Sample records for framework organizes science

  1. The Pursuit of a "Better" Explanation as an Organizing Framework for Science Teaching and Learning

    ERIC Educational Resources Information Center

    Papadouris, Nicos; Vokos, Stamatis; Constantinou, Constantinos P.

    2018-01-01

    This article seeks to make the case for the pursuit of a "better" explanation being a productive organizing framework for science teaching and learning. Underlying this position is the idea that this framework allows promoting, in a unified manner, facility with the scientific practice of constructing explanations, appreciation of its…

  2. Massachusetts Science and Technology Engineering Curriculum Framework

    ERIC Educational Resources Information Center

    Massachusetts Department of Education, 2006

    2006-01-01

    This 2006 "Massachusetts Science and Technology/Engineering Curriculum Framework" provides a guide for teachers and curriculum coordinators regarding specific content to be taught from PreK through high school. Following this "Organization" chapter, the "Framework" contains the following sections: (1) Philosophy and…

  3. Review of the National Research Council's Framework for K-12 Science Education

    ERIC Educational Resources Information Center

    Gross, Paul R.

    2011-01-01

    The new "Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" is a big, comprehensive volume, carefully organized and heavily documented. It is the long-awaited product of the Committee on a Conceptual Framework for New K-12 Science Education Standards. As noted, it is a weighty document (more than 300…

  4. The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. DoDEA. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Baltimore City Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  8. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Boston Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  9. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Charlotte-Mecklenburg Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  10. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Atlanta Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  11. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Atlanta Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  12. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Fresno Unified School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  13. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Cleveland Metropolitan School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  14. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Detroit Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  15. The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. New Mexico. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Colorado. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. Ohio. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. Michigan. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. South Dakota. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. New Jersey. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Wisconsin. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. Mississippi. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Maryland. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Hawaii. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. Wyoming. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Louisiana. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. Illinois. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. Connecticut. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. Oregon. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. Idaho. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. Alabama. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Arizona. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. New York. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. Delaware. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. Florida. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter,…

  4. The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. Minnesota. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. North Carolina. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. Utah. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. North Dakota. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. California. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Kentucky. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 State Snapshot Report. Pennsylvania. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  14. The Nation's Report Card Science 2009 State Snapshot Report. Oklahoma. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  15. The Nation's Report Card Science 2009 State Snapshot Report. South Carolina. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  16. The Nation's Report Card Science 2009 State Snapshot Report. Maine. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  17. The Nation's Report Card Science 2009 State Snapshot Report. Tennessee. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  18. The Nation's Report Card Science 2009 State Snapshot Report. Rhode Island. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  19. The Nation's Report Card Science 2009 State Snapshot Report. Texas. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  20. The Nation's Report Card Science 2009 State Snapshot Report. Iowa. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  1. The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  2. The Nation's Report Card Science 2009 State Snapshot Report. New Hampshire. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  3. The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  4. The Nation's Report Card Science 2009 State Snapshot Report. Washington. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  5. The Nation's Report Card Science 2009 State Snapshot Report. Arkansas. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  6. The Nation's Report Card Science 2009 State Snapshot Report. Georgia. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  7. The Nation's Report Card Science 2009 State Snapshot Report. Indiana. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  8. The Nation's Report Card Science 2009 State Snapshot Report. Missouri. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  9. The Nation's Report Card Science 2009 State Snapshot Report. West Virginia. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas Physical science includes concepts related to properties and changes of matter, forms…

  10. The Nation's Report Card Science 2009 State Snapshot Report. Montana. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  11. The Nation's Report Card Science 2009 State Snapshot Report. Nevada. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  12. The Nation's Report Card Science 2009 State Snapshot Report. Massachusetts. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the NAEP science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts related to properties and changes of matter, forms…

  13. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  14. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Austin Independent School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  15. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. School District of Philadelphia. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  16. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Detroit Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  17. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Milwaukee Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  18. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Houston Independent School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  19. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Milwaukee Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  20. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Cleveland Metropolitan School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  1. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Boston Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  2. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. School District of Philadelphia. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  3. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Charlotte-Mecklenburg Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  4. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Fresno Unified School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  5. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Baltimore City Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  6. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Chicago Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  7. A conceptual framework to advance exposure science research and complement the Adverse Outcome Pathway framework

    EPA Science Inventory

    A tremendous amount of data on environmental stressors has been accumulated in exposure science, epidemiology, and toxicology, yet most of these data reside in different silos. The Adverse Outcome Pathway (AOP) framework was developed as an organizing principle for toxicological ...

  8. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. San Diego Unified School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  9. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. San Diego Unified School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  10. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Los Angeles Unified School District. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  11. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. New York City Department of Education. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  12. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. New York City Department of Education. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  13. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Jefferson County Public Schools (Louisville, KY). Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  14. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Miami-Dade County Public Schools. Grade 4, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  15. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Jefferson County Public Schools (Louisville, KY). Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  16. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Los Angeles Unified School District. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  17. The Nation's Report Card Science 2009 Trial Urban District Snapshot Report. Miami-Dade County Public Schools. Grade 8, Public Schools

    ERIC Educational Resources Information Center

    National Center for Education Statistics, 2011

    2011-01-01

    Guided by a new framework, the National Assessment of Educational Progress (NAEP) science assessment was updated in 2009 to keep the content current with key developments in science, curriculum standards, assessments, and research. The 2009 framework organizes science content into three broad content areas. Physical science includes concepts…

  18. A Bolman and Deal Framework of Science Teachers' Beliefs on Teacher Preparation and Reform Practices for Diverse Learners

    ERIC Educational Resources Information Center

    Whitmyer, Charnita P.

    2016-01-01

    This dissertation uses Bolman and Deal's Four Framework approach to reframing an organization to examine science teachers' beliefs on teacher preparation and reform practices for diverse learners. Despite the national emphasis on "science for all students" in the National Science Education Standards (NRC, 2011), some traditionally…

  19. Advances in covalent organic frameworks in separation science.

    PubMed

    Qian, Hai-Long; Yang, Cheng-Xiong; Wang, Wen-Long; Yang, Cheng; Yan, Xiu-Ping

    2018-03-23

    Covalent organic frameworks (COFs) are a new class of multifunctional crystalline organic polymer constructed with organic monomers via robust covalent bonds. The unique properties such as convenient modification, low densities, large specific surface areas, good stability and permanent porosity make COFs great potential in separation science. This review shows the state-of-the art for the application of COFs and their composites in analytical separation science. COFs and their composites have been explored as promising sorbents for solid phase extraction, potential coatings for solid phase microextraction, and novel stationary phases for gas chromatography, high-performance liquid chromatography and capillary electrochromatography. The prospects of COFs for separation science are also presented, which can offer an outlook and reference for further study on the applications of COFs. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. NASA's NPOESS Preparatory Project Science Data Segment: A Framework for Measurement-based Earth Science Data Systems

    NASA Technical Reports Server (NTRS)

    Schwaller, Mathew R.; Schweiss, Robert J.

    2007-01-01

    The NPOESS Preparatory Project (NPP) Science Data Segment (SDS) provides a framework for the future of NASA s distributed Earth science data systems. The NPP SDS performs research and data product assessment while using a fully distributed architecture. The components of this architecture are organized around key environmental data disciplines: land, ocean, ozone, atmospheric sounding, and atmospheric composition. The SDS thus establishes a set of concepts and a working prototypes. This paper describes the framework used by the NPP Project as it enabled Measurement-Based Earth Science Data Systems for the assessment of NPP products.

  1. Translating Behavioral Science into Practice: A Framework to Determine Science Quality and Applicability for Police Organizations.

    PubMed

    McClure, Kimberley A; McGuire, Katherine L; Chapan, Denis M

    2018-05-07

    Policy on officer-involved shootings is critically reviewed and errors in applying scientific knowledge identified. Identifying and evaluating the most relevant science to a field-based problem is challenging. Law enforcement administrators with a clear understanding of valid science and application are in a better position to utilize scientific knowledge for the benefit of their organizations and officers. A recommended framework is proposed for considering the validity of science and its application. Valid science emerges via hypothesis testing, replication, extension and marked by peer review, known error rates, and general acceptance in its field of origin. Valid application of behavioral science requires an understanding of the methodology employed, measures used, and participants recruited to determine whether the science is ready for application. Fostering a science-practitioner partnership and an organizational culture that embraces quality, empirically based policy, and practices improves science-to-practice translation. © 2018 American Academy of Forensic Sciences.

  2. Uses of the Drupal CMS Collaborative Framework in the Woods Hole Scientific Community (Invited)

    NASA Astrophysics Data System (ADS)

    Maffei, A. R.; Chandler, C. L.; Work, T. T.; Shorthouse, D.; Furfey, J.; Miller, H.

    2010-12-01

    Organizations that comprise the Woods Hole scientific community (Woods Hole Oceanographic Institution, Marine Biological Laboratory, USGS Woods Hole Coastal and Marine Science Center, Woods Hole Research Center, NOAA NMFS Northeast Fisheries Science Center, SEA Education Association) have a long history of collaborative activity regarding computing, computer network and information technologies that support common, inter-disciplinary science needs. Over the past several years there has been growing interest in the use of the Drupal Content Management System (CMS) playing a variety of roles in support of research projects resident at several of these organizations. Many of these projects are part of science programs that are national and international in scope. Here we survey the current uses of Drupal within the Woods Hole scientific community and examine reasons it has been adopted. The promise of emerging semantic features in the Drupal framework is examined and projections of how pre-existing Drupal-based websites might benefit are made. Closer examination of Drupal software design exposes it as more than simply a content management system. The flexibility of its architecture; the power of its taxonomy module; the care taken in nurturing the open-source developer community that surrounds it (including organized and often well-attended code sprints); the ability to bind emerging software technologies as Drupal modules; the careful selection process used in adopting core functionality; multi-site hosting and cross-site deployment of updates and a recent trend towards development of use-case inspired Drupal distributions casts Drupal as a general-purpose application deployment framework. Recent work in the semantic arena casts Drupal as an emerging RDF framework as well. Examples of roles played by Drupal-based websites within the Woods Hole scientific community that will be discussed include: science data metadata database, organization main website, biological taxonomy development, bibliographic database, physical media data archive inventory manager, disaster-response website development framework, science project task management, science conference planning, and spreadsheet-to-database converter.

  3. The Early Years: Documenting Discoveries

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2015-01-01

    By observing an organism over time, children can identify patterns in their observations, note growth or other changes, learn about the needs of the organism, and see how the organism creates the next generation of its species; all of these skills are science and engineering practices noted in "A Framework for K-12 Science Education"…

  4. Expanding on Successful Concepts, Models, and Organization

    EPA Science Inventory

    If the goal of the AEP framework was to replace existing exposure models or databases for organizing exposure data with a concept, we would share Dr. von Göetz concerns. Instead, the outcome we promote is broader use of an organizational framework for exposure science. The f...

  5. A Framework for Intentional Cultural Change

    PubMed Central

    Biglan, Anthony; Embry, Dennis D.

    2013-01-01

    We present a framework for a pragmatic science of cultural evolution. It is now possible for behavioral science to systematically influence the further evolution of cultural practices. As this science develops, it may become possible to prevent many of the problems affecting human wellbeing. By cultural practices, we refer to everything that humans do, above and beyond instinctual or unconditioned behaviors: not only art and literature, but also agriculture, manufacturing, recreation, war making, childrearing, science—everything. We can analyze cultural practices usefully in terms of the incidence and prevalence of individual behavior and group and organization actions. An effective science of intentional cultural evolution must guide efforts to influence the incidence and prevalence of individuals’ behaviors and the actions of groups and organizations. In this paper, we briefly sketch advances in scientific understanding of the influences on individual behavior. Then we describe principles that could guide efforts to influence groups and organizations. Finally, we discuss legitimate concerns about the use and misuse of a science for intentional cultural change. PMID:24363988

  6. Increasing the Translation of Evidence Into Practice, Policy, and Public Health Improvements: A Framework for Training Health Professionals in Implementation and Dissemination Science

    PubMed Central

    Gonzales, Ralph; Handley, Margaret A.; Ackerman, Sara; O’Sullivan, Patricia S.

    2012-01-01

    The authors describe a conceptual framework for implementation and dissemination science (IDS) and propose competencies for IDS training. Their framework is designed to facilitate the application of theories and methods from the distinct domains of clinical disciplines (e.g., medicine, public health), population sciences (e.g., biostatistics, epidemiology) and translational disciplines (e.g., social and behavioral sciences, business administration education). They explore three principles that guided the development of their conceptual framework: Behavior change among organizations and/or individuals (providers, patients) is inherent in the translation process; engagement of stakeholder organizations, health care delivery systems, and individuals is imperative to achieve effective translation and sustained improvements; and IDS research is iterative, benefiting from cycles and collaborative, bidirectional relationships. The authors propose seven domains for IDS training--team science, context identification, literature identification and assessment, community engagement, intervention design and research implementation, evaluation of effect of translational activity, behavioral change communication strategies--and define twelve IDS training competencies within these domains. As a model, they describe specific courses introduced at the University of California, San Francisco, which they designed to develop these competencies. The authors encourage other training programs and institutions to use (or adapt) the design principles, conceptual framework, And proposed competencies to evaluate their current IDS training needs and to support new program development. PMID:22373617

  7. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework.

    PubMed

    Teeguarden, Justin G; Tan, Yu-Mei; Edwards, Stephen W; Leonard, Jeremy A; Anderson, Kim A; Corley, Richard A; Kile, Molly L; Simonich, Staci M; Stone, David; Tanguay, Robert L; Waters, Katrina M; Harper, Stacey L; Williams, David E

    2016-05-03

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the "systems approaches" used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.

  8. A Performance of the Heart

    ERIC Educational Resources Information Center

    Williams, Joan; McCauley, Joyce; Grumble, Melissa

    2013-01-01

    How the heart works is found in "A Framework for K-12 Science Education" and connects to Life Sciences Core and Component Ideas, From Molecules to Organisms: Structures and Processes (NRC 2012). By the end of grade 2, students should understand that all organisms have external parts, which they use in various ways to seek, find, and take…

  9. Improving Programs and Outcomes: Implementation Frameworks and Organization Change

    ERIC Educational Resources Information Center

    Bertram, Rosalyn M.; Blase, Karen A.; Fixsen, Dean L.

    2015-01-01

    This article presents recent refinements to implementation constructs and frameworks. It updates and clarifies the frequently cited study conducted by the National Implementation Research Network that introduced these frameworks for application in diverse endeavors. As such, it may serve as a historical marker in the rapidly developing science and…

  10. Toward a Science of Honors Education

    ERIC Educational Resources Information Center

    Jones, Beata M.

    2016-01-01

    In this article, Beata Jones attempts to organize the honors discipline into a comprehensive framework that can guide explorations and shed light on specific attributes of honors entities in the framework of their interrelationships. The framework offers an approach to deal with the inherent fragmentation of the field, which can lead to…

  11. Refining the aggregate exposure pathway.

    PubMed

    Tan, Yu-Mei; Leonard, Jeremy A; Edwards, Stephen; Teeguarden, Justin; Egeghy, Peter

    2018-03-01

    Advancements in measurement technologies and modeling capabilities continue to result in an abundance of exposure information, adding to that currently in existence. However, fragmentation within the exposure science community acts as an obstacle for realizing the vision set forth in the National Research Council's report on Exposure Science in the 21 st century to consider exposures from source to dose, on multiple levels of integration, and to multiple stressors. The concept of an Aggregate Exposure Pathway (AEP) was proposed as a framework for organizing and integrating diverse exposure information that exists across numerous repositories and among multiple scientific fields. A workshop held in May 2016 followed introduction of the AEP concept, allowing members of the exposure science community to provide extensive evaluation and feedback regarding the framework's structure, key components, and applications. The current work briefly introduces topics discussed at the workshop and attempts to address key challenges involved in refining this framework. The resulting evolution in the AEP framework's features allows for facilitating acquisition, integration, organization, and transparent application and communication of exposure knowledge in a manner that is independent of its ultimate use, thereby enabling reuse of such information in many applications.

  12. Formative Assessment Probes: Labeling versus Explaining

    ERIC Educational Resources Information Center

    Keeley, Page

    2013-01-01

    In the elementary grades, the butterfly is a commonly used curricular context for children to learn about growth and development of organisms as they progress through their life cycle. "A Framework for K-12 Science Education's" life science core idea LS1.B, Growth and Development of Organisms, states that by the end of grade 5,…

  13. Medical Mycology and the Chemistry Classroom: Germinating Student Interest in Organic Chemistry

    ERIC Educational Resources Information Center

    Bliss, Joseph M.; Reid, Christopher W.

    2013-01-01

    Efforts to provide active research context to introductory courses in basic sciences are likely to better engage learners and provide a framework for relevant concepts. A simple teaching and learning experiment was conducted to use concepts in organic chemistry to solve problems in the life sciences. Bryant University is a liberal arts university…

  14. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.

    Driven by major scientific advances in analytical methods, biomonitoring, and computational exposure assessment, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the computationally enabled “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) conceptmore » in the toxicological sciences. The AEP framework offers an intuitive approach to successful organization of exposure science data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathway and adverse outcome pathways, completing the source to outcome continuum and setting the stage for more efficient integration of exposure science and toxicity testing information. Together these frameworks form and inform a decision making framework with the flexibility for risk-based, hazard-based or exposure-based decisions.« less

  15. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  16. Completing the link between exposure science and toxicology for improved environmental health decision making: The aggregate exposure pathway framework

    DOE PAGES

    Teeguarden, Justin G.; Tan, Yu -Mei; Edwards, Stephen W.; ...

    2016-01-13

    Here, driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences.more » Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making.« less

  17. Understanding Global Change (UGC) as a Unifying Conceptual Framework for Teaching Ecology: Using UGC in a High School Biology Program to Integrate Earth Science and Biology, and to Demonstrate the Value of Modeling Global Systems in Promoting Conceptual Learning

    NASA Astrophysics Data System (ADS)

    Levine, J.; Bean, J. R.

    2017-12-01

    Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of key terms.

  18. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    PubMed

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  19. Three-Year High School Science Core Curriculum: A Framework.

    ERIC Educational Resources Information Center

    Bardeen, Marjorie; Freeman, Wade; Lederman, Leon; Marshall, Stephanie; Thompson, Bruce; Young, M. Jean

    It is time to start a complete re-structuring of the high school science sequence: new content, new instructional materials, new laboratories, new assessment tools, and new teacher preparation. This white paper initiates re-structuring by proposing organization, pedagogy, and content for a new sequence of science courses. The proposal respects the…

  20. Sketching Some Postmodern Alternatives: Beyond Paradigms and Research Programs as Referents for Science Education.

    ERIC Educational Resources Information Center

    Geelan, David R.

    2000-01-01

    Suggests that Kuhn's and Lakatos' schemes for the philosophy of science have been pervasive metaphors for conceptual change approaches to the learning and teaching of science, and have been used both implicitly and explicitly to provide an organizing framework and justification matrix for those perspectives. Describes four alternative perspectives…

  1. Conflict Management in Collaborative Engineering Design: Basic Research in Fundamental Theory, Modeling Framework, and Computer Support for Collaborative Engineering Activities

    DTIC Science & Technology

    2002-01-01

    behaviors are influenced by social interactions, and to how modern IT sys- tems should be designed to support these group technical activities. The...engineering disciplines to behavior, decision, psychology, organization, and the social sciences. “Conflict manage- ment activity in collaborative...Researchers instead began to search for an entirely new paradigm, starting from a theory in social science, to construct a conceptual framework to describe

  2. Critical Zone Science as a Multidisciplinary Framework for Teaching Earth Science and Sustainability

    NASA Astrophysics Data System (ADS)

    Wymore, A.; White, T. S.; Dere, A. L. D.; Hoffman, A.; Washburne, J. C.; Conklin, M. H.

    2016-12-01

    The Earth's Critical Zone (CZ) is the terrestrial portion of the continents ranging from the top of the vegetative canopy down through soil and bedrock to the lowest extent of freely circulating groundwater. The primary objective of CZ science is to characterize and understand how the reciprocal interactions among rock, soil, water, air and terrestrial organisms influence the Earth as a habitable environment. Thus it is a highly multidisciplinary science that incorporates the biological, hydrological, geological and atmospheric sciences and provides a holistic approach to teaching Earth system science. Here we share highlights from a full-semester university curriculum that introduces upper-division Environmental Science, Geology, Hydrology and Earth Science students to CZ science. We emphasize how a CZ framework is appropriate to teach concepts across the scientific disciplines, concepts of sustainability, and how CZ science serves as a useful approach to solving humanities' grand challenges.

  3. Developing Design Criteria and Scale Up Methods for Water-Stable Metal-Organic Frameworks for Adsorption Applications

    DTIC Science & Technology

    2014-09-08

    Figure 1.4: Number of publications containing the term “metal-organic frameworks” (Source: ISI Web of Science, retrieved April, 14 th , 2014) 8...1.4 Number of publications containing the term “metal-organic frameworks” (Source: ISI Web of Science, retrieved April, 14 th , 2014). 1.4...recorded with a PerkinElmer Spectrum One 10 in the range 400 – 4000 cm -1 . To record the IR spectrum, an IR beam is passed through the sample (in

  4. Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework

    PubMed Central

    Teeguarden, Justin. G.; Tan, Yu-Mei; Edwards, Stephen W.; Leonard, Jeremy A.; Anderson, Kim A.; Corley, Richard A.; Harding, Anna K; Kile, Molly L.; Simonich, Staci M; Stone, David; Tanguay, Robert L.; Waters, Katrina M.; Harper, Stacey L.; Williams, David E.

    2016-01-01

    Synopsis Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the Aggregate Exposure Pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the Adverse Outcome Pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more efficient integration of exposure assessment and hazard identification. Together, the two pathways form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. PMID:26759916

  5. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aijaz, Arshad; Karkamkar, Abhijeet J.; Choi, Young Joon

    2012-08-29

    Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework MIL-101 without deposition of Pt nanoparticles on the external surfaces of framework by using a 'double solvents' method. The resulting Pt@MIL-101 composites with different Pt loadings represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis; solid-phase ammonia borane thermal dehy-drogenation and gas-phase CO oxidation. The observed excellent catalytic performances are at-tributed to the small Pt nanoparticles within the pores of MIL-101. 'We are thankful to AIST and METI for financial support. TA & AK are thankful formore » support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is operated by Battelle.'« less

  6. Let the social sciences evolve.

    PubMed

    Smaldino, Paul E; Waring, Timothy M

    2014-08-01

    We agree that evolutionary perspectives may help us organize many divergent realms of the science of human behavior. Nevertheless, an imperative to unite all social science under an evolutionary framework risks turning off researchers who have their own theoretical perspectives that can be informed by evolutionary theory without being exclusively defined by it. We propose a few considerations for scholars interested in joining the evolutionary and social sciences.

  7. The Value of "Dialogue Events" as Sites of Learning: An Exploration of Research and Evaluation Frameworks

    ERIC Educational Resources Information Center

    Lehr, Jane L.; McCallie, Ellen; Davies, Sarah R.; Caron, Brandiff R.; Gammon, Benjamin; Duensing, Sally

    2007-01-01

    In the past five years, informal science institutions (ISIs), science communication, advocacy and citizen action groups, funding organizations, and policy-makers in the UK and the USA have become increasingly involved in efforts to promote increased public engagement with science and technology (PEST). Such engagement is described as taking place…

  8. Institutional History of an Interactive Science Center: The Founding and Development of the Exploratorium

    ERIC Educational Resources Information Center

    Ogawa, Rodney T.; Loomis, Molly; Crain, Rhiannon

    2009-01-01

    This study examines the historical conditions that fostered significant reform in science education. To understand these conditions, we employ a framework drawn from the new institutionalism in organization theory to study the founding and early development of the Exploratorium--a prominent science center that greatly impacted the field of science…

  9. Integrating human health and environmental health into the DPSIR framework: a tool to identify research opportunities for sustainable and healthy communities.

    PubMed

    Yee, Susan H; Bradley, Patricia; Fisher, William S; Perreault, Sally D; Quackenboss, James; Johnson, Eric D; Bousquin, Justin; Murphy, Patricia A

    2012-12-01

    The U.S. Environmental Protection Agency has recently realigned its research enterprise around the concept of sustainability. Scientists from across multiple disciplines have a role to play in contributing the information, methods, and tools needed to more fully understand the long-term impacts of decisions on the social and economic sustainability of communities. Success will depend on a shift in thinking to integrate, organize, and prioritize research within a systems context. We used the Driving forces-Pressures-State-Impact-Response (DPSIR) framework as a basis for integrating social, cultural, and economic aspects of environmental and human health into a single framework. To make the framework broadly applicable to sustainability research planning, we provide a hierarchical system of DPSIR keywords and guidelines for use as a communication tool. The applicability of the integrated framework was first tested on a public health issue (asthma disparities) for purposes of discussion. We then applied the framework at a science planning meeting to identify opportunities for sustainable and healthy communities research. We conclude that an integrated systems framework has many potential roles in science planning, including identifying key issues, visualizing interactions within the system, identifying research gaps, organizing information, developing computational models, and identifying indicators.

  10. Completing the Link between Exposure Science and ...

    EPA Pesticide Factsheets

    Driven by major scientific advances in analytical methods, biomonitoring, computation, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition from a field of observation to a field of prediction. Deployment of an organizational and predictive framework for exposure science analogous to the “systems approaches” used in the biological sciences is a necessary step in this evolution. Here we propose the aggregate exposure pathway (AEP) concept as the natural and complementary companion in the exposure sciences to the adverse outcome pathway (AOP) concept in the toxicological sciences. Aggregate exposure pathways offer an intuitive framework to organize exposure data within individual units of prediction common to the field, setting the stage for exposure forecasting. Looking farther ahead, we envision direct linkages between aggregate exposure pathways and adverse outcome pathways, completing the source to outcome continuum for more meaningful integration of exposure assessment and hazard identification. Together, the two frameworks form and inform a decision-making framework with the flexibility for risk-based, hazard-based, or exposure-based decision making. The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports G

  11. Studying citizen science through adaptive management and learning feedbacks as mechanisms for improving conservation.

    PubMed

    Jordan, Rebecca; Gray, Steven; Sorensen, Amanda; Newman, Greg; Mellor, David; Newman, Greg; Hmelo-Silver, Cindy; LaDeau, Shannon; Biehler, Dawn; Crall, Alycia

    2016-06-01

    Citizen science has generated a growing interest among scientists and community groups, and citizen science programs have been created specifically for conservation. We examined collaborative science, a highly interactive form of citizen science, which we developed within a theoretically informed framework. In this essay, we focused on 2 aspects of our framework: social learning and adaptive management. Social learning, in contrast to individual-based learning, stresses collaborative and generative insight making and is well-suited for adaptive management. Adaptive-management integrates feedback loops that are informed by what is learned and is guided by iterative decision making. Participants engaged in citizen science are able to add to what they are learning through primary data collection, which can result in the real-time information that is often necessary for conservation. Our work is particularly timely because research publications consistently report a lack of established frameworks and evaluation plans to address the extent of conservation outcomes in citizen science. To illustrate how our framework supports conservation through citizen science, we examined how 2 programs enacted our collaborative science framework. Further, we inspected preliminary conservation outcomes of our case-study programs. These programs, despite their recent implementation, are demonstrating promise with regard to positive conservation outcomes. To date, they are independently earning funds to support research, earning buy-in from local partners to engage in experimentation, and, in the absence of leading scientists, are collecting data to test ideas. We argue that this success is due to citizen scientists being organized around local issues and engaging in iterative, collaborative, and adaptive learning. © 2016 Society for Conservation Biology.

  12. A conceptual framework to support exposure science research ...

    EPA Pesticide Factsheets

    While knowledge of exposure is fundamental to assessing and mitigating risks, exposure information has been costly and difficult to generate. Driven by major scientific advances in analytical methods, biomonitoring, computational tools, and a newly articulated vision for a greater impact in public health, the field of exposure science is undergoing a rapid transition that allows it to be more agile, predictive, and data- and knowledge-driven. A necessary element of this evolved paradigm is an organizational and predictive framework for exposure science that furthers the application of systems-based approaches. To enable such systems-based approaches, we proposed the Aggregate Exposure Pathway (AEP) concept to organize data and information emerging from an invigorated and expanding field of exposure science. The AEP framework is a layered structure that describes the elements of an exposure pathway, as well as the relationship between those elements. The basic building blocks of an AEP adopt the naming conventions used for Adverse Outcome Pathways (AOPs): Key Events (KEs) to describe the measurable, obligate steps through the AEP; and Key Event Relationships (KERs) describe the linkages between KEs. Importantly, the AEP offers an intuitive approach to organize exposure information from sources to internal site of action, setting the stage for predicting stressor concentrations at an internal target site. These predicted concentrations can help inform the r

  13. Integrated Interdisciplinary Science of the Critical Zone as a Foundational Curriculum for Addressing Issues of Environmental Sustainability

    ERIC Educational Resources Information Center

    White, Timothy; Wymore, Adam; Dere, Ashlee; Hoffman, Adam; Washburne, James; Conklin, Martha

    2017-01-01

    Earth's critical zone (CZ) is the uppermost layer of Earth's continents, which supports ecosystems and humans alike. CZ science aims to understand how interactions among rock, soil, water, air, and terrestrial organisms influence Earth as a habitable system. Thus, CZ science provides the framework for a holistic-systems approach to teaching Earth…

  14. Implementation science in low-resource settings: using the interactive systems framework to improve hand hygiene in a tertiary hospital in Ghana.

    PubMed

    Kallam, Brianne; Pettitt-Schieber, Christie; Owen, Medge; Agyare Asante, Rebecca; Darko, Elizabeth; Ramaswamy, Rohit

    2018-05-19

    Low-resource clinical settings often face obstacles that challenge the implementation of recommended evidence-based practices (EBPs). Implementation science approaches are useful in identifying barriers and developing strategies to address them. Ridge Regional Hospital (RRH), a tertiary referral hospital in Accra, Ghana experienced a spike in rates of neonatal sepsis and launched a quality improvement (QI) initiative that identified poor adherence to hand hygiene in the neonatal intensive care unit as a potential source of infections. A multi-modal change package of World Health Organization-recommended solutions was created to address this issue. To ensure that the outputs of the QI effort were adopted within the organization, leaders at RRH and Kybele, Inc. used an implementation science framework called the 'Interactive Systems Framework for Dissemination and Implementation' (ISF) to create a package of locally acceptable implementation strategies. The ISF has never been used before to guide implementation in low-resource settings. Hand hygiene compliance rose from 67% to 92% overall, including a 36% increase during the night shifts-a group of healthcare workers with typically very low levels of compliance. The drastic improvement in adherence to hand hygiene suggests the potential value of the joint use of QI and implementation science to promote the creation and application of contextually appropriate EBPs in low-resource settings. Our results also suggest that using an implementation framework such as the ISF could rapidly increase the uptake of other evidence-based interventions in low-resource settings.

  15. A systems-based approach to transform climate education in the U.S. Affiliated Pacific islands (USAPI)

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.

    2011-12-01

    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. English is the common language of instruction in all jurisdictions, but is not the language spoken at home for most students outside of Hawai'i. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts considerably sooner than other regions. Funded by the National Science Foundation, the Pacific Islands Climate Education Partnership (PCEP) aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance their and our understanding of climate change, and to adapt to its impacts. PCEP has developed a regional network, tools, and an emerging plan to systemically transform K-14 climate education in the USAPI. More than 50 organizations and networks have joined the partnership. These partners include all of the region's state departments of education, major universities, and community colleges, and a wide range of local partners, particularly conservation organizations. One of PCEP's major tools is general, multidisciplinary K-14 climate science education framework that organizes major underlying concepts and skills within appropriate grade-span progressions. This framework is based largely upon prior national science and climate literacy work and the National Research Council's recent document "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas." The PCEP climate education framework has an Earth System Science foundation that is directly applicable in all locations, and it also has orientations that are particularly relevant to the USAPI context. PCEP is working with the Micronesia Conservation Trust and The Nature Conservancy to combine the climate education work with local community climate adaptation projects. This work combines the PCEP climate education framework with the Micronesia Challenge community training plans and materials, particularly the Pacific-oriented community booklet "Adapting to a Changing Climate." Combining pre-college education with community climate adaptation has the potential to yield major synergistic benefits for both efforts. Another key PCEP tool is an interactive web-based environment (http://pcep.dsp.wested.org) that interlinks the region's locations, organizations and people with information about climate science and climate impacts. This system enables the region's diverse stakeholders to access and contribute to the same information pool, and to collectively develop, and disseminate our work. This web-based environment can be configured for other climate education projects or regions.

  16. Information-Theoretic Approach May Shed a Light to a Better Understanding and Sustaining the Integrity of Ecological-Societal Systems under Changing Climate

    NASA Astrophysics Data System (ADS)

    Kim, J.

    2016-12-01

    Considering high levels of uncertainty, epistemological conflicts over facts and values, and a sense of urgency, normal paradigm-driven science will be insufficient to mobilize people and nation toward sustainability. The conceptual framework to bridge the societal system dynamics with that of natural ecosystems in which humanity operates remains deficient. The key to understanding their coevolution is to understand `self-organization.' Information-theoretic approach may shed a light to provide a potential framework which enables not only to bridge human and nature but also to generate useful knowledge for understanding and sustaining the integrity of ecological-societal systems. How can information theory help understand the interface between ecological systems and social systems? How to delineate self-organizing processes and ensure them to fulfil sustainability? How to evaluate the flow of information from data through models to decision-makers? These are the core questions posed by sustainability science in which visioneering (i.e., the engineering of vision) is an essential framework. Yet, visioneering has neither quantitative measure nor information theoretic framework to work with and teach. This presentation is an attempt to accommodate the framework of self-organizing hierarchical open systems with visioneering into a common information-theoretic framework. A case study is presented with the UN/FAO's communal vision of climate-smart agriculture (CSA) which pursues a trilemma of efficiency, mitigation, and resilience. Challenges of delineating and facilitating self-organizing systems are discussed using transdisciplinary toold such as complex systems thinking, dynamic process network analysis and multi-agent systems modeling. Acknowledgments: This study was supported by the Korea Meteorological Administration Research and Development Program under Grant KMA-2012-0001-A (WISE project).

  17. A Human Dimensions Framework: Guidelines for Conducting Social Assessments

    Treesearch

    Alan D. Bright; H. Ken Cordell; Anne P. Hoover; Michael A Tarrant

    2003-01-01

    This paper provides a framework and guidelines for identifying and organizing human dimension information for use in forest planning. It synthesizes concepts from a variety of social science disciplines and connects them with measurable indicators for use in analysis and reporting. Suggestions of analytical approaches and sources of data for employment of the...

  18. Management filters and species traits: Weed community assembly in long-term organic and conventional systems

    USDA-ARS?s Scientific Manuscript database

    Community assembly theory provides a useful framework to assess the response of weed communities to agricultural management systems and to improve the predictive power of weed science. Under this framework, weed community assembly is constrained by abiotic and biotic "filters" that act on species tr...

  19. Methods and Strategies: What's the Story?

    ERIC Educational Resources Information Center

    Lipsitz, Kelsey; Cisterna, Dante; Hanuscin, Deborah

    2017-01-01

    This column provides ideas and techniques to enhance your science teaching. This month's issue discusses using the 5E learning cycle to create coherent storylines. The 5E learning cycle provides an important framework to help teachers organize activities. To realize the full potential of the 5E framework for student learning, lessons must also…

  20. Research Update: Mechanical properties of metal-organic frameworks - Influence of structure and chemical bonding

    NASA Astrophysics Data System (ADS)

    Li, Wei; Henke, Sebastian; Cheetham, Anthony K.

    2014-12-01

    Metal-organic frameworks (MOFs), a young family of functional materials, have been attracting considerable attention from the chemistry, materials science, and physics communities. In the light of their potential applications in industry and technology, the fundamental mechanical properties of MOFs, which are of critical importance for manufacturing, processing, and performance, need to be addressed and understood. It has been widely accepted that the framework topology, which describes the overall connectivity pattern of the MOF building units, is of vital importance for the mechanical properties. However, recent advances in the area of MOF mechanics reveal that chemistry plays a major role as well. From the viewpoint of materials science, a deep understanding of the influence of chemical effects on MOF mechanics is not only highly desirable for the development of novel functional materials with targeted mechanical response, but also for a better understanding of important properties such as structural flexibility and framework breathing. The present work discusses the intrinsic connection between chemical effects and the mechanical behavior of MOFs through a number of prototypical examples.

  1. Expanding on Successful Concepts, Models, and Organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teeguarden, Justin G.; Tan, Yu-Mei; Edwards, Stephen W.

    In her letter to the editor1 regarding our recent Feature Article “Completing the Link between Exposure Science and Toxicology for Improved Environmental Health Decision Making: The Aggregate Exposure Pathway Framework” 2, Dr. von Göetz expressed several concerns about terminology, and the perception that we propose the replacement of successful approaches and models for exposure assessment with a concept. We are glad to have the opportunity to address these issues here. If the goal of the AEP framework was to replace existing exposure models or databases for organizing exposure data with a concept, we would share Dr. von Göetz concerns. Instead,more » the outcome we promote is broader use of an organizational framework for exposure science. The framework would support improved generation, organization, and interpretation of data as well as modeling and prediction, not replacement of models. The field of toxicology has seen the benefits of wide use of one or more organizational frameworks (e.g., mode and mechanism of action, adverse outcome pathway). These frameworks influence how experiments are designed, data are collected, curated, stored and interpreted and ultimately how data are used in risk assessment. Exposure science is poised to similarly benefit from broader use of a parallel organizational framework, which Dr. von Göetz correctly points out, is currently used in the exposure modeling community. In our view, the concepts used so effectively in the exposure modeling community, expanded upon in the AEP framework, could see wider adoption by the field as a whole. The value of such a framework was recognized by the National Academy of Sciences.3 Replacement of models, databases, or any application with the AEP framework was not proposed in our article. The positive role broader more consistent use of such a framework might have in enabling and advancing “general activities such as data acquisition, organization…,” and exposure modeling was discussed in some detail. Like Dr. von Göetz, we recognized the challenges associated with acceptance of the terminology, definitions, and structure proposed in the paper. To address these challenges, an expert workshop was held in May, 2016 to consider and revise the “basic elements” outlined in the paper. The attendees produced revisions to the terminology (e.g., key events) that align with terminology currently in use in the field. We were also careful in our paper to acknowledge a point raised by Dr. von Göetz, that the term AEP implies aggregation, providing these clarifications: “The simplest form of an AEP represents a single source and a single pathway and may more commonly be referred to as an exposure pathway,”; and “An aggregate exposure pathway may represent multiple sources and transfer through single pathways to the TSE, single sources and transfer through multiple pathways to the target site exposure (TSE), or any combination of these.” These clarifications address the concern that the AEP term is not accurate or logical, and further expands upon the word “aggregate” in a broader context. Our use of AEP is consistent with the definition for “aggregate exposure”, which refers to the combined exposures to a single chemical across multiple routes and pathways.3 The AEP framework embraces existing methods for collection, prediction, organization, and interpretation of human and ecological exposure data cited by Dr. von Göetz. We remain hopeful that wider recognition and use of an organizing concept for exposure information across the exposure science, toxicology and epidemiology communities advances the development of the kind of infrastructure and models Dr. von Göetz discusses. This outcome would be a step forward, rather than a step backward.« less

  2. The science of culture and negotiation.

    PubMed

    Gunia, Brian C; Brett, Jeanne M; Gelfand, Michele J

    2016-04-01

    Recent negotiation research has produced a groundswell of insights about the effects of culture on negotiation. Yet, few frameworks exist to organize the findings. This review integrates recent research using a two-dimensional framework: The first dimension organizes the research into that which has taken: (1) a comparative intracultural approach, versus (2) an intercultural approach. The second dimension organizes the research by its emphasis on: (1) inputs into negotiation, (2) processes of negotiating, and (3) outcomes of negotiation. This framework helps to organize extant research and produces novel insights about the connections between disparate research streams, revealing both commonalities and culture-specificities in negotiation strategy and outcomes and suggesting that intercultural negotiations are difficult but not insurmountable. We conclude by discussing several areas in which more research on culture and negotiation is urgently needed in today's globalizing world. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks

    DOE PAGES

    Barkholtz, Heather M.; Liu, Di -Jia

    2016-11-14

    Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.

  4. Natural Science Majors and Liberal Education: The Impact of a Living-Learning Community

    ERIC Educational Resources Information Center

    Hutt, Chris D.

    2012-01-01

    The purpose of this study was to explore the articulated experiences of natural science majors who were participating in a liberal arts living-learning community. Using the American Association of College and University's (2002) report, "Greater Expectations" as an organizing framework, this study sought to determine how--if at…

  5. Proposal for a Spatial Organization Model in Soil Science (The Example of the European Communities Soil Map).

    ERIC Educational Resources Information Center

    King, D.; And Others

    1994-01-01

    Discusses the computational problems of automating paper-based spatial information. A new relational structure for soil science information based on the main conceptual concepts used during conventional cartographic work is proposed. This model is a computerized framework for coherent description of the geographical variability of soils, combined…

  6. Science of consciousness and the hard problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1996-05-22

    Quantum theory is essentially a rationally coherent theory of the interaction of mind and matter, and it allows our conscious thoughts to play a causally efficacious and necessary role in brain dynamics. It therefore provides a natural basis, created by scientists, for the science of consciousness. As an illustration it is explained how the interaction of brain and consciousness can speed up brain processing, and thereby enhance the survival prospects of conscious organisms, as compared to similar organisms that lack consciousness. As a second illustration it is explained how, within the quantum framework, the consciously experienced {open_quotes}I{close_quotes} directs the actionsmore » of a human being. It is concluded that contemporary science already has an adequate framework for incorporating causally efficacious experimential events into the physical universe in a manner that: (1) puts the neural correlates of consciousness into the theory in a well defined way, (2) explains in principle how the effects of consciousness, per se, can enhance the survival prospects of organisms that possess it, (3) allows this survival effect to feed into phylogenetic development, and (4) explains how the consciously experienced {open_quotes}I{close_quotes} can direct human behaviour.« less

  7. On the Societal Nature of Praxis and Organic Research

    ERIC Educational Resources Information Center

    Roth, Wolff-Michael

    2016-01-01

    In its focus on social practices, the feature article presents an interesting theoretical framework for rethinking not only where and how knowing and learning in science education exhibit themselves but also we might change our own research practice. The framework is not new to me, as I have advocated it explicitly for more than 15 years. But over…

  8. Experts workshop on the ecotoxicological risk assessment of ionizable organic chemicals: Towards a science-based framework for chemical assessment

    EPA Science Inventory

    There is a growing need to develop analytical methods and tools that can be applied to assess the environmental risks associated with charged, polar, and ionisable organic chemicals, such as those used as active pharmaceutical ingredients, biocides, and surface active chemicals. ...

  9. Molecular mechanism of hydrocarbons binding to the metal–organic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiuquan; Wick, Collin D.; Thallapally, Praveen K.

    The adsorption and diffusivity of methane, ethane, n-butane, n-hexane and cyclohexane in a metal organic framework (MOF) with the organic linker tetrakis[4-(carboxyphenyl)oxamethyl]methane, the metal salt, Zn2+, and organic pillar, 4,4’-bipyridin was studied using molecular dynamics simulations. For the n-alkanes, the longer the chain, the lower the free energy of adsorption, which was attributed to a greater number of contacts between the alkane and MOF. Cyclohexane had a slightly higher adsorption free energy than n-hexane. Furthermore, for cyclo- and n-hexane, there were no significant differences in adsorption free energies between systems with low to moderate loadings. The diffusivity of the n-alkanesmore » was found to strongly depend on chain length with slower diffusion for longer chains. Cyclohexane had no effective diffusion, suggesting that the selectivity the MOF has towards n-hexane over cyclohexane is the result of kinetics instead of energetics. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  10. Nanoporous metal organic frameworks as hybrid polymer-metal composites for drug delivery and biomedical applications.

    PubMed

    Beg, Sarwar; Rahman, Mahfoozur; Jain, Atul; Saini, Sumant; Midoux, Patrick; Pichon, Chantal; Ahmad, Farhan Jalees; Akhter, Sohail

    2017-04-01

    Metal organic frameworks (MOFs), porous hybrid polymer-metal composites at the nanoscale, are recent innovations in the field of chemistry; they are novel polymeric materials with diverse biomedical applications. MOFs are nanoporous materials, consisting of metal ions linked together by organic bridging ligands. The unique physical and chemical characteristics of MOFs have attracted wider attention from the scientific community, exploring their utility in the field of material science, biology, nanotechnology and drug delivery. The practical feasibility of MOFs is possible owing to their abilities for biodegradability, excellent porosity, high loading capacity, ease of surface modification, among others. In this regard, this review provides an account of various types of MOFs, their physiochemical characteristics and use in diverse disciplines of biomedical sciences - with special emphasis on drug delivery and theranostics. Moreover, this review also highlights the stability and toxicity issues of MOFs, along with their market potential for biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. #IHeartChemistryNCSU: Free Choice, Content, and Elements of Science Communication as the Framework for an Introductory Organic Chemistry Project

    ERIC Educational Resources Information Center

    Frohock, Bram H.; Winterrowd, Samantha T.; Gallardo-Williams, Maria T.

    2018-01-01

    Students in a large introductory organic chemistry class were given the freedom to choose an organic compound of interest and were challenged to develop an educational object (physical or digital) designed to be shared with the broader public via social media. Analysis of the project results shows that most students appreciated the open nature of…

  12. Development of Science and Technology Literacy Materials at the Basic Level: Exemplar Materials. Revised during the Regional Workshop Organized within the Framework of Project 2000+: Scientific and Technological Literacy for All (Philippines, November 4-8, 1997).

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific and Cultural Organization, Bangkok (Thailand). Principal Regional Office for Asia and the Pacific.

    This collection of science activities is designed to supplement traditional science education by encompassing an issues-based approach to helping students develop scientific and technological literacy. Each unit can be used within an existing teaching sequence and includes an introduction specifying scientific issues and educational objectives, a…

  13. Supporting open collaboration in science through explicit and linked semantic description of processes

    USGS Publications Warehouse

    Gil, Yolanda; Michel, Felix; Ratnakar, Varun; Read, Jordan S.; Hauder, Matheus; Duffy, Christopher; Hanson, Paul C.; Dugan, Hilary

    2015-01-01

    The Web was originally developed to support collaboration in science. Although scientists benefit from many forms of collaboration on the Web (e.g., blogs, wikis, forums, code sharing, etc.), most collaborative projects are coordinated over email, phone calls, and in-person meetings. Our goal is to develop a collaborative infrastructure for scientists to work on complex science questions that require multi-disciplinary contributions to gather and analyze data, that cannot occur without significant coordination to synthesize findings, and that grow organically to accommodate new contributors as needed as the work evolves over time. Our approach is to develop an organic data science framework based on a task-centered organization of the collaboration, includes principles from social sciences for successful on-line communities, and exposes an open science process. Our approach is implemented as an extension of a semantic wiki platform, and captures formal representations of task decomposition structures, relations between tasks and users, and other properties of tasks, data, and other relevant science objects. All these entities are captured through the semantic wiki user interface, represented as semantic web objects, and exported as linked data.

  14. When Science is Not Enough: A Framework Towards More Customer-Focused Drug Development.

    PubMed

    Oraiopoulos, Nektarios; Dunlop, William C N

    2017-07-01

    The purpose of this study was to identify the key barriers to a customer-focused drug development process and develop a comprehensive framework to overcome them. The paper draws on existing literature, both academic and practitioner, across a range of disciplines (innovation management, marketing, organizational behavior, behavioral economics, health economics, industry reports). On the basis of this extensive review, a conceptual framework is developed that offers concrete suggestions on how organizations can overcome the barriers and enable a more customer-focused development process. The barriers to collaboration are organized into three distinct categories (economic, behavioral, organizational), and within each category, a one-to-one mapping between barriers and solutions is developed. The framework is specifically designed with the objective of offering actionable and practical advice to executives who face these challenges in their organizations. The paper provides a unique theoretical contribution by synthesizing findings from several academic disciplines with concrete examples from the pharmaceutical industry. Mundipharma International Limited.

  15. Biological Principles and Threshold Concepts for Understanding Natural Selection: Implications for Developing Visualizations as a Pedagogic Tool

    ERIC Educational Resources Information Center

    Tibell, Lena A. E.; Harms, Ute

    2017-01-01

    Modern evolutionary theory is both a central theory and an integrative framework of the life sciences. This is reflected in the common references to evolution in modern science education curricula and contexts. In fact, evolution is a core idea that is supposed to support biology learning by facilitating the organization of relevant knowledge. In…

  16. Complementary competencies: public health and health sciences librarianship

    PubMed Central

    Banks, Marcus A.; Cogdill, Keith W.; Selden, Catherine R.; Cahn, Marjorie A.

    2005-01-01

    Objectives: The authors sought to identify opportunities for partnership between the communities of public health workers and health sciences librarians. Methods: The authors review competencies in public health and health sciences librarianship. They highlight previously identified public health informatics competencies and the Medical Library Association's essential areas of knowledge. Based on points of correspondence between the two domains, the authors identify specific opportunities for partnership. Results: The points of correspondence between public health and health sciences librarianship are reflected in several past projects involving both communities. These previous collaborations and the services provided by health sciences librarians at many public health organizations suggest that some health sciences librarians may be considered full members of the public health workforce. Opportunities remain for productive collaboration between public health workers and health sciences librarians. Conclusions: Drawing on historical and contemporary experience, this paper presents an initial framework for forming collaborations between health sciences librarians and members of the public health workforce. This framework may stimulate thinking about how to form additional partnerships between members of these two communities. PMID:16059423

  17. Supporting Instruction By Defining Conceptual Relevance Of Materials: Alignment Of Resources To An Earth Systems Framework

    NASA Astrophysics Data System (ADS)

    Menicucci, A. J.; Bean, J. R.

    2017-12-01

    Environmental, geological, and climatological sciences are important facets of physical science education. However, it is often difficult for educators to acquire the necessary resources to facilitate content explanations, and demonstration of the conceptual links between individual lessons. The Understanding Global Change (UGC) Project at the University of California Museum of Paleontology (UCMP) at UC Berkeley is aligning new and existing Earth systems educational resources that are high-quality, interactive and inquiry based. Learning resources are organized by the UGC framework topics (Causes of Change, How the Earth System Works, and Measurable Changes), and focus on exploring topic relationships. Resources are currently aligned with both the UGC framework and the Next Generation Science Standards (NGSS), facilitating broad utility among K-16 educators. The overarching goal of the UGC Project is to provide the necessary resources that guide the construction of coherent, interdisciplinary instructional units. These units can be reinforced through system models, providing visual learning scaffolds for assessments of student content knowledge. Utilizing the central framework of UGC alleviates the long-standing problem of creating coherent instructional units from multiple learning resources, each organized and categorized independently across multiple platforms that may not provide explicit connections among Earth science subjects UGC topic cross listing of learning modules establishes conceptual links. Each resource is linked across several Earth system components, facilitating exploration of relationships and feedbacks between processes. Cross listed topics are therefore useful for development of broad picture learning goals via targeted instructional units. We also anticipate cultivating summaries of the explicit conceptual links explored in each resource from both current teachers and content specialists. Insructional units currated and aligned under the UGC framework therefore have the potential for users to develop and impliment inderdisciplinary lesson plans, including multi-segmented units designed to function as independent educational segments, that combine to provide broader subject exploration and deeper understanding of Earth system relationships.

  18. KSC-08pd0149

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- At the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair show their pleasure after signing a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0148

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- At a ceremony at the NASA's Kennedy Space Center Visitor Complex, NASA Administrator Michael Griffin (left) and Indian Space Research Organization Chairman G. Madhavan Nair sign a framework agreement establishing the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  20. Anticipatory Governance: Bioethical Expertise for Human/Animal Chimeras

    PubMed Central

    Harvey, Alison; Salter, Brian

    2012-01-01

    The governance demands generated by the use of human/animal chimeras in scientific research offer both a challenge and an opportunity for the development of new forms of anticipatory governance through the novel application of bioethical expertise. Anticipatory governance can be seen to have three stages of development whereby bioethical experts move from a reactive to a proactive stance at the edge of what is scientifically possible. In the process, the ethicists move upstream in their engagement with the science of human-to-animal chimeras. To what extent is the anticipatory coestablishment of the principles and operational rules of governance at this early stage in the development of the human-to-animal research field likely to result in a framework for bioethical decision making that is in support of science? The process of anticipatory governance is characterised by the entwining of the scientific and the philosophical so that judgements against science are also found to be philosophically unfounded, and conversely, those activities that are permissible are deemed so on both scientific and ethical grounds. Through what is presented as an organic process, the emerging bioethical framework for human-to-animal chimera research becomes a legitimating framework within which ‘good’ science can safely progress. Science gives bioethical expertise access to new governance territory; bioethical expertise gives science access to political acceptability. PMID:23576848

  1. A framework for integrating and synthesizing data to ask and answer science questions in the Critical Zone

    NASA Astrophysics Data System (ADS)

    Bristol, S.

    2014-12-01

    In 2007, the U.S. Geological Survey (USGS) published a science strategy that resulted in an organizational pivot toward more focused attention on societal challenges and our ability to predict changes and study mitigation and resilience. The strategy described a number of global dynamics including climate and resource-related critical zone (CZ) impacts and emphasized the need for data integration as a significant underpinning for all of the science questions raised in the report. Organizational changes that came about as a result of the science strategy sparked a new entity called Core Science Systems, which has set as its mission the creation of a Modular Science Framework designed to seamlessly organize and integrate all data, information, and knowledge from the CZ. A part of this grand challenge is directly within the purview of the USGS mission and our science programs, while the data integration framework itself is part of a much larger global scientific cyberinfrastructure. This talk describes current research and development in pursuit of the USGS Modular Science Framework and how the work is being conducted in the context of the broader earth system sciences. Communities of practice under the banner of the Earth Science Information Partners are fostering working relationships vital to cohesion and interoperability between contributing institutions. The National Science Foundation's EarthCube and Cyberinfrastructure for the 21st Century initiatives are providing some of the necessary building blocks through foundational informatics and data science research. The U.S. Group on Earth Observations is providing leadership and coordination across agencies who operate earth observation systems. The White House Big Data Initiative is providing long term research and development vision to set the stage for sustainable, long term infrastructure across government data agencies. The end result will be a major building block of CZ science.

  2. Cutting through the noise: an evaluative framework for research communication

    NASA Astrophysics Data System (ADS)

    Strickert, G. E.; Bradford, L. E.; Shantz, S.; Steelman, T.; Orozs, C.; Rose, I.

    2017-12-01

    With an ever-increasing amount of research, there is a parallel challenge to mobilize the research for decision making, policy development and management actions. The tradition of "loading dock" model of science to policy is under renovation, replaced by more engaging methods of research communication. Research communication falls on a continuum from passive methods (e.g. reports, social media, infographics) to more active methods (e.g. forum theatre, decision labs, and stakeholder planning, and mix media installations that blend, art, science and traditional knowledge). Drawing on a five-year water science research program in the Saskatchewan River Basin, an evaluation framework is presented that draws on a wide communities of knowledge users including: First Nation and Metis, Community Organizers, Farmers, Consultants, Researchers, and Civil Servants. A mixed method framework consisting of quantitative surveys, qualitative interviews, focus groups, and q-sorts demonstrates that participants prefer more active means of research communication to draw them into the research, but they also value more traditional and passive methods to provide more in-depth information when needed.

  3. The Congress for Cultural Freedom, "Minerva," and the Quest for Instituting "Science Studies" in the Age of Cold War

    ERIC Educational Resources Information Center

    Aronova, Elena

    2012-01-01

    The Congress for Cultural Freedom is remembered as a paramount example of the "cultural cold wars." In this paper, I discuss the ways in which this powerful transnational organization sought to promote "science studies" as a distinct--and politically relevant--area of expertise, and part of the CCF broader agenda to offer a renewed framework for…

  4. Engineering chiral porous metal-organic frameworks for enantioselective adsorption and separation

    NASA Astrophysics Data System (ADS)

    Peng, Yongwu; Gong, Tengfei; Zhang, Kang; Lin, Xiaochao; Liu, Yan; Jiang, Jianwen; Cui, Yong

    2014-07-01

    The separation of racemic molecules is of substantial significance not only for basic science but also for technical applications, such as fine chemicals and drug development. Here we report two isostructural chiral metal-organic frameworks decorated with chiral dihydroxy or -methoxy auxiliares from enantiopure tetracarboxylate-bridging ligands of 1,1‧-biphenol and a manganese carboxylate chain. The framework bearing dihydroxy groups functions as a solid-state host capable of adsorbing and separating mixtures of a range of chiral aromatic and aliphatic amines, with high enantioselectivity. The host material can be readily recycled and reused without any apparent loss of performance. The utility of the present adsorption separation is demonstrated in the large-scale resolution of racemic 1-phenylethylamine. Control experiments and molecular simulations suggest that the chiral recognition and separation are attributed to the different orientations and specific binding energies of the enantiomers in the microenvironment of the framework.

  5. A framework for managing core facilities within the research enterprise.

    PubMed

    Haley, Rand

    2009-09-01

    Core facilities represent increasingly important operational and strategic components of institutions' research enterprises, especially in biomolecular science and engineering disciplines. With this realization, many research institutions are placing more attention on effectively managing core facilities within the research enterprise. A framework is presented for organizing the questions, challenges, and opportunities facing core facilities and the academic units and institutions in which they operate. This framework is intended to assist in guiding core facility management discussions in the context of a portfolio of facilities and within the overall institutional research enterprise.

  6. Enhancing teen pregnancy prevention in local communities: capacity building using the interactive systems framework.

    PubMed

    Duffy, Jennifer L; Prince, Mary Severson; Johnson, Erin E; Alton, Forrest L; Flynn, Shannon; Faye, Amy Mattison; Padgett, Polly Edwards; Rollison, Chris; Becker, Dana; Hinzey, Angela L

    2012-12-01

    Getting To Outcomes (GTO), an innovative framework for planning, implementing, evaluating, and sustaining interventions has been shown to be effective in helping community-based organizations (CBOs) introduce science-based approaches into their prevention work. However, the Interactive Systems Framework (ISF) suggests that adopting innovations like GTO requires a significant amount of capacity building through training and technical assistance (T/TA). In this study, 11 CBOs and three schools in South Carolina entered into a 3 year program of intense and proactive T/TA based on the ISF to learn how to apply an adaptation of GTO (Promoting Science-Based Approaches-Getting To Outcomes, PSBA-GTO) to their teen pregnancy prevention programs. Using semi-structured interviews, the partnering organizations were assessed at three points in time, pre-T/TA, 12 months, and post T/TA (30 months) for their performance of the steps of GTO in their work. The seven organizations which participated in T/TA until the end of the project received an average of 76 h of TA and 112 h of training per organization. Interview results showed increased performance of all 10 steps of PSBA-GTO by these organizations when conducting their teen pregnancy programs. These results suggest targeted and proactive T/TA can successfully bridge the gap between research and practice by using a three part delivery system, as prescribed in the ISF, which relies on an intermediary prevention support system to ensure accurate and effective translation of research to the everyday work of community-based practitioners.

  7. Computational studies of adsorption in metal organic frameworks and interaction of nanoparticles in condensed phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annapureddy, Harsha V.; Motkuri, Radha K.; Nguyen, Phuong T.

    In this review, we describe recent efforts in which computer simulations were used to systematically study nano-structured metal organic frameworks, with particular emphasis on their application in heating and cooling processes. These materials also are known as metal organic heat carriers. We used both molecular dynamics and Grand Canonical Monte Carlo simulation techniques to gain a molecular-level understanding of the adsorption mechanism of gases in these porous materials. We investigated the uptake of various gases such as refrigerants R12 and R143a and also the elemental gases Xe and Rn by the metal organic framework (i.e., Ni2(dhtp)). We also evaluated themore » effects of temperature and pressure on the uptake mechanism. Our computed results compared reasonably well with available experimental measurements, thus validating our potential models and approaches. In addition, we also investigated the structural, diffusive, and adsorption properties of different hydrocarbons in Ni2(dhtp). To elucidate the mechanism of nanoparticle dispersion in condensed phases, we also studied the interactions among nanoparticles in various liquids, such as n-hexane, water and methanol. This work was performed at Pacific Northwest National Laboratory (PNNL) and was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Office of Basic Energy Sciences, U.S. Department of Energy (DOE). PNNL is operated by Battelle for the DOE. The authors also gratefully acknowledge support received from the National Energy Technology Laboratory of DOE's Office of Fossil Energy.« less

  8. Guest-induced emergent properties in Metal–Organic Frameworks

    DOE PAGES

    Allendorf, Mark D.; Foster, Michael E.; Léonard, François; ...

    2015-03-19

    Metal–Organic frameworks (MOFs) are crystalline nanoporous materials comprised of organic electron donors linked to metal ions by strong coordination bonds. Applications such as gas storage and separations are currently receiving considerable attention, but if the unique properties of MOFs could be extended to electronics, magnetics, and photonics, the impact on material science would greatly increase. Recently, we obtained “emergent properties,” such as electronic conductivity and energy transfer, by infiltrating MOF pores with “guest” molecules that interact with the framework electronic structure. In this Perspective, we define a path to emergent properties based on the Guest@MOF concept, using zinc-carboxylate and copper-paddlewheelmore » MOFs for illustration. Energy transfer and light harvesting are discussed for zinc carboxylate frameworks infiltrated with triplet-scavenging organometallic compounds and thiophene- and fullerene-infiltrated MOF-177. In addition, we discuss the mechanism of charge transport in TCNQ-infiltrated HKUST-1, the first MOF with electrical conductivity approaching conducting organic polymers. Lastly, these examples show that guest molecules in MOF pores should be considered not merely as impurities or analytes to be sensed but also as an important aspect of rational design.« less

  9. Fundamental awareness: A framework for integrating science, philosophy and metaphysics

    PubMed Central

    Theise, Neil D.; Kafatos, Menas C.

    2016-01-01

    ABSTRACT The ontologic framework of Fundamental Awareness proposed here assumes that non-dual Awareness is foundational to the universe, not arising from the interactions or structures of higher level phenomena. The framework allows comparison and integration of views from the three investigative domains concerned with understanding the nature of consciousness: science, philosophy, and metaphysics. In this framework, Awareness is the underlying reality, not reducible to anything else. Awareness and existence are the same. As such, the universe is non-material, self-organizing throughout, a holarchy of complementary, process driven, recursive interactions. The universe is both its own first observer and subject. Considering the world to be non-material and comprised, a priori, of Awareness is to privilege information over materiality, action over agency and to understand that qualia are not a “hard problem,” but the foundational elements of all existence. These views fully reflect main stream Western philosophical traditions, insights from culturally diverse contemplative and mystical traditions, and are in keeping with current scientific thinking, expressible mathematically. PMID:27489576

  10. Fundamental awareness: A framework for integrating science, philosophy and metaphysics.

    PubMed

    Theise, Neil D; Kafatos, Menas C

    2016-01-01

    The ontologic framework of Fundamental Awareness proposed here assumes that non-dual Awareness is foundational to the universe, not arising from the interactions or structures of higher level phenomena. The framework allows comparison and integration of views from the three investigative domains concerned with understanding the nature of consciousness: science, philosophy, and metaphysics. In this framework, Awareness is the underlying reality, not reducible to anything else. Awareness and existence are the same. As such, the universe is non-material, self-organizing throughout, a holarchy of complementary, process driven, recursive interactions. The universe is both its own first observer and subject. Considering the world to be non-material and comprised, a priori, of Awareness is to privilege information over materiality, action over agency and to understand that qualia are not a "hard problem," but the foundational elements of all existence. These views fully reflect main stream Western philosophical traditions, insights from culturally diverse contemplative and mystical traditions, and are in keeping with current scientific thinking, expressible mathematically.

  11. Gift Exchange Theory: a critique in relation to organ transplantation.

    PubMed

    Sque, M; Payne, S A

    1994-01-01

    Organ transplantation is becoming more important as a viable method of treatment for certain severe medical conditions. It is a complex and demanding process for all involved. Nursing as a developing science must respond to cultural and economic changes. Therefore, a need exists to develop a body of empirically based knowledge to understand and support the process of organ transplantation. This paper will argue that as trading in organs is unacceptable to the moral standards of western society and outlawed in many countries, an alternative framework must be considered for understanding the mechanisms through which organs are donated and utilized. The donating and receiving of organs may be equated with gift-giving, as there is no barter of commodities involved. Therefore, a useful framework to explore this phenomenon will be one that underpins the process of giving and receiving of gifts. Gift Exchange Theory will be evaluated and critically examined in relation to organ transplantation and the role of nurses in this process.

  12. Who Supports the Successful Implementation and Sustainability of Evidence-Based Practices? Defining and Understanding the Roles of Intermediary and Purveyor Organizations.

    PubMed

    Franks, Robert P; Bory, Christopher T

    2015-01-01

    Research on implementation science has increased significantly over the past decade. In particular, psychologists have looked closely at the value and importance of bridging the gap between science and practice. As evidence-based practices (EBPs) become more prevalent, concrete mechanisms are needed to bring these scientifically supported treatments and interventions to community-based settings. Intermediary and purveyor organizations (IPOs) have emerged in recent years that specialize in bringing research to practice. Using a framework developed by Franks (), this descriptive study surveyed respondents that self-identified as IPOs and focused on identifying shared definitions, functions, and activities. Results indicated that seven descriptive roles previously identified were supported by this survey and many common shared activities, goals, and functions across these organizations were observed. Further, these organizations appear to be influenced by the growing field of implementation science. Limitations and implications of this study are discussed. © 2015 Wiley Periodicals, Inc.

  13. Earth Science Literacy: Building Community Consensus

    NASA Astrophysics Data System (ADS)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  14. On the societal nature of praxis and organic research

    NASA Astrophysics Data System (ADS)

    Roth, Wolff-Michael

    2016-03-01

    In its focus on social practices, the feature article presents an interesting theoretical framework for rethinking not only where and how knowing and learning in science education exhibit themselves but also we might change our own research practice. The framework is not new to me, as I have advocated it explicitly for more than 15 years. But over time it became apparent to me that some particularities of participation in practice may be grounded more strongly in an orientation towards the societal nature of any human praxis. In this forum contribution, I present a theoretical approach built on societal-historical activity theory that also takes activism as a major category for theorizing participation. This approach not only covers the extent of the social practice framework but also allows us to make thematic the production of inequity and restrictions to access science and engineering that are characteristic of many societies.

  15. A Framework for Comparing Groups of Documents

    DTIC Science & Technology

    2015-09-21

    Science Foundation (NSF), the National Institutes of Health (NIH), and the Department of Defense (DoD), are of- ten in the position of reviewing...documents. Here, we provide two motivating examples. 1. Program Reviews. To better direct research efforts, funding organizations such as the National

  16. Resolving the Framework Position of Organic Structure-Directing Agents in Hierarchical Zeolites via Polarized Stimulated Raman Scattering.

    PubMed

    Fleury, Guillaume; Steele, Julian A; Gerber, Iann C; Jolibois, F; Puech, P; Muraoka, Koki; Keoh, Sye Hoe; Chaikittisilp, Watcharop; Okubo, Tatsuya; Roeffaers, Maarten B J

    2018-04-05

    The direct synthesis of hierarchically intergrown silicalite-1 can be achieved using a specific diquaternary ammonium agent. However, the location of these molecules in the zeolite framework, which is critical to understand the formation of the material, remains unclear. Where traditional characterization tools have previously failed, herein we use polarized stimulated Raman scattering (SRS) microscopy to resolve molecular organization inside few-micron-sized crystals. Through a combination of experiment and first-principles calculations, our investigation reveals the preferential location of the templating agent inside the linear pores of the MFI framework. Besides illustrating the attractiveness of SRS microscopy in the field of material science to study and spatially resolve local molecular distribution as well as orientation, these results can be exploited in the design of new templating agents for the preparation of hierarchical zeolites.

  17. KSC-08pd0153

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) is given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  18. KSC-08pd0150

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  19. KSC-08pd0152

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  20. KSC-08pd0151

    NASA Image and Video Library

    2008-02-01

    KENNEDY SPACE CENTER, FLA. -- After signing a framework agreement establishing the terms for future cooperation between NASA and the Indian Space Research Organization, Chairman G. Madhavan Nair (center) and other members are given a tour of the Space Station Processing Facility at NASA's Kennedy Space Center. The agreement establishes the terms for future cooperation between the two agencies in the exploration and use of outer space for peaceful purposes. According to the framework agreement, the two agencies will identify areas of mutual interest and seek to develop cooperative programs or projects in Earth and space science, exploration, human space flight and other activities. In addition to a long history of cooperation in Earth science, NASA and the Indian Space Research Organization also are cooperating on India's first, mission to the moon, Chandrayaan-1, which will be launched later this year. NASA is providing two of the 11 instruments on the spacecraft: the moon mineralogy mapper instrument and the miniature synthetic aperture radar instrument. Photo credit: NASA/Kim Shiflett

  1. Posters that foster cognition in the classroom: Multimedia theory applied to educational posters

    NASA Astrophysics Data System (ADS)

    Hubenthal, M.; O'Brien, T.; Taber, J.

    2011-12-01

    Despite a decline in popularity within U.S. society, posters continue to hold a prominent place within middle and high school science classrooms. Teachers' demand for posters is largely satisfied by governmental and non-profit science organizations' education and public outreach (EPO) efforts. Here, posters are produced and disseminated as both tangible products resulting from the organization's research, and instruments to communicate scientific content to teachers and students. This study investigates the taken-for-granted good of posters through a survey/interview of science teachers who received sample posters at professional development workshops. The design of sample EPO posters were also examined for their implied, underlying assumptions about learning and their alignment to the setting of the classroom, which is unique for the genera of posters. Based on this analysis we found that rates of poster use were as low as 43% and that many EPO posters fail to achieve their potential as an instructional instrument. As a result, many EPO posters are relegated to merely a collection of pretty pictures on the wall. Leveraging existing research in both cognition and the cognitive theory of Multimedia learning, we propose a design framework for educational posters that is likely to activate students' attention, catalyze cognitive processing, provide a framework to guide students' construction of knowledge, and connect to extended learning through live or web-based exploration of phenomenon. While work to examine the implications of this framework is still on-going, we present a prototype poster and supporting website developed using the framework as a guide, as well as results from focus group discussions with classroom practitioners regarding the prototype poster and its potential in the classroom.

  2. Some Axioms and Issues in the UFO Dynamic Analysis Framework

    DTIC Science & Technology

    2003-05-01

    6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Postgraduate School...Department of Computer Science,Monterey,CA,93943 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES...10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release

  3. Authentic scientific data collection in support of an integrative model-based class: A framework for student engagement in the classroom

    NASA Astrophysics Data System (ADS)

    Sorensen, A. E.; Dauer, J. M.; Corral, L.; Fontaine, J. J.

    2017-12-01

    A core component of public scientific literacy, and thereby informed decision-making, is the ability of individuals to reason about complex systems. In response to students having difficulty learning about complex systems, educational research suggests that conceptual representations, or mental models, may help orient student thinking. Mental models provide a framework to support students in organizing and developing ideas. The PMC-2E model is a productive tool in teaching ideas of modeling complex systems in the classroom because the conceptual representation framework allows for self-directed learning where students can externalize systems thinking. Beyond mental models, recent work emphasizes the importance of facilitating integration of authentic science into the formal classroom. To align these ideas, a university class was developed around the theme of carnivore ecology, founded on PMC-2E framework and authentic scientific data collection. Students were asked to develop a protocol, collect, and analyze data around a scientific question in partnership with a scientist, and then use data to inform their own learning about the system through the mental model process. We identified two beneficial outcomes (1) scientific data is collected to address real scientific questions at a larger scale and (2) positive outcomes for student learning and views of science. After participating in the class, students report enjoying class structure, increased support for public understanding of science, and shifts in nature of science and interest in pursuing science metrics on post-assessments. Further work is ongoing investigating the linkages between engaging in authentic scientific practices that inform student mental models, and how it might promote students' systems-thinking skills, implications for student views of nature of science, and development of student epistemic practices.

  4. The ABCs of an evolutionary education science: The academic, behavioral, and cultural implications of an evolutionary approach to education theory and practice

    NASA Astrophysics Data System (ADS)

    Kauffman, Rick, Jr.

    Calls for improving research-informed policy in education are everywhere. Yet, while there is an increasing trend towards science-based practice, there remains little agreement over which of the sciences to consult and how to organize a collective effort between them. What Education lacks is a general theoretical framework through which policies can be constructed, implemented, and assessed. This dissertation submits that evolutionary theory can provide a suitable framework for coordinating educational policies and practice, and can provide the entire field of education with a clearer sense of how to better manage the learning environment. This dissertation explores two broad paths that outline the conceptual foundations for an Evolutionary Education Science: "Teaching Evolution" and "Using Evolution to Teach." Chapter 1 introduces both of these themes. After describing why evolutionary science is best suited for organizing education research and practice, Chapter 1 proceeds to "teach" an overview of the "evolutionary toolkit"---the mechanisms and principles that underlie the modern evolutionary perspective. The chapter then employs the "toolkit" in examining education from an evolutionary perspective, outlining the evolutionary precepts that can guide theorizing and research in education, describing how educators can "use evolution to teach.". Chapters 2-4 expand on this second theme. Chapters 2 and 3 describe an education program for at-risk 9th and 10th grade students, the Regents Academy, designed entirely with evolutionary principles in mind. The program was rigorously assessed in a randomized control design and has demonstrated success at improving students' academic performance (Chapter 2) and social & behavioral development (Chapter 3). Chapter 4 examines current teaching strategies that underlie effective curriculum-instruction-assessment practices and proposes a framework for organizing successful, evidence-based strategies for neural-/cognitive-focused learning goals. Chapter 5 explores the cognitive effects that "teaching evolution" has on the learner. This chapter examines the effects that a course on evolutionary theory has on university undergraduate students in understanding and applying evolution and how learning the evolutionary toolkit affects critical thinking skills and domain transfer of knowledge. The results demonstrate that a single course on evolutionary theory increases students' acceptance and understanding of evolution and science, and, in effect, increases critical thinking performance.

  5. Reflections on a vision for integrated research and monitoring after 15 years

    USGS Publications Warehouse

    Murdoch, Peter S.; McHale, Michael; Baron, Jill S.

    2014-01-01

    In May of 1998, Owen Bricker and his co-author Michael Ruggiero introduced a conceptual design for integrating the Nation’s environmental research and monitoring programs. The Framework for Integrated Monitoring and Related Research was an organizing strategy for relating data collected by various programs, at multiple spatial and temporal scales, and by multiple science disciplines to solve complex ecological issues that individual research or monitoring programs were not designed to address. The concept nested existing intensive monitoring and research stations within national and regional surveys, remotely sensed data, and inventories to produce a collaborative program for multi-scale, multi-network integrated environmental monitoring and research. Analyses of gaps in data needed for specific issues would drive decisions on network improvements or enhancements. Data contributions to the Framework from existing networks would help indicate critical research and monitoring programs to protect during budget reductions. Significant progress has been made since 1998 on refining the Framework strategy. Methods and models for projecting scientific information across spatial and temporal scales have been improved, and a few regional pilots of multi-scale data-integration concepts have been attempted. The links between science and decision-making are also slowly improving and being incorporated into science practice. Experiments with the Framework strategy since 1998 have revealed the foundational elements essential to its successful implementation, such as defining core measurements, establishing standards of data collection and management, integrating research and long-term monitoring, and describing baseline ecological conditions. They have also shown us the remaining challenges to establishing the Framework concept: protecting and enhancing critical long-term monitoring, filling gaps in measurement methods, improving science for decision support, and integrating the disparate integrated science efforts now underway. In the 15 years since the Bricker and Ruggiero (Ecol Appl 8(2):326–329, 1998) paper challenged us with a new paradigm for bringing sound and comprehensive science to environmental decisions, the scientific community can take pride in the progress that has been made, while also taking stock of the challenges ahead for completing the Framework vision.

  6. A Framework of Working Across Disciplines in Early Design and R&D of Large Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.

    2015-01-01

    This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.

  7. Using an ecological ethics framework to make decisions about the relocation of wildlife

    USGS Publications Warehouse

    McCoy, E.D.; Berry, K.

    2008-01-01

    Relocation is an increasingly prominent conservation tool for a variety of wildlife, but the technique also is controversial, even among conservation practitioners. An organized framework for addressing the moral dilemmas often accompanying conservation actions such as relocation has been lacking. Ecological ethics may provide such a framework and appears to be an important step forward in aiding ecological researchers and biodiversity managers to make difficult moral choices. A specific application of this framework can make the reasoning process more transparent and give more emphasis to the strong sentiments about non-human organisms held by many potential users. Providing an example of the application of the framework may also increase the appeal of the reasoning process to ecological researchers and biodiversity managers. Relocation as a conservation action can be accompanied by a variety of moral dilemmas that reflect the interconnection of values, ethical positions, and conservation decisions. A model that is designed to address moral dilemmas arising from relocation of humans provides/demonstrates/illustrates a possible way to apply the ecological ethics framework and to involve practicing conservationists in the overall decision-making process. ?? 2008 Springer Science+Business Media B.V.

  8. Online Searching in PBL Tutorials

    ERIC Educational Resources Information Center

    Jin, Jun; Bridges, Susan M.; Botelho, Michael G.; Chan, Lap Ki

    2015-01-01

    This study aims to explore how online searching plays a role during PBL tutorials in two undergraduate health sciences curricula, Medicine and Dentistry. Utilizing Interactional Ethnography (IE) as an organizing framework for data collection and analysis, and drawing on a critical theory of technology as an explanatory lens, enabled a textured…

  9. Diversity from genes to ecosystems: A unifying framework to study variation across biological metrics and scales

    USDA-ARS?s Scientific Manuscript database

    Biological diversity is a key concept in the life sciences and plays a fundamental role in many ecological and evolutionary processes. Although biodiversity is inherently a hierarchical concept covering different levels of organization (genes, population, species, ecological communities and ecosyst...

  10. Equity as a Basis for Inclusive Educational Systems Change

    ERIC Educational Resources Information Center

    Sailor, Wayne

    2017-01-01

    Inclusion of students with "disabilities" in public systems of general education has been a global initiative since the Salamanca Statement and Framework for Action by the Ministry of Education and Science, Madrid (Spain), and United Nations Educational, Scientific, and Cultural Organization, Paris (France), in 1994. Despite global and…

  11. Social Ecology as Innovative Tertiary Environmental Education.

    ERIC Educational Resources Information Center

    White, Lesley

    1992-01-01

    This paper explains the origin of the University of West Sidney's Bachelor of Applied Science in Social Ecology degree, and describes underlying philosophical framework, the major course organizing principles, and the proposed structure of the course. Highlights the problematic nature of setting up a dialectical, nondisciplinary-based program.…

  12. The Development of a Conceptual Framework and Tools to Assess Undergraduates' Principled Use of Models in Cellular Biology

    PubMed Central

    Merritt, Brett; Urban-Lurain, Mark; Parker, Joyce

    2010-01-01

    Recent science education reform has been marked by a shift away from a focus on facts toward deep, rich, conceptual understanding. This requires assessment that also focuses on conceptual understanding rather than recall of facts. This study outlines our development of a new assessment framework and tool—a taxonomy— which, unlike existing frameworks and tools, is grounded firmly in a framework that considers the critical role that models play in science. It also provides instructors a resource for assessing students' ability to reason about models that are central to the organization of key scientific concepts. We describe preliminary data arising from the application of our tool to exam questions used by instructors of a large-enrollment cell and molecular biology course over a 5-yr period during which time our framework and the assessment tool were increasingly used. Students were increasingly able to describe and manipulate models of the processes and systems being studied in this course as measured by assessment items. However, their ability to apply these models in new contexts did not improve. Finally, we discuss the implications of our results and the future directions for our research. PMID:21123691

  13. Tailored Systems Architecture for Design of Space Science and Technology Missions Using DoDAF V2.0

    DTIC Science & Technology

    2009-12-01

    programs do exist. Given the focus on rapid development and transition, if a system architecture framework could be developed and used to increase ...and scope are still being developed and refined at all levels within the DoD. As organizations have attempted to develop system architectures that...to produce architecture descriptions during the early-stages of system development. (3 p. 19) conformance, organizations ultimately using the

  14. Global Framework for Climate Services (GFCS)

    NASA Astrophysics Data System (ADS)

    Lúcio, F.

    2012-04-01

    Climate information at global, regional and national levels and in timeframes ranging from the past, present and future climate is fundamental for planning, sustainable development and to help organizations, countries and individuals adopt appropriate strategies to adapt to climate variability and change. Based on this recognition, in 2009, the Heads of States and Governments, Ministers and Heads of Delegation representing more than 150 countries, 34 United Nations Organizations and 36 Governmental and non-Governmental international organizations, and more than 2500 experts present at the Third World Climate Conference (WCC - 3) unanimously agreed to develop the Global Framework for Climate Services (GFCS) to strengthen the production, availability, delivery and application of science-based climate prediction and services. They requested that a taskforce of high-level independent advisors be appointed to prepare a report, including recommendations on the proposed elements of the Framework and the next steps for its implementation. The high-level taskforce produced a report which was endorsed by the Sixteeth World Meteorological Congress XVI in May 2011. A process for the development of the implementation plan and the governance structure of the Global Framework for Climate Services (GFCS) is well under way being led by the World Meteorological Organization within the UN system. This process involves consultations that engage a broad range of stakeholders including governments, UN and international agencies, regional organizations and specific communities of practitioners. These consultations are being conducted to facilitate discussions of key issues related to the production, availability, delivery and application of climate services in the four priority sectors of the framework (agriculture, water, health and disaster risk reduction) so that the implementation plan of the Framework is a true reflection of the aspirations of stakeholders. The GFCS is envisaged as a set of international arrangements that will coordinate the activities and build on existing efforts to provide climate services that are truly focused on meeting user needs. It will be implemented through the development of five main components: 1) User Interface Platform — to provide ways for climate service users and providers to interact and improve the effectiveness of the Framework and its climate services 2) Climate Services Information System — to produce and distribute climate data and information according to the needs of users and to agreed standards 3) Observations and Monitoring - to develop agreements and standards for collecting and generating necessary climate data 4) Research, Modeling and Prediction section — to harness science capabilities and results to meet the needs of climate services 5) Capacity Building — to support the systematic development of the institutions, infrastructure and human resources needed for effective production of climate services and their application. Putting the GFCS in place will require unprecedented collaboration among agencies and across political, functional and disciplinary boundaries, and a global mobilization of effort. This communication will provide information on benefits and the process for the development of the GFCS as well as potential entry points for stakeholders to participate. In addition, it will highlight some of the research, modelling and prediction opportunities that will require intra-disciplinary science action.

  15. A Decision Support Framework for Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    NASA Astrophysics Data System (ADS)

    Rehr, Amanda P.; Small, Mitchell J.; Bradley, Patricia; Fisher, William S.; Vega, Ann; Black, Kelly; Stockton, Tom

    2012-12-01

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environmental stressors, processes, and outcomes; and a Decision Landscape analysis to depict the legal, social, and institutional dimensions of environmental decisions. The Decision Landscape incorporates interactions among government agencies, regulated businesses, non-government organizations, and other stakeholders. It also identifies where scientific information regarding environmental processes is collected and transmitted to improve knowledge about elements of the DPSIR and to improve the scientific basis for decisions. Our application of the decision support framework to coral reef protection and restoration in the Florida Keys focusing on anthropogenic stressors, such as wastewater, proved to be successful and offered several insights. Using information from a management plan, it was possible to capture the current state of the science with a DPSIR analysis as well as important decision options, decision makers and applicable laws with a the Decision Landscape analysis. A structured elicitation of values and beliefs conducted at a coral reef management workshop held in Key West, Florida provided a diversity of opinion and also indicated a prioritization of several environmental stressors affecting coral reef health. The integrated DPSIR/Decision landscape framework for the Florida Keys developed based on the elicited opinion and the DPSIR analysis can be used to inform management decisions, to reveal the role that further scientific information and research might play to populate the framework, and to facilitate better-informed agreement among participants.

  16. Experimental comparison of chiral metal-organic framework used as stationary phase in chromatography.

    PubMed

    Xie, Sheng-Ming; Zhang, Mei; Fei, Zhi-Xin; Yuan, Li-Ming

    2014-10-10

    Chiral metal-organic frameworks (MOFs) are a new class of multifunctional material, which possess diverse structures and unusual properties such as high surface area, uniform and permanent cavities, as well as good chemical and thermal stability. Their chiral functionality makes them attractive as novel enantioselective adsorbents and stationary phases in separation science. In this paper, the experimental comparison of a chiral MOF [In₃O(obb)₃(HCO₂)(H₂O)] solvent used as a stationary phase was investigated in gas chromatography (GC), high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC). The potential relationship between the structure and components of chiral MOFs with their chiral recognition ability and selectivity are presented. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Repertoires: A post-Kuhnian perspective on scientific change and collaborative research.

    PubMed

    Ankeny, Rachel A; Leonelli, Sabina

    2016-12-01

    We propose a framework to describe, analyze, and explain the conditions under which scientific communities organize themselves to do research, particularly within large-scale, multidisciplinary projects. The framework centers on the notion of a research repertoire, which encompasses well-aligned assemblages of the skills, behaviors, and material, social, and epistemic components that a group may use to practice certain kinds of science, and whose enactment affects the methods and results of research. This account provides an alternative to the idea of Kuhnian paradigms for understanding scientific change in the following ways: (1) it does not frame change as primarily generated and shaped by theoretical developments, but rather takes account of administrative, material, technological, and institutional innovations that contribute to change and explicitly questions whether and how such innovations accompany, underpin, and/or undercut theoretical shifts; (2) it thus allows for tracking of the organization, continuity, and coherence in research practices which Kuhn characterized as 'normal science' without relying on the occurrence of paradigmatic shifts and revolutions to be able to identify relevant components; and (3) it requires particular attention be paid to the performative aspects of science, whose study Kuhn pioneered but which he did not extensively conceptualize. We provide a detailed characterization of repertoires and discuss their relationship with communities, disciplines, and other forms of collaborative activities within science, building on an analysis of historical episodes and contemporary developments in the life sciences, as well as cases drawn from social and historical studies of physics, psychology, and medicine. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Earth Systems Education: Origins and Opportunities. Science Education for Global Understanding. Second Edition.

    ERIC Educational Resources Information Center

    University of Northern Colorado, Greeley.

    This publication introduces and provides a framework for Earth Systems Education (ESE), an effort to establish within U.S. schools more effective programs designed to increase the public's understanding of the Earth system. The publication presents seven "understandings" around which curriculum can be organized and materials selected in…

  19. A Genre Analysis of English and Turkish Research Article Introductions

    ERIC Educational Resources Information Center

    Kafes, Hüseyin

    2018-01-01

    This corpus-based exploratory study investigates the rhetorical organization of research article (RA) introductions in the field of social sciences, using an adapted version of Swales' (1990) framework of move analysis. A corpus of 75 research article introductions in English by American academic writers and in English and Turkish by Turkish…

  20. Science in a Post-Sendai World

    NASA Astrophysics Data System (ADS)

    Brosnan, D. M.

    2015-12-01

    Adopted at the U.N. Conference on March 18, 2015 in Sendai Japan, the international framework for Disaster Risk Reduction (DRR) will guide how nations across the world address disasters and hazards for the next fifteen years. The agreement, reached after several years of negotiation, marks a shift in thinking and approach to DRR. Traditionally DRR has been the domain of humanitarian responses and methods have been well honed over the decades. However, a defining element of this agreement is the stronger recognition of the role that science can play in preparing for, managing, and mitigating disasters. The framework identifies four priority areas: understanding disaster risk; strengthening disaster risk governance to manage disaster risk; investing in disaster risk reduction for resilience; and enhancing disaster preparedness for effective response and to "build back better" in recovery rehabilitation and reconstruction. Science can underpin each one. For example, the first priority to better understand risks will require scientific and technological input. In addition embedded throughout the Framework are calls for several other specific actions including, dedicated scientific and technical work on disaster risk reduction; mobilization. The challenge moving forward will be to move from rhetoric to action. Are governments ready to embrace the scientific community's input or are many still resistant? What, if any, structures are in place to ensure that the necessary science is carried out and then heard by those who can use it? What steps can scientists and scientific organizations take to ensure the role of science and make their efforts are effective? How science can respond to the opportunities and challenges in a Post-Sendai world will be discussed in the presentation.

  1. Genetically modified organisms: an analysis of the regulatory framework currently employed within the European Union.

    PubMed

    Gent, R N

    1999-09-01

    Genetic engineering technology is starting to bring many commercial products to the market. These genetically modified organisms (GMOs) and their derived products are subject to topical debate as to their benefits and risks. The strengths and weaknesses of the regulatory framework that controls their development and application is central to the question of whether this technology poses significant risk to the public health during this critical phase of its evolution. A critical review was carried out of the legal framework regulating the contained use, deliberate release and some aspects of consumer protection relevant to the control of GMOs in Europe and the United Kingdom. The current legal framework is failing to provide a speed of adaptation commensurate with the development of the science of genetic engineering; failing to properly respond to democratic control; failing to resolve significant conflict between the protection of free markets and protection of public health and the environment; and failing to implement obligations on biodiversity. The present legal framework must be replaced. Current European Union proposals for new standards of regulation are welcome, but provide only for further incremental change, and do not address some significant fundamental flaws in our current laws.

  2. Communication: Many-body stabilization of non-covalent interactions: Structure, stability, and mechanics of Ag3Co(CN)6 framework.

    PubMed

    Liu, Xiaofei; Hermann, Jan; Tkatchenko, Alexandre

    2016-12-28

    Stimuli-responsive metal-organic frameworks (MOFs) and other framework materials exhibit a broad variety of useful properties, which mainly stem from an interplay of strong covalent bonds within the organic linkers with presumably weak van der Waals (vdW) interactions which determine the overall packing of the framework constituents. Using Ag 3 Co(CN) 6 as a fundamental test case-a system with a colossal positive and negative thermal expansion [A. L. Goodwin et al., Science 319, 794 (2008)]-we demonstrate that its structure, stability, dielectric, vibrational, and mechanical properties are critically influenced by many-body electronic correlation contributions to non-covalent vdW interactions. The Ag 3 Co(CN) 6 framework is a remarkable molecular crystal, being visibly stabilized, rather than destabilized, by many-body vdW correlations. A detailed comparison with H 3 Co(CN) 6 highlights the crucial role of strongly polarized metallophilic interactions in dictating the exceptional properties of denser MOFs. Beyond MOFs, our findings indicate that many-body electronic correlations can substantially stabilize polarizable materials, providing a novel mechanism for tuning the properties of nanomaterials with intricate structural motifs.

  3. Knowledge management performance methodology regarding manufacturing organizations

    NASA Astrophysics Data System (ADS)

    Istrate, C.; Herghiligiu, I. V.

    2016-08-01

    The current business situation is extremely complicated. Business must adapt to the changes in order (a) to survive on the increasingly dynamic markets, (b) to meet customers’ new request for complex, customized and innovative products. In modern manufacturing organizations it can be seen a substantial improvement regarding the management of knowledge. This occurs due to the fact that organizations realized that knowledge and an efficient management of knowledge generates the highest value. Even it could be said that the manufacturing organizations were and are the biggest beneficiary of KM science. Knowledge management performance (KMP) evaluation in manufacturing organizations can be considered as extremely important because without measuring it, they are unable to properly assess (a) what goals, targets and activities must have continuity, (b) what must be improved and (c) what must be completed. Therefore a proper KM will generate multiple competitive advantages for organizations. This paper presents a developed methodological framework regarding the KMP importance regarding manufacturing organizations. This methodological framework was developed using as research methods: bibliographical research and a panel of specialists. The purpose of this paper is to improve the evaluation process of KMP and to provide a viable tool for manufacturing organizations managers.

  4. A question of fit: reflections on boundaries, organizations and social-ecological systems.

    PubMed

    Sternlieb, Faith; Bixler, R Patrick; Huber-Stearns, Heidi; Huayhuaca, Ch'aska

    2013-11-30

    Although there is acknowledgment that the complexity of social-ecological systems governance demands representation from diverse perspectives, there is little agreement in the literature on how to cross both fiat (human-demarcated) and bona fide (physical) boundaries to address such complexities. As a cohort of interdisciplinary scholars, we navigate the boundary between science and practice to address the question of fit regarding the role of organizations in transcending boundaries. We found there is a need to rectify discrepancies between theories about boundaries and theories about organizations. To this end, we propose a conceptual framework to analyze transboundary organizations, an umbrella term to group the literature on boundary organizations, intermediaries and bridging organizations; we introduce this term to illustrate they are not mutually exclusive and to facilitate interdisciplinary research. We first examine social-ecological systems (SES), a framework intended to improve understandings of boundaries and governance. We then continue to unpack the complexity of boundaries and organizations, specifically through important transboundary concepts such as scale and organizational learning. This helps frame our examination of the literature on: 1) boundary organizations; 2) bridging organizations (third-party entities); and 3) intermediaries (distinguished by their position between other actors). Our review identifies a number of discrepancies that pertain to the types of boundaries discussed and the roles assigned to organizations governing SES. Important characteristics have emerged from our review of transboundary organizations including legitimacy, saliency, urgency, and credibility. In developing a conceptual framework, we argue that transboundary organizations: 1) expand upon the boundary spectrum, 2) incorporate transboundary concepts, and 3) hybridize characteristics of boundary, bridging, and intermediary organizations. We conclude with a number of considerations for transboundary organizations and recommendations for further research. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. High-Reliability Health Care: Getting There from Here

    PubMed Central

    Chassin, Mark R; Loeb, Jerod M

    2013-01-01

    Context Despite serious and widespread efforts to improve the quality of health care, many patients still suffer preventable harm every day. Hospitals find improvement difficult to sustain, and they suffer “project fatigue” because so many problems need attention. No hospitals or health systems have achieved consistent excellence throughout their institutions. High-reliability science is the study of organizations in industries like commercial aviation and nuclear power that operate under hazardous conditions while maintaining safety levels that are far better than those of health care. Adapting and applying the lessons of this science to health care offer the promise of enabling hospitals to reach levels of quality and safety that are comparable to those of the best high-reliability organizations. Methods We combined the Joint Commission's knowledge of health care organizations with knowledge from the published literature and from experts in high-reliability industries and leading safety scholars outside health care. We developed a conceptual and practical framework for assessing hospitals’ readiness for and progress toward high reliability. By iterative testing with hospital leaders, we refined the framework and, for each of its fourteen components, defined stages of maturity through which we believe hospitals must pass to reach high reliability. Findings We discovered that the ways that high-reliability organizations generate and maintain high levels of safety cannot be directly applied to today's hospitals. We defined a series of incremental changes that hospitals should undertake to progress toward high reliability. These changes involve the leadership's commitment to achieving zero patient harm, a fully functional culture of safety throughout the organization, and the widespread deployment of highly effective process improvement tools. Conclusions Hospitals can make substantial progress toward high reliability by undertaking several specific organizational change initiatives. Further research and practical experience will be necessary to determine the validity and effectiveness of this framework for high-reliability health care. PMID:24028696

  6. High-reliability health care: getting there from here.

    PubMed

    Chassin, Mark R; Loeb, Jerod M

    2013-09-01

    Despite serious and widespread efforts to improve the quality of health care, many patients still suffer preventable harm every day. Hospitals find improvement difficult to sustain, and they suffer "project fatigue" because so many problems need attention. No hospitals or health systems have achieved consistent excellence throughout their institutions. High-reliability science is the study of organizations in industries like commercial aviation and nuclear power that operate under hazardous conditions while maintaining safety levels that are far better than those of health care. Adapting and applying the lessons of this science to health care offer the promise of enabling hospitals to reach levels of quality and safety that are comparable to those of the best high-reliability organizations. We combined the Joint Commission's knowledge of health care organizations with knowledge from the published literature and from experts in high-reliability industries and leading safety scholars outside health care. We developed a conceptual and practical framework for assessing hospitals' readiness for and progress toward high reliability. By iterative testing with hospital leaders, we refined the framework and, for each of its fourteen components, defined stages of maturity through which we believe hospitals must pass to reach high reliability. We discovered that the ways that high-reliability organizations generate and maintain high levels of safety cannot be directly applied to today's hospitals. We defined a series of incremental changes that hospitals should undertake to progress toward high reliability. These changes involve the leadership's commitment to achieving zero patient harm, a fully functional culture of safety throughout the organization, and the widespread deployment of highly effective process improvement tools. Hospitals can make substantial progress toward high reliability by undertaking several specific organizational change initiatives. Further research and practical experience will be necessary to determine the validity and effectiveness of this framework for high-reliability health care. © 2013 The Authors. The Milbank Quarterly published by Wiley Periodicals Inc. on behalf of Milbank Memorial Fund.

  7. Connected Curriculum for sharing science with alumni, industry partners and charitable organizations

    NASA Astrophysics Data System (ADS)

    Tong, V.

    2015-12-01

    The Connected Curriculum (CC) is the institutional framework for research-based education at University College London. Undergraduate and graduate students across the research-intensive university are given the opportunities to produce inquiry-based work to connect with professors, fellow students from different faculties, alumni around the world, as well as industry partners and charitable organizations. Through the development of cross-faculty theme-based online networks, the CC encourages students and academics to share and communicate their science to a broad range of interested audience. In this presentation, I discuss how an institutional research-based education initiative can provide a powerful platform for engaging students and academics in communicating the importance and societal relevance of their scientific work to the wider world.

  8. Stabilizing the boundary between US politics and science: the role of the Office of Technology Transfer as a boundary organization.

    PubMed

    Guston, D H

    1999-02-01

    The sociological study of boundary-work and the political-ecomomic approach of principal-agent theory can be complementary ways of examining the relationship between society and science: boundary-work provides the empirical nuance to the principal-agent scheme, and principal-agent theory provides structure to the thick boundary description. This paper motivates this complementarity to examine domestic technology transfer in the USA from the intramural laboratories of the US National Institutes of Health (NIH). It casts US policy for technology transfer in the principal-agent framework, in which politicians attempt to manage the moral hazard of the productivity of research by providing specific incentives to the agents for engaging in measurable research-based innovation. Such incentives alter the previously negotiated boundary between politics and science. The paper identifies the crucial role of the NIH Office of Technology Transfer (OTT) as a boundary organization, which medicates the new boundary negotiations in its routine work, and stabilizes the boundary by performing successfully as an agent for both politicians and scientists. The paper hypothesizes that boundary organizations like OTT are general phenomena at the boundary between politics and science.

  9. Tailored Systems Architecture for Design of Space Science and Technology Missions Using DoDAF V2.0

    DTIC Science & Technology

    2009-12-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Air Force Institute of Technology,2950 Hobson Way,WPAFB,OH,45433-7765 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...the focus on rapid development and transition, if a system architecture framework could be developed and used to increase visibility within the

  10. Tailored Systems Architecture for Design of Space Science and Technology Missions using DoDAF V2.0

    DTIC Science & Technology

    2009-12-01

    GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Air Force Institute of Technology,2950 Hobson Way,WPAFB,OH,45433-7765 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...the focus on rapid development and transition, if a system architecture framework could be developed and used to increase visibility within the

  11. Fluorene-based macromolecular nanostructures and nanomaterials for organic (opto)electronics.

    PubMed

    Xie, Ling-Hai; Yang, Su-Hui; Lin, Jin-Yi; Yi, Ming-Dong; Huang, Wei

    2013-10-13

    Nanotechnology not only opens up the realm of nanoelectronics and nanophotonics, but also upgrades organic thin-film electronics and optoelectronics. In this review, we introduce polymer semiconductors and plastic electronics briefly, followed by various top-down and bottom-up nano approaches to organic electronics. Subsequently, we highlight the progress in polyfluorene-based nanoparticles and nanowires (nanofibres), their tunable optoelectronic properties as well as their applications in polymer light-emitting devices, solar cells, field-effect transistors, photodetectors, lasers, optical waveguides and others. Finally, an outlook is given with regard to four-element complex devices via organic nanotechnology and molecular manufacturing that will spread to areas such as organic mechatronics in the framework of robotic-directed science and technology.

  12. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    NASA Astrophysics Data System (ADS)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  13. Applying Organization Theory to Understanding the Adoption and Implementation of Accountable Care Organizations: Commentary.

    PubMed

    Shortell, Stephen M

    2016-12-01

    This commentary highights the key arguments and contributions of institutional thoery, transaction cost economics (TCE) theory, high reliability theory, and organizational learning theory to understanding the development and evolution of Accountable Care Organizations (ACOs). Institutional theory and TCE theory primarily emphasize the external influences shaping ACOs while high reliability theory and organizational learning theory underscore the internal fctors influencing ACO perfromance. A framework based on Implementation Science is proposed to conside the multiple perspectives on ACOs and, in particular, their abiity to innovate to achieve desired cost, quality, and population health goals. © The Author(s) 2016.

  14. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications. Nuclear Science Series: Nuclear Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.; Wolf, A.P.

    1982-09-01

    Carbon 11, Fluorine 18, and Nitrogen 13-labeled radiotracers are reviewed from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. The reactions used, the principles used to adapt these reactions to labeling with short-lived radionuclides, and the concepts of chemical reactivity form the framework upon which synthetic strategies for short-lived radiotracers are developed. Potentially new routes are suggested which may be applied to problems in labeling organic molecules. (ACR)

  15. Examining Small "C" Creativity in the Science Classroom: Multiple Case Studies of Five High School Teachers

    ERIC Educational Resources Information Center

    Lasky, Dorothea Shawn

    2012-01-01

    As the US continues to strive toward building capacity for a workforce in STEM fields (NSF, 2006), educational organizations and researchers have constructed frameworks that focus on increasing competencies in creativity in order to achieve this goal (ISTE, 2007; Karoly & Panis, 2004; Partnership for 21st Century Skills, 2007). Despite these…

  16. The Early Years: "Life" Science

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2013-01-01

    Talking about death as part of a life cycle is often ignored or spoken about in hushed tones in early childhood. Books with "life cycle" in the title often do not include the death of the living organism in the information about the cycle. The concept of a complete life cycle does not appear in "A Framework for K-12 Science…

  17. Design, Participation, and Social Change: What Design in Grassroots Spaces Can Teach Learning Scientists

    ERIC Educational Resources Information Center

    Zavala, Miguel

    2016-01-01

    While a science of design (and theory of learning) is certainly useful in design-based research, a participatory design research framework presents an opening for learning scientists to rethink design and learning as processes. Grounded in the autoethnographic investigation of a grassroots organization's design of a local campaign, the author…

  18. A Bolman and Deal Framework of Science Teachers' Beliefs on Teacher Preparation and Reform Practices for Diverse Learners

    NASA Astrophysics Data System (ADS)

    Whitmyer, Charnita P.

    This dissertation uses Bolman and Deal's Four Framework approach to reframing an organization to examine science teachers' beliefs on teacher preparation and reform practices for diverse learners. Despite the national emphasis on "science for all students" in the National Science Education Standards (NRC, 2011), some traditionally underserved groups tend to underperform on standardized measures of science learning (Kober, 2001; Darling-Hammond, 2010; Bracey, 2009; Kozol, 2009, 2007; PCAST, 2012); and teachers struggle to meet the needs of these students (Hira, 2010). The literature is replete with calls for a better understanding of teacher quality as an entry point into increased student achievement in science. In the current study, the 2012 National Survey of Science and Mathematics Education (NSSME) was used to gain an understanding of science teacher quality in the United States, and SPSS 22.0 software was used to evaluate descriptive and inferential statistics, including bivariate correlation analysis, simple linear regression, and a multiple regression of the survey responses. The findings indicated that professional development was the most salient predictor of teachers' preparedness to teach diverse learners. Findings further showed that teachers who held favorable perceptions of preparedness to teach diverse learners were more likely to use reform-oriented practices. This study contributes to an emerging area of research on science teacher quality and its influence on instructional reform for diverse learners. The study concludes with a discussion of supports and obstacles that may enable or inhibit the development of these relationships.

  19. Teaching Rocks and Minerals in the Context of Dynamic Earth Systems and Interactions: Using the Three Dimensions of the Next Generation Science Standards as an Organizing Framework to Engage Learners in Teacher Preparation Courses

    NASA Astrophysics Data System (ADS)

    Brady, M. E.; Nelson, F.

    2014-12-01

    The Next Generation Science Standards (NGSS) call for a shift from science learning as a fixed body of decontextualized facts toward a deliberate integration of three dimensions that transcend instructional level: 1) Disciplinary Core Ideas, 2) Crosscutting concepts, and 3) Science & Engineering Practices. This new approach to K-12 science education requires a dedicated effort to address teacher preparation in ESS. Here, we present an instructional model that explicitly integrates the three dimensions of the NGSS as an organizing framework in large-enrollment, undergraduate introductory geoscience courses targeted toward future teachers. This curriculum development is part of a campus-wide collaboration among science, engineering, and education faculty to enhance science teacher preparation. This approach reflects NGSS conceptual shifts and promotes a learner-centered environment where students regularly engage with each other and course material as part of the course: 1) In terms of content, Earth systems and interactions, are emphasized; rocks and minerals are discussed in the context of their use to understand and predict changes over Earth's past, present, and future; and engineering and technology are incorporated into discussions of mediating human impacts on Earth systems. 2) Cross-cutting concepts, such as cycles and flows, are explicitly referenced throughout the course to promote connections between and application of prior knowledge and new information or situations. 3) Guided by explicit prompts for partner discussions in class, students regularly engage in scientific practices, such as arguing by evidence and constructing an explanation. We will provide examples of student learning assessment, including in-class responses pre- and post- partner discussions, short written reflections, and cumulative projects. Ongoing evaluation of this instructional approach will include pre- and post- Geoscience Concept Inventory responses.

  20. The Development of a Conceptual Framework for New K-12 Science Education Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Keller, T.

    2010-12-01

    The National Academy of Sciences has created a committee of 18 National Academy of Science and Engineering members, academic scientists, cognitive and learning scientists, and educators, educational policymakers and researchers to develop a framework to guide new K-12 science education standards. The committee began its work in January, 2010, released a draft of the framework in July, 2010, and intends to have the final framework in the first quarter of 2011. The committee was helped in early phases of the work by consultant design teams. The framework is designed to help realize a vision for science and engineering education in which all students actively engage in science and engineering practices in order to deepen their understanding of core ideas in science over multiple years of school. These three dimensions - core disciplinary ideas, science and engineering practices, and cross-cutting elements - must blend together to build an exciting, relevant, and forward looking science education. The framework will be used as a base for development of next generation K-12 science education standards.

  1. Strategies for transdisciplinary research on peri-urban groundwater management in the Ganges delta

    NASA Astrophysics Data System (ADS)

    Hermans, Leon; Thissen, Wil; Gomes, Sharlene; Banerjee, Poulomi; Narain, Vishal; Salehin, Mashfiqus; Hasan, Rezaul; Barua, Anamika; Alam Khan, Shah; Bhattacharya, Samir; Kempers, Remi; Banerjee, Parthasarathi; Hossain, Zakir; Majumdar, Binoy; Hossain, Riad

    2016-04-01

    Transdisciplinary science transcends disciplinary boundaries. The reasons to engage in transdisciplinary science are many and include the desire to nurture a more direct relationship between science and society, as well as the desire to explain phenomena that cannot be explained by any of the existing disciplinary bodies of knowledge in isolation. Both reasons also reinforce each other, as reality often features a level of complexity that demands and inspires the combination of scientific knowledge from various disciplines. The challenge in transdisciplinary science, however, is not so much to cross disciplinary boundaries, but to ensure an effective connection between disciplines. This contribution reports on the strategy used in a transdisciplinary research project to address groundwater management in peri-urban areas in the Ganges delta. Groundwater management in peri-urban areas in rapidly urbanizing deltas is affected by diverse forces such as rapid population growth, increased economic activity and changing livelihood patterns, and other forces which result in a growing pressure on available groundwater resources. Understanding the intervention possibilities for a more sustainable groundwater management in these peri-urban areas requires an understanding of the dynamic interplay between various sub-systems, such as the physical groundwater system, the water using activities in households and livelihoods, and the institutional system of formal and informal rules that are used by various parties to access groundwater resources and to distribute the associated societal and economic costs and benefits. The ambition in the reported project is to contribute both new scientific knowledge, as well as build capacity with peri-urban stakeholders to improve the sustainability and equitability of local groundwater management. This is done by combining science and development activities, led by different organizations. The scientific component further consists of three sub-components. The connection between these scientific disciplines is made by using a multi-polar strategy. Each research works with a different framework rooted in its own scientific discipline, featuring its own concepts and theories: a hydrogeological framework, a sustainable livelihoods framework and an institutional development framework. Rather than forcing these frameworks into a new framework that is perhaps only fit for the purpose of this single research, the disciplinary frameworks are left in-tact, but are connected by a translation of key variables from one framework to the other. Often, what is an exogenous variable in one framework, is endogenous in another, and vice versa. Investigating the connections between these different poles would require an integrating perspective, for which again different scientific integration perspectives will be explored, rooted in different scientific traditions. The poster will present this framework and the initial findings and experiences with this transdisciplinary research strategy.

  2. The emergence of mind and brain: an evolutionary, computational, and philosophical approach.

    PubMed

    Mainzer, Klaus

    2008-01-01

    Modern philosophy of mind cannot be understood without recent developments in computer science, artificial intelligence (AI), robotics, neuroscience, biology, linguistics, and psychology. Classical philosophy of formal languages as well as symbolic AI assume that all kinds of knowledge must explicitly be represented by formal or programming languages. This assumption is limited by recent insights into the biology of evolution and developmental psychology of the human organism. Most of our knowledge is implicit and unconscious. It is not formally represented, but embodied knowledge, which is learnt by doing and understood by bodily interacting with changing environments. That is true not only for low-level skills, but even for high-level domains of categorization, language, and abstract thinking. The embodied mind is considered an emergent capacity of the brain as a self-organizing complex system. Actually, self-organization has been a successful strategy of evolution to handle the increasing complexity of the world. Genetic programs are not sufficient and cannot prepare the organism for all kinds of complex situations in the future. Self-organization and emergence are fundamental concepts in the theory of complex dynamical systems. They are also applied in organic computing as a recent research field of computer science. Therefore, cognitive science, AI, and robotics try to model the embodied mind in an artificial evolution. The paper analyzes these approaches in the interdisciplinary framework of complex dynamical systems and discusses their philosophical impact.

  3. A Community Assessmet of Biosignatures and their Frameworks

    NASA Astrophysics Data System (ADS)

    Domagal-Goldman, Shawn David; Nexus for Exoplanet Systems Science (NExSS)

    2018-01-01

    The Nexus for Exoplanet Systems Science (NExSS) organized a workshop to assess the current state of exoplanet biosignature research. Here, we review the products from that workshop. This includes: 1) a review of previously-proposed biosignatures in both the atmosphere and on the sruface of an exoplanet; 2) the need for context in assessing those biosignatures; 3) the potential for a Bayesian framework to formalize and quantify the need for context; 4) the interdisciplinary research required to advance that Bayesian framework; and 5) the missions that would search for biosignatures, including required contextual observations. Here we will revie those findings, the future path for research they suggest, and the implications they have for future missions, including both ground- and space-based missions.

  4. Uncertainty in Driftless Area Cold-Water Fishery Decision Making and a Framework for Stakeholder-Based Science

    NASA Astrophysics Data System (ADS)

    Schuster, Z.

    2015-12-01

    The paradigm of stakeholder-based science is becoming more popular as organizations such as the U.S. Department of the Interior Climate Science Centers adopt it as a way of providing practicable climate change information to practitioners. One of the key issues stakeholders face in adopting climate change information into their decision processes is how uncertainty is addressed and communicated. In this study, we conducted a series of semi-structured interviews with managers and scientists working on stream habitat restoration of cold-water fisheries in the Driftless Area of Wisconsin that were focused on how they interpret and manage uncertainty and what types of information they need to make better decisions. One of the important lessons we learned from the interviews is that if researchers are going to provide useful climate change information to stakeholders, they need to understand where and how decisions are made and what adaptation measures are actually available in a given decision arena. This method of incorporating social science methods into climate science production can provide a framework for researchers from the Climate Science Centers and others who are interested in pursuing stakeholder-based science. By indentifying a specific ecological system and conducting interviews with actors who work on that system, researchers will be able to gain a better understanding of how their climate change science can fit into existing or shape new decision processes. We also interpreted lessons learned from our interviews via existing literature in areas such as stakeholder-based modeling and the decision sciences to provide guidance specific to the stakeholder-based science process.

  5. Science Framework for the 2009 National Assessment of Educational Progress

    ERIC Educational Resources Information Center

    National Assessment Governing Board, 2008

    2008-01-01

    This document sets forth recommendations for the design of a new science assessment. The assessment resulting from this framework will start a new NAEP science trend (i.e., measure of student progress in science) beginning in 2009. This framework represents a unique opportunity to build on previous NAEP science work as well as key developments in…

  6. Application of Implementation Science Methodology to Immediate Postpartum Long-Acting Reversible Contraception Policy Roll-Out Across States.

    PubMed

    Rankin, Kristin M; Kroelinger, Charlan D; DeSisto, Carla L; Pliska, Ellen; Akbarali, Sanaa; Mackie, Christine N; Goodman, David A

    2016-11-01

    Purpose Providing long-acting reversible contraception (LARC) in the immediate postpartum period is an evidence-based strategy for expanding women's access to highly effective contraception and for reducing unintended and rapid repeat pregnancy. The purpose of this article is to demonstrate the application of implementation science methodology to study the complexities of rolling-out policies that promote immediate postpartum LARC use across states. Description The Immediate Postpartum LARC Learning Community, sponsored by the Association of State and Territorial Health Officials (ASTHO), is made up of multi-disciplinary, multi-agency teams from 13 early-adopting states with Medicaid reimbursement policies promoting immediate postpartum LARC. Partners include federal agencies and maternal and child health organizations. The Learning Community discussed barriers, opportunities, strategies, and promising practices at an in-person meeting. Implementation science theory and methods, including the Consolidated Framework for Implementation Research (CFIR), and a recent compilation of implementation strategies, provide useful tools for studying the complexities of implementing immediate postpartum LARC policies in birthing facilities across early adopting states. Assessment To demonstrate the utility of this framework for guiding the expansion of immediate postpartum LARC policies, illustrative examples of barriers and strategies discussed during the in-person ASTHO Learning Community meeting are organized by the five CFIR domains-intervention characteristics, outer setting, inner setting, characteristics of the individuals involved, and process. Conclusion States considering adopting policies can learn from ASTHO's Immediate Postpartum LARC Learning Community. Applying implementation science principles may lead to more effective statewide scale-up of immediate postpartum LARC and other evidence-based strategies to improve women and children's health.

  7. Constructing and dismantling frameworks of disease etiology: the rise and fall of sewer gas in America, 1870-1910.

    PubMed Central

    An, Perry G.

    2004-01-01

    For roughly forty years, from 1870 to 1910, Americans recognized and feared gases emanating from sewers, believing that they were responsible for causing an array of diseases. Fears of sewer gas arose from deeper anxieties toward contact with decomposing organic matter and the vapors emitted from such refuse. These anxieties were exacerbated by the construction of sewers across the country during the mid-to-late-nineteenth century, which concentrated waste emanations and connected homes to one another. The result was the birth of sewer gas and the attribution of sickness and death to it, as well as the development of a host of plumbing devices and, especially, bathroom fixtures, to combat sewer gas. The rise of the germ theory, laboratory science, and belief in disease specificity, however, transformed the threat of sewer gas, eventually replacing it (and the larger fear of miasmas) with the threat of germs. The germ theory framework, by 1910, proved more suitable than the sewer gas framework in explaining disease causation; it is this suitability that often shapes the relationship between science and society. PMID:15829149

  8. Building the Capacities of the Montenegrin Armed Forces

    DTIC Science & Technology

    2012-03-20

    training, military-to-military cooperation and exercises, civil emergency planning and 6 disaster-response, and cooperation on science and...29-30. 7 Jennifer D. P. Moroney, Jefferson P. Marquis, Cathryn Quantic Thurson, Gregory F. Treverton, A Framework to Assess Programs for Building...Kelly, Jefferson P. Marquis, Cathryn Quantic Thurson, Jenifer D.P. Moroney, Charlotte Lynch, Security Cooperation Organizations in the Country Team

  9. Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight".

    PubMed

    Kim, Hyunho; Rao, Sameer R; Kapustin, Eugene A; Narayanan, Shankar; Yang, Sungwoo; Furukawa, Hiroyasu; Umans, Ari S; Yaghi, Omar M; Wang, Evelyn N

    2017-11-24

    The Comment by Meunier states that the process we described in our report cannot deliver the claimed amount of liquid water in an arid climate. This statement is not valid because the parameters presented in our study were inappropriately combined to draw misguided conclusions. Copyright © 2017, American Association for the Advancement of Science.

  10. Collaborative capacity, problem framing, and mutual trust in addressing the wildland fire social problem: An annotated reading list

    Treesearch

    Jeffrey J. Brooks; Alexander N. Bujak; Joseph G. Champ; Daniel R. Williams

    2006-01-01

    We reviewed, annotated, and organized recent social science research and developed a framework for addressing the wildland fire social problem. We annotated articles related to three topic areas or factors, which are critical for understanding collective action, particularly in the wildland-urban interface. These factors are collaborative capacity, problem framing, and...

  11. Awareness as an Enactivist Framework for the Mathematical Learning of Teachers, Mentors and Institutions

    ERIC Educational Resources Information Center

    Preciado-Babb, Armando Paulino; Metz, Martina; Marcotte, Chenoa

    2015-01-01

    This paper explores the learning of both individuals and organizations within the context of a 3-year professional development program for mathematics and science teachers in a middle school. We propose to extend the notion of awareness from individuals to autonomous systems as a means to study the learning of teachers, mentors, the school, and…

  12. Effect of metal catalyst on the mechanism of hydrogen spillover in three-dimensional covalent-organic frameworks

    NASA Astrophysics Data System (ADS)

    Liu, Xiu-Ying; Yu, Jing-Xin; Li, Xiao-Dong; Liu, Gui-Cheng; Li, Xiao-Feng; Lee, Joong-Kee

    2017-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11304079, 11304140, 11404094, and 11504088), the China National Scholarship Foundation (Grant No. 201508410255), the Foundation for Young Core Teachers of Higher Education Institutions of Henan Province of China, the Foundation for Young Core Teachers of Henan University of Technology in China, the Korea Institute of Science and Technology (KIST) Institutional Program (Grant No. 2E26291) and Flag Program (Grant No. 2E26300), and the Research Grants of NRF funded by the National Research Foundation under the Ministry of Science, ICT & Future, Korea (Grant No. NRF-2015H1D3A1036078).

  13. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

    PubMed Central

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-01-01

    Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com PMID:22543367

  14. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.

    PubMed

    Kearse, Matthew; Moir, Richard; Wilson, Amy; Stones-Havas, Steven; Cheung, Matthew; Sturrock, Shane; Buxton, Simon; Cooper, Alex; Markowitz, Sidney; Duran, Chris; Thierer, Tobias; Ashton, Bruce; Meintjes, Peter; Drummond, Alexei

    2012-06-15

    The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl.

  15. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.

    PubMed

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen

    2014-12-12

    Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.

  16. Linkages Between Clinical Practices and Community Organizations for Prevention: A Literature Review and Environmental Scan

    PubMed Central

    Hinnant, Laurie W.; Kane, Heather; Horne, Joseph; McAleer, Kelly; Roussel, Amy

    2012-01-01

    Objectives. We conducted a literature review and environmental scan to develop a framework for interventions that utilize linkages between clinical practices and community organizations for the delivery of preventive services, and to identify and characterize these efforts. Methods. We searched 4 major health services and social science electronic databases and conducted an Internet search to identify examples of linkage interventions in the areas of tobacco cessation, obesity, nutrition, and physical activity. Results. We identified 49 interventions, of which 18 examples described their evaluation methods or reported any intervention outcomes. Few conducted evaluations that were rigorous enough to capture changes in intermediate or long-term health outcomes. Outcomes in these evaluations were primarily patient-focused and did not include organizational or linkage characteristics. Conclusions. An attractive option to increase the delivery of preventive services is to link primary care practices to community organizations; evidence is not yet conclusive, however, that such linkage interventions are effective. Findings provide recommendations to researchers and organizations that fund research, and call for a framework and metrics to study linkage interventions. PMID:22690974

  17. Paving the Way to Successful Implementation: Identifying Key Barriers to Use of Technology-Based Therapeutic Tools for Behavioral Health Care.

    PubMed

    Ramsey, Alex; Lord, Sarah; Torrey, John; Marsch, Lisa; Lardiere, Michael

    2016-01-01

    This study aimed to identify barriers to use of technology for behavioral health care from the perspective of care decision makers at community behavioral health organizations. As part of a larger survey of technology readiness, 260 care decision makers completed an open-ended question about perceived barriers to use of technology. Using the Consolidated Framework for Implementation Research (CFIR), qualitative analyses yielded barrier themes related to characteristics of technology (e.g., cost and privacy), potential end users (e.g., technology literacy and attitudes about technology), organization structure and climate (e.g., budget and infrastructure), and factors external to organizations (e.g., broadband accessibility and reimbursement policies). Number of reported barriers was higher among respondents representing agencies with lower annual budgets and smaller client bases relative to higher budget, larger clientele organizations. Individual barriers were differentially associated with budget, size of client base, and geographic location. Results are discussed in light of implementation science frameworks and proactive strategies to address perceived obstacles to adoption and use of technology-based behavioral health tools.

  18. Paving the Way to Successful Implementation: Identifying Key Barriers to Use of Technology-Based Therapeutic Tools for Behavioral Health Care

    PubMed Central

    Ramsey, Alex; Lord, Sarah; Torrey, John; Marsch, Lisa; Lardiere, Michael

    2014-01-01

    This study aimed to identify barriers to use of technology for behavioral health care from the perspective of care decision-makers at community behavioral health organizations. As part of a larger survey of technology readiness, 260 care decision-makers completed an open-ended question about perceived barriers to use of technology. Using the Consolidated Framework for Implementation Research (CFIR), qualitative analyses yielded barrier themes related to characteristics of technology (e.g., cost, privacy), potential end-users (e.g., technology literacy, attitudes about technology), organization structure and climate (e.g., budget, infrastructure), and factors external to organizations (e.g., broadband accessibility, reimbursement policies). Number of reported barriers was higher among respondents representing agencies with lower annual budgets and smaller client bases relative to higher budget, larger clientele organizations. Individual barriers were differentially associated with budget, size of client base, and geographic location. Results are discussed in light of implementation science frameworks and proactive strategies to address perceived obstacles to adoption and use of technology-based behavioral health tools. PMID:25192755

  19. Predicting who will major in a science discipline: Expectancy-value theory as part of an ecological model for studying academic communities

    NASA Astrophysics Data System (ADS)

    Sullins, Ellen S.; Hernandez, Delia; Fuller, Carol; Shiro Tashiro, Jay

    Research on factors that shape recruitment and retention in undergraduate science majors currently is highly fragmented and in need of an integrative research framework. Such a framework should incorporate analyses of the various levels of organization that characterize academic communities (i.e., the broad institutional level, the departmental level, and the student level), and should also provide ways to study the interactions occurring within and between these structural levels. We propose that academic communities are analogous to ecosystems, and that the research paradigms of modern community ecology can provide the necessary framework, as well as new and innovative approaches to a very complex area. This article also presents the results of a pilot study that demonstrates the promise of this approach at the student level. We administered a questionnaire based on expectancy-value theory to undergraduates enrolled in introductory biology courses. Itself an integrative approach, expectancy-value theory views achievement-related behavior as a joint function of the person's expectancy of success in the behavior and the subjective value placed on such success. Our results indicated: (a) significant gender differences in the underlying factor structures of expectations and values related to the discipline of biology, (b) expectancy-value factors significantly distinguished biology majors from nonmajors, and (c) expectancy-value factors significantly predicted students' intent to enroll in future biology courses. We explore the expectancy-value framework as an operationally integrative framework in our ecological model for studying academic communities, especially in the context of assessing the underrepresentation of women and minorities in the sciences. Future research directions as well as practical implications are also discussed.

  20. The Ocean Literacy Campaign

    NASA Astrophysics Data System (ADS)

    Schoedinger, S. E.; Strang, C.

    2008-12-01

    "Ocean Literacy is an understanding of the ocean's influence on you and your influence on the ocean." This simple statement captures the spirit of a conceptual framework supporting ocean literacy (COSEE et al., 2005). The framework comprises 7 essential principles and 44 fundamental concepts an ocean literate person would know (COSEE et al., 2005). The framework is the result of an extensive grassroots effort to reach consensus on (1) a definition for ocean literacy and (2) an articulation of the most important concepts to be understood by ocean-literate citizen (Cava et al., 2005). In the process of reaching consensus on these "big ideas" about the ocean, what began as a series of workshops has emerged as a campaign "owned" by an ever-expanding community of individuals, organizations and networks involved in developing and promoting the framework. The Ocean Literacy Framework has provided a common language for scientists and educators working together and serves as key guidance for the ocean science education efforts. This presentation will focus on the impact this Ocean Literacy Campaign has had to date as well as efforts underway to provide additional tools to enable educators and educational policy makers to further integrate teaching and learning about the ocean and our coasts into formal K-12 education and informal education. COSEE, National Geographic Society, NOAA, College of Exploration (2005). Ocean Literacy: The Essential Principles of Ocean Sciences Grades K-12, a jointly published brochure, URL: http://www.coexploration.org/oceanliteracy/documents/OceanLitChart.pdf Cava, F., S. Schoedinger , C. Strang, and P. Tuddenham (2005). Science Content and Standards for Ocean Literacy: A Report on Ocean Literacy, URL: http://www.coexploration.org/oceanliteracy/documents/OLit2004-05_Final_Report.pdf.

  1. Exploring the development of a cultural care framework for European caring science

    PubMed Central

    Rosser, Elizabeth; Bach, Shirley; Uhrenfeldt, Lisbeth; Lundberg, Pranee; Law, Kate

    2011-01-01

    The aim of this paper is to discuss the development of a cultural care framework that seeks to inform and embrace the philosophical ideals of caring science. Following a review of the literature that identified a lack of evidence of an explicit relationship between caring science and cultural care, a number of well-established transcultural care frameworks were reviewed. Our purpose was to select one that would resonate with underpinning philosophical values of caring science and that drew on criteria generated by the European Academy of Caring Science members. A modified framework based on the work of Giger and Davidhizar was developed as it embraced many of the values such as humanism that are core to caring science practice. The proposed caring science framework integrates determinants of cultural lifeworld-led care and seeks to provide clear directions for humanizing the care of individuals. The framework is offered to open up debate and act as a platform for further academic enquiry. PMID:22171224

  2. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A January mid-year review will assemble these groups to analyze the effectiveness of the framework and make adjustments as necessary. If successful, this framework will move EarthCube forward as a collaborative platform and potentially act as a model for future NSF investments in geoscience cyberinfrastructure.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dincă, Mircea; Léonard, François

    Metal–organic frameworks (MOFs), with their crystalline nanoporous three-dimensional structures, have emerged as unique multifunctional materials that combine high porosity with catalytic, photophysical, or other properties to reveal new fundamental science and applications. Because MOFs are composed of organic molecules linking metal centers in ways that are not usually conducive to the formation of free-charge carriers or low-energy charge-transport pathways, they are typically insulators. Accordingly, applications so far have harnessed the unique structural properties and porosity of MOFs, which depend only to a small extent on the ability to manipulate their electronic structure. An exciting new area has emerged due tomore » the recent demonstration of MOFs with controlled electronic and optical properties, which is enabling new fundamental science and opens up the possibility of applications in electronics and photonics. This article presents an overview of the fundamental science issues related to controlling electronic and optical properties of MOFs, and how research groups worldwide have been exploring such properties for electronics, thermoelectrics, photophysics, and charge storage.« less

  4. Dual-phase evolution in complex adaptive systems

    PubMed Central

    Paperin, Greg; Green, David G.; Sadedin, Suzanne

    2011-01-01

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle. PMID:21247947

  5. Dual-phase evolution in complex adaptive systems.

    PubMed

    Paperin, Greg; Green, David G; Sadedin, Suzanne

    2011-05-06

    Understanding the origins of complexity is a key challenge in many sciences. Although networks are known to underlie most systems, showing how they contribute to well-known phenomena remains an issue. Here, we show that recurrent phase transitions in network connectivity underlie emergent phenomena in many systems. We identify properties that are typical of systems in different connectivity phases, as well as characteristics commonly associated with the phase transitions. We synthesize these common features into a common framework, which we term dual-phase evolution (DPE). Using this framework, we review the literature from several disciplines to show that recurrent connectivity phase transitions underlie the complex properties of many biological, physical and human systems. We argue that the DPE framework helps to explain many complex phenomena, including perpetual novelty, modularity, scale-free networks and criticality. Our review concludes with a discussion of the way DPE relates to other frameworks, in particular, self-organized criticality and the adaptive cycle.

  6. GMO Reignited in Science but Not in Law: A Flawed Framework Fuels France's Stalemate.

    PubMed

    Robbins, Patricia B

    2014-01-01

    Following a statement released by a multitude of prominent scientists contesting the idea that there is a consensus on the safety of genetically modified organisms ("GMO"), this article addresses the European Union's ("EU") GMO regulatory framework, which has reluctantly permitted France to maintain an illegal ban on. MON8 10 for over a decade now. It notes that while the statement did nothing more than reignite the debate on GMO, much could and should be done to improve the framework to accommodate for the lack of true scientific understanding about the effects of GMO. This article identifies the specific areas of weakness in the EU GMO regulatory framework and recommends specific alterations. It concludes that although France's MON810 ban is illegal under existing law, the country's fears are neither unfounded nor unsupported and that the EU should work to alter its existing legal structure to parallel today's scientific uncertainty regarding GMO safety.

  7. Framework for Processing Citizens Science Data for Applications to NASA Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Teng, William; Albayrak, Arif

    2017-01-01

    Citizen science (or crowdsourcing) has drawn much high-level recent and ongoing interest and support. It is poised to be applied, beyond the by-now fairly familiar use of, e.g., Twitter for natural hazards monitoring, to science research, such as augmenting the validation of NASA earth science mission data. This interest and support is seen in the 2014 National Plan for Civil Earth Observations, the 2015 White House forum on citizen science and crowdsourcing, the ongoing Senate Bill 2013 (Crowdsourcing and Citizen Science Act of 2015), the recent (August 2016) Open Geospatial Consortium (OGC) call for public participation in its newly-established Citizen Science Domain Working Group, and NASA's initiation of a new Citizen Science for Earth Systems Program (along with its first citizen science-focused solicitation for proposals). Over the past several years, we have been exploring the feasibility of extracting from the Twitter data stream useful information for application to NASA precipitation research, with both "passive" and "active" participation by the twitterers. The Twitter database, which recently passed its tenth anniversary, is potentially a rich source of real-time and historical global information for science applications. The time-varying set of "precipitation" tweets can be thought of as an organic network of rain gauges, potentially providing a widespread view of precipitation occurrence. The validation of satellite precipitation estimates is challenging, because many regions lack data or access to data, especially outside of the U.S. and in remote and developing areas. Mining the Twitter stream could augment these validation programs and, potentially, help tune existing algorithms. Our ongoing work, though exploratory, has resulted in key components for processing and managing tweets, including the capabilities to filter the Twitter stream in real time, to extract location information, to filter for exact phrases, and to plot tweet distributions. The key step is to process the "precipitation" tweets to be compatible with satellite-retrieved precipitation data. These key components for processing and managing "precipitation" tweets (and additional ones to be developed) are not limited to precipitation, nor are they limited to the Twitter social medium. Indeed, to maximize the value of our work for NASA earth science programs, these components should be generalized and be part of an overall framework for processing citizen science data for science research. In this paper, we outline such a framework.

  8. Organization of ESOMM-2014 Conference

    DTIC Science & Technology

    2015-09-30

    protected) LONG-TERM GOALS Connect key players of marine mammal science community with associated regulators and other stakeholders...implementa- tion of noise as indicator in the European Union’s Marine Strategy Framework Directive. The ESOMM special issue of Aquatic Mammals Journal...provided input from many relvant projects on Marine mammal research. Some examples are: SOCAL-BRS, 3S-BRS, AUTEC-BRS, MOCHA, PCAD, IOGP-JIP, CET-Map, CET

  9. HYCOM High-resolution Eddying Simulations

    DTIC Science & Technology

    2014-07-01

    Meteorological Organization,the International Council for Science and the Intergovernmental Oceanographic Commission of UNESCO . * 2 ExciJa IJQes I I I I I...forecasting systems (Metzger et al., 2014a ). Within the framework of the multinational Global Ocean Data Assimilation Experiment (GODAE) and under the...10.1016/j.ocemod.2011.02.011. Metzger, E. J., and Coauthors, 2014a : US Navy operational global ocean and Arctic ice prediction systems. Oceanography

  10. US Higher Education Environmental Program Managers' Perspectives on Curriculum Design and Core Competencies: Implications for Sustainability as a Guiding Framework

    ERIC Educational Resources Information Center

    Vincent, Shirley; Focht, Will

    2009-01-01

    Purpose: This study is the first of a five-phase research project sponsored by the Council of Environmental Deans and Directors (CEDD), an organization of environmental program managers operating under the umbrella of the National Council for Science and the Environment. The purpose of the project is to determine if a consensus on core…

  11. Information and organization in public health institutes: an ontology-based modeling of the entities in the reception-analysis-report phases.

    PubMed

    Pozza, Giandomenico; Borgo, Stefano; Oltramari, Alessandro; Contalbrigo, Laura; Marangon, Stefano

    2016-09-08

    Ontologies are widely used both in the life sciences and in the management of public and private companies. Typically, the different offices in an organization develop their own models and related ontologies to capture specific tasks and goals. Although there might be an overall coordination, the use of distinct ontologies can jeopardize the integration of data across the organization since data sharing and reusability are sensitive to modeling choices. The paper provides a study of the entities that are typically found at the reception, analysis and report phases in public institutes in the life science domain. Ontological considerations and techniques are introduced and their implementation exemplified by studying the Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), a public veterinarian institute with different geographical locations and several laboratories. Different modeling issues are discussed like the identification and characterization of the main entities in these phases; the classification of the (types of) data; the clarification of the contexts and the roles of the involved entities. The study is based on a foundational ontology and shows how it can be extended to a comprehensive and coherent framework comprising the different institute's roles, processes and data. In particular, it shows how to use notions lying at the borderline between ontology and applications, like that of knowledge object. The paper aims to help the modeler to understand the core viewpoint of the organization and to improve data transparency. The study shows that the entities at play can be analyzed within a single ontological perspective allowing us to isolate a single ontological framework for the whole organization. This facilitates the development of coherent representations of the entities and related data, and fosters the use of integrated software for data management and reasoning across the company.

  12. African Indigenous science in higher education in Uganda

    NASA Astrophysics Data System (ADS)

    Akena Adyanga, Francis

    This study examines African Indigenous Science (AIS) in higher education in Uganda. To achieve this, I use anticolonial theory and Indigenous knowledge discursive frameworks to situate the subjugation of Indigenous science from the education system within a colonial historical context. These theories allow for a critical examination of the intersection of power relations rooted in the politics of knowledge production, validation, and dissemination, and how this process has become a systemic and complex method of subjugating one knowledge system over the other. I also employ qualitative and autoethnographic research methodologies. Using a qualitative research method, I interviewed 10 students and 10 professors from two universities in Uganda. My research was guided by the following key questions: What is African Indigenous Science? What methodology would help us to indigenize science education in Uganda? How can we work with Indigenous knowledge and anticolonial theoretical discursive frameworks to understand and challenge the dominance of Eurocentric knowledge in mainstream education? My research findings revealed that AIS can be defined in multiple ways, in other words, there is no universal definition of AIS. However, there were some common elements that my participants talked about such as: (a) knowledge by Indigenous communities developed over a long period of time through a trial and error approach to respond to the social, economic and political challenges of their society. The science practices are generational and synergistic with other disciplines such as history, spirituality, sociology, anthropology, geography, and trade among others, (b) a cumulative practice of the use, interactions with and of biotic and abiotic organism in everyday life for the continued existence of a community in its' totality. The research findings also indicate that Indigenous science is largely lacking from Uganda's education curriculum because of the influence of colonial and post-colonial education. Graduates of the colonial education system who are manning education in the country have themselves come to disdain Indigenous knowledge. The major findings from the study were: 1) participants' articulation of Indigenous science; 2) influence of organized religion on African Indigenous Science; 3) dominance of professors' foreign experiences in determining curriculum content; 4) protection of intellectual property rights for Indigenous science; and 5) collaborative research between Indigenous and Western scholars to enhance attitude change toward Indigenous science.

  13. A Framework for Guiding Future Citizens to Think Critically about Nature of Science and Socioscientific Issues

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.

    2015-01-01

    In this article, I introduce a framework for guiding future citizens to think critically about nature of science (NOS) and "with" NOS as they engage in socioscientific decision making. The framework, referred to as the critical thinking--nature of science (CT-NOS) framework, explicates and targets both NOS as a learning objective and NOS…

  14. A national geographic framework for guiding conservation on a landscape scale

    USGS Publications Warehouse

    Millard, Michael J.; Czarnecki, Craig A.; Morton, John M.; Brandt, Laura A.; Briggs, Jennifer S.; Shipley, Frank S.; Sayre, Roger G.; Sponholtz, Pamela J.; Perkins, David; Simpkins, Darin G.; Taylor, Janith

    2012-01-01

    The U.S. Fish and Wildlife Service, along with the global conservation community, has recognized that the conservation challenges of the 21st century far exceed the responsibilities and footprint of any individual agency or program. The ecological effects of climate change and other anthropogenic stressors do not recognize geopolitical boundaries and, as such, demand a national geographic framework to provide structure for cross-jurisdictional and landscape-scale conservation strategies. In 2009, a new map of ecologically based conservation regions in which to organize capacity and implement strategic habitat conservation was developed using rapid prototyping and expert elicitation by an interagency team of U.S. Fish and Wildlife Service and U.S. Geological Survey scientists and conservation professionals. Incorporating Bird Conservation Regions, Freshwater Ecoregions, and U.S. Geological Survey hydrologic unit codes, the new geographic framework provides a spatial template for building conservation capacity and focusing biological planning and conservation design efforts. The Department of Interior's Landscape Conservation Cooperatives are being organized in these new conservation regions as multi-stakeholder collaborations for improved conservation science and management.

  15. Chemistry in Past and New Science Frameworks and Standards: Gains, Losses, and Missed Opportunities

    ERIC Educational Resources Information Center

    Talanquer, Vicente; Sevian, Hannah

    2014-01-01

    Science education frameworks and standards play a central role in the development of curricula and assessments, as well as in guiding teaching practices in grades K-12. Recently, the National Research Council published a new Framework for K-12 Science Education that has guided the development of the Next Generation Science Standards. In this…

  16. Scientific and Engineering Practices in K-12 Classrooms: Understanding "A Framework for K-12 Science Education"

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2011-01-01

    In this article, the author presents the science and engineering practices from the recently released "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011). The author recognizes the changes implied by the new framework, and eventually a new generation of science education standards will present new…

  17. Using Metaphors to Investigate the Personal Frameworks of Pre-Service Science Teachers as They Experience a Science in Society Course

    ERIC Educational Resources Information Center

    Campbell, Todd

    2011-01-01

    This research presents a multiple case study investigating the personal frameworks of pre-service science teachers as they experience a science in society course. Through examining the metaphors employed by the participants' student experiences were illuminated. These experiences revealed shifts in frameworks over time that were more consistent…

  18. Molecular simulations for energy, environmental and pharmaceutical applications of nanoporous materials: from zeolites, metal-organic frameworks to protein crystals.

    PubMed

    Jiang, Jianwen; Babarao, Ravichandar; Hu, Zhongqiao

    2011-07-01

    Nanoporous materials have widespread applications in chemical industry, but the pathway from laboratory synthesis and testing to practical utilization of nanoporous materials is substantially challenging and requires fundamental understanding from the bottom up. With ever-growing computational resources, molecular simulations have become an indispensable tool for material characterization, screening and design. This tutorial review summarizes the recent simulation studies in zeolites, metal-organic frameworks and protein crystals, and provides a molecular overview for energy, environmental and pharmaceutical applications of nanoporous materials with increasing degree of complexity in building blocks. It is demonstrated that molecular-level studies can bridge the gap between physical and engineering sciences, unravel microscopic insights that are otherwise experimentally inaccessible, and assist in the rational design of new materials. The review is concluded with major challenges in future simulation exploration of novel nanoporous materials for emerging applications.

  19. Social psychology, terrorism, and identity: a preliminary re-examination of theory, culture, self, and society.

    PubMed

    Arena, Michael P; Arrigo, Bruce A

    2005-01-01

    This article relies upon structural symbolic interactionism and five of its organizing concepts (i.e. symbols, the definition of the situation, roles, socialization and role-taking, and the self) to put forth a novel conceptual framework for understanding the terrorist identity. In order to demonstrate the practical utility of the framework, applications to various terrorist groups around the globe are incorporated into the analysis. Overall, both the theoretical and application work help reorient the academic and practitioner behavioral science communities to the importance of culture, self, and society when investigating one's membership in and identity through militant extremist organizations. Given the unique approach taken by this article, several provisional implications are delineated. In particular, future research on terrorism, strategies linked to counter-terrorism, legal and public policy reform, and the relevance of utilizing a sociologically animated social psychology in the assessment of other forms of criminal behavior are all very tentatively explored.

  20. A conceptual framework for addressing complexity and unfolding transition dynamics when developing sustainable adaptation strategies in urban water management.

    PubMed

    Fratini, C F; Elle, M; Jensen, M B; Mikkelsen, P S

    2012-01-01

    To achieve a successful and sustainable adaptation to climate change we need to transform the way we think about change. Much water management research has focused on technical innovation with a range of new solutions developed to achieve a 'more sustainable and integrated urban water management cycle'. But Danish municipalities and utility companies are struggling to bring such solutions into practice. 'Green infrastructure', for example, requires the consideration of a larger range of aspects related to the urban context than the traditional urban water system optimization. There is the need for standardized methods and guidelines to organize transdisciplinary processes where different types of knowledge and perspectives are taken into account. On the basis of the macro-meso-micro pattern inspired by complexity science and transition theory, we developed a conceptual framework to organize processes addressing the complexity characterizing urban water management in the context of climate change. In this paper the framework is used to organize a research process aiming at understanding and unfolding urban dynamics for sustainable transition. The final goal is to enable local authorities and utilities to create the basis for managing and catalysing the technical and organizational innovation necessary for a sustainable transition towards climate change adaptation in urban areas.

  1. UNESCO's activities in ethics.

    PubMed

    ten Have, Henk A M J

    2010-03-01

    UNESCO is an intergovernmental organization with 193 Member States. It is concerned with a broad range of issues regarding education, science and culture. It is the only UN organisation with a mandate in science. Since 1993 it is addressing ethics of science and technology, with special emphasis on bioethics. One major objective of the ethics programme is the development of international normative standards. This is particularly important since many Member States only have a limited infrastructure in bioethics, lacking expertise, educational programs, bioethics committees and legal frameworks. UNESCO has recently adopted the Universal Declaration on Bioethics and Human Rights. The focus of current activities is now on implementation of this Declaration. Three activities are discussed that aim at improving and reinforcing the ethics infrastructure in relation to science and technology: the Global Ethics Observatory, the Ethics Education Programme and the Assisting Bioethics Committees project.

  2. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding whether the current standard for oxides of sulfur (SO2) sufficiently protects public health. The Integrated Plan for Review of the Primary NAAQS for SOx U.S. 2: EPA (2007) identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions in completing the NAAQS review.

  3. Participatory action research designs in applied disability and rehabilitation science: protecting against threats to social validity.

    PubMed

    Seekins, Tom; White, Glen W

    2013-01-01

    Researchers and disability advocates have been debating consumer involvement in disability and rehabilitation science since at least 1972. Despite the length of this debate, much confusion remains. Consumer involvement may represent a spirit of democracy or even empowerment, but as a tool of science, it is necessary to understand how to judge its application. To realize consumer involvement as a design element in science, researchers need a framework for understanding how it can contribute to the scientific process. The thesis of this article is that a primary scientific function of consumer involvement is to reduce threats to the social validity of research, the extent to which those expected to use or benefit from research products judge them as useful and actually use them. Social validity has traditionally not been treated with the same rigor as concerns for internal and external validity. This article presents a framework that describes 7 threats to social validity and explains how 15 forms of consumer involvement protect against those threats. We also suggest procedures for reporting and reviewing consumer involvement in proposals and manuscripts. This framework offers tools familiar to all scientists for identifying threats to the quality of research, and for judging the effectiveness of strategies for protecting against those threats. It may also enhance the standing of consumer involvement strategies as tools for protecting research quality by organizing them in a way that allows for systematic criticism of their effectiveness and subsequent improvement. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Victor Kovda, Soil Science and Biosphere

    NASA Astrophysics Data System (ADS)

    Kovda, I.

    2012-04-01

    Victor Kovda (1904-1991) was one of the most famous soil scientists at the national and international soil science community. He published more than 500 scientific works including about 400 papers, 17 collective monographs, 30 personal monographs, and more than 200 interviews and popular papers describing the role of soils not only for food production, but for the functioning of the biosphere. Victor Kovda was a talented organizer, who founded the new Institute of Soil Science and Agrochemistry (known at the present time as the Institute of physico-chemical and biological problems of soil science in Pushchino, Russia). During six years from 1959 to 1964 he was the head of Science Department in UNESCO, where he initiated a set of international projects (ex. Soil World Map of FAO-UNESCO, Source-book on irrigation and drainage). He continued his international activity after UNESCO as a President of the International Soil Science Society (1968-1974), organizer of the X international Soil Science Congress in Moscow (1974), president of SCOPE (1973-1976), working for ICSU. The last three decades of his national and international activities Victor Kovda initiated and was strongly involved in the popularization of biosphere role and functions of soils and soil cover. The start point for this activity was his special talk "Biosphere and man" presented during the intergovernmental conference in the framework of the international program "Man and Biosphere" organized by UNESCO in 1968 in Paris. The next key presentation "Soil as a component of biosphere" Victor Kovda gave as a plenary lecture during the X International congress of soil scientists. This presentation determined the focus of soil science for the next decades: at least Russian soil science became oriented towards the investigation of biosphere functions and role of soils. Soils science was accepted not only for agriculture and food production, but also as a fundamental science with a large environmental application.

  5. U.S. Geological Survey core science systems strategy: characterizing, synthesizing, and understanding the critical zone through a modular science framework

    USGS Publications Warehouse

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2013-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that resulted from the 2007 Science Strategy, "Facing Tomorrow's Challenges: U.S. Geological Survey Science in the Decade 2007-2017." This report describes the Core Science Systems vision and outlines a strategy to facilitate integrated characterization and understanding of the complex Earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of the USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science. The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on Earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet-food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or affect ecosystems. The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex Earth and biological systems through research, modeling, mapping, and the production of high quality data on the Nation's natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential collaborations that transcend all USGS missions. The framework is designed to improve the efficiency of scientific work within USGS by establishing a means to preserve and recall data for future applications, organizing existing scientific knowledge and data to facilitate new use of older information, and establishing a future workflow that naturally integrates new data, applications, and other science products to make interdisciplinary research easier and more efficient. Given the increasing need for integrated data and interdisciplinary approaches to solve modern problems, leadership by the Core Science Systems mission will facilitate problem solving by all USGS missions in ways not formerly possible. The report lays out a strategy to achieve this vision through three goals with accompanying objectives and actions. The first goal builds on and enhances the strengths of the Core Science Systems mission in characterizing and understanding the Earth system from the geologic framework to the topographic characteristics of the land surface and biodiversity across the Nation. The second goal enhances and develops new strengths in computer and information science to make it easier for USGS scientists to discover data and models, share and publish results, and discover connections between scientific information and knowledge. The third goal brings additional focus to research and development methods to address complex issues affecting society that require integration of knowledge and new methods for synthesizing scientific information. Collectively, the report lays out a strategy to create a seamless connection between all USGS activities to accelerate and make USGS science more efficient by fully integrating disciplinary expertise within a new and evolving science paradigm for a changing world in the 21st century.

  6. The concept of self-organizing systems. Why bother?

    NASA Astrophysics Data System (ADS)

    Elverfeldt, Kirsten v.; Embleton-Hamann, Christine; Slaymaker, Olav

    2016-04-01

    Complexity theory and the concept of self-organizing systems provide a rather challenging conceptual framework for explaining earth systems change. Self-organization - understood as the aggregate processes internal to an environmental system that lead to a distinctive spatial or temporal organization - reduces the possibility of implicating a specific process as being causal, and it poses some restrictions on the idea that external drivers cause a system to change. The concept of self-organizing systems suggests that many phenomena result from an orchestration of different mechanisms, so that no causal role can be assigned to an individual factor or process. The idea that system change can be due to system-internal processes of self-organization thus proves a huge challenge to earth system research, especially in the context of global environmental change. In order to understand the concept's implications for the Earth Sciences, we need to know the characteristics of self-organizing systems and how to discern self-organizing systems. Within the talk, we aim firstly at characterizing self-organizing systems, and secondly at highlighting the advantages and difficulties of the concept within earth system sciences. The presentation concludes that: - The concept of self-organizing systems proves especially fruitful for small-scale earth surface systems. Beach cusps and patterned ground are only two of several other prime examples of self-organizing earth surface systems. They display characteristics of self-organization like (i) system-wide order from local interactions, (ii) symmetry breaking, (iii) distributed control, (iv) robustness and resilience, (v) nonlinearity and feedbacks, (vi) organizational closure, (vii) adaptation, and (viii) variation and selection. - It is comparatively easy to discern self-organization in small-scale systems, but to adapt the concept to larger scale systems relevant to global environmental change research is more difficult: Self-organizing systems seem to form nested hierarchies, and on different hierarchical levels self-organizing and externally driven subsystems might occur simultaneously. - Traditional geomorphological concepts such as sensitivity to change, and intrinsic or extrinsic thresholds are compatible with the concept of self-organizing system, and these concepts are even enriched in their explanatory power when viewed in the larger framework of self-organization. The conceptual step to acknowledge self-organizing system change within earth system sciences thus can be regarded as relatively small. The concept of self-organization suggests a change of focus for earth system change research: a shift from input-output relations toward the inner organization of systems, since external controls rather limit the degrees of freedom of a system instead of triggering changes. Many systems might in fact be rather autonomous, and the specific and observable external trigger might be less important than the intrinsic system state. Hence, neither gradual nor catastrophic system changes necessarily need an external driver. The concept of self-organization provides important caveats to generally attributing environmental change to external drivers, and it encourages a frank admission of ignorance in the face of complexity.

  7. Interdisciplinary team science and the public: Steps toward a participatory team science.

    PubMed

    Tebes, Jacob Kraemer; Thai, Nghi D

    2018-01-01

    Interdisciplinary team science involves research collaboration among investigators from different disciplines who work interdependently to share leadership and responsibility. Although over the past several decades there has been an increase in knowledge produced by science teams, the public has not been meaningfully engaged in this process. We argue that contemporary changes in how science is understood and practiced offer an opportunity to reconsider engaging the public as active participants on teams and coin the term participatory team science to describe public engagement in team science. We discuss how public engagement can enhance knowledge within the team to address complex problems and suggest a different organizing framework for team science that aligns better with how teams operate and with participatory approaches to research. We also summarize work on public engagement in science, describe opportunities for various types of engagement, and provide an example of participatory team science carried out across research phases. We conclude by discussing implications of participatory team science for psychology, including changing the default when assembling an interdisciplinary science team by identifying meaningful roles for public engagement through participatory team science. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs

    NASA Astrophysics Data System (ADS)

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette I.; Troia, Matthew J.

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  9. Organizing environmental flow frameworks to meet hydropower mitigation needs

    USGS Publications Warehouse

    McManamay, Ryan A.; Brewer, Shannon K.; Jager, Henriette; Troia, Matthew J.

    2016-01-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  10. Organizing Environmental Flow Frameworks to Meet Hydropower Mitigation Needs.

    PubMed

    McManamay, Ryan A; Brewer, Shannon K; Jager, Henriette I; Troia, Matthew J

    2016-09-01

    The global recognition of the importance of natural flow regimes to sustain the ecological integrity of river systems has led to increased societal pressure on the hydropower industry to change plant operations to improve downstream aquatic ecosystems. However, a complete reinstatement of natural flow regimes is often unrealistic when balancing water needs for ecosystems, energy production, and other human uses. Thus, stakeholders must identify a prioritized subset of flow prescriptions that meet ecological objectives in light of realistic constraints. Yet, isolating aspects of flow regimes to restore downstream of hydropower facilities is among the greatest challenges of environmental flow science due, in part, to the sheer volume of available environmental flow tools in conjunction with complex negotiation-based regulatory procedures. Herein, we propose an organizational framework that structures information and existing flow paradigms into a staged process that assists stakeholders in implementing environmental flows for hydropower facilities. The framework identifies areas where regulations fall short of the needed scientific process, and provide suggestions for stakeholders to ameliorate those situations through advanced preparation. We highlight the strengths of existing flow paradigms in their application to hydropower settings and suggest when and where tools are most applicable. Our suggested framework increases the effectiveness and efficiency of the e-flow implementation process by rapidly establishing a knowledge base and decreasing uncertainty so more time can be devoted to filling knowledge gaps. Lastly, the framework provides the structure for a coordinated research agenda to further the science of environmental flows related to hydropower environments.

  11. Linking Recognition Practices and National Qualifications Frameworks: International Benchmarking of Experiences and Strategies on the Recognition, Validation and Accreditation (RVA) of Non-Formal and Informal Learning

    ERIC Educational Resources Information Center

    Singh, Madhu, Ed.; Duvekot, Ruud, Ed.

    2013-01-01

    This publication is the outcome of the international conference organized by UNESCO Institute for Lifelong Learning (UIL), in collaboration with the Centre for Validation of Prior Learning at Inholland University of Applied Sciences, the Netherlands, and in partnership with the French National Commission for UNESCO that was held in Hamburg in…

  12. A Combined Experimental and Computational Study on the Stability of Nanofluids Containing Metal Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Annapureddy, Harsha Vardhan Reddy; Nune, Satish K.; Motkuri, Radha K.

    2015-01-08

    Computational studies on nanofluids composed of metal organic frameworks (MOFs) were performed using molecular modeling techniques. Grand Canonical Monte Carlo (GCMC) simulations were used to study adsorption behavior of 1,1,1,3,3-pentafluoropropane (R-245fa) in a MIL-101 MOF at various temperatures. To understand the stability of the nanofluid composed of MIL-101 particles, we performed molecular dynamics simulations to compute potentials of mean force between hypothetical MIL-101 fragments terminated with two different kinds of modulators in R-245fa and water. Our computed potentials of mean force results indicate that the MOF particles tend to disperse better in water than in R-245fa. The reasons for thismore » observation were analyzed and discussed. Our results agree with experimental results indicating that the employed potential models and modeling approaches provide good description of molecular interactions and the reliabilities. Work performed by LXD was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Work performed by HVRA, SKN, RKM, and PBM was supported by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.« less

  13. A justification for semantic training in data curation frameworks development

    NASA Astrophysics Data System (ADS)

    Ma, X.; Branch, B. D.; Wegner, K.

    2013-12-01

    In the complex data curation activities involving proper data access, data use optimization and data rescue, opportunities exist where underlying skills in semantics may play a crucial role in data curation professionals ranging from data scientists, to informaticists, to librarians. Here, We provide a conceptualization of semantics use in the education data curation framework (EDCF) [1] under development by Purdue University and endorsed by the GLOBE program [2] for further development and application. Our work shows that a comprehensive data science training includes both spatial and non-spatial data, where both categories are promoted by standard efforts of organizations such as the Open Geospatial Consortium (OGC) and the World Wide Web Consortium (W3C), as well as organizations such as the Federation of Earth Science Information Partners (ESIP) that share knowledge and propagate best practices in applications. Outside the context of EDCF, semantics training may be same critical to such data scientists, informaticists or librarians in other types of data curation activity. Past works by the authors have suggested that such data science should augment an ontological literacy where data science may become sustainable as a discipline. As more datasets are being published as open data [3] and made linked to each other, i.e., in the Resource Description Framework (RDF) format, or at least their metadata are being published in such a way, vocabularies and ontologies of various domains are being created and used in the data management, such as the AGROVOC [4] for agriculture and the GCMD keywords [5] and CLEAN vocabulary [6] for climate sciences. The new generation of data scientist should be aware of those technologies and receive training where appropriate to incorporate those technologies into their reforming daily works. References [1] Branch, B.D., Fosmire, M., 2012. The role of interdisciplinary GIS and data curation librarians in enhancing authentic scientific research in the classroom. American Geophysical Union 2013 Fall Meeting, San Francisco, CA, USA. Abstract# ED43A-0727 [2] http://www.globe.gov [3] http://www.whitehouse.gov/sites/default/files/omb/memoranda/2013/m-13-13.pdf [4] http://aims.fao.org/standards/agrovoc [5] http://gcmd.nasa.gov/learn/keyword_list.html [6] http://cleanet.org/clean/about/climate_energy_.html

  14. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals.

    PubMed

    Mejia, Luis A; Dary, Omar; Boukerdenna, Hala

    2017-02-01

    Biofortification of crops is being introduced in several countries as a strategy to reduce micronutrient deficiencies. Biofortified products, with increased contents of micronutrients, are currently produced by conventional plant breeding, genetic modification, or nutrient-enhanced fertilization. Corn, rice, wheat, beans, pearl millet, sweet potato, and cassava have been biofortified with increased contents of provitamin A carotenoids, iron, or zinc. However, regulatory considerations are rare or nonexistent. The objective of this paper is to review the regulatory framework for production and marketing of biofortified crops in countries that have adopted this strategy. The information was identified using Internet search engines and websites of health and nutrition organizations and nongovernmental organizations and by consulting scientists and government authorities. Thus far, biofortified products introduced in Latin America, Africa, and Asia have been produced only by conventional breeding. Cultivars using other techniques are still under testing. The production and marketing of these products have been conducted without regulatory framework and under limited government control or regulatory guidance. Nevertheless, some countries have integrated biofortified crops into their nutrition agendas. Although improvements by conventional breeding have not been subject to regulations, when biofortification becomes expanded by including other techniques, an appropriate regulatory framework will be necessary. © 2016 New York Academy of Sciences.

  15. Climatic response variability and machine learning: development of a modular technology framework for predicting bio-climatic change in pacific northwest ecosystems"

    NASA Astrophysics Data System (ADS)

    Seamon, E.; Gessler, P. E.; Flathers, E.

    2015-12-01

    The creation and use of large amounts of data in scientific investigations has become common practice. Data collection and analysis for large scientific computing efforts are not only increasing in volume as well as number, the methods and analysis procedures are evolving toward greater complexity (Bell, 2009, Clarke, 2009, Maimon, 2010). In addition, the growth of diverse data-intensive scientific computing efforts (Soni, 2011, Turner, 2014, Wu, 2008) has demonstrated the value of supporting scientific data integration. Efforts to bridge this gap between the above perspectives have been attempted, in varying degrees, with modular scientific computing analysis regimes implemented with a modest amount of success (Perez, 2009). This constellation of effects - 1) an increasing growth in the volume and amount of data, 2) a growing data-intensive science base that has challenging needs, and 3) disparate data organization and integration efforts - has created a critical gap. Namely, systems of scientific data organization and management typically do not effectively enable integrated data collaboration or data-intensive science-based communications. Our research efforts attempt to address this gap by developing a modular technology framework for data science integration efforts - with climate variation as the focus. The intention is that this model, if successful, could be generalized to other application areas. Our research aim focused on the design and implementation of a modular, deployable technology architecture for data integration. Developed using aspects of R, interactive python, SciDB, THREDDS, Javascript, and varied data mining and machine learning techniques, the Modular Data Response Framework (MDRF) was implemented to explore case scenarios for bio-climatic variation as they relate to pacific northwest ecosystem regions. Our preliminary results, using historical NETCDF climate data for calibration purposes across the inland pacific northwest region (Abatzoglou, Brown, 2011), show clear ecosystems shifting over a ten-year period (2001-2011), based on multiple supervised classifier methods for bioclimatic indicators.

  16. Interaction and cooperative effort among scientific societies. Twelve years of COSCE.

    PubMed

    Martín, Nazario; Andradas, Carlos

    2015-12-01

    The evolution of knowledge and technology in recent decades has brought profound changes in science policy, not only in the countries but also in the supranational organizations. It has been necessary, therefore, to adapt the scientific institutions to new models in order to achieve a greater and better communication between them and the political counterparts responsible for defining the general framework of relations between science and society. The Federationon of Scientific Societies of Spain (COSCE, Confederación de Sociedades Científicas de España) was founded in October 2003 to respond to the urgent need to interact with the political institutions and foster a better orientation in the process of making decisions about the science policy. Currently COSCE consists of over 70 Spanish scientific societies and more than 40,000 scientists. During its twelve years of active life, COSCE has developed an intense work of awareness of the real situation of science in Spain by launching several initiatives (some of which have joined other organizations) or by joining initiatives proposed from other groups related to science both at the Spanish level and at the European and non-European scenarios. [Int Microbiol 18(4): 245-251 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  17. Socioscientific Argumentation of Pre-Service Teachers about Genetically Modified Organisms

    NASA Astrophysics Data System (ADS)

    Herawati, D.; Ardianto, D.

    2017-09-01

    This study aims to investigate socioscientific argumentation of pre-service teachers of science and non-science major regarding Genetically Modified Organisms (GMOs) issue. We used descriptive study and involved second-year pre-service teachers from two major, 28 pre-service science teachers (PSTs) and 28 pre-service non-science teachers (PNSTs) as participants. Paper and pencil test was administered in order to obtain the data of PSTs’ and PNSTs’ argument about GMOs. All of the data were analyzed by descriptive analysis. We applied Toulmin Argumentation Pattern (TAP) as a basic framework to identify the argumentation component. The result showed that both PSTs and PNSTs were able to propose an argument with a claim, data, and/or warrant.. Most of their argument contain data which provided in the text, without any further reasoning or relevant scientific knowledge. So, the coherency between argumentation component in both PSTs and PNSTs was limited. However, PSTs are more able to propose coherent arguments than PNSTs. These findings indicated that educational background and learning experiences may influence to pre-service teacher argumentation in the context of GMOs. Beside that, teaching and learning process which focused on the socioscientific issues is necessary to develop pre-service teachers’ argumentation

  18. A Bridge Too Far - Revisited: Reframing Bruer's Neuroeducation Argument for Modern Science of Learning Practitioners.

    PubMed

    Horvath, Jared C; Donoghue, Gregory M

    2016-01-01

    In Education and the Brain: A Bridge Too Far, John Bruer argues that, although current neuroscientific findings must filter through cognitive psychology in order to be applicable to the classroom, with increased knowledge the neuroscience/education bridge can someday be built. Here, we suggest that translation cannot be understood as a single process: rather, we demonstrate that at least four different 'bridges' can conceivably be built between these two fields. Following this, we demonstrate that, far from being a matter of information lack, a prescriptive neuroscience/education bridge (the one most relevant to Bruer's argument) is a practical and philosophical impossibility due to incommensurability between non-adjacent compositional levels-of-organization: a limitation inherent in all sciences. After defining this concept in the context of biology, we apply this concept to the learning sciences and demonstrate why all brain research must be behaviorally translated before prescriptive educational applicability can be elucidated. We conclude by exploring examples of how explicating different forms of translation and adopting a levels-of-organization framework can be used to contextualize and beneficially guide research and practice across all learning sciences.

  19. A Bridge Too Far – Revisited: Reframing Bruer’s Neuroeducation Argument for Modern Science of Learning Practitioners

    PubMed Central

    Horvath, Jared C.; Donoghue, Gregory M.

    2016-01-01

    In Education and the Brain: A Bridge Too Far, John Bruer argues that, although current neuroscientific findings must filter through cognitive psychology in order to be applicable to the classroom, with increased knowledge the neuroscience/education bridge can someday be built. Here, we suggest that translation cannot be understood as a single process: rather, we demonstrate that at least four different ‘bridges’ can conceivably be built between these two fields. Following this, we demonstrate that, far from being a matter of information lack, a prescriptive neuroscience/education bridge (the one most relevant to Bruer’s argument) is a practical and philosophical impossibility due to incommensurability between non-adjacent compositional levels-of-organization: a limitation inherent in all sciences. After defining this concept in the context of biology, we apply this concept to the learning sciences and demonstrate why all brain research must be behaviorally translated before prescriptive educational applicability can be elucidated. We conclude by exploring examples of how explicating different forms of translation and adopting a levels-of-organization framework can be used to contextualize and beneficially guide research and practice across all learning sciences. PMID:27014173

  20. A Library approach to establish an Educational Data Curation Framework (EDCF) that supports K-12 data science sustainability

    NASA Astrophysics Data System (ADS)

    Branch, B. D.; Wegner, K.; Smith, S.; Schulze, D. G.; Merwade, V.; Jung, J.; Bessenbacher, A.

    2013-12-01

    It has been the tradition of the libraries to support literacy. Now in the realm of Executive Order, Making Open and Machine Readable the New Default for Government Information, May 9, 2013, the library has the responsibility to support geospatial data, big data, earth science data or cyber infrastructure data that may support STEM for educational pipeline stimulation. (Such information can be found at http://www.whitehouse.gov/the-press-office/2013/05/09/executive-order-making-open-and-machine-readable-new-default-government-.) Provided is an Educational Data Curation Framework (EDCF) that has been initiated in Purdue research, geospatial data service engagement and outreach endeavors for future consideration and application to augment such data science and climate literacy needs of future global citizens. In addition, this endorsement of this framework by the GLOBE program may facilitate further EDCF implementations, discussion points and prototypes for libraries. In addition, the ECDF will support teacher-led, placed-based and large scale climate or earth science learning systems where such knowledge transfer of climate or earth science data is effectively transferred from higher education research of cyberinfrastructure use such as, NOAA or NASA, to K-12 teachers and school systems. The purpose of this effort is to establish best practices for sustainable K-12 data science delivery system or GLOBE-provided system (http://vis.globe.gov/GLOBE/) where libraries manage the data curation and data appropriateness as data reference experts for such digital data. Here, the Purdue University Libraries' GIS department works to support soils, LIDAR and water science data experiences to support teacher training for an EDCF development effort. Lastly, it should be noted that the interdisciplinary collaboration and demonstration of library supported outreach partners and national organizations such the GLOBE program may best foster EDCF development. This trend in data science where library roles may emerge is consistent with NASA's wavelength program at http://nasawavelength.org. Mr. Steven Smith, an outreach coordinator, led this Purdue University outreach activity involving the GLOBE program with support by the Purdue University Libraries GIS department.

  1. Mechanisms of Soil Aggregation: a biophysical modeling framework

    NASA Astrophysics Data System (ADS)

    Ghezzehei, T. A.; Or, D.

    2016-12-01

    Soil aggregation is one of the main crosscutting concepts in all sub-disciplines and applications of soil science from agriculture to climate regulation. The concept generally refers to adhesion of primary soil particles into distinct units that remain stable when subjected to disruptive forces. It is one of the most sensitive soil qualities that readily respond to disturbances such as cultivation, fire, drought, flooding, and changes in vegetation. These changes are commonly quantified and incorporated in soil models indirectly as alterations in carbon content and type, bulk density, aeration, permeability, as well as water retention characteristics. Soil aggregation that is primarily controlled by organic matter generally exhibits hierarchical organization of soil constituents into stable units that range in size from a few microns to centimeters. However, this conceptual model of soil aggregation as the key unifying mechanism remains poorly quantified and is rarely included in predictive soil models. Here we provide a biophysical framework for quantitative and predictive modeling of soil aggregation and its attendant soil characteristics. The framework treats aggregates as hotspots of biological, chemical and physical processes centered around roots and root residue. We keep track of the life cycle of an individual aggregate from it genesis in the rhizosphere, fueled by rhizodeposition and mediated by vigorous microbial activity, until its disappearance when the root-derived resources are depleted. The framework synthesizes current understanding of microbial life in porous media; water holding and soil binding capacity of biopolymers; and environmental controls on soil organic matter dynamics. The framework paves a way for integration of processes that are presently modeled as disparate or poorly coupled processes, including storage and protection of carbon, microbial activity, greenhouse gas fluxes, movement and storage of water, resistance of soils against erosion.

  2. A Reconstructed Vision of Environmental Science Literacy: The Case of Qatar

    ERIC Educational Resources Information Center

    Khishfe, Rola

    2014-01-01

    The purpose of this study was twofold: (a) develop a conceptual framework for environmental science literacy; and consequently (b) examine the potential of science standards/curricula to prepare environmentally literate citizens. The framework comprised four pillars: science content knowledge, scientific inquiry, nature of science (NOS), and…

  3. Ghosts in the machine: publication planning in the medical sciences.

    PubMed

    Sismondo, Sergio

    2009-04-01

    Publication of pharmaceutical company-sponsored research in medical journals, and its presentation at conferences and meetings, is mostly governed by 'publication plans' that extract the maximum amount of scientific and commercial value out of data and analyses through carefully constructed and placed papers. Clinical research is typically performed by contract research organizations, analyzed by company statisticians, written up by independent medical writers, approved and edited by academic researchers who then serve as authors, and the whole process organized and shepherded through to journal publication by publication planners. This paper reports on a conference of an international association of publication planners. It describes and analyzes their work in an ecological framework that relates it to marketing departments of pharmaceutical companies, medical journals and publishers, academic authors, and potential audiences. The medical research described here forms a new kind of corporate science, designed to look like traditional academic work, but performed largely to market products.

  4. Bio-Physics Manifesto -- for the Future of Physics and Biology

    NASA Astrophysics Data System (ADS)

    Oono, Y.

    2008-04-01

    The Newtonian revolution taught us how to dissect phenomena into contingencies (e.g., initial conditions) and fundamental laws (e.g., equations of motion). Since then, `fundamental physics' has been pursuing purer and leaner fundamental laws. Consequently, to explain real phenomena a lot of auxiliary conditions become required. Isn't it now the time to start studying `auxiliary conditions' seriously? The study of biological systems has a possibility of shedding light on this neglected side of phenomena in physics, because we organisms were constructed by our parents who supplied indispensable auxiliary conditions; we never self-organize. Thus, studying the systems lacking self-organizing capability (such as complex systems) may indicate new directions to physics and biology (biophysics). There have been attempts to construct a `general theoretical framework' of biology, but most of them never seriously looked at the actual biological world. Every serious natural science must start with establishing a phenomenological framework. Therefore, this must be the main part of bio-physics. However, this article is addressed mainly to theoretical physicists and discusses only certain theoretical aspects (with real illustrative examples).

  5. Caring Science: Transforming the Ethic of Caring-Healing Practice, Environment, and Culture within an Integrated Care Delivery System.

    PubMed

    Foss Durant, Anne; McDermott, Shawna; Kinney, Gwendolyn; Triner, Trudy

    2015-01-01

    In early 2010, leaders within Kaiser Permanente (KP) Northern California's Patient Care Services division embarked on a journey to embrace and embed core tenets of Caring Science into the practice, environment, and culture of the organization. Caring Science is based on the philosophy of Human Caring, a theory articulated by Jean Watson, PhD, RN, AHN-BC, FAAN, as a foundational covenant to guide nursing as a discipline and a profession. Since 2010, Caring Science has enabled KP Northern California to demonstrate its commitment to being an authentic person- and family-centric organization that promotes and advocates for total health. This commitment empowers KP caregivers to balance the art and science of clinical judgment by considering the needs of the whole person, honoring the unique perception of health and healing that each member or patient holds, and engaging with them to make decisions that nurture their well-being. The intent of this article is two-fold: 1) to provide context and background on how a professional practice framework was used to transform the ethic of caring-healing practice, environment, and culture across multiple hospitals within an integrated delivery system; and 2) to provide evidence on how integration of Caring Science across administrative, operational, and clinical areas appears to contribute to meaningful patient quality and health outcomes.

  6. Caring Science: Transforming the Ethic of Caring-Healing Practice, Environment, and Culture within an Integrated Care Delivery System

    PubMed Central

    Durant, Anne Foss; McDermott, Shawna; Kinney, Gwendolyn; Triner, Trudy

    2015-01-01

    In early 2010, leaders within Kaiser Permanente (KP) Northern California’s Patient Care Services division embarked on a journey to embrace and embed core tenets of Caring Science into the practice, environment, and culture of the organization. Caring Science is based on the philosophy of Human Caring, a theory articulated by Jean Watson, PhD, RN, AHN-BC, FAAN, as a foundational covenant to guide nursing as a discipline and a profession. Since 2010, Caring Science has enabled KP Northern California to demonstrate its commitment to being an authentic person- and family-centric organization that promotes and advocates for total health. This commitment empowers KP caregivers to balance the art and science of clinical judgment by considering the needs of the whole person, honoring the unique perception of health and healing that each member or patient holds, and engaging with them to make decisions that nurture their well-being. The intent of this article is two-fold: 1) to provide context and background on how a professional practice framework was used to transform the ethic of caring-healing practice, environment, and culture across multiple hospitals within an integrated delivery system; and 2) to provide evidence on how integration of Caring Science across administrative, operational, and clinical areas appears to contribute to meaningful patient quality and health outcomes. PMID:26828076

  7. The development and interaction of terrorist and fanatic groups

    NASA Astrophysics Data System (ADS)

    Camacho, Erika T.

    2013-11-01

    Through the mathematical study of two models we quantify some of the theories of co-development and co-existence of focused groups in the social sciences. This work attempts to develop the mathematical framework behind the social sciences of community formation. By using well developed theories and concepts from ecology and epidemiology we hope to extend the theoretical framework of organizing and self-organizing social groups and communities, including terrorist groups. The main goal of our work is to gain insight into the role of recruitment and retention in the formation and survival of social organizations. Understanding the underlining mechanisms of the spread of ideologies under competition is a fundamental component of this work. Here contacts between core and non-core individuals extend beyond its physical meaning to include indirect interaction and spread of ideas through phone conversations, emails, media sources and other similar mean. This work focuses on the dynamics of formation of interest groups, either ideological, economical or ecological and thus we explore the questions such as, how do interest groups initiate and co-develop by interacting within a common environment and how do they sustain themselves? Our results show that building and maintaining the core group is essential for the existence and survival of an extreme ideology. Our research also indicates that in the absence of competitive ability (i.e., ability to take from the other core group or share prospective members) the social organization or group that is more committed to its group ideology and manages to strike the right balance between investment in recruitment and retention will prevail. Thus under no cross interaction between two social groups a single trade-off (of these efforts) can support only a single organization. The more efforts that an organization implements to recruit and retain its members the more effective it will be in transmitting the ideology to other vulnerable individuals and thus converting them to believers.

  8. The Next Generation Science Standards: A Focus on Physical Science

    ERIC Educational Resources Information Center

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  9. From data processing to mental organs: an interdisciplinary path to cognitive neuroscience.

    PubMed

    Patharkar, Manoj

    2011-01-01

    Human brain is a highly evolved coordinating mechanism in the species Homo sapiens. It is only in the last 100 years that extensive knowledge of the intricate structure and complex functioning of the human brain has been acquired, though a lot is yet to be known. However, from the beginning of civilisation, people have been conscious of a 'mind' which has been considered the origin of all scientific and cultural development. Philosophers have discussed at length the various attributes of consciousness. At the same time, most of the philosophical or scientific frameworks have directly or indirectly implied mind-body duality. It is now imperative that we develop an integrated approach to understand the interconnection between mind and consciousness on one hand and brain on the other. This paper begins with the proposition that the structure of the brain is analogous, at least to certain extent, to that of the computer system. Of course, it is much more sophisticated and complex. The second proposition is that the Chomskyean concept of 'mental organs' is a good working hypothesis that tries to characterise this complexity in terms of an innate cognitive framework. By following this dual approach, brain as a data processing system and brain as a superstructure of intricately linked mental organs, we can move toward a better understanding of 'mind' within the framework of empirical science. The one 'mental organ' studied extensively in Chomskyean terms is 'language faculty' which is unique in its relation to brain, mind and consciousness.

  10. Conservation and adaptation to climate change.

    PubMed

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  11. Women in physics in the UK: Update 2008-2011

    NASA Astrophysics Data System (ADS)

    Thompson, Carol; Marks, Ann; Wilkin, Nicola; Leslie, Dawn; D'Amico, Irene; Dyer, Jennifer

    2013-03-01

    Positive progress has continued in the past three years for women in physics in the UK. The Institute of Physics has aggressively advocated and organized initiatives for women in science through its Diversity Programme and its Women in Physics Group. Surveys are routinely carried out and acted upon, most recently on postdoctoral researchers and childcare issues. The Institute's Juno Award program encourages higher education institutes to address the underrepresentation of women in physics. The UK Resource Centre for Women in SET (science, engineering, and technology) provides resources and support for women working in physics and other science and engineering disciplines. The Equality Act of 2010 provides renewed focus on equality and a framework within which women physicists can continue to push for progress. The recent achievements of women physicists are noted.

  12. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries.

    PubMed

    Schulte, Stephanie J; Knapp, Maureen

    2017-10-01

    In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. This study utilized a descriptive electronic survey. Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians.

  13. Awareness, adoption, and application of the Association of College & Research Libraries (ACRL) Framework for Information Literacy in health sciences libraries*

    PubMed Central

    Schulte, Stephanie J.; Knapp, Maureen

    2017-01-01

    Objective: In early 2016, the Association of College & Research Libraries (ACRL) officially adopted a conceptual Framework for Information Literacy (Framework) that was a significant shift away from the previous standards-based approach. This study sought to determine (1) if health sciences librarians are aware of the recent Framework for Information Literacy; (2) if they have used the Framework to change their instruction or communication with faculty, and if so, what changes have taken place; and (3) if certain librarian characteristics are associated with the likelihood of adopting the Framework. Methods: This study utilized a descriptive electronic survey. Results: Half of all respondents were aware of and were using or had plans to use the Framework. Academic health sciences librarians and general academic librarians were more likely than hospital librarians to be aware of the Framework. Those using the Framework were mostly revising and creating content, revising their teaching approach, and learning more about the Framework. Framework users commented that it was influencing how they thought about and discussed information literacy with faculty and students. Most hospital librarians and half the academic health sciences librarians were not using and had no plans to use the Framework. Librarians with more than twenty years of experience were less likely to be aware of the Framework and more likely to have no plans to use it. Common reasons for not using the Framework were lack of awareness of a new version and lack of involvement in formal instruction. Conclusion: The results suggest that there is room to improve awareness and application of the Framework among health sciences librarians. PMID:28983198

  14. Integrated Science Assessment (ISA) for Carbon Monoxide ...

    EPA Pesticide Factsheets

    EPA announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Carbon Monoxide (CO) and related Annexes was made available for independent peer review and public review. This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA's decision regarding whether the current standards for CO sufficiently protect public health and the environment. The Integrated Plan for Review of the NAAQS for CO {U.S. EPA, 2008 #8615} identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that it, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions during the NAAQS review:

  15. Science gateways for semantic-web-based life science applications.

    PubMed

    Ardizzone, Valeria; Bruno, Riccardo; Calanducci, Antonio; Carrubba, Carla; Fargetta, Marco; Ingrà, Elisa; Inserra, Giuseppina; La Rocca, Giuseppe; Monforte, Salvatore; Pistagna, Fabrizio; Ricceri, Rita; Rotondo, Riccardo; Scardaci, Diego; Barbera, Roberto

    2012-01-01

    In this paper we present the architecture of a framework for building Science Gateways supporting official standards both for user authentication and authorization and for middleware-independent job and data management. Two use cases of the customization of the Science Gateway framework for Semantic-Web-based life science applications are also described.

  16. Technology Framework. For Grades Five through Twelve.

    ERIC Educational Resources Information Center

    KnowledgeContext, Santa Cruz, CA.

    While California has frameworks defining what concepts are necessary for understanding science, math, history-social science, and other disciplines, there has been no such framework for technology. The framework presented in this paper proposes a strategy for thriving in a future that will be strongly influenced by technology. That strategy is…

  17. Climate change science applications and needs in forest ecosystem management: a workshop organized as part of the northern Wisconsin Climate Change Response Framework Project

    Treesearch

    Leslie Brandt; Chris Swanston; Linda Parker; Maria Janowiak; Richard Birdsey; Louis Iverson; David Mladenoff; Patricia Butler

    2012-01-01

    Climate change is leading to direct and indirect impacts on forest tree species and ecosystems in northern Wisconsin. Land managers will need to prepare for and respond to these impacts, so we designed a workshop to identify forest management approaches that can enhance the ability of ecosystems in northern Wisconsin to cope with climate change and address how National...

  18. Who uses nursing theory? A univariate descriptive analysis of five years' research articles.

    PubMed

    Bond, A Elaine; Eshah, Nidal Farid; Bani-Khaled, Mohammed; Hamad, Atef Omar; Habashneh, Samira; Kataua', Hussein; al-Jarrah, Imad; Abu Kamal, Andaleeb; Hamdan, Falastine Rafic; Maabreh, Roqia

    2011-06-01

    Since the early 1950s, nursing leaders have worked diligently to build the Scientific Discipline of Nursing, integrating Theory, Research and Practice. Recently, the role of theory has again come into question, with some scientists claiming nurses are not using theory to guide their research, with which to improve practice. The purposes of this descriptive study were to determine: (i) Were nursing scientists' research articles in leading nursing journals based on theory? (ii) If so, were the theories nursing theories or borrowed theories? (iii) Were the theories integrated into the studies, or were they used as organizing frameworks? Research articles from seven top ISI journals were analysed, excluding regularly featured columns, meta-analyses, secondary analysis, case studies and literature reviews. The authors used King's dynamic Interacting system and Goal Attainment Theory as an organizing framework. They developed consensus on how to identify the integration of theory, searching the Title, Abstract, Aims, Methods, Discussion and Conclusion sections of each research article, whether quantitative or qualitative. Of 2857 articles published in the seven journals from 2002 to, and including, 2006, 2184 (76%) were research articles. Of the 837 (38%) authors who used theories, 460 (55%) used nursing theories, 377 (45%) used other theories: 776 (93%) of those who used theory integrated it into their studies, including qualitative studies, while 51 (7%) reported they used theory as an organizing framework for their studies. Closer analysis revealed theory principles were implicitly implied, even in research reports that did not explicitly report theory usage. Increasing numbers of nursing research articles (though not percentagewise) continue to be guided by theory, and not always by nursing theory. Newer nursing research methods may not explicitly state the use of nursing theory, though it is implicitly implied. © 2010 The Authors. Scandinavian Journal of Caring Sciences © 2010 Nordic College of Caring Science.

  19. Reconceptualizing the Nature of Science for Science Education

    NASA Astrophysics Data System (ADS)

    Dagher, Zoubeida R.; Erduran, Sibel

    2016-03-01

    Two fundamental questions about science are relevant for science educators: (a) What is the nature of science? and (b) what aspects of nature of science should be taught and learned? They are fundamental because they pertain to how science gets to be framed as a school subject and determines what aspects of it are worthy of inclusion in school science. This conceptual article re-examines extant notions of nature of science and proposes an expanded version of the Family Resemblance Approach (FRA), originally developed by Irzik and Nola (International handbook of research in history, philosophy and science teaching. Springer, Dordrecht, pp 999-1021, 2014) in which they view science as a cognitive-epistemic and as an institutional-social system. The conceptual basis of the expanded FRA is described and justified in this article based on a detailed account published elsewhere (Erduran and Dagher in Reconceptualizing the nature of science for science education: scientific knowledge, practices and other family categories. Springer, Dordrecht, 2014a). The expanded FRA provides a useful framework for organizing science curriculum and instruction and gives rise to generative visual tools that support the implementation of a richer understanding of and about science. The practical implications for this approach have been incorporated into analysis of curriculum policy documents, curriculum implementation resources, textbook analysis and teacher education settings.

  20. Outstanding Science Trade Books for Students K-12

    ERIC Educational Resources Information Center

    Science Teacher, 2016

    2016-01-01

    Science teachers and mentors continue to be challenged to meet the high expectations of "A Framework for K-12 Science Education" and the "Next Generation Science Standards." Indeed the Framework urges teachers to help learners "[build] progressively more sophisticated explanations of natural phenomena..." while the…

  1. Achieving conservation science that bridges the knowledge-action boundary.

    PubMed

    Cook, Carly N; Mascia, Michael B; Schwartz, Mark W; Possingham, Hugh P; Fuller, Richard A

    2013-08-01

    There are many barriers to using science to inform conservation policy and practice. Conservation scientists wishing to produce management-relevant science must balance this goal with the imperative of demonstrating novelty and rigor in their science. Decision makers seeking to make evidence-based decisions must balance a desire for knowledge with the need to act despite uncertainty. Generating science that will effectively inform management decisions requires that the production of information (the components of knowledge) be salient (relevant and timely), credible (authoritative, believable, and trusted), and legitimate (developed via a process that considers the values and perspectives of all relevant actors) in the eyes of both researchers and decision makers. We perceive 3 key challenges for those hoping to generate conservation science that achieves all 3 of these information characteristics. First, scientific and management audiences can have contrasting perceptions about the salience of research. Second, the pursuit of scientific credibility can come at the cost of salience and legitimacy in the eyes of decision makers, and, third, different actors can have conflicting views about what constitutes legitimate information. We highlight 4 institutional frameworks that can facilitate science that will inform management: boundary organizations (environmental organizations that span the boundary between science and management), research scientists embedded in resource management agencies, formal links between decision makers and scientists at research-focused institutions, and training programs for conservation professionals. Although these are not the only approaches to generating boundary-spanning science, nor are they mutually exclusive, they provide mechanisms for promoting communication, translation, and mediation across the knowledge-action boundary. We believe that despite the challenges, conservation science should strive to be a boundary science, which both advances scientific understanding and contributes to decision making. © 2013 Society for Conservation Biology.

  2. Moving Women from School to Work in Science: Curriculum Demands/adult Identities. And Life Transitions

    NASA Astrophysics Data System (ADS)

    Eisenhart, Margaret

    This article proposes that the organization of some college curriculum programs as well as some workplaces presents special and perhaps unnecessary obstacles to women who might pursue science or engineering. The article begins with a framework for thinking about connections between school and work in various fields. This section reveals important differences in the way college degree programs are organized and in their implications for the transition to work. Some programs, such as in physics, construct a "tight" link between school and work; others, such as in sociology, construct much looser links. The article proceeds by reviewing results of previous ethnographic research about women's actual experiences in college and work. This section suggests that during the period of transition from college to work, women face special cultural demands that interfere with their pursuit of degrees in tight programs. Joining the lessons from the two preceding sections, the argument is made that the tight organization of some college and workplace environments asks more of women than they can give and helps explain why women continue to be under represented in some fields. The argument has testable Implications for the design of curricularprogramsana'workplace environments that might attract more women (and perhaps more minorities and men) to science and engineering.

  3. Building a Semantic Framework for eScience

    NASA Astrophysics Data System (ADS)

    Movva, S.; Ramachandran, R.; Maskey, M.; Li, X.

    2009-12-01

    The e-Science vision focuses on the use of advanced computing technologies to support scientists. Recent research efforts in this area have focused primarily on “enabling” use of infrastructure resources for both data and computational access especially in Geosciences. One of the existing gaps in the existing e-Science efforts has been the failure to incorporate stable semantic technologies within the design process itself. In this presentation, we describe our effort in designing a framework for e-Science built using Service Oriented Architecture. Our framework provides users capabilities to create science workflows and mine distributed data. Our e-Science framework is being designed around a mass market tool to promote reusability across many projects. Semantics is an integral part of this framework and our design goal is to leverage the latest stable semantic technologies. The use of these stable semantic technologies will provide the users of our framework the useful features such as: allow search engines to find their content with RDFa tags; create RDF triple data store for their content; create RDF end points to share with others; and semantically mash their content with other online content available as RDF end point.

  4. Integrated primary care, the collaboration imperative inter-organizational cooperation in the integrated primary care field: a theoretical framework

    PubMed Central

    Valentijn, Pim P; Bruijnzeels, Marc A; de Leeuw, Rob J; Schrijvers, Guus J.P

    2012-01-01

    Purpose Capacity problems and political pressures have led to a rapid change in the organization of primary care from mono disciplinary small business to complex inter-organizational relationships. It is assumed that inter-organizational collaboration is the driving force to achieve integrated (primary) care. Despite the importance of collaboration and integration of services in primary care, there is no unambiguous definition for both concepts. The purpose of this study is to examine and link the conceptualisation and validation of the terms inter-organizational collaboration and integrated primary care using a theoretical framework. Theory The theoretical framework is based on the complex collaboration process of negotiation among multiple stakeholder groups in primary care. Methods A literature review of health sciences and business databases, and targeted grey literature sources. Based on the literature review we operationalized the constructs of inter-organizational collaboration and integrated primary care in a theoretical framework. The framework is being validated in an explorative study of 80 primary care projects in the Netherlands. Results and conclusions Integrated primary care is considered as a multidimensional construct based on a continuum of integration, extending from segregation to integration. The synthesis of the current theories and concepts of inter-organizational collaboration is insufficient to deal with the complexity of collaborative issues in primary care. One coherent and integrated theoretical framework was found that could make the complex collaboration process in primary care transparent. This study presented theoretical framework is a first step to understand the patterns of successful collaboration and integration in primary care services. These patterns can give insights in the organization forms needed to create a good working integrated (primary) care system that fits the local needs of a population. Preliminary data of the patterns of collaboration and integration will be presented.

  5. Analysis of sustainable leadership for science learning management in the 21st Century under education THAILAND 4.0 framework

    NASA Astrophysics Data System (ADS)

    Jedaman, Pornchai; Buaraphan, Khajornsak; Pimdee, Paitoon; Yuenyong, Chokchai; Sukkamart, Aukkapong; Suksup, Charoen

    2018-01-01

    This article aims to study and analyze the 21st Century of sustainable leadership under the education THAILAND 4.0 Framework, and factor analysis of sustainable leadership for science learning. The study employed both quantitative and qualitative approaches in collecting data including a questionnaire survey, a documentary review and a Participatory Action Learning (PAL). The sample were sampling purposively. There were 225 administrators of Primary and Secondary Education Area Offices throughout Thailand. Out of 225, 183 (83.33%) and 42 (16.67%) respondents were the administrators of Primary and Secondary Education Offices, respectively. The quantitative data was analyzed by descriptive statistical analysis including mean, standard deviation. Also, the Confirmatory Factor Analysis (CFA) was conducted to analyze the factors associated with sustainable leadership under the education THAILAND 4.0 Framework. The qualitative data was analyzed by using three main stages, i.e., data reduction, data organization, data interpretation to conclusion. The study revealed that sustainable leadership under the education THAILAND 4.0 Framework needs to focus on development, awareness of duty and responsibility, equality, moral and knowledge. All aspects should be integrated together in order to achieve the organizational goals, good governance culture and identity. Importantly, there were six "key" elements of sustainable leadership under the education THAILAND 4.0 framework: i) Professional Leadership Role, ii) Leadership Under Change, iii) Leadership Skills 4.0 in the 21st Century, iv) Development in the Pace With Change, v) Creativity and Creative Tension, and vi) Hold True Assessments. The CFA showed that the six key elements of sustainable leadership under the education THAILAND 4.0 framework by weight of each elements were significant at the .01 significance level.

  6. Supporting Reform-Oriented Secondary Science Teaching Through the Use of a Framework to Analyze Construction of Scientific Explanations

    NASA Astrophysics Data System (ADS)

    Richmond, Gail; Parker, Joyce M.; Kaldaras, Leonora

    2016-08-01

    The Next-Generation Science Standards (NGSS) call for a different approach to learning science. They promote three-dimensional (3D) learning that blends disciplinary core ideas, crosscutting concepts and scientific practices. In this study, we examined explanations constructed by secondary science teacher candidates (TCs) as a scientific practice outlined in the NGSS necessary for supporting students' learning of science in this 3D way. We examined TCs' ability to give explanations that include explicit statements of underlying reasons for natural phenomena, as opposed to simply describing patterns or laws. In their methods courses, TCs were taught to organize explanations into a what/how/why framework, where what refers to what happens in specific cases (data or observations); how refers to how things usually happen and is equivalent to patterns or laws; and why refers to causal explanations or models. We examined TCs' ability to do this spontaneously and in a resource-rich environment as a first step in gauging their preparedness for NGSS-aligned teaching. We found that (1) the ability of TCs to articulate complete and accurate causal scientific explanations for phenomena exists along a continuum; (2) TCs in our sample whose explanations fell on the upper end of this continuum were more likely to provide complete and accurate explanations even in the absence of support from explicit standards; and (3) teacher candidate's ability to construct complete and accurate explanations did not correlate with cross-course performance or academic major. The implications of these findings for the preparation of teachers for NGSS-based science instruction are discussed.

  7. A Knowledge Discovery framework for Planetary Defense

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Yang, C. P.; Li, Y.; Yu, M.; Bambacus, M.; Seery, B.; Barbee, B.

    2016-12-01

    Planetary Defense, a project funded by NASA Goddard and the NSF, is a multi-faceted effort focused on the mitigation of Near Earth Object (NEO) threats to our planet. Currently, there exists a dispersion of information concerning NEO's amongst different organizations and scientists, leading to a lack of a coherent system of information to be used for efficient NEO mitigation. In this paper, a planetary defense knowledge discovery engine is proposed to better assist the development and integration of a NEO responding system. Specifically, we have implemented an organized information framework by two means: 1) the development of a semantic knowledge base, which provides a structure for relevant information. It has been developed by the implementation of web crawling and natural language processing techniques, which allows us to collect and store the most relevant structured information on a regular basis. 2) the development of a knowledge discovery engine, which allows for the efficient retrieval of information from our knowledge base. The knowledge discovery engine has been built on the top of Elasticsearch, an open source full-text search engine, as well as cutting-edge machine learning ranking and recommendation algorithms. This proposed framework is expected to advance the knowledge discovery and innovation in planetary science domain.

  8. On the dielectric and optical properties of surface-anchored metal-organic frameworks: A study on epitaxially grown thin films

    NASA Astrophysics Data System (ADS)

    Redel, Engelbert; Wang, Zhengbang; Walheim, Stefan; Liu, Jinxuan; Gliemann, Hartmut; Wöll, Christof

    2013-08-01

    We determine the optical constants of two highly porous, crystalline metal-organic frameworks (MOFs). Since it is problematic to determine the optical constants for the standard powder modification of these porous solids, we instead use surface-anchored metal-organic frameworks (SURMOFs). These MOF thin films are grown using liquid phase epitaxy (LPE) on modified silicon substrates. The produced SURMOF thin films exhibit good optical properties; these porous coatings are smooth as well as crack-free, they do not scatter visible light, and they have a homogenous interference color over the entire sample. Therefore, spectroscopic ellipsometry (SE) can be used in a straightforward fashion to determine the corresponding SURMOF optical properties. After careful removal of the solvent molecules used in the fabrication process as well as the residual water adsorbed in the voids of this highly porous solid, we determine an optical constant of n = 1.39 at a wavelength of 750 nm for HKUST-1 (stands for Hong Kong University of Science and Technology-1; and was first discovered there) or [Cu3(BTC)2]. After exposing these SURMOF thin films to moisture/EtOH atmosphere, the refractive index (n) increases to n = 1.55-1.6. This dependence of the optical properties on water/EtOH adsorption demonstrates the potential of such SURMOF materials for optical sensing.

  9. Plants in silico: why, why now and what?--an integrative platform for plant systems biology research.

    PubMed

    Zhu, Xin-Guang; Lynch, Jonathan P; LeBauer, David S; Millar, Andrew J; Stitt, Mark; Long, Stephen P

    2016-05-01

    A paradigm shift is needed and timely in moving plant modelling from largely isolated efforts to a connected community endeavour that can take full advantage of advances in computer science and in mechanistic understanding of plant processes. Plants in silico (Psi) envisions a digital representation of layered dynamic modules, linking from gene networks and metabolic pathways through to cellular organization, tissue, organ and whole plant development, together with resource capture and use efficiency in dynamic competitive environments, ultimately allowing a mechanistically rich simulation of the plant or of a community of plants in silico. The concept is to integrate models or modules from different layers of organization spanning from genome to phenome to ecosystem in a modular framework allowing the use of modules of varying mechanistic detail representing the same biological process. Developments in high-performance computing, functional knowledge of plants, the internet and open-source version controlled software make achieving the concept realistic. Open source will enhance collaboration and move towards testing and consensus on quantitative theoretical frameworks. Importantly, Psi provides a quantitative knowledge framework where the implications of a discovery at one level, for example, single gene function or developmental response, can be examined at the whole plant or even crop and natural ecosystem levels. © 2015 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  10. Supramolecular organic frameworks: engineering periodicity in water through host-guest chemistry.

    PubMed

    Tian, Jia; Chen, Lan; Zhang, Dan-Wei; Liu, Yi; Li, Zhan-Ting

    2016-05-11

    The development of homogeneous, water-soluble periodic self-assembled structures comprise repeating units that produce porosity in two-dimensional (2D) or three-dimensional (3D) spaces has become a topic of growing interest in the field of supramolecular chemistry. Such novel self-assembled entities, known as supramolecular organic frameworks (SOFs), are the result of programmed host-guest interactions, which allows for the thermodynamically controlled generation of monolayer sheets or a diamondoid architecture with regular internal cavities or pores under mild conditions. This feature article aims at propagating the conceptually novel SOFs as a new entry into conventional supramolecular polymers. In the first section, we will describe the background of porous solid frameworks and supramolecular polymers. We then introduce the self-assembling behaviour of several multitopic flexible molecules, which is closely related to the design of periodic SOFs from rigid multitopic building blocks. This is followed by a brief discussion of cucurbit[8]uril (CB[8])-encapsulation-enhanced aromatic stacking in water. The three-component host-guest pattern based on this stacking motif has been utilized to drive the formation of most of the new SOFs. In the following two sections, we will highlight the main advances in the construction of 2D and 3D SOFs and the related functional aspects. Finally, we will offer our opinions on future directions for both structures and functions. We hope that this article will trigger the interest of researchers in the field of chemistry, physics, biology and materials science, which should help accelerate the applications of this new family of soft self-assembled organic frameworks.

  11. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  12. Engaging Experts: Science-Policy Interactions and the Introduction of Congestion Charging in Stockholm.

    PubMed

    Broström, Anders; McKelvey, Maureen

    2018-01-01

    This article analyzes the conditions for mobilizing the science base for development of public policy. It does so by focusing upon the science-policy interface, specifically the processes of direct interaction between scientists and scientifically trained experts, on the one hand, and agents of policymaking organizations, on the other. The article defines two dimensions - cognitive distance and expert autonomy - which are argued to influence knowledge exchange, in such a way as to shape the outcome. A case study on the implementation of congestion charges in Stockholm, Sweden, illustrates how the proposed framework pinpoints three central issues for understanding these processes: (1) Differentiating the roles of, e.g., a science-based consultancy firm and an academic environment in policy formation; (2) Examining the fit between the organizational form of the science-policy interface and the intended goals; and (3) Increasing our understanding of when policymaker agents themselves need to develop scientific competence in order to interact effectively with scientific experts.

  13. Defining the Application Readiness of Products when Developing Earth Observing Remote Sensing Data Products

    NASA Astrophysics Data System (ADS)

    Escobar, V. M.

    2017-12-01

    Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in Earth Science. With new satellite missions being launched every year, new types of Earth Science data are being incorporated into science models and decision-making systems in a broad array of organizations. These applications help hazard mitigation and decision-making in government, private, and civic institutions working to reduce its impact on human wellbeing. Policy guidance and knowledge of product maturity can influence mission design as well as development of product applications in user organizations. Ensuring that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive is a critical outcome from engagement of user communities. Tracking the applications and product maturity help improve the use of data. NASA's Applications Readiness Levels reduce cost and increase the confidence in applications. ARLs help identify areas where NASA products are most useful while allowing the user to leverage products in early development as well as those ready for operational uses. By considering the needs of the user community early on in the mission-design process, agencies can use ARLs to ensure that satellites meet the needs of multiple constituencies and the development of products are integrated into user organizations organically. ARLs and user integration provide a perspective on the maturity and readiness of a products ability to influence policy and decision-making. This paper describes the mission application development process at NASA and within the Earth Science Directorate. We present the successes and challenges faced by NASA data users and explain how ARLs helps link NASA science to the appropriate policies and decision frameworks. The methods presented here can be adapted to other programs and institutions seeking to rapidly move scientific research to applications that have societal impact.

  14. Using Frameworks in a Government Contracting Environment: Case Study at the NASA Center for Computational Sciences

    NASA Technical Reports Server (NTRS)

    McGalliard, James

    2008-01-01

    A viewgraph describing the use of multiple frameworks by NASA, GSA, and U.S. Government agencies is presented. The contents include: 1) Federal Systems Integration and Management Center (FEDSIM) and NASA Center for Computational Sciences (NCCS) Environment; 2) Ruling Frameworks; 3) Implications; and 4) Reconciling Multiple Frameworks.

  15. Notes on a Vision for the Global Space Weather Enterprise

    NASA Astrophysics Data System (ADS)

    Head, James N.

    2015-07-01

    Space weather phenomena impacts human civilization on a global scale and hence calls for a global approach to research, monitoring, and operational forecasting. The Global Space Weather Enterprise (GSWE) could be arranged along lines well established in existing international frameworks related to space exploration or to the use of space to benefit humanity. The Enterprise need not establish a new organization, but could evolve from existing international organizations. A GSWE employing open architectural concepts could be arranged to promote participation by all interested States regardless of current differences in science and technical capacity. Such an Enterprise would engender capacity building and burden sharing opportunities.

  16. Biomaterials and scaffolds in reparative medicine

    NASA Technical Reports Server (NTRS)

    Chaikof, Elliot L.; Matthew, Howard; Kohn, Joachim; Mikos, Antonios G.; Prestwich, Glenn D.; Yip, Christopher M.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Most approaches currently pursued or contemplated within the framework of reparative medicine, including cell-based therapies, artificial organs, and engineered living tissues, are dependent on our ability to synthesize or otherwise generate novel materials, fabricate or assemble materials into appropriate 2-D and 3-D forms, and precisely tailor material-related physical and biological properties so as to achieve a desired clinical response. This paper summarizes the scientific and technological opportunities within the fields of biomaterials science and molecular engineering that will likely establish new enabling technologies for cellular and molecular therapies directed at the repair, replacement, or reconstruction of diseased or damaged organs and tissues.

  17. Integration of Culturally Relevant Pedagogy into the Science Learning Progression Framework

    ERIC Educational Resources Information Center

    Bernardo, Cyntra

    2017-01-01

    This study integrated elements of culturally relevant pedagogy into a science learning progression framework, with the goal of enhancing teachers' cultural knowledge and thereby creating better teaching practices in an urban public high school science classroom. The study was conducted using teachers, an administrator, a science coach, and…

  18. Engineering Encounters: Engineer It, Learn It--Science and Engineering Practices in Action

    ERIC Educational Resources Information Center

    Lachapelle, Cathy P.; Sargianis, Kristin; Cunningham, Christine M.

    2013-01-01

    Engineering is prominently included in the "Next Generation Science Standards" (Achieve Inc. 2013), as it was in "A Framework for K-12 Science Education" (NRC 2012). The National Research Council, authors of the "Framework," write, "Engineering and technology are featured alongside the natural sciences (physical…

  19. NASA Science Institutes Plan. Report of the NASA Science Institutes Team: Final Publication (Incorporating Public Comments and Revisions)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This NASA Science Institute Plan has been produced in response to direction from the NASA Administrator for the benefit of NASA Senior Management, science enterprise leaders, and Center Directors. It is intended to provide a conceptual framework for organizing and planning the conduct of science in support of NASA's mission through the creation of a limited number of science Institutes. This plan is the product of the NASA Science Institute Planning Integration Team (see Figure A). The team worked intensively over a three-month period to review proposed Institutes and produce findings for NASA senior management. The team's activities included visits to current NASA Institutes and associated Centers, as well as approximately a dozen non-NASA research Institutes. In addition to producing this plan, the team published a "Benchmarks" report. The Benchmarks report provides a basis for comparing NASA's proposed activities with those sponsored by other national science agencies, and identifies best practices to be considered in the establishment of NASA Science Institutes. Throughout the team's activities, a Board of Advisors comprised of senior NASA officials (augmented as necessary with other government employees) provided overall advice and counsel.

  20. Enhancing student engagement to positively impact mathematics anxiety, confidence and achievement for interdisciplinary science subjects

    NASA Astrophysics Data System (ADS)

    Everingham, Yvette L.; Gyuris, Emma; Connolly, Sean R.

    2017-11-01

    Contemporary science educators must equip their students with the knowledge and practical know-how to connect multiple disciplines like mathematics, computing and the natural sciences to gain a richer and deeper understanding of a scientific problem. However, many biology and earth science students are prejudiced against mathematics due to negative emotions like high mathematical anxiety and low mathematical confidence. Here, we present a theoretical framework that investigates linkages between student engagement, mathematical anxiety, mathematical confidence, student achievement and subject mastery. We implement this framework in a large, first-year interdisciplinary science subject and monitor its impact over several years from 2010 to 2015. The implementation of the framework coincided with an easing of anxiety and enhanced confidence, as well as higher student satisfaction, retention and achievement. The framework offers interdisciplinary science educators greater flexibility and confidence in their approach to designing and delivering subjects that rely on mathematical concepts and practices.

  1. Science-based Framework for Environmental Benefits Assessment

    DTIC Science & Technology

    2013-03-01

    ER D C/ EL T R -1 3 -4 Environmental Benefits Analysis Program Science-based Framework for Environmental Benefits Assessment E nv ir...acwc.sdp.sirsi.net/client/default. Environmental Benefits Analysis Program ERDC/EL TR-13-4 March 2013 Science-based Framework for Environmental Benefits ...evaluating ecosystem restoration benefits within the context of USACE Civil Works planning process. An emphasis is placed on knowledge gained from

  2. Science supervisors' conceptions of biology and the field of science: A qualitative study

    NASA Astrophysics Data System (ADS)

    Young, Jean Radcliff

    1999-12-01

    This study examined the nature, source and formation of science supervisors' cognitive frameworks for biology and for the field of science and the impact of these frameworks on their work in school divisions. The design for this qualitative study was an emergent case study using ethnographic methods. The purposeful sample consisted of five science supervisors selected from different school divisions in three geographic regions of a middle-Atlantic state. Each participant had a background in biology, classroom teaching and full-time supervisory experience. To collect data for this study, an open-ended questionnaire was used to gain an understanding of the nature of the supervisors' conceptions of biology and for the field of science. Two semi-structured interviews, each lasting 1--2 hours in length, were designed to explore the source and formation of the supervisors' conceptual frameworks, and the impact of these frameworks on their work in school divisions. Data were inductively analyzed using a constant comparative approach. The major findings of this study were: (1) All of the supervisors in this study were remarkably cognizant of possessing a framework for biology and for the field of science. (2) The supervisors' frameworks were well-formed, relatively highly complex and showed a variety of organizational patterns. (3) All of the supervisors' diagrams showed evidence of coherent, integrated themes with emphasis on the importance of connections and interrelationships. (4) The supervisors were able to readily articulate sound rationales for construction of their diagrams. (5) Instead of seeing biology as an isolated discipline, the supervisors view biology in the context of science. Overall, the supervisors no longer see their frameworks as biology-content related, but as science-related. (6) Major influences on the source and formation of the supervisors' conceptual frameworks were a result of selected work-related experiences. (7) The supervisors' conceptual frameworks, in the context of implementation of state Standards of Learning, have had a major impact on their work in their school divisions with teachers and indirectly with students, parents and the public. Results are discussed in comparison with prior studies of non-supervisors using a similar methodology. Implications for educational practice and further research are included.

  3. Methacrylate-bonded covalent-organic framework monolithic columns for high performance liquid chromatography.

    PubMed

    Liu, Li-Hua; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2017-01-06

    Covalent-organic frameworks (COFs) are a newfangled class of intriguing microporous materials. Considering their unique properties, COFs should be promising as packing materials for high performance liquid chromatography (HPLC). However, the irregular shape and sub-micrometer size of COFs synthesized via the traditional methods render the main obstacles for the application of COFs in HPLC. Herein, we report the preparation of methacrylate-bonded COF monolithic columns for HPLC to overcome the above obstacles. The prepared COF bonded monolithic columns not only show good homogeneity and permeability, but also give high column efficiency, good resolution and precision for HPLC separation of small molecules including polycyclic aromatic hydrocarbons, phenols, anilines, nonsteroidal anti-inflammatory drugs and benzothiophenes. Compared with the bare polymer monolithic column, the COF bonded monolithic columns show enhanced hydrophobic, π-π and hydrogen bond interactions in reverse phase HPLC. The results reveal the great potential of COF bonded monoliths for HPLC and COFs in separation sciences. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Computer-aided discovery of a metal-organic framework with superior oxygen uptake.

    PubMed

    Moghadam, Peyman Z; Islamoglu, Timur; Goswami, Subhadip; Exley, Jason; Fantham, Marcus; Kaminski, Clemens F; Snurr, Randall Q; Farha, Omar K; Fairen-Jimenez, David

    2018-04-11

    Current advances in materials science have resulted in the rapid emergence of thousands of functional adsorbent materials in recent years. This clearly creates multiple opportunities for their potential application, but it also creates the following challenge: how does one identify the most promising structures, among the thousands of possibilities, for a particular application? Here, we present a case of computer-aided material discovery, in which we complete the full cycle from computational screening of metal-organic framework materials for oxygen storage, to identification, synthesis and measurement of oxygen adsorption in the top-ranked structure. We introduce an interactive visualization concept to analyze over 1000 unique structure-property plots in five dimensions and delimit the relationships between structural properties and oxygen adsorption performance at different pressures for 2932 already-synthesized structures. We also report a world-record holding material for oxygen storage, UMCM-152, which delivers 22.5% more oxygen than the best known material to date, to the best of our knowledge.

  5. Environmental literacy framework with a focus on climate change (ELF): a framework and resources for teaching climate change

    NASA Astrophysics Data System (ADS)

    Huffman, L. T.; Blythe, D.; Dahlman, L. E.; Fischbein, S.; Johnson, K.; Kontar, Y.; Rack, F. R.; Kulhanek, D. K.; Pennycook, J.; Reed, J.; Youngman, B.; Reeves, M.; Thomas, R.

    2010-12-01

    The challenges of communicating climate change science to non-technical audiences present a daunting task, but one that is recognized in the science community as urgent and essential. ANDRILL's (ANtarctic geological DRILLing) international network of scientists, engineers, technicians and educators work together to convey a deeper understanding of current geoscience research as well as the process of science to non-technical audiences. One roadblock for educators who recognize the need to teach climate change has been the lack of a comprehensive, integrated set of resources and activities that are related to the National Science Education Standards. Pieces of the climate change puzzle can be found in the excellent work of the groups of science and education professionals who wrote the Essential Principles of Ocean Sciences, Climate Literacy: The Essential Principles of Climate Science, Earth Science Literacy Principles: The Big Ideas and Supporting Concepts of Earth Science, and Essential Principals and Fundamental Concepts for Atmospheric Science Literacy, but teachers have precious little time to search out the climate change goals and objectives in those frameworks and then find the resources to teach them. Through NOAA funding, ANDRILL has created a new framework, The Environmental Literacy Framework with a Focus on Climate Change (ELF), drawing on the works of the aforementioned groups, and promoting an Earth Systems approach to teaching climate change through five units: Atmosphere, Biosphere, Geosphere, Hydrosphere/Cryosphere, and Energy as the driver of interactions within and between the “spheres.” Each key concept in the framework has a hands-on, inquiry activity and matching NOAA resources for teaching the objectives. In its present form, we present a ‘road map’ for teaching climate change and a set of resources intended to continue to evolve over time.

  6. Using the Geoscience Literacy Frameworks and Educational Technologies to Promote Science Literacy in Non-science Major Undergraduates

    NASA Astrophysics Data System (ADS)

    Carley, S.; Tuddenham, P.; Bishop, K. O.

    2008-12-01

    In recent years several geoscience communities have been developing ocean, climate, atmosphere and earth science literacy frameworks as enhancements to the National Science Education Standards content standards. Like the older content standards these new geoscience literacy frameworks have focused on K-12 education although they are also intended for informal education and general public audiences. These geoscience literacy frameworks potentially provide a more integrated and less abstract approach to science literacy that may be more suitable for non-science major students that are not pursuing careers in science research or education. They provide a natural link to contemporary environmental issues - e.g., climate change, resource depletion, species and habitat loss, natural hazards, pollution, development of renewable energy, material recycling. The College of Exploration is an education research non-profit that has provided process and technical support for the development of most of these geoscience literacy frameworks. It has a unique perspective on their development. In the last ten years it has also gained considerable national and international expertise in facilitating web-based workshops that support in-depth conversations among educators and working scientists/researchers on important science topics. These workshops have been of enormous value to educators working in K-12, 4-year institutions and community colleges. How can these geoscience literacy frameworks promote more collaborative inquiry-based learning that enhances the appreciation of scientific thinking by non-majors? How can web- and mobile-based education technologies transform the undergraduate non-major survey course into a place where learners begin their passion for science literacy rather than end it? How do we assess science literacy in students and citizens?

  7. Rethinking theoretical approaches to stigma: a Framework Integrating Normative Influences on Stigma (FINIS).

    PubMed

    Pescosolido, Bernice A; Martin, Jack K; Lang, Annie; Olafsdottir, Sigrun

    2008-08-01

    A resurgence of research and policy efforts on stigma both facilitates and forces a reconsideration of the levels and types of factors that shape reactions to persons with conditions that engender prejudice and discrimination. Focusing on the case of mental illness but drawing from theories and studies of stigma across the social sciences, we propose a framework that brings together theoretical insights from micro, meso and macro level research: Framework Integrating Normative Influences on Stigma (FINIS) starts with Goffman's notion that understanding stigma requires a language of social relationships, but acknowledges that individuals do not come to social interaction devoid of affect and motivation. Further, all social interactions take place in a context in which organizations, media and larger cultures structure normative expectations which create the possibility of marking "difference". Labelling theory, social network theory, the limited capacity model of media influence, the social psychology of prejudice and discrimination, and theories of the welfare state all contribute to an understanding of the complex web of expectations shaping stigma. FINIS offers the potential to build a broad-based scientific foundation based on understanding the effects of stigma on the lives of persons with mental illness, the resources devoted to the organizations and families who care for them, and policies and programs designed to combat stigma. We end by discussing the clear implications this framework holds for stigma reduction, even in the face of conflicting results.

  8. Building a Discourse-Tagged Corpus in the Framework of Rhetorical Structure Theory

    DTIC Science & Technology

    2001-01-01

    lmcarlnord@aol.com Daniel Marcu Information Sciences Institute University of S . California Marina del Rey, CA 90292 marcu@isi.edu Mary Ellen Okurowski...Rhetorical Structure Theory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Department of Defense,9800 Savage Road,Fort Meade,MD,20755 8. PERFORMING

  9. How do small groups make decisions? : A theoretical framework to inform the implementation and study of clinical competency committees.

    PubMed

    Chahine, Saad; Cristancho, Sayra; Padgett, Jessica; Lingard, Lorelei

    2017-06-01

    In the competency-based medical education (CBME) approach, clinical competency committees are responsible for making decisions about trainees' competence. However, we currently lack a theoretical model for group decision-making to inform this emerging assessment phenomenon. This paper proposes an organizing framework to study and guide the decision-making processes of clinical competency committees.This is an explanatory, non-exhaustive review, tailored to identify relevant theoretical and evidence-based papers related to small group decision-making. The search was conducted using Google Scholar, Web of Science, MEDLINE, ERIC, and PsycINFO for relevant literature. Using a thematic analysis, two researchers (SC & JP) met four times between April-June 2016 to consolidate the literature included in this review.Three theoretical orientations towards group decision-making emerged from the review: schema, constructivist, and social influence. Schema orientations focus on how groups use algorithms for decision-making. Constructivist orientations focus on how groups construct their shared understanding. Social influence orientations focus on how individual members influence the group's perspective on a decision. Moderators of decision-making relevant to all orientations include: guidelines, stressors, authority, and leadership.Clinical competency committees are the mechanisms by which groups of clinicians will be in charge of interpreting multiple assessment data points and coming to a shared decision about trainee competence. The way in which these committees make decisions can have huge implications for trainee progression and, ultimately, patient care. Therefore, there is a pressing need to build the science of how such group decision-making works in practice. This synthesis suggests a preliminary organizing framework that can be used in the implementation and study of clinical competency committees.

  10. How Climate Science got to be in the Next Generation Science Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Wysession, M. E.

    2013-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science into classrooms has just begun: having standards that address climate science does not ensure that it will reach students. However, the fact that climate science plays an important role in the nation's first attempt at a national K-12 science program represents a significant advancement.

  11. How Climate Science got to be in the Next Generation Science Standards (Invited)

    NASA Astrophysics Data System (ADS)

    Westnedge, K. L.; Dallimore, A.; Salish Sea Expedition Team

    2011-12-01

    Climate science plays a prominent role in the new national K-12 Next Generation Science Standards (NGSS). This represents the culmination of a significant amount of effort by many different organizations that have worked hard to educate the public on one of the most interesting, complex, complicated, and societally important aspects of geoscience. While there are significant challenges to the full implementation of the NGSS, especially those aspects that relate to climate change, the fact that so many states are currently adopting the NGSS represents a significant milestone in geoscience education. When grade 6-12 textbooks were written ten years ago, such as Pearson's high school Physical Science: Concepts in Action (Wysession et al., 2004), very little mention of climate change was incorporated because it did not appear in state standards. Now, climate and climate change are an integral part of the middle school and high school NGSS standards, and textbook companies are fully incorporating this content into their programs. There are many factors that have helped the shift toward teaching about climate, such as the IPCC report, Al Gore's 'An Inconvenient Truth,' and the many reports on climate change published by the National Research Council (NRC). However, four major community-driven literacy documents (The Essential Principles of Ocean Science, Essential Principles and Fundamental Concepts for Atmospheric Science Literacy, The Earth Science Literacy Principles, and The Essential Principles of Climate Science) were essential in that they directly informed the construction of the Earth and Space Science (ESS) content of the NRC's 'Framework for K-12 Science Education' by the ESS Design Team. The actual performance expectations of the NGSS were then informed directly by the disciplinary core ideas of the NRC Framework, which were motivated by the community-driven literacy documents and the significant credentials these bore. The work in getting climate science into classrooms has just begun: having standards that address climate science does not ensure that it will reach students. However, the fact that climate science plays an important role in the nation's first attempt at a national K-12 science program represents a significant advancement.

  12. Why Teach Science with an Interdisciplinary Approach: History, Trends, and Conceptual Frameworks

    ERIC Educational Resources Information Center

    You, Hye Sun

    2017-01-01

    This study aims to describe the history of interdisciplinary education and the current trends and to elucidate the conceptual framework and values that support interdisciplinary science teaching. Many science educators have perceived the necessity for a crucial paradigm shift towards interdisciplinary learning as shown in science standards.…

  13. Designing and Implementing an Integrated Technological Pedagogical Science Knowledge Framework for Science Teachers Professional Development

    ERIC Educational Resources Information Center

    Jimoyiannis, Athanassios

    2010-01-01

    This paper reports on the design and the implementation of the Technological Pedagogical Science Knowledge (TPASK), a new model for science teachers professional development built on an integrated framework determined by the Technological Pedagogical Content Knowledge (TPACK) model and the authentic learning approach. The TPASK curriculum…

  14. Computational Thinking in High School Science Classrooms: Exploring the Science "Framework" and "NGSS"

    ERIC Educational Resources Information Center

    Sneider, Cary; Stephenson, Chris; Schafer, Bruce; Flick, Larry

    2014-01-01

    A "Framework for K-12 Science Education" identified eight practices as "essential elements of the K-12 science and engineering curriculum" (NRC 2012, p. 49). Most of the practices, such as Developing and Using Models, Planning and Carrying Out Investigations, and Analyzing and Interpreting Data, are well known among science…

  15. Argumentation in Science Education: A Model-Based Framework

    ERIC Educational Resources Information Center

    Bottcher, Florian; Meisert, Anke

    2011-01-01

    The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons…

  16. Student Empowerment in an Environmental Science Classroom: Toward a Framework for Social Justice Science Education

    ERIC Educational Resources Information Center

    Dimick, Alexandra Schindel

    2012-01-01

    Social justice education is undertheorized in science education. Given the wide range of goals and purposes proposed within both social justice education and social justice science education scholarship, these fields require reconciliation. In this paper, I suggest a student empowerment framework for conceptualizing teaching and learning social…

  17. A Decision Support Framework For Science-Based, Multi-Stakeholder Deliberation: A Coral Reef Example

    EPA Science Inventory

    We present a decision support framework for science-based assessment and multi-stakeholder deliberation. The framework consists of two parts: a DPSIR (Drivers-Pressures-States-Impacts-Responses) analysis to identify the important causal relationships among anthropogenic environ...

  18. Cumulative risk assessment for combined health effects from chemical and nonchemical stressors.

    PubMed

    Sexton, Ken; Linder, Stephen H

    2011-12-01

    Cumulative risk assessment is a science policy tool for organizing and analyzing information to examine, characterize, and possibly quantify combined threats from multiple environmental stressors. We briefly survey the state of the art regarding cumulative risk assessment, emphasizing challenges and complexities of moving beyond the current focus on chemical mixtures to incorporate nonchemical stressors, such as poverty and discrimination, into the assessment paradigm. Theoretical frameworks for integrating nonchemical stressors into cumulative risk assessments are discussed, the impact of geospatial issues on interpreting results of statistical analyses is described, and four assessment methods are used to illustrate the diversity of current approaches. Prospects for future progress depend on adequate research support as well as development and verification of appropriate analytic frameworks.

  19. Cumulative Risk Assessment for Combined Health Effects From Chemical and Nonchemical Stressors

    PubMed Central

    Linder, Stephen H.

    2011-01-01

    Cumulative risk assessment is a science policy tool for organizing and analyzing information to examine, characterize, and possibly quantify combined threats from multiple environmental stressors. We briefly survey the state of the art regarding cumulative risk assessment, emphasizing challenges and complexities of moving beyond the current focus on chemical mixtures to incorporate nonchemical stressors, such as poverty and discrimination, into the assessment paradigm. Theoretical frameworks for integrating nonchemical stressors into cumulative risk assessments are discussed, the impact of geospatial issues on interpreting results of statistical analyses is described, and four assessment methods are used to illustrate the diversity of current approaches. Prospects for future progress depend on adequate research support as well as development and verification of appropriate analytic frameworks. PMID:21551386

  20. Building biomedical web communities using a semantically aware content management system.

    PubMed

    Das, Sudeshna; Girard, Lisa; Green, Tom; Weitzman, Louis; Lewis-Bowen, Alister; Clark, Tim

    2009-03-01

    Web-based biomedical communities are becoming an increasingly popular vehicle for sharing information amongst researchers and are fast gaining an online presence. However, information organization and exchange in such communities is usually unstructured, rendering interoperability between communities difficult. Furthermore, specialized software to create such communities at low cost-targeted at the specific common information requirements of biomedical researchers-has been largely lacking. At the same time, a growing number of biological knowledge bases and biomedical resources are being structured for the Semantic Web. Several groups are creating reference ontologies for the biomedical domain, actively publishing controlled vocabularies and making data available in Resource Description Framework (RDF) language. We have developed the Science Collaboration Framework (SCF) as a reusable platform for advanced structured online collaboration in biomedical research that leverages these ontologies and RDF resources. SCF supports structured 'Web 2.0' style community discourse amongst researchers, makes heterogeneous data resources available to the collaborating scientist, captures the semantics of the relationship among the resources and structures discourse around the resources. The first instance of the SCF framework is being used to create an open-access online community for stem cell research-StemBook (http://www.stembook.org). We believe that such a framework is required to achieve optimal productivity and leveraging of resources in interdisciplinary scientific research. We expect it to be particularly beneficial in highly interdisciplinary areas, such as neurodegenerative disease and neurorepair research, as well as having broad utility across the natural sciences.

  1. Science-based Forest Management in an Era of Climate Change

    NASA Astrophysics Data System (ADS)

    Swanston, C.; Janowiak, M.; Brandt, L.; Butler, P.; Handler, S.; Shannon, D.

    2014-12-01

    Recognizing the need to provide climate adaptation information, training, and tools to forest managers, the Forest Service joined with partners in 2009 to launch a comprehensive effort called the Climate Change Response Framework (www.forestadaptation.org). The Framework provides a structured approach to help managers integrate climate considerations into forest management plans and then implement adaptation actions on the ground. A planning tool, the Adaptation Workbook, is used in conjunction with vulnerability assessments and a diverse "menu" of adaptation approaches to generate site-specific adaptation actions that meet explicit management objectives. Additionally, a training course, designed around the Adaptation Workbook, leads management organizations through this process of designing on-the-ground adaptation tactics for their management projects. The Framework is now being actively pursued in 20 states in the Northwoods, Central Hardwoods, Central Appalachians, Mid-Atlantic, and New England. The Framework community includes over 100 science and management groups, dozens of whom have worked together to complete six ecoregional vulnerability assessments covering nearly 135 million acres. More than 75 forest and urban forest adaptation strategies and approaches were synthesized from peer-reviewed and gray literature, expert solicitation, and on-the-ground adaptation projects. These are being linked through the Adaptation Workbook process to on-the-ground adaptation tactics being planned and employed in more than 50 adaptation "demonstrations". This presentation will touch on the scientific and professional basis of the vulnerability assessments, and showcase efforts where adaptation actions are currently being implemented in forests.

  2. The science of quality improvement implementation: developing capacity to make a difference.

    PubMed

    Alexander, Jeffrey A; Hearld, Larry R

    2011-12-01

    Quality improvement (QI) holds promise to improve quality of care; however, organizations often struggle with its implementation. It has been recommended that practitioners, managers, and researchers attempt to increase systematic understanding of the structure, practices, and context of organizations that facilitate or impede the implementation of QI innovations. To critically review the empirical research on QI implementation in health care organizations. A literature review of 107 studies that examined the implementation of QI innovations in health care organizations. Studies were classified into 4 groups based on the types of predictors that were assumed to affect implementation (content of QI innovation, organizational processes, internal context, and external context). Internal context and organizational processes were the most frequently studied categories. External context and organizational process categories exhibited the highest rate of positive effects on QI implementation. The review revealed several important gaps in the QI implementation literature. Studies often lacked clear conceptual frameworks to guide the research, which may hinder efforts to compare relationships across studies. Studies also tended to adopt designs that were narrowly focused on independent effects of predictors and did not include holistic frameworks to capture interactions among the many factors involved in implementation. Other design limitations included the use of cross-sectional designs, single-source data collection, and potential selection bias among study participants.

  3. Evaluation of Online Teacher and Student Materials for the Framework for K-12 Science Education Science and Engineering Crosscutting Concepts

    ERIC Educational Resources Information Center

    Schwab, Patrick

    2013-01-01

    The National Research Council developed and published the "Framework for K-12 Science Education," a new set of concepts that many states were planning on adopting. Part of this new endeavor included a set of science and engineering crosscutting concepts to be incorporated into science materials and activities, a first in science…

  4. Chromium metal organic frameworks and synthesis of metal organic frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong-Cai; Liu, Tian-Fu; Lian, Xizhen

    The present invention relates to monocrystalline metal organic frameworks comprising chromium ions and carboxylate ligands and the use of the same, for example their use for storing a gas. The invention also relates to methods for preparing metal organic frameworks comprising chromium, titanium or iron ions and carboxylate ligands. The methods of the invention allow such metal organic frameworks to be prepared in monocrystalline or polycrystalline forms.

  5. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2016-08-02

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  6. Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, thermal energy transfer assemblies, and methods for transferring thermal energy

    DOEpatents

    McGrail, B. Peter; Brown, Daryl R.; Thallapally, Praveen K.

    2014-08-05

    Methods for releasing associated guest materials from a metal organic framework are provided. Methods for associating guest materials with a metal organic framework are also provided. Methods are provided for selectively associating or dissociating guest materials with a metal organic framework. Systems for associating or dissociating guest materials within a series of metal organic frameworks are provided. Thermal energy transfer assemblies are provided. Methods for transferring thermal energy are also provided.

  7. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases.

    PubMed

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-07-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org.

  8. USGS ecosystem research for the next decade: advancing discovery and application in parks and protected areas through collaboration

    USGS Publications Warehouse

    van Riper, Charles; Nichols, James D.; Wingard, G. Lynn; Kershner, Jeffrey L.; Cloern, James E.; Jacobson, Robert B.; White, Robin P.; McGuire, Anthony David; Williams, Byron K.; Gelfenbaum, Guy; Shapiro, Carl D.

    2014-01-01

    Ecosystems within parks and protected areas in the United States and throughout the world are being transformed at an unprecedented rate. Changes associated with natural hazards, greenhouse gas emissions, and increasing demands for water, food, land, energy and mineral resources are placing urgency on sound decision making that will help sustain our Nation’s economic and environmental well-being (Millennium Ecosystem Assessment, 2005). In recognition of the importance of science in making these decisions, the U.S. Geological Survey (USGS) in 2007 identified ecosystem science as one of six science directions included in a comprehensive decadal strategy (USGS 2007). The Ecosystems Mission Area was identified as essential for integrating activity within the USGS and as a key to enhanced integration with other Federal and private sector research and management organizations (Myers at al., 2007). This paper focuses on benefits to parks and protected areas from the USGS Ecosystems Mission Area plan that expanded the scope of the original 2007 science strategy, to identify the Bureau’s work in ecosystem science over the next decade (Williams et al., 2013). The plan describes a framework that encompasses both basic and applied science and allows the USGS to continue to contribute meaningfully to conservation and management issues related to the Nation’s parks and ecological resources. This framework relies on maintaining long-standing, collaborative relationships with partners in both conducting science and applying scientific results. Here we summarize the major components of the USGS Ecosystems Science Strategy, articulating the vision, goals and strategic approaches, then outlining some of the proposed actions that will ultimately prove useful to those managing parks and protected areas. We end with a discussion on the future of ecosystem science for the USGS and how it can be used to evaluate ecosystem change and the associated consequences to management of our Nation’s natural resources.

  9. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Treesearch

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  10. Curriculum Framework (CF) Implementation Conference. Report of the Regional Educational Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia (Hilton Head Island, South Carolina, January 26-27, 1995).

    ERIC Educational Resources Information Center

    Palmer, Jackie; Powell, Mary Jo

    The Laboratory Network Program and the National Network of Eisenhower Mathematics and Science Regional Consortia, operating as the Curriculum Frameworks Task Force, jointly convened a group of educators involved in implementing state-level mathematics or science curriculum frameworks (CF). The Hilton Head (South Carolina) conference had a dual…

  11. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions

    Treesearch

    J.C. Chambers; J.L. Beck; J.B. Bradford; J. Bybee; S. Campbell; J. Carlson; T.J. Christiansen; K.J. Clause; G. Collins; M.R. Crist; J.B. Dinkins; K.E. Doherty; F. Edwards; S. Espinosa; K.A. Griffin; P. Griffin; J.R. Haas; S.E. Hanser; D.W. Havlina; K.F. Henke; J.D. Hennig; L.A. Joyce; F.M. Kilkenny; S.M. Kulpa; L.L. Kurth; J.D. Maestas; M. Manning; K.E. Mayer; B.A. Mealor; C. McCarthy; M. Pellant; M.A. Perea; K.L. Prentice; D.A. Pyke; L.A. Wiechman; A. Wuenschel

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis...

  12. FOREWORD: 7th Symposium on Vacuum-based Science and Technology (SVBST2013)

    NASA Astrophysics Data System (ADS)

    Gulbiński, W.

    2014-11-01

    These are the proceedings of the 7th Symposium on Vacuum based Science and Technology organized in Kołobrzeg (PL) on November 19-21, 2013 by the Institute of Technology and Education, Koszalin University of Technology and the Clausius Tower Society under auspices of the Polish Vacuum Society (PTP) and the German Vacuum Society (DVG) and in collaboration with the BalticNet PlasmaTec and the Society of Vacuum Coaters (SVC). It was accompanied by the 12-th Annual Meeting of the German Vacuum Society. The mission of the Symposium is to provide a forum for presentation and exchange of expertise and research results in the field of vacuum and plasma science. After already six successful meetings organized alternately in Poland and Germany our goal is to continue and foster cooperation within the vacuum and plasma science community. This year, the Rudolf-Jaeckel Prize, awarded by the DVG for outstanding achievements in the field of vacuum based sciences, was presented to Dr Ute Bergner, president of the VACOM Vakuum Komponenten & Messtechnik GmbH and a member of our community. The full-day course organized in the framework of the Educational Program by the Society of Vacuum Coaters (SVC) and entitled: An Introduction to Physical Vapor Deposition (PVD) Processes was held on November 18, 2013 as a satellite event of the Symposium. The instructor was Prof. Ismat Shah from Delaware University (US). The Clausius Session, already traditionally organized during the Symposium was addressed this year to young generation. We invited our young colleagues to attend a series of educational lectures reporting on achievements in graphene science, scanning probe microscopy and plasma science. Lectures were given by: Prof. Jacek Baranowski from the Institute of Electronic Materials Technology in Warsaw, Prof. Teodor Gotszalk from the Wroclaw University of Technology and Prof. Holger Kersten from the Christian Albrechts University in Kiel. The Symposium was accompanied by an industry exhibition attended by the representatives of leading companies offering vacuum equipment, complete solutions for plasma based technology as well as advanced research equipment. Witold Gulbiński Michael Kopnarski Frank Richter Jan Walkowicz

  13. Secondary science teachers' use of the affective domain in science education

    NASA Astrophysics Data System (ADS)

    Grauer, Bette L.

    The purpose of this qualitative case study was to explore (a) the types of student affective responses that secondary science teachers reported emerged in science classes, (b) how those teachers worked with student affective responses, and (c) what interactions were present in the classroom when they worked with student affective responses. The study was motivated by research indicating that student interest and motivation for learning science is low. Eight secondary science teachers participated in the case study. The participants were selected from a pool of teachers who graduated from the same teacher education program at a large Midwest university. The primary sources of data were individual semi-structured interviews with the participants. Krathwohl's Taxonomy of the Affective Domain served as the research framework for the study. Student affective behavior reported by participants was classified within the five levels of Krathwohl's Affective Taxonomy: receiving, responding, valuing, organization, and characterization. Participants in the study reported student behavior representing all levels of the Affective Taxonomy. The types of behavior most frequently reported by participants were identified with the receiving and responding levels of the Affective Taxonomy. Organization behavior emerged during the study of perceived controversial science topics such as evolution. Participants in the study used student affective behavior to provide feedback on their lesson activities and instructional practices. Classroom interactions identified as collaboration and conversation contributed to the development of responding behavior. The researcher identified a process of affective progression in which teachers encouraged and developed student affective behavior changes from receiving to responding levels of the Affective Taxonomy.

  14. Urban ecological systems: scientific foundations and a decade of progress.

    PubMed

    Pickett, S T A; Cadenasso, M L; Grove, J M; Boone, Christopher G; Groffman, Peter M; Irwin, Elena; Kaushal, Sujay S; Marshall, Victoria; McGrath, Brian P; Nilon, C H; Pouyat, R V; Szlavecz, Katalin; Troy, Austin; Warren, Paige

    2011-03-01

    Urban ecological studies, including focus on cities, suburbs, and exurbs, while having deep roots in the early to mid 20th century, have burgeoned in the last several decades. We use the state factor approach to highlight the role of important aspects of climate, substrate, organisms, relief, and time in differentiating urban from non-urban areas, and for determining heterogeneity within spatially extensive metropolitan areas. In addition to reviewing key findings relevant to each state factor, we note the emergence of tentative "urban syndromes" concerning soils, streams, wildlife and plants, and homogenization of certain ecosystem functions, such as soil organic carbon dynamics. We note the utility of the ecosystem approach, the human ecosystem framework, and watersheds as integrative tools to tie information about multiple state factors together. The organismal component of urban complexes includes the social organization of the human population, and we review key modes by which human populations within urban areas are differentiated, and how such differentiation affects environmentally relevant actions. Emerging syntheses in land change science and ecological urban design are also summarized. The multifaceted frameworks and the growing urban knowledge base do however identify some pressing research needs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Luminescent Porous Polymers Based on Aggregation-Induced Mechanism: Design, Synthesis and Functions.

    PubMed

    Dalapati, Sasanka; Gu, Cheng; Jiang, Donglin

    2016-12-01

    Enormous research efforts are focusing on the design and synthesis of advanced luminescent systems, owing to their diverse capability in scientific studies and technological developments. In particular, fluorescence systems based on aggregation-induced emission (AIE) have emerged to show great potential for sensing, bio-imaging, and optoelectronic applications. Among them, integrating AIE mechanisms to design porous polymers is unique because it enables the combination of porosity and luminescence activity in one molecular skeleton for functional design. In recent years rapid progress in exploring AIE-based porous polymers has developed a new class of luminescent materials that exhibit broad structural diversity, outstanding properties and functions and promising applications. By classifying the structural nature of the skeleton, herein the design principle, synthetic development and structural features of different porous luminescent materials are elucidated, including crystalline covalent organic frameworks (COFs), metal-organic frameworks (MOFs), and amorphous porous organic polymers (POPs). The functional exploration of these luminescent porous polymers are highlighted by emphasizing electronic interplay within the confined nanospace, fundamental issues to be addressed are disclosed, and future directions from chemistry, physics and materials science perspectives are proposed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The application of language-game theory to the analysis of science learning: Developing an interpretive classroom-level learning framework

    NASA Astrophysics Data System (ADS)

    Ahmadibasir, Mohammad

    In this study an interpretive learning framework that aims to measure learning on the classroom level is introduced. In order to develop and evaluate the value of the framework, a theoretical/empirical study is designed. The researcher attempted to illustrate how the proposed framework provides insights on the problem of classroom-level learning. The framework is developed by construction of connections between the current literature on science learning and Wittgenstein's language-game theory. In this framework learning is defined as change of classroom language-game or discourse. In the proposed framework, learning is measured by analysis of classroom discourse. The empirical explanation power of the framework is evaluated by applying the framework in the analysis of learning in a fifth-grade science classroom. The researcher attempted to analyze how students' colloquial discourse changed to a discourse that bears more resemblance to science discourse. The results of the empirical part of the investigation are presented in three parts: first, the gap between what students did and what they were supposed to do was reported. The gap showed that students during the classroom inquiry wanted to do simple comparisons by direct observation, while they were supposed to do tool-assisted observation and procedural manipulation for a complete comparison. Second, it was illustrated that the first attempt to connect the colloquial to science discourse was done by what was immediately intelligible for students and then the teacher negotiated with students in order to help them to connect the old to the new language-game more purposefully. The researcher suggested that these two events in the science classroom are critical in discourse change. Third, it was illustrated that through the academic year, the way that students did the act of comparison was improved and by the end of the year more accurate causal inferences were observable in classroom communication. At the end of the study, the researcher illustrates that the application of the proposed framework resulted in an improved version of the framework. The improved version of the proposed framework is more connected to the topic of science learning, and is able to measure the change of discourse in higher resolution.

  17. MiTEP's Collaborative Field Course Design Process Based on Earth Science Literacy Principles

    NASA Astrophysics Data System (ADS)

    Engelmann, C. A.; Rose, W. I.; Huntoon, J. E.; Klawiter, M. F.; Hungwe, K.

    2010-12-01

    Michigan Technological University has developed a collaborative process for designing summer field courses for teachers as part of their National Science Foundation funded Math Science Partnership program, called the Michigan Teacher Excellence Program (MiTEP). This design process was implemented and then piloted during two two-week courses: Earth Science Institute I (ESI I) and Earth Science Institute II (ESI II). Participants consisted of a small group of Michigan urban science teachers who are members of the MiTEP program. The Earth Science Literacy Principles (ESLP) served as the framework for course design in conjunction with input from participating MiTEP teachers as well as research done on common teacher and student misconceptions in Earth Science. Research on the Earth Science misconception component, aligned to the ESLP, is more fully addressed in GSA Abstracts with Programs Vol. 42, No. 5. “Recognizing Earth Science Misconceptions and Reconstructing Knowledge through Conceptual-Change-Teaching”. The ESLP were released to the public in January 2009 by the Earth Science Literacy Organizing Committee and can be found at http://www.earthscienceliteracy.org/index.html. Each day of the first nine days of both Institutes was focused on one of the nine ESLP Big Ideas; the tenth day emphasized integration of concepts across all of the ESLP Big Ideas. Throughout each day, Michigan Tech graduate student facilitators and professors from Michigan Tech and Grand Valley State University consistantly focused teaching and learning on the day's Big Idea. Many Earth Science experts from Michigan Tech and Grand Valley State University joined the MiTEP teachers in the field or on campus, giving presentations on the latest research in their area that was related to that Big Idea. Field sites were chosen for their unique geological features as well as for the “sense of place” each site provided. Preliminary research findings indicate that this collaborative design process piloted as ESI I and ESI II was successful in improving MiTEP teacher understanding of Earth Science content and that it was helpful to use the ESLP framework. Ultimately, a small sample of student scores will look at the impact on student learning in the MiTEP teacher classrooms.

  18. Earth & Space Science in the Next Generation Science Standards: Promise, Challenge, and Future Actions. (Invited)

    NASA Astrophysics Data System (ADS)

    Pyle, E. J.

    2013-12-01

    The Next Generation Science Standards (NGSS) are a step forward in ensuring that future generations of students become scientifically literate. The NGSS document builds from the National Science Education Standards (1996) and the National Assessment of Educational Progress (NAEP) science framework of 2005. Design teams for the Curriculum Framework for K-12 Science Education were to outline the essential content necessary for students' science literacy, considering the foundational knowledge and the structure of each discipline in the context of learning progressions. Once draft standards were developed, two issues emerged from their review: (a) the continual need to prune 'cherished ideas' within the content, such that only essential ideas were represented, and (b) the potential for prior conceptions of Science & Engineering Practices (SEP) and cross-cutting concepts (CCC) to limit overly constrain performance expectations. With the release of the NGSS, several challenges are emerging for geoscience education. First, the traditional emphasis of Earth science in middle school has been augmented by new standards for high school that require major syntheses of concepts. Second, the integration of SEPs into performance expectations places an increased burden on teachers and curriculum developers to organize instruction around the nature of inquiry in the geosciences. Third, work is needed to define CCCs in Earth contexts, such that the unique structure of the geosciences is best represented. To ensure that the Earth & Space Science standards are implemented through grade 12, two supporting structures must be developed. In the past, many curricular materials claimed that they adhered to the NSES, but in some cases this match was a simple word match or checklist that bore only superficial resemblance to the standards. The structure of the performance expectations is of sufficient sophistication to ensure that adherence to the standards more than a casual exercise. Claims of match must be supported not just by disciplinary core ideas, but also by SEPs and CCCs. Such a structured approach to Earth science instruction also requires specialized approaches to teacher preparation and professional development. Many teachers of Earth science are underprepared, and an examination of how Earth science teachers are prepared and supported to use to new curricular materials is also warranted. This presentation will (a) compare the structure of the NGSS and NSES for Earth & Space Science, (b) discuss the review of the NGSS drafts with respect to the intent of the Curriculum Framework, (c) provide definition to the particular challenges to instruction offered by the NGSS beyond prior instructional experience, and (d) define and reinforce concepts of what it means for curricula, instructional materials, and teacher preparation and professional development to be considered 'aligned' with the NGSS.

  19. Transition metal complexes supported on metal-organic frameworks for heterogeneous catalysts

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Delferro, Massimiliano; Klet, Rachel C.

    2017-02-07

    A robust mesoporous metal-organic framework comprising a hafnium-based metal-organic framework and a single-site zirconium-benzyl species is provided. The hafnium, zirconium-benzyl metal-organic framework is useful as a catalyst for the polymerization of an alkene.

  20. Toulmin's argument pattern as a "horizon of possibilities" in the study of argumentation in science education

    NASA Astrophysics Data System (ADS)

    Erduran, Sibel

    2018-01-01

    Kim and Roth (this issue) purport to draw on the social-psychological theory of L. S. Vygotsky in order to investigate social relations in children's argumentation in science topics. The authors argue that the argumentation framework offered by Stephen Toulmin is limited in addressing social relations. The authors thus criticize Toulmin's Argument Pattern (TAP) as an analytical tool and propose to investigate the genesis of evidence-related practices (especially burden of proof) in second- and third-grade children by studying dialogical interactions. In this paper, I illustrate how Toulmin's framework can contribute to (a) the study of "social relations", and (b) provide an example utilizing a theoretical framework on social relations, namely Engeström's Activity Theory framework, and (c) describe how we have used the Activity Theory along with TAP in order to understand the development of argumentation in the practices of science educators. Overall, I will argue that TAP is not inherently incapable of addressing social relational aspects of argumentation in science education but rather that science education researchers can transform theoretical tools such as Toulmin's framework intended for other purposes for use in science education research.

  1. Risk analysis and its link with standards of the World Organisation for Animal Health.

    PubMed

    Sugiura, K; Murray, N

    2011-04-01

    Among the agreements included in the treaty that created the World Trade Organization (WTO) in January 1995 is the Agreement on the Application of Sanitary and Phytosanitary Measures (SPS Agreement) that sets out the basic rules for food safety and animal and plant health standards. The SPS Agreement designates the World Organisation for Animal Health (OIE) as the organisation responsible for developing international standards for animal health and zoonoses. The SPS Agreement requires that the sanitary measures that WTO members apply should be based on science and encourages them to either apply measures based on the OIE standards or, if they choose to adopt a higher level of protection than that provided by these standards, apply measures based on a science-based risk assessment. The OIE also provides a procedural framework for risk analysis for its Member Countries to use. Despite the inevitable challenges that arise in carrying out a risk analysis of the international trade in animals and animal products, the OIE risk analysis framework provides a structured approach that facilitates the identification, assessment, management and communication of these risks.

  2. Lessons Learned From Developing A Streaming Data Framework for Scientific Analysis

    NASA Technical Reports Server (NTRS)

    Wheeler. Kevin R.; Allan, Mark; Curry, Charles

    2003-01-01

    We describe the development and usage of a streaming data analysis software framework. The framework is used for three different applications: Earth science hyper-spectral imaging analysis, Electromyograph pattern detection, and Electroencephalogram state determination. In each application the framework was used to answer a series of science questions which evolved with each subsequent answer. This evolution is summarized in the form of lessons learned.

  3. Science strategy for Core Science Systems in the U.S. Geological Survey, 2013-2023

    USGS Publications Warehouse

    Bristol, R. Sky; Euliss, Ned H.; Booth, Nathaniel L.; Burkardt, Nina; Diffendorfer, Jay E.; Gesch, Dean B.; McCallum, Brian E.; Miller, David M.; Morman, Suzette A.; Poore, Barbara S.; Signell, Richard P.; Viger, Roland J.

    2012-01-01

    Core Science Systems is a new mission of the U.S. Geological Survey (USGS) that grew out of the 2007 Science Strategy, “Facing Tomorrow’s Challenges: U.S. Geological Survey Science in the Decade 2007–2017.” This report describes the vision for this USGS mission and outlines a strategy for Core Science Systems to facilitate integrated characterization and understanding of the complex earth system. The vision and suggested actions are bold and far-reaching, describing a conceptual model and framework to enhance the ability of USGS to bring its core strengths to bear on pressing societal problems through data integration and scientific synthesis across the breadth of science.The context of this report is inspired by a direction set forth in the 2007 Science Strategy. Specifically, ecosystem-based approaches provide the underpinnings for essentially all science themes that define the USGS. Every point on earth falls within a specific ecosystem where data, other information assets, and the expertise of USGS and its many partners can be employed to quantitatively understand how that ecosystem functions and how it responds to natural and anthropogenic disturbances. Every benefit society obtains from the planet—food, water, raw materials to build infrastructure, homes and automobiles, fuel to heat homes and cities, and many others, are derived from or effect ecosystems.The vision for Core Science Systems builds on core strengths of the USGS in characterizing and understanding complex earth and biological systems through research, modeling, mapping, and the production of high quality data on the nation’s natural resource infrastructure. Together, these research activities provide a foundation for ecosystem-based approaches through geologic mapping, topographic mapping, and biodiversity mapping. The vision describes a framework founded on these core mapping strengths that makes it easier for USGS scientists to discover critical information, share and publish results, and identify potential collaborations that transcend all USGS missions. The framework is designed to improve the efficiency of scientific work within USGS by establishing a means to preserve and recall data for future applications, organizing existing scientific knowledge and data to facilitate new use of older information, and establishing a future workflow that naturally integrates new data, applications, and other science products to make it easier and more efficient to conduct interdisciplinary research over time. Given the increasing need for integrated data and interdisciplinary approaches to solve modern problems, leadership by the Core Science Systems mission will facilitate problem solving by all USGS missions in ways not formerly possible.The report lays out a strategy to achieve this vision through three goals with accompanying objectives and actions. The first goal builds on and enhances the strengths of the Core Science Systems mission in characterizing and understanding the earth system from the geologic framework to the topographic characteristics of the land surface and biodiversity across the nation. The second goal enhances and develops new strengths in computer and information science to make it easier for USGS scientists to discover data and models, share and publish results, and discover connections between scientific information and knowledge. The third goal brings additional focus to research and development methods to address complex issues affecting society that require integration of knowledge and new methods for synthesizing scientific information. Collectively, the report lays out a strategy to create a seamless connection between all USGS activities to accelerate and make USGS science more efficient by fully integrating disciplinary expertise within a new and evolving science paradigm for a changing world in the 21st century.

  4. History and Social Science Curriculum Framework.

    ERIC Educational Resources Information Center

    Massachusetts State Dept. of Education, Boston.

    This curriculum framework represents the first statewide guideline for learning, teaching, and assessment in history and social science for the Commonwealth of Massachusetts's public schools. The framework is based on sound research and effective practice and reflects a vision of how classrooms can and should look to assist all students to achieve…

  5. Features of resilience

    DOE PAGES

    Connelly, Elizabeth B.; Allen, Craig R.; Hatfield, Kirk; ...

    2017-02-20

    The National Academy of Sciences (NAS) definition of resilience is used here to organize common concepts and synthesize a set of key features of resilience that can be used across diverse application domains. The features in common include critical functions (services), thresholds, cross-scale (both space and time) interactions, and memory and adaptive management. We propose a framework for linking these features to the planning, absorbing, recovering, and adapting phases identified in the NAS definition. As a result, the proposed delineation of resilience can be important in understanding and communicating resilience concepts.

  6. Features of resilience

    USGS Publications Warehouse

    Connelly, Elizabeth B.; Allen, Craig R.; Hatfield, Kirk; Palma-Oliveira, José M.; Woods, David D.; Linkov, Igor

    2017-01-01

    The National Academy of Sciences (NAS) definition of resilience is used here to organize common concepts and synthesize a set of key features of resilience that can be used across diverse application domains. The features in common include critical functions (services), thresholds, cross-scale (both space and time) interactions, and memory and adaptive management. We propose a framework for linking these features to the planning, absorbing, recovering, and adapting phases identified in the NAS definition. The proposed delineation of resilience can be important in understanding and communicating resilience concepts.

  7. Un Marco Abierto: Un Manual de Matematicas y Ciencas Utilizando Inteligencias Multiples Disenado para Estudiantes Bilingues de Educacion General y Especial (An Open Framework: A Math and Science Manual Utilizing Multiple Intelligences Designed for Bilingual Students in General and Special Education).

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Office of Bilingual Education.

    This manual incorporates a Multiple Intelligences perspective into its presentation of themes and lesson ideas for Spanish-English bilingual elementary school students in grades 4-8 and is designed for both gifted and special education uses. Each unit includes practice activities, semantic maps to illustrate and help organize ideas as well as…

  8. Size does Matter

    NASA Astrophysics Data System (ADS)

    Vespignani, Alessandro

    From schools of fish and flocks of birds, to digital networks and self-organizing biopolymers, our understanding of spontaneously emergent phenomena, self-organization, and critical behavior is in large part due to complex systems science. The complex systems approach is indeed a very powerful conceptual framework to shed light on the link between the microscopic dynamical evolution of the basic elements of the system and the emergence of oscopic phenomena; often providing evidence for mathematical principles that go beyond the particulars of the individual system, thus hinting to general modeling principles. By killing the myth of the ant queen and shifting the focus on the dynamical interaction across the elements of the systems, complex systems science has ushered our way into the conceptual understanding of many phenomena at the core of major scientific and social challenges such as the emergence of consensus, social opinion dynamics, conflicts and cooperation, contagion phenomena. For many years though, these complex systems approaches to real-world problems were often suffering from being oversimplified and not grounded on actual data...

  9. Exploring the Science Framework

    ERIC Educational Resources Information Center

    Bell, Philip; Bricker, Leah; Tzou, Carrie; Lee, Tiffany; Van Horne, Katie

    2012-01-01

    The National Research Council's recent publication "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011), which is the foundation for the Next Generation Science Standards now being developed, places unprecedented focus on the practices involved in doing scientific and engineering work. In an effort…

  10. Science Education as Public and Social Wealth: The Notion of Citizenship from a European Perspective

    ERIC Educational Resources Information Center

    Siatras, Anastasios; Koumaras, Panagiotis

    2013-01-01

    In this paper, (a) we present a framework for developing a science content (i.e., science concepts, scientific methods, scientific mindset, and problem-solving strategies for socio-scientific issues) used to design the new Cypriot science curriculum aiming at ensuring a democratic and human society, (b) we use the previous framework to explore the…

  11. Deaf Pupils' Reasoning about Scientific Phenomena: School Science as a Framework for Understanding or as Fragments of Factual Knowledge.

    ERIC Educational Resources Information Center

    Molander, B. O.; Pedersen, Svend; Norell, Kia

    2001-01-01

    A Swedish interview study of how deaf pupils reason about phenomena in a science context revealed significant variation in the extent to which pupils used scientific principles for reasoning about science phenomena, which suggests that for some pupils, school science offers little as a framework for reasoning. (Contains references.) (DB)

  12. History of Family Psychiatry: From the Social Reform Era to the Primate Social Organ System.

    PubMed

    Kramer, Douglas A

    2015-07-01

    From early twentieth century social reform movements emerged the ingredients for both child and family psychiatry. Both psychiatries that involve children, parents, and families began in child guidance clinics. Post-World War II intellectual creativity provided the epistemological framework for treating families. Eleven founders (1950-1969) led the development of family psychiatry. Child and family psychiatrists disagreed over the issues of individual and family group dynamics. Over the past 25 years the emerging sciences of interaction, in the context of the Primate Social Organ System (PSOS), have produced the evidence for the family being the entity of treatment in psychiatry. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Integrated Science Assessment (ISA) for Sulfur Oxides ...

    EPA Pesticide Factsheets

    EPA announced the availability of the external review draft of the Integrated Science Assessment for Sulfur Oxides– Health Criteria for public comment and independent peer review in a November 24, 2015 Federal Register Notice. This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of sulfur oxides. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) National Ambient Air Quality Standard (NAAQS) for sulfur dioxide. The Integrated Plan for Review of the Primary NAAQS for SOx U.S. 2: EPA (2007) identifies key policy-relevant questions that provide a framework for this review of the scientific evidence. These questions frame the entire review of the NAAQS, and thus are informed by both science and policy considerations. The ISA organizes and presents the scientific evidence such that, when considered along with findings from risk analyses and policy considerations, will help the EPA address these questions in completing the NAAQS review.

  14. Towards a Philosophically and a Pedagogically Reasonable Nature of Science Curriculum

    NASA Astrophysics Data System (ADS)

    Yacoubian, Hagop Azad

    This study, primarily theoretical in nature, explores a philosophically and pedagogically reasonable way of addressing nature of science (NOS) in school science. NOS encompasses what science is and how scientific knowledge develops. I critically evaluate consensus frameworks of NOS in school science, which converge contentious philosophical viewpoints into general NOS-related ideas. I argue that they (1) lack clarity in terms of how NOS-related ideas could be applied for various ends, (2) portray a distorted image of the substantive content of NOS and the process of its development, and (3) lack a developmental trajectory for how to address NOS at different grade levels. As a remedy to these problems, I envision a NOS curriculum that (1) explicates and targets both NOS as an educational end and NOS as a means for socioscientific decision making, (2) has critical thinking as its foundational pillar, and (3) provides a developmental pathway for NOS learning using critical thinking as a progression unit. Next, I illustrate a framework for addressing NOS in school science referred to as the critical thinking—nature of science (CT-NOS) framework. This framework brings together the first two of the three elements envisioned in the NOS curriculum. I address the third element by situating the CT-NOS framework in a developmental context, borrowing from the literature on learning progressions in science and using critical thinking as a progression unit. Finally, I present an empirical study of experienced secondary science teachers’ views of a NOS lesson prepared using the CT-NOS framework. The teachers attended a professional development workshop at which the lesson, and the characteristics of the CT-NOS framework, were presented. The analysis of the qualitative data revealed that most teachers found the lesson to be somewhat feasible for a secondary science classroom, useful or somewhat useful to their students, and interesting. The teachers focused on 14 features of the lesson in their judgments and recommendations. The study revealed a number of teacher challenges generally related to critical thinking and its teaching as well as to the distinction between critical thinking about NOS and critical thinking with NOS.

  15. Planning in context: A situated view of children's management of science projects

    NASA Astrophysics Data System (ADS)

    Marshall, Susan Katharine

    This study investigated children's collaborative planning of a complex, long-term software design project. Using sociocultural methods, it examined over time the development of design teams' planning negotiations and tools to document the coconstruction of cultural frameworks to organize teams' shared understanding of what and how to plan. Results indicated that student teams developed frameworks to address a set of common planning functions that included design planning, project metaplanning (things such as division of labor or sharing of computer resources) and team collaboration management planning. There were also some between-team variations in planning frameworks, within a bandwidth of options. Teams engaged in opportunistic planning, which reflected shifts in strategies in response to new circumstances over time. Team members with past design project experience ("oldtimers") demonstrated the transfer of their planning framework to the current design task, and they supported the developing participation of "newcomers." Teams constructed physical tools (e.g. planning boards) that acted as visual representations of teams' planning frameworks, and inscriptions of team thinking. The assigned functions of the tools also shifted over time with changing project circumstances. The discussion reexamines current approaches to the study of planning and discusses their educational implications.

  16. Supramolecular ferroelectrics.

    PubMed

    Tayi, Alok S; Kaeser, Adrien; Matsumoto, Michio; Aida, Takuzo; Stupp, Samuel I

    2015-04-01

    Supramolecular chemistry uses non-covalent interactions to coax molecules into forming ordered assemblies. The construction of ordered materials with these reversible bonds has led to dramatic innovations in organic electronics, polymer science and biomaterials. Here, we review how supramolecular strategies can advance the burgeoning field of organic ferroelectricity. Ferroelectrics - materials with a spontaneous and electrically reversible polarization - are touted for use in non-volatile computer memories, sensors and optics. Historically, this physical phenomenon has been studied in inorganic materials, although some organic examples are known and strong interest exists to extend the search for ferroelectric molecular systems. Other undiscovered applications outside this regime could also emerge. We describe the key features necessary for molecular and supramolecular dipoles in organic ferroelectrics and their incorporation into ordered systems, such as porous frameworks and liquid crystals. The goal of this Review is to motivate the development of innovative supramolecular ferroelectrics that exceed the performance and usefulness of known systems.

  17. Polarization dependent photo-induced bias stress effect in organic transistors.

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly; Choi, Hyun Ho; Najafov, Hikmet; Saranin, Danila; Kharlamov, Nikolai A.; Kuznetzov, Denis V.; Didenko, Sergei I.; Cho, Kilwon; Briseno, Alejandro L.; Rutgers-Misis Collaboration; Ru-P Collaboration; Ru-Um Collaboration; Um-P Collaboration

    Photo-induced charge transfer between a semiconductor and a gate insulator that occurs in organic transistors operating under illumination leads to a shift of the onset gate voltage in these devices. Here we report an observation of a polarization dependent photo-induced bias-stress effect in two prototypical single-crystal organic field-effect transistors, based on rubrene and TPBIQ. We find that the rate of the effect is a periodic function of polarization angle of a linearly polarized photoexcitation, with a periodicity of π. The observed phenomenon provides an effective tool for addressing the relationship between molecular packing and parameter drift in organic transistors under illumination. The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No. K3-2016-004), by gov. decree 16/03/2013, N 211.

  18. Can Programming Frameworks Bring Smartphones into the Mainstream of Psychological Science?

    PubMed

    Piwek, Lukasz; Ellis, David A

    2016-01-01

    Smartphones continue to provide huge potential for psychological science and the advent of novel research frameworks brings new opportunities for researchers who have previously struggled to develop smartphone applications. However, despite this renewed promise, smartphones have failed to become a standard item within psychological research. Here we consider the key issues that continue to limit smartphone adoption within psychological science and how these barriers might be diminishing in light of ResearchKit and other recent methodological developments. We conclude that while these programming frameworks are certainly a step in the right direction it remains challenging to create usable research-orientated applications with current frameworks. Smartphones may only become an asset for psychology and social science as a whole when development software that is both easy to use and secure becomes freely available.

  19. Citizen Science, Crowdsourcing and Big Data: A Scientific and Social Framework for Natural Resources and Environments

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Jones, J. W.; Liu, S. B.; Shapiro, C. D.; Jenter, H. L.; Hogan, D. M.; Govoni, D. L.; Poore, B. S.

    2014-12-01

    We describe a conceptual framework for Citizen Science that can be applied to improve the understanding and management of natural resources and environments. For us, Citizen Science represents an engagement from members of the public, usually volunteers, in collaboration with paid professionals and technical experts to observe and understand natural resources and environments for the benefit of science and society. Our conceptual framework for Citizen Science includes crowdsourcing of observations (or sampling). It considers a wide range of activities, including volunteer and professional monitoring (e.g. weather and climate variables, water availability and quality, phenology, biota, image capture and remote sensing), as well as joint fact finding and analyses, and participatory mapping and modeling. Spatial distribution and temporal dynamics of the biophysical processes that control natural resources and environments are taken into account within this conceptual framework, as are the availability, scaling and diversity of tools and efforts that are needed to properly describe these biophysical processes. Opportunities are sought within the framework to properly describe, QA/QC, archive, and make readily accessible, the large amounts of information and traceable knowledge required to better understand and manage natural resources and environments. The framework also considers human motivational needs, primarily through a modern version of Maslow's hierarchy of needs. We examine several USGS-based Citizen Science efforts within the context of our framework, including the project called "iCoast - Did the Coast Change?", to understand the utility of the framework, its costs and benefits, and to offer concrete examples of how to expand and sustain specific projects. We make some recommendations that could aid its implementation on a national or larger scale. For example, implementation might be facilitated (1) through greater engagement of paid professionals, and (2) through the involvement of integrating entities, including institutions of learning and agencies with broad science responsibilities.

  20. Assessing Scientific Practices Using Machine-Learning Methods: How Closely Do They Match Clinical Interview Performance?

    ERIC Educational Resources Information Center

    Beggrow, Elizabeth P.; Ha, Minsu; Nehm, Ross H.; Pearl, Dennis; Boone, William J.

    2014-01-01

    The landscape of science education is being transformed by the new "Framework for Science Education" (National Research Council, "A framework for K-12 science education: practices, crosscutting concepts, and core ideas." The National Academies Press, Washington, DC, 2012), which emphasizes the centrality of scientific…

  1. Global Health Innovation Technology Models.

    PubMed

    Harding, Kimberly

    2016-01-01

    Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.

  2. Global Health Innovation Technology Models

    PubMed Central

    Harding, Kimberly

    2016-01-01

    Chronic technology and business process disparities between High Income, Low Middle Income and Low Income (HIC, LMIC, LIC) research collaborators directly prevent the growth of sustainable Global Health innovation for infectious and rare diseases. There is a need for an Open Source-Open Science Architecture Framework to bridge this divide. We are proposing such a framework for consideration by the Global Health community, by utilizing a hybrid approach of integrating agnostic Open Source technology and healthcare interoperability standards and Total Quality Management principles. We will validate this architecture framework through our programme called Project Orchid. Project Orchid is a conceptual Clinical Intelligence Exchange and Virtual Innovation platform utilizing this approach to support clinical innovation efforts for multi-national collaboration that can be locally sustainable for LIC and LMIC research cohorts. The goal is to enable LIC and LMIC research organizations to accelerate their clinical trial process maturity in the field of drug discovery, population health innovation initiatives and public domain knowledge networks. When sponsored, this concept will be tested by 12 confirmed clinical research and public health organizations in six countries. The potential impact of this platform is reduced drug discovery and public health innovation lag time and improved clinical trial interventions, due to reliable clinical intelligence and bio-surveillance across all phases of the clinical innovation process.

  3. Upending the social ecological model to guide health promotion efforts toward policy and environmental change.

    PubMed

    Golden, Shelley D; McLeroy, Kenneth R; Green, Lawrence W; Earp, Jo Anne L; Lieberman, Lisa D

    2015-04-01

    Efforts to change policies and the environments in which people live, work, and play have gained increasing attention over the past several decades. Yet health promotion frameworks that illustrate the complex processes that produce health-enhancing structural changes are limited. Building on the experiences of health educators, community activists, and community-based researchers described in this supplement and elsewhere, as well as several political, social, and behavioral science theories, we propose a new framework to organize our thinking about producing policy, environmental, and other structural changes. We build on the social ecological model, a framework widely employed in public health research and practice, by turning it inside out, placing health-related and other social policies and environments at the center, and conceptualizing the ways in which individuals, their social networks, and organized groups produce a community context that fosters healthy policy and environmental development. We conclude by describing how health promotion practitioners and researchers can foster structural change by (1) conveying the health and social relevance of policy and environmental change initiatives, (2) building partnerships to support them, and (3) promoting more equitable distributions of the resources necessary for people to meet their daily needs, control their lives, and freely participate in the public sphere. © 2015 Society for Public Health Education.

  4. From the Field to the Classroom: Developing Scientifically Literate Citizens Using the Understanding Global Change Framework in Education and Citizen Science

    NASA Astrophysics Data System (ADS)

    Toupin, C.; Bean, J. R.; Gavenus, K.; Johnson, H.; Toupin, S.

    2017-12-01

    With the copious amount of science and pseudoscience reported on by non-experts in the media, it is critical for educators to help students develop into scientifically literate citizens. One of the most direct ways to help students develop deep scientific understanding and the skills to critically question the information they encounter is to bring science into their daily experiences and to contextualize scientific inquiry within the classroom. Our work aims to use a systems-based models approach to engage students in science, in both formal and informal contexts. Using the Understanding Global Change (UGC) and the Understanding Science models developed at the Museum of Paleontology at UC Berkeley, high school students from Arizona were tasked with developing a viable citizen science program for use at the Center for Alaskan Coastal Studies in Homer, Alaska. Experts used the UGC model to help students define why they were doing the work, and give context to the importance of citizen science. Empowered with an understanding of the scientific process, excited by the purpose of their work and how it could contribute to the scientific community, students whole-heartedly worked together to develop intertidal monitoring protocols for two locations while staying at Peterson Bay Field Station, Homer. Students, instructors, and scientists used system models to communicate and discuss their understanding of the biological, physical, and chemical processes in Kachemak Bay. This systems-based models approach is also being used in an integrative high school physics, chemistry, and biology curriculum in a truly unprecedented manner. Using the Understanding Global Change framework to organize curriculum scope and sequence, the course addresses how the earth systems work, how interdisciplinary science knowledge is necessary to understand those systems, and how scientists and students can measure changes within those systems.

  5. A Framework for Socio-Scientific Issues Based Education

    ERIC Educational Resources Information Center

    Presley, Morgan L.; Sickel, Aaron J.; Muslu, Nilay; Merle-Johnson, Dominike; Witzig, Stephen B.; Izci, Kemal; Sadler, Troy D.

    2013-01-01

    Science instruction based on student exploration of socio-scientific issues (SSI) has been presented as a powerful strategy for supporting science learning and the development of scientific literacy. This paper presents an instructional framework for SSI based education. The framework is based on a series of research studies conducted in a diverse…

  6. Framework for Leading Next Generation Science Standards Implementation

    ERIC Educational Resources Information Center

    Stiles, Katherine; Mundry, Susan; DiRanna, Kathy

    2017-01-01

    In response to the need to develop leaders to guide the implementation of the Next Generation Science Standards (NGSS), the Carnegie Corporation of New York provided funding to WestEd to develop a framework that defines the leadership knowledge and actions needed to effectively implement the NGSS. The development of the framework entailed…

  7. Teaching Political Science in the Arab World.

    ERIC Educational Resources Information Center

    Habiby, Raymond

    There are many impediments to the development of political science as a true academic discipline in the Arab world. Each nation has its own ideological and political framework, and freedoms are determined within this framework. To operate outside this framework is considered an attack on the legality of the system and a possible threat to national…

  8. DIS[subscript 2]ECT: A Framework for Effective Inclusive Science Instruction

    ERIC Educational Resources Information Center

    Spaulding, Lucinda S.; Flannagan, Jenny Sue

    2012-01-01

    The purpose of this article is to provide special education and general education teachers a framework (DIS[subscript 2]ECT) for teaching science in inclusive settings. DIS2ECT stands for Design (Backwards); Individualization; Scaffolding and Strategies; Experiential learning; Cooperative Learning; and Teamwork. This framework was derived from our…

  9. Assessing Students' Understandings of Biological Models and Their Use in Science to Evaluate a Theoretical Framework

    ERIC Educational Resources Information Center

    Grünkorn, Juliane; Upmeier zu Belzen, Annette; Krüger, Dirk

    2014-01-01

    Research in the field of students' understandings of models and their use in science describes different frameworks concerning these understandings. Currently, there is no conjoint framework that combines these structures and so far, no investigation has focused on whether it reflects students' understandings sufficiently (empirical evaluation).…

  10. A Safe Cooperative Framework for Atmospheric Science Missions with Multiple Heterogeneous UAS using Piecewise Bezier Curves

    NASA Technical Reports Server (NTRS)

    Mehdi, S. Bilal; Puig-Navarro, Javier; Choe, Ronald; Cichella, Venanzio; Hovakimyan, Naira; Chandarana, Meghan; Trujillo, Anna; Rothhaar, Paul M.; Tran, Loc; Neilan, James H.; hide

    2016-01-01

    Autonomous operation of UAS holds promise for greater productivity of atmospheric science missions. However, several challenges need to be overcome before such missions can be made autonomous. This paper presents a framework for safe autonomous operations of multiple vehicles, particularly suited for atmospheric science missions. The framework revolves around the use of piecewise Bezier curves for trajectory representation, which in conjunction with path-following and time-coordination algorithms, allows for safe coordinated operations of multiple vehicles.

  11. A science of integration: frameworks, processes, and products in a place-based, integrative study

    USGS Publications Warehouse

    Kliskey, Andrew; Alessa, Lilian; Wandersee, Sarah; Williams, Paula; Trammell, Jamie; Powell, Jim; Grunblatt, Jess; Wipfli, Mark S.

    2017-01-01

    Integrative research is increasingly a priority within the scientific community and is a central goal for the evolving field of sustainability science. While it is conceptually attractive, its successful implementation has been challenging and recent work suggests that the move towards interdisciplinarity and transdisciplinarity in sustainability science is being only partially realized. To address this from the perspective of social-ecological systems (SES) research, we examine the process of conducting a science of integration within the Southcentral Alaska Test Case (SCTC) of Alaska-EPSCoR as a test-bed for this approach. The SCTC is part of a large, 5 year, interdisciplinary study investigating changing environments and adaptations to those changes in Alaska. In this paper, we review progress toward a science of integration and present our efforts to confront the practical issues of applying proposed integration frameworks. We: (1) define our integration framework; (2) describe the collaborative processes, including the co-development of science through stakeholder engagement and partnerships; and (3) illustrate potential products of integrative, social-ecological systems research. The approaches we use can also be applied outside of this particular framework. We highlight challenges and propose improvements for integration in sustainability science by addressing the need for common frameworks and improved contextual understanding. These insights may be useful for capacity-building for interdisciplinary projects that address complex real-world social and environmental problems.

  12. Strategies and motives for resistance to persuasion: an integrative framework

    PubMed Central

    Fransen, Marieke L.; Smit, Edith G.; Verlegh, Peeter W. J.

    2015-01-01

    Persuasion is an important element of human communication. But in many situations, we resist rather than embrace persuasive attempts. Resistance to persuasion has been studied in many different disciplines, including communication science, psychology, and marketing. The present paper reviews and connects these diverse literatures, and provides an organizing framework for understanding and studying resistance. Four clusters of resistance strategies are defined (avoidance, contesting, biased processing, and empowerment), and these clusters are related to different motivations for resisting persuasion (threat to freedom, reluctance to change, and concerns of deception). We propose that, while avoidance strategies may be triggered by any of these motivations, contesting strategies are linked primarily to concerns of deception, while empowerment and biased processing strategies are most common when people are reluctant to change. PMID:26322006

  13. The research agenda in ICU telemedicine: a statement from the Critical Care Societies Collaborative.

    PubMed

    Kahn, Jeremy M; Hill, Nicholas S; Lilly, Craig M; Angus, Derek C; Jacobi, Judith; Rubenfeld, Gordon D; Rothschild, Jeffrey M; Sales, Anne E; Scales, Damon C; Mathers, James A L

    2011-07-01

    ICU telemedicine uses audiovisual conferencing technology to provide critical care from a remote location. Research is needed to best define the optimal use of ICU telemedicine, but efforts are hindered by methodological challenges and the lack of an organized delivery approach. We convened an interdisciplinary working group to develop a research agenda in ICU telemedicine, addressing both methodological and knowledge gaps in the field. To best inform clinical decision-making and health policy, future research should be organized around a conceptual framework that enables consistent descriptions of both the study setting and the telemedicine intervention. The framework should include standardized methods for assessing the preimplementation ICU environment and describing the telemedicine program. This framework will facilitate comparisons across studies and improve generalizability by permitting context-specific interpretation. Research based on this framework should consider the multidisciplinary nature of ICU care and describe the specific program goals. Key topic areas to be addressed include the effect of ICU telemedicine on the structure, process, and outcome of critical care delivery. Ideally, future research should attempt to address causation instead of simply associations and elucidate the mechanism of action in order to determine exactly how ICU telemedicine achieves its effects. ICU telemedicine has significant potential to improve critical care delivery, but high-quality research is needed to best inform its use. We propose an agenda to advance the science of ICU telemedicine and generate research with the greatest potential to improve patient care.

  14. The Research Agenda in ICU Telemedicine

    PubMed Central

    Hill, Nicholas S.; Lilly, Craig M.; Angus, Derek C.; Jacobi, Judith; Rubenfeld, Gordon D.; Rothschild, Jeffrey M.; Sales, Anne E.; Scales, Damon C.; Mathers, James A. L.

    2011-01-01

    ICU telemedicine uses audiovisual conferencing technology to provide critical care from a remote location. Research is needed to best define the optimal use of ICU telemedicine, but efforts are hindered by methodological challenges and the lack of an organized delivery approach. We convened an interdisciplinary working group to develop a research agenda in ICU telemedicine, addressing both methodological and knowledge gaps in the field. To best inform clinical decision-making and health policy, future research should be organized around a conceptual framework that enables consistent descriptions of both the study setting and the telemedicine intervention. The framework should include standardized methods for assessing the preimplementation ICU environment and describing the telemedicine program. This framework will facilitate comparisons across studies and improve generalizability by permitting context-specific interpretation. Research based on this framework should consider the multidisciplinary nature of ICU care and describe the specific program goals. Key topic areas to be addressed include the effect of ICU telemedicine on the structure, process, and outcome of critical care delivery. Ideally, future research should attempt to address causation instead of simply associations and elucidate the mechanism of action in order to determine exactly how ICU telemedicine achieves its effects. ICU telemedicine has significant potential to improve critical care delivery, but high-quality research is needed to best inform its use. We propose an agenda to advance the science of ICU telemedicine and generate research with the greatest potential to improve patient care. PMID:21729894

  15. Seizing an Opportunity with Carefully Designed Geoscience Education Professional Development (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer, M. A.

    2013-12-01

    The Next Generation Science Standards (NGSS) are providing science education with opportunities to improve classroom practice and student learning within the domain of Earth and space science education. However, accurate and precise interpretation and implementation are the keys to meeting the goals of NGSS. Through their networks, our national geoscience organizations, like National Earth Science Teachers Association, are well positioned to ensure accuracy and precision is achieved in the interpretation and implementation of the NGSS. Nevertheless there are numerous challenges in designing appropriate resources and professional development aligned with the NGSS. This presentation will highlight the challenges and offer solutions to ensuring NGSS specific professional development will assist teachers and increase student learning. In the race to "align" instructional materials with the NGSS a rubber stamp must be avoided, and instead, careful vetting is necessary. The Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas (NRC, 2011) set the groundwork for the creation of the NGSS, which then melded the three dimensions (science and engineering practices, cross-cutting concepts, and disciplinary core ideas) into the performance expectations within the standards. When instructional materials are aligned, assessment for the explicit integration of all three dimensions must be included if the materials are to be truly aligned. The NGSS team is designing an instructional material alignment rubric to be used in the vetting process. Once the rubric has been created it will be a tool used by anyone creating instructional materials, and once an educator understands how to use the rubric and how to interpret the rubric score, it will increase the likelihood that the NGSS will be implemented with fidelity. As much as it is a challenge to identify instructional materials that "align" with the NGSS, it will be more of a challenge to design and implement appropriate professional development to assist our science educators with the integration of the NGSS into their classrooms. Careful planning in the creation of professional development follows a professional development design framework such as the one in Designing Professional Development for Teachers of Science and Mathematics (Loucks-Horsely, et al, 2009) in which a commitment to a vision is created and data on student learning is considered before setting professional development goals, and planning, implementing, and evaluating are done. Those in geoscience organizations offering instructional materials and professional development have the expertise available to ensure their members and audiences are receiving accurate and precise information about the NGSS. However it is imperative that time and care be taken to make sure what is communicate is truly accurate and precise.

  16. Curriculum coherence: A comparative analysis of elementary science content standards in People's Republic of China and the USA

    NASA Astrophysics Data System (ADS)

    Huang, Fang

    This study examines elementary science content standards curriculum coherence between the People's Republic of China and the United States of America. Three aspects of curriculum coherence are examined in this study: topic inclusion, topic duration, and curriculum structure. Specifically this study centers on the following research questions: (1) What science knowledge is intended for elementary students in each country? (2) How long each topic stays in the curriculum? (3) How these topics sequence and connect with each other? (4) And finally, what is the implication for elementary science curriculum development? Four intended science curriculum frameworks were selected respectively for each country. A technique of General Topic Trace Mapping (GTTM) was applied to generate the composite science content standards out of the selected curriculum for each country. In comparison, the composite USA and Chinese elementary science content standards form a stark contrast: a bunch of broad topics vs. a focus on a set of key topics at each grade; an average of 3.4 year topic duration vs. an average of 1.68 year topic duration; a stress on connections among related ideas vs. a discrete disposition of related ideas; laundry list topic organization vs. hierarchical organization of science topics. In analyzing the interrelationships among these characteristics, this study reached implications for developing coherent science content standards: First, for the overall curriculum, the topic inclusion should reflect the logical and sequential nature of knowledge in science. Second, for each grade level, less, rather than more science topics should be focused. Third, however, it should be clarified that a balance should be made between curriculum breadth and depth by considering student needs, subject matter, and child development. Fourth, the topic duration should not be too long. The lengthy topic duration tends to undermine links among ideas as well as lead to superficial treatment of topics.

  17. Examining small "c" creativity in the science classroom: Multiple case studies of five high school teachers

    NASA Astrophysics Data System (ADS)

    Lasky, Dorothea Shawn

    As the US continues to strive toward building capacity for a workforce in STEM fields (NSF, 2006), educational organizations and researchers have constructed frameworks that focus on increasing competencies in creativity in order to achieve this goal (ISTE, 2007; Karoly & Panis, 2004; Partnership for 21st Century Skills, 2007). Despite these recommendations, many teachers either do not believe in the relevance of nurturing creativity in their students (Kaufman & Sternberg, 2007) or accept the importance of it, but do not know how best to foster it in their classrooms (Kampylis et al., 2009). Researchers conclude that teachers need to revise their ideas about the kind of creativity they can expect from their students to reflect the idea of small 'c' versus large 'C' creativity. There is a dearth of literature that looks closely at teacher practice surrounding creativity in the US and gives teachers a set of practical suggestions they can follow easily. I examined five case studies of teachers as they participated in and implemented a large-scale, NSF-funded project premised on the idea that training teachers in 21 st century pedagogies, (for example, problem-based learning), helps teachers create classrooms that increase science competencies in students. I investigated how teachers' curricular choices affect the amount of student creativity produced in their classrooms. Analysis included determining CAT scores for student products and continua scores along the Small 'c' Creativity Framework. In the study, I present an understanding of how teachers' beliefs influence practice and how creativity is fostered in students through various styles of teacher practice. The data showed a relationship between teachers' CAT scores, framework scores, and school context. Thus, alongside CAT, the framework was determined to be a successful tool for understanding the degree to which teachers foster small 'c' creativity. Other themes emerged, which included teachers' allotment of time and small group collaboration, how science teachers valued creativity, the importance of transdisciplinarity, teachers' student knowledge, and school context. This study contributes to the growing body of literature surrounding teacher practice and creativity by revealing a clear and concrete set of practical recommendations based on the Small 'c' Creativity Framework.

  18. A framework for analyzing interdisciplinary tasks: implications for student learning and curricular design.

    PubMed

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra

    2013-06-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.

  19. A Framework for Analyzing Interdisciplinary Tasks: Implications for Student Learning and Curricular Design

    PubMed Central

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra

    2013-01-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627

  20. Learning through Constructing Representations in Science: A Framework of Representational Construction Affordances

    ERIC Educational Resources Information Center

    Prain, Vaughan; Tytler, Russell

    2012-01-01

    Compared with research on the role of student engagement with expert representations in learning science, investigation of the use and theoretical justification of student-generated representations to learn science is less common. In this paper, we present a framework that aims to integrate three perspectives to explain how and why…

  1. Conceptualizing the Science Curriculum: 40 Years of Developing Assessment Frameworks in Three Large-Scale Assessments

    ERIC Educational Resources Information Center

    Kind, Per Morten

    2013-01-01

    The paper analyzes conceptualizations in the science frameworks in three large-scale assessments, Trends in Mathematics and Science Study (TIMSS), Programme for International Student Assessment (PISA), and National Assessment of Educational Progress (NAEP). The assessments have a shared history, but have developed different conceptualizations. The…

  2. Assessing Students' Deep Conceptual Understanding in Physical Sciences: An Example on Sinking and Floating

    ERIC Educational Resources Information Center

    Shen, Ji; Liu, Ou Lydia; Chang, Hsin-Yi

    2017-01-01

    This paper presents a transformative modeling framework that guides the development of assessment to measure students' deep understanding in physical sciences. The framework emphasizes 3 types of connections that students need to make when learning physical sciences: (1) linking physical states, processes, and explanatory models, (2) integrating…

  3. Inquiry-Based Learning: A Framework for Assessing Science in the Early Years

    ERIC Educational Resources Information Center

    Marian, Hazel; Jackson, Claire

    2017-01-01

    This article draws on current literature leading to the development of a holistic framework to support practitioners in observation and assessment of childrens evolving inquiry skills. Evidence from the 2011 Trends in International Maths and Science Study (TIMSS) in England identifies a decline of year five student achievement in science. A…

  4. What Makes Us Tick...Tock?

    ERIC Educational Resources Information Center

    Talbot, Kristen; Hug, Barbara

    2013-01-01

    Teachers often ask: How can I engage my students in the study of "real" science? The answer can be found in the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2012). This framework calls for a new approach to science education and is the basis for…

  5. Plants, Alike and Different

    ERIC Educational Resources Information Center

    Trundle, Kathy Cabe; Mollohan, Katherine N; Smith, Mandy McCormick

    2013-01-01

    A Framework for K-12 Science Education (NRC 2012) includes inheritance as a core idea within the life science framework. For example, life science core idea 3A states that by the end of second grade, children's knowledge should include the ability to recognize and investigate physical differences and similarities among the same kind of…

  6. Action Research Study. A Framework To Help Move Teachers toward an Inquiry-Based Science Teaching Approach.

    ERIC Educational Resources Information Center

    Staten, Mary E.

    This action research study developed a framework for moving teachers toward an inquiry-based approach to teaching science, emphasizing elements, strategies, and supports necessary to encourage and sustain teachers' use of inquiry-based science instruction. The study involved a literature review, participant observation, focus group discussions,…

  7. Can Programming Frameworks Bring Smartphones into the Mainstream of Psychological Science?

    PubMed Central

    Piwek, Lukasz; Ellis, David A.

    2016-01-01

    Smartphones continue to provide huge potential for psychological science and the advent of novel research frameworks brings new opportunities for researchers who have previously struggled to develop smartphone applications. However, despite this renewed promise, smartphones have failed to become a standard item within psychological research. Here we consider the key issues that continue to limit smartphone adoption within psychological science and how these barriers might be diminishing in light of ResearchKit and other recent methodological developments. We conclude that while these programming frameworks are certainly a step in the right direction it remains challenging to create usable research-orientated applications with current frameworks. Smartphones may only become an asset for psychology and social science as a whole when development software that is both easy to use and secure becomes freely available. PMID:27602010

  8. Knowledge diffusion within a large conservation organization and beyond.

    PubMed

    Fisher, Jonathan R B; Montambault, Jensen; Burford, Kyle P; Gopalakrishna, Trisha; Masuda, Yuta J; Reddy, Sheila M W; Torphy, Kaitlin; Salcedo, Andrea I

    2018-01-01

    The spread and uptake of new ideas (diffusion of innovations) is critical for organizations to adapt over time, but there is little evidence of how this happens within organizations and to their broader community. To address this, we analyzed how individuals accessed information about a recent science innovation at a large, international, biodiversity conservation non-profit-The Nature Conservancy-and then traced the flow of how this information was shared within the organization and externally, drawing on an exceptionally data-rich environment. We used surveys and tracking of individual internet activity to understand mechanisms for early-stage diffusion (knowledge seeking and sharing) following the integration of social science and evidence principles into the institutional planning framework: Conservation by Design (CbD 2.0). Communications sent to all employees effectively catalyzed 56.4% to exhibit knowledge seeking behavior, measured by individual downloads from and visits to a restricted-access site. Individuals who self-reported through a survey that they shared information about CbD 2.0 internally were more likely to have both received and sought out information about the framework. Such individuals tended to hold positions within a higher job grade, were more likely to train others on CbD as part of their job, and to enroll in other online professional development offerings. Communication strategies targeting external audiences did not appear to influence information seeking behavior. Staff who engaged in internal knowledge sharing and adopting "evidence" practices from CbD 2.0 were more likely to have shared the document externally. We found a negative correlation with external sharing behavior and in-person trainings. Our findings suggest repeated, direct email communications aimed at wide audiences can effectively promote diffusion of new ideas. We also found a wide range of employee characteristics and circumstances to be associated with knowledge diffusion behavior (at both an organizational and individual level).

  9. Knowledge diffusion within a large conservation organization and beyond

    PubMed Central

    Montambault, Jensen; Burford, Kyle P.; Gopalakrishna, Trisha; Masuda, Yuta J.; Reddy, Sheila M. W.; Torphy, Kaitlin; Salcedo, Andrea I.

    2018-01-01

    The spread and uptake of new ideas (diffusion of innovations) is critical for organizations to adapt over time, but there is little evidence of how this happens within organizations and to their broader community. To address this, we analyzed how individuals accessed information about a recent science innovation at a large, international, biodiversity conservation non-profit–The Nature Conservancy–and then traced the flow of how this information was shared within the organization and externally, drawing on an exceptionally data-rich environment. We used surveys and tracking of individual internet activity to understand mechanisms for early-stage diffusion (knowledge seeking and sharing) following the integration of social science and evidence principles into the institutional planning framework: Conservation by Design (CbD 2.0). Communications sent to all employees effectively catalyzed 56.4% to exhibit knowledge seeking behavior, measured by individual downloads from and visits to a restricted-access site. Individuals who self-reported through a survey that they shared information about CbD 2.0 internally were more likely to have both received and sought out information about the framework. Such individuals tended to hold positions within a higher job grade, were more likely to train others on CbD as part of their job, and to enroll in other online professional development offerings. Communication strategies targeting external audiences did not appear to influence information seeking behavior. Staff who engaged in internal knowledge sharing and adopting “evidence” practices from CbD 2.0 were more likely to have shared the document externally. We found a negative correlation with external sharing behavior and in-person trainings. Our findings suggest repeated, direct email communications aimed at wide audiences can effectively promote diffusion of new ideas. We also found a wide range of employee characteristics and circumstances to be associated with knowledge diffusion behavior (at both an organizational and individual level). PMID:29494644

  10. Sustainability of Open-Source Software Organizations as Underpinning for Sustainable Interoperability on Large Scales

    NASA Astrophysics Data System (ADS)

    Fulker, D. W.; Gallagher, J. H. R.

    2015-12-01

    OPeNDAP's Hyrax data server is an open-source framework fostering interoperability via easily-deployed Web services. Compatible with solutions listed in the (PA001) session description—federation, rigid standards and brokering/mediation—the framework can support tight or loose coupling, even with dependence on community-contributed software. Hyrax is a Web-services framework with a middleware-like design and a handler-style architecture that together reduce the interoperability challenge (for N datatypes and M user contexts) to an O(N+M) problem, similar to brokering. Combined with an open-source ethos, this reduction makes Hyrax a community tool for gaining interoperability. E.g., in its response to the Big Earth Data Initiative (BEDI), NASA references OPeNDAP-based interoperability. Assuming its suitability, the question becomes: how sustainable is OPeNDAP, a small not-for-profit that produces open-source software, i.e., has no software-sales? In other words, if geoscience interoperability depends on OPeNDAP and similar organizations, are those entities in turn sustainable? Jim Collins (in Good to Great) highlights three questions that successful companies can answer (paraphrased here): What is your passion? Where is your world-class excellence? What drives your economic engine? We attempt to shed light on OPeNDAP sustainability by examining these. Passion: OPeNDAP has a focused passion for improving the effectiveness of scientific data sharing and use, as deeply-cooperative community endeavors. Excellence: OPeNDAP has few peers in remote, scientific data access. Skills include computer science with experience in data science, (operational, secure) Web services, and software design (for servers and clients, where the latter vary from Web pages to standalone apps and end-user programs). Economic Engine: OPeNDAP is an engineering services organization more than a product company, despite software being key to OPeNDAP's reputation. In essence, provision of engineering expertise, via contracts and grants, is the economic engine. Hence sustainability, as needed to address global grand challenges in geoscience, depends on agencies' and others' abilities and willingness to offer grants and let contracts for continually upgrading open-source software from OPeNDAP and others.

  11. A Framework for Evaluating Science and Technology Electronic Reference Books: A Comparison of Five Platforms in Chemistry

    ERIC Educational Resources Information Center

    Lafferty, Meghan

    2009-01-01

    This article examines what is desirable in online reference books in science and technology and outlines a framework for evaluating their interfaces. The framework considers factors unique to these subject areas like chemical structures and numerical data. Criteria in three categories, navigability, searchability, and results, were applied to five…

  12. Teaching about Israel in the Seventh Grade: How It Relates to the History/Social Science Framework.

    ERIC Educational Resources Information Center

    Benson, Cecile

    1981-01-01

    Describes an eight-week unit on Israel for seventh graders and shows how the unit relates to the 1981 "California History/Social Science Framework." The unit introduces students to framework content goals in history and the humanities. Activities include journal writing, artifact building, archaeological simulations, and a geographical…

  13. A Competence-Based Science Learning Framework Illustrated through the Study of Natural Hazards and Disaster Risk Reduction

    ERIC Educational Resources Information Center

    Oyao, Sheila G.; Holbrook, Jack; Rannikmäe, Miia; Pagunsan, Marmon M.

    2015-01-01

    This article proposes a competence-based learning framework for science teaching, applied to the study of "big ideas", in this case to the study of natural hazards and disaster risk reduction (NH&DRR). The framework focuses on new visions of competence, placing emphasis on nurturing connectedness and behavioral actions toward…

  14. e-Science Partnerships: Towards a Sustainable Framework for School-Scientist Engagement

    NASA Astrophysics Data System (ADS)

    Falloon, Garry

    2013-08-01

    In late 2006, the New Zealand Government embarked on a series of initiatives to explore how the resources and expertise of eight, small, state-owned science research institutes could be combined efficiently to support science teaching in schools. Programmes were developed to enable students and teachers to access and become involved in local science research and innovation, with the aim being to broaden their awareness of New Zealand science research contexts, adding authenticity and relevance to their school studies. One of these initiatives, known as Science-for-Life, partnered scientists with teachers and students in primary and secondary schools (K-12). A key output from the trial phase of Science-for-Life was the generation of a framework for guiding and coordinating the activities of the eight institutes within the education sector, to improve efficiency, effectiveness and promote sustainability. The framework, based on data gathered from a series of interviews with each institute's Chief Executive Officer (CEO), an online questionnaire, and informed by findings from trial partnership case studies published as institute technical reports and published articles, is presented in this paper. While the framework is developed from New Zealand data, it is suggested that it may be useful for coordinating interactions between multiple small science organisations and the school sector in other small-nation or state contexts.

  15. Learning to learn causal models.

    PubMed

    Kemp, Charles; Goodman, Noah D; Tenenbaum, Joshua B

    2010-09-01

    Learning to understand a single causal system can be an achievement, but humans must learn about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian framework that helps to explain how learning about several causal systems can accelerate learning about systems that are subsequently encountered. Given experience with a set of objects, our framework learns a causal model for each object and a causal schema that captures commonalities among these causal models. The schema organizes the objects into categories and specifies the causal powers and characteristic features of these categories and the characteristic causal interactions between categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned, and we explore this accelerated learning in four experiments. Our results confirm that humans learn rapidly about the causal powers of novel objects, and we show that our framework accounts better for our data than alternative models of causal learning. Copyright © 2010 Cognitive Science Society, Inc.

  16. U.S. initiatives to strengthen forensic science & international standards in forensic DNA.

    PubMed

    Butler, John M

    2015-09-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. Published by Elsevier Ireland Ltd.

  17. U.S. initiatives to strengthen forensic science & international standards in forensic DNA

    PubMed Central

    Butler, John M.

    2015-01-01

    A number of initiatives are underway in the United States in response to the 2009 critique of forensic science by a National Academy of Sciences committee. This article provides a broad review of activities including efforts of the White House National Science and Technology Council Subcommittee on Forensic Science and a partnership between the Department of Justice (DOJ) and the National Institute of Standards and Technology (NIST) to create the National Commission on Forensic Science and the Organization of Scientific Area Committees. These initiatives are seeking to improve policies and practices of forensic science. Efforts to fund research activities and aid technology transition and training in forensic science are also covered. The second portion of the article reviews standards in place or in development around the world for forensic DNA. Documentary standards are used to help define written procedures to perform testing. Physical standards serve as reference materials for calibration and traceability purposes when testing is performed. Both documentary and physical standards enable reliable data comparison, and standard data formats and common markers or testing regions are crucial for effective data sharing. Core DNA markers provide a common framework and currency for constructing DNA databases with compatible data. Recent developments in expanding core DNA markers in Europe and the United States are discussed. PMID:26164236

  18. Development of EarthCube Governance: An Agile Approach

    NASA Astrophysics Data System (ADS)

    Pearthree, G.; Allison, M. L.; Patten, K.

    2013-12-01

    Governance of geosciences cyberinfrastructure is a complex and essential undertaking, critical in enabling distributed knowledge communities to collaborate and communicate across disciplines, distances, and cultures. Advancing science with respect to 'grand challenges," such as global climate change, weather prediction, and core fundamental science, depends not just on technical cyber systems, but also on social systems for strategic planning, decision-making, project management, learning, teaching, and building a community of practice. Simply put, a robust, agile technical system depends on an equally robust and agile social system. Cyberinfrastructure development is wrapped in social, organizational and governance challenges, which may significantly impede progress. An agile development process is underway for governance of transformative investments in geosciences cyberinfrastructure through the NSF EarthCube initiative. Agile development is iterative and incremental, and promotes adaptive planning and rapid and flexible response. Such iterative deployment across a variety of EarthCube stakeholders encourages transparency, consensus, accountability, and inclusiveness. A project Secretariat acts as the coordinating body, carrying out duties for planning, organizing, communicating, and reporting. A broad coalition of stakeholder groups comprises an Assembly (Mainstream Scientists, Cyberinfrastructure Institutions, Information Technology/Computer Sciences, NSF EarthCube Investigators, Science Communities, EarthCube End-User Workshop Organizers, Professional Societies) to serve as a preliminary venue for identifying, evaluating, and testing potential governance models. To offer opportunity for broader end-user input, a crowd-source approach will engage stakeholders not involved otherwise. An Advisory Committee from the Earth, ocean, atmosphere, social, computer and library sciences is guiding the process from a high-level policy point of view. Developmental evaluators from the social sciences embedded in the project provide real-time review and adjustments. While a large number of agencies and organizations have agreed to participate, in order to ensure an open and inclusive process, community selected leaders yet to be identified will play key roles through an Assembly Advisory Council. Once consensus is reached on a governing framework, a community-selected demonstration governance pilot will help facilitate community convergence on system design.

  19. Common Web Mapping and Mobile Device Framework for Display of NASA Real-time Data

    NASA Astrophysics Data System (ADS)

    Burks, J. E.

    2013-12-01

    Scientists have strategic goals to deliver their unique datasets and research to both collaborative partners and more broadly to the public. These datasets can have a significant impact locally and globally as has been shown by the success of the NASA Short-term Prediction Research and Transition (SPoRT) Center and SERVIR programs at Marshall Space Flight Center. Each of these respective organizations provides near real-time data at the best resolution possible to address concerns of the operational weather forecasting community (SPoRT) and to support environmental monitoring and disaster assessment (SERVIR). However, one of the biggest struggles to delivering the data to these and other Earth science community partners is formatting the product to fit into an end user's Decision Support System (DSS). The problem of delivering the data to the end-user's DSS can be a significant impediment to transitioning research to operational environments especially for disaster response where the deliver time is critical. The decision makers, in addition to the DSS, need seamless access to these same datasets from a web browser or a mobile phone for support when they are away from their DSS or for personnel out in the field. A framework has been developed for MSFC Earth Science program that can be used to easily enable seamless delivery of scientific data to end users in multiple formats. The first format is an open geospatial format, Web Mapping Service (WMS), which is easily integrated into most DSSs. The second format is a web browser display, which can be embedded within any MSFC Science web page with just a few lines of web page coding. The third format is accessible in the form of iOS and Android native mobile applications that could be downloaded from an 'app store'. The framework developed has reduced the level of effort needed to bring new and existing NASA datasets to each of these end user platforms and help extend the reach of science data.

  20. Common Web Mapping and Mobile Device Framework for Display of NASA Real-time Data

    NASA Technical Reports Server (NTRS)

    Burks, Jason

    2013-01-01

    Scientists have strategic goals to deliver their unique datasets and research to both collaborative partners and more broadly to the public. These datasets can have a significant impact locally and globally as has been shown by the success of the NASA Short-term Prediction Research and Transition (SPoRT) Center and SERVIR programs at Marshall Space Flight Center. Each of these respective organizations provides near real-time data at the best resolution possible to address concerns of the operational weather forecasting community (SPoRT) and to support environmental monitoring and disaster assessment (SERVIR). However, one of the biggest struggles to delivering the data to these and other Earth science community partners is formatting the product to fit into an end user's Decision Support System (DSS). The problem of delivering the data to the end-user's DSS can be a significant impediment to transitioning research to operational environments especially for disaster response where the deliver time is critical. The decision makers, in addition to the DSS, need seamless access to these same datasets from a web browser or a mobile phone for support when they are away from their DSS or for personnel out in the field. A framework has been developed for MSFC Earth Science program that can be used to easily enable seamless delivery of scientific data to end users in multiple formats. The first format is an open geospatial format, Web Mapping Service (WMS), which is easily integrated into most DSSs. The second format is a web browser display, which can be embedded within any MSFC Science web page with just a few lines of web page coding. The third format is accessible in the form of iOS and Android native mobile applications that could be downloaded from an "app store". The framework developed has reduced the level of effort needed to bring new and existing NASA datasets to each of these end user platforms and help extend the reach of science data.

  1. Assessing the continuum of applications and societal benefits of US CLIVAR science

    NASA Astrophysics Data System (ADS)

    Ray, A. J.; Garfin, G. M.

    2015-12-01

    The new US CLIVAR strategic plan seeks to address the challenges of communicating the climate knowledge generated through its activities and to collaborate with the research and operational communities that may use this knowledge for managing climate risks. This presentation provides results of an overview in progress of the continuum of potential applications of climate science organized and coordinated through US CLIVAR. We define applications more broadly than simply ready for operations or direct use, and find that there are several stages in a continuum of readiness for communication and collaboration with communities that use climate information. These stages include: 1) advancing scientific understanding to a readiness for the next research steps aimed at predictable signals; 2) application of understanding climate phenomena in collaboration with a boundary organization, such as NOAA RISAs DOI Climate Science Centers, and USDA Climate Hubs, to understand how predictable signals may be translated into useable products; 3) use of knowledge in risk framing for a decision process, or in a science synthesis, such as the National Climate Assessment, and 4) transitioning new science knowledge into operational products (e.g. R2O), such as intraseasonal climate prediction. In addition, US CLIVAR has sponsored efforts to build science-to-decisions capacity, e.g., the Postdocs Applying Climate Expertise (PACE) program, in its 7th cohort, which has embedded climate experts into decision-making institutions. We will spotlight accomplishments of US CLIVAR science that are ripe for application in communities that are managing climate risks -- such as drought outlooks, MJO forecasting, extremes, and ocean conditions -- for agricultural production, water use, and marine ecosystems. We will use these examples to demonstrate the usefulness of an "applications continuum framework" identifying pathways from research to applications.

  2. Parallel Distributed Processing at 25: further explorations in the microstructure of cognition.

    PubMed

    Rogers, Timothy T; McClelland, James L

    2014-08-01

    This paper introduces a special issue of Cognitive Science initiated on the 25th anniversary of the publication of Parallel Distributed Processing (PDP), a two-volume work that introduced the use of neural network models as vehicles for understanding cognition. The collection surveys the core commitments of the PDP framework, the key issues the framework has addressed, and the debates the framework has spawned, and presents viewpoints on the current status of these issues. The articles focus on both historical roots and contemporary developments in learning, optimality theory, perception, memory, language, conceptual knowledge, cognitive control, and consciousness. Here we consider the approach more generally, reviewing the original motivations, the resulting framework, and the central tenets of the underlying theory. We then evaluate the impact of PDP both on the field at large and within specific subdomains of cognitive science and consider the current role of PDP models within the broader landscape of contemporary theoretical frameworks in cognitive science. Looking to the future, we consider the implications for cognitive science of the recent success of machine learning systems called "deep networks"-systems that build on key ideas presented in the PDP volumes. Copyright © 2014 Cognitive Science Society, Inc.

  3. Evolving Frameworks for Different Communities of Scientists and End Users

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Keiser, K.

    2016-12-01

    Two evolving frameworks for interdisciplinary science will be described in the context of the Common Data Framework for Earth-Observation Data and the importance of standards and protocols. The Event Data Driven Delivery (ED3) Framework, funded by NASA Applied Sciences, provides the delivery of data based on predetermined subscriptions and associated workflows to various communities of end users. ED3's capabilities are used by scientists, as well as policy and resource managers, when event alerts are triggered to respond to their needs. The EarthCube Integration and Testing Environment (ECITE) Assessment Framework for Technology Interoperability and Integration is being developed to facilitate the EarthCube community's assessment of NSF funded technologies addressing Earth science problems. ECITE is addressing the translation of geoscience researchers' use cases into technology use case that apply EarthCube-funded building block technologies (and other existing technologies) for solving science problems. EarthCube criteria for technology assessment include the use of data, metadata and service standards to improve interoperability and integration across program components. The long-range benefit will be the growth of a cyberinfrastructure with technology components that have been shown to work together to solve known science objectives.

  4. The CAWMSET Report: A Framework for Change

    NASA Astrophysics Data System (ADS)

    Budil, Kimberly S.

    2001-04-01

    In October 1998 the Commission on the Advancement of Women and Minorities in Science, Engineering and Technology Development (CAWMSET) was established by Congress through legislation developed and sponsored by Congresswomen Constance A. Morella (R-MD). The CAWMSET became a focal point for a grass-roots organization of women at the Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), California in collaboration with the Society of Women Engineers seeking to improve the environment in our workplaces. With the encouragement of our Congresswoman, Ellen Tauscher (D-CA), we embarked on an effort to provide input to the Commission regarding the recruitment, advancement and retention of women in the technical workforce since the input they received was primarily focused on the educational pipeline. The release of the CAWMSET's final report this summer provided a framework to begin to work toward the overarching goal of an inclusive, supportive, and diverse scientific community and to help us devise strategies for our home organizations that will allow us to achieve this in the near future. The Commission's final recommendation was to create a follow-on organization to carry their work forward. Professional organizations like the American Physical Society can play a key role in helping to ensure that the CAWMSET report is acted upon, not filed and forgotten. I will discuss the findings of the CAWMSET as well as past and ongoing activities at LLNL and SNL in support of this effort.

  5. Research design: the methodology for interdisciplinary research framework.

    PubMed

    Tobi, Hilde; Kampen, Jarl K

    2018-01-01

    Many of today's global scientific challenges require the joint involvement of researchers from different disciplinary backgrounds (social sciences, environmental sciences, climatology, medicine, etc.). Such interdisciplinary research teams face many challenges resulting from differences in training and scientific culture. Interdisciplinary education programs are required to train truly interdisciplinary scientists with respect to the critical factor skills and competences. For that purpose this paper presents the Methodology for Interdisciplinary Research (MIR) framework. The MIR framework was developed to help cross disciplinary borders, especially those between the natural sciences and the social sciences. The framework has been specifically constructed to facilitate the design of interdisciplinary scientific research, and can be applied in an educational program, as a reference for monitoring the phases of interdisciplinary research, and as a tool to design such research in a process approach. It is suitable for research projects of different sizes and levels of complexity, and it allows for a range of methods' combinations (case study, mixed methods, etc.). The different phases of designing interdisciplinary research in the MIR framework are described and illustrated by real-life applications in teaching and research. We further discuss the framework's utility in research design in landscape architecture, mixed methods research, and provide an outlook to the framework's potential in inclusive interdisciplinary research, and last but not least, research integrity.

  6. Teaching Scientific Practices: Meeting the Challenge of Change

    ERIC Educational Resources Information Center

    Osborne, Jonathan

    2014-01-01

    This paper provides a rationale for the changes advocated by the Framework for K-12 Science Education and the Next Generation Science Standards. It provides an argument for why the model embedded in the Next Generation Science Standards is seen as an improvement. The Case made here is that the underlying model that the new Framework presents of…

  7. The Impact of a "Framework"-Aligned Science Professional Development Program on Literacy and Mathematics Achievement of K-3 Students

    ERIC Educational Resources Information Center

    Paprzycki, Peter; Tuttle, Nicole; Czerniak, Charlene M.; Molitor, Scott; Kadervaek, Joan; Mendenhall, Robert

    2017-01-01

    This study investigates the effect of a Framework-aligned professional development program at the PreK-3 level. The NSF funded program integrated science with literacy and mathematics learning and provided teacher professional development, along with materials and programming for parents to encourage science investigations and discourse around…

  8. Contextualization of Nature of Science within the Socioscientific Issues Framework: A Review of Research

    ERIC Educational Resources Information Center

    Karisan, Dilek; Zeidler, Dana L.

    2017-01-01

    The aim of this paper is to examine the importance of contextualization of Nature of Science (NOS) within the Socioscientific Issues (SSI) framework, because of the importance to science education. The emphasis on advancing scientific literacy is contingent upon a robust understanding and appreciation of NOS, as well as the acquisition of…

  9. The Art and Science of Teaching: A Comprehensive Framework for Effective Instruction

    ERIC Educational Resources Information Center

    Marzano, Robert J.

    2007-01-01

    Though classroom instructional strategies should clearly be based on sound science and research, knowing when to use them and with whom is more of an art. In "The Art and Science of Teaching: A Comprehensive Framework for Effective Instruction," author Robert J. Marzano presents a model for ensuring quality teaching that balances the necessity of…

  10. Towards a Pedagogical Model for Science Education: Bridging Educational Contexts through a Blended Learning Approach

    ERIC Educational Resources Information Center

    Bidarra, José; Rusman, Ellen

    2017-01-01

    This paper proposes a design framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called "Science Learning Activities Model" (SLAM). The development of this design framework started as a response to complex changes in society and education (e.g.…

  11. What Are Some Alternatives for Working Within a Regionally Adopted Science Framework?

    ERIC Educational Resources Information Center

    Perkes, Victor A.

    Alternatives for working within a regionally adopted framework for selecting an elementary school science program are considered in this paper. The alternatives are ranked on a scale from 0 to 5 in increasing levels of modifying a set instructional pattern: Level 0, typified by indifference to any consistent program in science; Level 1, a complete…

  12. Reconsidering the Framework. Learning in Science Project. Working Paper No. 14.

    ERIC Educational Resources Information Center

    Osborne, Roger; And Others

    The first working paper of the Learning in Science Project, "An Initial Framework," outlined what was then seen as the major aims of the project and suggested how these aims might be achieved by three phases of research: exploratory (to observe teaching/learning in Form 1 to 4 science classrooms and to identify difficulties perceived by…

  13. Keeping the Local Local: Recalibrating the Status of Science and Traditional Ecological Knowledge (TEK) in Education

    ERIC Educational Resources Information Center

    Van Eijck, Michiel; Roth, Wolff-Michael

    2007-01-01

    The debate on the status of traditional ecological knowledge (TEK) in science curricula is currently centered on a juxtaposition of two incompatible frameworks: multiculturalism and universalism. The aim of this paper is to establish a framework that overcomes this opposition between multiculturalism and universalism in science education, so that…

  14. Educating for the 21st-Century Health Care System: An Interdependent Framework of Basic, Clinical, and Systems Sciences.

    PubMed

    Gonzalo, Jed D; Haidet, Paul; Papp, Klara K; Wolpaw, Daniel R; Moser, Eileen; Wittenstein, Robin D; Wolpaw, Terry

    2017-01-01

    In the face of a fragmented and poorly performing health care delivery system, medical education in the United States is poised for disruption. Despite broad-based recommendations to better align physician training with societal needs, adaptive change has been slow. Traditionally, medical education has focused on the basic and clinical sciences, largely removed from the newer systems sciences such as population health, policy, financing, health care delivery, and teamwork. In this article, authors examine the current state of medical education with respect to systems sciences and propose a new framework for educating physicians in adapting to and practicing in systems-based environments. Specifically, the authors propose an educational shift from a two-pillar framework to a three-pillar framework where basic, clinical, and systems sciences are interdependent. In this new three-pillar framework, students not only learn the interconnectivity in the basic, clinical, and systems sciences but also uncover relevance and meaning in their education through authentic, value-added, and patient-centered roles as navigators within the health care system. Authors describe the Systems Navigation Curriculum, currently implemented for all students at the Penn State College of Medicine, as an example of this three-pillar educational model. Simple adjustments, such as including occasional systems topics in medical curriculum, will not foster graduates prepared to practice in the 21st-century health care system. Adequate preparation requires an explicit focus on the systems sciences as a vital and equal component of physician education.

  15. SPOKES: An end-to-end simulation facility for spectroscopic cosmological surveys

    DOE PAGES

    Nord, B.; Amara, A.; Refregier, A.; ...

    2016-03-03

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nord, B.; Amara, A.; Refregier, A.

    The nature of dark matter, dark energy and large-scale gravity pose some of the most pressing questions in cosmology today. These fundamental questions require highly precise measurements, and a number of wide-field spectroscopic survey instruments are being designed to meet this requirement. A key component in these experiments is the development of a simulation tool to forecast science performance, define requirement flow-downs, optimize implementation, demonstrate feasibility, and prepare for exploitation. We present SPOKES (SPectrOscopic KEn Simulation), an end-to-end simulation facility for spectroscopic cosmological surveys designed to address this challenge. SPOKES is based on an integrated infrastructure, modular function organization, coherentmore » data handling and fast data access. These key features allow reproducibility of pipeline runs, enable ease of use and provide flexibility to update functions within the pipeline. The cyclic nature of the pipeline offers the possibility to make the science output an efficient measure for design optimization and feasibility testing. We present the architecture, first science, and computational performance results of the simulation pipeline. The framework is general, but for the benchmark tests, we use the Dark Energy Spectrometer (DESpec), one of the early concepts for the upcoming project, the Dark Energy Spectroscopic Instrument (DESI). As a result, we discuss how the SPOKES framework enables a rigorous process to optimize and exploit spectroscopic survey experiments in order to derive high-precision cosmological measurements optimally.« less

  17. Semantic-JSON: a lightweight web service interface for Semantic Web contents integrating multiple life science databases

    PubMed Central

    Kobayashi, Norio; Ishii, Manabu; Takahashi, Satoshi; Mochizuki, Yoshiki; Matsushima, Akihiro; Toyoda, Tetsuro

    2011-01-01

    Global cloud frameworks for bioinformatics research databases become huge and heterogeneous; solutions face various diametric challenges comprising cross-integration, retrieval, security and openness. To address this, as of March 2011 organizations including RIKEN published 192 mammalian, plant and protein life sciences databases having 8.2 million data records, integrated as Linked Open or Private Data (LOD/LPD) using SciNetS.org, the Scientists' Networking System. The huge quantity of linked data this database integration framework covers is based on the Semantic Web, where researchers collaborate by managing metadata across public and private databases in a secured data space. This outstripped the data query capacity of existing interface tools like SPARQL. Actual research also requires specialized tools for data analysis using raw original data. To solve these challenges, in December 2009 we developed the lightweight Semantic-JSON interface to access each fragment of linked and raw life sciences data securely under the control of programming languages popularly used by bioinformaticians such as Perl and Ruby. Researchers successfully used the interface across 28 million semantic relationships for biological applications including genome design, sequence processing, inference over phenotype databases, full-text search indexing and human-readable contents like ontology and LOD tree viewers. Semantic-JSON services of SciNetS.org are provided at http://semanticjson.org. PMID:21632604

  18. A Framework for Relating Cognitive to Neural Systems. Cognitive Science Program, Technical Report No. 84-2.

    ERIC Educational Resources Information Center

    Posner, Michael I.

    This paper reviews the aspects of cognitive science that relate best to using electrical and magnetic recording to understand the function of brain systems. It outlines a framework for relating cognitive activities of daily life (typing, reading) to underlying neural systems. The framework uses five levels of analysis: task, elementary operations,…

  19. Scaffolding Preservice Teachers' Evaluation of Children's Science Literature: Attention to Science-Focused Genres and Use

    NASA Astrophysics Data System (ADS)

    Ford, Danielle J.

    2004-04-01

    The use of an inquiry framework to support the development of learners'' scientific literacy has been supported by research on learning in science and advocated by the major science standards and policy documents. To fully engage in inquiry, however, a wide range of tools, including both activities and texts, must be employed. The successful integration of text materials requires the selection of suitable texts. This, in turn, requires an in-depth understanding of the types of science books available and their potential uses within an inquiry framework. To support preservice teachers'' development of these understandings, I examined the criteria they typically employ when evaluating texts in contextualized and uncontextualized settings. In these settings, students attended primarily to visual characteristics of texts or exhibited their limited understandings of science content and text use. These results were used to develop an evaluation framework that emphasizes use in inquiry over other typical evaluation criteria.

  20. Taking action on overuse: Creating the culture for change.

    PubMed

    Parchman, Michael L; Henrikson, Nora B; Blasi, Paula R; Buist, Diana S; Penfold, Robert; Austin, Brian; Ganos, Emily H

    2017-12-01

    Unnecessary care contributes to high costs and places patients at risk of harm. While most providers support reducing low-value care, changing established practice patterns is difficult and requires active engagement in sustained behavioral, organizational, and cultural change. Here we describe an action-planning framework to engage providers in reducing overused services. The framework is informed by a comprehensive review of social science theory and literature, published reports of successful and unsuccessful efforts to reduce low-value care, and interviews with innovators of value-based care initiatives in twenty-three health care organizations across the United States. A multi-stakeholder advisory committee provided feedback on the framework and guidance on optimizing it for use in practice. The framework describes four conditions necessary for change: prioritize addressing low-value care; build a culture of trust, innovation and improvement; establish shared language and purpose; and commit resources to measurements. These conditions foster productive sense-making conversations between providers, between providers and patients, and among members of the health care team about the potential for harm from overuse and reflection on current frequency of use. Through these conversations providers, patients and team members think together as a group, learn how to coordinate individual behaviors, and jointly develop possibilities for coordinated action around specific areas of overuse. Organizational efforts to engage providers in value-based care focused on creating conditions for productive sense-making conversations that lead to change. Organizations can use this framework to enhance and strengthen provider engagement efforts to do less of what potentially harms and more of what truly helps patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Virtue ethics, positive psychology, and a new model of science and engineering ethics education.

    PubMed

    Han, Hyemin

    2015-04-01

    This essay develops a new conceptual framework of science and engineering ethics education based on virtue ethics and positive psychology. Virtue ethicists and positive psychologists have argued that current rule-based moral philosophy, psychology, and education cannot effectively promote students' moral motivation for actual moral behavior and may even lead to negative outcomes, such as moral schizophrenia. They have suggested that their own theoretical framework of virtue ethics and positive psychology can contribute to the effective promotion of motivation for self-improvement by connecting the notion of morality and eudaimonic happiness. Thus this essay attempts to apply virtue ethics and positive psychology to science and engineering ethics education and to develop a new conceptual framework for more effective education. In addition to the conceptual-level work, this essay suggests two possible educational methods: moral modeling and involvement in actual moral activity in science and engineering ethics classes, based on the conceptual framework.

  2. A Science Framework for Connecticut River Watershed Sustainability

    USGS Publications Warehouse

    Rideout, Stephen; Nicolson, Craig; Russell-Robinson, Susan L.; Mecray, Ellen L.

    2005-01-01

    Introduction: This document outlines a research framework for water resource managers and land-use planners in the four-state Connecticut River Watershed (CRW). It specifically focuses on developing the decision-support tools and data needed by managers in the watershed. The purpose of the Science Framework is to identify critical research issues and information required to better equip managers to make decisions on desirable changes in the CRW. This Science Framework is the result of a cooperative project between the U.S. Geological Survey (USGS), the University of Massachusetts at Amherst (UMass-Amherst), and the U.S. Fish and Wildlife Service (FWS). The cooperative project was guided by a Science Steering Committee (SC) and included several focus groups, a 70-person workshop in September 2004, and an open collaborative process by which the workshop outcomes were synthesized, written up, and then progressively refined through peer review. This document is the product of that collaborative process.

  3. Community stress and social and technological change: a framework for interpreting the behavior of social movements and community action groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, R.W.; Schuller, C.R.; Lindell, M.K.

    1980-06-01

    The purpose of this report is to provide a comprehensive examination of existing research on community organizations and community political systems. These findings will be integrated into a framework for understanding the variety of social and political responses which may be manifest in small communities facing the prospect of hosting a major nuclear facility. The principal focus is on the formation and behavior of social groups in communities, particularly politically oriented social movements or community action groups. This analysis is set on the context of a community experiencing social stress. Most of the discussion which follows is based on anmore » extrapolation from the large body of reseach literature on the topics in sociology, political science, and psychology. Chapter I examines the community political systems which are the arena in which local action groups will operate. Chapter II focuses on the internal conditions necessary for the formation and maintenance of community action groups. Chapter III reviews the research literature on the social environment of organizations in communities and the external conditions which are necessary to maintain organizations over time. Chapter IV develops a logic whereby the community consensus model can be adopted to particular social movement organizations and community actions groups. Chapter V examines changes in aspects of the environment which can be a function of the operation of movement organizations, and changes in the structure and tactics of movement organizations which appear to be a response to the environment.« less

  4. Metal-organic frameworks for adsorption and separation of noble gases

    DOEpatents

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  5. Horizon: The Portable, Scalable, and Reusable Framework for Developing Automated Data Management and Product Generation Systems

    NASA Astrophysics Data System (ADS)

    Huang, T.; Alarcon, C.; Quach, N. T.

    2014-12-01

    Capture, curate, and analysis are the typical activities performed at any given Earth Science data center. Modern data management systems must be adaptable to heterogeneous science data formats, scalable to meet the mission's quality of service requirements, and able to manage the life-cycle of any given science data product. Designing a scalable data management doesn't happen overnight. It takes countless hours of refining, refactoring, retesting, and re-architecting. The Horizon data management and workflow framework, developed at the Jet Propulsion Laboratory, is a portable, scalable, and reusable framework for developing high-performance data management and product generation workflow systems to automate data capturing, data curation, and data analysis activities. The NASA's Physical Oceanography Distributed Active Archive Center (PO.DAAC)'s Data Management and Archive System (DMAS) is its core data infrastructure that handles capturing and distribution of hundreds of thousands of satellite observations each day around the clock. DMAS is an application of the Horizon framework. The NASA Global Imagery Browse Services (GIBS) is NASA's Earth Observing System Data and Information System (EOSDIS)'s solution for making high-resolution global imageries available to the science communities. The Imagery Exchange (TIE), an application of the Horizon framework, is a core subsystem for GIBS responsible for data capturing and imagery generation automation to support the EOSDIS' 12 distributed active archive centers and 17 Science Investigator-led Processing Systems (SIPS). This presentation discusses our ongoing effort in refining, refactoring, retesting, and re-architecting the Horizon framework to enable data-intensive science and its applications.

  6. Response to Comment on "Water harvesting from air with metal-organic frameworks powered by natural sunlight".

    PubMed

    Kim, Hyunho; Rao, Sameer R; Narayanan, Shankar; Kapustin, Eugene A; Yang, Sungwoo; Furukawa, Hiroyasu; Umans, Ari S; Yaghi, Omar M; Wang, Evelyn N

    2017-12-01

    In their comment, Bui et al argue that the approach we described in our report is vastly inferior in efficiency to alternative off-the-shelf technologies. Their conclusion is invalid, as they compare efficiencies in completely different operating conditions. Here, using heat transfer and thermodynamics principles, we show how Bui et al 's conclusions about the efficiencies of off-the-shelf technologies are fundamentally flawed and inaccurate for the operating conditions described in our study. Copyright © 2017, American Association for the Advancement of Science.

  7. Contextualizing Next Generation Science Standards to Guide Climate Education in the U.S. Affiliated Pacific Islands (USAPI)

    NASA Astrophysics Data System (ADS)

    Sussman, A.; Fletcher, C. H.; Sachs, J. P.

    2012-12-01

    The USAPI has a population of about 1,800,000 people spread across 4.9 million square miles of the Pacific Ocean. The Pacific Islands are characterized by a multitude of indigenous cultures and languages. Many USAPI students live considerably below the poverty line. The Pacific Island region is projected to experience some of the most profound negative impacts of climate change considerably sooner than other regions. Funded by the National Science Foundation (NSF), the Pacific Islands Climate Education Partnership (PCEP) has developed a detailed strategic plan to collaboratively improve climate knowledge among the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and honor indigenous cultures. Students and citizens within the region will have the knowledge and skills to advance understanding of climate change, and to adapt to its impacts. Core PCEP partners contribute expertise in climate science, the science of learning, the region's education infrastructure, and the region's cultures and indigenous knowledge and practices. PCEP's strategic education plan is guided by a general, multidisciplinary K-14 Climate Education Framework (CEF) that organizes fundamental science concepts and practices within appropriate grade-span progressions. This CEF is based largely upon the National Research Council's "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" and the emerging Next Generation Science Standards. While the CEF is based upon these national Next Generation documents, it is also informed and strongly influenced by the region's geographic, climatic, cultural and socioeconomic contexts, notably indigenous knowledge and practices. Guided by the CEF, the PCEP in its initial development/planning phase has prototyped regional approaches to professional development, contextualizing curricula, and supporting community/school partnerships. With new, multiyear NSF implementation funding, the PCEP is building upon these prototypes and the strategic education plan to transform climate education across the region. Examples include a program of climate education certification being developed among the region's community colleges; research-based professional development focused on improving teachers' pedagogical content knowledge that has demonstrated striking success with both teacher and student outcomes; regional curricula based on local ecosystems and in local languages as well as English; and local school/community partnerships that combine the climate education work with local community climate adaptation projects. PCEP's interactive web-based environment (http://pcep.dsp.wested.org) interlinks the region's locations, organizations and people with information about climate science and climate impacts. This system enables the region's diverse stakeholders to access and contribute to the same information pool. This web-based environment both supports the development of PCEP resources such as the CEF and their continuing evolution and dissemination.

  8. Utilizing the National Research Council's (NRC) Conceptual Framework for the Next Generation Science Standards (NGSS): A Self-Study in My Science, Engineering, and Mathematics Classroom

    NASA Astrophysics Data System (ADS)

    Corvo, Arthur Francis

    Given the reality that active and competitive participation in the 21 st century requires American students to deepen their scientific and mathematical knowledge base, the National Research Council (NRC) proposed a new conceptual framework for K--12 science education. The framework consists of an integration of what the NRC report refers to as the three dimensions: scientific and engineering practices, crosscutting concepts, and core ideas in four disciplinary areas (physical, life and earth/spaces sciences, and engineering/technology). The Next Generation Science Standards (NGSS ), which are derived from this new framework, were released in April 2013 and have implications on teacher learning and development in Science, Technology, Engineering, and Mathematics (STEM). Given the NGSS's recent introduction, there is little research on how teachers can prepare for its release. To meet this research need, I implemented a self-study aimed at examining my teaching practices and classroom outcomes through the lens of the NRC's conceptual framework and the NGSS. The self-study employed design-based research (DBR) methods to investigate what happened in my secondary classroom when I designed, enacted, and reflected on units of study for my science, engineering, and mathematics classes. I utilized various best practices including Learning for Use (LfU) and Understanding by Design (UbD) models for instructional design, talk moves as a tool for promoting discourse, and modeling instruction for these designed units of study. The DBR strategy was chosen to promote reflective cycles, which are consistent with and in support of the self-study framework. A multiple case, mixed-methods approach was used for data collection and analysis. The findings in the study are reported by study phase in terms of unit planning, unit enactment, and unit reflection. The findings have implications for science teaching, teacher professional development, and teacher education.

  9. Science framework for conservation and restoration of the sagebrush biome: Linking the Department of the Interior’s Integrated Rangeland Fire Management Strategy to long-term strategic conservation actions, Part 1. Science basis and applications

    USGS Publications Warehouse

    Chambers, Jeanne C.; Beck, Jeffrey L.; Bradford, John B.; Bybee, Jared; Campbell, Steve; Carlson, John; Christiansen, Thomas J; Clause, Karen J.; Collins, Gail; Crist, Michele R.; Dinkins, Jonathan B.; Doherty, Kevin E.; Edwards, Fred; Espinosa, Shawn; Griffin, Kathleen A.; Griffin, Paul; Haas, Jessica R.; Hanser, Steven E.; Havlina, Douglas W.; Henke, Kenneth F.; Hennig, Jacob D.; Joyce, Linda A; Kilkenny, Francis F.; Kulpa, Sarah M; Kurth, Laurie L; Maestas, Jeremy D; Manning, Mary E.; Mayer, Kenneth E.; Mealor, Brian A.; McCarthy, Clinton; Pellant, Mike; Perea, Marco A.; Prentice, Karen L.; Pyke, David A.; Wiechman , Lief A.; Wuenschel, Amarina

    2017-01-01

    The Science Framework is intended to link the Department of the Interior’s Integrated Rangeland Fire Management Strategy with long-term strategic conservation actions in the sagebrush biome. The Science Framework provides a multiscale approach for prioritizing areas for management and determining effective management strategies within the sagebrush biome. The emphasis is on sagebrush (Artemisia spp.) ecosystems and Greater sage-grouse (Centrocercus urophasianus). The approach provided in the Science Framework links sagebrush ecosystem resilience to disturbance and resistance to nonnative, invasive plant species to species habitat information based on the distribution and abundance of focal species. A geospatial process is presented that overlays information on ecosystem resilience and resistance, species habitats, and predominant threats and that can be used at the mid-scale to prioritize areas for management. A resilience and resistance habitat matrix is provided that can help decisionmakers evaluate risks and determine appropriate management strategies. Prioritized areas and management strategies can be refined by managers and stakeholders at the local scale based on higher resolution data and local knowledge. Decision tools are discussed for determining appropriate management actions for areas that are prioritized for management. Geospatial data, maps, and models are provided through the U.S. Geological Survey (USGS) ScienceBase and Bureau of Land Management (BLM) Landscape Approach Data Portal. The Science Framework is intended to be adaptive and will be updated as additional data become available on other values and species at risk. It is anticipated that the Science Framework will be widely used to: (1) inform emerging strategies to conserve sagebrush ecosystems, sagebrush dependent species, and human uses of the sagebrush system, and (2) assist managers in prioritizing and planning on-the-ground restoration and mitigation actions across the sagebrush biome.

  10. Argumentation, Critical Thinking, Nature of Science and Socioscientific Issues: A Dialogue between Two Researchers

    ERIC Educational Resources Information Center

    Yacoubian, Hagop A.; Khishfe, Rola

    2018-01-01

    The purpose of this paper is to compare and contrast between two theoretical frameworks for addressing nature of science (NOS) and socioscientific issues (SSI) in school science. These frameworks are critical thinking (CT) and argumentation (AR). For the past years, the first and second authors of this paper have pursued research in this area…

  11. The Use of Ethical Frameworks for Implementing Science as a Human Endeavour in Year 10 Biology

    ERIC Educational Resources Information Center

    Yap, Siew Fong; Dawson, Vaille

    2014-01-01

    This research focuses on the use of ethical frameworks as a pedagogical model for socio-scientific education in implementing the "Science as a Human Endeavour" (SHE) strand of the Australian Curriculum: Science in a Year 10 biology class in a Christian college in metropolitan Perth, Western Australia. Using a case study approach, a mixed…

  12. Practical use of a framework for network science experimentation

    NASA Astrophysics Data System (ADS)

    Toth, Andrew; Bergamaschi, Flavio

    2014-06-01

    In 2006, the US Army Research Laboratory (ARL) and the UK Ministry of Defence (MoD) established a collaborative research alliance with academia and industry, called the International Technology Alliance (ITA)1 In Network and Information Sciences, to address fundamental issues concerning Network and Information Sciences that will enhance decision making for coalition operations and enable rapid, secure formation of ad hoc teams in coalition environments and enhance US and UK capabilities to conduct coalition warfare. Research conducted under the ITA was extended through collaboration between ARL and IBM UK to characterize and dene a software stack and tooling that has become the reference framework for network science experimentation in support for validation of theoretical research. This paper discusses the composition of the reference framework for experimentation resulting from the ARL/IBM UK collaboration and its use, by the Network Science Collaborative Technology Alliance (NS CTA)2 , in a recent network science experiment conducted at ARL. It also discusses how the experiment was modeled using the reference framework, the integration of two new components, the Apollo Fact-Finder3 tool and the Medusa Crowd Sensing4 application, the limitations identified and how they shall be addressed in future work.

  13. Toward an Analytic Framework of Interdisciplinary Reasoning and Communication (IRC) Processes in Science

    NASA Astrophysics Data System (ADS)

    Shen, Ji; Sung, Shannon; Zhang, Dongmei

    2015-11-01

    Students need to think and work across disciplinary boundaries in the twenty-first century. However, it is unclear what interdisciplinary thinking means and how to analyze interdisciplinary interactions in teamwork. In this paper, drawing on multiple theoretical perspectives and empirical analysis of discourse contents, we formulate a theoretical framework that helps analyze interdisciplinary reasoning and communication (IRC) processes in interdisciplinary collaboration. Specifically, we propose four interrelated IRC processes-integration, translation, transfer, and transformation, and develop a corresponding analytic framework. We apply the framework to analyze two meetings of a project that aims to develop interdisciplinary science assessment items. The results illustrate that the framework can help interpret the interdisciplinary meeting dynamics and patterns. Our coding process and results also suggest that these IRC processes can be further examined in terms of interconnected sub-processes. We also discuss the implications of using the framework in conceptualizing, practicing, and researching interdisciplinary learning and teaching in science education.

  14. Evaluation of Investments in Science, Technology and Innovation: Applying Scientific and Technical Human Capital Framework for Assessment of Doctoral Students in Cooperative Research Centers

    ERIC Educational Resources Information Center

    Leonchuk, Olena

    2016-01-01

    This dissertation builds on an alternative framework for evaluation of science, technology and innovation (STI) outcomes--the scientific & technical (S&T) human capital which was developed by Bozeman, Dietz and Gaughan (2001). At its core, this framework looks beyond simple economic and publication metrics and instead focuses on…

  15. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine

    PubMed Central

    Krishnan, Jerry A.; Au, David H.; Bender, Bruce G.; Carson, Shannon S.; Cattamanchi, Adithya; Cloutier, Michelle M.; Cooke, Colin R.; Erickson, Karen; George, Maureen; Gerald, Joe K.; Gerald, Lynn B.; Goss, Christopher H.; Gould, Michael K.; Hyzy, Robert; Kahn, Jeremy M.; Mittman, Brian S.; Mosesón, Erika M.; Mularski, Richard A.; Parthasarathy, Sairam; Patel, Sanjay R.; Rand, Cynthia S.; Redeker, Nancy S.; Reiss, Theodore F.; Riekert, Kristin A.; Rubenfeld, Gordon D.; Tate, Judith A.; Wilson, Kevin C.; Thomson, Carey C.

    2016-01-01

    Background: Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. Methods: The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. Results: The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation science through scientific journals and conferences, and teaching the next generation about implementation science through courses and other media. Conclusions: Implementation science plays an increasingly important role in health care. Through support of implementation science, the ATS and other professional medical societies can work with other stakeholders to lead this effort. PMID:27739895

  16. An Official American Thoracic Society Research Statement: Implementation Science in Pulmonary, Critical Care, and Sleep Medicine.

    PubMed

    Weiss, Curtis H; Krishnan, Jerry A; Au, David H; Bender, Bruce G; Carson, Shannon S; Cattamanchi, Adithya; Cloutier, Michelle M; Cooke, Colin R; Erickson, Karen; George, Maureen; Gerald, Joe K; Gerald, Lynn B; Goss, Christopher H; Gould, Michael K; Hyzy, Robert; Kahn, Jeremy M; Mittman, Brian S; Mosesón, Erika M; Mularski, Richard A; Parthasarathy, Sairam; Patel, Sanjay R; Rand, Cynthia S; Redeker, Nancy S; Reiss, Theodore F; Riekert, Kristin A; Rubenfeld, Gordon D; Tate, Judith A; Wilson, Kevin C; Thomson, Carey C

    2016-10-15

    Many advances in health care fail to reach patients. Implementation science is the study of novel approaches to mitigate this evidence-to-practice gap. The American Thoracic Society (ATS) created a multidisciplinary ad hoc committee to develop a research statement on implementation science in pulmonary, critical care, and sleep medicine. The committee used an iterative consensus process to define implementation science and review the use of conceptual frameworks to guide implementation science for the pulmonary, critical care, and sleep community and to explore how professional medical societies such as the ATS can promote implementation science. The committee defined implementation science as the study of the mechanisms by which effective health care interventions are either adopted or not adopted in clinical and community settings. The committee also distinguished implementation science from the act of implementation. Ideally, implementation science should include early and continuous stakeholder involvement and the use of conceptual frameworks (i.e., models to systematize the conduct of studies and standardize the communication of findings). Multiple conceptual frameworks are available, and we suggest the selection of one or more frameworks on the basis of the specific research question and setting. Professional medical societies such as the ATS can have an important role in promoting implementation science. Recommendations for professional societies to consider include: unifying implementation science activities through a single organizational structure, linking front-line clinicians with implementation scientists, seeking collaborations to prioritize and conduct implementation science studies, supporting implementation science projects through funding opportunities, working with research funding bodies to set the research agenda in the field, collaborating with external bodies responsible for health care delivery, disseminating results of implementation science through scientific journals and conferences, and teaching the next generation about implementation science through courses and other media. Implementation science plays an increasingly important role in health care. Through support of implementation science, the ATS and other professional medical societies can work with other stakeholders to lead this effort.

  17. Quality Teaching in Science: an Emergent Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  18. The Nature and Organization of Individual Differences in Executive Functions: Four General Conclusions

    PubMed Central

    Miyake, Akira; Friedman, Naomi P.

    2012-01-01

    Executive functions (EFs)—a set of general-purpose control processes that regulate one’s thoughts and behaviors—have become a popular research topic lately and have been studied in many subdisciplines of psychological science. This article summarizes the EF research that our group has conducted to understand the nature of individual differences in EFs and their cognitive and biological underpinnings. In the context of a new theoretical framework that we have been developing (the unity/diversity framework), we describe four general conclusions that have emerged from our research. Specifically, we argue that individual differences in EFs, as measured with simple laboratory tasks, (1) show both unity and diversity (different EFs are correlated yet separable); (2) reflect substantial genetic contributions; (3) are related to various clinically and societally important phenomena; and (4) show some developmental stability. PMID:22773897

  19. Beyond Prediction: the Many Ways in which Climate Science can Inform Adaptation Decisions

    NASA Astrophysics Data System (ADS)

    Lempert, R. J.

    2017-12-01

    Climate science provides an increasingly rich understanding of current and future climate, but this understanding is often not fully incorporated into climate adaptation decisions. In particular, the provision of climate information is still trapped in a narrow prediction-based framework, which envisions a sequential process that begins with model-based forecasts of future climate and decision makers then acting on those forecasts. Among its challenges, this framework can discourage action when climate predictions are deemed too uncertain, encourage overconfidence when climate scientists and decision makers fail to focus on decision-relevant but poorly understood extreme events, and offers a too-narrow communication path among climate scientists and decision makers. This talk will describe how robust decision approaches, organized around the idea of stress testing proposed adaptation decisions over a wide range of futures, can enable a richer flow information among climate scientists and decision makers. The talk illustrates these themes with two examples: 1) conservation management that explores the tradeoffs among alternative climate information products with different combinations of ensemble size and spatial resolution and 2) water quality implementation planning that focuses on the handling of extremes.

  20. Towards an evaluation framework for Laboratory Information Systems.

    PubMed

    Yusof, Maryati M; Arifin, Azila

    Laboratory testing and reporting are error-prone and redundant due to repeated, unnecessary requests and delayed or missed reactions to laboratory reports. Occurring errors may negatively affect the patient treatment process and clinical decision making. Evaluation on laboratory testing and Laboratory Information System (LIS) may explain the root cause to improve the testing process and enhance LIS in supporting the process. This paper discusses a new evaluation framework for LIS that encompasses the laboratory testing cycle and the socio-technical part of LIS. Literature review on discourses, dimensions and evaluation methods of laboratory testing and LIS. A critical appraisal of the Total Testing Process (TTP) and the human, organization, technology-fit factors (HOT-fit) evaluation frameworks was undertaken in order to identify error incident, its contributing factors and preventive action pertinent to laboratory testing process and LIS. A new evaluation framework for LIS using a comprehensive and socio-technical approach is outlined. Positive relationship between laboratory and clinical staff resulted in a smooth laboratory testing process, reduced errors and increased process efficiency whilst effective use of LIS streamlined the testing processes. The TTP-LIS framework could serve as an assessment as well as a problem-solving tool for the laboratory testing process and system. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  1. Advancing the Adverse Outcome Pathway Framework - an ...

    EPA Pesticide Factsheets

    The ability of scientists to conduct whole organism toxicity tests to understand chemical safety has been significantly outpaced by the rapid synthesis of new chemicals. Therefore, to increase efficiencies in chemical risk assessment, scientists are turning to mechanistic-based studies, making greater use of in vitro and in silico methods, to screen for potential environmental and human health hazards. A framework that has gained traction for capturing available knowledge describing the linkage between mechanistic data and apical toxicity endpoints, required for regulatory assessments, is the adverse outcome pathway (AOP). A number of international activities have focused on AOP development and plausible applications to regulatory decision-making. These interactions have prompted dialog between research scientists and regulatory communities to consider how best to use the AOP framework in risk assessment. While expert-facilitated discussions have been instrumental in moving the science of AOPs forward, it was recognized that a survey of the broader scientific community would aid in identifying shortcomings and guiding future initiatives for the AOP framework. To that end, a ?‘Horizon Scanning’ exercise was conducted to solicit questions from the global scientific and regulatory communities concerning the challenges or limitations that must be addressed to realize the full potential of the AOP framework in research and regulatory decision making. The m

  2. Metal-organic framework materials with ultrahigh surface areas

    DOEpatents

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  3. A surgical intervention for the body politic: Generation Squeeze applies the Advocacy Coalition Framework to social determinants of health knowledge translation.

    PubMed

    Kershaw, Paul; Swanson, Eric; Stucchi, Andrea

    2017-06-16

    The World Health Organization Commission on the Social Determinants of Health (SDoH) observes that building political will is central to all its recommendations, because governments respond to those who organize and show up. Since younger Canadians are less likely to vote or to organize in between elections, they are less effective at building political will than their older counterparts. This results in an age gap between SDoH research and government budget priorities. Whereas Global AgeWatch ranks Canada among the top countries for aging, UNICEF ranks Canada among the least generous OECD (Organisation for Economic Co-operation and Development) countries for the generations raising young children. A surgical intervention into the body politic. Guided by the "health political science" literature, the intervention builds a non-profit coalition to perform science-based, non-partisan democratic engagement to increase incentives for policy-makers to translate SDoH research about younger generations into government budget investments. All four national parties integrated policy recommendations from the intervention into their 2015 election platforms. Three referred to, or consulted with, the intervention during the election. The intervention coincided with all parties committing to the single largest annual increase in spending on families with children in over a decade. Since many population-level decisions are made in political venues, the concept of population health interventions should be broadened to include activities designed to mobilize SDoH science in the world of politics. Such interventions must engage with the power dynamics, values, interests and institutional factors that mediate the path by which science shapes government budgets.

  4. A view of the tip of the iceberg: revisiting conceptual continuities and their implications for science learning

    NASA Astrophysics Data System (ADS)

    Brown, Bryan A.; Kloser, Matt

    2009-12-01

    We respond to Hwang and Kim and Yeo's critiques of the conceptual continuity framework in science education. First, we address the criticism that their analysis fails to recognize the situated perspective of learning by denying the dichotomy of the formal and informal knowledge as a starting point in the learning process. Second, we address the critique that students' descriptions fail to meet the "gold standard" of science education—alignment with an authoritative source and generalizability—by highlighting some student-expert congruence that could serve as the foundation for future learning. Third, we address the critique that a conceptual continuity framework could lead to less rigorous science education goals by arguing that the ultimate goals do not change, but rather that if the pathways that lead to the goals' achievement could recognize existing lexical continuities' science teaching may become more efficient. In sum, we argue that a conceptual continuities framework provides an asset, not deficit lexical perspective from which science teacher educators and science educators can begin to address and build complete science understandings.

  5. Applying Metacognition Through Patient Encounters and Illness Scripts to Create a Conceptual Framework for Basic Science Integration, Storage, and Retrieval.

    PubMed

    Hennrikus, Eileen F; Skolka, Michael P; Hennrikus, Nicholas

    2018-01-01

    Medical school curriculum continues to search for methods to develop a conceptual educational framework that promotes the storage, retrieval, transfer, and application of basic science to the human experience. To achieve this goal, we propose a metacognitive approach that integrates basic science with the humanistic and health system aspects of medical education. During the week, via problem-based learning and lectures, first-year medical students were taught the basic science underlying a disease. Each Friday, a patient with the disease spoke to the class. Students then wrote illness scripts, which required them to metacognitively reflect not only on disease pathophysiology, complications, and treatments but also on the humanistic and health system issues revealed during the patient encounter. Evaluation of the intervention was conducted by measuring results on course exams and national board exams and analyzing free responses on the illness scripts and student course feedback. The course exams and National Board of Medical Examiners questions were divided into 3 categories: content covered in lecture, problem-based learning, or patient + illness script. Comparisons were made using Student t -test. Free responses were inductively analyzed using grounded theory methodology. This curricular intervention was implemented during the first 13-week basic science course of medical school. The main objective of the course, Scientific Principles of Medicine, is to lay the scientific foundation for subsequent organ system courses. A total of 150 students were enrolled each year. We evaluated this intervention over 2 years, totaling 300 students. Students scored significantly higher on illness script content compared to lecture content on the course exams (mean difference = 11.1, P  = .006) and national board exams given in December (mean difference = 21.8, P  = .0002) and June (mean difference = 12.7, P  = .016). Themes extracted from students' free responses included the following: relevance of basic science, humanistic themes of empathy, resilience, and the doctor-patient relationship, and systems themes of cost, barriers to care, and support systems. A metacognitive approach to learning through the use of patient encounters and illness script reflections creates stronger conceptual frameworks for students to integrate, store, retain, and retrieve knowledge.

  6. Preparatory planning framework for Created Out of Mind: Shaping perceptions of dementia through art and science

    PubMed Central

    Brotherhood, Emilie; Ball, Philip; Camic, Paul M; Evans, Caroline; Fox, Nick; Murphy, Charlie; Walsh, Fergus; West, Julian; Windle, Gill; Billiald, Sarah; Firth, Nicholas; Harding, Emma; Harrison, Charles; Holloway, Catherine; Howard, Susanna; McKee-Jackson, Roberta; Jones, Esther; Junghaus, Janette; Martin, Harriet; Nolan, Kailey; Rollins, Bridie; Shapiro, Lillian; Shapiro, Lionel; Twigg, Jane; van Leeuwen, Janneke; Walton, Jill; Warren, Jason; Wray, Selina; Yong, Keir; Zeilig, Hannah; Crutch, Sebastian

    2017-01-01

    Created Out of Mind is an interdisciplinary project, comprised of individuals from arts, social sciences, music, biomedical sciences, humanities and operational disciplines. Collaboratively we are working to shape perceptions of dementias through the arts and sciences, from a position within the Wellcome Collection. The Collection is a public building, above objects and archives, with a porous relationship between research, museum artefacts, and the public.  This pre-planning framework will act as an introduction to Created Out of Mind. The framework explains the rationale and aims of the project, outlines our focus for the project, and explores a number of challenges we have encountered by virtue of working in this way. PMID:29387805

  7. Rethinking Theoretical Approaches to Stigma

    PubMed Central

    Martin, Jack K; Lang, Annie; Olafsdottir, Sigrun

    2008-01-01

    A resurgence of research and policy efforts on stigma both facilitates and forces a reconsideration of the levels and types of factors that shape reactions to persons with conditions that engender prejudice and discrimination. Focusing on the case of mental illness but drawing from theories and studies of stigma across the social sciences, we propose a framework that brings together theoretical insights from micro, meso and macro level research: Framework Integrating Normative Influences on Stigma (FINIS) starts with Goffman’s notion that understanding stigma requires a language of social relationships, but acknowledges that individuals do not come to social interaction devoid of affect and motivation. Further, all social interactions take place in a context in which organizations, media and larger cultures structure normative expectations which create the possibility of marking “difference”. Labelling theory, social network theory, the limited capacity model of media influence, the social psychology of prejudice and discrimination, and theories of the welfare state all contribute to an understanding of the complex web of expectations shaping stigma. FINIS offers the potential to build a broad-based scientific foundation based on understanding the effects of stigma on the lives of persons with mental illness, the resources devoted to the organizations and families who care for them, and policies and programs designed to combat stigma. We end by discussing the clear implications this framework holds for stigma reduction, even in the face of conflicting results. PMID:18436358

  8. A Blueprint to Evaluate One Health

    PubMed Central

    Rüegg, Simon R.; McMahon, Barry J.; Häsler, Barbara; Esposito, Roberto; Nielsen, Liza Rosenbaum; Ifejika Speranza, Chinwe; Ehlinger, Timothy; Peyre, Marisa; Aragrande, Maurizio; Zinsstag, Jakob; Davies, Philip; Mihalca, Andrei Daniel; Buttigieg, Sandra C.; Rushton, Jonathan; Carmo, Luís P.; De Meneghi, Daniele; Canali, Massimo; Filippitzi, Maria E.; Goutard, Flavie Luce; Ilieski, Vlatko; Milićević, Dragan; O’Shea, Helen; Radeski, Miroslav; Kock, Richard; Staines, Anthony; Lindberg, Ann

    2017-01-01

    One Health (OH) positions health professionals as agents for change and provides a platform to manage determinants of health that are often not comprehensively captured in medicine or public health alone. However, due to the organization of societies and disciplines, and the sectoral allocation of resources, the development of transdisciplinary approaches requires effort and perseverance. Therefore, there is a need to provide evidence on the added value of OH for governments, researchers, funding bodies, and stakeholders. This paper outlines a conceptual framework of what OH approaches can encompass and the added values they can provide. The framework was developed during a workshop conducted by the “Network for Evaluation of One Health,” an Action funded by the European Cooperation in Science and Technology. By systematically describing the various aspects of OH, we provide the basis for measuring and monitoring the integration of disciplines, sectors, and stakeholders in health initiatives. The framework identifies the social, economic, and environmental drivers leading to integrated approaches to health and illustrates how these evoke characteristic OH operations, i.e., thinking, planning, and working, and require supporting infrastructures to allow learning, sharing, and systemic organization. It also describes the OH outcomes (i.e., sustainability, health and welfare, interspecies equity and stewardship, effectiveness, and efficiency), which are not possible to obtain through sectoral approaches alone, and their alignment with aspects of sustainable development based on society, environment, and economy. PMID:28261580

  9. Project Management Framework to Organizational Transitions

    NASA Technical Reports Server (NTRS)

    Kotnour, Tim; Barton, Saul

    1996-01-01

    This paper describes a project management framework and associated models for organizational transitions. The framework contains an integrated set of steps an organization can take to lead an organizational transition such as downsizing and change in mission or role. The framework is designed to help an organization do the right work the right way with the right people at the right time. The underlying rationale for the steps in the framework is based on a set of findings which include: defining a transition as containing both near-term and long-term actions, designing actions which respond to drivers and achieve desired results, aligning the organization with the external environment, and aligning the internal components of the organization. The framework was developed based on best practices found in the literature, lessons learned from heads of organizations who have completed large-scale organizational changes, and concerns from employees at the Kennedy Space Center (KSC). The framework is described using KSC.

  10. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Xu, Yanhong; Jin, Shangbin; Chen, Long; Kaji, Toshihiko; Honsho, Yoshihito; Addicoat, Matthew A.; Kim, Jangbae; Saeki, Akinori; Ihee, Hyotcherl; Seki, Shu; Irle, Stephan; Hiramoto, Masahiro; Gao, Jia; Jiang, Donglin

    2013-11-01

    Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π-π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.

  11. Female science teacher beliefs and attitudes: implications in relation to gender and pedagogical practice

    NASA Astrophysics Data System (ADS)

    Zapata, Mara; Gallard, Alejandro J.

    2007-10-01

    Beliefs and attitudes resulting from the unique life experiences of teachers frame interactions with learners promoting gender equity or inequity and the reproduction of social views about knowledge and power as related to gender. This study examines the enactment of a female science teacher's pedagogy (Laura), seeking to understand the implications of her beliefs and attitudes, as framed by her interpretations and daily manifestations, as she interacts with students. Distinct influences inform the conceptual framework of this study: (a) the social organization of society at large, governed by understood and unspoken patriarchy, present both academically and socially; (b) the devaluing of women as "knowers" of scientific knowledge as defined by a western and male view of science; (c) the marginalization or "feminization" of education and pedagogical knowledge. The findings reflect tensions between attitudes and beliefs and actual teacher practice suggesting the need for awareness within existing or new teachers about their positions as social agents and the sociological implications related to issues of gender within which we live and work, inclusive of science teaching and learning.

  12. A neuromathematical model of human information processing and its application to science content acquisition

    NASA Astrophysics Data System (ADS)

    Anderson, O. Roger

    The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.

  13. Computer-Aided Screening of Conjugated Polymers for Organic Solar Cell: Classification by Random Forest.

    PubMed

    Nagasawa, Shinji; Al-Naamani, Eman; Saeki, Akinori

    2018-05-17

    Owing to the diverse chemical structures, organic photovoltaic (OPV) applications with a bulk heterojunction framework have greatly evolved over the last two decades, which has produced numerous organic semiconductors exhibiting improved power conversion efficiencies (PCEs). Despite the recent fast progress in materials informatics and data science, data-driven molecular design of OPV materials remains challenging. We report a screening of conjugated molecules for polymer-fullerene OPV applications by supervised learning methods (artificial neural network (ANN) and random forest (RF)). Approximately 1000 experimental parameters including PCE, molecular weight, and electronic properties are manually collected from the literature and subjected to machine learning with digitized chemical structures. Contrary to the low correlation coefficient in ANN, RF yields an acceptable accuracy, which is twice that of random classification. We demonstrate the application of RF screening for the design, synthesis, and characterization of a conjugated polymer, which facilitates a rapid development of optoelectronic materials.

  14. Organic unity theory: an integrative mind-body theory for psychiatry.

    PubMed

    Goodman, A

    1997-12-01

    The potential of psychiatry as an integrative science has been impeded by an internal schism that derives from the duality of mental and physical. Organic unity theory is proposed as a conceptual framework that brings together the terms of the mind-body duality in one coherent perspective. Organic unity theory is braided of three strands: identity, which describes the relationship between mentally described events and corresponding physically described events; continuity, which describes the linguistic-conceptual system that contains both mental and physical terms; and dialectic, which describes the relationship between the empirical way of knowing that is associated with the physical domain of the linguistic-conceptual system and the hermeneutic way of knowing that is associated with the mental domain. Each strand represents an integrative formulation that resolves an aspect of mental-physical dualism into an underlying unity. After the theory is presented, its implications for psychiatry are briefly considered.

  15. Citizen Science & MPA Monitoring: Informing adaptive management through enriched local knowledge systems

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Freitag, A.; McGregor, A.; Whiteman, E.

    2013-12-01

    Along the California coast, a wealth of capacity exists among individuals, groups and organizations collecting scientific data. This citizen science can take many forms, from spontaneous observations of seabirds to organized surveys of nearshore reefs. Yet, as is often the case, state resource managers have struggled to find ways to access and use this scientific information in decision-making. A unique opportunity exists to alter this status-quo. California has the largest network of marine protected areas (MPAs) in the nation with more than 100 MPAs statewide. Monitoring is essential to inform adaptive management of this network. Traditionally, MPA monitoring has been the purview of academic or agency scientists. Yet, there is increasing recognition that this approach, while playing an important role, is unlikely by itself to provide a sustainable path forward. An opportunity therefore exists to understand how to sustainably and cost-effectively expand the capacity or human capital invested in monitoring and ocean stewardship. In this presentation we will share our collaborative approach to development of a new framework for incorporating citizen science into a partnerships-based portfolio of MPA monitoring in California. We will present initial findings and lessons learned from a broad review of published and gray literature, as well as reflections from interviews and participant observations with citizen science groups in the Central Coast region of California's MPA network. Through research, engagement with existing citizen science programs, and involvement of natural resource managers, we are identifying general best practices and specific opportunities for these groups to collaborate effectively, and for citizen science to play a constructive ongoing role in adaptive management of MPAs.

  16. Landscape and climate science and scenarios for Florida

    USGS Publications Warehouse

    Terando, Adam; Traxler, Steve; Collazo, Jaime

    2014-01-01

    The Peninsular Florida Landscape Conservation Cooperative (PFLCC) is part of a network of 22 Landscape Conservation Cooperatives (LCCs) that extend from Alaska to the Caribbean. LCCs are regional-applied conservation-science partnerships among Federal agencies, regional organizations, States, tribes, nongovernmental organizations (NGOs), private stakeholders, universities, and other entities within a geographic area. The goal of these conservation-science partnerships is to help inform managers and decision makers at a landscape scale to further the principles of adaptive management and strategic habitat conservation. A major focus for LCCs is to help conservation managers and decision makers respond to large-scale ecosystem and habitat stressors, such as climate change, habitat fragmentation, invasive species, and water scarcity. The purpose of the PFLCC is to facilitate planning, design, and implementation of conservation strategies for fish and wildlife species at the landscape level using the adaptive management framework of strategic habitat conservation—integrating planning, design, delivery, and evaluation. Florida faces a set of unique challenges when responding to regional and global stressors because of its unique ecosystems and assemblages of species, its geographic location at the crossroads of temperate and tropical climates, and its exposure to both rapid urbanization and rising sea levels as the climate warms. In response to these challenges, several landscape-scale science projects were initiated with the goal of informing decision makers about how potential changes in climate and the built environment could impact habitats and ecosystems of concern in Florida and the Southeast United States. In June 2012, the PFLCC, North Carolina State University, convened a workshop at the U.S. Geological Survey (USGS) Coastal and Marine Science Center in St. Petersburg to assess the results of these integrated assessments and to foster an open dialogue about science gaps and future research needs.

  17. Placing Health Trajectories in Family and Historical Context: A Proposed Enrichment of the Life Course Health and Development Model.

    PubMed

    Jones, Marian Moser; Roy, Kevin

    2017-10-01

    Purpose This article offers constructive commentary on The Life Course Health and Development Model (LCHD) as an organizing framework for MCH research. Description The LCHD has recently been proposed as an organizing framework for MCH research. This model integrates biomedical, biopsychosocial, and life course frameworks, to explain how "individual health trajectories" develop over time. In this article, we propose that the LCHD can improve its relevance to MCH policy and practice by: (1) placing individual health trajectories within the context of family health trajectories, which unfold within communities and societies, over historical and generational time; and (2) placing greater weight on the social determinants that shape health development trajectories of individuals and families to produce greater or lesser health equity. Assessment We argue that emphasizing these nested, historically specific social contexts in life course models will enrich study design and data analysis for future developmental science research, will make the LCHD model more relevant in shaping MCH policy and interventions, and will guard against its application as a deterministic framework. Specific ways to measure these and examples of how they can be integrated into the LCHD model are articulated. Conclusion Research applying the LCHD should incorporate the specific family and socio-historical contexts in which development occurs to serve as a useful basis for policy and interventions. Future longitudinal studies of maternal and child health should include collection of time-dependent data related to family environment and other social determinants of health, and analyze the impact of historical events and trends on specific cohorts.

  18. Cryosphere Communication from Knowledge to Action: Polar Educators International

    NASA Astrophysics Data System (ADS)

    Crowley, S.

    2012-12-01

    Evidence from the recent IPY meetings shows that education and outreach of the 2007-08 IPY touched 24 million people; we intend to grow that number. As a legacy of IPY and as a direct action of IPY Montreal, we announced the establishment of Polar Educators International - a global professional network for those that educate in, for, and about the Polar Regions. We intend to move polar science forward by connecting the cultures and enthusiasm of polar education across the globe. The founding members come from polar and non-polar nations around the world. The new group draws together museums, schools, universities, science centers, formal and informal education, expeditions, NGOs, companies, governmental organizations, and non-profits. Working across national, disciplinary, and age group boundaries, we want to improve polar science & education for the next generation of policy makers, entrepreneurs, explorers, citizen scientists, journalists and educators; as well as the the public. The new network of more than 200 leading educators, scientists, and community members will develop innovative resources to communicate polar science. We intend to engage those learning and teaching about the polar regions, and thereby change the terms of debate, and the framework of education to rekindle student and public engagement with global environmental changes. We are committed to engaging our membership and have clear directions from our recent survey and report from the community. This presentation will address the needs put forth from our membership and where the organization will go in the future to inform a professional network on science and outreach in the polar regions.

  19. The artful mind meets art history: toward a psycho-historical framework for the science of art appreciation.

    PubMed

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Research seeking a scientific foundation for the theory of art appreciation has raised controversies at the intersection of the social and cognitive sciences. Though equally relevant to a scientific inquiry into art appreciation, psychological and historical approaches to art developed independently and lack a common core of theoretical principles. Historicists argue that psychological and brain sciences ignore the fact that artworks are artifacts produced and appreciated in the context of unique historical situations and artistic intentions. After revealing flaws in the psychological approach, we introduce a psycho-historical framework for the science of art appreciation. This framework demonstrates that a science of art appreciation must investigate how appreciators process causal and historical information to classify and explain their psychological responses to art. Expanding on research about the cognition of artifacts, we identify three modes of appreciation: basic exposure to an artwork, the artistic design stance, and artistic understanding. The artistic design stance, a requisite for artistic understanding, is an attitude whereby appreciators develop their sensitivity to art-historical contexts by means of inquiries into the making, authorship, and functions of artworks. We defend and illustrate the psycho-historical framework with an analysis of existing studies on art appreciation in empirical aesthetics. Finally, we argue that the fluency theory of aesthetic pleasure can be amended to meet the requirements of the framework. We conclude that scientists can tackle fundamental questions about the nature and appreciation of art within the psycho-historical framework.

  20. A distributed component framework for science data product interoperability

    NASA Technical Reports Server (NTRS)

    Crichton, D.; Hughes, S.; Kelly, S.; Hardman, S.

    2000-01-01

    Correlation of science results from multi-disciplinary communities is a difficult task. Traditionally data from science missions is archived in proprietary data systems that are not interoperable. The Object Oriented Data Technology (OODT) task at the Jet Propulsion Laboratory is working on building a distributed product server as part of a distributed component framework to allow heterogeneous data systems to communicate and share scientific results.

Top