteriochlorophyllide with an alcohol moiety. This assignment of function to bchG was verified by the performance of assays demonstrating the ability of BchG protein, heterologously synthesized in Escherichia coli, to esterify bacteriochlorophyllide with geranylgeranyl pyrophosphate in vitro, thereby generating bacteriochlorophyll. This step is pivotal to the assembly of a functional photosystem in R. sphaeroides, a model organism for the study of structure-function relationships in photosynthesis. A second gene, orf177, is a member of a large family of isopentenyl diphosphate isomerases, while sequence homologies suggest that a third gene, orf427, may encode an assembly factor for photosynthetic complexes. The function of the remaining ORF, bchP, is the subject of a separate paper (H. Addlesee and C. N. Hunter, J. Bacteriol. 181:7248–7255, 1999). An operonal arrangement of the genes is proposed. PMID:10809697

  13. C11orf95-MKL2 is the Resulting Fusion Oncogene of t(11;16)(q13;p13) in Chondroid Lipoma

    PubMed Central

    Huang, Dali; Sumegi, Janos; Cin, Paola Dal; Reith, John D.; Yasuda, Taketoshi; Nelson, Marilu; Muirhead, David; Bridge, Julia A.

    2010-01-01

    Chondroid lipoma, a rare benign adipose tissue tumor, may histologically resemble myxoid liposarcoma or extraskeletal myxoid chondrosarcoma, but is genetically distinct. In the current study, an identical reciprocal translocation, t(11;16)(q13;p13) was identified in three chondroid lipomas, a finding consistent with previous isolated reports. A fluorescence in situ hybridization (FISH)-based positional cloning strategy using a series of bacterial artificial chromosome (BAC) probe combinations designed to narrow the 16p13 breakpoint revealed MKL2 as the candidate gene. Subsequent 5′ RACE studies demonstrated C11orf95 as the MKL2 fusion gene partner. MKL/myocardin-like 2 (MKL2) encodes myocardin-related transcription factor B (MRTF-B) in a megakaryoblastic leukemia gene family, and C11orf95 (chromosome 11 open reading frame 95) is a hypothetical protein. Sequencing analysis of RT-PCR generated transcripts from all three chondroid lipomas defined the fusion as occurring between exons 5 and 9 of C11orf95 and MKL2, respectively. Dual-color breakpoint spanning probe sets custom-designed for recognition of the translocation event in interphase cells confirmed the anticipated rearrangements of the C11orf95 and MKL2 loci in all cases. The FISH and RT-PCR assays developed in this study can serve as diagnostic adjuncts for identification of this novel C11orf95-MKL2 fusion oncogene in chondroid lipoma. PMID:20607705

  14. Essential and Dispensable Virus-Encoded Replication Elements Revealed by Efforts To Develop Hypoviruses as Gene Expression Vectors

    PubMed Central

    Suzuki, Nobuhiro; Geletka, Lynn M.; Nuss, Donald L.

    2000-01-01

    We have investigated whether hypoviruses, viral agents responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica, could serve as gene expression vectors. The infectious cDNA clone of the prototypic hypovirus CHV1-EP713 was modified to generate 20 different vector candidates. Although transient expression was achieved for a subset of vectors that contained the green fluorescent protein gene from Aequorea victoria, long-term expression (past day 8) was not observed for any vector construct. Analysis of viral RNAs recovered from transfected fungal colonies revealed that the foreign genes were readily deleted from the replicating virus, although small portions of foreign sequences were retained by some vectors after months of replication. However, the results of vector viability and progeny characterization provided unexpected new insights into essential and dispensable elements of hypovirus replication. The N-terminal portion (codons 1 to 24) of the 5′-proximal open reading frame (ORF), ORF A, was found to be required for virus replication, while the remaining 598 codons of this ORF were completely dispensable. Substantial alterations were tolerated in the pentanucleotide UAAUG that contains the ORF A termination codon and the overlapping putative initiation codon of the second of the two hypovirus ORFs, ORF B. Replication competence was maintained following either a frameshift mutation that caused a two-codon extension of ORF A or a modification that produced a single-ORF genomic organization. These results are discussed in terms of determinants of hypovirus replication, the potential utility of hypoviruses as gene expression vectors, and possible mechanisms by which hypoviruses recognize and delete foreign sequences. PMID:10906211

  15. Deep Sequencing Reveals the Complete Genome and Evidence for Transcriptional Activity of the First Virus-Like Sequences Identified in Aristotelia chilensis (Maqui Berry)

    PubMed Central

    Villacreses, Javier; Rojas-Herrera, Marcelo; Sánchez, Carolina; Hewstone, Nicole; Undurraga, Soledad F.; Alzate, Juan F.; Manque, Patricio; Maracaja-Coutinho, Vinicius; Polanco, Victor

    2015-01-01

    Here, we report the genome sequence and evidence for transcriptional activity of a virus-like element in the native Chilean berry tree Aristotelia chilensis. We propose to name the endogenous sequence as Aristotelia chilensis Virus 1 (AcV1). High-throughput sequencing of the genome of this tree uncovered an endogenous viral element, with a size of 7122 bp, corresponding to the complete genome of AcV1. Its sequence contains three open reading frames (ORFs): ORFs 1 and 2 shares 66%–73% amino acid similarity with members of the Caulimoviridae virus family, especially the Petunia vein clearing virus (PVCV), Petuvirus genus. ORF1 encodes a movement protein (MP); ORF2 a Reverse Transcriptase (RT) and a Ribonuclease H (RNase H) domain; and ORF3 showed no amino acid sequence similarity with any other known virus proteins. Analogous to other known endogenous pararetrovirus sequences (EPRVs), AcV1 is integrated in the genome of Maqui Berry and showed low viral transcriptional activity, which was detected by deep sequencing technology (DNA and RNA-seq). Phylogenetic analysis of AcV1 and other pararetroviruses revealed a closer resemblance with Petuvirus. Overall, our data suggests that AcV1 could be a new member of Caulimoviridae family, genus Petuvirus, and the first evidence of this kind of virus in a fruit plant. PMID:25855242

  16. Type II thioesterase gene (ECO-orf27) from Amycolatopsis orientalis influences production of the polyketide antibiotic, ECO-0501 (LW01).

    PubMed

    Shen, Yang; Huang, He; Zhu, Li; Luo, Minyu; Chen, Daijie

    2012-11-01

    ECO-orf27 associated with the cluster of ECO-0501 (LW01) from Amycolatopsis orientalis is deduced to encode a type II thioesterase. Disruption of ECO-orf27 reduced LW01 production by 95 %. Complementation of the disrupted mutant with intact ECO-orf27 restored the production of LW01 suggesting that ECO-orf27 is crucial for LW01 biosynthesis. ECO-TE I, the gene encoding type I thioesterase from LW01 polyketide synthases, cannot complement ECO-orf27 deficient mutant distinguishing ECO-orf27 from type I thioesterase gene. Type II thioesterase gene pikAV from Streptomyces venezuelae could complement ECO-orf27 in A. orientalis indicating that the two genes are equivalent in their function. Overexpression of ECO-orf27 resulted in a 20 % increase in LW01 production providing an alternative approach for yield improvement.

  17. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3.

    PubMed

    Vancsok, Catherine; Peñaranda, M Michelle D; Raj, V Stalin; Leroy, Baptiste; Jazowiecka-Rakus, Joanna; Boutier, Maxime; Gao, Yuan; Wilkie, Gavin S; Suárez, Nicolás M; Wattiez, Ruddy; Gillet, Laurent; Davison, Andrew J; Vanderplasschen, Alain F C

    2017-11-01

    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro , and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro ; (iii) seven of the nonessential proteins affect viral growth in vitro , and two affect virulence in vivo ; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins. Copyright © 2017 Vancsok et al.

  18. Molecular cloning and sequence analysis of the Anticarsia gemmatalis multicapsid nuclear polyhedrosis virus GP64 glycoprotein.

    PubMed

    Pilloff, Marcela Gabriela; Bilen, Marcos Fabián; Belaich, Mariano Nicolás; Lozano, Mario Enrique; Ghiringhelli, Pablo Daniel

    2003-01-01

    The gp64 locus of Anticarsia gemmatalis multicapsid nucleopolyhedrovirus isolate Santa Fe (AgMNPV-SF) was characterised molecularly in our laboratory. To this end, we have located and cloned a AgMNPV-SF genomic DNA fragment containing the gp64 gene and sequenced the complete gp64 locus. Nucleotide sequence analysis indicated that the AgMNPV gp64 gene consists of a 1500 nucleotide open reading frame (ORF), encoding a protein of 499 amino acids. Of the seven gp64 homologues identified to date, the AgMNPV gp64 ORF shared most sequence similarity with the gp64 gene of Orgyia pseudotsugata MNPV. The GP64 from AgMNPV is the smallest baculoviral envelope glycoprotein found to date, differing in 10 or more residues from the other group I nucleopolyhedroviruses. The biological activity of AgMNPV GP64 protein was assessed by cell fusion assays in UFL-AG-286 cells using the obtained recombinant plasmids. In the upstream and downstream regions, relative to the gp64 ORF, we found different conserved transcriptional and post-transcriptional regulatory elements, respectively.

  19. Analysis of the gene cluster encoding toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoni, G.; Martino, M.; Galli, E.

    The toluene/o-xylene monooxygenase cloned from Pseudomonas stutzeri OX1 displays a very broad range of substrates and a very peculiar regioselectivity, because it is able to hydroxylate more than one position on the aromatic ring of several hydrocarbons and phenols. The nucleotide sequence of the gene cluster coding for this enzymatic system has been determined. The sequence analysis revealed the presence of six open reading frames (ORFs) homologous to other genes clustered in operons coding for multicomponent monooxygenases found in benzene- and toluene-degradative pathways cloned from Pseudomonas strains. Significant similarities were also found with multicomponent monooxygenase systems for phenol, methane, alkene,more » and dimethyl sulfide cloned from different bacterial strains. The knockout of each ORF and complementation with the wild-type allele indicated that all six ORFs are essential for the full activity of the toluene/o-xylene monooxygenase in Escherichia coli. This analysis also shows that despite its activity on both hydrocarbons and phenols, toluene/o-xylene monooxygenase belongs to a toluene multicomponent monooxygenase subfamily rather than to the monooxygenases active on phenols.« less

  20. Coverage of whole proteome by structural genomics observed through protein homology modeling database

    PubMed Central

    Yamaguchi, Akihiro; Go, Mitiko

    2006-01-01

    We have been developing FAMSBASE, a protein homology-modeling database of whole ORFs predicted from genome sequences. The latest update of FAMSBASE (http://daisy.nagahama-i-bio.ac.jp/Famsbase/), which is based on the protein three-dimensional (3D) structures released by November 2003, contains modeled 3D structures for 368,724 open reading frames (ORFs) derived from genomes of 276 species, namely 17 archaebacterial, 130 eubacterial, 18 eukaryotic and 111 phage genomes. Those 276 genomes are predicted to have 734,193 ORFs in total and the current FAMSBASE contains protein 3D structure of approximately 50% of the ORF products. However, cases that a modeled 3D structure covers the whole part of an ORF product are rare. When portion of an ORF with 3D structure is compared in three kingdoms of life, in archaebacteria and eubacteria, approximately 60% of the ORFs have modeled 3D structures covering almost the entire amino acid sequences, however, the percentage falls to about 30% in eukaryotes. When annual differences in the number of ORFs with modeled 3D structure are calculated, the fraction of modeled 3D structures of soluble protein for archaebacteria is increased by 5%, and that for eubacteria by 7% in the last 3 years. Assuming that this rate would be maintained and that determination of 3D structures for predicted disordered regions is unattainable, whole soluble protein model structures of prokaryotes without the putative disordered regions will be in hand within 15 years. For eukaryotic proteins, they will be in hand within 25 years. The 3D structures we will have at those times are not the 3D structure of the entire proteins encoded in single ORFs, but the 3D structures of separate structural domains. Measuring or predicting spatial arrangements of structural domains in an ORF will then be a coming issue of structural genomics. PMID:17146617

  1. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs.

    PubMed

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-19

    Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene prediction. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes.

  2. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    PubMed Central

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-01

    Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes. PMID:16423288

  3. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  4. A novel strategy for the identification of antigens that are recognised by bovine MHC class I restricted cytotoxic T cells in a protozoan infection using reverse vaccinology.

    PubMed

    Graham, Simon P; Honda, Yoshikazu; Pellé, Roger; Mwangi, Duncan M; Glew, E Jane; de Villiers, Etienne P; Shah, Trushar; Bishop, Richard; van der Bruggen, Pierre; Nene, Vishvanath; Taracha, Evans L N

    2007-02-09

    Immunity against the bovine protozoan parasite Theileria parva has previously been shown to be mediated through lysis of parasite-infected cells by MHC class I restricted CD8+ cytotoxic T lymphocytes. It is hypothesized that identification of CTL target schizont antigens will aid the development of a sub-unit vaccine. We exploited the availability of the complete genome sequence data and bioinformatics tools to identify genes encoding secreted or membrane anchored proteins that may be processed and presented by the MHC class I molecules of infected cells to CTL. Of the 986 predicted open reading frames (ORFs) encoded by chromosome 1 of the T. parva genome, 55 were selected based on the presence of a signal peptide and/or a transmembrane helix domain. Thirty six selected ORFs were successfully cloned into a eukaryotic expression vector, transiently transfected into immortalized bovine skin fibroblasts and screened in vitro using T. parva-specific CTL. Recognition of gene products by CTL was assessed using an IFN-gamma ELISpot assay. A 525 base pair ORF encoding a 174 amino acid protein, designated Tp2, was identified by T. parva-specific CTL from 4 animals. These CTL recognized and lysed Tp2 transfected skin fibroblasts and recognized 4 distinct epitopes. Significantly, Tp2 specific CD8+ T cell responses were observed during the protective immune response against sporozoite challenge. The identification of an antigen containing multiple CTL epitopes and its apparent immunodominance during a protective anti-parasite response makes Tp2 an attractive candidate for evaluation of its vaccine potential.

  5. Molecular cloning and heterologous expression of a biosynthetic gene cluster for the antitubercular agent D-cycloserine produced by Streptomyces lavendulae.

    PubMed

    Kumagai, Takanori; Koyama, Yusuke; Oda, Kosuke; Noda, Masafumi; Matoba, Yasuyuki; Sugiyama, Masanori

    2010-03-01

    In the present study, we successfully cloned a 21-kb DNA fragment containing a d-cycloserine (DCS) biosynthetic gene cluster from a DCS-producing Streptomyces lavendulae strain, ATCC 11924. The putative gene cluster consists of 10 open reading frames (ORFs), designated dcsA to dcsJ. This cluster includes two ORFs encoding D-alanyl-D-alanine ligase (dcsI) and a putative membrane protein (dcsJ) as the self-resistance determinants of the producer organism, indicated by our previous work. When the 10 ORFs were introduced into DCS-nonproducing Streptomyces lividans 66 as a heterologous host cell, the transformant acquired DCS productivity. This reveals that the introduced genes are responsible for the biosynthesis of DCS. As anticipated, the disruption of dcsG, seen in the DCS biosynthetic gene cluster, made it possible for the strain ATCC 11924 to lose its DCS production. We here propose the DCS biosynthetic pathway. First, L-serine is O acetylated by a dcsE-encoded enzyme homologous to homoserine O-acetyltransferase. Second, O-acetyl-L-serine accepts hydroxyurea via an O-acetylserine sulfhydrylase homolog (dcsD product) and forms O-ureido-L-serine. The hydroxyurea must be supplied by the catalysis of a dcsB-encoded arginase homolog using the L-arginine derivative, N(G)-hydroxy-L-arginine. The resulting O-ureido-L-serine is then racemized to O-ureido-D-serine by a homolog of diaminopimelate epimerase. Finally, O-ureido-D-serine is cyclized to form DCS with the release of ammonia and carbon dioxide. The cyclization must be done by the dcsG or dcsH product, which belongs to the ATP-grasp fold family of protein.

  6. Structure and expression strategy of the genome of Culex pipiens densovirus, a mosquito densovirus with an ambisense organization.

    PubMed

    Baquerizo-Audiot, Elizabeth; Abd-Alla, Adly; Jousset, Françoise-Xavière; Cousserans, François; Tijssen, Peter; Bergoin, Max

    2009-07-01

    The genome of all densoviruses (DNVs) so far isolated from mosquitoes or mosquito cell lines consists of a 4-kb single-stranded DNA molecule with a monosense organization (genus Brevidensovirus, subfamily Densovirinae). We previously reported the isolation of a Culex pipiens DNV (CpDNV) that differs significantly from brevidensoviruses by (i) having a approximately 6-kb genome, (ii) lacking sequence homology, and (iii) lacking antigenic cross-reactivity with Brevidensovirus capsid polypeptides. We report here the sequence organization and transcription map of this virus. The cloned genome of CpDNV is 5,759 nucleotides (nt) long, and it possesses an inverted terminal repeat (ITR) of 285 nt and an ambisense organization of its genes. The nonstructural (NS) proteins NS-1, NS-2, and NS-3 are located in the 5' half of one strand and are organized into five open reading frames (ORFs) due to the split of both NS-1 and NS-2 into two ORFs. The ORF encoding capsid polypeptides is located in the 5' half of the complementary strand. The expression of NS proteins is controlled by two promoters, P7 and P17, driving the transcription of a 2.4-kb mRNA encoding NS-3 and of a 1.8-kb mRNA encoding NS-1 and NS-2, respectively. The two NS mRNAs species are spliced off a 53-nt sequence. Capsid proteins are translated from an unspliced 2.3-kb mRNA driven by the P88 promoter. CpDNV thus appears as a new type of mosquito DNV, and based on the overall organization and expression modalities of its genome, it may represent the prototype of a new genus of DNV.

  7. Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)

    USGS Publications Warehouse

    Nishizawa, T.; Kurath, G.; Winton, J.R.

    1997-01-01

    We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.

  8. Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea.

    PubMed Central

    Brown, D P; Idler, K B; Katz, L

    1990-01-01

    The 18.1-kilobase plasmid pSE211 integrates into the chromosome of Saccharopolyspora erythraea at a specific attB site. Restriction analysis of the integrated plasmid, pSE211int, and adjacent chromosomal sequences allowed identification of attP, the plasmid attachment site. Nucleotide sequencing of attP, attB, attL, and attR revealed a 57-base-pair sequence common to all sites with no duplications of adjacent plasmid or chromosomal sequences in the integrated state, indicating that integration takes place through conservative, reciprocal strand exchange. An analysis of the sequences indicated the presence of a putative gene for Phe-tRNA at attB which is preserved at attL after integration has occurred. A comparison of the attB site for a number of actinomycete plasmids is presented. Integration at attB was also observed when a 2.4-kilobase segment of pSE211 containing attP and the adjacent plasmid sequence was used to transform a pSE211- host. Nucleotide sequencing of this segment revealed the presence of two complete open reading frames (ORFs) and a segment of a third ORF. The ORF adjacent to attP encodes a putative polypeptide 437 amino acids in length that shows similarity, at its C-terminal domain, to sequences of site-specific recombinases of the integrase family. The adjacent ORF encodes a putative 98-amino-acid basic polypeptide that contains a helix-turn-helix motif at its N terminus which corresponds to domains in the Xis proteins of a number of bacteriophages. A proposal for the function of this polypeptide is presented. The deduced amino acid sequence of the third ORF did not reveal similarities to polypeptide sequences in the current data banks. Images FIG. 2 FIG. 3 PMID:2180909

  9. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic.

    PubMed

    Wang, Yongjie; Jehle, Johannes A

    2009-07-01

    Nudiviruses (NVs) are a highly diverse group of large, circular dsDNA viruses pathogenic for invertebrates. They have rod-shaped and enveloped nucleocapsids, replicate in the nucleus of infected host cells, and possess interesting biological and molecular properties. The unassigned viral genus Nudivirus has been proposed for classification of nudiviruses. Currently, the nudiviruses comprise five different viruses: the palm rhinoceros beetle virus (Oryctes rhinoceros NV, OrNV), the Hz-1 virus (Heliothis zea NV-1, HzNV-1), the cricket virus (Gryllus bimaculatus NV, GbNV), the corn earworm moth Hz-2 virus (HzNV-2), and the occluded shrimp Monodon Baculovirus reassigned as Penaeus monodon NV (PmNV). Thus far, the genomes of OrNV, GbNV, HzNV-1 and HzNV-2 have been completely sequenced. They vary between 97 and 230kbp in size and encode between 98 and 160 open reading frames (ORFs). All sequenced nudiviruses have 33 ORFs in common. Strikingly, 20 of them are homologous to baculovirus core genes involved in RNA transcription, DNA replication, virion structural components and other functions. Another nine conserved ORFs are likely associated with DNA replication, repair and recombination, and nucleotide metabolism; one is homologous to baculovirus iap-3 gene; two are nudivirus-specific ORFs of unknown function. Interestingly, one nudivirus ORF is similar to polh/gran gene, encoding occlusion body protein matrix and being conserved in Alpha- Beta- and Gammabaculoviruses. Members of nudiviruses are closely related and form a monophyletic group consisting of two sister clades of OrNV/GbNV and HzNVs/PmNV. It is proposed that nudiviruses and baculoviruses derived from a common ancestor and are evolutionarily related to other large DNA viruses such as the insect-specific salivary gland hypertrophy virus (SGHV) and the marine white spot syndrome virus (WSSV).

  10. Mitochondrial intronic open reading frames in Podospora: Mobility and consecutive exonic sequence variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellem, C.H.; Rossignol, M.; Belcour, L.

    1996-06-01

    The mitochondrial genome of 23 wild-type strains belonging to three different species of the filamentous fungus Podospora was examined. Among the 15 optical sequences identified are two intronic reading frames, nad1-i4-orf1 and cox1-i7-orf2. We show that the presence of these sequences was strictly correlated with tightly clustered nucleotide substitutions in the adjacent exon. This correlation applies to the presence or absence of closely related open reading frames (ORFs), found at the same genetic locations, in all the Pyrenomycete genera examined. The recent gain of these optional ORFs in the evolution of the genus Podospora probably account for such sequence differences.more » In the homoplasmic progeny from heteroplasmons constructed between Podospora strains differing by the presence of these optional ORFs, nad1-i4-orf1 and cox1-i7-orf2 appeared highly invasive. Sequence comparisons in the nad1-i4 intron of various strains of the Pyrenomycete family led us to propose a scenario of its evolution that includes several events of loss and gain of intronic ORFs. These results strongly reinforce the idea that group I intronic ORFs are mobile elements and that their transfer, and comcomitant modification of the adjacent exon, could participate in the modular evolution of mitochondrial genomes. 46 refs., 5 figs., 2 tabs.« less

  11. Design, Construction and Cloning of Truncated ORF2 and tPAsp-PADRE-Truncated ORF2 Gene Cassette From Hepatitis E Virus in the pVAX1 Expression Vector

    PubMed Central

    Farshadpour, Fatemeh; Makvandi, Manoochehr; Taherkhani, Reza

    2015-01-01

    Background: Hepatitis E Virus (HEV) is the causative agent of enterically transmitted acute hepatitis and has high mortality rate of up to 30% among pregnant women. Therefore, development of a novel vaccine is a desirable goal. Objectives: The aim of this study was to construct tPAsp-PADRE-truncated open reading frame 2 (ORF2) and truncated ORF2 DNA plasmid, which can assist future studies with the preparation of an effective vaccine against Hepatitis E Virus. Materials and Methods: A synthetic codon-optimized gene cassette encoding tPAsp-PADRE-truncated ORF2 protein was designed, constructed and analyzed by some bioinformatics software. Furthermore, a codon-optimized truncated ORF2 gene was amplified by the polymerase chain reaction (PCR), with a specific primer from the previous construct. The constructs were sub-cloned in the pVAX1 expression vector and finally expressed in eukaryotic cells. Results: Sequence analysis and bioinformatics studies of the codon-optimized gene cassette revealed that codon adaptation index (CAI), GC content, and frequency of optimal codon usage (Fop) value were improved, and performance of the secretory signal was confirmed. Cloning and sub-cloning of the tPAsp-PADRE-truncated ORF2 gene cassette and truncated ORF2 gene were confirmed by colony PCR, restriction enzymes digestion and DNA sequencing of the recombinant plasmids pVAX-tPAsp-PADRE-truncated ORF2 (aa 112-660) and pVAX-truncated ORF2 (aa 112-660). The expression of truncated ORF2 protein in eukaryotic cells was approved by an Immunofluorescence assay (IFA) and the reverse transcriptase polymerase chain reaction (RT-PCR) method. Conclusions: The results of this study demonstrated that the tPAsp-PADRE-truncated ORF2 gene cassette and the truncated ORF2 gene in recombinant plasmids are successfully expressed in eukaryotic cells. The immunogenicity of the two recombinant plasmids with different formulations will be evaluated as a novel DNA vaccine in future investigations. PMID:26865938

  12. The effector gene xopAE of Xanthomonas euvesicatoria 85-10 is part of an operon and encodes an E3 ubiquitin ligase.

    PubMed

    Popov, Georgy; Majhi, Bharat Bhusan; Sessa, Guido

    2018-05-21

    The type III effector XopAE from the Xanthomonas euvesicatoria strain 85-10 ( Xe 85-10) was previously shown to inhibit plant immunity and enhance pathogen-induced disease symptoms. Evolutionary analysis of 60 xopAE alleles ( AEal ) revealed that the xopAE locus is conserved in multiple Xanthomonas species. The majority of xopAE alleles (55 out of 60) encodes a single ORF ( xopAE ), while in 5 alleles, including AEal 37 of the Xe 85-10 strain, a frame-shift splits the locus into two ORFs ( hpaF and a truncated xopAE ). To test whether the second ORF of AEal 37 ( xopAE 85-10 ) is translated, we examined expression of YFP fused downstream to truncated or mutant forms of the locus in Xanthomonas bacteria. YFP fluorescence was detected at maximal levels when the reporter was in proximity of an internal ribosome-binding site upstream to a rare ATT start codon in the xopAE 85-10 ORF, but severely reduced when these elements were abolished. In agreement with the notion that xopAE 85- 10 is a functional gene, its protein product was translocated into plant cells by the type III secretion system and translocation was dependent on its upstream ORF hpaF. Homology modeling predicted that XopAE 85-10 contains an E3 ligase XL-box domain at the C-terminus, and in vitro assays demonstrated that this domain displays mono-ubiquitination activity. Remarkably, the XL-box was essential for XopAE 85-10 to inhibit PAMP-induced gene expression in Arabidopsis protoplasts. Together, these results indicate that the xopAE 85-10 gene resides in a functional operon, which utilizes the alternative start codon ATT, and encodes a novel XL-box E3 ligase. Importance Xanthomonas bacteria utilize a type III secretion system to cause disease in many crops. This study provides insights into evolution, translocation and biochemical function of the XopAE type III secreted effector contributing to the understanding of Xanthomonas-host interactions. We establish XopAE as core effector of seven Xanthomonas species and elucidate evolution of the Xanthomonas euvesicatoria xopAE locus, which contains an operon encoding a truncated effector. Our findings indicate that this operon evolved from the split of a multi-domains gene into two ORFs that conserved the original domain function. Analysis of xopAE 85-10 translation provides the first evidence for translation initiation from an ATT codon in Xanthomonas Our data demonstrate that XopAE 85-10 is an XL-box E3 ubiquitin ligase and provide insights into structure and function of this effector family. Copyright © 2018 American Society for Microbiology.

  13. Comparative molecular dynamics studies of heterozygous open reading frames of DNA polymerase eta (η) in pathogenic yeast Candida albicans

    NASA Astrophysics Data System (ADS)

    Satpati, Suresh; Manohar, Kodavati; Acharya, Narottam; Dixit, Anshuman

    2017-01-01

    Genomic instability in Candida albicans is believed to play a crucial role in fungal pathogenesis. DNA polymerases contribute significantly to stability of any genome. Although Candida Genome database predicts presence of S. cerevisiae DNA polymerase orthologs; functional and structural characterizations of Candida DNA polymerases are still unexplored. DNA polymerase eta (Polη) is unique as it promotes efficient bypass of cyclobutane pyrimidine dimers. Interestingly, C. albicans is heterozygous in carrying two Polη genes and the nucleotide substitutions were found only in the ORFs. As allelic differences often result in functional differences of the encoded proteins, comparative analyses of structural models and molecular dynamic simulations were performed to characterize these orthologs of DNA Polη. Overall structures of both the ORFs remain conserved except subtle differences in the palm and PAD domains. The complementation analysis showed that both the ORFs equally suppressed UV sensitivity of yeast rad30 deletion strain. Our study has predicted two novel molecular interactions, a highly conserved molecular tetrad of salt bridges and a series of π-π interactions spanning from thumb to PAD. This study suggests these ORFs as the homologues of yeast Polη, and due to its heterogeneity in C. albicans they may play a significant role in pathogenicity.

  14. Genomic and proteomic characterization of a thermophilic Geobacillus bacteriophage GBSV1.

    PubMed

    Liu, Bin; Zhou, Fengfeng; Wu, Suijie; Xu, Ying; Zhang, Xiaobo

    2009-03-01

    Phages are present wherever life is found, and play roles in many biogeochemical and ecological processes. The thermophilic bacteriophages, however, have not been well studied. In this study, phage GBSV1 was obtained from a thermophilic bacterium Geobacillus sp. 6k51 isolated from a hot spring. GBSV1 contains a double-stranded linear DNA of 34,683bp, which encodes 54 putative open reading frames (ORFs). Thirty three of these 54 ORFs exhibit sequence similarities to genes from 7 species of Geobacillus or Bacillus bacteria, as well as of bacteriophages infecting these bacteria. Twenty-two ORFs have been functionally annotated based on both their sequence similarities to known genes and predicted Pfam protein domains. Five structural proteins of the purified GBSV1 virion have been identified by proteomic analyses. Surprisingly, 7 of the GBSV1 ORFs share sequence similarities with genes from bacteria relevant to human diseases. This is the first report that genes of human disease-inducing bacteria are found in a thermophilic phage. It is suggested that thermophilic phages may be the potential evolutionary link between thermophiles and human pathogens. The characterization of GBSV1 may possibly lead to new insights into virus-host interactions and to a better understanding of gene transfers and evolution of life on earth in general.

  15. SatR Is a Repressor of Fluoroquinolone Efflux Pump SatAB

    PubMed Central

    Escudero, Jose Antonio; San Millan, Alvaro; Montero, Natalia; Gutierrez, Belen; Ovejero, Cristina Martinez; Carrilero, Laura

    2013-01-01

    Streptococcus suis is an emerging zoonotic agent responsible for high-mortality outbreaks among the human population in China. In this species, the ABC transporter SatAB mediates fluoroquinolone resistance when overexpressed. Here, we describe and characterize satR, an open reading frame (ORF) encoding a MarR superfamily regulator that acts as a repressor of satAB. satR is cotranscribed with satAB, and its interruption entails the overexpression of the pump, leading to a clinically relevant increase in resistance to fluoroquinolones. PMID:23650171

  16. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes.

    PubMed

    Nga, Phan Thi; Parquet, Maria del Carmen; Lauber, Chris; Parida, Manmohan; Nabeshima, Takeshi; Yu, Fuxun; Thuy, Nguyen Thanh; Inoue, Shingo; Ito, Takashi; Okamoto, Kenta; Ichinose, Akitoyo; Snijder, Eric J; Morita, Kouichi; Gorbalenya, Alexander E

    2011-09-01

    Nidoviruses with large genomes (26.3-31.7 kb; 'large nidoviruses'), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7-15.7 kb; 'small nidoviruses'). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3'-5'exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60-80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3'-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3'-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2'-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that - in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses.

  17. A novel member of the family Hepeviridae from cutthroat trout (Oncorhynchus clarkii)

    USGS Publications Warehouse

    Batts, William; Yun, Susan; Hedrick, Ronald; Winton, James

    2011-01-01

    Beginning in 1988, the Chinook salmon embryo (CHSE-214) cell line was used to isolate a novel virus from spawning adult trout in the state of California, USA. Termed the cutthroat trout (Oncorhynchus clarkii) virus (CTV), the small, round virus was not associated with disease, but was subsequently found to be present in an increasing number of trout populations in the western USA, likely by a combination of improved surveillance activities and the shipment of infected eggs to new locations. Here, we report that the full length genome of the 1988 Heenan Lake isolate of CTV consisted of 7269 nucleotides of positive-sense, single-stranded RNA beginning with a 5' untranslated region (UTR), followed by three open reading frames (ORFs), a 3' UTR and ending in a polyA tail. The genome of CTV was similar in size and organization to that of Hepatitis E virus (HEV) with which it shared the highest nucleotide and amino acid sequence identities. Similar to the genomes of human, rodent or avian hepeviruses, ORF 1 encoded a large, non-structural polyprotein that included conserved methyltransferase, protease, helicase and polymerase domains, while ORF 2 encoded the structural capsid protein and ORF 3 the phosphoprotein. Together, our data indicated that CTV was clearly a member of the family Hepeviridae, although the level of amino acid sequence identity with the ORFs of mammalian or avian hepeviruses (13-27%) may be sufficiently low to warrant the creation of a novel genus. We also performed a phylogenetic analysis using a 262. nt region within ORF 1 for 63 isolates of CTV obtained from seven species of trout reared in various geographic locations in the western USA. While the sequences fell into two genetic clades, the overall nucleotide diversity was low (less than 8.4%) and many isolates differed by only 1-2 nucleotides, suggesting an epidemiological link. Finally, we showed that CTV was able to form persistently infected cultures of the CHSE-214 cell line that may have use in research on the biology or treatment of hepevirus infections of humans or other animals.

  18. Characterization of the cryptic plasmid pOfk55 from Legionella pneumophila and construction of a pOfk55-derived shuttle vector.

    PubMed

    Nishida, Takashi; Watanabe, Kenta; Tachibana, Masato; Shimizu, Takashi; Watarai, Masahisa

    2017-03-01

    In this study, a cryptic plasmid pOfk55 from Legionella pneumophila was isolated and characterized. pOfk55 comprised 2584bp with a GC content of 37.3% and contained three putative open reading frames (ORFs). orf1 encoded a protein of 195 amino acids and the putative protein shared 39% sequence identity with a putative plasmid replication protein RepL. ORF1 was needed for replication in L. pneumophila but pOfk55 did not replicate in Escherichia coli. orf2 and orf3 encoded putative hypothetical proteins of 114 amino acids and 78 amino acids, respectively, but the functions of the putative proteins ORF2 and OFR3 are not clear. The transfer mechanism for pOfk55 was independent on the type IVB secretion system in the original host. A L. pneumophila-E. coli shuttle vector, pNT562 (5058bp, Km R ), was constructed by In-Fusion Cloning of pOfk55 with a kanamycin-resistance gene from pUTmini-Tn5Km and the origin of replication from pBluescript SK(+) (pNT561). Multiple cloning sites from pBluescript SK(+) as well as the tac promoter region and lacI gene from pAM239-GFP were inserted into pNT561 to construct pNT562. The transformation efficiency of pNT562 in L. pneumophila strains ranged from 1.6×10 1 to 1.0×10 5 CFU/ng. The relative number of pNT562 was estimated at 5.7±1.0 copies and 73.6% of cells maintained the plasmid after 1week in liquid culture without kanamycin. A green fluorescent protein (GFP) expression vector, pNT563, was constructed by ligating pNT562 with the gfpmut3 gene from pAM239-GFP. pNT563 was introduced into L. pneumophila Lp02 and E. coli DH5α, and both strains expressed GFP successfully. These results suggest that the shuttle vector is useful for genetic studies in L. pneumophila. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Translational profiling of B cells infected with the Epstein-Barr virus reveals 5' leader ribosome recruitment through upstream open reading frames.

    PubMed

    Bencun, Maja; Klinke, Olaf; Hotz-Wagenblatt, Agnes; Klaus, Severina; Tsai, Ming-Han; Poirey, Remy; Delecluse, Henri-Jacques

    2018-04-06

    The Epstein-Barr virus (EBV) genome encodes several hundred transcripts. We have used ribosome profiling to characterize viral translation in infected cells and map new translation initiation sites. We show here that EBV transcripts are translated with highly variable efficiency, owing to variable transcription and translation rates, variable ribosome recruitment to the leader region and coverage by monosomes versus polysomes. Some transcripts were hardly translated, others mainly carried monosomes, showed ribosome accumulation in leader regions and most likely represent non-coding RNAs. A similar process was visible for a subset of lytic genes including the key transactivators BZLF1 and BRLF1 in cells infected with weakly replicating EBV strains. This suggests that ribosome trapping, particularly in the leader region, represents a new checkpoint for the repression of lytic replication. We could identify 25 upstream open reading frames (uORFs) located upstream of coding transcripts that displayed 5' leader ribosome trapping, six of which were located in the leader region shared by many latent transcripts. These uORFs repressed viral translation and are likely to play an important role in the regulation of EBV translation.

  20. Mitochondrial Genome Sequence of the Legume Vicia faba

    PubMed Central

    Negruk, Valentine

    2013-01-01

    The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376

  1. Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum, a new member of a proposed genus in the subfamily Autographivirinae.

    PubMed

    Lim, Jeong-A; Heu, Sunggi; Park, Jinwoo; Roh, Eunjung

    2017-08-01

    Bacteriophage vB_PcaP_PP2 (PP2) is a novel virulent phage that infects the plant-pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. PP2 phage has a 41,841-bp double-stranded DNA encoding 47 proteins, and it was identified as a member of the family Podoviridae by transmission electron microscopy. Nineteen of its open reading frames (ORFs) show homology to functional proteins, and 28 ORFs have been characterized as hypothetical proteins. PP2 phage is homologous to Cronobacter phage vB_CskP_GAP227 and Dev-CD-23823. Based on phylogenetic analysis, PP2 and its homologous bacteriophages form a new group within the subfamily Autographivirinae in the family Podoviridae, suggesting the need to establish a new genus. No lysogenic-cycle-related genes or bacterial toxins were identified.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandyopadhyay, Anindya; Kopperud, Kristin; Anderson, Gavin

    The genome of Potato yellow dwarf virus (PYDV; Nucleorhabdovirus type species) was determined to be 12,875 nucleotides (nt). The antigenome is organized into seven open reading frames (ORFs) ordered 3'-N-X-P-Y-M-G-L-5', which likely encode the nucleocapsid, phospho, movement, matrix, glyco and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. The ORFs are flanked by a 3' leader RNA of 149 nt and a 5' trailer RNA of 97 nt, and are separated by conserved intergenic junctions. Phylogenetic analyses indicated that PYDV is closely related to other leafhopper-transmitted rhabdoviruses. Functional protein assays were used to determine themore » subcellular localization of PYDV proteins. Surprisingly, the M protein was able to induce the intranuclear accumulation of the inner nuclear membrane in the absence of any other viral protein. Finally, bimolecular fluorescence complementation was used to generate the most comprehensive protein interaction map for a plant-adapted rhabdovirus to date.« less

  3. Induction of Strain-Transcending Immunity against Plasmodium chabaudi adami Malaria with a Multiepitope DNA Vaccine

    PubMed Central

    Scorza, T.; Grubb, K.; Smooker, P.; Rainczuk, A.; Proll, D.; Spithill, T. W.

    2005-01-01

    A major goal of current malaria vaccine programs is to develop multivalent vaccines that will protect humans against the many heterologous malaria strains that circulate in endemic areas. We describe a multiepitope DNA vaccine, derived from a genomic Plasmodium chabaudi adami DS DNA expression library of 30,000 plasmids, which induces strain-transcending immunity in mice against challenge with P. c. adami DK. Segregation of this library and DNA sequence analysis identified vaccine subpools encoding open reading frames (ORFs)/peptides of >9 amino acids [aa] (the V9+ pool, 303 plasmids) and >50 aa (V50+ pool, 56 plasmids), respectively. The V9+ and V50+ plasmid vaccine subpools significantly cross-protected mice against heterologous P. c. adami DK challenge, and protection correlated with the induction of both specific gamma interferon production by splenic cells and opsonizing antibodies. Bioinformatic analysis showed that 22 of the V50+ ORFs were polypeptides conserved among three or more Plasmodium spp., 13 of which are predicted hypothetical proteins. Twenty-nine of these ORFs are orthologues of predicted Plasmodium falciparum sequences known to be expressed in the blood stage, suggesting that this vaccine pool encodes multiple blood-stage antigens. The results have implications for malaria vaccine design by providing proof-of-principle that significant strain-transcending immunity can be induced using multiepitope blood-stage DNA vaccines and suggest that both cellular responses and opsonizing antibodies are necessary for optimal protection against P. c. adami. PMID:15845504

  4. Bombyx mori Nucleopolyhedrovirus Encodes a DNA-Binding Protein Capable of Destabilizing Duplex DNA

    PubMed Central

    Mikhailov, Victor S.; Mikhailova, Alla L.; Iwanaga, Masashi; Gomi, Sumiko; Maeda, Susumu

    1998-01-01

    A DNA-binding protein (designated DBP) with an apparent molecular mass of 38 kDa was purified to homogeneity from BmN cells (derived from Bombyx mori) infected with the B. mori nucleopolyhedrovirus (BmNPV). Six peptides obtained after digestion of the isolated protein with Achromobacter protease I were partially or completely sequenced. The determined amino acid sequences indicated that DBP was encoded by an open reading frame (ORF16) located at nucleotides (nt) 16189 to 17139 in the BmNPV genome (GenBank accession no. L33180). This ORF (designated dbp) is a homolog of Autographa californica multicapsid NPV ORF25, whose product has not been identified. BmNPV DBP is predicted to contain 317 amino acids (calculated molecular mass of 36.7 kDa) and to have an isoelectric point of 7.8. DBP showed a tendency to multimerization in the course of purification and was found to bind preferentially to single-stranded DNA. When bound to oligonucleotides, DBP protected them from hydrolysis by phage T4 DNA polymerase-associated 3′→5′ exonuclease. The sizes of the protected fragments indicated that a binding site size for DBP is about 30 nt per protein monomer. DBP, but not BmNPV LEF-3, was capable of unwinding partial DNA duplexes in an in vitro system. This helix-destabilizing ability is consistent with the prediction that DBP functions as a single-stranded DNA binding protein in virus replication. PMID:9525636

  5. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement.

    PubMed

    Blazier, J Chris; Ruhlman, Tracey A; Weng, Mao-Lun; Rehman, Sumaiyah K; Sabir, Jamal S M; Jansen, Robert K

    2016-04-18

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA.

  6. Polypeptide p41 of a Norwalk-Like Virus Is a Nucleic Acid-Independent Nucleoside Triphosphatase

    PubMed Central

    Pfister, Thomas; Wimmer, Eckard

    2001-01-01

    Southampton virus (SHV) is a member of the Norwalk-like viruses (NLVs), one of four genera of the family Caliciviridae. The genome of SHV contains three open reading frames (ORFs). ORF 1 encodes a polyprotein that is autocatalytically processed into six proteins, one of which is p41. p41 shares sequence motifs with protein 2C of picornaviruses and superfamily 3 helicases. We have expressed p41 of SHV in bacteria. Purified p41 exhibited nucleoside triphosphate (NTP)-binding and NTP hydrolysis activities. The NTPase activity was not stimulated by single-stranded nucleic acids. SHV p41 had no detectable helicase activity. Protein sequence comparison between the consensus sequences of NLV p41 and enterovirus protein 2C revealed regions of high similarity. According to secondary structure prediction, the conserved regions were located within a putative central domain of alpha helices and beta strands. This study reveals for the first time an NTPase activity associated with a calicivirus-encoded protein. Based on enzymatic properties and sequence information, a functional relationship between NLV p41 and enterovirus 2C is discussed in regard to the role of 2C-like proteins in virus replication. PMID:11160659

  7. Genomic comparison of Escherichia coli K1 strains isolated from the cerebrospinal fluid of patients with meningitis.

    PubMed

    Yao, Yufeng; Xie, Yi; Kim, Kwang Sik

    2006-04-01

    Escherichia coli is a major cause of enteric/diarrheal diseases, urinary tract infections, and sepsis. E. coli K1 is the leading gram-negative organism causing neonatal meningitis, but the microbial basis of E. coli K1 meningitis is incompletely understood. Here we employed comparative genomic hybridization to investigate 11 strains of E. coli K1 isolated from the cerebrospinal fluid (CSF) of patients with meningitis. These 11 strains cover the majority of common O serotypes in E. coli K1 isolates from CSF. Our data demonstrated that these 11 strains of E. coli K1 can be categorized into two groups based on their profile for putative virulence factors, lipoproteins, proteases, and outer membrane proteins. Of interest, we showed that some open reading frames (ORFs) encoding the type III secretion system apparatus were found in group 2 strains but not in group 1 strains, while ORFs encoding the general secretory pathway are predominant in group 1 strains. These findings suggest that E. coli K1 strains isolated from CSF can be divided into two groups and these two groups of E. coli K1 may utilize different mechanisms to induce meningitis.

  8. The ORF1 Protein Encoded by LINE-1: Structure and Function During L1 Retrotransposition

    PubMed Central

    Martin, Sandra L.

    2006-01-01

    LINE-1, or L1 is an autonomous non-LTR retrotransposon in mammals. Retrotransposition requires the function of the two, L1-encoded polypeptides, ORF1p and ORF2p. Early recognition of regions of homology between the predicted amino acid sequence of ORF2 and known endonuclease and reverse transcriptase enzymes led to testable hypotheses regarding the function of ORF2p in retrotransposition. As predicted, ORF2p has been demonstrated to have both endonuclease and reverse transcriptase activities. In contrast, no homologs of known function have contributed to our understanding of the function of ORF1p during retrotransposition. Nevertheless, significant advances have been made such that we now know that ORF1p is a high affinity RNA binding protein that forms a ribonucleoprotein particle together with L1 RNA. Furthermore, ORF1p is a nucleic acid chaperone and this nucleic acid chaperone activity is required for L1 retrotransposition. PMID:16877816

  9. Identification and characterization of novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15.

    PubMed

    Sawa, N; Okamura, K; Zendo, T; Himeno, K; Nakayama, J; Sonomoto, K

    2010-07-01

    To characterize novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Leuconostoc pseudomesenteroides QU 15 isolated from Nukadoko (rice bran bed) produced novel bacteriocins. By using three purification steps, four antimicrobial peptides termed leucocin A (ΔC7), leucocin A-QU 15, leucocin Q and leucocin N were purified from the culture supernatant. The amino acid sequences of leucocin A (ΔC7) and leucocin A-QU 15 were identical to that of leucocin A-UAL 187 belonging to class IIa bacteriocins, but leucocin A (ΔC7) was deficient in seven C-terminal residues. Leucocin Q and leucocin N are novel class IId bacteriocins. Moreover, the DNA sequences encoding three bacteriocins, leucocin A-QU 15, leucocin Q and leucocin N were obtained. These bacteriocins including two novel bacteriocins were identified from Leuc. pseudomesenteroides QU 15. They showed similar antimicrobial spectra, but their intensities differed. The C-terminal region of leucocin A-QU 15 was important for its antimicrobial activity. Leucocins Q and N were encoded by adjacent open reading frames (ORFs) in the same operon, but leucocin A-QU 15 was not. These leucocins were produced concomitantly by the same strain. Although the two novel bacteriocins were encoded by adjacent ORFs, a characteristic of class IIb bacteriocins, they did not show synergistic activity. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  10. Characterization of Bombyx mori nucleopolyhedrovirus orf68 gene that encodes a novel structural protein of budded virus.

    PubMed

    Iwanaga, Masashi; Kurihara, Masaaki; Kobayashi, Masahiko; Kang, WonKyung

    2002-05-25

    All lepidopteran baculovirus genomes sequenced to date encode a homolog of the Bombyx mori nucleopolyhedrovirus (BmNPV) orf68 gene, suggesting that it performs an important role in the virus life cycle. In this article we describe the characterization of BmNPV orf68 gene. Northern and Western analyses demonstrated that orf68 gene was expressed as a late gene and encoded a structural protein of budded virus (BV). Immunohistochemical analysis by confocal microscopy showed that ORF68 protein was localized mainly in the nucleus of infected cells. To examine the function of orf68 gene, we constructed orf68 deletion mutant (BmD68) and characterized it in BmN cells and larvae of B. mori. BV production was delayed in BmD68-infected cells. The larval bioassays also demonstrated that deletion of orf68 did not reduce the infectivity, but mutant virus took 70 h longer to kill the host than wild-type BmNPV. In addition, dot-blot analysis showed viral DNA accumulated more slowly in mutant infected cells. Further examination suggested that BmD68 was less efficient in entry and budding from cells, although it seemed to possess normal attachment ability. These results suggest that ORF68 is a BV-associated protein involved in secondary infection from cell-to-cell. (c) 2002 Elsevier Science (USA).

  11. pSLA2-M of Streptomyces rochei is a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L.

    PubMed

    Yang, Yingjie; Kurokawa, Toru; Takahama, Yoshifumi; Nindita, Yosi; Mochizuki, Susumu; Arakawa, Kenji; Endo, Satoru; Kinashi, Haruyasu

    2011-01-01

    The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.

  12. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    PubMed

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  13. Cloning and characterization of an alternatively spliced gene in proximal Xq28 deleted in two patients with intersexual genitalia and myotubular myopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laporte, J.; Hu, Ling-Jia; Kretz, C.

    1997-05-01

    We have identified a novel human gene that is entirely deleted in two boys with abnormal genital development and myotubular myopathy (MTM1). The gene, F18, is located in proximal Xq28, approximately 80 kb centromeric to the recently isolated MTM1 gene. Northern analysis of mRNA showed a ubiquitous pattern and suggested high levels of expression in skeletal muscle, brain, and heart. A transcript of 4.6 kb was detected in a range of tissues, and additional alternate forms of 3.8 and 2.6 kb were present in placenta and pancreas, respectively. The gene extends over 100 kb and is composed of at leastmore » seven exons, of which two are non-coding. Sequence analysis of a 4.6-kb cDNA contig revealed two overlapping open reading frames (ORFs) that encode putative proteins of 701 and 424 amino acids, respectively. Two alternative spliced transcripts affecting the large open reading frame were identified that, together with the Northern blot results, suggest that distinct proteins are derived from the gene. No significant homology to other known proteins was detected, but segments of the first ORF encode polyglutamine tracts and proline-rich domains, which are frequently observed in DNA-binding proteins. The F18 gene is a strong candidate for being implicated in the intersexual genitalia present in the two MTM1-deleted patients. The gene also serves as a candidate for other disorders that map to proximal Xq28. 15 refs., 3 figs., 1 tab.« less

  14. Characterization and Heterologous Expression of the Genes Encoding Enterocin A Production, Immunity, and Regulation in Enterococcus faecium DPC1146

    PubMed Central

    O’Keeffe, Triona; Hill, Colin; Ross, R. Paul

    1999-01-01

    Enterocin A is a small, heat-stable, antilisterial bacteriocin produced by Enterococcus faecium DPC1146. The sequence of a 10,879-bp chromosomal region containing at least 12 open reading frames (ORFs), 7 of which are predicted to play a role in enterocin biosynthesis, is presented. The genes entA, entI, and entF encode the enterocin A prepeptide, the putative immunity protein, and the induction factor prepeptide, respectively. The deduced proteins EntK and EntR resemble the histidine kinase and response regulator proteins of two-component signal transducing systems of the AgrC-AgrA type. The predicted proteins EntT and EntD are homologous to ABC (ATP-binding cassette) transporters and accessory factors, respectively, of several other bacteriocin systems and to proteins implicated in the signal-sequence-independent export of Escherichia coli hemolysin A. Immediately downstream of the entT and entD genes are two ORFs, the product of one of which, ORF4, is very similar to the product of the yteI gene of Bacillus subtilis and to E. coli protease IV, a signal peptide peptidase known to be involved in outer membrane lipoprotein export. Another potential bacteriocin is encoded in the opposite direction to the other genes in the enterocin cluster. This putative bacteriocin-like peptide is similar to LafX, one of the components of the lactacin F complex. A deletion which included one of two direct repeats upstream of the entA gene abolished enterocin A activity, immunity, and ability to induce bacteriocin production. Transposon insertion upstream of the entF gene also had the same effect, but this mutant could be complemented by exogenously supplied induction factor. The putative EntI peptide was shown to be involved in the immunity to enterocin A. Cloning of a 10.5-kb amplicon comprising all predicted ORFs and regulatory regions resulted in heterologous production of enterocin A and induction factor in Enterococcus faecalis, while a four-gene construct (entAITD) under the control of a constitutive promoter resulted in heterologous enterocin A production in both E. faecalis and Lactococcus lactis. PMID:10103244

  15. Quetzal: a transposon of the Tc1 family in the mosquito Anopheles albimanus.

    PubMed

    Ke, Z; Grossman, G L; Cornel, A J; Collins, F H

    1996-10-01

    A member of the Tc1 family of transposable elements has been identified in the Central and South American mosquito Anopheles albimanus. The full-length Quetzal element is 1680 base pairs (bp) in length, possesses 236 bp inverted terminal repeats (ITRs), and has a single open reading frame (ORF) with the potential of encoding a 341-amino-acid (aa) protein that is similar to the transposases of other members of the Tc1 family, particularly elements described from three different Drosophila species. The approximately 10-12 copies per genome of Quetzal are found in the euchromatin of all three chromosomes of A. albimanus. One full-length clone, Que27, appears capable of encoding a complete transposase and may represent a functional copy of this element.

  16. Identification of a Novel Dioxygenase Involved in Metabolism of o-Xylene, Toluene, and Ethylbenzene by Rhodococcus sp. Strain DK17

    PubMed Central

    Kim, Dockyu; Chae, Jong-Chan; Zylstra, Gerben J.; Kim, Young-Soo; Kim, Seong-Ki; Nam, Myung Hee; Kim, Young Min; Kim, Eungbin

    2004-01-01

    Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively. PMID:15574904

  17. Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila.

    PubMed

    Lüneberg, E; Mayer, B; Daryab, N; Kooistra, O; Zähringer, U; Rohde, M; Swanson, J; Frosch, M

    2001-03-01

    We recently described the phase-variable expression of a virulence-associated lipopolysaccharide (LPS) epitope in Legionella pneumophila. In this study, the molecular mechanism for phase variation was investigated. We identified a 30 kb unstable genetic element as the molecular origin for LPS phase variation. Thirty putative genes were encoded on the 30 kb sequence, organized in two putative opposite transcription units. Some of the open reading frames (ORFs) shared homologies with bacteriophage genes, suggesting that the 30 kb element was of phage origin. In the virulent wild-type strain, the 30 kb element was located on the chromosome, whereas excision from the chromosome and replication as a high-copy plasmid resulted in the mutant phenotype, which is characterized by alteration of an LPS epitope and loss of virulence. Mapping and sequencing of the insertion site in the genome revealed that the chromosomal attachment site was located in an intergenic region flanked by genes of unknown function. As phage release could not be induced by mitomycin C, it is conceivable that the 30 kb element is a non-functional phage remnant. The protein encoded by ORF T on the 30 kb plasmid could be isolated by an outer membrane preparation, indicating that the genes encoded on the 30 kb element are expressed in the mutant phenotype. Therefore, it is conceivable that the phenotypic alterations seen in the mutant depend on high-copy replication of the 30 kb element and expression of the encoded genes. Excision of the 30 kb element from the chromosome was found to occur in a RecA-independent pathway, presumably by the involvement of RecE, RecT and RusA homologues that are encoded on the 30 kb element.

  18. Novel Type V Staphylococcal Cassette Chromosome mec Driven by a Novel Cassette Chromosome Recombinase, ccrC

    PubMed Central

    Ito, Teruyo; Ma, Xiao Xue; Takeuchi, Fumihiko; Okuma, Keiko; Yuzawa, Harumi; Hiramatsu, Keiichi

    2004-01-01

    Staphylococcal cassette chromosome mec (SCCmec) is a mobile genetic element composed of the mec gene complex, which encodes methicillin resistance, and the ccr gene complex, which encodes the recombinases responsible for its mobility. The mec gene complex has been classified into four classes, and the ccr gene complex has been classified into three allotypes. Different combinations of mec gene complex classes and ccr gene complex types have so far defined four types of SCCmec elements. Now we introduce the fifth allotype of SCCmec, which was found on the chromosome of a community-acquired methicillin-resistant Staphylococcus aureus strain (strain WIS [WBG8318]) isolated in Australia. The element shared the same chromosomal integration site with the four extant types of SCCmec and the characteristic nucleotide sequences at the chromosome-SCCmec junction regions. The novel SCCmec carried mecA bracketed by IS431 (IS431-mecA-ΔmecR1-IS431), which is designated the class C2 mec gene complex; and instead of ccrA and ccrB genes, it carried a single copy of a gene homologue that encoded cassette chromosome recombinase. Since the open reading frame (ORF) was found to encode an enzyme which catalyzes the precise excision as well as site- and orientation-specific integration of the element, we designated the ORF cassette chromosome recombinase C (ccrC), and we designated the element type V SCCmec. Type V SCCmec is a small SCCmec element (28 kb) and does not carry any antibiotic resistance genes besides mecA. Unlike the extant SCCmec types, it carries a set of foreign genes encoding a restriction-modification system that might play a role in the stabilization of the element on the chromosome. PMID:15215121

  19. Genomic Organization and Molecular Analysis of Virulent Bacteriophage 2972 Infecting an Exopolysaccharide-Producing Streptococcus thermophilus Strain

    PubMed Central

    Lévesque, Céline; Duplessis, Martin; Labonté, Jessica; Labrie, Steve; Fremaux, Christophe; Tremblay, Denise; Moineau, Sylvain

    2005-01-01

    The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization—time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed. PMID:16000821

  20. An analysis of two open reading frames (ORF3 and ORF4) of rat hepatitis E virus genome using its infectious cDNA clones with mutations in ORF3 or ORF4.

    PubMed

    Tanggis; Kobayashi, Tominari; Takahashi, Masaharu; Jirintai, Suljid; Nishizawa, Tsutomu; Nagashima, Shigeo; Nishiyama, Takashi; Kunita, Satoshi; Hayama, Emiko; Tanaka, Takeshi; Mulyanto; Okamoto, Hiroaki

    2018-04-02

    Rat hepatitis E virus (ratHEV) genome has four open reading frames (ORFs: ORF1, ORF2, ORF3 and ORF4). The functions of ORF3 and ORF4 are unknown. An infectious cDNA clone (pUC-ratELOMB-131L_wt, wt) and its derivatives including ORF3-defective (ΔORF3) and ORF4-defective (ΔORF4) mutants, were constructed and their full-length RNA transcripts transfected into PLC/PRF/5 cells. ΔORF3 replicated as efficiently as wt in cells. However, ≤1/1000 of the number of progenies were detectable in the culture supernatant of ΔORF3-infected cells compared with wt-infected cells. ORF4 protein was not detectable in ratHEV-infected cells or in the liver tissues of ratHEV-infected rats. No marked differences were noted between wt and ΔORF4 regarding the viral replication and protein expression. ORF3 mutants with proline-to-leucine mutations at amino acids (aa) 93, 96 and/or 98 in ORF3 were constructed and transfected into PLC/PRF/5 cells. Wt and an ORF3 mutant with leucine at aa 98 (ORF3-L98) replicated efficiently (density 1.15-1.16 g/cm 3 ), while ORF3-L93 + L96 exhibited a decreased viral release and banded at 1.26-1.27 g/cm 3 , similar to ΔORF3. In conclusion, the ORF3 protein, especially its proline residues at aa 93 and 96, is essential for the release of membrane-associated ratHEV particles, and ORF4 is unnecessary for the replication of ratHEV. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    PubMed

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  2. Identification and Sequencing of a Novel Rodent Gammaherpesvirus That Establishes Acute and Latent Infection in Laboratory Mice ▿

    PubMed Central

    Loh, Joy; Zhao, Guoyan; Nelson, Christopher A.; Coder, Penny; Droit, Lindsay; Handley, Scott A.; Johnson, L. Steven; Vachharajani, Punit; Guzman, Hilda; Tesh, Robert B.; Wang, David; Fremont, Daved H.; Virgin, Herbert W.

    2011-01-01

    Gammaherpesviruses encode numerous immunomodulatory molecules that contribute to their ability to evade the host immune response and establish persistent, lifelong infections. As the human gammaherpesviruses are strictly species specific, small animal models of gammaherpesvirus infection, such as murine gammaherpesvirus 68 (γHV68) infection, are important for studying the roles of gammaherpesvirus immune evasion genes in in vivo infection and pathogenesis. We report here the genome sequence and characterization of a novel rodent gammaherpesvirus, designated rodent herpesvirus Peru (RHVP), that shares conserved genes and genome organization with γHV68 and the primate gammaherpesviruses but is phylogenetically distinct from γHV68. RHVP establishes acute and latent infection in laboratory mice. Additionally, RHVP contains multiple open reading frames (ORFs) not present in γHV68 that have sequence similarity to primate gammaherpesvirus immunomodulatory genes or cellular genes. These include ORFs with similarity to major histocompatibility complex class I (MHC-I), C-type lectins, and the mouse mammary tumor virus and herpesvirus saimiri superantigens. As these ORFs may function as immunomodulatory or virulence factors, RHVP presents new opportunities for the study of mechanisms of immune evasion by gammaherpesviruses. PMID:21209105

  3. Genome sequence of an enhancin gene-rich nucleopolyhedrovirus (NPV) from Agrotis segetum: collinearity with Spodoptera exigua multiple NPV.

    PubMed

    Jakubowska, Agata K; Peters, Sander A; Ziemnicka, Jadwiga; Vlak, Just M; van Oers, Monique M

    2006-03-01

    The genome sequence of a Polish isolate of Agrotis segetum nucleopolyhedrovirus (AgseNPV-A) was determined and analysed. The circular genome is composed of 147,544 bp and has a G+C content of 45.7 mol%. It contains 153 putative, non-overlapping open reading frames (ORFs) encoding predicted proteins of more than 50 aa, together making up 89.8 % of the genome. The remaining 10.2 % of the DNA constitutes non-coding regions and homologous-repeat regions. One hundred and forty-three AgseNPV-A ORFs are homologues of previously reported baculovirus gene sequences. There are ten unique ORFs and they account for 3 % of the genome in total. All 62 lepidopteran baculovirus genes, including the 29 core baculovirus genes, were found in the AgseNPV-A genome. The gene content and gene order of AgseNPV-A are most similar to those of Spodoptera exigua (Se) multiple NPV and their shared homologous genes are 100 % collinear. Three putative enhancin genes were identified in the AgseNPV-A genome. In phylogenetic analysis, the AgseNPV-A enhancins form a cluster separated from enhancins of the Mamestra species NPVs.

  4. Genomic organization of the canine herpesvirus US region.

    PubMed

    Haanes, E J; Tomlinson, C C

    1998-02-01

    Canine herpesvirus (CHV) is an alpha-herpesvirus of limited pathogenicity in healthy adult dogs and infectivity of the virus appears to be largely limited to cells of canine origin. CHV's low virulence and species specificity make it an attractive candidate for a recombinant vaccine vector to protect dogs against a variety of pathogens. As part of the analysis of the CHV genome, the authors determined the complete nucleotide sequence of the CHV US region as well as portions of the flanking inverted repeats. Seven full open reading frames (ORFs) encoding proteins larger than 100 amino acids were identified within, or partially within the CHV US: cUS2, cUS3, cUS4, cUS6, cUS7, cUS8 and cUS9; which are homologs of the herpes simplex virus type-1 US2; protein kinase; gG, gD, gI, gE; and US9 genes, respectively. An eighth ORF was identified in the inverted repeat region, cIR6, a homolog of the equine herpesvirus type-1 IR6 gene. The authors identified and mapped most of the major transcripts for the predicted CHV US ORFs by Northern analysis.

  5. Marek's disease virus protein kinase gene identified within the short unique region of the viral genome is not essential for viral replication in cell culture and vaccine-induced immunity in chickens.

    PubMed

    Sakaguchi, M; Urakawa, T; Hirayama, Y; Miki, N; Yamamoto, M; Zhu, G S; Hirai, K

    1993-07-01

    The open reading frame (ORF) of 1206 bp within the short unique region (Us) of Marek's disease virus type 1 (MDV1) shows significant homology with the herpes simplex virus type 1 US3 gene encoding protein kinase (PK). The lacZ gene of Escherichia coli was inserted within the ORF, designated MDV1-US3, of MDV1 K544 strain DNA by homologous recombination. The plaque-purified recombinant MDV1 stably expressed the beta-galactosidase encoded by the inserted lacZ gene in infected cells and replicated well as the parental K544 strain. Antibodies against both MDV1 antigen and beta-galactosidase were detected in the sera of chickens immunized with recombinant MDV1. Chickens vaccinated with the recombinant MDV1 were protected from challenge with virulent MDV1. The MDV1 US3 gene expressed by a baculovirus vector encoded a 44-kDa protein. Mouse antisera against the 44-kDa protein reacted with two proteins of 44 and 45 kDa in extracts of cells infected with MDV1 but not with MDV types 2 or 3. The PK activity was detected in immune complexes of the anti-44-kDa sera with extracts of cells infected with MDV1 but not with the recombinant MDV1. Thus, PK encoded from the MDV1-US3 is not essential for virus replication in cell culture and vaccine-induced immunity.

  6. Gene expression regulation by upstream open reading frames and human disease.

    PubMed

    Barbosa, Cristina; Peixeiro, Isabel; Romão, Luísa

    2013-01-01

    Upstream open reading frames (uORFs) are major gene expression regulatory elements. In many eukaryotic mRNAs, one or more uORFs precede the initiation codon of the main coding region. Indeed, several studies have revealed that almost half of human transcripts present uORFs. Very interesting examples have shown that these uORFs can impact gene expression of the downstream main ORF by triggering mRNA decay or by regulating translation. Also, evidence from recent genetic and bioinformatic studies implicates disturbed uORF-mediated translational control in the etiology of many human diseases, including malignancies, metabolic or neurologic disorders, and inherited syndromes. In this review, we will briefly present the mechanisms through which uORFs regulate gene expression and how they can impact on the organism's response to different cell stress conditions. Then, we will emphasize the importance of these structures by illustrating, with specific examples, how disturbed uORF-mediated translational control can be involved in the etiology of human diseases, giving special importance to genotype-phenotype correlations. Identifying and studying more cases of uORF-altering mutations will help us to understand and establish genotype-phenotype associations, leading to advancements in diagnosis, prognosis, and treatment of many human disorders.

  7. A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro.

    PubMed

    Canetta, Elisabetta; Kim, Sang Hyon; Kalinina, Natalia O; Shaw, Jane; Adya, Ashok K; Gillespie, Trudi; Brown, John W S; Taliansky, Michael

    2008-02-29

    Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2'-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0+/-0.4 nm, which consist of several (n=6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.

  8. An Out-of-frame Overlapping Reading Frame in the Ataxin-1 Coding Sequence Encodes a Novel Ataxin-1 Interacting Protein*

    PubMed Central

    Bergeron, Danny; Lapointe, Catherine; Bissonnette, Cyntia; Tremblay, Guillaume; Motard, Julie; Roucou, Xavier

    2013-01-01

    Spinocerebellar ataxia type 1 is an autosomal dominant cerebellar ataxia associated with the expansion of a polyglutamine tract within the ataxin-1 (ATXN1) protein. Recent studies suggest that understanding the normal function of ATXN1 in cellular processes is essential to decipher the pathogenesis mechanisms in spinocerebellar ataxia type 1. We found an alternative translation initiation ATG codon in the +3 reading frame of human ATXN1 starting 30 nucleotides downstream of the initiation codon for ATXN1 and ending at nucleotide 587. This novel overlapping open reading frame (ORF) encodes a 21-kDa polypeptide termed Alt-ATXN1 (Alternative ATXN1) with a completely different amino acid sequence from ATXN1. We introduced a hemagglutinin tag in-frame with Alt-ATXN1 in ATXN1 cDNA and showed in cell culture the co-expression of both ATXN1 and Alt-ATXN1. Remarkably, Alt-ATXN1 colocalized and interacted with ATXN1 in nuclear inclusions. In contrast, in the absence of ATXN1 expression, Alt-ATXN1 displays a homogenous nucleoplasmic distribution. Alt-ATXN1 interacts with poly(A)+ RNA, and its nuclear localization is dependent on RNA transcription. Polyclonal antibodies raised against Alt-ATXN1 confirmed the expression of Alt-ATXN1 in human cerebellum expressing ATXN1. These results demonstrate that human ATXN1 gene is a dual coding sequence and that ATXN1 interacts with and controls the subcellular distribution of Alt-ATXN1. PMID:23760502

  9. The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics.

    PubMed

    Kannan, Harilakshmi; Fan, Sumin; Patel, Deendayal; Bossis, Ioannis; Zhang, Yan-Jin

    2009-07-01

    Hepatitis E virus (HEV) is the causative agent of hepatitis E, a major form of viral hepatitis in developing countries. The open reading frame 3 (ORF3) of HEV encodes a phosphoprotein with a molecular mass of approximately 13 kDa (hereinafter called vp13). vp13 is essential for establishing HEV infections in animals, yet its exact functions are still obscure. Our current study found evidence showing interaction between vp13 and microtubules. Live-cell confocal fluorescence microscopy revealed both filamentous and punctate distribution patterns of vp13 in cells transfected with recombinant ORF3 reporter plasmids. The filamentous pattern of vp13 was altered by a microtubule-destabilizing drug. The vp13 expression led to elevation of acetylated alpha-tubulin, indicating increased microtubule stability. Its association with microtubules was further supported by its presence in microtubule-containing pellets in microtubule isolation assays. Exposure of these pellets to a high-salt buffer caused release of the vp13 to the supernatant, suggesting an electrostatic interaction. Inclusion of ATP and GTP in the lysis buffer during microtubule isolation also disrupted the interaction, indicating its sensitivity to the nucleotides. Further assays showed that motor proteins are needed for the vp13 association with the microtubules because disruption of dynein function abolished the vp13 filamentous pattern. Analysis of ORF3 deletion constructs found that both of the N-terminal hydrophobic domains of vp13 are needed for the interaction. Thus, our findings suggest that the vp13 interaction with microtubules might be needed for establishment of an HEV infection.

  10. Alterations of the three short open reading frames in the Rous sarcoma virus leader RNA modulate viral replication and gene expression.

    PubMed Central

    Moustakas, A; Sonstegard, T S; Hackett, P B

    1993-01-01

    The Rous sarcoma virus (RSV) leader RNA has three short open reading frames (ORF1 to ORF3) which are conserved in all avian sarcoma-leukosis retroviruses. Effects on virus propagation were determined following three types of alterations in the ORFs: (i) replacement of AUG initiation codons in order to prohibit ORF translation, (ii) alterations of the codon context around the AUG initiation codon to enhance translation of the normally silent ORF3, and (iii) elongation of the ORF coding sequences. Mutagenesis of the AUG codons for ORF1 and ORF2 (AUG1 and AUG2) singly or together delayed the onset of viral replication and cell transformation. In contrast, mutagenesis of AUG3 almost completely suppressed these viral activities. Mutagenesis of ORF3 to enhance its translation inhibited viral propagation. When the mutant ORF3 included an additional frameshift mutation which extended the ORF beyond the initiation site for the gag, gag-pol, and env proteins, host cells were initially transformed but died soon thereafter. Elongation of ORF1 from 7 to 62 codons led to the accumulation of transformation-defective virus with a delayed onset of replication. In contrast, viruses with elongation of ORF1 from 7 to 30 codons, ORF2 from 16 to 48 codons, or ORF3 from 9 to 64 codons, without any alterations in the AUG context, exhibited wild-type phenotypes. These results are consistent with a model that translation of the ORFs is necessary to facilitate virus production. Images PMID:7685415

  11. Identification of Genes Encoding Conjugated Bile Salt Hydrolase and Transport in Lactobacillus johnsonii 100-100

    PubMed Central

    Elkins, Christopher A.; Savage, Dwayne C.

    1998-01-01

    Cytosolic extracts of Lactobacillus johnsonii 100-100 (previously reported as Lactobacillus sp. strain 100-100) contain four heterotrimeric isozymes composed of two peptides, α and β, with conjugated bile salt hydrolase (BSH) activity. We now report cloning, from the genome of strain 100-100, a 2,977-bp DNA segment that expresses BSH activity in Escherichia coli. The sequencing of this segment showed that it contained one complete and two partial open reading frames (ORFs). The 3′ partial ORF (927 nucleotides) was predicted by BLAST and confirmed with 5′ and 3′ deletions to be a BSH gene. Thermal asymmetric interlaced PCR was used to extend and complete the 948-nucleotide sequence of the BSH gene 3′ of the cloned segment. The predicted amino acid sequence of the 5′ partial ORF (651 nucleotides) was about 80% similar to the C-terminal half of the largest, complete ORF (1,353 nucleotides), and these two putative proteins were similar to several amine, multidrug resistance, and sugar transport proteins of the major facilitator superfamily. E. coli DH5α cells transformed with a construct containing these ORFs, in concert with an extracellular factor produced by strain 100-100, demonstrated levels of uptake of [14C]taurocholic acid that were increased as much as threefold over control levels. [14C]Cholic acid was taken up in similar amounts by strain DH5α pSportI (control) and DH5α p2000 (transport clones). These findings support a hypothesis that the ORFs are conjugated bile salt transport genes which may be arranged in an operon with BSH genes. PMID:9721268

  12. A new open reading frame in the genome of the cyanobacterium Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lysenko, E.S.; Ogarkova, O.A.; Tarasov, V.A.

    1995-02-01

    A new open reading frame ORF242, coding for a 26.47-kDa polypeptide, was found in a DNA fragment of the cyanobacterium Synechocystis 6803, transforming a photosynthetic mutant to photoautotrophy and having homology with plant chloroplast DNA. In the 5{prime} flanking region of ORF242, consensus sequences characteristic of a functioning gene were found. One copy of ORF242 is present in the Synechocystis 6803 genome. Insertion inactivation of ORF242 does not lead to a decrease in photosynthetic activity in cells of cyanobacteria but may influence the ratio between active complexes of photosystems I and II. 22 refs., 6 figs., 2 tabs.

  13. No Evidence for Natural Selection on Endogenous Borna-Like Nucleoprotein Elements after the Divergence of Old World and New World Monkeys

    PubMed Central

    Kobayashi, Yuki; Horie, Masayuki; Tomonaga, Keizo; Suzuki, Yoshiyuki

    2011-01-01

    Endogenous Borna-like nucleoprotein (EBLNs) elements were recently discovered as non-retroviral RNA virus elements derived from bornavirus in the genomes of various animals. Most of EBLNs appeared to be defective, but some of primate EBLN-1 to -4, which appeared to be originated from four independent integrations of bornavirus nucleoprotein (N) gene, have retained an open reading frame (ORF) for more than 40 million years. It was therefore possible that primate EBLNs have encoded functional proteins during evolution. To examine this possibility, natural selection operating on all ORFs of primate EBLN-1 to -4 was examined by comparing the rates of synonymous and nonsynonymous substitutions. The expected number of premature termination codons in EBLN-1 generated after the divergence of Old World and New World monkeys under the selective neutrality was also examined by the Monte Carlo simulation. As a result, natural selection was not identified for the entire region as well as parts of ORFs in the pairwise analysis of primate EBLN-1 to -4 and for any branch of the phylogenetic trees for EBLN-1 to -4 after the divergence of Old World and New World monkeys. Computer simulation also indicated that the absence of premature termination codon in the present-day EBLN-1 does not necessarily support the maintenance of function after the divergence of Old World and New World monkeys. These results suggest that EBLNs have not generally encoded functional proteins after the divergence of Old World and New World monkeys. PMID:21912690

  14. No evidence for natural selection on endogenous borna-like nucleoprotein elements after the divergence of Old World and New World monkeys.

    PubMed

    Kobayashi, Yuki; Horie, Masayuki; Tomonaga, Keizo; Suzuki, Yoshiyuki

    2011-01-01

    Endogenous Borna-like nucleoprotein (EBLNs) elements were recently discovered as non-retroviral RNA virus elements derived from bornavirus in the genomes of various animals. Most of EBLNs appeared to be defective, but some of primate EBLN-1 to -4, which appeared to be originated from four independent integrations of bornavirus nucleoprotein (N) gene, have retained an open reading frame (ORF) for more than 40 million years. It was therefore possible that primate EBLNs have encoded functional proteins during evolution. To examine this possibility, natural selection operating on all ORFs of primate EBLN-1 to -4 was examined by comparing the rates of synonymous and nonsynonymous substitutions. The expected number of premature termination codons in EBLN-1 generated after the divergence of Old World and New World monkeys under the selective neutrality was also examined by the Monte Carlo simulation. As a result, natural selection was not identified for the entire region as well as parts of ORFs in the pairwise analysis of primate EBLN-1 to -4 and for any branch of the phylogenetic trees for EBLN-1 to -4 after the divergence of Old World and New World monkeys. Computer simulation also indicated that the absence of premature termination codon in the present-day EBLN-1 does not necessarily support the maintenance of function after the divergence of Old World and New World monkeys. These results suggest that EBLNs have not generally encoded functional proteins after the divergence of Old World and New World monkeys.

  15. Role of the open reading frames of Rous sarcoma virus leader RNA in translation and genome packaging.

    PubMed Central

    Donzé, O; Spahr, P F

    1992-01-01

    The Rous sarcoma virus (RSV) RNA leader sequence carries three open reading frames (uORFs) upstream of the AUG initiator of the gag gene. We studied, in vivo, the role of these uORFs by changing two or three nucleotides of the three AUGs or by deleting the first uORF. Our results show that (i) unlike most previously characterized uORFs, which decrease translation, the first uORF (AUG1) of RSV acts as an enhancer of translation, since absence of the first AUG decreased translation; AUG3 also modulates translation, probably by interfering with scanning ribosomes as described for other upstream ORFs, and mutation of AUG2 had no effect on translation. (ii) Mutation of each of the upstream AUGs lowered the infectivity of progeny virions. (iii) Unexpectedly, mutation of AUG1 and/or AUG3 dramatically reduced RNA packaging by 50-to 100-fold, unlike mutation of AUG2 which did not alter RNA packaging efficiency. Additional mutants in the vicinity of uORF1 and uORF3 were constructed in order to elucidate the mechanism by which uORFs affect RNA packaging: a translation model requiring uORFs 1 and 3, and involving ribosome pausing at AUG 3 is discussed. Images PMID:1327749

  16. Termination and read-through proteins encoded by genome segment 9 of Colorado tick fever virus.

    PubMed

    Mohd Jaafar, Fauziah; Attoui, Houssam; De Micco, Philippe; De Lamballerie, Xavier

    2004-08-01

    Genome segment 9 (Seg-9) of Colorado tick fever virus (CTFV) is 1884 bp long and contains a large open reading frame (ORF; 1845 nt in length overall), although a single in-frame stop codon (at nt 1052-1054) reduces the ORF coding capacity by approximately 40 %. However, analyses of highly conserved RNA sequences in the vicinity of the stop codon indicate that it belongs to a class of 'leaky terminators'. The third nucleotide positions in codons situated both before and after the stop codon, shows the highest variability, suggesting that both regions are translated during virus replication. This also suggests that the stop signal is functionally leaky, allowing read-through translation to occur. Indeed, both the truncated 'termination' protein and the full-length 'read-through' protein (VP9 and VP9', respectively) were detected in CTFV-infected cells, in cells transfected with a plasmid expressing only Seg-9 protein products, and in the in vitro translation products from undenatured Seg-9 ssRNA. The ratios of full-length and truncated proteins generated suggest that read-through may be down-regulated by other viral proteins. Western blot analysis of infected cells and purified CTFV showed that VP9 is a structural component of the virion, while VP9' is a non-structural protein.

  17. Diversity of virophages in metagenomic data sets.

    PubMed

    Zhou, Jinglie; Zhang, Weijia; Yan, Shuling; Xiao, Jinzhou; Zhang, Yuanyuan; Li, Bailin; Pan, Yingjie; Wang, Yongjie

    2013-04-01

    Virophages, e.g., Sputnik, Mavirus, and Organic Lake virophage (OLV), are unusual parasites of giant double-stranded DNA (dsDNA) viruses, yet little is known about their diversity. Here, we describe the global distribution, abundance, and genetic diversity of virophages based on analyzing and mapping comprehensive metagenomic databases. The results reveal a distinct abundance and worldwide distribution of virophages, involving almost all geographical zones and a variety of unique environments. These environments ranged from deep ocean to inland, iced to hydrothermal lakes, and human gut- to animal-associated habitats. Four complete virophage genomic sequences (Yellowstone Lake virophages [YSLVs]) were obtained, as was one nearly complete sequence (Ace Lake Mavirus [ALM]). The genomes obtained were 27,849 bp long with 26 predicted open reading frames (ORFs) (YSLV1), 23,184 bp with 21 ORFs (YSLV2), 27,050 bp with 23 ORFs (YSLV3), 28,306 bp with 34 ORFs (YSLV4), and 17,767 bp with 22 ORFs (ALM). The homologous counterparts of five genes, including putative FtsK-HerA family DNA packaging ATPase and genes encoding DNA helicase/primase, cysteine protease, major capsid protein (MCP), and minor capsid protein (mCP), were present in all virophages studied thus far. They also shared a conserved gene cluster comprising the two core genes of MCP and mCP. Comparative genomic and phylogenetic analyses showed that YSLVs, having a closer relationship to each other than to the other virophages, were more closely related to OLV than to Sputnik but distantly related to Mavirus and ALM. These findings indicate that virophages appear to be widespread and genetically diverse, with at least 3 major lineages.

  18. Genomic analysis of Oryctes rhinoceros virus reveals genetic relatedness to Heliothis zea virus 1.

    PubMed

    Wang, Y; van Oers, M M; Crawford, A M; Vlak, J M; Jehle, J A

    2007-01-01

    Oryctes rhinoceros virus (OrV) is an unassigned invertebrate dsDNA virus with enveloped and rod-shaped virions. Two cloned PstI fragments, C and D, of OrV DNA have been sequenced, consisting of 19,805 and 17,146 bp, respectively, and comprising about 30% of the OrV genome. For each of the two fragments, 20 open reading frames (ORFs) of 150 nucleotides or greater with no or minimal overlap were predicted. Ten of the predicted 40 ORFs revealed significant similarities to Heliothis zea virus 1 (HzV-1) ORFs, of which five, lef-4, lef-5, pif-2, dnapol and ac81, are homologues of conserved core genes in the family Baculoviridae, and one is homologous to baculovirus rr1. A baculovirus odv-e66 homologue is also present in OrV. Five ORFs encode proteins homologous to cellular thymidylate synthase (TS), patatin-like phospholipase, mitochondrial carrier protein, Ser/Thr protein phosphatase, and serine protease, respectively. TS is phylogenetically related to those of eukarya and nucleo-cytoplasmic large dsDNA viruses. However, the remaining 25 ORFs have poor or no sequence matches with the current databases. Both the gene content of the sequenced fragments and the phylogenetic analyses of the viral DNA polymerase suggest that OrV is most closely related to HzV-1. These findings and the re-evaluation of the relationship of HzV-1 to baculoviruses suggest that a new virus genus, Nudivirus, should be established, containing OrV and HzV-1, which are genetically related to members of the family Baculoviridae.

  19. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal “Shock” Reveal Generic and Specific Metal Responses

    PubMed Central

    Wheaton, Garrett H.; Mukherjee, Arpan

    2016-01-01

    ABSTRACT The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by “shocking” M. sedula with representative metals (Co2+, Cu2+, Ni2+, UO22+, Zn2+) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu2+ (259 ORFs, 106 Cu2+-specific ORFs) and Zn2+ (262 ORFs, 131 Zn2+-specific ORFs) triggered the largest responses, followed by UO22+ (187 ORFs, 91 UO22+-specific ORFs), Ni2+ (93 ORFs, 25 Ni2+-specific ORFs), and Co2+ (61 ORFs, 1 Co2+-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu2+ (6-fold) but also in response to UO22+ (4-fold) and Zn2+ (9-fold). Cu2+ challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu2+ resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics. PMID:27208114

  20. Non-contiguous genome sequence of Mycobacterium simiae strain DSM 44165(T.).

    PubMed

    Sassi, Mohamed; Robert, Catherine; Raoult, Didier; Drancourt, Michel

    2013-01-01

    Mycobacterium simiae is a non-tuberculosis mycobacterium causing pulmonary infections in both immunocompetent and imunocompromized patients. We announce the draft genome sequence of M. simiae DSM 44165(T). The 5,782,968-bp long genome with 65.15% GC content (one chromosome, no plasmid) contains 5,727 open reading frames (33% with unknown function and 11 ORFs sizing more than 5000 -bp), three rRNA operons, 52 tRNA, one 66-bp tmRNA matching with tmRNA tags from Mycobacterium avium, Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium microti, Mycobacterium marinum, and Mycobacterium africanum and 389 DNA repetitive sequences. Comparing ORFs and size distribution between M. simiae and five other Mycobacterium species M. simiae clustered with M. abscessus and M. smegmatis. A 40-kb prophage was predicted in addition to two prophage-like elements, 7-kb and 18-kb in size, but no mycobacteriophage was seen after the observation of 10(6) M. simiae cells. Fifteen putative CRISPRs were found. Three genes were predicted to encode resistance to aminoglycosides, betalactams and macrolide-lincosamide-streptogramin B. A total of 163 CAZYmes were annotated. M. simiae contains ESX-1 to ESX-5 genes encoding for a type-VII secretion system. Availability of the genome sequence may help depict the unique properties of this environmental, opportunistic pathogen.

  1. The Role of Severe Acute Respiratory Syndrome (SARS)-Coronavirus Accessory Proteins in Virus Pathogenesis

    PubMed Central

    McBride, Ruth; Fielding, Burtram C.

    2012-01-01

    A respiratory disease caused by a novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), was first reported in China in late 2002. The subsequent efficient human-to-human transmission of this virus eventually affected more than 30 countries worldwide, resulting in a mortality rate of ~10% of infected individuals. The spread of the virus was ultimately controlled by isolation of infected individuals and there has been no infections reported since April 2004. However, the natural reservoir of the virus was never identified and it is not known if this virus will re-emerge and, therefore, research on this virus continues. The SARS-CoV genome is about 30 kb in length and is predicted to contain 14 functional open reading frames (ORFs). The genome encodes for proteins that are homologous to known coronavirus proteins, such as the replicase proteins (ORFs 1a and 1b) and the four major structural proteins: nucleocapsid (N), spike (S), membrane (M) and envelope (E). SARS-CoV also encodes for eight unique proteins, called accessory proteins, with no known homologues. This review will summarize the current knowledge on SARS-CoV accessory proteins and will include: (i) expression and processing; (ii) the effects on cellular processes; and (iii) functional studies. PMID:23202509

  2. Divergence of RNA polymerase α subunits in angiosperm plastid genomes is mediated by genomic rearrangement

    PubMed Central

    Blazier, J. Chris; Ruhlman, Tracey A.; Weng, Mao-Lun; Rehman, Sumaiyah K.; Sabir, Jamal S. M.; Jansen, Robert K.

    2016-01-01

    Genes for the plastid-encoded RNA polymerase (PEP) persist in the plastid genomes of all photosynthetic angiosperms. However, three unrelated lineages (Annonaceae, Passifloraceae and Geraniaceae) have been identified with unusually divergent open reading frames (ORFs) in the conserved region of rpoA, the gene encoding the PEP α subunit. We used sequence-based approaches to evaluate whether these genes retain function. Both gene sequences and complete plastid genome sequences were assembled and analyzed from each of the three angiosperm families. Multiple lines of evidence indicated that the rpoA sequences are likely functional despite retaining as low as 30% nucleotide sequence identity with rpoA genes from outgroups in the same angiosperm order. The ratio of non-synonymous to synonymous substitutions indicated that these genes are under purifying selection, and bioinformatic prediction of conserved domains indicated that functional domains are preserved. One of the lineages (Pelargonium, Geraniaceae) contains species with multiple rpoA-like ORFs that show evidence of ongoing inter-paralog gene conversion. The plastid genomes containing these divergent rpoA genes have experienced extensive structural rearrangement, including large expansions of the inverted repeat. We propose that illegitimate recombination, not positive selection, has driven the divergence of rpoA. PMID:27087667

  3. Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes

    PubMed Central

    Parida, Manmohan; Nabeshima, Takeshi; Yu, Fuxun; Thuy, Nguyen Thanh; Inoue, Shingo; Ito, Takashi; Okamoto, Kenta; Ichinose, Akitoyo; Snijder, Eric J.; Morita, Kouichi; Gorbalenya, Alexander E.

    2011-01-01

    Nidoviruses with large genomes (26.3–31.7 kb; ‘large nidoviruses’), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7–15.7 kb; ‘small nidoviruses’). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3′-5′exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60–80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3′-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3′-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2′-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that – in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses. PMID:21931546

  4. Generating an Open Reading Frame (ORF) Entry Clone and Destination Clone.

    PubMed

    Reece-Hoyes, John S; Walhout, Albertha J M

    2018-01-02

    This protocol describes using the Gateway recombinatorial cloning system to create an Entry clone carrying an open reading frame (ORF) and then to transfer the ORF into a Destination vector. In this example, BP recombination is used to clone an ORF from a cDNA source into the Donor vector pDONR 221. The ORF from the resulting Entry clone is then transferred into the Destination vector pDEST-15; the product (the Destination clone) will express the ORF as an amino-terminal GST-fusion. The technique can be used as a guide for cloning any other DNA fragment of interest-a promoter sequence or 3' untranslated region (UTR), for example-with substitutions of different genetic material such as genomic DNA, att sites, and vectors as required. The series of constructions and transformations requires 9-15 d, not including time that may be required for sequence confirmation, if desired/necessary. © 2018 Cold Spring Harbor Laboratory Press.

  5. Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples†

    PubMed Central

    Grant, Susan; Grant, William D.; Cowan, Don A.; Jones, Brian E.; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at −20°C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes. PMID:16391035

  6. Complete genomic sequence of a Tobacco rattle virus isolate from Michigan-grown potatoes.

    PubMed

    Crosslin, James M; Hamm, Philip B; Kirk, William W; Hammond, Rosemarie W

    2010-04-01

    Tobacco rattle virus (TRV) causes stem mottle on potato leaves and necrotic arcs and rings in potato tubers, known as corky ringspot disease. Recently, TRV was reported in Michigan potato tubers cv. FL1879 exhibiting corky ringspot disease. Sequence analysis of the RNA-1-encoded 16-kDa gene of the Michigan isolate, designated MI-1, revealed homology to TRV isolates from Florida and Washington. Here, we report the complete genomic sequence of RNA-1 (6,791 nt) and RNA-2 (3,685 nt) of TRV MI-1. RNA-1 is predicted to contain four open reading frames, and the genome structure and phylogenetic analyses of the RNA-1 nucleotide sequence revealed significant homologies to the known sequences of other TRV-1 isolates. The relationships based on the full-length nucleotide sequence were different from than those based on the 16-kDa gene encoded on genomic RNA-1 and reflect sequence variation within a 20-25-aa residue region of the 16-kDa protein. MI-1 RNA-2 is predicted to contain three ORFs, encoding the coat protein (CP), a 37.6-kDa protein (ORF 2b), and a 33.6-kDa protein (ORF 2c). In addition, it contains a region of similarity to the 3' terminus of RNA-1, including a truncated portion of the 16-kDa cistron. Phylogenetic analysis of RNA-2, based on a comparison of nucleotide sequences with other members of the genus Tobravirus, indicates that TRV MI-1 and other North American isolates cluster as a distinct group. TRV M1-1 is only the second North American isolate for which there is a complete sequence of the genome, and it is distinct from the North American isolate TRV ORY. The relationship of the TRV MI-1 isolate to other tobravirus isolates is discussed.

  7. A 21.7 kb DNA segment on the left arm of yeast chromosome XIV carries WHI3, GCR2, SPX18, SPX19, an homologue to the heat shock gene SSB1 and 8 new open reading frames of unknown function.

    PubMed

    Jonniaux, J L; Coster, F; Purnelle, B; Goffeau, A

    1994-12-01

    We report the amino acid sequence of 13 open reading frames (ORF > 299 bp) located on a 21.7 kb DNA segment from the left arm of chromosome XIV of Saccharomyces cerevisiae. Five open reading frames had been entirely or partially sequenced previously: WHI3, GCR2, SPX19, SPX18 and a heat shock gene similar to SSB1. The products of 8 other ORFs are new putative proteins among which N1394 is probably a membrane protein. N1346 contains a leucine zipper pattern and the corresponding ORF presents an HAP (global regulator of respiratory genes) upstream activating sequence in the promoting region. N1386 shares homologies with the DNA structure-specific recognition protein family SSRPs and the corresponding ORF is preceded by an MCB (MluI cell cycle box) upstream activating factor.

  8. High copy number of highly similar mariner-like transposons in planarian (Platyhelminthe): evidence for a trans-phyla horizontal transfer.

    PubMed

    Garcia-Fernàndez, J; Bayascas-Ramírez, J R; Marfany, G; Muñoz-Mármol, A M; Casali, A; Baguñà, J; Saló, E

    1995-05-01

    Several DNA sequences similar to the mariner element were isolated and characterized in the platyhelminthe Dugesia (Girardia) tigrina. They were 1,288 bp long, flanked by two 32 bp-inverted repeats, and contained a single 339 amino acid open-reading frame (ORF) encoding the transposase. The number of copies of this element is approximately 8,000 per haploid genome, constituting a member of the middle-repetitive DNA of Dugesia tigrina. Sequence analysis of several elements showed a high percentage of conservation between the different copies. Most of them presented an intact ORF and the standard signals of actively expressed genes, which suggests that some of them are or have recently been functional transposons. The high degree of similarity shared with other mariner elements from some arthropods, together with the fact that this element is undetectable in other planarian species, strongly suggests a case of horizontal transfer between these two distant phyla.

  9. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    PubMed Central

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  10. The genome of the Lactobacillus sanfranciscensis temperate phage EV3

    PubMed Central

    2013-01-01

    Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641

  11. ORGANIZATION OF THE nif GENES OF THE NONHETEROCYSTOUS CYANOBACTERIUM TRICHODESMIUM SP. IMS101.

    PubMed

    Dominic, Benny; Zani, Sabino; Chen, Yi-Bu; Mellon, Mark T; Zehr, Jonathan P

    2000-08-26

    An approximately 16-kb fragment of the Trichodesmium sp. IMS101 (a nonheterocystous filamentous cyanobacterium) "conventional"nif gene cluster was cloned and sequenced. The gene organization of the Trichodesmium and Anabaena variabilis vegetative (nif 2) nitrogenase gene clusters spanning the region from nif B to nif W are similar except for the absence of two open reading frames (ORF3 and ORF1) in Trichodesmium. The Trichodesmium nif EN genes encode a fused Nif EN polypeptide that does not appear to be processed into individual Nif E and Nif N polypeptides. Fused nif EN genes were previously found in the A. variabilis nif 2 genes, but we have found that fused nif EN genes are widespread in the nonheterocystous cyanobacteria. Although the gene organization of the nonheterocystous filamentous Trichodesmium nif gene cluster is very similar to that of the A. variabilis vegetative nif 2 gene cluster, phylogenetic analysis of nif sequences do not support close relatedness of Trichodesmium and A. variabilis vegetative (nif 2) nitrogenase genes.

  12. Characterization of pLAC1, a cryptic plasmid isolated from Lactobacillus acidipiscis and comparative analysis with its related plasmids.

    PubMed

    Asteri, Ioanna-Areti; Papadimitriou, Konstantinos; Boutou, Effrossyni; Anastasiou, Rania; Pot, Bruno; Vorgias, Constantinos E; Tsakalidou, Effie

    2010-07-15

    The pLAC1 plasmid of Lactobacillus acidipiscis ACA-DC 1533, a strain isolated from traditional Kopanisti cheese, was characterised. Nucleotide sequence analysis revealed a circular molecule of 3478bp with a G+C content of 37.2%. Ab initio annotation indicated four putative open reading frames (orfs). orf1 and orf4 were found to encode a replication initiation protein (Rep) and a mobilization protein (Mob), respectively. The deduced products of orf2 and orf3 revealed no significant homology to other known proteins. However, in silico examination of the plasmid sequence supported the existence of a novel operon that includes rep, orf2 and orf3 in pLAC1 and that this operon is highly conserved also in plasmids pLB925A02, pSMA23, pLC88 and pC7. RT-PCR experiments allowed us to verify that these three genes are co-transcribed as a single polycistronic mRNA species. Furthermore, phylogenetic analysis of pLAC1 Rep and Mob proteins demonstrated that they may have derived from different plasmid origins, suggesting that pLAC1 is a product of a modular evolution process. Comparative analysis of full length nucleotide sequences of pLAC1 and related Lactobacillus plasmids showed that pLAC1 shares a very similar replication backbone with pLB925A02, pSMA23 and pLC88. In contrast, mob of pLAC1 was almost identical with the respective gene of plasmids pLAB1000, pLB4 and pPB1. These findings lead to the conclusion that pLAC1 acquired mob probably via an ancestral recombination event. Our overall work highlights the importance of characterizing plasmids deriving from non-starter 'wild' isolates in order to better appreciate plasmid divergence and evolution of lactic acid bacteria. 2010 Elsevier B.V. All rights reserved.

  13. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    DTIC Science & Technology

    2008-06-01

    proteins during embryogene- sis, neurodevelopment and cancer. Part of their function is through the repression of CKIs, including p16. Some functions...protein 2 Other AUTS2 autism susceptibility candidate 2 C1orf24 chromosome 1 open reading frame 24 C20orf97 chromosome 20 open reading frame 97

  14. Regulation of hTERT Expression and Function in Newly Immortalized p53(+) Human Mammary Epithelial Cell Lines

    DTIC Science & Technology

    2007-06-01

    embryogene- sis, neurodevelopment and cancer. Part of their function is through the repression of CKIs, including p16. Some functions have been attributed to...AUTS2 autism susceptibility candidate 2 C1orf24 chromosome 1 open reading frame 24 C20orf97 chromosome 20 open reading frame 97 DKFZP566B183

  15. The P1N-PISPO trans-Frame Gene of Sweet Potato Feathery Mottle Potyvirus Is Produced during Virus Infection and Functions as an RNA Silencing Suppressor

    PubMed Central

    Mingot, Ares; Valli, Adrián; Rodamilans, Bernardo; San León, David; Baulcombe, David C.; García, Juan Antonio

    2016-01-01

    ABSTRACT The positive-sense RNA genome of Sweet potato feathery mottle virus (SPFMV) (genus Potyvirus, family Potyviridae) contains a large open reading frame (ORF) of 3,494 codons translatable as a polyprotein and two embedded shorter ORFs in the −1 frame: PISPO, of 230 codons, and PIPO, of 66 codons, located in the P1 and P3 regions, respectively. PISPO is specific to some sweet potato-infecting potyviruses, while PIPO is present in all potyvirids. In SPFMV these two extra ORFs are preceded by conserved G2A6 motifs. We have shown recently that a polymerase slippage mechanism at these sites could produce transcripts bringing these ORFs in frame with the upstream polyprotein, thus leading to P1N-PISPO and P3N-PIPO products (B. Rodamilans, A. Valli, A. Mingot, D. San Leon, D. B. Baulcombe, J. J. Lopez-Moya, and J.A. Garcia, J Virol 89:6965–6967, 2015, doi:10.1128/JVI.00337-15). Here, we demonstrate by liquid chromatography coupled to mass spectrometry that both P1 and P1N-PISPO are produced during viral infection and coexist in SPFMV-infected Ipomoea batatas plants. Interestingly, transient expression of SPFMV gene products coagroinfiltrated with a reporter gene in Nicotiana benthamiana revealed that P1N-PISPO acts as an RNA silencing suppressor, a role normally associated with HCPro in other potyviruses. Moreover, mutation of WG/GW motifs present in P1N-PISPO abolished its silencing suppression activity, suggesting that the function might require interaction with Argonaute components of the silencing machinery, as was shown for other viral suppressors. Altogether, our results reveal a further layer of complexity of the RNA silencing suppression activity within the Potyviridae family. IMPORTANCE Gene products of potyviruses include P1, HCPro, P3, 6K1, CI, 6K2, VPg/NIaPro, NIb, and CP, all derived from the proteolytic processing of a large polyprotein, and an additional P3N-PIPO product, with the PIPO segment encoded in a different frame within the P3 cistron. In sweet potato feathery mottle virus (SPFMV), another out-of-frame element (PISPO) was predicted within the P1 region. We have shown recently that a polymerase slippage mechanism can generate the transcript variants with extra nucleotides that could be translated into P1N-PISPO and P3N-PIPO. Now, we demonstrate by mass spectrometry analysis that P1N-PISPO is indeed produced in SPFMV-infected plants, in addition to P1. Interestingly, while in other potyviruses the suppressor of RNA silencing is HCPro, we show here that P1N-PISPO exhibited this activity in SPFMV, revealing how the complexity of the gene content could contribute to supply this essential function in members of the Potyviridae family. PMID:26792740

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindner, I.; Ehlers, B.; Noack, S.

    The porcine lymphotropic herpesviruses (PLHV) are discussed as possible risk factors in xenotransplantation because of the high prevalence of PLHV-1, PLHV-2 and PLHV-3 in pig populations world-wide and the fact that PLHV-1 has been found to be associated with porcine post-transplant lymphoproliferative disease. To provide structural and functional knowledge on the PLHV immediate-early (IE) transactivator genes, the central regions of the PLHV genomes were characterized by genome walking, sequence and splicing analysis. Three spliced genes were identified (ORF50, ORFA6/BZLF1{sub h}, ORF57) encoding putative IE transactivators, homologous to (i) ORF50 and BRLF1/Rta (ii) K8/K-bZIP and BZLF1/Zta and (iii) ORF57 and BMLF1more » of HHV-8 and EBV, respectively. Expressed as myc-tag or HA-tag fusion proteins, they were located to the cellular nucleus. In reporter gene assays, several PLHV-promoters were mainly activated by PLHV-1 ORF50, to a lower level by PLHV-1 ORFA6/BZLF1{sub h} and not by PLHV-1 ORF57. However, the ORF57-encoded protein acted synergistically on ORF50-mediated activation.« less

  17. β-Lactamase Genes of the Penicillin-Susceptible Bacillus anthracis Sterne Strain

    PubMed Central

    Chen, Yahua; Succi, Janice; Tenover, Fred C.; Koehler, Theresa M.

    2003-01-01

    Susceptibility to penicillin and other β-lactam-containing compounds is a common trait of Bacillus anthracis. β-lactam agents, particularly penicillin, have been used worldwide to treat anthrax in humans. Nonetheless, surveys of clinical and soil-derived strains reveal penicillin G resistance in 2 to 16% of isolates tested. Bacterial resistance to β-lactam agents is often mediated by production of one or more types of β-lactamases that hydrolyze the β-lactam ring, inactivating the antimicrobial agent. Here, we report the presence of two β-lactamase (bla) genes in the penicillin-susceptible Sterne strain of B. anthracis. We identified bla1 by functional cloning with Escherichia coli. bla1 is a 927-nucleotide (nt) gene predicted to encode a protein with 93.8% identity to the type I β-lactamase gene of Bacillus cereus. A second gene, bla2, was identified by searching the unfinished B. anthracis chromosome sequence database of The Institute for Genome Research for open reading frames (ORFs) predicted to encode β-lactamases. We found a partial ORF predicted to encode a protein with significant similarity to the carboxy-terminal end of the type II β-lactamase of B. cereus. DNA adjacent to the 5′ end of the partial ORF was cloned using inverse PCR. bla2 is a 768-nt gene predicted to encode a protein with 92% identity to the B. cereus type II enzyme. The bla1 and bla2 genes confer ampicillin resistance to E. coli and Bacillus subtilis when cloned individually in these species. The MICs of various antimicrobial agents for the E. coli clones indicate that the two β-lactamase genes confer different susceptibility profiles to E. coli; bla1 is a penicillinase, while bla2 appears to be a cephalosporinase. The β-galactosidase activities of B. cereus group species harboring bla promoter-lacZ transcriptional fusions indicate that bla1 is poorly transcribed in B. anthracis, B. cereus, and B. thuringiensis. The bla2 gene is strongly expressed in B. cereus and B. thuringiensis and weakly expressed in B. anthracis. Taken together, these data indicate that the bla1 and bla2 genes of the B. anthracis Sterne strain encode functional β-lactamases of different types, but gene expression is usually not sufficient to confer resistance to β-lactam agents. PMID:12533457

  18. Poly-dipeptides encoded by the C9ORF72 repeats block global protein translation.

    PubMed

    Kanekura, Kohsuke; Yagi, Takuya; Cammack, Alexander J; Mahadevan, Jana; Kuroda, Masahiko; Harms, Matthew B; Miller, Timothy M; Urano, Fumihiko

    2016-05-01

    The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Characterization of a venom gland-associated rhabdovirus in the parasitoid wasp Diachasmimorpha longicaudata.

    PubMed

    Simmonds, Tyler J; Carrillo, Daniel; Burke, Gaelen R

    2016-01-01

    Parasitoid wasps reproduce by laying their eggs on or inside of a host insect, which triggers a defense response in the host insect that kills the developing wasp. To counteract the host's lethal response, some parasitoid wasps are associated with symbiotic viruses that alter host metabolism and development to promote successful development of the wasp embryo. These symbiotic viruses display a number of characteristics that differ from those of pathogenic viruses, but are poorly understood with the exception of one group, the polydnaviruses. Here, we characterize the genome of a non-polydnavirus associated with parasitoid wasps, Diachasmimorpha longicaudata rhabdovirus (DlRhV), and assess its role as a potential mutualistic virus. Our results show that the DlRhV genome contains six open reading frames (ORFs). Three ORFs show sequence homology to known viral genes and one ORF encodes a previously identified protein, called parasitism-specific protein 24 (PSP24), that has been hypothesized to play a role in promoting successful parasitism by D. longicaudata. We constructed a phylogeny that shows that DlRhV is most closely related to other insect-infecting rhabdoviruses. Finally, we report that DlRhV infection does not occur in all populations of D. longicaudata, and is not required for successful parasitism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mutations in C4orf26, Encoding a Peptide with In Vitro Hydroxyapatite Crystal Nucleation and Growth Activity, Cause Amelogenesis Imperfecta

    PubMed Central

    Parry, David A.; Brookes, Steven J.; Logan, Clare V.; Poulter, James A.; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C.; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E.; Carr, Ian M.; Taylor, Graham R.; Johnson, Colin A.; Aldred, Michael J.; Dixon, Michael J.; Wright, J. Tim; Kirkham, Jennifer; Inglehearn, Chris F.; Mighell, Alan J.

    2012-01-01

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein’s phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis. PMID:22901946

  1. Nucleotide sequence of RNA2 of Lettuce big-vein virus and evidence for a possible transcription termination/initiation strategy similar to that of rhabdoviruses.

    PubMed

    Sasaya, Takahide; Kusaba, Shinnosuke; Ishikawa, Koichi; Koganezawa, Hiroki

    2004-09-01

    Lettuce big-vein virus (LBVV) is the type species of the genus Varicosavirus and is a two-segmented negative-sense single-stranded RNA virus. The larger LBVV genome segment (RNA1) consists of 6797 nt and encodes an L polymerase that resembles that of rhabdoviruses. Here, the nucleotide sequence of the second LBVV genome segment (RNA2) is reported. LBVV RNA2 consisted of 6081 nt and contained antisense information for five major ORFs: ORF1 (nt 210-1403 on the viral RNA), ORF2 (nt 1493-2494), ORF3 (nt 2617-3489), ORF4 (nt 3843-4337) and ORF5 (nt 4530-5636), which had coding capacities of 44, 36, 32, 19 and 41 kDa, respectively. The gene at the 3' end of the viral RNA encoded a coat protein, while the other four genes encoded proteins of unknown functions. The 3'-terminal 11 nt of LBVV RNA2 were identical to those of LBVV RNA1, and the 5'-terminal regions of LBVV RNA1 and RNA2 contained a long common nucleotide stretch of about 100 nt. Northern blot analysis using probes specific to the individual ORFs revealed that LBVV transcribes monocistronic RNAs. Analysis of the terminal sequences, and primer extension and RNase H digestion analysis of LBVV mRNAs, suggested that LBVV utilizes a transcription termination/initiation strategy comparable with that of rhabdoviruses.

  2. A New Zamilon-like Virophage Partial Genome Assembled from a Bioreactor Metagenome

    PubMed Central

    Bekliz, Meriem; Verneau, Jonathan; Benamar, Samia; Raoult, Didier; La Scola, Bernard; Colson, Philippe

    2015-01-01

    Virophages replicate within viral factories inside the Acanthamoeba cytoplasm, and decrease the infectivity and replication of their associated giant viruses. Culture isolation and metagenome analyses have suggested that they are common in our environment. By screening metagenomic databases in search of amoebal viruses, we detected virophage-related sequences among sequences generated from the same non-aerated bioreactor metagenome as recently screened by another team for virophage capsid-encoding genes. We describe here the assembled partial genome of a virophage closely related to Zamilon, which infects Acanthamoeba with mimiviruses of lineages B and C but not A. Searches for sequences related to amoebal giant viruses, other Megavirales representatives and virophages were conducted using BLAST against this bioreactor metagenome (PRJNA73603). Comparative genomic and phylogenetic analyses were performed using sequences from previously identified virophages. A total of 72 metagenome contigs generated from the bioreactor were identified as best matching with sequences from Megavirales representatives, mostly Pithovirus sibericum, pandoraviruses and amoebal mimiviruses from three lineages A–C, as well as from virophages. In addition, a partial genome from a Zamilon-like virophage, we named Zamilon 2, was assembled. This genome has a size of 6716 base pairs, corresponding to 39% of the Zamilon genome, and comprises partial or full-length homologs for 15 Zamilon predicted open reading frames (ORFs). Mean nucleotide and amino acid identities for these 15 Zamilon 2 ORFs with their Zamilon counterparts were 89% (range, 81–96%) and 91% (range, 78–99%), respectively. Notably, these ORFs included two encoding a capsid protein and a packaging ATPase. Comparative genomics and phylogenetic analyses indicated that the partial genome was that of a new Zamilon-like virophage. Further studies are needed to gain better knowledge of the tropism and prevalence of virophages in our biosphere and in humans. PMID:26640459

  3. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae.

    PubMed

    Moon, Jaewoong; Liu, Z Lewis

    2015-04-01

    The aldehyde reductase gene ARI1 is a recently characterized member of an intermediate subfamily within the short-chain dehydrogenase/reductase (SDR) superfamily that clarified mechanisms of in situ detoxification of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde by Saccharomyces cerevisiae. Uncharacterized open reading frames (ORFs) are common among tolerant candidate genes identified for lignocellulose-to-advanced biofuels conversion. This study presents partially purified proteins of two ORFs, YDR541C and YGL039W, and direct enzyme assay evidence against aldehyde-inhibitory compounds commonly encountered during lignocellulosic biomass fermentation processes. Each of the partially purified proteins encoded by these ORFs showed a molecular mass of approximately 38 kDa, similar to Ari1p, a protein encoded by aldehyde reductase gene. Both proteins demonstrated strong aldehyde reduction activities toward 14 aldehyde substrates, with high levels of reduction activity for Ydr541cp toward both aromatic and aliphatic aldehydes. While Ydr541cp was observed to have a significantly higher specific enzyme activity at 20 U/mg using co-factor NADPH, Ygl039wp displayed a NADH preference at 25 U/mg in reduction of butylaldehyde. Amino acid sequence analysis identified a characteristic catalytic triad, Ser, Tyr and Lys; a conserved catalytic motif of Tyr-X-X-X-Lys; and a cofactor-binding sequence motif, Gly-X-X-Gly-X-X-Ala, near the N-terminus that are shared by Ydr541cp, Ygl039wp, Yol151wp/GRE2 and Ari1p. Findings of aldehyde reductase genes contribute to the yeast gene annotation and aids development of the next-generation biocatalyst for advanced biofuels production. Copyright © 2015 John Wiley & Sons, Ltd.

  4. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    PubMed

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  5. Open reading frames associated with cancer in the dark matter of the human genome.

    PubMed

    Delgado, Ana Paula; Brandao, Pamela; Chapado, Maria Julia; Hamid, Sheilin; Narayanan, Ramaswamy

    2014-01-01

    The uncharacterized proteins (open reading frames, ORFs) in the human genome offer an opportunity to discover novel targets for cancer. A systematic analysis of the dark matter of the human proteome for druggability and biomarker discovery is crucial to mining the genome. Numerous data mining tools are available to mine these ORFs to develop a comprehensive knowledge base for future target discovery and validation. Using the Genetic Association Database, the ORFs of the human dark matter proteome were screened for evidence of association with neoplasms. The Phenome-Genome Integrator tool was used to establish phenotypic association with disease traits including cancer. Batch analysis of the tools for protein expression analysis, gene ontology and motifs and domains was used to characterize the ORFs. Sixty-two ORFs were identified for neoplasm association. The expression Quantitative Trait Loci (eQTL) analysis identified thirteen ORFs related to cancer traits. Protein expression, motifs and domain analysis and genome-wide association studies verified the relevance of these OncoORFs in diverse tumors. The OncoORFs are also associated with a wide variety of human diseases and disorders. Our results link the OncoORFs to diverse diseases and disorders. This suggests a complex landscape of the uncharacterized proteome in human diseases. These results open the dark matter of the proteome to novel cancer target research. Copyright© 2014, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  6. Biosynthesis of actinorhodin and related antibiotics: discovery of alternative routes for quinone formation encoded in the act gene cluster.

    PubMed

    Okamoto, Susumu; Taguchi, Takaaki; Ochi, Kozo; Ichinose, Koji

    2009-02-27

    All known benzoisochromanequinone (BIQ) biosynthetic gene clusters carry a set of genes encoding a two-component monooxygenase homologous to the ActVA-ORF5/ActVB system for actinorhodin biosynthesis in Streptomyces coelicolor A3(2). Here, we conducted molecular genetic and biochemical studies of this enzyme system. Inactivation of actVA-ORF5 yielded a shunt product, actinoperylone (ACPL), apparently derived from 6-deoxy-dihydrokalafungin. Similarly, deletion of actVB resulted in accumulation of ACPL, indicating a critical role for the monooxygenase system in C-6 oxygenation, a biosynthetic step common to all BIQ biosyntheses. Furthermore, in vitro, we showed a quinone-forming activity of the ActVA-ORF5/ActVB system in addition to that of a known C-6 monooxygenase, ActVA-ORF6, by using emodinanthrone as a model substrate. Our results demonstrate that the act gene cluster encodes two alternative routes for quinone formation by C-6 oxygenation in BIQ biosynthesis.

  7. A reliable combination method to identification and typing of epidemic and endemic clones among clinical isolates of Acinetobacter baumannii.

    PubMed

    Piran, Arezoo; Shahcheraghi, Fereshteh; Solgi, Hamid; Rohani, Mahdi; Badmasti, Farzad

    2017-10-01

    The multi-drug resistant (MDR) Acinetobacter baumannii as an important nosocomial pathogen has emerged a global health concern in recent years. In this study, we applied three easier, faster, and cost-effective methods including PCR-based open reading frames (ORFs) typing, sequence typing of bla OXA-51-like and RAPD-PCR method to rapid typing of A. baumannii strains. Taken together in the present study the results of ORFs typing, PCR-sequencing of bla OXA-51-like genes and MLST sequence typing revealed there was a high prevalence (62%, 35/57) of ST2 as international and successful clone which detected among clinical isolates of multi-drug resistant A. baumannii with ORF pattern B and bla OXA-66 gene. Only 7% (4/57) of MDR isolates belonged to ST1 with ORF pattern A and bla OXA-69 gene. Interestingly, we detected singleton ST513 (32%, 18/57) that encoded bla OXA-90 and showed the ORF pattern H as previously isolated in Middle East. Moreover, our data showed RAPD-PCR method can detect divergent strains of the STs. The Cl-1, Cl-2, Cl-3, Cl-4, Cl-10, Cl-11, Cl-12, Cl-13 and Cl-14 belonged to ST2. While the Cl-6, Cl-7, Cl-8 and Cl-9 belonged to ST513. Only Cl-5 belonged to ST1. It seems that the combination of these methods have more discriminatory than any method separately and could be effectively applied to rapid detection of the clonal complex (CC) of A. baumannii strains without performing of MLST or PFGE. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Recombinant Hepatitis E virus like particles can function as RNA nanocarriers.

    PubMed

    Panda, Subrat Kumar; Kapur, Neeraj; Paliwal, Daizy; Durgapal, Hemlata

    2015-06-24

    Assembled virus-like particles (VLPs) without genetic material, with structure similar to infectious virions, have been successfully used as vaccines. We earlier described in vitro assembly, characterisation and tissue specific receptor dependent Clathrin mediated entry of empty HEV VLPs, produced from Escherichia coli expressed HEV capsid protein (pORF2). Similar VLP's have been described as a potential candidate vaccine (Hecolin) against HEV. We have attempted to use such recombinant assembled Hepatitis E virus (HEV) VLPs as a carrier for heterologous RNA with protein coding sequence fused in-frame with HEV 5' region (containing cap and encapsidation signal) and investigated, if the relevant protein could be expressed and elicit an immune response in vivo. In vitro transcribed red fluorescent protein (RFP)/Hepatitis B virus surface antigen (HBsAg) RNA, fused to 5'-HEV sequence with cap and encapsidation signal (1-249 nt), was packaged into the recombinant HEV-VLPs and incubated with five different cell lines (Huh7, A549, Vero, HeLa and SiHa). The pORF2-VLPs could specifically transfer exogenous coding RNA into Huh7 and A549 cells. In vivo, Balb/c mice were immunized (intramuscular injections) with 100 µg pORF2-VLP encapsidated with 5'-methyl-G-HEV (1-249 nt)-HBsAg RNA, blood samples were collected and screened by ELISA for anti-pORF2 and anti-HBsAg antibodies. Humoral immune response could be elicited in Balb/c mice against both HEV capsid protein and cargo RNA encoded HBsAg protein. These findings suggest that other than being a possible vaccine, HEV pORF2-VLPs can be used as a promising non-replicative tissue specific gene delivery system.

  9. Diversity of Virophages in Metagenomic Data Sets

    PubMed Central

    Zhou, Jinglie; Zhang, Weijia; Yan, Shuling; Xiao, Jinzhou; Zhang, Yuanyuan; Li, Bailin; Pan, Yingjie

    2013-01-01

    Virophages, e.g., Sputnik, Mavirus, and Organic Lake virophage (OLV), are unusual parasites of giant double-stranded DNA (dsDNA) viruses, yet little is known about their diversity. Here, we describe the global distribution, abundance, and genetic diversity of virophages based on analyzing and mapping comprehensive metagenomic databases. The results reveal a distinct abundance and worldwide distribution of virophages, involving almost all geographical zones and a variety of unique environments. These environments ranged from deep ocean to inland, iced to hydrothermal lakes, and human gut- to animal-associated habitats. Four complete virophage genomic sequences (Yellowstone Lake virophages [YSLVs]) were obtained, as was one nearly complete sequence (Ace Lake Mavirus [ALM]). The genomes obtained were 27,849 bp long with 26 predicted open reading frames (ORFs) (YSLV1), 23,184 bp with 21 ORFs (YSLV2), 27,050 bp with 23 ORFs (YSLV3), 28,306 bp with 34 ORFs (YSLV4), and 17,767 bp with 22 ORFs (ALM). The homologous counterparts of five genes, including putative FtsK-HerA family DNA packaging ATPase and genes encoding DNA helicase/primase, cysteine protease, major capsid protein (MCP), and minor capsid protein (mCP), were present in all virophages studied thus far. They also shared a conserved gene cluster comprising the two core genes of MCP and mCP. Comparative genomic and phylogenetic analyses showed that YSLVs, having a closer relationship to each other than to the other virophages, were more closely related to OLV than to Sputnik but distantly related to Mavirus and ALM. These findings indicate that virophages appear to be widespread and genetically diverse, with at least 3 major lineages. PMID:23408616

  10. Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians

    PubMed Central

    Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G.; Pirro, Stacy; Lavrov, Dennis V.

    2012-01-01

    In nearly all animals, mitochondrial DNA (mtDNA) consists of a single circular molecule that encodes several subunits of the protein complexes involved in oxidative phosphorylation as well as part of the machinery for their expression. By contrast, mtDNA in species belonging to Medusozoa (one of the two major lineages in the phylum Cnidaria) comprises one to several linear molecules. Many questions remain on the ubiquity of linear mtDNA in medusozoans and the mechanisms responsible for its evolution, replication, and transcription. To address some of these questions, we determined the sequences of nearly complete linear mtDNA from 24 species representing all four medusozoan classes: Cubozoa, Hydrozoa, Scyphozoa, and Staurozoa. All newly determined medusozoan mitochondrial genomes harbor the 17 genes typical for cnidarians and map as linear molecules with a high degree of gene order conservation relative to the anthozoans. In addition, two open reading frames (ORFs), polB and ORF314, are identified in cubozoan, schyphozoan, staurozoan, and trachyline hydrozoan mtDNA. polB belongs to the B-type DNA polymerase gene family, while the product of ORF314 may act as a terminal protein that binds telomeres. We posit that these two ORFs are remnants of a linear plasmid that invaded the mitochondrial genomes of the last common ancestor of Medusozoa and are responsible for its linearity. Hydroidolinan hydrozoans have lost the two ORFs and instead have duplicated cox1 at each end of their mitochondrial chromosome(s). Fragmentation of mtDNA occurred independently in Cubozoa and Hydridae (Hydrozoa, Hydroidolina). Our broad sampling allows us to reconstruct the evolutionary history of linear mtDNA in medusozoans. PMID:22113796

  11. Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein.

    PubMed

    Fang, Ying; Treffers, Emmely E; Li, Yanhua; Tas, Ali; Sun, Zhi; van der Meer, Yvonne; de Ru, Arnoud H; van Veelen, Peter A; Atkins, John F; Snijder, Eric J; Firth, Andrew E

    2012-10-23

    Programmed -1 ribosomal frameshifting (-1 PRF) is a gene-expression mechanism used to express many viral and some cellular genes. In contrast, efficient natural utilization of -2 PRF has not been demonstrated previously in eukaryotic systems. Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on -1 PRF. These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins. Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame. We show here that this ORF is translated via -2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2. Expression of nsp2TF in PRRSV-infected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF. Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient -2 PRF. Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype. Our findings demonstrate that -2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression.

  12. Determination of the complete genomic sequence and analysis of the gene products of the virus of Spring Viremia of Carp, a fish rhabdovirus.

    PubMed

    Hoffmann, Bernd; Schütze, Heike; Mettenleiter, Thomas C

    2002-03-20

    The complete genome of spring viremia of carp virus (SVCV) was cloned and the sequence of 11019 nucleotides was determined. It contains five open reading frames (ORF's) encoding for the nucleoprotein N; phosphoprotein P; matrix protein M; glycoprotein G; and the viral RNA dependent RNA polymerase L. Genes are organised in the order typical for rhabdoviruses: 3'-N-P-M-G-L-5'. The short leader and trailer regions of SVCV exhibit inverse complementarity and are similar to the respective 3' and 5' ends of the genome of vesicular stomatitis virus. To verify the predicted open reading frames proteins were expressed in bacteria and analysed with a polyclonal anti-SVCV serum. Furthermore, monospecific antisera against the distinct viral proteins were generated. Comparison of genome and protein confirm the assignment of SVCV to the genus Vesiculovirus.

  13. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.

    PubMed

    Wheaton, Garrett H; Mukherjee, Arpan; Kelly, Robert M

    2016-08-01

    The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Identification of a two-component signal transduction system involved in fimbriation of Porphyromonas gingivalis.

    PubMed

    Hayashi, J; Nishikawa, K; Hirano, R; Noguchi, T; Yoshimura, F

    2000-01-01

    Porphyromonas gingivalis, a periodontopathogen, is an oral anaerobic gram-negative bacterium with numerous fimbriae on the cell surface. Fimbriae have been considered to be an important virulence factor in this organism. We analyzed the genomic DNA of transposon-induced, fimbria-deficient mutants derived from ATCC 33277 and found that seven independent mutants had transposon insertions within the same restriction fragment. Cloning and sequencing of the disrupted region from one of the mutants revealed two adjacent open reading frames (ORFs) which seemed to encode a two-component signal transduction system. We also found that six of the mutants had insertions in a gene, fimS, a homologue of the genes encoding sensor kinase, and that the insertion in the remaining one disrupted the gene immediately downstream, fimR, a homologue of the response regulator genes in other bacteria. These findings suggest that this two-component regulatory system is involved in fimbriation of P. gingivalis.

  15. Minimum probe length for unique identification of all open reading frames in a microbial genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokhansanj, B A; Ng, J; Fitch, J P

    2000-03-05

    In this paper, we determine the minimum hybridization probe length to uniquely identify at least 95% of the open reading frame (ORF) in an organism. We analyze the whole genome sequences of 17 species, 11 bacteria, 4 archaea, and 2 eukaryotes. We also present a mathematical model for minimum probe length based on assuming that all ORFs are random, of constant length, and contain an equal distribution of bases. The model accurately predicts the minimum probe length for all species, but it incorrectly predicts that all ORFs may be uniquely identified. However, a probe length of just 9 bases ismore » adequate to identify over 95% of the ORFs for all 15 prokaryotic species we studied. Using a minimum probe length, while accepting that some ORFs may not be identified and that data will be lost due to hybridization error, may result in significant savings in microarray and oligonucleotide probe design.« less

  16. Purification and Genetic Characterization of Enterocin I from Enterococcus faecium 6T1a, a Novel Antilisterial Plasmid-Encoded Bacteriocin Which Does Not Belong to the Pediocin Family of Bacteriocins

    PubMed Central

    Floriano, Belén; Ruiz-Barba, José L.; Jiménez-Díaz, Rufino

    1998-01-01

    Enterocin I (ENTI) is a novel bacteriocin produced by Enterococcus faecium 6T1a, a strain originally isolated from a Spanish-style green olive fermentation. The bacteriocin is active against many olive spoilage and food-borne gram-positive pathogenic bacteria, including clostridia, propionibacteria, and Listeria monocytogenes. ENTI was purified to homogeneity by ammonium sulfate precipitation, binding to an SP-Sepharose fast-flow column, and phenyl-Sepharose CL-4B and C2/C18 reverse-phase chromatography. The purification procedure resulted in a final yield of 954% and a 170,000-fold increase in specific activity. The primary structure of ENTI was determined by amino acid and nucleotide sequencing. ENTI consists of 44 amino acids and does not show significant sequence similarity with any other previously described bacteriocin. Sequencing of the entI structural gene, which is located on the 23-kb plasmid pEF1 of E. faecium 6T1a, revealed the absence of a leader peptide at the N-terminal region of the gene product. A second open reading frame, ORF2, located downstream of entI, encodes a putative protein that is 72.7% identical to ENTI. entI and ORF2 appear to be cotranscribed, yielding an mRNA of ca. 0.35 kb. A gene encoding immunity to ENTI was not identified. However, curing experiments demonstrated that both enterocin production and immunity are conferred by pEF1. PMID:9835578

  17. A Novel Virus Detected in Papillomas and Carcinomas of the Endangered Western Barred Bandicoot (Perameles bougainville) Exhibits Genomic Features of both the Papillomaviridae and Polyomaviridae▿

    PubMed Central

    Woolford, Lucy; Rector, Annabel; Van Ranst, Marc; Ducki, Andrea; Bennett, Mark D.; Nicholls, Philip K.; Warren, Kristin S.; Swan, Ralph A.; Wilcox, Graham E.; O'Hara, Amanda J.

    2007-01-01

    Conservation efforts to prevent the extinction of the endangered western barred bandicoot (Perameles bougainville) are currently hindered by a progressively debilitating cutaneous and mucocutaneous papillomatosis and carcinomatosis syndrome observed in captive and wild populations. In this study, we detected a novel virus, designated the bandicoot papillomatosis carcinomatosis virus type 1 (BPCV1), in lesional tissue from affected western barred bandicoots using multiply primed rolling-circle amplification and PCR with the cutaneotropic papillomavirus primer pairs FAP59/FAP64 and AR-L1F8/AR-L1R9. Sequencing of the BPCV1 genome revealed a novel prototype virus exhibiting genomic properties of both the Papillomaviridae and the Polyomaviridae. Papillomaviral properties included a large genome size (∼7.3 kb) and the presence of open reading frames (ORFs) encoding canonical L1 and L2 structural proteins. The genomic organization in which structural and nonstructural proteins were encoded on different strands of the double-stranded genome and the presence of ORFs encoding the nonstructural proteins large T and small t antigens were, on the other hand, typical polyomaviral features. BPCV1 may represent the first member of a novel virus family, descended from a common ancestor of the papillomaviruses and polyomaviruses recognized today. Alternatively, it may represent the product of ancient recombination between members of these two virus families. The discovery of this virus could have implications for the current taxonomic classification of Papillomaviridae and Polyomaviridae and can provide further insight into the evolution of these ancient virus families. PMID:17898069

  18. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid.

    PubMed

    Miyamoto, Kazuaki; Li, Jihong; Sayeed, Sameera; Akimoto, Shigeru; McClane, Bruce A

    2008-11-01

    Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid.

  19. In planta expression of HIV-1 p24 protein using an RNA plant virus-based expression vector.

    PubMed

    Zhang, G; Leung, C; Murdin, L; Rovinski, B; White, K A

    2000-02-01

    Plant viruses show significant potential as expression vectors for the production of foreign proteins (e.g., antigens) in plants. The HIV-1 p24 nucleocapsid protein is an important early marker of HIV infection and has been used as an antigen in the development of HIV vaccines. Toward developing a plant-based expression system for the production of p24, we have investigated the use of a (positive)-strand RNA plant virus, tomato bushy stunt virus (TBSV), as an expression vector. The HIV p24 open reading frame (ORF) was introduced into a cloned cDNA copy of the TBSV genome as an in-frame fusion with a 5'-terminal portion of the TBSV coat protein ORF. In vitro-generated RNA transcripts corresponding to the engineered virus vector were infectious when inoculated into plant protoplasts; Northern and Western blot analyses verified the accumulation of a predicted p24-encoding viral subgenomic mRNA and the production of p24 fusion product. Whole-plant infections with the viral vector led to the accumulation of p24 fusion protein in inoculated leaves, which cross-reacted with p24-specific antibodies, thus confirming the maintenance of key antigenic determinants. This study is the first to demonstrate that TBSV can be engineered to express a complete foreign protein of clinical importance. Strategies for optimizing protein yield from this viral vector are discussed.

  20. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro.

    PubMed

    Gao, Zhangzhao; Dong, Qinfang; Jiang, Yonghou; Opriessnig, Tanja; Wang, Jingxiu; Quan, Yanping; Yang, Zongqi

    2014-04-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent of PCV associated disease (PCVAD). During previous in vitro studies, 11 RNAs and four viral proteins have been detected in PCV2-infected cells. Open reading frame (ORF) 4 is 180bp in length and has been identified at the transcription and the translation level. It overlaps completely with ORF3, which has a role in virus-induced apoptosis. In this study, start codon mutations (M1-PCV2) or in-frame termination mutations (M2-PCV2) were utilized to construct two ORF4-protein deficient viruses aiming to investigate its role in viral infection. The abilities of M1-PCV2 and M2-PCV2 to replicate, transcribe, express viral proteins, and to cause cellular apoptosis were evaluated. Viral DNA replication curves supported that the ORF4 protein is not essential for viral replication, but inhibits viral replication in the early stage of infection. Comparison of the expression level of ORF3 mRNA among wild-type and ORF4-deficient viruses in infected PK-15 cell demonstrated enhanced ORF3 transcription of both ORF4 mutants suggesting that the ORF4 protein may play an important role by restricting ORF3 transcription thereby preventing virus-induced apoptosis. This is further confirmed by the significantly higher caspase 3 and 8 activities in M1-PCV2 and M2-PCV2 compared to wild-type PCV2. Furthermore, the role of ORF4 in cell apoptosis and a possible interaction with the ORF1 associated Rep protein could perhaps explain the rapid viral growth in the early stage of infection and the higher expression level of ORF1 mRNA in ORF4 protein deficient PCV2 mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Identification and expression analysis of two pro-inflammatory cytokines, TNF-α and IL-8, in cobia (Rachycentron canadum L.) in response to Streptococcus dysgalactiae infection.

    PubMed

    Nguyen, Thuy Thi Thu; Nguyen, Hai Trong; Wang, Pei-Chyi; Chen, Shih-Chu

    2017-08-01

    Tumor necrosis factor-alpha (TNF-α) and interleukin-8 (IL-8/CXCL8) play pivotal roles in mediating inflammatory responses to invading pathogens. In this study, we identified and analyzed expressions of cobia TNF-α and IL-8 during Streptococcus dysgalactiae infection. The cloned cDNA transcript of cobia TNF-α comprised of 1281 base pairs (bp), with a 774 bp open reading frame (ORF) encoding 257 amino acids. The deduced amino acid sequence of cobia TNF-α showed a close relationship (84% similarity) with TNF-α of yellowtail amberjack. The cloned IL-8 cDNA sequence was 828 bp long, including a 300-bp ORF encoding 99 amino acids. The deduced amino acid sequence of cobia IL-8 shared 90% identity with IL-8 of striped trumpeter. Cobia challenged with a virulent S. dysgalactiae strain displayed an early significant up-regulation of TNF-α and IL-8 in head kidney, liver, and spleen. Notably, IL-8 expression level increased dramatically in the liver at the severe stage of infection (72 h). In conclusion, a better understanding of TNF-α and IL-8 allows more detailed investigation of immune responses in cobia and furthers study on controlling the infectious disease caused by S. dysgalactiae. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular cloning and expression analysis of major intrinsic protein gene in Chlamydomonas sp. ICE-L from Antarctica.

    PubMed

    Li, Lulu; An, Meiling; Qu, Changfeng; Zheng, Zhou; Wang, Yibin; Liu, Fangming; He, Yingying; He, Xiaodong; Miao, Jinlai

    2017-07-01

    Major intrinsic proteins (MIPs) form channels facilitating the passive transport of water and other small polar molecules across membranes. In this study, the complete open reading frame (ORF) of CiMIP1 (GenBank ID KY316061) encoding one kind of MIPs in the Antarctic ice microalga Chlamydomonas sp. ICE-L is successfully cloned using RACE. In addition, the expression patterns of CiMIP1 gene under different conditions of temperature and salinity are determined by qRT-PCR. The ORF of CiMIP1 gene encodes 308 amino acids, and the deduced amino acid sequence shows 74% homology with Chlamydomonas reinhardtii CrMIP1 (GenBank number 159471952). Phylogenetic analysis reveals that algal MIPs are divided into seven groups, and it is speculated that CiMIP1 most likely belongs to the MIPD subfamily. In addition, we are surprised to find that a third NPA motif exists at the carboxy terminus of the target protein except for two highly conserved ones. Expression analysis shows that the transcriptional levels of CiMIP1 gene are upregulated under either lower temperature or higher temperature and high salinity. In summary, the results together have provide new insights into the newly discovered gene in green algae and lay the foundation for further studies on the adaptation mechanism of Chlamydomonas sp. ICE-L to abiotic stresses.

  3. Complete Sequence of a 184-Kilobase Catabolic Plasmid from Sphingomonas aromaticivorans F199†

    PubMed Central

    Romine, Margaret F.; Stillwell, Lisa C.; Wong, Kwong-Kwok; Thurston, Sarah J.; Sisk, Ellen C.; Sensen, Christoph; Gaasterland, Terry; Fredrickson, Jim K.; Saffer, Jeffrey D.

    1999-01-01

    The complete 184,457-bp sequence of the aromatic catabolic plasmid, pNL1, from Sphingomonas aromaticivorans F199 has been determined. A total of 186 open reading frames (ORFs) are predicted to encode proteins, of which 79 are likely directly associated with catabolism or transport of aromatic compounds. Genes that encode enzymes associated with the degradation of biphenyl, naphthalene, m-xylene, and p-cresol are predicted to be distributed among 15 gene clusters. The unusual coclustering of genes associated with different pathways appears to have evolved in response to similarities in biochemical mechanisms required for the degradation of intermediates in different pathways. A putative efflux pump and several hypothetical membrane-associated proteins were identified and predicted to be involved in the transport of aromatic compounds and/or intermediates in catabolism across the cell wall. Several genes associated with integration and recombination, including two group II intron-associated maturases, were identified in the replication region, suggesting that pNL1 is able to undergo integration and excision events with the chromosome and/or other portions of the plasmid. Conjugative transfer of pNL1 to another Sphingomonas sp. was demonstrated, and genes associated with this function were found in two large clusters. Approximately one-third of the ORFs (59 of them) have no obvious homology to known genes. PMID:10049392

  4. Heat Shock Response of Archaeoglobus fulgidus†

    PubMed Central

    Rohlin, Lars; Trent, Jonathan D.; Salmon, Kirsty; Kim, Unmi; Gunsalus, Robert P.; Liao, James C.

    2005-01-01

    The heat shock response of the hyperthermophilic archaeon Archaeoglobus fulgidus strain VC-16 was studied using whole-genome microarrays. On the basis of the resulting expression profiles, approximately 350 of the 2,410 open reading frames (ORFs) (ca. 14%) exhibited increased or decreased transcript abundance. These span a range of cell functions, including energy production, amino acid metabolism, and signal transduction, where the majority are uncharacterized. One ORF called AF1298 was identified that contains a putative helix-turn-helix DNA binding motif. The gene product, HSR1, was expressed and purified from Escherichia coli and was used to characterize specific DNA recognition regions upstream of two A. fulgidus genes, AF1298 and AF1971. The results indicate that AF1298 is autoregulated and is part of an operon with two downstream genes that encode a small heat shock protein, Hsp20, and cdc48, an AAA+ ATPase. The DNase I footprints using HSR1 suggest the presence of a cis-binding motif upstream of AF1298 consisting of CTAAC-N5-GTTAG. Since AF1298 is negatively regulated in response to heat shock and encodes a protein only distantly related to the N-terminal DNA binding domain of Phr of Pyrococcus furiosus, these results suggest that HSR1 and Phr may belong to an evolutionarily diverse protein family involved in heat shock regulation in hyperthermophilic and mesophilic Archaea organisms. PMID:16109946

  5. 5’-Terminal AUGs in Escherichia coli mRNAs with Shine-Dalgarno Sequences: Identification and Analysis of Their Roles in Non-Canonical Translation Initiation

    PubMed Central

    Beck, Heather J.; Fleming, Ian M. C.

    2016-01-01

    Analysis of the Escherichia coli transcriptome identified a unique subset of messenger RNAs (mRNAs) that contain a conventional untranslated leader and Shine-Dalgarno (SD) sequence upstream of the gene’s start codon while also containing an AUG triplet at the mRNA’s 5’- terminus (5’-uAUG). Fusion of the coding sequence specified by the 5’-terminal putative AUG start codon to a lacZ reporter gene, as well as primer extension inhibition assays, reveal that the majority of the 5’-terminal upstream open reading frames (5’-uORFs) tested support some level of lacZ translation, indicating that these mRNAs can function both as leaderless and canonical SD-leadered mRNAs. Although some of the uORFs were expressed at low levels, others were expressed at levels close to that of the respective downstream genes and as high as the naturally leaderless cI mRNA of bacteriophage λ. These 5’-terminal uORFs potentially encode peptides of varying lengths, but their functions, if any, are unknown. In an effort to determine whether expression from the 5’-terminal uORFs impact expression of the immediately downstream cistron, we examined expression from the downstream coding sequence after mutations were introduced that inhibit efficient 5’-uORF translation. These mutations were found to affect expression from the downstream cistrons to varying degrees, suggesting that some 5’-uORFs may play roles in downstream regulation. Since the 5’-uAUGs found on these conventionally leadered mRNAs can function to bind ribosomes and initiate translation, this indicates that canonical mRNAs containing 5’-uAUGs should be examined for their potential to function also as leaderless mRNAs. PMID:27467758

  6. Expression of the barley stripe mosaic virus RNA beta "triple gene block".

    PubMed

    Zhou, H; Jackson, A O

    1996-02-15

    Genomic RNA beta of barley strip mosaic virus (BSMV) contains four defined open reading frames (ORFs). These include the coat protein (beta a) and a "triple gene block" consisting of the beta b, beta c, and beta d ORFs that overlap one another. Two subgenomic beta RNAs (sgRNA beta 1 and sgRNA beta 2) with sizes of 2.5 and 0.96 kb were identified in BSMV-infected protoplasts, and their transcription initiation sites were mapped to nucleotides 789 and 2327, respectively, of RNA beta by primer extension experiments. In a cell-free wheat germ translation system, genomic RNA beta served as a mRNA only for the 22-kDa coat protein, and sgRNA beta 1 directed synthesis of only the 58-kDA beta b protein. However, with sgRNA beta 2, three proteins with sizes of 14, 17, and 23 kDa were synthesized. Both the 14- and the 23-kDa proteins were recognized by the beta d antibodies in vitro and in vivo. These results demonstrated that the 14-kDa protein was encoded by the beta d ORF and suggested that the 23-kDa protein, designated beta d', is a readthrough product of the amber stop codon of the beta d ORF. Mutagenesis of sgRNA beta 2 revealed that the 17-kDa protein was a product of the beta c ORF. Expression of sgRNA beta 1 and sgRNA beta 2 was also investigated with the chloramphenicol acetyl transferase (CAT) reporter gene in protoplasts coinfected with RNAs alpha and gamma plus chimeric RNA beta derivatives containing the CAT gene in-frame with the beta b, beta c, beta d, or beta d' ORFs. Elimination of the sgRNA beta 1 promoter abolished CAT expression from the beta b-CAT chimeric RNA, and removal of the sgRNA beta 2 promoter prevented CAT expression from the beta c-CAT, beta d-CAT, and beta d'-CAT chimeric RNAs. Taken together, these results demonstrate that the BSMV coat protein is the sole translation product of the genomic RNA beta, whereas sgRNA beta 1 serves as a messenger for translation of the beta b protein, and sgRNA beta 2 functions as a messenger for translation of beta c and beta d and the newly discovered beta d' protein. Additional mutagenesis experiments indicate that beta c is translated by a leaky scanning mechanism.

  7. Characterization of L1 ORF1p self-interaction and cellular localization using a mammalian two-hybrid system.

    PubMed

    Sokolowski, Mark; deHaro, Dawn; Christian, Claiborne M; Kines, Kristine J; Belancio, Victoria P

    2013-01-01

    Long INterspersed Element-1 (LINE-1, L1) is an active retrotransposon that mobilizes using a ribonucleoprotein particle (RNP) intermediate composed of the full-length bicistronic L1 mRNA and the two proteins (ORF1p and ORF2p) encoded by that mRNA. ORF1p and ORF2p demonstrate cis-preference for their encoding mRNA. Previous studies of ORF1p, purified from bacterial and insect cells demonstrated that this protein forms trimers in vitro. While valuable for understanding ORF1p function, these in vitro approaches do not provide any information on ORF1p self-interaction in the context of mammalian cells. We used a mammalian two-hybrid (M2H) system in order to study L1 ORF1p self-interaction in human and mouse cells. We demonstrate that the M2H system successfully detects human and mouse ORF1p self-interactions in transiently transfected mammalian cells. We also generated mouse and human ORF1p-specific antibodies to characterize the expression of ORF1p fusion proteins used in the M2H system. Using these antibodies, we demonstrate that ORF1p interaction in trans leads to the formation of heterodimers that are expected to produce a positive signal in the M2H system. Although the role for L1 ORF1p cis-preference in L1 mobilization is established, the impact of ability of ORF1pto interact in trans on the L1 replication cycle is not known. Furthermore, western blot analysis of ORF1p generated by a full-length L1, wild type ORF1, or a codon-optimized ORF1 expression vector is detected in the nucleus. In contrast, the addition of a tag to the N-terminus of the mouse and human ORF1 proteins can significantly alter the subcellular localization in a tag-specific manner. These data support that nuclear localization of ORF1p may contribute to L1 (and potentially the SINE Alu) RNP nuclear access in the host cell.

  8. Identification of three genotypes of sugarcane yellow leaf virus causing yellow leaf disease from India and their molecular characterization.

    PubMed

    Viswanathan, R; Balamuralikrishnan, M; Karuppaiah, R

    2008-12-01

    Sugarcane yellow leaf virus (SCYLV) that causes yellow leaf disease (YLD) in sugarcane (recently reported in India) belongs to Polerovirus. Detailed studies were conducted to characterize the virus based on partial open reading frames (ORFs) 1 and 2 and complete ORFs 3 and 4 sequences in their genome. Reverse-transcriptase polymerase chain reaction (RT-PCR) was performed on 48 sugarcane leaf samples to detect the virus using a specific set of primers. Of the 48 samples, 36 samples (field samples with and without foliar symptoms) including 10 meristem culture derived plants were found to be positive to SCYLV infection. Additionally, an aphid colony collected from symptomatic sugarcane in the field was also found to be SCYLV positive. The amplicons from 22 samples were cloned, sequenced and acronymed as SCYLV-CB isolates. The nucleotide (nt) and amino acid (aa) sequence comparison showed a significant variation between SCYLV-CB and the database sequences at nt (3.7-5.1%) and aa (3.2-5.3%) sequence level in the CP coding region. However, the database sequences comprising isolates of three reported genotypes, viz., BRA, PER and REU, were observed with least nt and aa sequence dissimilarities (0.0-1.6%). The phylogenetic analyses of the overlapping ORFs (ORF 3 and ORF 4) of SCYLV encoding CP and MP determined in this study and additional sequences of 26 other isolates including an Indian isolate (SCYLV-IND) available from GenBank were distributed in four phylogenetic clusters. The SCYLV-CB isolates from this study lineated in two clusters (C1 and C2) and all the other isolates from the worldwide locations into another two clusters (C3 and C4). The sequence variation of the isolates in this study with the database isolates, even in the least variable region of the SCYLV genome, showed that the population existing in India is significantly different from rest of the world. Further, comparison of partial sequences encoding for ORFs 1 and 2 revealed that YLD in sugarcane in India is caused by at least three genotypes, viz., CUB, IND and BRA-PER, of which a majority of the samples were found infected with Cuban genotype (CUB) and lesser by IND and BRA-PER genotypes. The genotype IND was identified as a new genotype from this study, and this was found to have significant variation with the reported genotypes.

  9. Nucleotide sequence and genetic organization of barley stripe mosaic virus RNA gamma.

    PubMed

    Gustafson, G; Hunter, B; Hanau, R; Armour, S L; Jackson, A O

    1987-06-01

    The complete nucleotide sequences of RNA gamma from the Type and ND18 strains of barley stripe mosaic virus (BSMV) have been determined. The sequences are 3164 (Type) and 2791 (ND18) nucleotides in length. Both sequences contain a 5'-noncoding region (87 or 88 nucleotides) which is followed by a long open reading frame (ORF1). A 42-nucleotide intercistronic region separates ORF1 from a second, shorter open reading frame (ORF2) located near the 3'-end of the RNA. There is a high degree of homology between the Type and ND18 strains in the nucleotide sequence of ORF1. However, the Type strain contains a 366 nucleotide direct tandem repeat within ORF1 which is absent in the ND18 strain. Consequently, the predicted translation product of Type RNA gamma ORF1 (mol wt 87,312) is significantly larger than that of ND18 RNA gamma ORF1 (mol wt 74,011). The amino acid sequence of the ORF1 polypeptide contains homologies with putative RNA polymerases from other RNA viruses, suggesting that this protein may function in replication of the BSMV genome. The nucleotide sequence of RNA gamma ORF2 is nearly identical in the Type and ND18 strains. ORF2 codes for a polypeptide with a predicted molecular weight of 17,209 (Type) or 17,074 (ND18) which is known to be translated from a subgenomic (sg) RNA. The initiation point of this sgRNA has been mapped to a location 27 nucleotides upstream of the ORF2 initiation codon in the intercistronic region between ORF1 and ORF2. The sgRNA is not coterminal with the 3'-end of the genomic RNA, but instead contains heterogeneous poly(A) termini up to 150 nucleotides long (J. Stanley, R. Hanau, and A. O. Jackson, 1984, Virology 139, 375-383). In the genomic RNA gamma, ORF2 is followed by a short poly(A) tract and a 238-nucleotide tRNA-like structure.

  10. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of Ruminococcus flavefaciens FD-1.

    PubMed

    Berg Miller, Margret E; Antonopoulos, Dionysios A; Rincon, Marco T; Band, Mark; Bari, Albert; Akraiko, Tatsiana; Hernandez, Alvaro; Thimmapuram, Jyothi; Henrissat, Bernard; Coutinho, Pedro M; Borovok, Ilya; Jindou, Sadanari; Lamed, Raphael; Flint, Harry J; Bayer, Edward A; White, Bryan A

    2009-08-14

    Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest levels of up-regulation. The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components.

  11. Expression, post-translational modification and biochemical characterization of proteins encoded by subgenomic mRNA8 of the severe acute respiratory syndrome coronavirus.

    PubMed

    Le, Tra M; Wong, Hui H; Tay, Felicia P L; Fang, Shouguo; Keng, Choong-Tat; Tan, Yee J; Liu, Ding X

    2007-08-01

    The most striking difference between the subgenomic mRNA8 of severe acute respiratory syndrome coronavirus isolated from human and some animal species is the deletion of 29 nucleotides, resulting in splitting of a single ORF (ORF8) into two ORFs (ORF8a and ORF8b). ORF8a and ORF8b are predicted to encode two small proteins, 8a and 8b, and ORF8 a single protein, 8ab (a fusion form of 8a and 8b). To understand the functions of these proteins, we cloned cDNA fragments covering these ORFs into expression plasmids, and expressed the constructs in both in vitro and in vivo systems. Expression of a construct containing ORF8a and ORF8b generated only a single protein, 8a; no 8b protein expression was obtained. Expression of a construct containing ORF8 generated the 8ab fusion protein. Site-directed mutagenesis and enzymatic treatment revealed that protein 8ab is modified by N-linked glycosylation on the N81 residue and by ubiquitination. In the absence of the 8a region, protein 8b undergoes rapid degradation by proteasomes, and addition of proteasome inhibitors inhibits the degradation of protein 8b as well as the protein 8b-induced rapid degradation of the severe acute respiratory syndrome coronavirus E protein. Glycosylation could also stabilize protein 8ab. More interestingly, the two proteins could bind to monoubiquitin and polyubiquitin, suggesting the potential involvement of these proteins in the pathogenesis of severe acute respiratory syndrome coronavirus.

  12. Complete genome sequence of duck Tembusu virus, isolated from Muscovy ducks in southern China.

    PubMed

    Zhu, Wanjun; Chen, Jidang; Wei, Chunya; Wang, Heng; Huang, Zhen; Zhang, Minze; Tang, Fengfeng; Xie, Jiexiong; Liang, Huanbin; Zhang, Guihong; Su, Shuo

    2012-12-01

    We report here the complete genomic sequence of the duck Tembusu virus (DTMUV) WJ-1 strain, isolated from Muscovy ducks. This is the first complete genome sequence of DTMUV reported in southern China. Compared with the other strains (TA, GH-2, YY5, and ZJ-407) that were previously found in eastern China, WJ-1 bears a few differences in the nucleotide and amino acid sequences. We found that there are 47 mutations of amino acids encoded by the whole open reading frame (ORF) among these five strains. The whole-genome sequence of DTMUV will help in understanding the epidemiology and molecular characteristics of duck Tembusu virus in southern China.

  13. Hybrid Sterility in Rice (Oryza sativa L.) Involves the Tetratricopeptide Repeat Domain Containing Protein.

    PubMed

    Yu, Yang; Zhao, Zhigang; Shi, Yanrong; Tian, Hua; Liu, Linglong; Bian, Xiaofeng; Xu, Yang; Zheng, Xiaoming; Gan, Lu; Shen, Yumin; Wang, Chaolong; Yu, Xiaowen; Wang, Chunming; Zhang, Xin; Guo, Xiuping; Wang, Jiulin; Ikehashi, Hiroshi; Jiang, Ling; Wan, Jianmin

    2016-07-01

    Intersubspecific hybrid sterility is a common form of reproductive isolation in rice (Oryza sativa L.), which significantly hampers the utilization of heterosis between indica and japonica varieties. Here, we elucidated the mechanism of S7, which specially causes Aus-japonica/indica hybrid female sterility, through cytological and genetic analysis, map-based cloning, and transformation experiments. Abnormal positioning of polar nuclei and smaller embryo sac were observed in F1 compared with male and female parents. Female gametes carrying S7(cp) and S7(i) were aborted in S7(ai)/S7(cp) and S7(ai)/S7(i), respectively, whereas they were normal in both N22 and Dular possessing a neutral allele, S7(n) S7 was fine mapped to a 139-kb region in the centromere region on chromosome 7, where the recombination was remarkably suppressed due to aggregation of retrotransposons. Among 16 putative open reading frames (ORFs) localized in the mapping region, ORF3 encoding a tetratricopeptide repeat domain containing protein was highly expressed in the pistil. Transformation experiments demonstrated that ORF3 is the candidate gene: downregulated expression of ORF3 restored spikelet fertility and eliminated absolutely preferential transmission of S7(ai) in heterozygote S7(ai)/S7(cp); sterility occurred in the transformants Cpslo17-S7(ai) Our results may provide implications for overcoming hybrid embryo sac sterility in intersubspecific hybrid rice and utilization of hybrid heterosis for cultivated rice improvement. Copyright © 2016 by the Genetics Society of America.

  14. Mutations in C4orf26, encoding a peptide with in vitro hydroxyapatite crystal nucleation and growth activity, cause amelogenesis imperfecta.

    PubMed

    Parry, David A; Brookes, Steven J; Logan, Clare V; Poulter, James A; El-Sayed, Walid; Al-Bahlani, Suhaila; Al Harasi, Sharifa; Sayed, Jihad; Raïf, El Mostafa; Shore, Roger C; Dashash, Mayssoon; Barron, Martin; Morgan, Joanne E; Carr, Ian M; Taylor, Graham R; Johnson, Colin A; Aldred, Michael J; Dixon, Michael J; Wright, J Tim; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2012-09-07

    Autozygosity mapping and clonal sequencing of an Omani family identified mutations in the uncharacterized gene, C4orf26, as a cause of recessive hypomineralized amelogenesis imperfecta (AI), a disease in which the formation of tooth enamel fails. Screening of a panel of 57 autosomal-recessive AI-affected families identified eight further families with loss-of-function mutations in C4orf26. C4orf26 encodes a putative extracellular matrix acidic phosphoprotein expressed in the enamel organ. A mineral nucleation assay showed that the protein's phosphorylated C terminus has the capacity to promote nucleation of hydroxyapatite, suggesting a possible function in enamel mineralization during amelogenesis. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Tn5401, a new class II transposable element from Bacillus thuringiensis.

    PubMed Central

    Baum, J A

    1994-01-01

    A new class II (Tn3-like) transposable element, designated Tn5401, was recovered from a sporulation-deficient variant of Bacillus thuringiensis subsp. morrisoni EG2158 following its insertion into a recombinant plasmid. Sequence analysis of the insert revealed a 4,837-bp transposon with two large open reading frames, in the same orientation, encoding proteins of 36 kDa (306 residues) and 116 kDa (1,005 residues) and 53-bp terminal inverted repeats. The deduced amino acid sequence for the 36-kDa protein shows 24% sequence identity with the TnpI recombinase of the B. thuringiensis transposon Tn4430, a member of the phage integrase family of site-specific recombinases. The deduced amino acid sequence for the 116-kDa protein shows 42% sequence identity with the transposase of Tn3 but only 28% identity with the TnpA transposase of Tn4430. Two small open reading frames of unknown function, designated orf1 (85 residues) and orf2 (74 residues), were also identified. Southern blot analysis indicated that Tn5401, in contrast to Tn4430, is not commonly found among different subspecies of B. thuringiensis and is not typically associated with known insecticidal crystal protein genes. Transposition was studied with B. thuringiensis by using plasmid pEG922, a temperature-sensitive shuttle vector containing Tn5401. Tn5401 transposed to both chromosomal and plasmid target sites but displayed an apparent preference for plasmid sites. Transposition was replicative and resulted in the generation of a 5-bp duplication at the target site. Transcriptional start sites within Tn5401 were mapped by primer extension analysis. Two promoters, designated PL and PR, direct the transcription of orf1-orf2 and tnpI-tnpA, respectively, and are negatively regulated by TnpI. Sequence comparison of the promoter regions of Tn5401 and Tn4430 suggests that the conserved sequence element ATGTCCRCTAAY mediates TnpI binding and cointegrate resolution. The same element is contained within the 53-bp terminal inverted repeats, thus accounting for their unusual lengths and suggesting an additional role for TnpI in regulating Tn5401 transposition. Images PMID:7514590

  16. Complete genome sequences of two highly divergent Japanese isolates of Plantago asiatica mosaic virus.

    PubMed

    Komatsu, Ken; Yamashita, Kazuo; Sugawara, Kota; Verbeek, Martin; Fujita, Naoko; Hanada, Kaoru; Uehara-Ichiki, Tamaki; Fuji, Shin-Ichi

    2017-02-01

    Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and the other from the eudicot shrub Nandina domestica Thunb. (PlAMV-NJ). Their genomes contain five open reading frames (ORFs), which is characteristic of potexviruses. Surprisingly, the isolates showed only 76.0-78.0 % sequence identity with each other and with other PlAMV isolates, including isolates from Japanese lily and American nandina. Amino acid alignments of the replicase coding region encoded by ORF1 showed that the regions between the methyltransferase and helicase domains were less conserved than other regions, with several insertions and/or deletions. Phylogenetic analyses of the full-length nucleotide sequences revealed a moderate correlation between phylogenetic clustering and the original host plants of the PlAMV isolates. This study revealed the presence of two highly divergent PlAMV isolates in Japan.

  17. Analysis of the regulatory region of the protease III (ptr) gene of Escherichia coli K-12.

    PubMed

    Claverie-Martin, F; Diaz-Torres, M R; Kushner, S R

    1987-01-01

    The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.

  18. Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus.

    PubMed

    Nguyen, Thong T; Suryamohan, Kushal; Kuriakose, Boney; Janakiraman, Vasantharajan; Reichelt, Mike; Chaudhuri, Subhra; Guillory, Joseph; Divakaran, Neethu; Rabins, P E; Goel, Ridhi; Deka, Bhabesh; Sarkar, Suman; Ekka, Preety; Tsai, Yu-Chih; Vargas, Derek; Santhosh, Sam; Mohan, Sangeetha; Chin, Chen-Shan; Korlach, Jonas; Thomas, George; Babu, Azariah; Seshagiri, Somasekar

    2018-06-12

    We sequenced the Hyposidra talaca NPV (HytaNPV) double stranded circular DNA genome using PacBio single molecule sequencing technology. We found that the HytaNPV genome is 139,089 bp long with a GC content of 39.6%. It encodes 141 open reading frames (ORFs) including the 37 baculovirus core genes, 25 genes conserved among lepidopteran baculoviruses, 72 genes known in baculovirus, and 7 genes unique to the HytaNPV genome. It is a group II alphabaculovirus that codes for the F protein and lacks the gp64 gene found in group I alphabaculovirus viruses. Using RNA-seq, we confirmed the expression of the ORFs identified in the HytaNPV genome. Phylogenetic analysis showed HytaNPV to be closest to BusuNPV, SujuNPV and EcobNPV that infect other tea pests, Buzura suppressaria, Sucra jujuba, and Ectropis oblique, respectively. We identified repeat elements and a conserved non-coding baculovirus element in the genome. Analysis of the putative promoter sequences identified motif consistent with the temporal expression of the genes observed in the RNA-seq data.

  19. Molecular cloning of a cDNA coding for GTP cyclohydrolase I from Dictyostelium discoideum.

    PubMed Central

    Witter, K; Cahill, D J; Werner, T; Ziegler, I; Rödl, W; Bacher, A; Gütlich, M

    1996-01-01

    The GTP cyclohydrolase I (GTP-CH) gene of the cellular slime mould Dictyostelium discoideum has been cloned and sequenced. The 855 bp cDNA of this gene contains the open reading frame (ORF) encoding 232 amino acids with a predicted molecular mass of approx. 26 kDa. Southern blot analysis indicated the presence of a single gene for GTP-CH in Dictyostelium. PCR amplification of the ORF from chromosomal DNA and sequencing showed the existence of a 101 bp intron in the GTP-CH gene of Dictyostelium discoideum. The amino acid sequence has 47% and 49% positional identity to those of the human and yeast enzymes respectively. Most of the sequence variation between species is located in the N-terminal part of the protein. The overall identity with the E. coli protein is markedly lower. The enzyme was expressed in E. coli and purified as a 68 kDa fusion protein with the maltose-binding protein of E. coli. GTP-CH of Dictyostelium is heat-stable and showed maximal activity at 60 degrees C. The Km value for GTP is 50 microM. PMID:8870645

  20. Genomic characteristics of vB_PpaP_PP74, a T7-like Autographivirinae bacteriophage infecting a potato pathogen of the newly proposed species Pectobacterium parmentieri.

    PubMed

    Kabanova, Anastasia; Shneider, Mikhail; Bugaeva, Eugenia; Ha, Vo Thi Ngoc; Miroshnikov, Kirill; Korzhenkov, Aleksei; Kulikov, Eugene; Toschakov, Stepan; Ignatov, Alexander; Miroshnikov, Konstantin

    2018-06-01

    Bacteriophage vB_PpaP_PP74 (PP74) is a novel virulent phage that infects members of the species Pectobacterium parmentieri, a newly established species of soft-rot-causing bacteria in the family Pectobacteriaceae, derived from potato-specific Pectobacterium wasabiae. vB_PpaP_PP74 was identified as a member of the family Podoviridae by transmission electron microscopy. The phage has a 39,790-bp dsDNA genome containing 50 open reading frames (ORFs). Because of the absence of genes encoding toxins or lysogeny factors, PP74 may be considered a candidate phage for pathogen biocontrol applications. The genome layout is similar to genomes of T7-like phages within the subfamily Autographivirinae, and therefore, functions can be attributed to most of ORFs. However, the closest nucleotide sequence homologs of phage PP74 are unclassified Escherichia phages. Based on phylogenetic analysis, vB_PpaP_PP74 is a sensu lato T7-like phage, but it forms a distant subgenus group together with homologous enterobacterial phages.

  1. Molecular characterization of a genomic region in a Lactococcus bacteriophage that is involved in its sensitivity to the phage defense mechanism AbiA.

    PubMed

    Dinsmore, P K; Klaenhammer, T R

    1997-05-01

    A spontaneous mutant of the lactococcal phage phi31 that is insensitive to the phage defense mechanism AbiA was characterized in an effort to identify the phage factor(s) involved in sensitivity of phi31 to AbiA. A point mutation was localized in the genome of the AbiA-insensitive phage (phi31A) by heteroduplex analysis of a 9-kb region. The mutation (G to T) was within a 738-bp open reading frame (ORF245) and resulted in an arginine-to-leucine change in the predicted amino acid sequence of the protein. The mutant phi31A-ORF245 reduced the sensitivity of phi31 to AbiA when present in trans, indicating that the mutation in ORF245 is responsible for the AbiA insensitivity of phi31A. Transcription of ORF245 occurs early in the phage infection cycles of phi31 and phi31A and is unaffected by AbiA. Expansion of the phi31 sequence revealed ORF169 (immediately upstream of ORF245) and ORF71 (which ends 84 bp upstream of ORF169). Two inverted repeats lie within the 84-bp region between ORF71 and ORF169. Sequence analysis of an independently isolated AbiA-insensitive phage, phi31B, identified a mutation (G to A) in one of the inverted repeats. A 118-bp fragment from phi31, encompassing the 84-bp region between ORF71 and ORF169, eliminates AbiA activity against phi31 when present in trans, establishing a relationship between AbiA and this fragment. The study of this region of phage phi31 has identified an open reading frame (ORF245) and a 118-bp DNA fragment that interact with AbiA and are likely to be involved in the sensitivity of this phage to AbiA.

  2. Recombination Creates Novel L1 (Line-1) Elements in Rattus Norvegicus

    PubMed Central

    Hayward, B. E.; Zavanelli, M.; Furano, A. V.

    1997-01-01

    Mammalian L1 (long interspersed repeated DNA, LINE-1) retrotransposons consist of a 5' untranslated region (UTR) with regulatory properties, two protein encoding regions (ORF I, ORF II, which encodes a reverse transcriptase) and a 3' UTR. L1 elements have been evolving in mammals for >100 million years and this process continues to generate novel L1 subfamilies in modern species. Here we characterized the youngest known subfamily in Rattus norvegicus, L1(mlvi2), and unexpectedly found that this element has a dual ancestry. While its 3' UTR shares the same lineage as its nearest chronologically antecedent subfamilies, L1(3) and L1(4), its ORF I sequence does not. The L1(mlvi2) ORF I was derived from an ancestral ORF I sequence that was the evolutionary precursor of the L1(3) and L1(4) ORF I. We suggest that an ancestral ORF I sequence was recruited into the modern L1(mlvi2) subfamily by recombination that possibly could have resulted from template strand switching by the reverse transcriptase during L1 replication. This mechanism could also account for some of the structural features of rodent L1 5' UTR and ORF I sequences including one of the more dramatic features of L1 evolution in mammals, namely the repeated acquisition of novel 5' UTRs. PMID:9178013

  3. Identification and phylogenetic analysis of a sheep pox virus isolated from the Ningxia Hui Autonomous Region of China.

    PubMed

    Zhu, X L; Yang, F; Li, H X; Dou, Y X; Meng, X L; Li, H; Luo, X N; Cai, X P

    2013-05-14

    An outbreak of sheep pox was investigated in the Ningxia Hui Autonomous Region in China. Through immunofluorescence testing, isolated viruses, polymerase chain reaction identification, and electron microscopic examination, the isolated strain was identified as a sheep pox virus. The virus was identified through sequence and phylogenetic analysis of the P32 gene, open reading frame (ORF) 095, and ORF 103 genes. This study is the first to use the ORF 095 and ORF 103 genes as candidate genes for the analysis of sheep pox. The results showed that the ORF 095 and ORF 103 genes could be used for the genotyping of the sheep pox virus.

  4. Four Proteins Encoded in the gspB-secY2A2 Operon of Streptococcus gordonii Mediate the Intracellular Glycosylation of the Platelet-Binding Protein GspB

    PubMed Central

    Takamatsu, Daisuke; Bensing, Barbara A.; Sullam, Paul M.

    2004-01-01

    Platelet binding by Streptococcus gordonii strain M99 is mediated predominantly by the cell surface glycoprotein GspB. This adhesin consists of a putative N-terminal signal peptide, two serine-rich regions (SRR1 and SRR2), a basic region between SRR1 and SRR2, and a C-terminal cell wall anchoring domain. The glycosylation of GspB is mediated at least in part by Gly and Nss, which are encoded in the secY2A2 locus immediately downstream of gspB. This region also encodes two proteins (Gtf and Orf4) that are required for the expression of GspB but whose functions have not been delineated. In this study, we further characterized the roles of Gly, Nss, Gtf, and Orf4 by investigating the expression and glycosylation of a series of glutathione S-transferase-GspB fusion proteins in M99 and in gly, nss, gtf, and orf4 mutants. Compared with fusion proteins expressed in the wild-type background, fusion proteins expressed in the mutant strain backgrounds showed altered electrophoretic mobility. In addition, the fusion proteins formed insoluble aggregates in protoplasts of the gtf and orf4 mutants. Glycan detection and lectin blot analysis revealed that SRR1 and SRR2 were glycosylated but that the basic region was unmodified. When the fusion protein was expressed in Escherichia coli, glycosylation of this protein was observed only in the presence of both gtf and orf4. These results demonstrate that Gly, Nss, Gtf, and Orf4 are all involved in the intracellular glycosylation of SRRs. Moreover, Gtf and Orf4 are essential for glycosylation, which in turn is important for the solubility of GspB. PMID:15489421

  5. Phosphate assimilation in Rhizobium (Sinorhizobium) meliloti: identification of a pit-like gene.

    PubMed

    Bardin, S D; Voegele, R T; Finan, T M

    1998-08-01

    Rhizobium meliloti mutants defective in the phoCDET-encoded phosphate transport system form root nodules on alfalfa plants that fail to fix nitrogen (Fix-). We have previously reported that two classes of second-site mutations can suppress the Fix- phenotype of phoCDET mutants to Fix+. Here we show that one of these suppressor loci (sfx1) contains two genes, orfA and pit, which appear to form an operon transcribed in the order orfA-pit. The Pit protein is homologous to various phosphate transporters, and we present evidence that three suppressor mutations arose from a single thymidine deletion in a hepta-thymidine sequence centered 54 nucleotides upstream of the orfA transcription start site. This mutation increased the level of orfA-pit transcription. These data, together with previous biochemical evidence, show that the orfA-pit genes encode a Pi transport system that is expressed in wild-type cells grown with excess Pi but repressed in cells under conditions of Pi limitation. In phoCDET mutant cells, orfA-pit expression is repressed, but this repression is alleviated by the second-site suppressor mutations. Suppression increases orfA-pit expression compensating for the deficiencies in phosphate assimilation and symbiosis of the phoCDET mutants.

  6. Discovery of a Coregulatory Interaction between Kaposi's Sarcoma-Associated Herpesvirus ORF45 and the Viral Protein Kinase ORF36.

    PubMed

    Avey, Denis; Tepper, Sarah; Pifer, Benjamin; Bahga, Amritpal; Williams, Hunter; Gillen, Joseph; Li, Wenwei; Ogden, Sarah; Zhu, Fanxiu

    2016-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human malignancies. KSHV ORF36 encodes a serine/threonine viral protein kinase, which is conserved throughout all herpesviruses. Although several studies have identified the viral and cellular substrates of conserved herpesvirus protein kinases (CHPKs), the precise functions of KSHV ORF36 during lytic replication remain elusive. Here, we report that ORF36 interacts with another lytic protein, ORF45, in a manner dependent on ORF36 kinase activity. We mapped the regions of ORF36 and ORF45 involved in the binding. Their association appears to be mediated by electrostatic interactions, since deletion of either the highly basic N terminus of ORF36 or an acidic patch of ORF45 abolished the binding. In addition, the dephosphorylation of ORF45 protein dramatically reduced its association with ORF36. Importantly, ORF45 enhances both the stability and kinase activity of ORF36. Consistent with previous studies of CHPK homologs, we detected ORF36 protein in extracellular virions. To investigate the roles of ORF36 in the context of KSHV lytic replication, we used bacterial artificial chromosome mutagenesis to engineer both ORF36-null and kinase-dead mutants. We found that ORF36-null/mutant virions are moderately defective in viral particle production and are further deficient in primary infection. In summary, our results uncover a functionally important interaction between ORF36 and ORF45 and indicate a significant role of ORF36 in the production of infectious progeny virions. Kaposi's sarcoma-associated herpesvirus (KSHV) is a human tumor virus with a significant public health burden. KSHV ORF36 encodes a serine/threonine viral protein kinase, whose functions throughout the viral life cycle have not been elucidated. Here, we report that ORF36 interacts with another KSHV protein, ORF45. We mapped the regions of ORF36 and ORF45 involved in their association and further characterized the consequences of this interaction. We engineered ORF36 mutant viruses in order to investigate the functional roles of ORF36 in the context of KSHV lytic replication, and we confirmed that ORF36 is a component of KSHV virions. Moreover, we found that ORF36 mutants are defective in virion production and primary infection. In summary, we discovered and characterized a functionally important interaction between KSHV ORF36 and ORF45, and our results suggest a significant role of ORF36 in the production of infectious progeny virions, a process critical for KSHV pathogenesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Alternate Reading Frame Protein (F Protein) of Hepatitis C Virus: Paradoxical Effects of Activation and Apoptosis on Human Dendritic Cells Lead to Stimulation of T Cells

    PubMed Central

    Samrat, Subodh Kumar; Li, Wen; Singh, Shakti; Kumar, Rakesh; Agrawal, Babita

    2014-01-01

    Hepatitis C virus (HCV) leads to chronic infection in the majority of infected individuals due to lack, failure, or inefficiency of generated adaptive immune responses. In a minority of patients, acute infection is followed by viral clearance. The immune correlates of viral clearance are not clear yet but have been extensively investigated, suggesting that multispecific and multifunctional cellular immunity is involved. The generation of cellular immunity is highly dependent upon how antigen presenting cells (APCs) process and present various viral antigens. Various structural and non-structural HCV proteins derived from the open reading frame (ORF) have been implicated in modulation of dendritic cells (DCs) and APCs. Besides the major ORF proteins, the HCV core region also encodes an alternate reading frame protein (ARFP or F), whose function in viral pathogenesis is not clear. In the current studies, we sought to determine the role of HCV-derived ARFP in modulating dendritic cells and stimulation of T cell responses. Recombinant adenovirus vectors containing F or core protein derived from HCV (genotype 1a) were prepared and used to endogenously express these proteins in dendritic cells. We made an intriguing observation that endogenous expression of F protein in human DCs leads to contrasting effects on activation and apoptosis of DCs, allowing activated DCs to efficiently internalize apoptotic DCs. These in turn result in efficient ability of DCs to process and present antigen and to prime and stimulate F protein derived peptide-specific T cells from HCV-naive individuals. Taken together, our findings suggest important aspects of F protein in modulating DC function and stimulating T cell responses in humans. PMID:24475147

  8. Acetylcholinesterase of the Sand Fly, Phlebotomus papatasi (Scopoli): cDNA Sequence, Baculovirus Expression, and Biochemical Properties

    DTIC Science & Technology

    2013-01-01

    identity to acetylcholinesterase mRNA sequences of Culex tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a...tritaeniorhynchus and Lutzomyia longipalpis, respectively. The P. papatasi cDNA ORF encoded a 710-amino acid protein [GenBank: AFP20868] exhibiting 85...improve effectiveness of pesticide application for control of the new world sand fly Lutzomyia longipalpis in chicken sheds [13]. Attempts to control

  9. Identification of a novel gene cluster in the upstream region of the S-layer gene sbpA involved in cell wall metabolism of Lysinibacillus sphaericus CCM 2177 and characterization of the recombinantly produced autolysin and pyruvyl transferase.

    PubMed

    Pleschberger, Magdalena; Hildner, Florian; Rünzler, Dominik; Gelbmann, Nicola; Mayer, Harald F; Sleytr, Uwe B; Egelseer, Eva M

    2013-05-01

    The S-layer protein SbpA of Lysinibacillus sphaericus CCM 2177 assembles into a square (p4) lattice structure and recognizes a pyruvylated secondary cell wall polymer (SCWP) as the proper anchoring structure to the rigid cell wall layer. Sequencing of 8,004 bp in the 5'-upstream region of the S-layer gene sbpA led to five ORFs-encoding proteins involved in cell wall metabolism. After cloning and heterologous expression of ORF1 and ORF5 in Escherichia coli, the recombinant autolysin rAbpA and the recombinant pyruvyl transferase rCsaB were isolated, purified, and correct folding was confirmed by circular dichroism. Although rAbpA encoded by ORF1 showed amidase activity, it could attack whole cells of Ly. sphaericus CCM 2177 only after complete extraction of the S-layer lattice. Despite the presence of three S-layer-homology motifs on the N-terminal part, rAbpA did not show detectable affinity to peptidoglycan-containing sacculi, nor to isolated SCWP. As the molecular mass of the autolysin lies above the molecular exclusion limit of the S-layer, AbpA is obviously trapped within the rigid cell wall layer by the isoporous protein lattice. Immunogold-labeling of ultrathin-sectioned whole cells of Ly. sphaericus CCM 2177 with a polyclonal rabbit antiserum raised against rCsaB encoded by ORF5, and cell fractionation experiments demonstrated that the pyruvyl transferase was located in the cytoplasm, but not associated with cell envelope components including the plasma membrane. In enzymatic assays, rCsaB clearly showed pyruvyl transferase activity. By using RT-PCR, specific transcripts for each ORF could be detected. Cotranscription could be confirmed for ORF2 and ORF3.

  10. Functional characterization of viral tumor necrosis factor receptors encoded by cyprinid herpesvirus 3 (CyHV3) genome.

    PubMed

    Yi, Yang; Qi, Hemei; Yuan, Jimin; Wang, Rui; Weng, Shaoping; He, Jianguo; Dong, Chuanfu

    2015-08-01

    Cyprinid herpesvirus 3 (CyHV3) is a large double-stranded DNA virus of Alloherpesviridae family in the order Herpesvirales. It causes significant morbidity and mortality in common carp and its ornamental koi variety, and threatens the aquaculture industries worldwide. Mimicry of cytokines and cytokine receptors is a particular strategy for large DNA viruses in modulating the host immune response. Here, we report the identification and characterization of two novel viral homologues of tumor necrosis factor receptor (TNFR) encoded by CyHV3-ORF4 and -ORF12, respectively. CyHV3-ORF4 was identified as a homologue of HVEM and CyHV3-ORF12 as a homologue of TNFRSF1. Overexpression of ORF4 and ORF12 in zebrafish embryos results in embryonic lethality, morphological defects and increased apoptosis. Although we failed to identify any interaction between the two vTNFRs and their potential ligands in zebrafish TNF superfamily by yeast two-hybrid system, the expression of some genes in TNF superfamily or TNFR superfamily were mis-regulated in ORF4 or ORF12-overexpressing embryos, especially the death receptor zHDR and its cognate ligand DL1b. Further studies showed that the apoptosis induced by the both CyHV3 vTNFRs is mainly activated through the intrinsic apoptotic pathway and requires the crosstalk between the intrinsic and extrinsic apoptotic pathway. Additionally, using RT-qPCR and Western blot assays, the expression patterns of the both vTNFRs were also analyzed during CyHV3 productive infection. Collectively, this is the first functional study of two unique vTNFRs encoded by a herpesvirus infecting non-mammalian vertebrates, which may provide novel insights into viral immune regulation mechanism and the pathogenesis of CyHV3 infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Sequence and Transcriptional Analyses of the Fish Retroviruses Walleye Epidermal Hyperplasia Virus Types 1 and 2: Evidence for a Gene Duplication

    PubMed Central

    LaPierre, Lorie A.; Holzschu, Donald L.; Bowser, Paul R.; Casey, James W.

    1999-01-01

    Walleye epidermal hyperplasia virus types 1 and 2 (WEHV1 and WEHV2, respectively) are associated with a hyperproliferative skin lesion on walleyes that appears and regresses seasonally. We have determined the complete nucleotide sequences and transcriptional profiles of these viruses. WEHV1 and WEHV2 are large, complex retroviruses of 12,999 and 13,125 kb in length, respectively, that are closely related to one another and to walleye dermal sarcoma virus (WDSV). These walleye retroviruses contain three open reading frames, orfA, orfB, and orfC, in addition to gag, pol, and env. orfA and orfB are adjacent to one another and located downstream of env. The OrfA proteins were previously identified as cyclin D homologs that may contribute to the induction of cell proliferation leading to epidermal hyperplasia and dermal sarcoma. The sequence analysis of WEHV1 and WEHV2 revealed that the OrfB proteins are distantly related to the OrfA proteins, suggesting that orfB arose by gene duplication. Presuming that the precursor of orfA and orfB was derived from a cellular cyclin, these genes are the first accessory genes of complex retroviruses that can be traced to a cellular origin. WEHV1, WEHV2, and WDSV are the only retroviruses that have an open reading frame, orfC, of considerable size (ca. 130 amino acids) in the leader region preceding gag. While we were unable to predict a function for the OrfC proteins, they are more conserved than OrfA and OrfB, suggesting that they may be biologically important to the viruses. The transcriptional profiles of WEHV1 and WEHV2 were also similar to that of WDSV; Northern blot analyses detected only low levels of the orfA transcripts in developing lesions, whereas abundant levels of genomic, env, orfA, and orfB transcripts were detected in regressing lesions. The splice donors and acceptors of individual transcripts were identified by reverse transcriptase PCR. The similarities of WEHV1, WEHV2, and WDSV suggest that these viruses use similar strategies of viral replication and induce cell proliferation by a similar mechanism. PMID:10516048

  12. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish.

    PubMed

    Luo, Weiwei; Liang, Xiao; Huang, Songqian; Cao, Xiaojuan

    2016-12-01

    Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement.

    PubMed

    Smirnova, Ekaterina; Firth, Andrew E; Miller, W Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M; Chung, Betty Y-W; Ziegler-Graff, Véronique

    2015-05-01

    Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5' end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement.

  14. Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement

    PubMed Central

    Smirnova, Ekaterina; Firth, Andrew E.; Miller, W. Allen; Scheidecker, Danièle; Brault, Véronique; Reinbold, Catherine; Rakotondrafara, Aurélie M.; Chung, Betty Y.-W.; Ziegler-Graff, Véronique

    2015-01-01

    Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement. PMID:25946037

  15. Functional metagenomics reveals novel β-galactosidases not predictable from gene sequences.

    PubMed

    Cheng, Jiujun; Romantsov, Tatyana; Engel, Katja; Doxey, Andrew C; Rose, David R; Neufeld, Josh D; Charles, Trevor C

    2017-01-01

    The techniques of metagenomics have allowed researchers to access the genomic potential of uncultivated microbes, but there remain significant barriers to determination of gene function based on DNA sequence alone. Functional metagenomics, in which DNA is cloned and expressed in surrogate hosts, can overcome these barriers, and make important contributions to the discovery of novel enzymes. In this study, a soil metagenomic library carried in an IncP cosmid was used for functional complementation for β-galactosidase activity in both Sinorhizobium meliloti (α-Proteobacteria) and Escherichia coli (γ-Proteobacteria) backgrounds. One β-galactosidase, encoded by six overlapping clones that were selected in both hosts, was identified as a member of glycoside hydrolase family 2. We could not identify ORFs obviously encoding possible β-galactosidases in 19 other sequenced clones that were only able to complement S. meliloti. Based on low sequence identity to other known glycoside hydrolases, yet not β-galactosidases, three of these ORFs were examined further. Biochemical analysis confirmed that all three encoded β-galactosidase activity. Lac36W_ORF11 and Lac161_ORF7 had conserved domains, but lacked similarities to known glycoside hydrolases. Lac161_ORF10 had neither conserved domains nor similarity to known glycoside hydrolases. Bioinformatic and structural modeling implied that Lac161_ORF10 protein represented a novel enzyme family with a five-bladed propeller glycoside hydrolase domain. By discovering founding members of three novel β-galactosidase families, we have reinforced the value of functional metagenomics for isolating novel genes that could not have been predicted from DNA sequence analysis alone.

  16. Transcription of the extended hyp-operon in Nostoc sp. strain PCC 7120

    PubMed Central

    Agervald, Åsa; Stensjö, Karin; Holmqvist, Marie; Lindblad, Peter

    2008-01-01

    Background The maturation of hydrogenases into active enzymes is a complex process and e.g. a correctly assembled active site requires the involvement of at least seven proteins, encoded by hypABCDEF and a hydrogenase specific protease, encoded either by hupW or hoxW. The N2-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain both an uptake and a bidirectional hydrogenase. The present study addresses the presence and expression of hyp-genes in Nostoc sp. strain PCC 7120. Results RT-PCRs demonstrated that the six hyp-genes together with one ORF may be transcribed as a single operon. Transcriptional start points (TSPs) were identified 280 bp upstream from hypF and 445 bp upstream of hypC, respectively, demonstrating the existence of several transcripts. In addition, five upstream ORFs located in between hupSL, encoding the small and large subunits of the uptake hydrogenase, and the hyp-operon, and two downstream ORFs from the hyp-genes were shown to be part of the same transcript unit. A third TSP was identified 45 bp upstream of asr0689, the first of five ORFs in this operon. The ORFs are annotated as encoding unknown proteins, with the exception of alr0692 which is identified as a NifU-like protein. Orthologues of the four ORFs asr0689-alr0692, with a highly conserved genomic arrangement positioned between hupSL, and the hyp genes are found in several other N2-fixing cyanobacteria, but are absent in non N2-fixing cyanobacteria with only the bidirectional hydrogenase. Short conserved sequences were found in six intergenic regions of the extended hyp-operon, appearing between 11 and 79 times in the genome. Conclusion This study demonstrated that five ORFs upstream of the hyp-gene cluster are co-transcribed with the hyp-genes, and identified three TSPs in the extended hyp-gene cluster in Nostoc sp. strain PCC 7120. This may indicate a function related to the assembly of a functional uptake hydrogenase, hypothetically in the assembly of the small subunit of the enzyme. PMID:18442387

  17. A Non-Canonical Initiation Site Is Required for Efficient Translation of the Dendritically Localized Shank1 mRNA

    PubMed Central

    Studtmann, Katrin; Ölschläger-Schütt, Janin; Buck, Friedrich; Richter, Dietmar; Sala, Carlo; Bockmann, Jürgen; Kindler, Stefan; Kreienkamp, Hans-Jürgen

    2014-01-01

    Local protein synthesis in dendrites enables neurons to selectively change the protein complement of individual postsynaptic sites. Though it is generally assumed that this mechanism requires tight translational control of dendritically transported mRNAs, it is unclear how translation of dendritic mRNAs is regulated. We have analyzed here translational control elements of the dendritically localized mRNA coding for the postsynaptic scaffold protein Shank1. In its 5′ region, the human Shank1 mRNA exhibits two alternative translation initiation sites (AUG+1 and AUG+214), three canonical upstream open reading frames (uORFs1-3) and a high GC content. In reporter assays, fragments of the 5′UTR with high GC content inhibit translation, suggesting a contribution of secondary structures. uORF3 is most relevant to translation control as it overlaps with the first in frame start codon (AUG+1), directing translation initiation to the second in frame start codon (AUG+214). Surprisingly, our analysis points to an additional uORF initiated at a non-canonical ACG start codon. Mutation of this start site leads to an almost complete loss of translation initiation at AUG+1, demonstrating that this unconventional uORF is required for Shank1 synthesis. Our data identify a novel mechanism whereby initiation at a non-canonical site allows for translation of the main Shank1 ORF despite a highly structured 5′UTR. PMID:24533096

  18. Diversity and Strain Specificity of Plant Cell Wall Degrading Enzymes Revealed by the Draft Genome of Ruminococcus flavefaciens FD-1

    PubMed Central

    Berg Miller, Margret E.; Antonopoulos, Dionysios A.; Rincon, Marco T.; Band, Mark; Bari, Albert; Akraiko, Tatsiana; Hernandez, Alvaro; Thimmapuram, Jyothi; Henrissat, Bernard; Coutinho, Pedro M.; Borovok, Ilya; Jindou, Sadanari; Lamed, Raphael; Flint, Harry J.; Bayer, Edward A.; White, Bryan A.

    2009-01-01

    Background Ruminococcus flavefaciens is a predominant cellulolytic rumen bacterium, which forms a multi-enzyme cellulosome complex that could play an integral role in the ability of this bacterium to degrade plant cell wall polysaccharides. Identifying the major enzyme types involved in plant cell wall degradation is essential for gaining a better understanding of the cellulolytic capabilities of this organism as well as highlighting potential enzymes for application in improvement of livestock nutrition and for conversion of cellulosic biomass to liquid fuels. Methodology/Principal Findings The R. flavefaciens FD-1 genome was sequenced to 29x-coverage, based on pulsed-field gel electrophoresis estimates (4.4 Mb), and assembled into 119 contigs providing 4,576,399 bp of unique sequence. As much as 87.1% of the genome encodes ORFs, tRNA, rRNAs, or repeats. The GC content was calculated at 45%. A total of 4,339 ORFs was detected with an average gene length of 918 bp. The cellulosome model for R. flavefaciens was further refined by sequence analysis, with at least 225 dockerin-containing ORFs, including previously characterized cohesin-containing scaffoldin molecules. These dockerin-containing ORFs encode a variety of catalytic modules including glycoside hydrolases (GHs), polysaccharide lyases, and carbohydrate esterases. Additionally, 56 ORFs encode proteins that contain carbohydrate-binding modules (CBMs). Functional microarray analysis of the genome revealed that 56 of the cellulosome-associated ORFs were up-regulated, 14 were down-regulated, 135 were unaffected, when R. flavefaciens FD-1 was grown on cellulose versus cellobiose. Three multi-modular xylanases (ORF01222, ORF03896, and ORF01315) exhibited the highest levels of up-regulation. Conclusions/Significance The genomic evidence indicates that R. flavefaciens FD-1 has the largest known number of fiber-degrading enzymes likely to be arranged in a cellulosome architecture. Functional analysis of the genome has revealed that the growth substrate drives expression of enzymes predicted to be involved in carbohydrate metabolism as well as expression and assembly of key cellulosomal enzyme components. PMID:19680555

  19. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein.

    PubMed

    Allison, A B; Palacios, G; Travassos da Rosa, A; Popov, V L; Lu, L; Xiao, S Y; DeToy, K; Briese, T; Lipkin, W I; Keel, M K; Stallknecht, D E; Bishop, G R; Tesh, R B

    2011-01-01

    The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic (SH) protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase protein indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Identification and isolation of stimulator of interferon genes (STING): an innate immune sensory and adaptor gene from camelids.

    PubMed

    Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J

    2013-10-01

    The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals. © 2013 John Wiley & Sons Ltd.

  1. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein

    PubMed Central

    Allison, A. B.; Palacios, G.; Rosa, A. Travassos da; Popov, V. L.; Lu, L.; Xiao, S. Y.; DeToy, K.; Briese, T.; Lipkin, W. Ian; Keel, M. K.; Stallknecht, D. E.; Bishop, G. R.; Tesh, R. B.

    2010-01-01

    The family Rhabdoviridae is a diverse group of non-segmented, negative-sense RNA viruses that are distributed worldwide and infect a wide range of hosts including vertebrates, invertebrates, and plants. Of the 114 currently recognized vertebrate rhabdoviruses, relatively few have been well characterized at both the antigenic and genetic level; hence, the phylogenetic relationships between many of the vertebrate rhabdoviruses remain unknown. The present report describes a novel rhabdovirus isolated from the brain of a moribund American coot (Fulica americana) that exhibited neurological signs when found in Durham County, North Carolina, in 2005. Antigenic characterization of the virus revealed that it was serologically unrelated to 68 other known vertebrate rhabdoviruses. Genomic sequencing of the virus indicated that it shared the highest identity to Tupaia rhabdovirus (TUPV), and as only previously observed in TUPV, the genome encoded a putative C protein in an overlapping open reading frame (ORF) of the phosphoprotein gene and a small hydrophobic protein located in a novel ORF between the matrix and glycoprotein genes. Phylogenetic analysis of partial amino acid sequences of the nucleoprotein and polymerase proteins indicated that, in addition to TUPV, the virus was most closely related to avian and small mammal rhabdoviruses from Africa and North America. In this report, we present the morphological, pathological, antigenic, and genetic characterization of the new virus, tentatively named Durham virus (DURV), and discuss its potential evolutionary relationship to other vertebrate rhabdoviruses. PMID:20863863

  2. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing

    PubMed Central

    Fusaro, Adriana F.; Barton, Deborah A.; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L.; Kawchuk, Lawrence M.; Vaslin, Maite F. S.; Waterhouse, Peter M.

    2017-01-01

    The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant’s vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant’s viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant’s silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant’s anti-viral defense. PMID:28994713

  3. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing.

    PubMed

    Fusaro, Adriana F; Barton, Deborah A; Nakasugi, Kenlee; Jackson, Craig; Kalischuk, Melanie L; Kawchuk, Lawrence M; Vaslin, Maite F S; Correa, Regis L; Waterhouse, Peter M

    2017-10-10

    The plant viral family Luteoviridae is divided into three genera: Luteovirus , Polerovirus and Enamovirus . Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.

  4. APE-Type Non-LTR Retrotransposons of Multicellular Organisms Encode Virus-Like 2A Oligopeptide Sequences, Which Mediate Translational Recoding during Protein Synthesis

    PubMed Central

    Odon, Valerie; Luke, Garry A.; Roulston, Claire; Brown, Jeremy D.; Ryan, Martin D.; Sukhodub, Andriy

    2013-01-01

    2A oligopeptide sequences (“2As”) mediate a cotranslational recoding event termed “ribosome skipping.” Previously we demonstrated the activity of 2As (and “2A-like sequences”) within a wide range of animal RNA virus genomes and non-long terminal repeat retrotransposons (non-LTRs) in the genomes of the unicellular organisms Trypanosoma brucei (Ingi) and T. cruzi (L1Tc). Here, we report the presence of 2A-like sequences in the genomes of a wide range of multicellular organisms and, as in the trypanosome genomes, within non-LTR retrotransposons (non-LTRs)—clustering in the Rex1, Crack, L2, L2A, and CR1 clades, in addition to Ingi. These 2A-like sequences were tested for translational recoding activity, and highly active sequences were found within the Rex1, L2, CR1, and Ingi clades. The presence of 2A-like sequences within non-LTRs may not only represent a method of controlling protein biogenesis but also shows some correlation with such apurinic/apyrimidinic DNA endonuclease-type non-LTRs encoding one, rather than two, open reading frames (ORFs). Interestingly, such non-LTRs cluster with closely related elements lacking 2A-like recoding elements but retaining ORF1. Taken together, these observations suggest that acquisition of 2A-like translational recoding sequences may have played a role in the evolution of these elements. PMID:23728794

  5. Identification of a novel species of papillomavirus in giraffe lesions using nanopore sequencing.

    PubMed

    Vanmechelen, Bert; Bertelsen, Mads Frost; Rector, Annabel; Van den Oord, Joost J; Laenen, Lies; Vergote, Valentijn; Maes, Piet

    2017-03-01

    Papillomaviridae form a large family of viruses that are known to infect a variety of vertebrates, including mammals, reptiles, birds and fish. Infections usually give rise to minor skin lesions but can in some cases lead to the development of malignant neoplasia. In this study, we identified a novel species of papillomavirus (PV), isolated from warts of four giraffes (Giraffa camelopardalis). The sequence of the L1 gene was determined and found to be identical for all isolates. Using nanopore sequencing, the full sequence of the PV genome could be determined. The coding region of the genome was found to contain seven open reading frames (ORF), encoding the early proteins E1, E2 and E5-E7 as well as the late proteins L1 and L2. In addition to these ORFs, a region located within the E2 gene is thought, based on sequence similarities to other papillomaviruses, to encode an E4 protein, although no start codon could be identified. Based on the sequence of the L1 gene, this novel PV was found to be most similar to Capreolus capreolus papillomavirus 1 (CcaPV1), with 67.96% nucleotide identity. We therefore suggest that the virus identified here is given the name Giraffa camelopardalis papillomavirus 1 (GcPV1) and is classified as a novel species within the genus Deltapapillomavirus, in line with the current guidelines for the nomenclature and classification of PVs. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism.

    PubMed

    Ciancanelli, Michael J; Volchkova, Valentina A; Shaw, Megan L; Volchkov, Viktor E; Basler, Christopher F

    2009-08-01

    The Nipah virus (NiV) phosphoprotein (P) gene encodes the C, P, V, and W proteins. P, V, and W, have in common an amino-terminal domain sufficient to bind STAT1, inhibiting its interferon (IFN)-induced tyrosine phosphorylation. P is also essential for RNA-dependent RNA polymerase function. C is encoded by an alternate open reading frame (ORF) within the common amino-terminal domain. Mutations within residues 81 to 113 of P impaired its polymerase cofactor function, as assessed by a minireplicon assay, but these mutants retained STAT1 inhibitory function. Mutations within the residue 114 to 140 region were identified that abrogated interaction with and inhibition of STAT1 by P, V, and W without disrupting P polymerase cofactor function. Recombinant NiVs were then generated. A G121E mutation, which abrogated inhibition of STAT1, was introduced into a C protein knockout background (C(ko)) because the mutation would otherwise also alter the overlapping C ORF. In cell culture, relative to the wild-type virus, the C(ko) mutation proved attenuating but the G121E mutant virus replicated identically to the C(ko) virus. In cells infected with the wild-type and C(ko) viruses, STAT1 was nuclear despite the absence of tyrosine phosphorylation. This latter observation mirrors what has been seen in cells expressing NiV W. In the G121E mutant virus-infected cells, STAT1 was not phosphorylated and was cytoplasmic in the absence of IFN stimulation but became tyrosine phosphorylated and nuclear following IFN addition. These data demonstrate that the gene for NiV P encodes functions that sequester inactive STAT1 in the nucleus, preventing its activation and suggest that the W protein is the dominant inhibitor of STAT1 in NiV-infected cells.

  7. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus.

    PubMed

    Kimura, Y; Miyake, R; Tokumasu, Y; Sato, M

    2000-10-01

    We have cloned a DNA fragment from a genomic library of Myxococcus xanthus using an oligonucleotide probe representing conserved regions of biotin carboxylase subunits of acetyl coenzyme A (acetyl-CoA) carboxylases. The fragment contained two open reading frames (ORF1 and ORF2), designated the accB and accA genes, capable of encoding a 538-amino-acid protein of 58.1 kDa and a 573-amino-acid protein of 61.5 kDa, respectively. The protein (AccA) encoded by the accA gene was strikingly similar to biotin carboxylase subunits of acetyl-CoA and propionyl-CoA carboxylases and of pyruvate carboxylase. The putative motifs for ATP binding, CO(2) fixation, and biotin binding were found in AccA. The accB gene was located upstream of the accA gene, and they formed a two-gene operon. The protein (AccB) encoded by the accB gene showed high degrees of sequence similarity with carboxyltransferase subunits of acetyl-CoA and propionyl-CoA carboxylases and of methylmalonyl-CoA decarboxylase. Carboxybiotin-binding and acyl-CoA-binding domains, which are conserved in several carboxyltransferase subunits of acyl-CoA carboxylases, were found in AccB. An accA disruption mutant showed a reduced growth rate and reduced acetyl-CoA carboxylase activity compared with the wild-type strain. Western blot analysis indicated that the product of the accA gene was a biotinylated protein that was expressed during the exponential growth phase. Based on these results, we propose that this M. xanthus acetyl-CoA carboxylase consists of two subunits, which are encoded by the accB and accA genes, and occupies a position between prokaryotic and eukaryotic acetyl-CoA carboxylases in terms of evolution.

  8. Computational discovery of small open reading frames in Bacillus lehensis

    NASA Astrophysics Data System (ADS)

    Zainuddin, Nurhafizhoh; Illias, Rosli Md.; Mahadi, Nor Muhammad; Firdaus-Raih, Mohd

    2015-09-01

    Bacillus lehensis is a Gram-positive and endospore-forming alkalitolerant bacterial strain. In recent years there has been increasing interest in alkaliphilic bacteria and their ability to grow under extreme conditions as well as their ability to serve various important functions in industrial biology especially enzyme production. Small open reading frames (sORFs) have emerged as important regulators in various biological roles such as tumor progression, hormone signalling and stress response. Over the past decade, many biocomputational tools have been developed to predict genes in bacterial genomes. In this study, three softwares were used to predict sORF (≤ 80 aa) in B. lehensis by using whole genome sequence. We used comparative analysis to identify the sORFs in B. lehensis that conserved across all other bacterial genomes. We extended the analysis by doing the homology analysis against protein database. This study established the sORFs in B. lehensis that are conserved across bacteria which might has important biological function which still remain elusive in biological field.

  9. Nucleotide sequences of Japanese isolates of citrus vein enation virus.

    PubMed

    Nakazono-Nagaoka, Eiko; Fujikawa, Takashi; Iwanami, Toru

    2017-03-01

    The genomic sequences of five Japanese isolates of citrus vein enation virus (CVEV) isolates that induce vein enation were determined and compared with that of the Spanish isolate VE-1. The nucleotide sequences of all Japanese isolates were 5,983 nt in length. The genomic RNA of Japanese isolates had five potential open reading frames (ORF 0, ORF 1, ORF 2, ORF 3, and ORF 5) in the positive-sense strand. The nucleotide sequence identity among the Japanese isolates and Spanish isolate VE-1 ranged from 98.0% to 99.8%. Comparison of the partial amino acid sequences of ten Japanese isolates and three Spanish isolates suggested that four amino acid residues, at positions of 83, 104, and 113 in ORF 2 and position 41 in ORF 5, might be unique to some Japanese isolates.

  10. The Role of eIF4E Activity in Breast Cancer

    DTIC Science & Technology

    2010-08-01

    ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less product...have previously shown that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem

  11. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97

    PubMed Central

    Chang, Yoonjee; Shin, Hakdong; Lee, Ju-Hoon; Park, Chul Jong; Paik, Soon-Young; Ryu, Sangryeol

    2015-01-01

    A novel bacteriophage that infects S. aureus, SA97, was isolated and characterized. The phage SA97 belongs to the Siphoviridae family, and the cell wall teichoic acid (WTA) was found to be a host receptor of the phage SA97. Genome analysis revealed that SA97 contains 40,592 bp of DNA encoding 54 predicted open reading frames (ORFs), and none of these genes were related to virulence or drug resistance. Although a few genes associated with lysogen formation were detected in the phage SA97 genome, the phage SA97 produced neither lysogen nor transductant in S. aureus. These results suggest that the phage SA97 may be a promising candidate for controlling S. aureus. PMID:26437428

  12. Correlation of Metabolic Variables with the Number of ORFs in Human Pathogenic and Phylogenetically Related Non- or Less-Pathogenic Bacteria.

    PubMed

    Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Garcia-Guevara, Jose Fernando; Rodríguez-Vázquez, Katya

    2016-06-01

    To date, a few works have performed a correlation of metabolic variables in bacteria; however specific correlations with these variables have not been reported. In this work, we included 36 human pathogenic bacteria and 18 non- or less-pathogenic-related bacteria and obtained all metabolic variables, including enzymes, metabolic pathways, enzymatic steps and specific metabolic pathways, and enzymatic steps of particular metabolic processes, from a reliable metabolic database (KEGG). Then, we correlated the number of the open reading frames (ORF) with these variables and with the proportions of these variables, and we observed a negative correlation with the proportion of enzymes (r = -0.506, p < 0.0001), metabolic pathways (r = -0.871, p < 00.0001), enzymatic reactions (r = -0.749, p < 00.0001), and with the proportions of central metabolism variables as well as a positive correlation with the proportions of multistep reactions (r = 0.650, p < 00.0001) and secondary metabolism variables. The proportion of multifunctional reactions (r: -0.114, p = 0.41) and the proportion of enzymatic steps (r: -0.205, p = 0.14) did not present a significant correlation. These correlations indicate that as the size of a genome (measured in the number of ORFs) increases, the proportion of genes that encode enzymes significantly diminishes (especially those related to central metabolism), suggesting that when essential metabolic pathways are complete, an increase in the number of ORFs does not require a similar increase in the metabolic pathways and enzymes, but only a slight increase is sufficient to cope with a large genome.

  13. Construction and Validation of the Rhodobacter sphaeroides 2.4.1 DNA Microarray: Transcriptome Flexibility at Diverse Growth Modes

    PubMed Central

    Pappas, Christopher T.; Sram, Jakub; Moskvin, Oleg V.; Ivanov, Pavel S.; Mackenzie, R. Christopher; Choudhary, Madhusudan; Land, Miriam L.; Larimer, Frank W.; Kaplan, Samuel; Gomelsky, Mark

    2004-01-01

    A high-density oligonucleotide DNA microarray, a genechip, representing the 4.6-Mb genome of the facultative phototrophic proteobacterium, Rhodobacter sphaeroides 2.4.1, was custom-designed and manufactured by Affymetrix, Santa Clara, Calif. The genechip contains probe sets for 4,292 open reading frames (ORFs), 47 rRNA and tRNA genes, and 394 intergenic regions. The probe set sequences were derived from the genome annotation generated by Oak Ridge National Laboratory after extensive revision, which was based primarily upon codon usage characteristic of this GC-rich bacterium. As a result of the revision, numerous missing ORFs were uncovered, nonexistent ORFs were deleted, and misidentified start codons were corrected. To evaluate R. sphaeroides transcriptome flexibility, expression profiles for three diverse growth modes—aerobic respiration, anaerobic respiration in the dark, and anaerobic photosynthesis—were generated. Expression levels of one-fifth to one-third of the R. sphaeroides ORFs were significantly different in cells under any two growth modes. Pathways involved in energy generation and redox balance maintenance under three growth modes were reconstructed. Expression patterns of genes involved in these pathways mirrored known functional changes, suggesting that massive changes in gene expression are the major means used by R. sphaeroides in adaptation to diverse conditions. Differential expression was observed for genes encoding putative new participants in these pathways (additional photosystem genes, duplicate NADH dehydrogenase, ATP synthases), whose functionality has yet to be investigated. The DNA microarray data correlated well with data derived from quantitative reverse transcription-PCR, as well as with data from the literature, thus validating the R. sphaeroides genechip as a powerful and reliable tool for studying unprecedented metabolic versatility of this bacterium. PMID:15231807

  14. The SARS Coronavirus 3a protein binds calcium in its cytoplasmic domain.

    PubMed

    Minakshi, Rinki; Padhan, Kartika; Rehman, Safikur; Hassan, Md Imtaiyaz; Ahmad, Faizan

    2014-10-13

    The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a positive stranded RNA virus with ∼30kb genome. Among all open reading frames (orfs) of this virus, the orf3a is the largest, and encodes a protein of 274 amino acids, named as 3a protein. Sequence analysis suggests that the orf3a aligned to one calcium pump present in Plasmodium falciparum and the enzyme glutamine synthetase found in Leptospira interrogans. This sequence similarity was found to be limited only to amino acid residues 209-264 which form the cytoplasmic domain of the orf3a. Furthermore, this region was predicted to be involved in the calcium binding. Owing to this hypothesis, we were driven to establish its calcium binding property in vitro. Here, we expressed and purified the cytoplasmic domain of the 3a protein, called Cyto3a, as a recombinant His-tagged protein in the E. coli. The calcium binding nature was established by performing various staining methods such as ruthenium red and stains-all. (45)Ca overlay method was also done to further support the data. Since the 3a protein forms ion channels, we were interested to see any conformational changes occurring in the Cyot3a upon calcium binding, using fluorescence spectroscopy and circular dichroism. These studies clearly indicate a significant change in the conformation of the Cyto3a protein after binding with calcium. Our results strongly suggest that the cytoplasmic domain of the 3a protein of SARS-CoV binds calcium in vitro, causing a change in protein conformation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Physiological Properties and Genome Structure of the Hyperthermophilic Filamentous Phage φOH3 Which Infects Thermus thermophilus HB8.

    PubMed

    Nagayoshi, Yuko; Kumagae, Kenta; Mori, Kazuki; Tashiro, Kosuke; Nakamura, Ayano; Fujino, Yasuhiro; Hiromasa, Yasuaki; Iwamoto, Takeo; Kuhara, Satoru; Ohshima, Toshihisa; Doi, Katsumi

    2016-01-01

    A filamentous bacteriophage, φOH3, was isolated from hot spring sediment in Obama hot spring in Japan with the hyperthermophilic bacterium Thermus thermophilus HB8 as its host. Phage φOH3, which was classified into the Inoviridae family, consists of a flexible filamentous particle 830 nm long and 8 nm wide. φOH3 was stable at temperatures ranging from 70 to 90°C and at pHs ranging from 6 to 9. A one-step growth curve of the phage showed a 60-min latent period beginning immediately postinfection, followed by intracellular virus particle production during the subsequent 40 min. The released virion number of φOH3 was 109. During the latent period, both single stranded DNA (ssDNA) and the replicative form (RF) of phage DNA were multiplied from min 40 onward. During the release period, the copy numbers of both ssDNA and RF DNA increased sharply. The size of the φOH3 genome is 5688 bp, and eight putative open reading frames (ORFs) were annotated. These ORFs were encoded on the plus strand of RF DNA and showed no significant homology with any known phage genes, except ORF 5, which showed 60% identity with the gene VIII product of the Thermus filamentous phage PH75. All the ORFs were similar to predicted genes annotated in the Thermus aquaticus Y51MC23 and Meiothermus timidus DSM 17022 genomes at the amino acid sequence level. This is the first report of the whole genome structure and DNA multiplication of a filamentous T. thermophilus phage within its host cell.

  16. New Universal Rules of Eukaryotic Translation Initiation Fidelity

    PubMed Central

    Zur, Hadas; Tuller, Tamir

    2013-01-01

    The accepted model of eukaryotic translation initiation begins with the scanning of the transcript by the pre-initiation complex from the 5′end until an ATG codon with a specific nucleotide (nt) context surrounding it is recognized (Kozak rule). According to this model, ATG codons upstream to the beginning of the ORF should affect translation. We perform for the first time, a genome-wide statistical analysis, uncovering a new, more comprehensive and quantitative, set of initiation rules for improving the cost of translation and its efficiency. Analyzing dozens of eukaryotic genomes, we find that in all frames there is a universal trend of selection for low numbers of ATG codons; specifically, 16–27 codons upstream, but also 5–11 codons downstream of the START ATG, include less ATG codons than expected. We further suggest that there is selection for anti optimal ATG contexts in the vicinity of the START ATG. Thus, the efficiency and fidelity of translation initiation is encoded in the 5′UTR as required by the scanning model, but also at the beginning of the ORF. The observed nt patterns suggest that in all the analyzed organisms the pre-initiation complex often misses the START ATG of the ORF, and may start translation from an alternative initiation start-site. Thus, to prevent the translation of undesired proteins, there is selection for nucleotide sequences with low affinity to the pre-initiation complex near the beginning of the ORF. With the new suggested rules we were able to obtain a twice higher correlation with ribosomal density and protein levels in comparison to the Kozak rule alone (e.g. for protein levels r = 0.7 vs. r = 0.31; p<10−12). PMID:23874179

  17. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.

    PubMed Central

    Borodovsky, M; Rudd, K E; Koonin, E V

    1994-01-01

    The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428

  18. Cloning and Expression Analysis of the Bombyx mori α-amylase Gene (Amy) from the Indigenous Thai Silkworm Strain, Nanglai

    PubMed Central

    Ngernyuang, Nipaporn; Kobayashi, Isao; Promboon, Amornrat; Ratanapo, Sunanta; Tamura, Toshiki; Ngernsiri, Lertluk

    2011-01-01

    α-Amylase is a common enzyme for hydrolyzing starch. In the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae), α-amylase is found in both digestive fluid and hemolymph. Here, the complete genomic sequence of the Amy gene encoding α-amylase from a local Thai silkworm, the Nanglai strain, was obtained. This gene was 7981 bp long with 9 exons. The full length Amy cDNA sequence was 1749 bp containing a 1503 bp open reading frame. The ORF encoded 500 amino acid residues. The deduced protein showed 81–54% identity to other insect α-amylases and more than 50% identity to mammalian enzymes. Southern blot analysis revealed that in the Nanglai strain Amy is a single-copy gene. RT- PCR showed that Amy was transcribed only in the foregut. Transgenic B. mori also showed that the Amy promoter activates expression of the transgene only in the foregut. PMID:21529256

  19. Ribosomes slide on lysine-encoding homopolymeric A stretches

    PubMed Central

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  20. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers.

    PubMed Central

    Crum, C P; Nuovo, G; Friedman, D; Silverstein, S J

    1988-01-01

    The accumulation of human papillomavirus type 16 (HPV-16)-specific RNAs in tissue sections from biopsies of patients with genital precancers was studied by in situ hybridization with single-stranded 35S-labeled RNA. These analyses revealed that the most abundant early-region RNAs were derived from the E4 and E5 open reading frames (ORFs). RNAs homologous to the E6/E7 ORFs were also detected, whereas RNAs homologous to the intervening E1 ORF were not. This suggests that the E4 and E5 mRNAs are derived by splicing to the upstream E6/E7 ORFs, consistent with studies of HPV-11 in condylomata (L. T. Chow et al., Cancer Cells (Cold Spring Harbor) 5:55-72, 1987). Abundant RNAs homologous to the 5' portion of L1 were also detected. These RNAs were localized to the apical strata of the epithelium. HPV-16 RNAs accumulated in discrete regions of these lesions, and when present were most abundant in the upper cell layers of the precancerous epithelium. RNAs homologous to early ORFs were also detected in some germinal cells within the basal layer of the epithelium. Images PMID:2824859

  1. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers.

    PubMed

    Crum, C P; Nuovo, G; Friedman, D; Silverstein, S J

    1988-01-01

    The accumulation of human papillomavirus type 16 (HPV-16)-specific RNAs in tissue sections from biopsies of patients with genital precancers was studied by in situ hybridization with single-stranded 35S-labeled RNA. These analyses revealed that the most abundant early-region RNAs were derived from the E4 and E5 open reading frames (ORFs). RNAs homologous to the E6/E7 ORFs were also detected, whereas RNAs homologous to the intervening E1 ORF were not. This suggests that the E4 and E5 mRNAs are derived by splicing to the upstream E6/E7 ORFs, consistent with studies of HPV-11 in condylomata (L. T. Chow et al., Cancer Cells (Cold Spring Harbor) 5:55-72, 1987). Abundant RNAs homologous to the 5' portion of L1 were also detected. These RNAs were localized to the apical strata of the epithelium. HPV-16 RNAs accumulated in discrete regions of these lesions, and when present were most abundant in the upper cell layers of the precancerous epithelium. RNAs homologous to early ORFs were also detected in some germinal cells within the basal layer of the epithelium.

  2. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crum, C.P.; Nuovo, G.; Friedman, D.

    1988-01-01

    The accumulation of human papillomavirus type 16 (HPV-16)-specific RNAs in tissue sections from biopsies of patients with genital precancers was studied by in situ hybridization with single-stranded /sup 35/S-labeled RNA. These analyses revealed that the most abundant early-region RNAs were derived from the E4 and E5 open reading frames (ORFs). RNAs homologous to the E6/E7 ORFs were also detected, whereas RNAs homologous to the intervening E1 ORF were not. This suggest that the E4 and E5 mRNAs are derived by splicing to the upstream E6/E7 ORFs, consistent with studies of HPV-11 in condylomata. Abundant RNAs homologous to the 5' portionmore » of L1 were also detected. These RNAs were localized to the apical strata of the epithelium. HPV-16 RNAs accumulated in discrete regions of these lesions, and when present were most abundant in the upper cell layers of the precancerous epithelium. RNAs homologous to early ORFs were also detected in some germinal cells within the basal layer of the epithelium.« less

  3. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp.

    PubMed

    Deng, Peng; Tan, Xiaoqing; Wu, Ying; Bai, Qunhua; Jia, Yan; Xiao, Hong

    2015-03-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica , which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function.

  4. Cloning and sequence analysis demonstrate the chromate reduction ability of a novel chromate reductase gene from Serratia sp

    PubMed Central

    DENG, PENG; TAN, XIAOQING; WU, YING; BAI, QUNHUA; JIA, YAN; XIAO, HONG

    2015-01-01

    The ChrT gene encodes a chromate reductase enzyme which catalyzes the reduction of Cr(VI). The chromate reductase is also known as flavin mononucleotide (FMN) reductase (FMN_red). The aim of the present study was to clone the full-length ChrT DNA from Serratia sp. CQMUS2 and analyze the deduced amino acid sequence and three-dimensional structure. The putative ChrT gene fragment of Serratia sp. CQMUS2 was isolated by polymerase chain reaction (PCR), according to the known FMN_red gene sequence from Serratia sp. AS13. The flanking sequences of the ChrT gene were obtained by high efficiency TAIL-PCR, while the full-length gene of ChrT was cloned in Escherichia coli for subsequent sequencing. The nucleotide sequence of ChrT was submitted onto GenBank under the accession number, KF211434. Sequence analysis of the gene and amino acids was conducted using the Basic Local Alignment Search Tool, and open reading frame (ORF) analysis was performed using ORF Finder software. The ChrT gene was found to be an ORF of 567 bp that encodes a 188-amino acid enzyme with a calculated molecular weight of 20.4 kDa. In addition, the ChrT protein was hypothesized to be an NADPH-dependent FMN_red and a member of the flavodoxin-2 superfamily. The amino acid sequence of ChrT showed high sequence similarity to the FMN reductase genes of Klebsiella pneumonia and Raoultella ornithinolytica, which belong to the flavodoxin-2 superfamily. Furthermore, ChrT was shown to have a 85.6% similarity to the three-dimensional structure of Escherichia coli ChrR, sharing four common enzyme active sites for chromate reduction. Therefore, ChrT gene cloning and protein structure determination demonstrated the ability of the gene for chromate reduction. The results of the present study provide a basis for further studies on ChrT gene expression and protein function. PMID:25667630

  5. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    PubMed Central

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.; Gralinski, Lisa E.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Douglas, Madeline G.; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F.; Hale, Andrew E.; Stratton, Kelly G.; Waters, Katrina M.

    2017-01-01

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. PMID:28830941

  6. The mitochondrial genome of Moniliophthora roreri, the frosty pod rot pathogen of cacao.

    PubMed

    Costa, Gustavo G L; Cabrera, Odalys G; Tiburcio, Ricardo A; Medrano, Francisco J; Carazzolle, Marcelo F; Thomazella, Daniela P T; Schuster, Stephen C; Carlson, John E; Guiltinan, Mark J; Bailey, Bryan A; Mieczkowski, Piotr; Pereira, Gonçalo A G; Meinhardt, Lyndel W

    2012-05-01

    In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Constructing high complexity synthetic libraries of long ORFs using in vitro selection

    NASA Technical Reports Server (NTRS)

    Cho, G.; Keefe, A. D.; Liu, R.; Wilson, D. S.; Szostak, J. W.

    2000-01-01

    We present a method that can significantly increase the complexity of protein libraries used for in vitro or in vivo protein selection experiments. Protein libraries are often encoded by chemically synthesized DNA, in which part of the open reading frame is randomized. There are, however, major obstacles associated with the chemical synthesis of long open reading frames, especially those containing random segments. Insertions and deletions that occur during chemical synthesis cause frameshifts, and stop codons in the random region will cause premature termination. These problems can together greatly reduce the number of full-length synthetic genes in the library. We describe a strategy in which smaller segments of the synthetic open reading frame are selected in vitro using mRNA display for the absence of frameshifts and stop codons. These smaller segments are then ligated together to form combinatorial libraries of long uninterrupted open reading frames. This process can increase the number of full-length open reading frames in libraries by up to two orders of magnitude, resulting in protein libraries with complexities of greater than 10(13). We have used this methodology to generate three types of displayed protein library: a completely random sequence library, a library of concatemerized oligopeptide cassettes with a propensity for forming amphipathic alpha-helical or beta-strand structures, and a library based on one of the most common enzymatic scaffolds, the alpha/beta (TIM) barrel. Copyright 2000 Academic Press.

  8. The Role of elF4E Activity in Breast Cancer

    DTIC Science & Technology

    2011-08-01

    protein; ORF, open reading frame; qPCR, quantitative PCR; RACE, rapid amplification of cDNA ends; RT, reverse transcriptase ; uORF, upstream ORF; UTR...Reactions were also performed using template lacking RT ( reverse transcriptase ): products were either undetectable or greatly reduced (>30000-fold less...that a 5’UTR expressed from the human AXIN2 gene contains a sixty nucleotide sequence that is predicted to form a stable stem-loop structure6. This

  9. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.)

    PubMed Central

    Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang

    2017-01-01

    The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies. PMID:28704497

  10. Genetic mapping of the LOBED LEAF 1 (ClLL1) gene to a 127.6-kb region in watermelon (Citrullus lanatus L.).

    PubMed

    Wei, Chunhua; Chen, Xiner; Wang, Zhongyuan; Liu, Qiyan; Li, Hao; Zhang, Yong; Ma, Jianxiang; Yang, Jianqiang; Zhang, Xian

    2017-01-01

    The lobed leaf character is a unique morphologic trait in crops, featuring many potential advantages for agricultural productivity. Although the majority of watermelon varieties feature lobed leaves, the genetic factors responsible for lobed leaf formation remain elusive. The F2:3 leaf shape segregating population offers the opportunity to study the underlying mechanism of lobed leaf formation in watermelon. Genetic analysis revealed that a single dominant allele (designated ClLL1) controlled the lobed leaf trait. A large-sized F3:4 population derived from F2:3 individuals was used to map ClLL1. A total of 5,966 reliable SNPs and indels were identified genome-wide via a combination of BSA and RNA-seq. Using the validated SNP and indel markers, the location of ClLL1 was narrowed down to a 127.6-kb region between markers W08314 and W07061, containing 23 putative ORFs. Expression analysis via qRT-PCR revealed differential expression patterns (fold-changes above 2-fold or below 0.5-fold) of three ORFs (ORF3, ORF11, and ORF18) between lobed and non-lobed leaf plants. Based on gene annotation and expression analysis, ORF18 (encoding an uncharacterized protein) and ORF22 (encoding a homeobox-leucine zipper-like protein) were considered as most likely candidate genes. Furthermore, sequence analysis revealed no polymorphisms in cDNA sequences of ORF18; however, two notable deletions were identified in ORF22. This study is the first report to map a leaf shape gene in watermelon and will facilitate cloning and functional characterization of ClLL1 in future studies.

  11. Comparative Genomic Sequencing and Pathogenic Properties of Equine Herpesvirus 1 KyA and RacL11

    PubMed Central

    Shakya, Akhalesh K.; O’Callaghan, Dennis J.; Kim, Seong K.

    2017-01-01

    Equine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 Kentucky A (KyA) is attenuated in the mouse and equine, whereas wild-type pathogenic strain RacL11 induces severe inflammatory infiltration of the lung, causing infected mice to succumb. The complete DNA sequencing of the KyA genome revealed that genes UL17 (ORF17), US6 (ORF73; gI), US7 (ORF74; gE), and US8 (ORF75; 10 K) are deleted as compared to the RacL11 and Ab4 genomes. In-frame deletions in the US1 (ORF68), US4 (ORF71; gp2), and UL63 (ORF63; EICP0) genes and point mutations in 14 different open reading frames (ORFs) were detected in the KyA genome. Interestingly, UL1 (ORF1) and UL2 (ORF2) were deleted in both KyA and RacL11. Our previous studies showed that EHV-1 glycoproteins gI, gE, and full-length gp2 contribute to the pathogenesis of the RacL11 strain. The confirmation of these gene deletions in KyA suggests their contribution to the attenuation of this virus. The growth kinetics results revealed that KyA replicates to high titers in cell culture as compared to RacL11 and Ab4, indicating that the above genomic deletions and mutations in KyA do not have an inhibitory effect on KyA replication in cells of mouse, rabbit, equine, or human origin. Studies of EHV-1 pathogenesis in CBA mice showed that KyA is attenuated whereas mice infected with RacL11 succumbed by 3–6 days post-infection, which is consistent with our previous results. PMID:29312962

  12. Complete genome sequence of a phage hyperparasite of Candidatus Xenohaliotis californiensis (Rickettsiales) - a pathogen of Haliotis spp (Gasteropoda).

    PubMed

    Cruz-Flores, Roberto; Cáceres-Martínez, Jorge; Del Río-Portilla, Miguel Ángel; Licea-Navarro, Alexei F; Gonzales-Sánchez, Ricardo; Guerrero, Abraham

    2018-04-01

    Bacteriophages are recognized as major mortality agents of microbes, among them intracellular marine rickettsiales-like bacteria. Recently, a phage hyperparasite of Candidatus Xenohaliotis californiensis (CXc) has been described. This bacterium is considered the causal agent of Withering Syndrome (WS) which is a chronic and potentially lethal disease of abalone species from California, USA and the peninsula of Baja California, Mexico. This hyperparasite which infects CXc could be used as a biocontrol agent for WS. Therefore, it is necessary to obtain genomic information to characterize this phage. In this study, the first complete genome sequence of a novel phage, Xenohaliotis phage (pCXc) was determined. The complete genome of pCXc from red abalone (Haliotis rufescens) is 35,728 bp, while the complete genome of pCXc from yellow abalone (Haliotis corrugata) is 35,736 bp. Both phage genomes consist of double-stranded DNA with a G + C content of 38.9%. In both genomes 33 open reading frames (ORFs) were predicted. Only 10 ORFs encode proteins that have identifiable functional homologues. These 10 ORFs were classified by function, including structural, DNA replication, DNA packaging, nucleotide transport and metabolism, life cycle regulation, recombination and repair, and additional functions. A PCR method for the specific detection of pCXc was developed. This information will help to understand a new group of phages that infect intracellular marine rickettsiales-like bacteria in mollusks.

  13. High-throughput protein analysis integrating bioinformatics and experimental assays

    PubMed Central

    del Val, Coral; Mehrle, Alexander; Falkenhahn, Mechthild; Seiler, Markus; Glatting, Karl-Heinz; Poustka, Annemarie; Suhai, Sandor; Wiemann, Stefan

    2004-01-01

    The wealth of transcript information that has been made publicly available in recent years requires the development of high-throughput functional genomics and proteomics approaches for its analysis. Such approaches need suitable data integration procedures and a high level of automation in order to gain maximum benefit from the results generated. We have designed an automatic pipeline to analyse annotated open reading frames (ORFs) stemming from full-length cDNAs produced mainly by the German cDNA Consortium. The ORFs are cloned into expression vectors for use in large-scale assays such as the determination of subcellular protein localization or kinase reaction specificity. Additionally, all identified ORFs undergo exhaustive bioinformatic analysis such as similarity searches, protein domain architecture determination and prediction of physicochemical characteristics and secondary structure, using a wide variety of bioinformatic methods in combination with the most up-to-date public databases (e.g. PRINTS, BLOCKS, INTERPRO, PROSITE SWISSPROT). Data from experimental results and from the bioinformatic analysis are integrated and stored in a relational database (MS SQL-Server), which makes it possible for researchers to find answers to biological questions easily, thereby speeding up the selection of targets for further analysis. The designed pipeline constitutes a new automatic approach to obtaining and administrating relevant biological data from high-throughput investigations of cDNAs in order to systematically identify and characterize novel genes, as well as to comprehensively describe the function of the encoded proteins. PMID:14762202

  14. Bioinformatic Analysis Reveals Archaeal tRNATyr and tRNATrp Identities in Bacteria

    PubMed Central

    Mukai, Takahito; Reynolds, Noah M.; Crnković, Ana; Söll, Dieter

    2017-01-01

    The tRNA identity elements for some amino acids are distinct between the bacterial and archaeal domains. Searching in recent genomic and metagenomic sequence data, we found some candidate phyla radiation (CPR) bacteria with archaeal tRNA identity for Tyr-tRNA and Trp-tRNA synthesis. These bacteria possess genes for tyrosyl-tRNA synthetase (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS) predicted to be derived from DPANN superphylum archaea, while the cognate tRNATyr and tRNATrp genes reveal bacterial or archaeal origins. We identified a trace of domain fusion and swapping in the archaeal-type TyrRS gene of a bacterial lineage, suggesting that CPR bacteria may have used this mechanism to create diverse proteins. Archaeal-type TrpRS of bacteria and a few TrpRS species of DPANN archaea represent a new phylogenetic clade (named TrpRS-A). The TrpRS-A open reading frames (ORFs) are always associated with another ORF (named ORF1) encoding an unknown protein without global sequence identity to any known protein. However, our protein structure prediction identified a putative HIGH-motif and KMSKS-motif as well as many α-helices that are characteristic of class I aminoacyl-tRNA synthetase (aaRS) homologs. These results provide another example of the diversity of molecular components that implement the genetic code and provide a clue to the early evolution of life and the genetic code. PMID:28230768

  15. Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa.

    PubMed

    Marques, M V; da Silva, A M; Gomes, S L

    2001-05-01

    The sequence of plasmid pXF51 from the plant pathogen Xylella fastidiosa, the causal agent of citrus variegated chlorosis, has been analyzed. This plasmid codes for 65 open reading frames (ORFs), organized into four main regions, containing genes related to replication, mobilization, and conjugative transfer. Twenty-five ORFs have no counterparts in the public sequence databases, and 7 are similar to conserved hypothetical proteins from other bacteria. A pXF51 incompatibility group has not been determined, as we could not find a typical replication origin. One cluster of conjugation-related genes (trb) seems to be incomplete in pXF51, and a copy of this sequence is found in the chromosome, suggesting it was generated by a duplication event. A second cluster (tra) contains all genes necessary for conjugation transfer to occur, showing a conserved organization with other conjugative plasmids. An identifiable origin of transfer similar to oriT from IncP plasmids is found adjacent to genes encoding two mobilization proteins. None of the ORFs with putative assigned function could be predicted as having a role in pathogenesis, except for a virulence-associated protein D homolog. These results indicate that even though pXF51 appears not to have a direct role in Xylella pathogenesis, it is a conjugative plasmid that could be important for lateral gene transfer in this bacterium. This property may be of great importance for future development of transformation techniques in X. fastidiosa.

  16. Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress

    PubMed Central

    Lehman, Stacey L.; Cerniglia, George J.; Johannes, Gregg J.; Ye, Jiangbin; Ryeom, Sandra; Koumenis, Constantinos

    2015-01-01

    Multiple transcripts encode for the cell cycle inhibitor p21Cip1. These transcripts produce identical proteins but differ in their 5’ untranslated regions (UTRs). Although several stresses that induce p21 have been characterized, the mechanisms regulating the individual transcript variants and their functional significance are unknown. Here we demonstrate through 35S labeling, luciferase reporter assays, and polysome transcript profiling that activation of the Integrated Stress Response (ISR) kinase GCN2 selectively upregulates the translation of a p21 transcript variant containing 5’ upstream open reading frames (uORFs) through phosphorylation of the eukaryotic translation initiation factor eIF2α. Mutational analysis reveals that the uORFs suppress translation under basal conditions, but promote translation under stress. Functionally, ablation of p21 ameliorates G1/S arrest and reduces cell survival in response to GCN2 activation. These findings uncover a novel mechanism of p21 post-transcriptional regulation, offer functional significance for the existence of multiple p21 transcripts, and support a key role for GCN2 in regulating the cell cycle under stress. PMID:26102367

  17. A potential germ cell-specific marker in Japanese flounder, Paralichthys olivaceus: identification and characterization of lymphocyte antigen 75 (Ly75/CD205)

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Liu, Qinghua; Ma, Daoyuan; Song, Zongchen; Li, Jun

    2018-04-01

    Some germ cell marker genes, such as vasa, nanos, and dead end (dnd), have been identified in fish. Recently, lymphocyte antigen 75 (Ly75/CD205) has been identified as a mitotic germ cell-specific cell-surface marker in several fish species. In this study, the Japanese flounder ly75 homolog (ly75) was cloned and its expression pattern in gonads was analyzed. The full-length cDNA of ly75 was 7 346 bp, with an open reading frame (ORF) of 5 229 bp. The ORF encoded a protein containing 1 742 amino acids with a predicted molecular mass of 196.89 kDa. In adult tissues, ly75 transcripts were detected in all analyzed tissues but abundantly in the testis. In in-situ hybridization analyses, ly75 mRNA was predominantly localized in oocytes in the ovary and spermatogonia in the testis, but ly75 mRNA was not detected in oogonia, spermatocytes, spermatids, or spermatozoa. These results indicated that ly75 could be a potential germ cell-specific marker in P. olivaceus, as in other fishes.

  18. Molecular identification and expression analysis of a natural killer cell enhancing factor (NKEF) from rock bream Oplegnathus fasciatus and the biological activity of its recombinant protein

    PubMed Central

    Kim, Ju-Won; Choi, Hye-Sung; Kwon, Mun-Gyeong; Park, Myoung-Ae; Hwang, Jee-Youn; Kim, Do-Hyung; Park, Chan-Il

    2011-01-01

    Natural killer cell enhancing factor (NKEF) belongs to the defined peroxiredoxin (Prx) family. Rock bream NKEF cDNA was identified by expressed sequence tag (EST) analysis of rock bream liver that was stimulated with the LPS. The full-length RbNKEF cDNA (1062 bp) contained an open reading frame (ORF) of 594 bp encoding 198 amino acids. RbNKEF was significantly expressed in the gill, liver, and intestine. mRNA expression of NKEF in the head kidney was examined under viral and bacterial challenge via real-time RT-PCR. Experimental challenge of rock bream with Edwardsiella tarda, Streptococcus iniae, and RSIV resulted in significant increases in RbNKEF mRNA in the head kidney. To obtain a recombinant NKEF, the RbNKEF ORF was expressed in Escherichia coli BL21 (DE3), and the purified soluble protein exhibited a single band corresponding to the predicted molecular mass. When kidney leucocytes were treated with a high concentration of rRbNKEF (10 μg/mL), they exhibited significantly enhanced cell proliferation and viability under oxidative stress. PMID:24371552

  19. [Cloning of Enterobacter aerogenes fh1A gene and overexpression of hydrogen production].

    PubMed

    Zhao, Jinfang; Song, Wenlu; Cheng, Jun; Zhang, Chuanxi

    2010-06-01

    We amplified and overexpressed the FHL activator (fh1A) in E. aerogenes ATCC13408 to enhance hydrogen production. By using universal primers and genome walking, we cloned the full open reading frame (ORF) of fh1A gene. We inserted it into the glutathion S-transferase (GST) fusion expression vector pGEX4T-2-Cat, and transformed the recombinant plasmid into E. aerogenes ATCC13408 via electroporation for expression. Then we measured the hydrogen production of the recombinant strain in a batch culture. We found that the ORF of fh1A was 2073 base pair in length, potential to encode a 690 amino acid peptide (GenBank accession GU188474). The Fh1A protein from E. aerogenes ATCC13408 shared high amino acid identities with those from other bacterial species. By using SDS-PAGE and Western blot analysis, we confirmed that the fh1A gene had successfully expressed in the strain. The hydrogen yield of the recombinant strain was increased from 1.23 to 1.48 mol H2/mol glucose. [ Conclusion ] Enhancement of hydrogen productivity was attained under anaerobic conditions with the recombinant strain.

  20. Dissection of affinity captured LINE-1 macromolecular complexes

    PubMed Central

    Mita, Paolo; Jiang, Hua; Adney, Emily M; Wudzinska, Aleksandra; Badri, Sana; Ischenko, Dmitry; Eng, George; Burns, Kathleen H; Fenyö, David; Chait, Brian T; Alexeev, Dmitry; Rout, Michael P; Boeke, Jef D

    2018-01-01

    Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for the L1 lifecycle. Using differential affinity purifications, quantitative mass spectrometry, and next generation RNA sequencing, we have characterized the proteins and nucleic acids associated with distinctive, enzymatically active L1 macromolecular complexes. Among them, we describe a cytoplasmic intermediate that we hypothesize to be the canonical ORF1p/ORF2p/L1-RNA-containing RNP, and we describe a nuclear population containing ORF2p, but lacking ORF1p, which likely contains host factors participating in target-primed reverse transcription. PMID:29309035

  1. Diagnostic Assay for Rickettsia japonica

    PubMed Central

    Hanaoka, Nozomu; Matsutani, Minenosuke; Kawabata, Hiroki; Yamamoto, Seigo; Fujita, Hiromi; Sakata, Akiko; Azuma, Yoshinao; Ogawa, Motohiko; Takano, Ai; Watanabe, Haruo; Kishimoto, Toshio; Shirai, Mutsunori; Kurane, Ichiro

    2009-01-01

    We developed a specific and rapid detection system for Rickettsia japonica and R. heilongjiangensis, the causative agents of spotted fever, using a TaqMan minor groove binder probe for a particular open reading frame (ORF) identified by the R. japonica genome project. The target ORF was present only in R. japonica–related strains. PMID:19961684

  2. Differential regulation of hepatitis B virus core protein expression and genome replication by a small upstream open reading frame and naturally occurring mutations in the precore region.

    PubMed

    Zong, Li; Qin, Yanli; Jia, Haodi; Ye, Lei; Wang, Yongxiang; Zhang, Jiming; Wands, Jack R; Tong, Shuping; Li, Jisu

    2017-05-01

    Hepatitis B virus (HBV) transcribes two subsets of 3.5-kb RNAs: precore RNA for hepatitis B e antigen (HBeAg) expression, and pregenomic RNA for core and P protein translation as well as genome replication. HBeAg expression could be prevented by mutations in the precore region, while an upstream open reading frame (uORF) has been proposed as a negative regulator of core protein translation. We employed replication competent HBV DNA constructs and transient transfection experiments in Huh7 cells to verify the uORF effect and to explore the alternative function of precore RNA. Optimized Kozak sequence for the uORF or extra ATG codons as present in some HBV genotypes reduced core protein expression. G1896A nonsense mutation promoted more efficient core protein expression than mutated precore ATG, while a +1 frameshift mutation was ineffective. In conclusion, various HBeAg-negative precore mutations and mutations affecting uORF differentially regulate core protein expression and genome replication. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes.

    PubMed

    Tuteja, Reetu; Saxena, Rachit K; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K B; Alverson, Andrew J; Spillane, Charles; Town, Christopher; Varshney, Rajeev K

    2013-10-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.

  4. Cytoplasmic Male Sterility-Associated Chimeric Open Reading Frames Identified by Mitochondrial Genome Sequencing of Four Cajanus Genotypes

    PubMed Central

    Tuteja, Reetu; Saxena, Rachit K.; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K. B.; Alverson, Andrew J.; Spillane, Charles; Town, Christopher; Varshney, Rajeev K.

    2013-01-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea. PMID:23792890

  5. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua.

    PubMed

    Zuo, Y-Y; Huang, J-L; Wang, J; Feng, Y; Han, T-T; Wu, Y-D; Yang, Y-H

    2018-02-01

    P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua. © 2017 The Royal Entomological Society.

  6. Molecular characterization of mariner-like elements in emerald ash borer, Agrilus planipennis (Coleoptera, Polyphaga).

    PubMed

    Rivera-Vega, L; Mittapalli, O

    2010-08-01

    Emerald ash borer (EAB, Agrilus planipennis), an exotic invasive pest, has killed millions of ash trees (Fraxinus spp.) in North America and continues to threaten the very survival of the entire Fraxinus genus. Despite its high-impact status, to date very little knowledge exists for this devastating insect pest at the molecular level. Mariner-like elements (MLEs) are transposable elements, which are ubiquitous in occurrence in insects and other invertebrates. Because of their low specificity and broad host range, they can be used for epitope-tagging, gene mapping, and in vitro mutagenesis. The majority of the known MLEs are inactive due to in-frame shifts and stop codons within the open reading frame (ORF). We report on the cloning and characterization of two MLEs in A. planipennis genome (Apmar1 and Apmar2). Southern analysis indicated a very high copy number for Apmar1 and a moderate copy number for Apmar2. Phylogenetic analysis revealed that both elements belong to the irritans subfamily. Based on the high copy number for Apmar1, the full-length sequence was obtained using degenerate primers designed to the inverted terminal repeat (ITR) sequences of irritans MLEs. The recovered nucleotide sequence for Apmar1 consisted of 1,292 bases with perfect ITRs, and an ORF of 1,050 bases encoding a putative transposase of 349 amino acids. The deduced amino acid sequence of Apmar1 contained the conserved regions of mariner transposases including WVPHEL and YSPDLAP, and the D,D(34)D motif. Both Apmar1 and Apmar2 could represent useful genetic tools and provide insights on EAB adaptation.

  7. Organelle Simple Sequence Repeat Markers Help to Distinguish Carpelloid Stamen and Normal Cytoplasmic Male Sterile Sources in Broccoli

    PubMed Central

    Shu, Jinshuai; Liu, Yumei; Li, Zhansheng; Zhang, Lili; Fang, Zhiyuan; Yang, Limei; Zhuang, Mu; Zhang, Yangyong; Lv, Honghao

    2015-01-01

    We previously discovered carpelloid stamens when breeding cytoplasmic male sterile lines in broccoli (Brassica oleracea var. italica). In this study, hybrids and multiple backcrosses were produced from different cytoplasmic male sterile carpelloid stamen sources and maintainer lines. Carpelloid stamens caused dysplasia of the flower structure and led to hooked or coiled siliques with poor seed setting, which were inherited in a maternal fashion. Using four distinct carpelloid stamens and twelve distinct normal stamens from cytoplasmic male sterile sources and one maintainer, we used 21 mitochondrial simple sequence repeat (mtSSR) primers and 32 chloroplast SSR primers to identify a mitochondrial marker, mtSSR2, that can differentiate between the cytoplasm of carpelloid and normal stamens. Thereafter, mtSSR2 was used to identify another 34 broccoli accessions, with an accuracy rate of 100%. Analysis of the polymorphic sequences revealed that the mtSSR2 open reading frame of carpelloid stamen sterile sources had a deletion of 51 bases (encoding 18 amino acids) compared with normal stamen materials. The open reading frame is located in the coding region of orf125 and orf108 of the mitochondrial genomes in Brassica crops and had the highest similarity with Raphanus sativus and Brassica carinata. The current study has not only identified a useful molecular marker to detect the cytoplasm of carpelloid stamens during broccoli breeding, but it also provides evidence that the mitochondrial genome is maternally inherited and provides a basis for studying the effect of the cytoplasm on flower organ development in plants. PMID:26407159

  8. Comprehensive annotation of Glossina pallidipes salivary gland hypertrophy virus from Ethiopian tsetse flies: a proteogenomics approach

    PubMed Central

    Kariithi, Henry M.; Cousserans, François; Parker, Nicolas J.; İnce, İkbal Agah; Scully, Erin D.; Boeren, Sjef; Geib, Scott M.; Mekonnen, Solomon; Vlak, Just M.; Parker, Andrew G.; Vreysen, Marc J. B.; Bergoin, Max

    2016-01-01

    Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) can establish asymptomatic and symptomatic infection in its tsetse fly host. Here, we present a comprehensive annotation of the genome of an Ethiopian GpSGHV isolate (GpSGHV-Eth) compared with the reference Ugandan GpSGHV isolate (GpSGHV-Uga; GenBank accession number EF568108). GpSGHV-Eth has higher salivary gland hypertrophy syndrome prevalence than GpSGHV-Uga. We show that the GpSGHV-Eth genome has 190 291 nt, a low G+C content (27.9 %) and encodes 174 putative ORFs. Using proteogenomic and transcriptome mapping, 141 and 86 ORFs were mapped by transcripts and peptides, respectively. Furthermore, of the 174 ORFs, 132 had putative transcriptional signals [TATA-like box and poly(A) signals]. Sixty ORFs had both TATA-like box promoter and poly(A) signals, and mapped by both transcripts and peptides, implying that these ORFs encode functional proteins. Of the 60 ORFs, 10 ORFs are homologues to baculovirus and nudivirus core genes, including three per os infectivity factors and four RNA polymerase subunits (LEF4, 5, 8 and 9). Whereas GpSGHV-Eth and GpSGHV-Uga are 98.1 % similar at the nucleotide level, 37 ORFs in the GpSGHV-Eth genome had nucleotide insertions (n = 17) and deletions (n = 20) compared with their homologues in GpSGHV-Uga. Furthermore, compared with the GpSGHV-Uga genome, 11 and 24 GpSGHV ORFs were deleted and novel, respectively. Further, 13 GpSGHV-Eth ORFs were non-canonical; they had either CTG or TTG start codons instead of ATG. Taken together, these data suggest that GpSGHV-Eth and GpSGHV-Uga represent two different lineages of the same virus. Genetic differences combined with host and environmental factors possibly explain the differential GpSGHV pathogenesis observed in different G. pallidipes colonies. PMID:26801744

  9. Attenuation and protection efficacy of ORF C gene-deleted recombinant of infectious laryngotracheitis virus.

    PubMed

    Garcia, Maricarmen; Spatz, S J; Cheng, Y; Riblet, S M; Volkening, J D; Schneiders, G H

    2016-09-01

    Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled by the use of live-attenuated vaccines. Previously we reported the complete nucleotide sequence of the ILTV vaccine strain (TCO) and identified a nonsense mutation in the gene encoding the ORF C protein. This suggested that the ORF C protein might be associated with viral virulence. To investigate this, an ILTV recombinant with a deletion in the gene encoding ORF C was constructed using the genome of the virulent United States Department of Agriculture (USDA) challenge strain (USDAch). Compared to the parental virus, the ΔORF C recombinant replicated in chicken kidney (CK) cells with similar kinetics and generated similar titres. This demonstrated that the ORF C deletion had no deleterious effects on replication efficacy in vitro. In chickens, the recombinant induced only minor microscopic tracheal lesions when inoculated via the intra-tracheal/ocular route, while the parental strain induced moderate to severe microscopic tracheal lesions, even though virus load in the tracheas were comparable. Groups of chickens vaccinated via eye-drop with the ∆ORFC-ILTV were protected to levels comparable to those elicited by TCO vaccination. To our knowledge, this is the first report that demonstrates the suitability of ∆ORFC as a live-attenuated vaccine to prevent the losses caused by ILTV.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilchrist, Michael J.; Sobral, Daniel; Khoueiry, Pierre

    Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We also report a computational strategy that overcomes these difficulties,more » and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. Here, we developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Furthermore, using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.« less

  11. Unit-length line-1 transcripts in human teratocarcinoma cells.

    PubMed Central

    Skowronski, J; Fanning, T G; Singer, M F

    1988-01-01

    We have characterized the approximately 6.5-kilobase cytoplasmic poly(A)+ Line-1 (L1) RNA present in a human teratocarcinoma cell line, NTera2D1, by primer extension and by analysis of cloned cDNAs. The bulk of the RNA begins (5' end) at the residue previously identified as the 5' terminus of the longest known primate genomic L1 elements, presumed to represent "unit" length. Several of the cDNA clones are close to 6 kilobase pairs, that is, close to full length. The partial sequences of 18 cDNA clones and full sequence of one (5,975 base pairs) indicate that many different genomic L1 elements contribute transcripts to the 6.5-kilobase cytoplasmic poly(A)+ RNA in NTera2D1 cells because no 2 of the 19 cDNAs analyzed had identical sequences. The transcribed elements appear to represent a subset of the total genomic L1s, a subset that has a characteristic consensus sequence in the 3' noncoding region and a high degree of sequence conservation throughout. Two open reading frames (ORFs) of 1,122 (ORF1) and 3,852 (ORF2) bases, flanked by about 800 and 200 bases of sequence at the 5' and 3' ends, respectively, can be identified in the cDNAs. Both ORFs are in the same frame, and they are separated by 33 bases bracketed by two conserved in-frame stop codons. ORF 2 is interrupted by at least one randomly positioned stop codon in the majority of the cDNAs. The data support proposals suggesting that the human L1 family includes one or more functional genes as well as an extraordinarily large number of pseudogenes whose ORFs are broken by stop codons. The cDNA structures suggest that both genes and pseudogenes are transcribed. At least one of the cDNAs (cD11), which was sequenced in its entirety, could, in principle, represent an mRNA for production of the ORF1 polypeptide. The similarity of mammalian L1s to several recently described invertebrate movable elements defines a new widely distributed class of elements which we term class II retrotransposons. Images PMID:2454389

  12. First complete genome sequence of vanilla mosaic strain of Dasheen mosaic virus isolated from the Cook Islands.

    PubMed

    Puli'uvea, Christopher; Khan, Subuhi; Chang, Wee-Leong; Valmonte, Gardette; Pearson, Michael N; Higgins, Colleen M

    2017-02-01

    We present the first complete genome of vanilla mosaic virus (VanMV). The VanMV genomic structure is consistent with that of a potyvirus, containing a single open reading frame (ORF) encoding a polyprotein of 3139 amino acids. Motif analyses indicate the polyprotein can be cleaved into the expected ten individual proteins; other recognised potyvirus motifs are also present. As expected, the VanMV genome shows high sequence similarity to the published Dasheen mosaic virus (DsMV) genome sequences; comparisons with DsMV continue to support VanMV as a vanilla infecting strain of DsMV. Phylogenetic analyses indicate that VanMV and DsMV share a common ancestor, with VanMV having the closest relationship with DsMV strains from the South Pacific.

  13. Sequencing and phylogenetic analysis of tobacco virus 2, a polerovirus from Nicotiana tabacum.

    PubMed

    Zhou, Benguo; Wang, Fang; Zhang, Xuesong; Zhang, Lina; Lin, Huafeng

    2017-07-01

    The complete genome sequence of a new virus, provisionally named tobacco virus 2 (TV2), was determined and identified from leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic, yellowing, and deformity, in Anhui Province, China. The genome sequence of TV2 comprises 5,979 nucleotides, with 87% nucleotide sequence identity to potato leafroll virus (PLRV). Its genome organization is similar to that of PLRV, containing six open reading frames (ORFs) that potentially encode proteins with putative functions in cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the nucleotide sequence placed TV2 alongside members of the genus Polerovirus in the family Luteoviridae. To the best our knowledge, this study is the first report of a complete genome sequence of a new polerovirus identified in tobacco.

  14. Evidence for Moonlighting Functions of the θ Subunit of Escherichia coli DNA Polymerase III

    PubMed Central

    Dietrich, M.; Pedró, L.; García, J.; Pons, M.; Hüttener, M.; Paytubi, S.; Madrid, C.

    2014-01-01

    The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex. PMID:24375106

  15. Viruses in the Anopheles A, Anopheles B, and Tete serogroups in the Orthobunyavirus genus (family Bunyaviridae) do not encode an NSs protein.

    PubMed

    Mohamed, Maizan; McLees, Angela; Elliott, Richard M

    2009-08-01

    Viruses in the genus Orthobunyavirus, family Bunyaviridae, have a genome comprising three segments (called L, M, and S) of negative-sense RNA. Serological studies have classified the >170 named virus isolates into 18 serogroups, with a few additional as yet ungrouped viruses. Until now, molecular studies and full-length S-segment nucleotide sequences were available for representatives of eight serogroups; in all cases, the S segment encodes two proteins, N (nucleocapsid) and NSs (nonstructural), in overlapping open reading frames (ORFs) that are translated from the same mRNA. The NSs proteins of Bunyamwera virus (BUNV) and California serogroup viruses have been shown to play a role in inhibiting host cell mRNA and protein synthesis, thereby preventing induction of interferon (IFN). We have determined full-length sequences of the S segments of representative viruses in the Anopheles A, Anopheles B, and Tete serogroups, and we report here that these viruses do not show evidence of having an NSs ORF. In addition, these viruses have rather longer N proteins than those in the other serogroups. Most of the naturally occurring viruses that lack the NSs protein behaved like a recombinant BUNV with the NSs gene deleted in that they failed to prevent induction of IFN-beta mRNA. However, Tacaiuma virus (TCMV) in the Anopheles A serogroup inhibited IFN induction in a manner similar to that of wild-type BUNV, suggesting that TCMV has evolved an alternative mechanism, not involving a typical NSs protein, to antagonize the host innate immune response.

  16. Complete nucleotide sequences and genome characterization of a novel double-stranded RNA virus infecting Rosa multiflora.

    PubMed

    Salem, Nidá M; Golino, Deborah A; Falk, Bryce W; Rowhani, Adib

    2008-01-01

    The three double-stranded (ds) RNAs were detected in Rosa multiflora plants showing rose spring dwarf (RSD) symptoms. Northern blot analysis revealed three dsRNAs in preparations of both dsRNA and total RNA from R. multiflora plants. The complete sequences of the dsRNAs (referred to as dsRNA 1, dsRNA 2 and dsRNA 3) were determined based on a combination of shotgun cloning of dsRNA cDNAs and reverse transcription-polymerase chain reaction (RT-PCR). The largest dsRNA (dsRNA 1) was 1,762 bp long with a single open reading frame (ORF) that encoded a putative polypeptide containing 479 amino acid residues with a molecular mass of 55.9 kDa. This polypeptide contains amino acid sequence motifs conserved in the RNA-dependent RNA polymerases (RdRp) of members of the family Partitiviridae. Both dsRNA 2 (1,475 bp) and dsRNA 3 (1,384 bp) contained single ORFs, encoding putative proteins of unknown function. The 5' untranslated regions (UTR) of all three segments shared regions of high sequence homology. Phylogenetic analysis using the RdRp sequences of the various partitiviruses revealed that the new sequences would constitute the genome of a virus in family Partitiviridae. This virus would cluster with Fragaria chiloensis cryptic virus and Raphanus sativus cryptic virus 2. We suggest that the three dsRNA segments constitute the genome of a novel cryptic virus infecting roses; we propose the name Rosa multiflora cryptic virus (RMCV). Detection primers were developed and used for RT-PCR detection of RMCV in rose plants.

  17. Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus.

    PubMed

    Saveliev, Alexei; Zhu, Fan; Yuan, Yan

    2002-08-01

    Viral immediate-early (IE) genes are the first class of viral genes expressed during primary infection or reactivation from latency. They usually encode regulatory proteins that play crucial roles in viral life cycle. In a previous study, four regions in the KSHV genome were found to be actively transcribed in the immediate-early stage of viral reactivation in primary effusion lymphoma cells. Three immediate-early transcripts were characterized in these regions, as follows: mRNAs for ORF50 (KIE-1), ORF-45 (KIE-2), and ORF K4.2 (KIE-3) (F. X. Zhu, T. Cusano, and Y. Yuan, 1999, J. Virol. 73, 5556-5567). In the present study, we further analyzed the expression of genes in these IE regions in BC-1 and BCBL-1 cells. One of the immediate-early regions (KIE-1) that encompasses ORF50 and other genes was intensively studied to establish a detailed transcription map and expression patterns of genes in this region. This study led to identification of several novel IE transcripts in this region. They include a 2.6-kb mRNA which encodes ORF48/ORF29b, a family of transcripts that are complementary to ORF50 mRNA and a novel K8 IE mRNA of 1.5 kb. Together with the IE mRNA for ORF50 which was identified previously, four immediate-early genes have been mapped to KIE-1 region. Therefore, we would designate KIE-1 the major immediate-early region of KSHV. In addition, we showed that transcription of K8 gene is controlled by two promoters, yielding two transcripts, an immediate-early mRNA of 1.5 kb and a delayed-early mRNA of 1.3 kb.

  18. The nucleotide sequence and genome organization of Plasmopara halstedii virus.

    PubMed

    Heller-Dohmen, Marion; Göpfert, Jens C; Pfannstiel, Jens; Spring, Otmar

    2011-03-17

    Only very few viruses of Oomycetes have been studied in detail. Isometric virions were found in different isolates of the oomycete Plasmopara halstedii, the downy mildew pathogen of sunflower. However, complete nucleotide sequences and data on the genome organization were lacking. Viral RNA of different P. halstedii isolates was subjected to nucleotide sequencing and analysis of the viral genome. The N-terminal sequence of the viral coat protein was determined using Top-Down MALDI-TOF analysis. The complete nucleotide sequences of both single-stranded RNA segments (RNA1 and RNA2) were established. RNA1 consisted of 2793 nucleotides (nt) exclusive its 3' poly(A) tract and a single open-reading frame (ORF1) of 2745 nt. ORF1 was framed by a 5' untranslated region (5' UTR) of 18 nt and a 3' untranslated region (3' UTR) of 30 nt. ORF1 contained motifs of RNA-dependent RNA polymerases (RdRp) and showed similarities to RdRp of Scleropthora macrospora virus A (SmV A) and viruses within the Nodaviridae family. RNA2 consisted of 1526 nt exclusive its 3' poly(A) tract and a second ORF (ORF2) of 1128 nt. ORF2 coded for the single viral coat protein (CP) and was framed by a 5' UTR of 164 nt and a 3' UTR of 234 nt. The deduced amino acid sequence of ORF2 was verified by nano-LC-ESI-MS/MS experiments. Top-Down MALDI-TOF analysis revealed the N-terminal sequence of the CP. The N-terminal sequence represented a region within ORF2 suggesting a proteolytic processing of the CP in vivo. The CP showed similarities to CP of SmV A and viruses within the Tombusviridae family. Fragments of RNA1 (ca. 1.9 kb) and RNA2 (ca. 1.4 kb) were used to analyze the nucleotide sequence variation of virions in different P. halstedii isolates. Viral sequence variation was 0.3% or less regardless of their host's pathotypes, the geographical origin and the sensitivity towards the fungicide metalaxyl. The results showed the presence of a single and new virus type in different P. halstedii isolates. Insignificant viral sequence variation indicated that the virus did not account for differences in pathogenicity of the oomycete P. halstedii.

  19. Frameshifting in alphaviruses: a diversity of 3' stimulatory structures.

    PubMed

    Chung, Betty Y-W; Firth, Andrew E; Atkins, John F

    2010-03-26

    Programmed ribosomal frameshifting allows the synthesis of alternative, N-terminally coincident, C-terminally distinct proteins from the same RNA. Many viruses utilize frameshifting to optimize the coding potential of compact genomes, to circumvent the host cell's canonical rule of one functional protein per mRNA, or to express alternative proteins in a fixed ratio. Programmed frameshifting is also used in the decoding of a small number of cellular genes. Recently, specific ribosomal -1 frameshifting was discovered at a conserved U_UUU_UUA motif within the sequence encoding the alphavirus 6K protein. In this case, frameshifting results in the synthesis of an additional protein, termed TF (TransFrame). This new case of frameshifting is unusual in that the -1 frame ORF is very short and completely embedded within the sequence encoding the overlapping polyprotein. The present work shows that there is remarkable diversity in the 3' sequences that are functionally important for efficient frameshifting at the U_UUU_UUA motif. While many alphavirus species utilize a 3' RNA structure such as a hairpin or pseudoknot, some species (such as Semliki Forest virus) apparently lack any intra-mRNA stimulatory structure, yet just 20 nt 3'-adjacent to the shift site stimulates up to 10% frameshifting. The analysis, both experimental and bioinformatic, significantly expands the known repertoire of -1 frameshifting stimulators in mammalian and insect systems.

  20. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus Hapavirus, family Rhabdoviridae.

    PubMed

    Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David

    2017-01-01

    Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector.

  1. Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas

    PubMed Central

    Moreau, Pierrick; Faury, Nicole; Pepin, Jean-François; Segarra, Amélie; Webb, Stephen

    2012-01-01

    Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 “specimens” collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus. PMID:22419803

  2. Genetic Variability of Myxoma Virus Genomes

    PubMed Central

    Braun, Christoph; Thürmer, Andrea; Daniel, Rolf; Schultz, Anne-Kathrin; Bulla, Ingo; Schirrmeier, Horst; Mayer, Dietmar; Neubert, Andreas

    2016-01-01

    ABSTRACT Myxomatosis is a recurrent problem on rabbit farms throughout Europe despite the success of vaccines. To identify gene variations of field and vaccine strains that may be responsible for changes in virulence, immunomodulation, and immunoprotection, the genomes of 6 myxoma virus (MYXV) strains were sequenced: German field isolates Munich-1, FLI-H, 2604, and 3207; vaccine strain MAV; and challenge strain ZA. The analyzed genomes ranged from 147.6 kb (strain MAV) to 161.8 kb (strain 3207). All sequences were affected by several mutations, covering 24 to 93 open reading frames (ORFs) and resulted in amino acid substitutions, insertions, or deletions. Only strains Munich-1 and MAV revealed the deletion of 10 ORFs (M007L to M015L) and 11 ORFs (M007L to M008.1L and M149R to M008.1R), respectively. Major differences were observed in the 27 immunomodulatory proteins encoded by MYXV. Compared to the reference strain Lausanne, strains FLI-H, 2604, 3207, and ZA showed the highest amino acid identity (>98.4%). In strains Munich-1 and MAV, deletion of 5 and 10 ORFs, respectively, was observed, encoding immunomodulatory proteins with ankyrin repeats or members of the family of serine protease inhibitors. Furthermore, putative immunodominant surface proteins with homology to vaccinia virus (VACV) were investigated in the sequenced strains. Only strain MAV revealed above-average frequencies of amino acid substitutions and frameshift mutations. Finally, we performed recombination analysis and found signs of recombination in vaccine strain MAV. Phylogenetic analysis showed a close relationship of strain MAV and the MSW strain of Californian MYXV. However, in a challenge model, strain MAV provided full protection against lethal challenges with strain ZA. IMPORTANCE Myxoma virus (MYXV) is pathogenic for European rabbits and two North American species. Due to sophisticated strategies in immune evasion and oncolysis, MYXV is an important model virus for immunological and pathological research. In its natural hosts, MYXV causes a benign infection, whereas in European rabbits, it causes the lethal disease myxomatosis. Since the introduction of MYXV into Australia and Europe for the biological control of European rabbits in the 1950s, a coevolution of host and pathogen has started, selecting for attenuated virus strains and increased resistance in rabbits. Evolution of viruses is a continuous process and influences the protective potential of vaccines. In our analyses, we sequenced 6 MYXV field, challenge, and vaccine strains. We focused on genes encoding proteins involved in virulence, host range, immunomodulation, and envelope composition. Genes affected most by mutations play a role in immunomodulation. However, attenuation cannot be linked to individual mutations or gene disruptions. PMID:27903800

  3. Antibody recognition of porcine circovirus type 2 capsid protein epitopes after vaccination, infection, and disease

    USDA-ARS?s Scientific Manuscript database

    Open reading frame 2 (ORF2) of porcine circovirus type 2 (PCV2) codes for the 233-amino-acid capsid protein (CP). Baculovirus-based vaccines that express only ORF2 are protective against clinical disease following experimental challenge or natural infection. The goal of this study was to identify re...

  4. The RNA profile of porcine parvovirus 4, a Boca-like virus, is unique among the Parvoviruses

    USDA-ARS?s Scientific Manuscript database

    Phylogenetically, porcine parvovirus 4 (PPV4) is most related to bovine parvovirus 2 that has two open reading frames (ORFs), but its genome organization resembles that of members of the Bocavirus genus that has three ORFs. Although PPV4 transcribes its genome from a single promoter and the transcri...

  5. Bombyx mori nucleopolyhedrovirus ORF101 encodes a budded virus envelope associated protein.

    PubMed

    Chen, Huiqing; Li, Mei; Huang, Guoping; Mai, Weijun; Chen, Keping; Zhou, Yajing

    2014-08-01

    Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this study, Bm101 was characterized. Transcripts of Bm101 were detected from 24 through 96 h post infection (h p.i.) by RT-PCR. The corresponding protein was also detected from 24 to 96 h p.i. in BmNPV-infected BmN cells by Western blot analysis using a polyclonal antibody against Bm101. Western blot assay of occlusion-derived virus and budded virus (BV) preparations revealed that Bm101 encodes a 28-kDa structural protein that is associated with BV and is located in the envelope fraction of budded virions. In addition, confocal analysis showed that the protein was localized in the cytosol and cytoplasmic membrane in virus-infected cells. In conclusion, the available data suggest that Bm101 is a functional ORF of BmNPV and encodes a protein expressed in the late stage of the infection cycle that is associated with the BV envelope.

  6. A pipeline for the systematic identification of non-redundant full-ORF cDNAs for polymorphic and evolutionary divergent genomes: Application to the ascidian Ciona intestinalis

    DOE PAGES

    Gilchrist, Michael J.; Sobral, Daniel; Khoueiry, Pierre; ...

    2015-05-27

    Genome-wide resources, such as collections of cDNA clones encoding for complete proteins (full-ORF clones), are crucial tools for studying the evolution of gene function and genetic interactions. Non-model organisms, in particular marine organisms, provide a rich source of functional diversity. Marine organism genomes are, however, frequently highly polymorphic and encode proteins that diverge significantly from those of well-annotated model genomes. The construction of full-ORF clone collections from non-model organisms is hindered by the difficulty of predicting accurately the N-terminal ends of proteins, and distinguishing recent paralogs from highly polymorphic alleles. We also report a computational strategy that overcomes these difficulties,more » and allows for accurate gene level clustering of transcript data followed by the automated identification of full-ORFs with correct 5'- and 3'-ends. It is robust to polymorphism, includes paralog calling and does not require evolutionary proximity to well annotated model organisms. Here, we developed this pipeline for the ascidian Ciona intestinalis, a highly polymorphic member of the divergent sister group of the vertebrates, emerging as a powerful model organism to study chordate gene function, Gene Regulatory Networks and molecular mechanisms underlying human pathologies. Furthermore, using this pipeline we have generated the first full-ORF collection for a highly polymorphic marine invertebrate. It contains 19,163 full-ORF cDNA clones covering 60% of Ciona coding genes, and full-ORF orthologs for approximately half of curated human disease-associated genes.« less

  7. sORFs.org: a repository of small ORFs identified by ribosome profiling

    PubMed Central

    Olexiouk, Volodimir; Crappé, Jeroen; Verbruggen, Steven; Verhegen, Kenneth; Martens, Lennart; Menschaert, Gerben

    2016-01-01

    With the advent of ribosome profiling, a next generation sequencing technique providing a “snap-shot’’ of translated mRNA in a cell, many short open reading frames (sORFs) with ribosomal activity were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these ‘sORFs’, indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects. PMID:26527729

  8. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 in Metarhizium anisopliae var. anisopliae

    USDA-ARS?s Scientific Manuscript database

    A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. ORF4, putatively encoding a hybrid polyketide synthase-nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous recombinants failed to produce det...

  9. Expression of sunflower cytoplasmic male sterility-associated open reading frame, orfH522 induces male sterility in transgenic tobacco plants.

    PubMed

    Nizampatnam, Narasimha Rao; Doodhi, Harinath; Kalinati Narasimhan, Yamini; Mulpuri, Sujatha; Viswanathaswamy, Dinesh Kumar

    2009-03-01

    Sterility in the universally exploited PET1-CMS system of sunflower is associated with the expression of orfH522, a novel mitochondrial gene. Definitive evidence that ORFH522 is directly responsible for male sterility is lacking. To test the hypothesis that ORFH522 is sufficient to induce male sterility, a set of chimeric constructs were developed. The cDNA of orfH522 was cloned in-frame with yeast coxIV pre-sequence, and was expressed under tapetum-specific promoter TA29 (construct designated as TCON). For developing control vectors, orfH522 was cloned without the transit peptide under TA29 promoter (TON) or orfH522 was cloned with or without transit peptide under the constitutive CaMV35S promoter (SCOP and SOP). Among several independent transformants obtained with each of the gene cassettes, one third of the transgenics (6/17) with TCON were completely male sterile while more than 10 independent transformants obtained with each of the control vectors were fertile. The male sterile plants were morphologically similar to fertile plants, but had anthers that remained below the stigmatic surface at anthesis. RT-PCR analysis of the sterile plants confirmed the anther-specific expression of orfH522 and bright-field microscopy demonstrated ablation of the tapetal cell layer. Premature DNA fragmentation and programmed cell death was observed at meiosis stage in the anthers of sterile plants. Stable transmission of induced male sterility trait was confirmed in test cross progeny. This constitutes the first report at demonstrating the induction of male sterility by introducing orfH522 gene that could be useful for genetic engineering of male sterility.

  10. The Genetic Switch Regulating Activity of Early Promoters of the Temperate Lactococcal Bacteriophage TP901-1

    PubMed Central

    Madsen, Peter Lynge; Johansen, Annette H.; Hammer, Karin; Brøndsted, Lone

    1999-01-01

    A functional analysis of open reading frame 4 (ORF4) and ORF5 from the temperate lactococcal phage TP901-1 was performed by mutant and deletion analysis combined with transcriptional studies of the early phage promoters pR and pL. ORF4 (180 amino acids) was identified as a phage repressor necessary for repression of both promoters. Furthermore, the presence of ORF4 confers immunity of the host strain to TP901-1. ORF5 (72 amino acids) was found to be able to inhibit repression of the lytic promoter pL by ORF4. Upon transformation with a plasmid containing both ORF4 and ORF5 and their cognate promoters, clonal variation is observed: in each transformant, either pL is open and pR is closed or vice versa. The repression is still dependent on ORF4, and the presence of ORF5 is needed for the clonal variation. Induction of a repressed pL fusion containing orf4 and orf5 was obtained by addition of mitomycin C, and the induction was also shown to be dependent on the presence of the RecA protein, even though ORF4 does not contain a recognizable autocleavage site. Our results suggest that the relative amounts of the two proteins ORF4 and ORF5 determine the decision between lytic or lysogenic life cycle after phage infection and that a protein complex consisting of ORF4 and ORF5 may constitute a new type of genetic switch in bacteriophages. PMID:10601198

  11. Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879.

    PubMed

    Coram, Nicolette J; van Zyl, Leonardo J; Rawlings, Douglas E

    2005-11-01

    Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented.

  12. sORFs.org: a repository of small ORFs identified by ribosome profiling.

    PubMed

    Olexiouk, Volodimir; Crappé, Jeroen; Verbruggen, Steven; Verhegen, Kenneth; Martens, Lennart; Menschaert, Gerben

    2016-01-04

    With the advent of ribosome profiling, a next generation sequencing technique providing a "snap-shot'' of translated mRNA in a cell, many short open reading frames (sORFs) with ribosomal activity were identified. Follow-up studies revealed the existence of functional peptides, so-called micropeptides, translated from these 'sORFs', indicating a new class of bio-active peptides. Over the last few years, several micropeptides exhibiting important cellular functions were discovered. However, ribosome occupancy does not necessarily imply an actual function of the translated peptide, leading to the development of various tools assessing the coding potential of sORFs. Here, we introduce sORFs.org (http://www.sorfs.org), a novel database for sORFs identified using ribosome profiling. Starting from ribosome profiling, sORFs.org identifies sORFs, incorporates state-of-the-art tools and metrics and stores results in a public database. Two query interfaces are provided, a default one enabling quick lookup of sORFs and a BioMart interface providing advanced query and export possibilities. At present, sORFs.org harbors 263 354 sORFs that demonstrate ribosome occupancy, originating from three different cell lines: HCT116 (human), E14_mESC (mouse) and S2 (fruit fly). sORFs.org aims to provide an extensive sORFs database accessible to researchers with limited bioinformatics knowledge, thus enabling easy integration into personal projects. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  14. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller’s organ, of the cattle tick, Rhipicephalus australis

    PubMed Central

    Munoz, Sergio; Guerrero, Felix D.; Kellogg, Anastasia; Heekin, Andrew M.

    2017-01-01

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller’s organ, located in the tick’s forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor. PMID:28231302

  15. Bioinformatic prediction of G protein-coupled receptor encoding sequences from the transcriptome of the foreleg, including the Haller's organ, of the cattle tick, Rhipicephalus australis.

    PubMed

    Munoz, Sergio; Guerrero, Felix D; Kellogg, Anastasia; Heekin, Andrew M; Leung, Ming-Ying

    2017-01-01

    The cattle tick of Australia, Rhipicephalus australis, is a vector for microbial parasites that cause serious bovine diseases. The Haller's organ, located in the tick's forelegs, is crucial for host detection and mating. To facilitate the development of new technologies for better control of this agricultural pest, we aimed to sequence and annotate the transcriptome of the R. australis forelegs and associated tissues, including the Haller's organ. As G protein-coupled receptors (GPCRs) are an important family of eukaryotic proteins studied as pharmaceutical targets in humans, we prioritized the identification and classification of the GPCRs expressed in the foreleg tissues. The two forelegs from adult R. australis were excised, RNA extracted, and pyrosequenced with 454 technology. Reads were assembled into unigenes and annotated by sequence similarity. Python scripts were written to find open reading frames (ORFs) from each unigene. These ORFs were analyzed by different GPCR prediction approaches based on sequence alignments, support vector machines, hidden Markov models, and principal component analysis. GPCRs consistently predicted by multiple methods were further studied by phylogenetic analysis and 3D homology modeling. From 4,782 assembled unigenes, 40,907 possible ORFs were predicted. Using Blastp, Pfam, GPCRpred, TMHMM, and PCA-GPCR, a basic set of 46 GPCR candidates were compiled and a phylogenetic tree was constructed. With further screening of tertiary structures predicted by RaptorX, 6 likely GPCRs emerged and the strongest candidate was classified by PCA-GPCR to be a GABAB receptor.

  16. New enzymes from environmental cassette arrays: Functional attributes of a phosphotransferase and an RNA-methyltransferase

    PubMed Central

    Nield, Blair S.; Willows, Robert D.; Torda, Andrew E.; Gillings, Michael R.; Holmes, Andrew J.; Nevalainen, K.M. Helena; Stokes, H.W.; Mabbutt, Bridget C.

    2004-01-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7″) from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%–28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg2+-binding residues. Unlike related APH(4) or APH(7″) enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins. PMID:15152095

  17. New enzymes from environmental cassette arrays: functional attributes of a phosphotransferase and an RNA-methyltransferase.

    PubMed

    Nield, Blair S; Willows, Robert D; Torda, Andrew E; Gillings, Michael R; Holmes, Andrew J; Nevalainen, K M Helena; Stokes, H W; Mabbutt, Bridget C

    2004-06-01

    By targeting gene cassettes by polymerase chain reaction (PCR) directly from environmentally derived DNA, we are able to amplify entire open reading frames (ORFs) independently of prior sequence knowledge. Approximately 10% of the mobile genes recovered by these means can be attributed to known protein families. Here we describe the characterization of two ORFs which show moderate homology to known proteins: (1) an aminoglycoside phosphotransferase displaying 25% sequence identity with APH(7") from Streptomyces hygroscopicus, and (2) an RNA methyltransferase sharing 25%-28% identity with a group of recently defined bacterial RNA methyltransferases distinct from the SpoU enzyme family. Our novel genes were expressed as recombinant products and assayed for appropriate enzyme activity. The aminoglycoside phosphotransferase displayed ATPase activity, consistent with the presence of characteristic Mg(2+)-binding residues. Unlike related APH(4) or APH(7") enzymes, however, this activity was not enhanced by hygromycin B or kanamycin, suggesting the normal substrate to be a different aminoglycoside. The RNA methyltransferase contains sequence motifs of the RNA methyltransferase superfamily, and our recombinant version showed methyltransferase activity with RNA. Our data confirm that gene cassettes present in the environment encode folded enzymes with novel sequence variation and demonstrable catalytic activity. Our PCR approach (cassette PCR) may be used to identify a diverse range of ORFs from any environmental sample, as well as to directly access the gene pool found in mobile gene cassettes commonly associated with integrons. This gene pool can be accessed from both cultured and uncultured microbial samples as a source of new enzymes and proteins.

  18. Evidence for a complex of emergent poleroviruses affecting pepper worldwide.

    PubMed

    Fiallo-Olivé, Elvira; Navas-Hermosilla, Elisa; Ferro, Camila G; Zerbini, F Murilo; Navas-Castillo, Jesús

    2018-05-01

    In recent years, symptoms of vein yellowing and leaf roll in pepper crops associated with the presence of poleroviruses (genus Polerovirus, family Luteoviridae) have been emerging in many countries worldwide. Spain was the first country in Europe where the yellowing disease of pepper was observed. In this work, a polerovirus isolate from Spain that infects pepper and has been shown to be transmitted by the aphid Aphis gossyppii (Spain-Almería 2-2013) was sequenced and compared with isolates from Japan, Israel, China and Australia. The genome (6125 nt in length, GenBank accession number KY523072) of the isolate from Spain has the typical organization of poleroviruses and contains seven open reading frames (ORF0 to ORF5 and ORF3a), putatively encoding proteins P0 to P5 and P3a. A comparison of the sequence from Spain with the four complete sequences available for poleroviruses infecting pepper showed a closer relationship to the isolate from Israel and supports the existence of a complex of at least five polerovirus species. Given that the symptoms caused by all pepper poleroviruses described to date are similar, if not identical, we propose to name them "pepper vein yellows virus 1" to "pepper vein yellows virus 5" (PeVYV-1 to PeVYV-5), with PeVYV-5 corresponding to the polerovirus from Spain described in this work. Our results and those published over the last few years have shown that the emergent poleroviruses threatening pepper crops around the world are highly complex due to recombination events.

  19. Generation of a variety of stable Influenza A reporter viruses by genetic engineering of the NS gene segment

    PubMed Central

    Reuther, Peter; Göpfert, Kristina; Dudek, Alexandra H.; Heiner, Monika; Herold, Susanne; Schwemmle, Martin

    2015-01-01

    Influenza A viruses (IAV) pose a constant threat to the human population and therefore a better understanding of their fundamental biology and identification of novel therapeutics is of upmost importance. Various reporter-encoding IAV were generated to achieve these goals, however, one recurring difficulty was the genetic instability especially of larger reporter genes. We employed the viral NS segment coding for the non-structural protein 1 (NS1) and nuclear export protein (NEP) for stable expression of diverse reporter proteins. This was achieved by converting the NS segment into a single open reading frame (ORF) coding for NS1, the respective reporter and NEP. To allow expression of individual proteins, the reporter genes were flanked by two porcine Teschovirus-1 2A peptide (PTV-1 2A)-coding sequences. The resulting viruses encoding luciferases, fluorescent proteins or a Cre recombinase are characterized by a high genetic stability in vitro and in mice and can be readily employed for antiviral compound screenings, visualization of infected cells or cells that survived acute infection. PMID:26068081

  20. Rat Humanin is encoded and translated in mitochondria and is localized to the mitochondrial compartment where it regulates ROS production.

    PubMed

    Paharkova, Vladislava; Alvarez, Griselda; Nakamura, Hiromi; Cohen, Pinchas; Lee, Kuk-Wha

    2015-09-15

    Evidence for the putative mitochondrial origin of the Humanin (HN) peptide has been lacking, although its cytoprotective activity has been demonstrated in a variety of organismal and cellular systems. We sought to establish proof-of-principle for a mitochondria-derived peptide (MDP) in a rat-derived cellular system as the rat HN sequence is predicted to lack nuclear insertions of mitochondrial origin (NUMT). We found that the rat HN (Rattin; rHN) homologue is derived from the mitochondrial genome as evidenced by decreased production in Rho-0 cells, and that peptide translation occurs in the mitochondria as it is unaffected by cycloheximide. Rat HN localizes to the mitochondria in cellular subfractionation and immunohistochemical studies. Addition of a HN analogue to isolated mitochondria from rat INS-1 beta cells reduced hydrogen peroxide production by 55%. In summary, a locally bioactive peptide is derived and translated from an open reading frame (ORF) within rat mitochondrial DNA encoding 16S rRNA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. JavaScript DNA translator: DNA-aligned protein translations.

    PubMed

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  2. Cytochrome P460 Genes from the Methanotroph Methylococcus capsulatus Bath†

    PubMed Central

    Bergmann, David J.; Zahn, James A.; Hooper, Alan B.; DiSpirito, Alan A.

    1998-01-01

    P460 cytochromes catalyze the oxidation of hydroxylamine to nitrite. They have been isolated from the ammonia-oxidizing bacterium Nitrosomonas europaea (R. H. Erickson and A. B. Hooper, Biochim. Biophys. Acta 275:231–244, 1972) and the methane-oxidizing bacterium Methylococcus capsulatus Bath (J. A. Zahn et al., J. Bacteriol. 176:5879–5887, 1994). A degenerate oligonucleotide probe was synthesized based on the N-terminal amino acid sequence of cytochrome P460 and used to identify a DNA fragment from M. capsulatus Bath that contains cyp, the gene encoding cytochrome P460. cyp is part of a gene cluster that contains three open reading frames (ORFs), the first predicted to encode a 59,000-Da membrane-bound polypeptide, the second predicted to encode a 12,000-Da periplasmic protein, and the third (cyp) encoding cytochrome P460. The products of the first two ORFs have no apparent similarity to any proteins in the GenBank database. The overall sequence similarity of the P460 cytochromes from M. capsulatus Bath and N. europaea was low (24.3% of residues identical), although short regions of conserved residues are present in the two proteins. Both cytochromes have a C-terminal, c-heme binding motif (CXXCH) and a conserved lysine residue (K61) that may provide an additional covalent cross-link to the heme (D. M. Arciero and A. B. Hooper, FEBS Lett. 410:457–460, 1997). Gene probing using cyp indicated that a cytochrome P460 similar to that from M. capsulatus Bath may be present in the type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP but not in the type I methanotrophs Methylobacter marinus A45, Methylomicrobium albus BG8, and Methylomonas sp. strains MN and MM2. Immunoblot analysis with antibodies against cytochrome P460 from M. capsulatus Bath indicated that the expression level of cytochrome P460 was not affected either by expression of the two different methane monooxygenases or by addition of ammonia to the culture medium. PMID:9851984

  3. The 2p21 deletion syndrome: characterization of the transcription content.

    PubMed

    Parvari, Ruti; Gonen, Yael; Alshafee, Ismael; Buriakovsky, Sophia; Regev, Kfir; Hershkovitz, Eli

    2005-08-01

    The vast majority of small-deletion syndromes are caused by haploinsufficiency of one or several genes and are transmitted as dominant traits. We have previously identified a homozygous deletion of 179,311 bp on chromosome 2p21 as the cause of a unique syndrome, inherited in a recessive mode, consisting of cystinuria, neonatal seizures, hypotonia, severe somatic and developmental delay, facial dysmorphism, and reduced activity of all the respiratory chain enzymatic complexes that are encoded in the mitochondria. We now present the transcription content of this region: Multiple splicing variants of the genes protein phosphatase 1B (formerly 2C) magnesium-dependent, beta isoform (PPM1B), SLC3A1, and KIAA0436 (approved gene symbol PREPL) were identified and their patterns of expression analyzed. The spliced variants are predicted to have additional functions compared to the known variants and their patterns of expression fit the tissues affected by the syndrome. The first exon of an additional gene (C2orf34) is encoded in the deleted region and the gene is not expressed in the patients. In addition several transcripts with very short open reading frames are also encoded in the deletion. The identification of all transcripts encoded in the region deleted in the patients is the first step in the study of the genotype-phenotype correlation of the 2p21 patients.

  4. Genetics and molecular specificity of sialylation of Histophilus somni lipooligosaccharide (LOS) and the effect of LOS sialylation on Toll-like receptor-4 signaling.

    PubMed

    Howard, Michael D; Willis, Lisa; Wakarchuk, Warren; St Michael, Frank; Cox, Andrew; Horne, William T; Hontecillas, Raquel; Bassaganya-Riera, Josep; Lorenz, Eva; Inzana, Thomas J

    2011-11-21

    Histophilus somni is an etiologic agent of bovine respiratory and systemic diseases. Most pathogenic strains of H. somni that have been tested (36 of 42) are able to utilize N-acetyl-5-neuraminic acid (Neu5Ac) to sialylate their lipooligosaccharide (LOS). Homologs of all the genes required for transport, metabolism, and regulation of Neu5Ac in Haemophilus influenzae were identified in the sequenced genomes of H. somni. Three open reading frames (ORFs) in H. somni strain 2336 were identified that contained homology to genes required for LOS sialylation in related bacteria. ORF-1 (hssT-I), ORF-2 (hssT-II), and ORF-3 (neuA(Hs)) were predicted to encode for putative proteins with 37% amino acid homology to an α-(2-3)-sialyltransferase in H. influenzae, 43% amino acid homology to an Haemophilus ducreyi sialyltransferase, and 72% amino acid homology to an H. influenzae CMP-Neu5Ac synthetase, respectively. The specific enzyme activity of each ORF was determined using synthetic acceptor substrates. The HssT-I sialyltransferase primarily sialylated N-acetyllactosamine (LacNAc, Gal-β-[1-4]-GlcNAc-R), which is expressed on strain 2336, whereas HssT-II preferentially sialylated lacto-N-biose (LNB, Gal-β-[1-3]-GlcNAc-R), which is expressed on a phase variant of strain 2336: strain 738. Phase variation of the terminal galactose linkage in strain 738 from β-(1-3)-(LNB) to β-(1-4)-(LacNAc) was confirmed using monoclonal antibody reactivity and nuclear magnetic resonance spectroscopy. Sialylated LOS induced significantly less chemokine response from macrophages derived from Toll-like receptor (TLR)-4 knockout mice than from de-sialylated LOS. Furthermore, sialylated LOS induced significantly less NF-κB activity from mouse-derived bone marrow macrophages than de-sialylated LOS. Therefore, sialylation inhibited LOS signaling through TLR-4. In conclusion, H. somni utilizes linkage-specific sialyltransferases to sialylate its LOS to avoid innate host defense mechanisms despite simultaneous epitope phase variation. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Identification of a hybrid PKS-NRPS required for the biosynthesis of NG-391 and NG-393 metabolites in Metarhizium anisopliae

    USDA-ARS?s Scientific Manuscript database

    A 19,818 kb genomic region harboring six predicted ORFs was identified in M. anisopliae ARSEF 2575. The ORF4 CDS, putatively encoding a hybrid polyketide synthase/nonribosomal peptide synthetase (PKS-NRPS) was targeted using Agrobacterium-mediated gene knockout. Homologous, but not heterolog...

  6. Characterization of Plasmids in a Human Clinical Strain of Lactococcus garvieae

    PubMed Central

    Blanco, M. Mar; López-Campos, Guillermo H.; Cutuli, M. Teresa; Fernández-Garayzábal, José F.

    2012-01-01

    The present work describes the molecular characterization of five circular plasmids found in the human clinical strain Lactococcus garvieae 21881. The plasmids were designated pGL1-pGL5, with molecular sizes of 4,536 bp, 4,572 bp, 12,948 bp, 14,006 bp and 68,798 bp, respectively. Based on detailed sequence analysis, some of these plasmids appear to be mosaics composed of DNA obtained by modular exchange between different species of lactic acid bacteria. Based on sequence data and the derived presence of certain genes and proteins, the plasmid pGL2 appears to replicate via a rolling-circle mechanism, while the other four plasmids appear to belong to the group of lactococcal theta-type replicons. The plasmids pGL1, pGL2 and pGL5 encode putative proteins related with bacteriocin synthesis and bacteriocin secretion and immunity. The plasmid pGL5 harbors genes (txn, orf5 and orf25) encoding proteins that could be considered putative virulence factors. The gene txn encodes a protein with an enzymatic domain corresponding to the family actin-ADP-ribosyltransferases toxins, which are known to play a key role in pathogenesis of a variety of bacterial pathogens. The genes orf5 and orf25 encode two putative surface proteins containing the cell wall-sorting motif LPXTG, with mucin-binding and collagen-binding protein domains, respectively. These proteins could be involved in the adherence of L. garvieae to mucus from the intestine, facilitating further interaction with intestinal epithelial cells and to collagenous tissues such as the collagen-rich heart valves. To our knowledge, this is the first report on the characterization of plasmids in a human clinical strain of this pathogen. PMID:22768237

  7. Ribosomal scanning past the primary initiation codon as a mechanism for expression of CTL epitopes encoded in alternative reading frames

    PubMed Central

    1996-01-01

    An increasing amount of evidence has shown that epitopes restricted to MHC class I molecules and recognized by CTL need not be encoded in a primary open reading frame (ORF). Such epitopes have been demonstrated after stop codons, in alternative reading frames (RF) and within introns. We have used a series of frameshifts (FS) introduced into the Influenza A/PR/8 /34 nucleoprotein (NP) gene to confirm the previous in vitro observations of cryptic epitope expression, and show that they are sufficiently expressed to prime immune responses in vivo. This presentation is not due to sub-dominant epitopes, transcription from cryptic promoters beyond the point of the FS, or internal initiation of translation. By introducing additional mutations to the construct exhibiting the most potent presentation, we have identified initiation codon readthrough (termed scanthrough here, where the scanning ribosome bypasses the conventional initiation codon, initiating translation further downstream) as the likely mechanism of epitope production. Further mutational analysis demonstrated that, while it should operate during the expression of wild-type (WT) protein, scanthrough does not provide a major source of processing substrate in our system. These findings suggest (i) that the full array of self- and pathogen-derived epitopes available during thymic selection and infection has not been fully appreciated and (ii) that cryptic epitope expression should be considered when the specificity of a CTL response cannot be identified or in therapeutic situations when conventional CTL targets are limited, as may be the case with latent viral infections and transformed cells. Finally, initiation codon readthrough provides a plausible explanation for the presentation of exocytic proteins by MHC class I molecules. PMID:8879204

  8. Molecular Cloning, Identification, and Expression Patterns of Myostatin Gene in Water Buffalo (Bubalus Bubalis).

    PubMed

    Zhu, Peng; Li, Haiyang; Huang, Guiting; Cui, Jiayu; Zhang, Ruimen; Cui, Kuiqing; Yang, Sufang; Shi, Deshun

    2018-01-02

    Myostatin (MSTN), also named growth differentiation factor 8 (GDF8), is a transforming growth factor-β (TGF-β) family member with a key role in the negative regulation of skeletal muscle growth. However, its role in ovarian folliculogenesis remains unclear. To provide us with a basis for understanding this role, we cloned MSTN and examined its expression patterns in water buffalo (Bubalus bubalis). The complete ORF of the water buffalo MSTN gene is 1,128 nucleotides, which encode a 375 amino acid protein and sharing 99% identity at the deducted amino acid level with that of Bos taurus. Protein sequence analysis showed that MSTN is a weakly acerbic extracellular protein, consisting of signal peptides at 18-19 sites, a TGF-β propeptide, and a TGF-β domain. RT-PCR analyses demonstrated that water buffalo MSTN was expressed in multiple tissues but not limited to muscle. Immunohistochemistry staining confirmed the presence of MSTN in oocytes and granulosal cells. To our knowledge, this is the first study to confirm the expression of MSTN in the water buffalo ovary, suggesting an additional role of MSTN in water buffalo folliculogenesis, along with its role in skeletal muscle growth regulation. Further study of the regulatory mechanism of MSTN in water buffalo reproduction is warranted. MSTN, myostatin; ORF, open reading frame.

  9. Identification of a glycine-rich protein from the tick Rhipicephalus haemaphysaloides and evaluation of its vaccine potential against tick feeding.

    PubMed

    Zhou, Jinlin; Gong, Haiyan; Zhou, Yongzhi; Xuan, Xuenan; Fujisaki, Kozo

    2006-12-01

    A cDNA coding a glycine-rich protein was identified from the Rhipicephalus haemaphysaloides tick. The cDNA named here as RH50 was 1,823 bp, including a single open reading frame (ORF) of 1,518 nucleotides. The ORF encodes a polypeptide of 506 amino acid residues with a size of 50 kDa, as calculated by a computer. The predicted amino acid sequence of RH50 showed a low homology to sequences of some known extracellular matrix-like proteins. The native protein was identified in both the fed tick salivary gland lysates and extracts of cement material using the serum against the recombinant protein. Reverse transcription polymerase chain reaction results showed that RH50 mRNA was only transcribed in partially fed tick salivary glands, not in unfed tick salivary glands or partially fed tick midgut, fat body, or ovary. The differential expression of RH50 protein in fed tick salivary glands was confirmed by immunofluorescence. The low attachment rate both in the adult and nymphal tick, and the high mortality of immature ticks (nymph) feeding on recombinant RH50-immunized rabbits were found. These results show that the RH50 protein could be a useful candidate for anti-tick vaccine development.

  10. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display.

    PubMed

    Kügler, Jonas; Nieswandt, Simone; Gerlach, Gerald F; Meens, Jochen; Schirrmann, Thomas; Hust, Michael

    2008-09-01

    The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen-host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.

  11. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    PubMed

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. © 2016 WILEY PERIODICALS, INC.

  12. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes.

    PubMed

    Zuo, Yayun; Peng, Xiong; Wang, Kang; Lin, Fangfei; Li, Yuting; Chen, Maohua

    2016-07-21

    The voltage-gated sodium channel (VGSC) is the target of sodium-channel-blocking insecticides. Traditionally, animals were thought to have only one VGSC gene comprising a α-subunit with four homologous domains (DI-DIV). The present study showed that Rhopalosiphum padi, an economically important crop pest, owned a unique heterodimeric VGSC (H1 and H2 subunits) encoded by two genes (Rpvgsc1 and Rpvgsc2), which is unusual in insects and other animals. The open reading frame (ORF) of Rpvgsc1 consisted 1150 amino acids, and the ORF of Rpvgsc2 had 957 amino acids. Rpvgsc1 showed 64.1% amino acid identity to DI-DII of Drosophila melanogaster VGSC and Rpvgsc2 showed 64.0% amino acid identity to DIII-DIV of D. melanogaster VGSC. A M918L mutation previously reported in pyrethroids-resistant strains of other insects was found in the IIS4-S6 region of R. padi field sample. The two R. padi VGSC genes were expressed at all developmental stages and showed similar expression patterns after treatment with beta-cypermethrin. Knockdown of Rpvgsc1 or Rpvgsc2 caused significant reduction in mortality rate of R. padi after exposure to beta-cypermethrin. These findings suggest that the two R. padi VGSC genes are both functional genes.

  13. Prohibitin-2 gene reveals sex-related differences in the salmon louse Caligus rogercresseyi.

    PubMed

    Farlora, Rodolfo; Nuñez-Acuña, Gustavo; Gallardo-Escárate, Cristian

    2015-06-10

    Prohibitins are evolutionarily conserved proteins present in multiple cellular compartments, and are involved in diverse cellular processes, including steroid hormone transcription and gametogenesis. In the present study, we report for the first time the characterization of the prohibitin-2 (Phb2) gene in the sea lice Caligus rogercresseyi. The CrPhb2 cDNA showed a total length of 1406 bp, which contained a predicted open reading frame (ORF) of 894 base pairs (bp) encoding for 298 amino acids. Multiple sequence alignments of prohibitin proteins from other arthropods revealed a high degree of amino acid sequence conservation. In silico Illumina read counts and RT-qPCR analyses showed a sex-dependent differential expression, with mRNA levels exhibiting a 1.7-fold (RT-qPCR) increase in adult females compared with adult males. A total of nine single nucleotide polymorphisms (SNPs) were identified, three were located in the 5' UTR of the Phb2 messenger and six in the ORF, but no mutations associated with sex were found. These results contribute to expand the present knowledge of the reproduction-related genes in C. rogercresseyi, and may be useful in future experiments aimed at controlling the impacts of sea lice in fish farming. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Localization and characterization of γ-glutamyl cyclotransferase in cancer cells.

    PubMed

    Azumi, Kaoru; Ikeda, Youhei; Takeuchi, Tomoharu; Nomura, Tsuyoshi; Sabau, Sorin V; Hamada, Jun-Ichi; Okada, Futoshi; Hosokawa, Masuo; Yokosawa, Hideyoshi

    2009-01-01

    Using differential display analysis, we have identified a novel rat gene whose expression is increased during tumor progression in rat mammary carcinoma cell lines. This gene is an ortholog of the human chromosome 7 open reading frame 24 gene (C7orf24) and encodes a protein of 188 amino acids with no recognized protein domains. C7orf24 has been identified as γ-glutamyl cyclotransferase (GGCT), an important enzyme functioning in glutathione homeostasis. Our Northern and Western blot analyses revealed that the GGCT gene is expressed in various normal human and tumor tissues, as well as in cancer cell lines. Among the tumor tissues tested, lung tumor tissue expressed GGCT mRNA more strongly than normal lung tissue. The GGCT protein was found to be localized in the cytoplasmic region of cultured cells, where it forms a homodimer. Analysis of various deletion mutants of the GGCT protein revealed that the region containing amino acid residues 61-120 of the protein is required for its cytoplasmic localization. The comparison of the soft agar colony formation of HBL-100 cells stably expressing GGCT with that of control HBL-100 cells revealed that GGCT does not promote colony formation, suggesting that the role it plays in lung cancer cells is not related to tumorigenesis.

  15. Expression patterns, mutation detection and RNA interference of Rhopalosiphum padi voltage-gated sodium channel genes

    NASA Astrophysics Data System (ADS)

    Zuo, Yayun; Peng, Xiong; Wang, Kang; Lin, Fangfei; Li, Yuting; Chen, Maohua

    2016-07-01

    The voltage-gated sodium channel (VGSC) is the target of sodium-channel-blocking insecticides. Traditionally, animals were thought to have only one VGSC gene comprising a α-subunit with four homologous domains (DI-DIV). The present study showed that Rhopalosiphum padi, an economically important crop pest, owned a unique heterodimeric VGSC (H1 and H2 subunits) encoded by two genes (Rpvgsc1 and Rpvgsc2), which is unusual in insects and other animals. The open reading frame (ORF) of Rpvgsc1 consisted 1150 amino acids, and the ORF of Rpvgsc2 had 957 amino acids. Rpvgsc1 showed 64.1% amino acid identity to DI-DII of Drosophila melanogaster VGSC and Rpvgsc2 showed 64.0% amino acid identity to DIII-DIV of D. melanogaster VGSC. A M918L mutation previously reported in pyrethroids-resistant strains of other insects was found in the IIS4-S6 region of R. padi field sample. The two R. padi VGSC genes were expressed at all developmental stages and showed similar expression patterns after treatment with beta-cypermethrin. Knockdown of Rpvgsc1 or Rpvgsc2 caused significant reduction in mortality rate of R. padi after exposure to beta-cypermethrin. These findings suggest that the two R. padi VGSC genes are both functional genes.

  16. Human endogenous retroviruses and cancer: causality and therapeutic possibilities.

    PubMed

    Mullins, Christina S; Linnebacher, Michael

    2012-11-14

    A substantial part of the human genome is derived from transposable elements; remnants of ancient retroviral infections. Conservative estimates set the percentage of human endogenous retroviruses (HERVs) in the genome at 8%. For the most part, the interplay between mutations, epigenetic mechanisms and posttranscriptional regulations silence HERVs in somatic cells. We first highlight mechanisms by which activation of members of several HERV families may be associated with tumor development before discussing the arising chances for both diagnosis and therapy. It has been shown that at least in some cases, tumor cells expressing HERV open reading frames (ORFs) thus gain tumor-promoting functions. However, since these proteins are not expressed in healthy tissues, they become prime target structures. Of potential pharmacological interest are the prevention of HERV transposition, the inhibition of HERV-encoded protein expression and the interference with these proteins' activities. Evidence from recent studies unequivocally proves that HERV ORFs represent a very interesting source of novel tumor-specific antigens with even the potential to surpass entity boundaries. The development of new tumor (immune-) therapies is a very active field and true tumor-specific targets are of outstanding interest since they minimize the risk of autoimmunity and could reduce side effects. Finally, we postulate on main future research streams in order to stimulate discussion on this hot topic.

  17. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox.

    PubMed

    Gubser, Caroline; Smith, Geoffrey L

    2002-04-01

    Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.

  18. Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): A linear DNA molecule encoding a putative DNA-dependent DNA polymerase.

    PubMed

    Shao, Zhiyong; Graf, Shannon; Chaga, Oleg Y; Lavrov, Dennis V

    2006-10-15

    The 16,937-nuceotide sequence of the linear mitochondrial DNA (mt-DNA) molecule of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa) - the first mtDNA sequence from the class Scypozoa and the first sequence of a linear mtDNA from Metazoa - has been determined. This sequence contains genes for 13 energy pathway proteins, small and large subunit rRNAs, and methionine and tryptophan tRNAs. In addition, two open reading frames of 324 and 969 base pairs in length have been found. The deduced amino-acid sequence of one of them, ORF969, displays extensive sequence similarity with the polymerase [but not the exonuclease] domain of family B DNA polymerases, and this ORF has been tentatively identified as dnab. This is the first report of dnab in animal mtDNA. The genes in A. aurita mtDNA are arranged in two clusters with opposite transcriptional polarities; transcription proceeding toward the ends of the molecule. The determined sequences at the ends of the molecule are nearly identical but inverted and lack any obvious potential secondary structures or telomere-like repeat elements. The acquisition of mitochondrial genomic data for the second class of Cnidaria allows us to reconstruct characteristic features of mitochondrial evolution in this animal phylum.

  19. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p

    PubMed Central

    Khazina, Elena

    2018-01-01

    LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. PMID:29565245

  20. Impact of the excision of an ancient repeat insertion on Rickettsia conorii guanylate kinase activity.

    PubMed

    Abergel, Chantal; Blanc, Guillaume; Monchois, Vincent; Renesto, Patricia; Sigoillot, Cécile; Ogata, Hiroyuki; Raoult, Didier; Claverie, Jean-Michel

    2006-11-01

    The genomic sequencing of Rickettsia conorii revealed a new family of Rickettsia-specific palindromic elements (RPEs) capable of in-frame insertion in preexisting open reading frames (ORFs). Many of these altered ORFs correspond to proteins with well-characterized or essential functions in other microorganisms. Previous experiments indicated that RPE-containing genes are normally transcribed and that no excision of the repeat occurs at the mRNA level. Using mass spectrometry, we now confirmed the retention of the RPE-derived amino acid residues in 4 proteins successfully expressed in Escherichia coli, raising the general question of the consequences of this common insertion event on the fitness of Rickettsia enzymes. The predicted guanylate kinase activity of the R. conorii gmk gene product was measured both on the RPE-containing and RPE-excised recombinant proteins. We show that the 2 proteins are active but exhibit substantial differences in their affinity for adenosine triphosphate, guanosine monophosphate, and catalytic constants. The distribution of the RPEgmk insert among Rickettsia species indicates that the insertion event is ancient and occurred after the divergence of Rickettsia felis and R. conorii but before that of Rickettsia helvetica and R. conorii. We found no evidence that the gmk gene fixed adaptive changes to compensate the RPE peptide insertion. Furthermore, the analysis of the rates of divergence in 23 RPE-containing genes indicates that coding RPE repeats tend to evolve under weak selective constraint, at a rate similar to intergenic noncoding RPE sequences. Altogether, these results suggest that the insertion of RPE-encoded "selfish peptides," although respecting the original fold and activity of the host proteins, might be slightly detrimental to the enzyme efficiency within limits tolerable for slow-growing intracellular parasites such as Rickettsia.

  1. Cloning, Sequencing, and Characterization of the cgmB Gene of Sinorhizobium meliloti Involved in Cyclic β-Glucan Biosynthesis

    PubMed Central

    Wang, Ping; Ingram-Smith, Cheryl; Hadley, Jill A.; Miller, Karen J.

    1999-01-01

    Periplasmic cyclic β-glucans of Rhizobium species provide important functions during plant infection and hypo-osmotic adaptation. In Sinorhizobium meliloti (also known as Rhizobium meliloti), these molecules are highly modified with phosphoglycerol and succinyl substituents. We have previously identified an S. meliloti Tn5 insertion mutant, S9, which is specifically impaired in its ability to transfer phosphoglycerol substituents to the cyclic β-glucan backbone (M. W. Breedveld, J. A. Hadley, and K. J. Miller, J. Bacteriol. 177:6346–6351, 1995). In the present study, we have cloned, sequenced, and characterized this mutation at the molecular level. By using the Tn5 flanking sequences (amplified by inverse PCR) as a probe, an S. meliloti genomic library was screened, and two overlapping cosmid clones which functionally complement S9 were isolated. A 3.1-kb HindIII-EcoRI fragment found in both cosmids was shown to fully complement mutant S9. Furthermore, when a plasmid containing this 3.1-kb fragment was used to transform Rhizobium leguminosarum bv. trifolii TA-1JH, a strain which normally synthesizes only neutral cyclic β-glucans, anionic glucans containing phosphoglycerol substituents were produced, consistent with the functional expression of an S. meliloti phosphoglycerol transferase gene. Sequence analysis revealed the presence of two major, overlapping open reading frames within the 3.1-kb fragment. Primer extension analysis revealed that one of these open reading frames, ORF1, was transcribed and its transcription was osmotically regulated. This novel locus of S. meliloti is designated the cgm (cyclic glucan modification) locus, and the product encoded by ORF1 is referred to as CgmB. PMID:10419956

  2. Identification of very small open reading frames in the genomes of Holmes Jungle virus, Ord River virus, and Wongabel virus of the genus Hapavirus, family Rhabdoviridae

    PubMed Central

    Gubala, Aneta; Walsh, Susan; McAllister, Jane; Weir, Richard; Davis, Steven; Melville, Lorna; Mitchell, Ian; Bulach, Dieter; Gauci, Penny; Skvortsov, Alex; Boyle, David

    2017-01-01

    Viruses of the family Rhabdoviridae infect a broad range of hosts from a variety of ecological and geographical niches, including vertebrates, arthropods, and plants. The arthropod-transmitted members of this family display considerable genetic diversity and remarkable genomic flexibility that enable coding for various accessory proteins in different locations of the genome. Here, we describe the genome of Holmes Jungle virus, isolated from Culex annulirostris mosquitoes collected in northern Australia, and make detailed comparisons with the closely related Ord River and Wongabel viruses, with a focus on identifying very small open reading frames (smORFs) in their genomes. This is the first systematic prediction of smORFs in rhabdoviruses, emphasising the intricacy of the rhabdovirus genome and the knowledge gaps. We speculate that these smORFs may be of importance to the life cycle of the virus in the arthropod vector. PMID:28747815

  3. A murC gene in Porphyromonas gingivalis 381.

    PubMed

    Ansai, T; Yamashita, Y; Awano, S; Shibata, Y; Wachi, M; Nagai, K; Takehara, T

    1995-09-01

    The gene encoding a 51 kDa polypeptide of Porphyromonas gingivalis 381 was isolated by immunoblotting using an antiserum raised against P. gingivalis alkaline phosphatase. DNA sequence analysis of a 2.5 kb DNA fragment containing a gene encoding the 51 kDa protein revealed one complete and two incomplete ORFs. Database searches using the FASTA program revealed significant homology between the P. gingivalis 51 kDa protein and the MurC protein of Escherichia coli, which functions in peptidoglycan synthesis. The cloned 51 kDa protein encoded a functional product that complemented an E. coli murC mutant. Moreover, the ORF just upstream of murC coded for a protein that was 31% homologous with the E. coli MurG protein. The ORF just downstream of murC coded for a protein that was 17% homologous with the Streptococcus pneumoniae penicillin-binding protein 2B (PBP2B), which functions in peptidoglycan synthesis and is responsible for antibiotic resistance. These results suggest that P. gingivalis contains a homologue of the E. coli peptidoglycan synthesis gene murC and indicate the possibility of a cluster of genes responsible for cell division and cell growth, as in the E. coli mra region.

  4. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chaoyang; Zhang, Pengju; Jiang, Anli

    C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover,more » C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.« less

  5. Molecular characterization and immunological response analysis of a novel transferrin-like, pacifastin heavy chain protein in giant freshwater prawn, Macrobrachium rosenbergii (De Man, 1879).

    PubMed

    Toe, Aung; Areechon, Nontawith; Srisapoome, Prapansak

    2012-10-01

    The full-length cDNA of the pacifastin heavy chain gene from giant freshwater prawn (Macrobrachium rosenbergii, Mr-PHC) was cloned and characterized. The full sequence of the Mr-PHC cDNA was 4331 bp and contained a 119-bp 5'-untranslated region (UTR), a 3990-bp open reading frame (ORF) encoding 1329 amino acid residues and a 222-bp 3' UTR. The Mr-PHC protein predicted by its full ORF, exhibited a unique transferrin-like protein structure containing 4 different lobes that have not been previously identified. Three of the four lobes contained highly conserved of iron/anion binding residues. Expression analyses by conventional RT-PCR demonstrated that Mr-PHC was expressed predominantly during postlarval stage 45 and also in the foregut and gills of the adult prawn. Interestingly, dose response analyses that were quantified using quantitative real-time PCR indicated a significant upregulation of Mr-PHC during postlarval stage 45 in prawn grown at hour 24 after challenging with 10(9) cfu/ml of Aeromonas hydrophila, which is a pathogenic bacterium. Mr-HPC in the adult prawn was significantly upregulated at both hour 12 and day 7 after stimulation with A. hydrophila (P < 0.05 and P < 0.01, respectively). Additionally, a delayed induction response of the Mr-PHC gene was observed at 14 days when the experimental adult prawns were fed with β-glucan-supplemented feed. Based on results of this study, the transferrin-like protein encoded by the pacifastin heavy chain gene may exist in all decapod crustaceans. Even though the function as an iron transporter is not proven, immune response studies are clearly indicated that PHC is critically involved in the immune system in these animals.

  6. Extracellular matrix remodeling and matrix metalloproteinases (ajMMP-2 like and ajMMP-16 like) characterization during intestine regeneration of sea cucumber Apostichopus japonicus.

    PubMed

    Miao, Ting; Wan, Zixuan; Sun, Lina; Li, Xiaoni; Xing, Lili; Bai, Yucen; Wang, Fang; Yang, Hongsheng

    2017-10-01

    Remodeling of extracellular matrix (ECM) regulated by matrix metalloproteinases (MMPs) is essential for tissue regeneration. In the present study, we used immunohistochemistry (IHC) techniques against ECM components to reveal changes of ECM during intestine regeneration of Apostichopus japonicus. The expression of collagen I and laminin reduced apparently from the eviscerated intestine, while fibronectin exhibited continuous expression in all regeneration stages observed. Meanwhile, we cloned two MMP genes from A. japonicus by RACE PCR. The full-length cDNA of ajMMP-2 like is 2733bp and contains a predicted open reading frame (ORF) of 1716bp encoding 572 amino acids. The full-length cDNA of ajMMP-16 like is 2705bp and contains an ORF of 1452bp encoding 484 amino acids. The predicted protein sequences of each MMP contain two conserved domains, ZnMc_MMP and HX. Homology and phylogenetic analysis revealed that ajMMP-2 like and ajMMP-16 like share high sequence similarity with MMP-2 and MMP-16 from Strongylocentrotus purpuratus, respectively. Then we investigated spatio-temporal expression of ajMMP-2 like and ajMMP-16 like during different regeneration stages by qRT-PCR and IHC. The expression pattern of them showed a roughly opposite trend from that of ECM components. According to our results, a fibronectin-dominate temporary matrix is created in intestine regeneration, and it might provide structural integrity for matrix and promote cell movement. We also hypothesize that ajMMP-2 like and ajMMP-16 like could accelerate cell migration and regulate interaction between ECM components and growth factors. This work provides new evidence of ECM and MMPs involvement in sea cucumber regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Molecular Characterization of the Complete Genome of Three Basal-BR Isolates of Turnip mosaic virus Infecting Raphanus sativus in China.

    PubMed

    Zhu, Fuxiang; Sun, Ying; Wang, Yan; Pan, Hongyu; Wang, Fengting; Zhang, Xianghui; Zhang, Yanhua; Liu, Jinliang

    2016-06-04

    Turnip mosaic virus (TuMV) infects crops of plant species in the family Brassicaceae worldwide. TuMV isolates were clustered to five lineages corresponding to basal-B, basal-BR, Asian-BR, world-B and OMs. Here, we determined the complete genome sequences of three TuMV basal-BR isolates infecting radish from Shandong and Jilin Provinces in China. Their genomes were all composed of 9833 nucleotides, excluding the 3'-terminal poly(A) tail. They contained two open reading frames (ORFs), with the large one encoding a polyprotein of 3164 amino acids and the small overlapping ORF encoding a PIPO protein of 61 amino acids, which contained the typically conserved motifs found in members of the genus Potyvirus. In pairwise comparison with 30 other TuMV genome sequences, these three isolates shared their highest identities with isolates from Eurasian countries (Germany, Italy, Turkey and China). Recombination analysis showed that the three isolates in this study had no "clear" recombination. The analyses of conserved amino acids changed between groups showed that the codons in the TuMV out group (OGp) and OMs group were the same at three codon sites (852, 1006, 1548), and the other TuMV groups (basal-B, basal-BR, Asian-BR, world-B) were different. This pattern suggests that the codon in the OMs progenitor did not change but that in the other TuMV groups the progenitor sequence did change at divergence. Genetic diversity analyses indicate that the PIPO gene was under the highest selection pressure and the selection pressure on P3N-PIPO and P3 was almost the same. It suggests that most of the selection pressure on P3 was probably imposed through P3N-PIPO.

  8. Recurrent emergence of structural variants of LTR retrotransposon CsRn1 evolving novel expression strategy and their selective expansion in a carcinogenic liver fluke, Clonorchis sinensis.

    PubMed

    Kim, Seon-Hee; Kong, Yoon; Bae, Young-An

    2017-06-01

    Autonomous retrotransposons, in which replication and transcription are coupled, encode the essential gag and pol genes as a fusion or separate overlapping form(s) that are expressed in single transcripts regulated by a common upstream promoter. The element-specific expression strategies have driven development of relevant translational recoding mechanisms including ribosomal frameshifting to satisfy the protein stoichiometry critical for the assembly of infectious virus-like particles. Retrotransposons with different recoding strategies exhibit a mosaic distribution pattern across the diverse families of reverse transcribing elements, even though their respective distributions are substantially skewed towards certain family groups. However, only a few investigations to date have focused on the emergence of retrotransposons evolving novel expression strategy and causal genetic drivers of the structural variants. In this study, the bulk of genomic and transcribed sequences of a Ty3/gypsy-like CsRn1 retrotransposon in Clonorchis sinensis were analyzed for the comprehensive examination of its expression strategy. Our results demonstrated that structural variants with single open reading frame (ORF) have recurrently emerged from precedential CsRn1 copies encoding overlapping gag-pol ORFs by a single-nucleotide insertion in an upstream region of gag stop codon. In the parasite genome, some of the newly evolved variants appeared to undergo proliferative burst as active master lineages together with their ancestral copies. The genetic event was similarly observed in Opisthorchis viverrini, the closest neighbor of C. sinensis, whereas the resulting structural variants might have failed to overcome purifying selection and comprised minor remnant copies in the Opisthorchis genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Functional Analysis of Vaccinia Virus B5R Protein: Essential Role in Virus Envelopment Is Independent of a Large Portion of the Extracellular Domain

    PubMed Central

    Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.

    1998-01-01

    Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227

  10. RegA, an AraC-like protein, is a global transcriptional regulator that controls virulence gene expression in Citrobacter rodentium.

    PubMed

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J; Frankel, Gad; Hartland, Elizabeth L; Robins-Browne, Roy M

    2008-11-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5alpha, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization.

  11. RegA, an AraC-Like Protein, Is a Global Transcriptional Regulator That Controls Virulence Gene Expression in Citrobacter rodentium▿

    PubMed Central

    Hart, Emily; Yang, Ji; Tauschek, Marija; Kelly, Michelle; Wakefield, Matthew J.; Frankel, Gad; Hartland, Elizabeth L.; Robins-Browne, Roy M.

    2008-01-01

    Citrobacter rodentium is an attaching and effacing pathogen which causes transmissible colonic hyperplasia in mice. Infection with C. rodentium serves as a model for infection of humans with enteropathogenic and enterohemorrhagic Escherichia coli. To identify novel colonization factors of C. rodentium, we screened a signature-tagged mutant library of C. rodentium in mice. One noncolonizing mutant had a single transposon insertion in an open reading frame (ORF) which we designated regA because of its homology to genes encoding members of the AraC family of transcriptional regulators. Deletion of regA in C. rodentium resulted in markedly reduced colonization of the mouse intestine. Examination of lacZ transcriptional fusions using promoter regions of known and putative virulence-associated genes of C. rodentium revealed that RegA strongly stimulated transcription of two newly identified genes located close to regA, which we designated adcA and kfcC. The cloned adcA gene conferred autoaggregation and adherence to mammalian cells to E. coli strain DH5α, and a kfc mutation led to a reduction in the duration of intestinal colonization, but the kfc mutant was far less attenuated than the regA mutant. These results indicated that other genes of C. rodentium whose expression required activation by RegA were required for colonization. Microarray analysis revealed a number of RegA-regulated ORFs encoding proteins homologous to known colonization factors. Transcription of these putative virulence determinants was activated by RegA only in the presence of sodium bicarbonate. Taken together, these results show that RegA is a global regulator of virulence in C. rodentium which activates factors that are required for intestinal colonization. PMID:18765720

  12. The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition

    PubMed Central

    2006-01-01

    Most eukaryotic mRNAs are monocistronic and translated by cap-dependent initiation. LINE-1 RNA is exceptional because it is naturally dicistronic, encoding two proteins essential for retrotransposition, ORF1p and ORF2p. Here, we show that sequences upstream of ORF1 and ORF2 in mouse L1 function as internal ribosome entry sites (IRESes). Deletion analysis of the ORF1 IRES indicates that RNA structure is critical for its function. Conversely, the ORF2 IRES localizes to 53 nt near the 3′ end of ORF1, and appears to depend upon sequence rather than structure. The 40 nt intergenic region (IGR) is not essential for ORF2 IRES function or retrotransposition. Because of strong cis-preference for both proteins during L1 retrotransposition, correct stoichiometry of the two proteins can only be achieved post-transcriptionally. Although the precise stoichiometry is unknown, the retrotransposition intermediate likely contains hundreds of ORF1ps for every ORF2p, together with one L1 RNA. IRES-mediated translation initiation is a well-established mechanism of message-specific regulation, hence, unique mechanisms for the recognition and control of these two IRESes in the L1 RNA could explain differences in translational efficiency of ORF1 and ORF2. In addition, translational regulation may provide an additional layer of control on L1 retrotransposition efficiency, thereby protecting the integrity of the genome. PMID:16464823

  13. Implementation and assessment of a yeast orphan gene research project; involving undergraduates in authentic research experiences and progressing our understanding of uncharacterized open reading frames

    PubMed Central

    Bowling, Bethany V.; Schultheis, Patrick J.

    2015-01-01

    Saccharomyces cerevisiae was the first eukaryotic organism to be sequenced, however little progress has been made in recent years in furthering our understanding of all open reading frames (ORFs). From October 2012 to May 2015 the number of verified ORFs has only risen from 75.31% to 78% while the number of uncharacterized ORFs have decreased from 12.8% to 11% (representing more than 700 genes still left in this category) [http://www.yeastgenome.org/genomesnapshot]. Course-based research has been shown to increase student learning while providing experience with real scientific investigation; however, implementation in large, multi-section courses presents many challenges. This study sought to test the feasibility and effectiveness of incorporating authentic research into a core genetics course with multiple instructors to increase student learning and progress our understanding of uncharacterized ORFs. We generated a module-based annotation toolkit and utilized easily accessible bioinformatics tools to predict gene function for uncharacterized ORFs within the Saccharomyces Genome Database (SGD). Students were each assigned an uncharacterized ORF which they annotated using contemporary comparative genomics methodologies including multiple sequence alignment, conserved domain identification, signal peptide prediction and cellular localization algorithms. Student learning outcomes were measured by quizzes, project reports and presentations, as well as a post-project questionnaire. Our results indicate the authentic research experience had positive impacts on student's perception of their learning and their confidence to conduct future research. Furthermore we believe that creation of an online repository and adoption and/or adaptation of this project across multiple researchers and institutions could speed the process of gene function prediction. PMID:26460164

  14. Implementation and assessment of a yeast orphan gene research project: involving undergraduates in authentic research experiences and progressing our understanding of uncharacterized open reading frames.

    PubMed

    Bowling, Bethany V; Schultheis, Patrick J; Strome, Erin D

    2016-02-01

    Saccharomyces cerevisiae was the first eukaryotic organism to be sequenced; however, little progress has been made in recent years in furthering our understanding of all open reading frames (ORFs). From October 2012 to May 2015 the number of verified ORFs had only risen from 75.31% to 78%, while the number of uncharacterized ORFs had decreased from 12.8% to 11% (representing > 700 genes still left in this category; http://www.yeastgenome.org/genomesnapshot). Course-based research has been shown to increase student learning while providing experience with real scientific investigation; however, implementation in large, multi-section courses presents many challenges. This study sought to test the feasibility and effectiveness of incorporating authentic research into a core genetics course, with multiple instructors, to increase student learning and progress our understanding of uncharacterized ORFs. We generated a module-based annotation toolkit and utilized easily accessible bioinformatics tools to predict gene function for uncharacterized ORFs within the Saccharomyces Genome Database (SGD). Students were each assigned an uncharacterized ORF, which they annotated using contemporary comparative genomics methodologies, including multiple sequence alignment, conserved domain identification, signal peptide prediction and cellular localization algorithms. Student learning outcomes were measured by quizzes, project reports and presentations, as well as a post-project questionnaire. Our results indicate that the authentic research experience had positive impacts on students' perception of their learning and their confidence to conduct future research. Furthermore, we believe that creation of an online repository and adoption and/or adaptation of this project across multiple researchers and institutions could speed the process of gene function prediction. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Walleye dermal sarcoma virus Orf B functions through receptor for activated C kinase (RACK1) and protein kinase C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniels, Candelaria C.; Rovnak, Joel; Quackenbush, Sandra L.

    2008-06-05

    Walleye dermal sarcoma virus is a complex retrovirus that is associated with walleye dermal sarcomas that are seasonal in nature. Fall developing tumors contain low levels of spliced accessory gene transcripts A and B, suggesting a role for the encoded proteins, Orf A and Orf B, in oncogenesis. In explanted tumor cells the 35 kDa Orf B accessory protein is localized to the cell periphery in structures similar to focal adhesions and along actin stress fibers. Similar localization was observed in mammalian cells. The cellular protein, receptor for activated C kinase 1 (RACK1), bound Orf B in yeast two-hybrid assaysmore » and in cell culture. Sequence analysis of walleye RACK1 demonstrated high conservation to other known RACK1 sequences. RACK1 binds to activated protein kinase C (PKC). Orf B associates with PKC{alpha}, which is constitutively activated and localized at the membrane. Activated PKC promoted cell survival, proliferation, and increased cell viability in Orf B-expressing cells.« less

  16. Identification of small ORFs in vertebrates using ribosome footprinting and evolutionary conservation

    PubMed Central

    Bazzini, Ariel A; Johnstone, Timothy G; Christiano, Romain; Mackowiak, Sebastian D; Obermayer, Benedikt; Fleming, Elizabeth S; Vejnar, Charles E; Lee, Miler T; Rajewsky, Nikolaus; Walther, Tobias C; Giraldez, Antonio J

    2014-01-01

    Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define actively translated ORFs by ribosome footprinting. This approach identifies several hundred translated small ORFs in zebrafish and human. Computational prediction of small ORFs from codon conservation patterns corroborates and extends these findings and identifies conserved sequences in zebrafish and human, suggesting functional peptide products (micropeptides). These results identify micropeptide-encoding genes in vertebrates, providing an entry point to define their function in vivo. PMID:24705786

  17. Whole-Genome Sequence of "Candidatus Profftella armatura" from Diaphorina citri in Guangdong, China.

    PubMed

    Wu, F; Deng, X; Liang, G; Huang, J; Cen, Y; Chen, J

    2015-11-05

    The genome of "Candidatus Profftella armatura" strain YCPA from Diaphorina citri in Guangdong, China, was sequenced. The strain has a chromosome of 457,565 bp, 24.3% G+C content, 364 predicted open reading frames (ORFs), and 38 RNAs, and a plasmid, pYCPA54, of 5,458 bp with 23.9% G+C content and 5 ORFs. Copyright © 2015 Wu et al.

  18. Alternate promoter selection within a human cytomegalovirus immediate-early and early transcription unit (UL119-115) defines true late transcripts containing open reading frames for putative viral glycoproteins.

    PubMed Central

    Leatham, M P; Witte, P R; Stinski, M F

    1991-01-01

    The human cytomegalovirus open reading frames (ORFs) UL119 through UL115 (UL119-115) are located downstream of the immediate-early 1 and 2 transcription units. The promoter upstream of UL119 is active at all times after infection and drives the synthesis of a spliced 3.1-kb mRNA. The viral mRNA initiates in UL119, contains UL119-117 and UL116, and terminates just downstream of UL115. True late transcripts that are detected only after viral DNA synthesis originate from this transcription unit. True late mRNAs of 2.1 kb, containing ORFs UL116 and UL115, and 1.2 kb, containing ORF UL115 only, are synthesized. The true late viral mRNAs are 3' coterminal with the 3.1-kb mRNA. This transcription unit is an example of late promoters nested within an immediate-early-early transcription unit. The gene products of UL119-117, UL116, and UL115 are predicted to be glycoproteins. Efficient expression of the downstream ORFs at late times after infection may be related to alternate promoter usage and downstream cap site selection. Images PMID:1717716

  19. Transcript analysis of the extended hyp-operon in the cyanobacteria Nostoc sp. strain PCC 7120 and Nostoc punctiforme ATCC 29133

    PubMed Central

    2011-01-01

    Background Cyanobacteria harbor two [NiFe]-type hydrogenases consisting of a large and a small subunit, the Hup- and Hox-hydrogenase, respectively. Insertion of ligands and correct folding of nickel-iron hydrogenases require assistance of accessory maturation proteins (encoded by the hyp-genes). The intergenic region between the structural genes encoding the uptake hydrogenase (hupSL) and the accessory maturation proteins (hyp genes) in the cyanobacteria Nostoc PCC 7120 and N. punctiforme were analysed using molecular methods. Findings The five ORFs, located in between the uptake hydrogenase structural genes and the hyp-genes, can form a transcript with the hyp-genes. An identical genomic localization of these ORFs are found in other filamentous, N2-fixing cyanobacterial strains. In N. punctiforme and Nostoc PCC 7120 the ORFs upstream of the hyp-genes showed similar transcript level profiles as hupS (hydrogenase structural gene), nifD (nitrogenase structural gene), hypC and hypF (accessory hydrogenase maturation genes) after nitrogen depletion. In silico analyzes showed that these ORFs in N. punctiforme harbor the same conserved regions as their homologues in Nostoc PCC 7120 and that they, like their homologues in Nostoc PCC 7120, can be transcribed together with the hyp-genes forming a larger extended hyp-operon. DNA binding studies showed interactions of the transcriptional regulators CalA and CalB to the promoter regions of the extended hyp-operon in N. punctiforme and Nostoc PCC 7120. Conclusions The five ORFs upstream of the hyp-genes in several filamentous N2-fixing cyanobacteria have an identical genomic localization, in between the genes encoding the uptake hydrogenase and the maturation protein genes. In N. punctiforme and Nostoc PCC 7120 they are transcribed as one operon and may form transcripts together with the hyp-genes. The expression pattern of the five ORFs within the extended hyp-operon in both Nostoc punctiforme and Nostoc PCC 7120 is similar to the expression patterns of hupS, nifD, hypF and hypC. CalA, a known transcription factor, interacts with the promoter region between hupSL and the five ORFs in the extended hyp-operon in both Nostoc strains. PMID:21672234

  20. Origin, antigenicity, and function of a secreted form of ORF2 in hepatitis E virus infection.

    PubMed

    Yin, Xin; Ying, Dong; Lhomme, Sébastien; Tang, Zimin; Walker, Christopher M; Xia, Ningshao; Zheng, Zizheng; Feng, Zongdi

    2018-05-01

    The enterically transmitted hepatitis E virus (HEV) adopts a unique strategy to exit cells by cloaking its capsid (encoded by the viral ORF2 gene) and circulating in the blood as "quasi-enveloped" particles. However, recent evidence suggests that the majority of the ORF2 protein present in the patient serum and supernatants of HEV-infected cell culture exists in a free form and is not associated with virus particles. The origin and biological functions of this secreted form of ORF2 (ORF2 S ) are unknown. Here we show that production of ORF2 S results from translation initiated at the previously presumed AUG start codon for the capsid protein, whereas translation of the actual capsid protein (ORF2 C ) is initiated at a previously unrecognized internal AUG codon (15 codons downstream of the first AUG). The addition of 15 amino acids to the N terminus of the capsid protein creates a signal sequence that drives ORF2 S secretion via the secretory pathway. Unlike ORF2 C , ORF2 S is glycosylated and exists as a dimer. Nonetheless, ORF2 S exhibits substantial antigenic overlap with the capsid, but the epitopes predicted to bind the putative cell receptor are lost. Consistent with this, ORF2 S does not block HEV cell entry but inhibits antibody-mediated neutralization. These results reveal a previously unrecognized aspect in HEV biology and shed new light on the immune evasion mechanisms and pathogenesis of this virus.

  1. An update on sORFs.org: a repository of small ORFs identified by ribosome profiling.

    PubMed

    Olexiouk, Volodimir; Van Criekinge, Wim; Menschaert, Gerben

    2018-01-04

    sORFs.org (http://www.sorfs.org) is a public repository of small open reading frames (sORFs) identified by ribosome profiling (RIBO-seq). This update elaborates on the major improvements implemented since its initial release. sORFs.org now additionally supports three more species (zebrafish, rat and Caenorhabditis elegans) and currently includes 78 RIBO-seq datasets, a vast increase compared to the three that were processed in the initial release. Therefore, a novel pipeline was constructed that also enables sORF detection in RIBO-seq datasets comprising solely elongating RIBO-seq data while previously, matching initiating RIBO-seq data was necessary to delineate the sORFs. Furthermore, a novel noise filtering algorithm was designed, able to distinguish sORFs with true ribosomal activity from simulated noise, consequently reducing the false positive identification rate. The inclusion of other species also led to the development of an inner BLAST pipeline, assessing sequence similarity between sORFs in the repository. Building on the proof of concept model in the initial release of sORFs.org, a full PRIDE-ReSpin pipeline was now released, reprocessing publicly available MS-based proteomics PRIDE datasets, reporting on true translation events. Next to reporting those identified peptides, sORFs.org allows visual inspection of the annotated spectra within the Lorikeet MS/MS viewer, thus enabling detailed manual inspection and interpretation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Genomic structure of rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD, AKR1C9).

    PubMed

    Lin, H K; Hung, C F; Moore, M; Penning, T M

    1999-11-01

    Rat liver 3alpha-hydroxysteroid/dihydrodiol dehydrogenase (3alpha-HSD/DD) is a member of the aldo-keto reductase (AKR) superfamily. It is involved in the inactivation of steroid hormones and the metabolic activation of polycyclic aromatic hydrocarbons (PAH) by converting trans-dihydrodiols into reactive and redox-active o-quinones. The structure of the 5'-flanking region of the gene and factors involved in the constitutive and regulated expression of this gene have been reported [H.-K. Lin, T.M. Penning, Cloning, sequencing, and functional analysis of the 5'-flanking region of the rat 3alpha-hydroxysteroid/dihydrodiol dehydrogenase gene, Cancer Res. 55 (1995) 4105-4113]. We now describe the complete genomic structure of the rat type 1 3alpha-HSD/DD gene. Charon 4A and P1 genomic clones contained at least three rat genes (type 1, type 2 and type 3 3alpha-HSD/DD) each of which encoded for the same open reading frame (ORF) but differed in their exon-intron organization. 5'-RACE confirmed that the type 1 3alpha-HSD/DD gene encodes for the dominant transcript in rat liver and it was the regulation of this gene that was previously studied. The rat type 1 3alpha-HSD/DD gene is 30 kb in length and consists of nine exons and eight introns. Exon 9 encodes +931 to 966 bp of the ORF and the 1292 bp 3'-UTR implicated in mRNA stability. This genomic structure is nearly identical to the homologous human genes, type 1 3alpha-HSD (chlordecone reductase/DD4, AKR1C4), type 2 3alpha-HSD (AKR1C3) and type 3 3alpha-HSD (bile-acid binding protein, AKR1C2) genes. Three different cDNA's containing identical ORFs for 3alpha-HSD have been reported suggesting that all three genes may be expressed in rat liver. Using 5' primers corresponding to the 5'-UTR's of the three different cDNA's only one PCR fragment was obtained and corresponded to the type 1 3alpha-HSD/DD gene. These data suggested that the type 2 and type 3 3alpha-HSD/DD genes are not abundantly expressed in rat liver. It is unknown whether the type 2 and type 3 3alpha-HSD/DD genes represent pseudo-genes or whether they represent genes that are differentially expressed in other rat tissues.

  3. Molecular cloning, characterization and expression analysis of TLR9, MyD88 and TRAF6 genes in common carp (Cyprinus carpio).

    PubMed

    Kongchum, Pawapol; Hallerman, Eric M; Hulata, Gideon; David, Lior; Palti, Yniv

    2011-01-01

    Induction of innate immune pathways is critical for early host defense, but there is limited understanding of how teleost fishes recognize pathogen molecules and activate these pathways. In mammals, cells of the innate immune system detect pathogenic molecular structures using pattern recognition receptors (PRRs). TLR9 functions as a PRR that recognizes CpG motifs in bacterial and viral DNA and requires adaptor molecules MyD88 and TRAF6 for signal transduction. Here we report full-length cDNA isolation, structural characterization and tissue mRNA expression analysis of the common carp (cc) TLR9, MyD88 and TRAF6 gene orthologs. The ccTLR9 open-reading frame (ORF) is predicted to encode a 1064-amino acid (aa) protein. We found that MyD88 and TRAF6 genes are duplicated in common carp. This is the first report of TRAF6 duplication in a vertebrate genome and stronger evidence in support of MyD88 duplication is provided. The ccMyD88a and b ORFs are predicted to encode 288-aa and 284-aa peptides, respectively. They share 91% aa sequence identity between paralogs. The ccTRAF6a and b ORFs are both predicted to encode 543-aa peptides sharing 95% aa sequence identity between paralogs. The ccTLR9 gene is contained in a single large exon. The ccMyD88a and ccMyD88b coding sequences span five exons. The TRAF6b gene spans six exons. PCR amplification to obtain the entire coding sequence of ccTRAF6a gene was not successful. The 2104-bp fragment amplified covers the 3' end of the gene and it contains a partial sequence of one exon and three complete exons. The predicated protein domains of the ccTLR9, ccMyD88 and ccTRAF6 are conserved and resemble orthologs from other vertebrates. Real-time quantitative PCR assays of the ccTLR9, MyD88a and b, and TRAF6a and b gene transcripts in healthy common carp indicated that mRNA expression varied between tissues. Differential expression of duplicate copies were found for ccMyD88 and ccTRAF6 in white and red muscle tissues, suggesting that paralogs may have evolved and attained a new function. The genomic information we describe in this paper provides evidence of sequence and structural conservation of immune response genes in common carp. Published by Elsevier Ltd.

  4. Evolution of genome size and complexity in the rhabdoviridae.

    PubMed

    Walker, Peter J; Firth, Cadhla; Widen, Steven G; Blasdell, Kim R; Guzman, Hilda; Wood, Thomas G; Paradkar, Prasad N; Holmes, Edward C; Tesh, Robert B; Vasilakis, Nikos

    2015-02-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3' to 5' direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae.

  5. Genomic Sequence and Virulence of Clonal Isolates of Vaccinia Virus Tiantan, the Chinese Smallpox Vaccine Strain

    PubMed Central

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector. PMID:23593246

  6. [Complete nucleotide sequences and genome structure of two Chinese tobacco mosaic virus isolates deduced from full-length infectious cDNA clones].

    PubMed

    Yang, G; Liu, X G; Qiu, B S

    2000-07-01

    The complete nucleotides of two Chinese tobacco mosaic virus (TMV) isolates, TMV-Cv (vulgare strain) and TMV-N14 (an attenuated virus originated from a tomato strain), were determined from their respective full-length infectious cDNA clones and compared with published TMV sequences. The genome structure of TMV-Cv contained 6395 nucleotides, in which four functional open reading frames (ORF), coding for replicase (126 kD/183 kD), movement protein (MP, 30 kD) and coat protein (CP, 17.6 kD) respectively, could be recognized. TMV-N14 contained 6384 nucleotides in its genome. In contrast to TMV-Cv, five functional ORFs encoding the replicase 98.5 kD/126 kD/183 kD, MP(27 kD) and CP(17.6 kD), respectively, were detected in the TMV-N14 genome. TMV-Cv is 99% homologous to a Korean TMV isolate belonging to the vulgare strain at the nucleotide level. TMV-N14 is 99% homologous to a highly virulent Japanese isolate TMV-L (tomato strain) at the nucleotide level. In TMV-N14, one opal nulation (UGA) occurred in the replicase gene and one ochre nutation (UAA) in the MP gene. The former mutation created a potential, additional ORF within the replicase gene, the latter reduced the size of the MP to 27 kD. In addition, there were also 13 amino acid substitutions in the replicase gene of TMV-N14 when compared to that of TMV-L. Collectively, these changes may have significant implications in the attenuation of the virulence of TMV-N14.

  7. Evolution of Genome Size and Complexity in the Rhabdoviridae

    PubMed Central

    Walker, Peter J.; Firth, Cadhla; Widen, Steven G.; Blasdell, Kim R.; Guzman, Hilda; Wood, Thomas G.; Paradkar, Prasad N.; Holmes, Edward C.; Tesh, Robert B.; Vasilakis, Nikos

    2015-01-01

    RNA viruses exhibit substantial structural, ecological and genomic diversity. However, genome size in RNA viruses is likely limited by a high mutation rate, resulting in the evolution of various mechanisms to increase complexity while minimising genome expansion. Here we conduct a large-scale analysis of the genome sequences of 99 animal rhabdoviruses, including 45 genomes which we determined de novo, to identify patterns of genome expansion and the evolution of genome complexity. All but seven of the rhabdoviruses clustered into 17 well-supported monophyletic groups, of which eight corresponded to established genera, seven were assigned as new genera, and two were taxonomically ambiguous. We show that the acquisition and loss of new genes appears to have been a central theme of rhabdovirus evolution, and has been associated with the appearance of alternative, overlapping and consecutive ORFs within the major structural protein genes, and the insertion and loss of additional ORFs in each gene junction in a clade-specific manner. Changes in the lengths of gene junctions accounted for as much as 48.5% of the variation in genome size from the smallest to the largest genome, and the frequency with which new ORFs were observed increased in the 3’ to 5’ direction along the genome. We also identify several new families of accessory genes encoded in these regions, and show that non-canonical expression strategies involving TURBS-like termination-reinitiation, ribosomal frame-shifts and leaky ribosomal scanning appear to be common. We conclude that rhabdoviruses have an unusual capacity for genomic plasticity that may be linked to their discontinuous transcription strategy from the negative-sense single-stranded RNA genome, and propose a model that accounts for the regular occurrence of genome expansion and contraction throughout the evolution of the Rhabdoviridae. PMID:25679389

  8. Genomic Sequencing and Characterization of Cynomolgus Macaque Cytomegalovirus▿

    PubMed Central

    Marsh, Angie K.; Willer, David O.; Ambagala, Aruna P. N.; Dzamba, Misko; Chan, Jacqueline K.; Pilon, Richard; Fournier, Jocelyn; Sandstrom, Paul; Brudno, Michael; MacDonald, Kelly S.

    2011-01-01

    Cytomegalovirus (CMV) infection is the most common opportunistic infection in immunosuppressed individuals, such as transplant recipients or people living with HIV/AIDS, and congenital CMV is the leading viral cause of developmental disabilities in infants. Due to the highly species-specific nature of CMV, animal models that closely recapitulate human CMV (HCMV) are of growing importance for vaccine development. Here we present the genomic sequence of a novel nonhuman primate CMV from cynomolgus macaques (Macaca fascicularis; CyCMV). CyCMV (Ottawa strain) was isolated from the urine of a healthy, captive-bred, 4-year-old cynomolgus macaque of Philippine origin, and the viral genome was sequenced using next-generation Illumina sequencing to an average of 516-fold coverage. The CyCMV genome is 218,041 bp in length, with 49.5% G+C content and 84% protein-coding density. We have identified 262 putative open reading frames (ORFs) with an average coding length of 789 bp. The genomic organization of CyCMV is largely colinear with that of rhesus macaque CMV (RhCMV). Of the 262 CyCMV ORFs, 137 are homologous to HCMV genes, 243 are homologous to RhCMV 68.1, and 200 are homologous to RhCMV 180.92. CyCMV encodes four ORFs that are not present in RhCMV strain 68.1 or 180.92 but have homologies with HCMV (UL30, UL74A, UL126, and UL146). Similar to HCMV, CyCMV does not produce the RhCMV-specific viral homologue of cyclooxygenase-2. This newly characterized CMV may provide a novel model in which to study CMV biology and HCMV vaccine development. PMID:21994460

  9. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain.

    PubMed

    Zhang, Qicheng; Tian, Meijuan; Feng, Yi; Zhao, Kai; Xu, Jing; Liu, Ying; Shao, Yiming

    2013-01-01

    Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.

  10. Modularity and evolutionary constraints in a baculovirus gene regulatory network

    PubMed Central

    2013-01-01

    Background The structure of regulatory networks remains an open question in our understanding of complex biological systems. Interactions during complete viral life cycles present unique opportunities to understand how host-parasite network take shape and behave. The Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) is a large double-stranded DNA virus, whose genome may encode for 152 open reading frames (ORFs). Here we present the analysis of the ordered cascade of the AgMNPV gene expression. Results We observed an earlier onset of the expression than previously reported for other baculoviruses, especially for genes involved in DNA replication. Most ORFs were expressed at higher levels in a more permissive host cell line. Genes with more than one copy in the genome had distinct expression profiles, which could indicate the acquisition of new functionalities. The transcription gene regulatory network (GRN) for 149 ORFs had a modular topology comprising five communities of highly interconnected nodes that separated key genes that are functionally related on different communities, possibly maximizing redundancy and GRN robustness by compartmentalization of important functions. Core conserved functions showed expression synchronicity, distinct GRN features and significantly less genetic diversity, consistent with evolutionary constraints imposed in key elements of biological systems. This reduced genetic diversity also had a positive correlation with the importance of the gene in our estimated GRN, supporting a relationship between phylogenetic data of baculovirus genes and network features inferred from expression data. We also observed that gene arrangement in overlapping transcripts was conserved among related baculoviruses, suggesting a principle of genome organization. Conclusions Albeit with a reduced number of nodes (149), the AgMNPV GRN had a topology and key characteristics similar to those observed in complex cellular organisms, which indicates that modularity may be a general feature of biological gene regulatory networks. PMID:24006890

  11. Comparative analysis of the mitochondrial genome of the fungus Colletotrichum lindemuthianum, the causal agent of anthracnose in common beans.

    PubMed

    de Queiroz, Casley Borges; Santana, Mateus Ferreira; Pereira Vidigal, Pedro M; de Queiroz, Marisa Vieira

    2018-03-01

    Fungi of the genus Colletotrichum are economically important and are used as models in plant-pathogen interaction studies. In this study, the complete mitochondrial genomes of two Colletotrichum lindemuthianum isolates were sequenced and compared with the mitochondrial genomes of seven species of Colletotrichum. The mitochondrial genome of C. lindemuthianum is a typical circular molecule 37,446 bp (isolate 89 A 2 2-3) and 37,440 bp (isolate 83.501) in length. The difference of six nucleotides between the two genomes is the result of a deletion in the ribosomal protein S3 (rps3) gene in the 83.501 isolate. In addition, substitution of adenine for guanine within the rps3 gene in the mitochondrial genome of the 83.501 isolate was observed. Compared to the previously sequenced C. lindemuthianum mitochondrial genome, an exon no annotated in the cytochrome c oxidase I (cox1) gene and a non-conserved open reading frame (ncORF) were observed. The size of the mitochondrial genomes of the seven species of Colletotrichum was highly variable, being attributed mainly to the ncORF, ranging from one to 10 and also from introns ranging from one to 11 and which encode a total of up to nine homing endonucleases. This paper reports for the first time by means of transcriptome that then ncORFs are transcribed in Colletotrichum spp. Phylogeny data revealed that core mitochondrial genes could be used as an alternative in phylogenetic relationship studies in Colletotrichum spp. This work contributes to the genetic and biological knowledge of Colletotrichum spp., which is of great economic and scientific importance.

  12. A Silent ABC Transporter Isolated from Streptomyces rochei F20 Induces Multidrug Resistance

    PubMed Central

    Fernández-Moreno, Miguel A.; Carbó, Lázaro; Cuesta, Trinidad; Vallín, Carlos; Malpartida, Francisco

    1998-01-01

    In the search for heterologous activators for actinorhodin production in Streptomyces lividans, 3.4 kb of DNA from Streptomyces rochei F20 (a streptothricin producer) were characterized. Subcloning experiments showed that the minimal DNA fragment required for activation was 0.4 kb in size. The activation is mediated by increasing the levels of transcription of the actII-ORF4 gene. Sequencing of the minimal activating fragment did not reveal any clues about its mechanism; nevertheless, it was shown to overlap the 3′ end of two convergent genes, one of whose translated products (ORF2) strongly resembles that of other genes belonging to the ABC transporter superfamily. Computer-assisted analysis of the 3.4-kb DNA sequence showed the 3′ terminus of an open reading frame (ORF), i.e., ORFA, and three complete ORFs (ORF1, ORF2, and ORFB). Searches in the databases with their respective gene products revealed similarities for ORF1 and ORF2 with ATP-binding proteins and transmembrane proteins, respectively, which are found in members of the ABC transporter superfamily. No similarities for ORFA and ORFB were found in the databases. Insertional inactivation of ORF1 and ORF2, their transcription analysis, and their cloning in heterologous hosts suggested that these genes were not expressed under our experimental conditions; however, cloning of ORF1 and ORF2 together (but not separately) under the control of an expressing promoter induced resistance to several chemically different drugs: oleandomycin, erythromycin, spiramycin, doxorubicin, and tetracycline. Thus, this genetic system, named msr, is a new bacterial multidrug ABC transporter. PMID:9696745

  13. The reverse transcriptase encoded by LINE-1 retrotransposons in the genesis, progression and therapy of cancer

    NASA Astrophysics Data System (ADS)

    Sciamanna, Ilaria; De Luca, Chiara; Spadafora, Corrado

    2016-02-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons represent a large family of repeated genomic elements. They transpose using a reverse transcriptase (RT), which they encode as part of the ORF2p product. RT inhibition in cancer cells, either via RNA interference-dependent silencing of active LINE-1 elements, or using RT inhibitory drugs, reduces cancer cell proliferation, promotes their differentiation and antagonizes tumor progression in animal models. Indeed, the nonnucleoside RT inhibitor efavirenz has recently been tested in a phase II clinical trial with metastatic prostate cancer patients. An in-depth analysis of ORF2p in a mouse model of breast cancer showed ORF2p to be precociously expressed in precancerous lesions and highly abundant in advanced cancer stages, while being barely detectable in normal breast tissue, providing a rationale for the finding that RT-expressing tumours are therapeutically sensitive to RT inhibitors. We summarise mechanistic and gene profiling studies indicating that highly abundant LINE-1-derived RT can “sequester” RNA substrates for reverse transcription in tumor cells, entailing the formation of RNA:DNA hybrid molecules and impairing the overall production of regulatory miRNAs, with a global impact on the cell transcriptome. Based on these data, LINE-1-ORF2 encoded RT has a tumor-promoting potential that is exerted at an epigenetic level. We propose a model whereby LINE1-RT drives a previously unrecognized global regulatory process, the deregulation of which drives cell transformation and tumorigenesis and possibly implicated in cancer cell heterogeneity.

  14. Identification of Bombyx mori bidensovirus VD1-ORF4 reveals a novel protein associated with viral structural component.

    PubMed

    Li, Guohui; Hu, Zhaoyang; Guo, Xuli; Li, Guangtian; Tang, Qi; Wang, Peng; Chen, Keping; Yao, Qin

    2013-06-01

    Bombyx mori bidensovirus (BmBDV) VD1-ORF4 (open reading frame 4, ORF4) consists of 3,318 nucleotides, which codes for a predicted 1,105-amino acid protein containing a conserved DNA polymerase motif. However, its functions in viral propagation remain unknown. In the current study, the transcription of VD1-ORF4 was examined from 6 to 96 h postinfection (p.i.) by RT-PCR, 5'-RACE revealed the transcription initiation site of BmBDV ORF4 to be -16 nucleotides upstream from the start codon, and 3'-RACE revealed the transcription termination site of VD1-ORF4 to be +7 nucleotides downstream from termination codon. Three different proteins were examined in the extracts of BmBDV-infected silkworms midguts by Western blot using raised antibodies against VD1-ORF4 deduced amino acid, and a specific protein band about 53 kDa was further detected in purified virions using the same antibodies. Taken together, BmBDV VD1-ORF4 codes for three or more proteins during the viral life cycle, one of which is a 53 kDa protein and confirmed to be a component of BmBDV virion.

  15. gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes.

    PubMed

    Nakagawa, So; Takahashi, Mahoko Ueda

    2016-01-01

    In mammals, approximately 10% of genome sequences correspond to endogenous viral elements (EVEs), which are derived from ancient viral infections of germ cells. Although most EVEs have been inactivated, some open reading frames (ORFs) of EVEs obtained functions in the hosts. However, EVE ORFs usually remain unannotated in the genomes, and no databases are available for EVE ORFs. To investigate the function and evolution of EVEs in mammalian genomes, we developed EVE ORF databases for 20 genomes of 19 mammalian species. A total of 736,771 non-overlapping EVE ORFs were identified and archived in a database named gEVE (http://geve.med.u-tokai.ac.jp). The gEVE database provides nucleotide and amino acid sequences, genomic loci and functional annotations of EVE ORFs for all 20 genomes. In analyzing RNA-seq data with the gEVE database, we successfully identified the expressed EVE genes, suggesting that the gEVE database facilitates studies of the genomic analyses of various mammalian species.Database URL: http://geve.med.u-tokai.ac.jp. © The Author(s) 2016. Published by Oxford University Press.

  16. gEVE: a genome-based endogenous viral element database provides comprehensive viral protein-coding sequences in mammalian genomes

    PubMed Central

    Nakagawa, So; Takahashi, Mahoko Ueda

    2016-01-01

    In mammals, approximately 10% of genome sequences correspond to endogenous viral elements (EVEs), which are derived from ancient viral infections of germ cells. Although most EVEs have been inactivated, some open reading frames (ORFs) of EVEs obtained functions in the hosts. However, EVE ORFs usually remain unannotated in the genomes, and no databases are available for EVE ORFs. To investigate the function and evolution of EVEs in mammalian genomes, we developed EVE ORF databases for 20 genomes of 19 mammalian species. A total of 736,771 non-overlapping EVE ORFs were identified and archived in a database named gEVE (http://geve.med.u-tokai.ac.jp). The gEVE database provides nucleotide and amino acid sequences, genomic loci and functional annotations of EVE ORFs for all 20 genomes. In analyzing RNA-seq data with the gEVE database, we successfully identified the expressed EVE genes, suggesting that the gEVE database facilitates studies of the genomic analyses of various mammalian species. Database URL: http://geve.med.u-tokai.ac.jp PMID:27242033

  17. Molecular, genetic, and topological characterization of O-antigen chain length regulation in Shigella flexneri.

    PubMed

    Morona, R; van den Bosch, L; Manning, P A

    1995-02-01

    The rfb region of Shigella flexneri encodes the proteins required to synthesize the O-antigen component of its cell surface lipopolysaccharides (LPS). We have previously reported that a region adjacent to rfb was involved in regulating the length distribution of the O-antigen polysaccharide chains (D. F. Macpherson et al., Mol. Microbiol. 5:1491-1499, 1991). The gene responsible has been identified in Escherichia coli O75 (called rol [R. A. Batchelor et al., J. Bacteriol. 173:5699-5704, 1991]) and in E. coli O111 and Salmonella enterica serovar typhimurium strain LT2 (called cld [D. A. Bastin et al., Mol. Microbiol. 5:2223-2231, 1991]). Through a combination of subcloning, deletion, and transposon insertion analysis, we have identified a gene adjacent to the S. flexneri rfb region which encodes a protein of 36 kDa responsible for the length distribution of O-antigen chains in LPS as seen on silver-stained sodium dodecyl sulfate-polyacrylamide gels. DNA sequence analysis identified an open reading frame (ORF) corresponding to the rol gene. The corresponding protein was almost identical in sequence to the Rol protein of E. coli O75 and was highly homologous to the functionally identical Cld proteins of E. coli O111 and S. enterica serovar typhimurium LT2. These proteins, together with ORF o349 adjacent to rfe, had almost identical hydropathy plots which predict membrane-spanning segments at the amino- and carboxy-terminal ends and a hydrophilic central region. We isolated a number of TnphoA insertions which inactivated the rol gene, and the fusion end points were determined. The PhoA+ Rol::PhoA fusion proteins had PhoA fused within the large hydrophilic central domain of Rol. These proteins were located in the whole-membrane fraction, and extraction with Triton X-100 indicated a cytoplasmic membrane location. This finding was supported by sucrose density gradient fractionation of the whole-cell membranes and of E. coli maxicells expressing L-[35S]methionine-labelled Rol protein. Hence, we interpret these data to indicate that the Rol protein is anchored into the cytoplasmic membrane via its amino- and carboxy-terminal ends but that the majority of the protein is located in the periplasmic space. To confirm that rol is responsible for the effects on O-antigen chain length observed with the cloned rfb genes in E. coli K-12, it was mutated in S. flexneri by insertion of a kanamycin resistance cartridge. The resulting strains produced LPS with O antigens of nonmodal chain length, thereby confirming the function of the rol gene product. We propose a model for the function of Rol protein in which it acts as a type of molecular chaperone to facilitate the interaction of the O-antigen ligase (RfaL) with the O-antigen polymerase (Rfc) and polymerized, acyl carrier lipid-linked, O-antigen chains. Analysis of the DNA sequence of the region identified a number of ORFs corresponding to the well-known gnd and hisIE genes. The rol gene was located immediately downstream of two ORFs with sequence similarity to the gene encoding UDPglucose dehydrogenase (HasB) of Streptococcus pyogenes. The ORFs arise because of a deletion or frameshift mutation within the gene we have termed udg (for UDPglucose dehydrogenase).

  18. Genome sequence of two members of the chloroaromatic-degrading MT community: Pseudomonas reinekei MT1 and Achromobacter xylosoxidans MT3.

    PubMed

    Gutierrez-Urrutia, Izabook; Miossec, Matthieu J; Valenzuela, Sandro L; Meneses, Claudio; Dos Santos, Vitor A P Martins; Castro-Nallar, Eduardo; Poblete-Castro, Ignacio

    2018-06-10

    We describe the genome sequence of Pseudomonas reinekei MT1 and Achromobacter xylosoxidans MT3, the most abundant members of a bacterial community capable of degrading chloroaromatic compounds. The MT1 genome contains open reading frames encoding enzymes responsible for the catabolism of chlorosalicylate, methylsalicylate, chlorophenols, phenol, benzoate, p-coumarate, phenylalanine, and phenylacetate. On the other hand, the MT3 strain genome possesses no ORFs to metabolize chlorosalicylates; instead the bacterium is capable of metabolizing nitro-phenolic and phenolic compounds, which can be used as the only carbon and energy source by MT3. We also confirmed that MT3 displays the genetic machinery for the metabolism of chlorocathecols and chloromuconates, where the latter are toxic compounds secreted by MT1 when degrading chlorosalicylates. Altogether, this work will advance our fundamental understanding of bacterial interactions. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Isolation and characterization of a chitinase gene from entomopathogenic fungus Verticillium lecanii

    PubMed Central

    Zhu, Yanping; Pan, Jieru; Qiu, Junzhi; Guan, Xiong

    2008-01-01

    Entomopathogenic fungus Verticillium lecanii is a promising whitefly and aphid control agent. Chitinases secreted by this insect pathogen have considerable importance in the biological control of some insect pests. An endochitinase gene Vlchit1 from the fungus was cloned and overexpressed in Escherichia coli. The Vlchit1 gene not only contains an open reading frame (ORF) which encodes a protein of 423 amino acids (aa), but also is interrupted by three short introns. Vlchit1 protein showed that the chitinase Vlchit1 has a (a/b)8 TIM barrel structure. Overexpression test and Enzymatic activity assay indicated that the Vlchit1 is a functional enzyme that can hydrolyze the chitin substrate, so the Vlchit1 gene can service as a useful gene source for genetic manipulation leading to strain improvement of entomopathogenic fungi or constructing new transgenic plants with resistance to various fungal and insects pests. PMID:24031223

  20. ORFeome Phage Display.

    PubMed

    Zantow, Jonas; Moreira, Gustavo Marçal Schmidt Garcia; Dübel, Stefan; Hust, Michael

    2018-01-01

    ORFeome phage display allows the efficient functional screening of entire proteomes or even metaproteomes to identify immunogenic proteins. For this purpose, randomly fragmented, whole genomes or metagenomes are cloned into a phage-display vector allowing positive selection for open reading frames (ORF) to improve the library quality. These libraries display all possible proteins encoded by a pathogen or a microbiome on the phage surface. Consequently, immunogenic proteins can be selected from these libraries using disease-related immunoglobulins from patient serum. ORFeome phage display in particular allows the identification of immunogenic proteins that are only expressed in the host-pathogen interaction but not in cultivation, as well as the detection of very low expressed and very small immunogens and immunogenic proteins of non-cultivable organisms. The identified immunogenic proteins are potential biomarkers for the development of diagnostic assays or vaccines. These articles will give an introduction to ORFeome phage-display technology and give detailed protocols to identify immunogenic proteins by phage display.

  1. LncRNAs: key players and novel insights into diabetes mellitus

    PubMed Central

    He, Xiaoyun; Ou, Chunlin; Xiao, Yanhua; Han, Qing; Li, Hao; Zhou, Suxian

    2017-01-01

    Long non-coding RNAs (LncRNAs) are a class of endogenous RNA molecules, which have a transcribing length of over 200 nt, lack a complete functional open reading frame (ORF), and rarely encode a functional short peptide. Recent studies have revealed that disruption of LncRNAs levels correlates with several human diseases, including diabetes mellitus (DM), a complex multifactorial metabolic disorder affecting more than 400 million people worldwide. LncRNAs are emerging as pivotal regulators in various biological processes, in the progression of DM and its associated complications, involving pancreatic β-cell disorder, insulin resistance, and epigenetic regulation, etc. Further investigation into the mechanisms of action of LncRNAs in DM will be of great value in the thorough understanding of pathogenesis. However, prior to successful application of LncRNAs, further search for molecular biomarkers and drug targets to provide a new strategy for DM prevention, early diagnosis, and therapy is warranted. PMID:29050364

  2. Sequence and transcriptional analysis of the barley ctDNA region upstream of psbD-psbC encoding trnK(UUU), rps16, trnQ(UUG), psbK, psbI, and trnS(GCU).

    PubMed

    Berends Sexton, T; Jones, J T; Mullet, J E

    1990-05-01

    A 6.25 kbp barley plastid DNA region located between psbA and psbD-psbC were sequenced and RNAs produced from this DNA were analyzed. TrnK(UUU), rps16 and trnQ(UUG) were located upstream of psbA. These genes were transcribed from the same DNA strand as psbA and multiple RNAs hybridized to them. TrnK and rsp16 contained introns; a 504 amino acid open reading frame (ORF504) was located within the trnK intron. Between trnQ and psbD-psbC was a 2.24 kbp region encoding psbK, psbI and trnS(GCU). PsbK and psbI are encoded on the same DNA strand as psbD-psbC whereas trnS(GCU) is transcribed from the opposite strand. Two large RNAs accumulate in barley etioplasts which contain psbK, psbI, anti-sense trnS(GCU) and psbD-psbC sequences. Other RNAs encode psbK and psbI only, or psbK only. The divergent trnS(GCU) located upstream of psbD-psbC and a second divergent trnS(UGA) located downstream of psbD-psbC were both expressed. Furthermore, RNA complementary to psbK and psbI mRNA was detected, suggesting that transcription from divergent overlapping transcription units may modulate expression from this DNA region.

  3. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.

    ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation.In vitroreplication attenuation also extends toin vivomodels, allowing use of dORF3-5 as a live attenuated vaccine platform.more » Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. IMPORTANCEThe initial emergence and periodic outbreaks of MERS-CoV highlight a continuing threat posed by zoonotic pathogens to global public health. In these studies, mutant virus generation demonstrates the necessity of accessory ORFs in regard to MERS-CoV infection and pathogenesis. With this in mind, accessory ORF functions can be targeted for both therapeutic and vaccine treatments in response to MERS-CoV and related group 2C coronaviruses. In addition, disruption of accessory ORFs in parallel may offer a rapid response platform to attenuation of future emergent strains based on both SARS- and MERS-CoV accessory ORF mutants.« less

  4. Brucellosis vaccines based on the open reading frames from genomic island 3 of Brucella abortus.

    PubMed

    Gómez, Leonardo; Alvarez, Francisco; Betancur, Daniel; Oñate, Angel

    2018-05-17

    Brucella abortus is the etiological agent of brucellosis, a zoonotic disease affecting cattle and humans. This disease has been partially controlled in cattle by immunization with live attenuated B. abortus S19 and RB51 strains. However, use of these vaccine strains has been associated with safety issues in animals and humans. New vaccines have since emerged in the prevention of brucellosis, particularly DNA vaccines, which have shown effectiveness and a good safety profile. Their protection efficacy in mice is associated with the induction of Th1 type and cytotoxic T cell mediated immune response against structural antigens and virulence factors expressed during B. abortus infection. Some antigenic candidate for vaccine design against brucellosis (mainly DNA vaccines) have been obtained from genomic island 3 (GI-3) of B. abortus, which encodes several open reading frames (ORFs) involved in the intracellular survival and virulence of this pathogen. The immunogenicity and protection conferred by these DNA vaccines in a murine model is reviewed in this article, suggesting that some of them could be safe and effective vaccine candidates against to prevent B. abortus infection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Candida albicans orf19.3727 encodes phytase activity and is essential for human tissue damage

    PubMed Central

    Fong, Wing-Ping; Samaranayake, Lakshman Perera

    2017-01-01

    Candida albicans is a clinically important human fungal pathogen. We previously identified the presence of cell-associated phytase activity in C. albicans. Here, we reveal for the first time, that orf19.3727 contributes to phytase activity in C. albicans and ultimately to its virulence potency. Compared with its wild type counterpart, disruption of C. albicans orf19.3727 led to decreased phytase activity, reduced ability to form hyphae, attenuated in vitro adhesion, and reduced ability to penetrate human epithelium, which are the major virulence attributes of this yeast. Thus, orf19.3727 of C. albicans plays a key role in fungal pathogenesis. Further, our data uncover a putative novel strategy for anti-Candidal drug design through inhibition of phytase activity of this common pathogen. PMID:29216308

  6. What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame?

    PubMed Central

    Pöyry, Tuija A.A.; Kaminski, Ann; Jackson, Richard J.

    2004-01-01

    If the 5′-proximal AUG triplet in a mammalian mRNA is followed by a short open reading frame (sORF), a significant fraction of ribosomes resume scanning after termination of sORF translation, and reinitiate at a downstream AUG. To examine the underlying mechanism, we examined reinitiation in vitro using a series of mRNAs that differed only in the 5′-untranslated region (UTR). Efficient reinitiation was found to occur only if the eIF4F complex, or at a minimum the central one-third fragment of eIF4G, participated in the primary initiation event at the sORF initiation codon. It did not occur, however, when sORF translation was driven by the classical swine fever virus or cricket paralysis virus internal ribosome entry sites (IRESs), which do not use eIF4A, 4B, 4E, or 4G. A critical test was provided by an mRNA with an unstructured 5′-UTR, which is translated by scanning but does not absolutely need eIF4G and eIF4A: There was efficient reinitiation in a standard reticulocyte lysate, when initiation would be largely driven by eIF4F, but no reinitiation in an eIF4G-depleted lysate. These results suggest that resumption of scanning may depend on the interaction between eIF4F (or the eIF4G central domain) and the ribosome being maintained while the ribosome translates the sORF. PMID:14701882

  7. Transport genes of Chromobacterium violaceum: an overview.

    PubMed

    Grangeiro, Thalles Barbosa; Jorge, Daniel Macedo de Melo; Bezerra, Walderly Melgaço; Vasconcelos, Ana Tereza Ribeiro; Simpson, Andrew John George

    2004-03-31

    The complete genome sequence of the free-living bacterium Chromobacterium violaceum has been determined by a consortium of laboratories in Brazil. Almost 500 open reading frames (ORFs) coding for transport-related membrane proteins were identified in C. violaceum, which represents 11% of all genes found. The main class of transporter proteins is the primary active transporters (212 ORFs), followed by electrochemical potential-driven transporters (154 ORFs) and channels/pores (62 ORFs). Other classes (61 ORFs) include group translocators, transport electron carriers, accessory factors, and incompletely characterized systems. Therefore, all major categories of transport-related membrane proteins currently recognized in the Transport Protein Database (http://tcdb.ucsd.edu/tcdb) are present in C. violaceum. The complex apparatus of transporters of C. violaceum is certainly an important factor that makes this bacterium a dominant microorganism in a variety of ecosystems in tropical and subtropical regions. From a biotechnological point of view, the most important finding is the transporters of heavy metals, which could lead to the exploitation of C. violaceum for bioremediation.

  8. Redefining the genetics of Murine Gammaherpesvirus 68 via transcriptome-based annotation

    PubMed Central

    Johnson, L. Steven; Willert, Erin K.; Virgin, Herbert W.

    2010-01-01

    Summary Viral genetic studies often focus on large open reading frames (ORFs) identified during genome annotation (ORF-based annotation). Here we provide a tool and software set for defining gene expression by murine gammaherpesvirus 68 (γHV68) nucleotide-by-nucleotide across the 119,450 basepair (bp) genome. These tools allowed us to determine that viral RNA expression was significantly more complex than predicted from ORF-based annotation, including over 73,000 nucleotides of unexpected transcription within 30 expressed genomic regions (EGRs). Approximately 90% of this RNA expression was antisense to genomic regions containing known large ORFs. We verified the existence of novel transcripts in three EGRs using standard methods to validate the approach and determined which parts of the transcriptome depend on protein or viral DNA synthesis. This redefines the genetic map of γHV68, indicates that herpesviruses contain significantly more genetic complexity than predicted from ORF-based genome annotations, and provides new tools and approaches for viral genetic studies. PMID:20542255

  9. Generation of a transgenic ORFeome library in Drosophila

    PubMed Central

    Bischof, Johannes; Sheils, Emma M.; Björklund, Mikael; Basler, Konrad

    2014-01-01

    Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open reading frames (ORFs) regulated by Upstream Activation Sequences (UAS sites); the resulting Gal4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase-mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends their potential applications. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNAi lines. The duration of the complete protocol strongly depends on the number of ORFs required, but the procedure of injection and establishing balanced fly stocks can be completed within approx. 6-7 weeks for a few genes. PMID:24922270

  10. Citrus psorosis virus RNA 1 is of negative polarity and potentially encodes in its complementary strand a 24K protein of unknown function and 280K putative RNA dependent RNA polymerase.

    PubMed

    Naum-Onganía, Gabriela; Gago-Zachert, Selma; Peña, Eduardo; Grau, Oscar; Garcia, Maria Laura

    2003-10-01

    Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5'-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.

  11. Organization of genes responsible for the stereospecific conversion of hydantoins to alpha-amino acids in Arthrobacter aurescens DSM 3747.

    PubMed

    Wiese, A; Syldatk, C; Mattes, R; Altenbuchner, J

    2001-09-01

    Arthrobacter aurescens DSM 3747 hydrolyzes stereospecifically 5'-monosubstituted hydantoins to alpha-amino acids. The genes involved in hydantoin utilization (hyu) were isolated on an 8.7-kb DNA fragment, and by DNA sequence analysis eight ORFs were identified. The hyu gene cluster includes four genes: hyuP encoding a putative transport protein, the hydantoin racemase gene hyuA, the hydantoinase gene hyuH, and the carbamoylase gene hyuC. The four genes are transcribed in the same direction. Upstream of hyuP and in opposite orientation to the hyu genes, three ORFs were found showing similarities to cytochrome P450 monooxygenase (ORF1, incomplete), to membrane proteins (ORF2), and to ferredoxin (ORF3). ORF8 was found downstream of hyuC and again in opposite orientation to the hyu genes. The gene product of ORF8 displayed similarities to the LacI/GalR family of transcriptional regulators. Reverse transcriptase PCR experiments and Northern blot analysis revealed that the genes hyuPAHC are coexpressed in A. aurescens after induction with 3-N-CH3-IMH. The expression of the hyu operon was not regulated by the putative regulator ORF8 as shown by gene disruption and mobility-shift experiments.

  12. Different Type 1 Fimbrial Genes and Tropisms of Commensal and Potentially Pathogenic Actinomyces spp. with Different Salivary Acidic Proline-Rich Protein and Statherin Ligand Specificities

    PubMed Central

    Li, Tong; Khah, Massoud Kheir; Slavnic, Snjezana; Johansson, Ingegerd; Strömberg, Nicklas

    2001-01-01

    Actinomyces spp. exhibit type 1 fimbria-mediated adhesion to salivary acidic proline-rich proteins (PRPs) and statherin ligands. Actinomyces spp. with different animal and tissue origins belong to three major adhesion types as relates to ligand specificity and type 1 fimbria genes. (i) In preferential acidic-PRP binding, strains of Actinomyces naeslundii genospecies 1 and 2 from human and monkey mouths displayed at least three ligand specificities characterized by preferential acidic-PRP binding. Slot blot DNA hybridization showed seven highly conserved type 1 fimbria genes (orf1- to -6 and fimP) in genospecies 1 and 2 strains, except that orf5 and orf3 were divergent in genospecies 1. (ii) In preferential statherin binding, oral Actinomyces viscosus strains of rat and hamster origin (and strain 19246 from a human case of actinomycosis) bound statherin preferentially. DNA hybridization and characterization of the type 1 fimbria genes from strain 19246 revealed a homologous gene cluster of four open reading frames (orfA to -C and fimP). Bioinformatics suggested sortase (orfB, orf4, and part of orf5), prepilin peptidase (orfC and orf6), fimbria subunit (fimP), and usher- and autotransporter-like (orfA and orf1 to -3) functions. Those gene regions corresponding to orf3 and orf5 were divergent, those corresponding to orf2, orf1, and fimP were moderately conserved, and those corresponding to orf4 and orf6 were highly conserved. Restriction fragment length polymorphism analyses using a fimP probe separated human and monkey and rat and hamster strains into phylogenetically different groups. (iii) In statherin-specific binding, strains of A. naeslundii genospecies 1 from septic and other human infections displayed a low-avidity binding to statherin. Only the orf4 and orf6 gene regions were highly conserved. Finally, rat saliva devoid of statherin bound bacterial strains avidly irrespective of ligand specificity, and specific antisera detected either type 1, type 2, or both types of fimbria on the investigated Actinomyces strains. PMID:11705891

  13. Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.

    PubMed

    Lee, Young-Duck; Park, Jong-Hyun

    2016-02-01

    Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.

  14. Seroprevalence of porcine circovirus type 2 in swine populations in Canada and Costa Rica

    PubMed Central

    Liu, Qiang; Wang, Li; Willson, Philip; O'Connor, Brendan; Keenliside, Julia; Chirino-Trejo, Manuel; Meléndez, Ronald; Babiuk, Lorne

    2002-01-01

    Porcine circovirus (PCV) was recently divided into 2 antigenically distinct types that differ (65% amino acid identity) in the protein encoded by open reading frame 2 (ORF2). Porcine circovirus 1 is apparently non-pathogenic and, in contrast, PCV2 is associated with porcine multisystemic wasting syndrome (PMWS). Our objective was to determine the extent of exposure of normal pigs in Canada and Costa Rica to PCV2. Recombinant DNA techniques were used to produce an antigen from ORF2 of PCV2 that was suitable for the detection of antibody in swine sera. The presence of PCV2 nucleotide sequences was detected using polymerase chain reaction (PCR) techniques. Using these tests, specific antibody and nucleotide sequences were demonstrated in sera from a cohort of pigs during a PMWS outbreak. Antibody was detected in normal, healthy hogs slaughtered in Canada (82.4% of 386) and in Costa Rica (14.6% of 322). This is the first report indicating the presence of PCV2 in Latin America. More than 50% of these sera also contained PCV2 nucleotide sequence. Although these hogs were healthy when slaughtered, they were infected with PCV2 and may have previously been ill. The widespread occurrence of PCV2 in swine suggests that this virus is adapted to replication in porcine tissue. PMID:12418777

  15. Revalidation and genetic characterization of new members of Group C (Orthobunyavirus genus, Peribunyaviridae family) isolated in the Americas.

    PubMed

    Nunes, Márcio Roberto Teixeira; de Souza, William Marciel; Acrani, Gustavo Olszanski; Cardoso, Jedson Ferreira; da Silva, Sandro Patroca; Badra, Soraya Jabur; Figueiredo, Luiz Tadeu Moraes; Vasconcelos, Pedro Fernando da Costa

    2018-01-01

    Group C serogroup includes members of the Orthobunyavirus genus (family Peribunyaviridae) and comprises 15 arboviruses that can be associated with febrile illness in humans. Although previous studies described the genome characterization of Group C orthobunyavirus, there is a gap in genomic information about the other viruses in this group. Therefore, in this study, complete genomes of members of Group C serogroup were sequenced or re-sequenced and used for genetic characterization, as well as to understand their phylogenetic and evolutionary aspects. Thus, our study reported the genomes of three new members in Group C virus (Apeu strain BeAn848, Itaqui strain BeAn12797 and Nepuyo strain BeAn10709), as well as re-sequencing of original strains of five members: Caraparu (strain BeAn3994), Madrid (strain BT4075), Murucutu (strain BeAn974), Oriboca (strain BeAn17), and Marituba (strain BeAn15). These viruses presented a typical genomic organization related to members of the Orthobunyavirus genus. Interestingly, all viruses of this serogroup showed an open reading frame (ORF) that encodes the putative nonstructural NSs protein that precedes the nucleoprotein ORF, an unprecedented fact in Group C virus. Also, we confirmed the presence of natural reassortment events. This study expands the genomic information of Group C viruses, as well as revalidates the genomic organization of viruses that were previously reported.

  16. A Newly Isolated Bacteriophage, PBES 02, Infecting Cronobacter sakazakii.

    PubMed

    Lee, Hyung Ju; Kim, Wan Il; Kwon, Young Chan; Cha, Kyung Eun; Kim, Minjin; Myung, Heejoon

    2016-09-28

    A novel bacteriophage, PBES 02, infecting Cronobacter sakazakii was isolated and characterized. It has a spherical head of 90 nm in diameter and a tail of 130 nm in length, and belongs to Myoviridae as observed under a transmission electron microscope. The major virion protein appears to be 38 kilodaltons (kDa) in size. The latent period of PBES 02 is 30 min and the burst size is 250. Infectivity of the phage remained intact after exposure to temperatures ranging from 4°C to 55°C for 1 h. It was also stable after exposure to pHs ranging from 6 to 10 for 1 h. The phage effectively removed contaminating Cronobacter sakazakii from broth infant formula. PBES 02 has a double-stranded DNA genome of 149,732 bases. Its GC ratio is 50.7%. Sequence analysis revealed that PBES 02 has 299 open reading frames (ORFs) and 14 tRNA genes. Thirty-nine ORFs were annotated, including 24 related to replication and regulation functions, 10 related to structural proteins, and 5 related to DNA packaging. The genome of PBES 02 is closely related to that of two other C. sakazakii phages, CR3 and CR8. Comparison of DNA sequences of genes encoding the major capsid protein revealed a wide geographical distribution of related phages over Asia, Europe, and America.

  17. Raalin, a transcript enriched in the honey bee brain, is a remnant of genomic rearrangement in Hymenoptera.

    PubMed

    Tirosh, Y; Morpurgo, N; Cohen, M; Linial, M; Bloch, G

    2012-06-01

    We identified a predicted compact cysteine-rich sequence in the honey bee genome that we called 'Raalin'. Raalin transcripts are enriched in the brain of adult honey bee workers and drones, with only minimum expression in other tissues or in pre-adult stages. Open-reading frame (ORF) homologues of Raalin were identified in the transcriptomes of fruit flies, mosquitoes and moths. The Raalin-like gene from Drosophila melanogaster encodes for a short secreted protein that is maximally expressed in the adult brain with negligible expression in other tissues or pre-imaginal stages. Raalin-like sequences have also been found in the recently sequenced genomes of six ant species, but not in the jewel wasp Nasonia vitripennis. As in the honey bee, the Raalin-like sequences of ants do not have an ORF. A comparison of the genome region containing Raalin in the genomes of bees, ants and the wasp provides evolutionary support for an extensive genome rearrangement in this sequence. Our analyses identify a new family of ancient cysteine-rich short sequences in insects in which insertions and genome rearrangements may have disrupted this locus in the branch leading to the Hymenoptera. The regulated expression of this transcript suggests that it has a brain-specific function. © 2012 The Authors. Insect Molecular Biology © 2012 The Royal Entomological Society.

  18. Identification of a Membrane Targeting and Degradation Signal in the p42 Protein of Influenza C Virus

    PubMed Central

    Pekosz, Andrew; Lamb, Robert A.

    2000-01-01

    Two mRNA species are derived from the influenza C virus RNA segment six, (i) a colinear transcript containing a 374-amino-acid residue open reading frame (referred to herein as the seg 6 ORF) which is translated to yield the p42 protein, and (ii) a spliced mRNA which encodes the influenza C virus matrix (CM1) protein consisting of the first 242 amino acids of p42. The p42 protein undergoes proteolytic cleavage at a consensus signal peptidase cleavage site after residue 259, yielding the p31 and CM2 proteins. Translocation of p42 into the endoplasmic reticulum membrane occurs cotranslationally and requires the hydrophobic internal signal peptide (residues 239 to 259), as well as the predicted transmembrane domain of CM2 (residues 285 to 308). The p31 protein was found to undergo rapid degradation after cleavage from p42. Addition of the 26S proteasome inhibitor lactacystin to influenza C virus-infected or seg 6 ORF cDNA-transfected cells drastically reduced p31 degradation. Transfer of the 17-residue C-terminal region of p31 to heterologous proteins resulted in their rapid turnover. The hydrophobic nature, but not the specific amino acid sequence of the 17-amino-acid C terminus of p31 appears to act as the signal for targeting the protein to membranes and for degradation. PMID:11044092

  19. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis.

    PubMed

    Cho, Young Sun; Choi, Buyl Nim; Ha, En-Mi; Kim, Ki Hong; Kim, Sung Koo; Kim, Dong Soo; Nam, Yoon Kwon

    2005-01-01

    Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the beta-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose (0-10 mg/kg body weight for injection and 0-20 microM for immersion) and duration (1-10 days); zinc was a more potent inducer than copper and cadmium.

  20. The cytosolic tail of the Golgi apyrase Ynd1 mediates E4orf4-induced toxicity in Saccharomyces cerevisiae.

    PubMed

    Mittelman, Karin; Ziv, Keren; Maoz, Tsofnat; Kleinberger, Tamar

    2010-11-22

    The adenovirus E4 open reading frame 4 (E4orf4) protein contributes to regulation of the progression of virus infection. When expressed individually, E4orf4 was shown to induce non-classical transformed cell-specific apoptosis in mammalian cells. At least some of the mechanisms underlying E4orf4-induced toxicity are conserved from yeast to mammals, including the requirement for an interaction of E4orf4 with protein phosphatase 2A (PP2A). A genetic screen in yeast revealed that the Golgi apyrase Ynd1 associates with E4orf4 and contributes to E4orf4-induced toxicity, independently of Ynd1 apyrase activity. Ynd1 and PP2A were shown to contribute additively to E4orf4-induced toxicity in yeast, and to interact genetically and physically. A mammalian orthologue of Ynd1 was shown to bind E4orf4 in mammalian cells, confirming the evolutionary conservation of this interaction. Here, we use mutation analysis to identify the cytosolic tail of Ynd1 as the protein domain required for mediation of the E4orf4 toxic signal and for the interaction with E4orf4. We also show that E4orf4 associates with cellular membranes in yeast and is localized at their cytoplasmic face. However, E4orf4 is membrane-associated even in the absence of Ynd1, suggesting that additional membrane proteins may mediate E4orf4 localization. Based on our results and on a previous report describing a collection of Ynd1 protein partners, we propose that the Ynd1 cytoplasmic tail acts as a scaffold, interacting with a multi-protein complex, whose targeting by E4orf4 leads to cell death.

Top