Sample records for framework studies seismicity

  1. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  2. Characterizing the Benefits of Seismic Isolation for Nuclear Structures: A Framework for Risk-Based Decision Making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetti, Chandrakanth; Yu, Chingching; Coleman, Justin

    This report provides a framework for assessing the benefits of seismic isolation and exercises the framework on a Generic Department of Energy Nuclear Facility (GDNF). These benefits are (1) reduction in the risk of unacceptable seismic performance and a dramatic reduction in the probability of unacceptable performance at beyond-design basis shaking, and (2) a reduction in capital cost at sites with moderate to high seismic hazard. The framework includes probabilistic risk assessment and estimates of overnight capital cost for the GDNF.

  3. Seismic risk management of non-engineered buildings

    NASA Astrophysics Data System (ADS)

    Winar, Setya

    Earthquakes have long been feared as one of nature's most terrifying and devastating events. Although seismic codes clearly exist in countries with a high seismic risk to save lives and human suffering, earthquakes still continue to cause tragic events with high death tolls, particularly due to the collapse of widespread non-engineered buildings with non-seismic resistance in developing countries such as Indonesia. The implementation of seismic codes in non-engineered construction is the key to ensuring earthquake safety. In fact, such implementation is not simple, because it comprises all forms of cross disciplinary and cross sectoral linkages at different levels of understanding, commitment, and skill. This fact suggests that a widely agreed framework can help to harmonise the various perspectives. Hence, this research is aimed at developing an integrated framework for guiding and monitoring seismic risk reduction of non-engineered buildings in Indonesia via a risk management method.Primarily, the proposed framework for the study has drawn heavily on wider literature, the three existing frameworks around the world, and on the contribution of various stakeholders who participated in the study. A postal questionnaire survey, selected interviews, and workshop event constituted the primary data collection methods. As a robust framework needed to be achieved, the following two workshop events, which were conducted in Yogyakarta City and Bengkulu City in Indonesia, were carried out for practicality, validity, and moderation or any identifiable improvement requirements. The data collected was analysed with the assistance of SPSS and NVivo software programmes.This research found that the content of the proposed framework comprises 63 pairs of characteristic-indicators complemented by (a) three important factors of effective seismic risk management of non-engineered buildings, (b) three guiding principles for sustainable dissemination to the grass root communities and (c) a map of agents of change. Among the 63 pairs, there are 19 technical interventions and 44 non-technical interventions. These findings contribute to the wider knowledge in the domain of the seismic risk management of non-engineered buildings, in order to: (a) provide a basis for effective political advocacy, (b) reflect the multidimensional and inter-disciplinary nature of seismic risk reduction, (c) assist a wide range of users in determining roles, responsibilities, and accountabilities, and (d) provide the basis for setting goals and targets.

  4. Integrated reservoir characterization for unconventional reservoirs using seismic, microseismic and well log data

    NASA Astrophysics Data System (ADS)

    Maity, Debotyam

    This study is aimed at an improved understanding of unconventional reservoirs which include tight reservoirs (such as shale oil and gas plays), geothermal developments, etc. We provide a framework for improved fracture zone identification and mapping of the subsurface for a geothermal system by integrating data from different sources. The proposed ideas and methods were tested primarily on data obtained from North Brawley geothermal field and the Geysers geothermal field apart from synthetic datasets which were used to test new algorithms before actual application on the real datasets. The study has resulted in novel or improved algorithms for use at specific stages of data acquisition and analysis including improved phase detection technique for passive seismic (and teleseismic) data as well as optimization of passive seismic surveys for best possible processing results. The proposed workflow makes use of novel integration methods as a means of making best use of the available geophysical data for fracture characterization. The methodology incorporates soft computing tools such as hybrid neural networks (neuro-evolutionary algorithms) as well as geostatistical simulation techniques to improve the property estimates as well as overall characterization efficacy. The basic elements of the proposed characterization workflow involves using seismic and microseismic data to characterize structural and geomechanical features within the subsurface. We use passive seismic data to model geomechanical properties which are combined with other properties evaluated from seismic and well logs to derive both qualitative and quantitative fracture zone identifiers. The study has resulted in a broad framework highlighting a new technique for utilizing geophysical data (seismic and microseismic) for unconventional reservoir characterization. It provides an opportunity to optimally develop the resources in question by incorporating data from different sources and using their temporal and spatial variability as a means to better understand the reservoir behavior. As part of this study, we have developed the following elements which are discussed in the subsequent chapters: 1. An integrated characterization framework for unconventional settings with adaptable workflows for all stages of data processing, interpretation and analysis. 2. A novel autopicking workflow for noisy passive seismic data used for improved accuracy in event picking as well as for improved velocity model building. 3. Improved passive seismic survey design optimization framework for better data collection and improved property estimation. 4. Extensive post-stack seismic attribute studies incorporating robust schemes applicable in complex reservoir settings. 5. Uncertainty quantification and analysis to better quantify property estimates over and above the qualitative interpretations made and to validate observations independently with quantified uncertainties to prevent erroneous interpretations. 6. Property mapping from microseismic data including stress and anisotropic weakness estimates for integrated reservoir characterization and analysis. 7. Integration of results (seismic, microseismic and well logs) from analysis of individual data sets for integrated interpretation using predefined integration framework and soft computing tools.

  5. The SCEC Unified Community Velocity Model (UCVM) Software Framework for Distributing and Querying Seismic Velocity Models

    NASA Astrophysics Data System (ADS)

    Maechling, P. J.; Taborda, R.; Callaghan, S.; Shaw, J. H.; Plesch, A.; Olsen, K. B.; Jordan, T. H.; Goulet, C. A.

    2017-12-01

    Crustal seismic velocity models and datasets play a key role in regional three-dimensional numerical earthquake ground-motion simulation, full waveform tomography, modern physics-based probabilistic earthquake hazard analysis, as well as in other related fields including geophysics, seismology, and earthquake engineering. The standard material properties provided by a seismic velocity model are P- and S-wave velocities and density for any arbitrary point within the geographic volume for which the model is defined. Many seismic velocity models and datasets are constructed by synthesizing information from multiple sources and the resulting models are delivered to users in multiple file formats, such as text files, binary files, HDF-5 files, structured and unstructured grids, and through computer applications that allow for interactive querying of material properties. The Southern California Earthquake Center (SCEC) has developed the Unified Community Velocity Model (UCVM) software framework to facilitate the registration and distribution of existing and future seismic velocity models to the SCEC community. The UCVM software framework is designed to provide a standard query interface to multiple, alternative velocity models, even if the underlying velocity models are defined in different formats or use different geographic projections. The UCVM framework provides a comprehensive set of open-source tools for querying seismic velocity model properties, combining regional 3D models and 1D background models, visualizing 3D models, and generating computational models in the form of regular grids or unstructured meshes that can be used as inputs for ground-motion simulations. The UCVM framework helps researchers compare seismic velocity models and build equivalent simulation meshes from alternative velocity models. These capabilities enable researchers to evaluate the impact of alternative velocity models in ground-motion simulations and seismic hazard analysis applications. In this poster, we summarize the key components of the UCVM framework and describe the impact it has had in various computational geoscientific applications.

  6. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic amplitude versus angle (AVA) and controlled source electromagnetic (CSEM) data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo (MCMC) sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis (DREAM) and Adaptive Metropolis (AM) samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and CSEM data. The multi-chain MCMC is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration,more » the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic AVA and CSEM joint inversion provides better estimation of reservoir saturations than the seismic AVA-only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated – reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  7. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    NASA Astrophysics Data System (ADS)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura

    2017-12-01

    In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.

  8. Loss modeling for pricing catastrophic bonds.

    DOT National Transportation Integrated Search

    2008-12-01

    In the research, a loss estimation framework is presented that directly relates seismic : hazard to seismic response to damage and hence to losses. A Performance-Based Earthquake : Engineering (PBEE) approach towards assessing the seismic vulnerabili...

  9. Characterization of the Cottonwood Grove and Ridgely faults near Reelfoot Lake, Tennessee, from high-resolution seismic reflection data

    USGS Publications Warehouse

    Stephenson, William J.; Shedlock, Kaye M.; Odum, Jack K.

    1995-01-01

    In the winter of 1811-12, three of the largest historic earthquakes in the United States occurred near New Madrid, Missouri. Seismicity continues to the present day throughout a tightly clustered pattern of epicenters centered on the bootheel of Missouri, including parts of northeastern Arkansas, northwestern Tennessee, western Kentucky, and southern Illinois. In 1990, the New Madrid seismic zone/Central United States became the first seismically active region east of the Rocky Mountains to be designated a priority research area within the National Earthquake Hazards Reduction Program (NEHRP). This Professional Paper is a collection of papers, some published separately, presenting results of the newly intensified research program in this area. Major components of this research program include tectonic framework studies, seismicity and deformation monitoring and modeling, improved seismic hazard and risk assessments, and cooperative hazard mitigation studies.

  10. A probabilistic framework for single-station location of seismicity on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Böse, M.; Clinton, J. F.; Ceylan, S.; Euchner, F.; van Driel, M.; Khan, A.; Giardini, D.; Lognonné, P.; Banerdt, W. B.

    2017-01-01

    Locating the source of seismic energy from a single three-component seismic station is associated with large uncertainties, originating from challenges in identifying seismic phases, as well as inevitable pick and model uncertainties. The challenge is even higher for planets such as Mars, where interior structure is a priori largely unknown. In this study, we address the single-station location problem by developing a probabilistic framework that combines location estimates from multiple algorithms to estimate the probability density function (PDF) for epicentral distance, back azimuth, and origin time. Each algorithm uses independent and complementary information in the seismic signals. Together, the algorithms allow locating seismicity ranging from local to teleseismic quakes. Distances and origin times of large regional and teleseismic events (M > 5.5) are estimated from observed and theoretical body- and multi-orbit surface-wave travel times. The latter are picked from the maxima in the waveform envelopes in various frequency bands. For smaller events at local and regional distances, only first arrival picks of body waves are used, possibly in combination with fundamental Rayleigh R1 waveform maxima where detectable; depth phases, such as pP or PmP, help constrain source depth and improve distance estimates. Back azimuth is determined from the polarization of the Rayleigh- and/or P-wave phases. When seismic signals are good enough for multiple approaches to be used, estimates from the various methods are combined through the product of their PDFs, resulting in an improved event location and reduced uncertainty range estimate compared to the results obtained from each algorithm independently. To verify our approach, we use both earthquake recordings from existing Earth stations and synthetic Martian seismograms. The Mars synthetics are generated with a full-waveform scheme (AxiSEM) using spherically-symmetric seismic velocity, density and attenuation models of Mars that incorporate existing knowledge of Mars internal structure, and include expected ambient and instrumental noise. While our probabilistic framework is developed mainly for application to Mars in the context of the upcoming InSight mission, it is also relevant for locating seismic events on Earth in regions with sparse instrumentation.

  11. Study of time dynamics of seismicity for the Mexican subduction zone by means of the visibility graph method.

    NASA Astrophysics Data System (ADS)

    Ramírez-Rojas, Alejandro; Telesca, Luciano; Lovallo, Michele; Flores, Leticia

    2015-04-01

    By using the method of the visibility graph (VG), five magnitude time series extracted from the seismic catalog of the Mexican subduction zone were investigated. The five seismic sequences represent the seismicity which occurred between 2005 and 2012 in five seismic areas: Guerrero, Chiapas, Oaxaca, Jalisco and Michoacan. Among the five seismic sequences, the Jalisco sequence shows VG properties significantly different from those shown by the other four. Such a difference could be inherent in the different tectonic settings of Jalisco with respect to those characterizing the other four areas. The VG properties of the seismic sequences have been put in relationship with the more typical seismological characteristics (b-value and a-value of the Gutenberg-Richter law). The present study was supported by the Bilateral Project Italy-Mexico "Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences", jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016

  12. Study of a prehistoric landslide using seismic reflection methods integrated with geological data in the Wasatch Mountains, Utah, USA

    USGS Publications Warehouse

    Tingey, B.E.; McBride, J.H.; Thompson, T.J.; Stephenson, W.J.; South, J.V.; Bushman, M.

    2007-01-01

    An integration of geological and geophysical techniques characterizes the internal and basal structure of a landslide along the western margin of the Wasatch Mountains in northern Utah, USA. The study area is within a region of planned and continuing residential development. The Little Valley Landslide is a prehistoric landslide as old as 13??ka B.P. Drilling and trenching at the site indicate that the landslide consists of chaotic and disturbed weathered volcanic material derived from Tertiary age volcanic rocks that comprise a great portion of the Wasatch Range. Five short high-resolution common mid-point seismic reflection profiles over selected portions of the site examine the feasibility of using seismic reflection to study prehistoric landslides in the Wasatch Mountain region. Due to the expected complexity of the near-surface geology, we have pursued an experimental approach in the data processing, examining the effects of muting first arrivals, frequency filtering, model-based static corrections, and seismic migration. The results provide a framework for understanding the overall configuration of the landslide, its basal (failure) surface, and the structure immediately underlying this surface. A glide surface or de??collement is interpreted to underlie the landslide suggesting a large mass movement. The interpretation of a glide surface is based on the onset of coherent reflectivity, calibrated by information from a borehole located along one of the seismic profiles. The glide surface is deepest in the center portion of the landslide and shallows up slope, suggesting a trough-like feature. This study shows that seismic reflection techniques can be successfully used in complex alpine landslide regions to (1) provide a framework in which to link geological data and (2) reduce the need for an extensive trenching and drilling program. ?? 2007 Elsevier B.V. All rights reserved.

  13. Designing and Implementing a Retrospective Earthquake Detection Framework at the U.S. Geological Survey National Earthquake Information Center

    NASA Astrophysics Data System (ADS)

    Patton, J.; Yeck, W.; Benz, H.

    2017-12-01

    The U.S. Geological Survey National Earthquake Information Center (USGS NEIC) is implementing and integrating new signal detection methods such as subspace correlation, continuous beamforming, multi-band picking and automatic phase identification into near-real-time monitoring operations. Leveraging the additional information from these techniques help the NEIC utilize a large and varied network on local to global scales. The NEIC is developing an ordered, rapid, robust, and decentralized framework for distributing seismic detection data as well as a set of formalized formatting standards. These frameworks and standards enable the NEIC to implement a seismic event detection framework that supports basic tasks, including automatic arrival time picking, social media based event detections, and automatic association of different seismic detection data into seismic earthquake events. In addition, this framework enables retrospective detection processing such as automated S-wave arrival time picking given a detected event, discrimination and classification of detected events by type, back-azimuth and slowness calculations, and ensuring aftershock and induced sequence detection completeness. These processes and infrastructure improve the NEIC's capabilities, accuracy, and speed of response. In addition, this same infrastructure provides an improved and convenient structure to support access to automatic detection data for both research and algorithmic development.

  14. Towards a Comprehensive Catalog of Volcanic Seismicity

    NASA Astrophysics Data System (ADS)

    Thompson, G.

    2014-12-01

    Catalogs of earthquakes located using differential travel-time techniques are a core product of volcano observatories, and while vital, they represent an incomplete perspective of volcanic seismicity. Many (often most) earthquakes are too small to locate accurately, and are omitted from available catalogs. Low frequency events, tremor and signals related to rockfalls, pyroclastic flows and lahars are not systematically catalogued, and yet from a hazard management perspective are exceedingly important. Because STA/LTA detection schemes break down in the presence of high amplitude tremor, swarms or dome collapses, catalogs may suggest low seismicity when seismicity peaks. We propose to develop a workflow and underlying software toolbox that can be applied to near-real-time and offline waveform data to produce comprehensive catalogs of volcanic seismicity. Existing tools to detect and locate phaseless signals will be adapted to fit within this framework. For this proof of concept the toolbox will be developed in MATLAB, extending the existing GISMO toolbox (an object-oriented MATLAB toolbox for seismic data analysis). Existing database schemas such as the CSS 3.0 will need to be extended to describe this wider range of volcano-seismic signals. WOVOdat may already incorporate many of the additional tables needed. Thus our framework may act as an interface between volcano observatories (or campaign-style research projects) and WOVOdat. We aim to take the further step of reducing volcano-seismic catalogs to sets of continuous metrics that are useful for recognizing data trends, and for feeding alarm systems and forecasting techniques. Previous experience has shown that frequency index, peak frequency, mean frequency, mean event rate, median event rate, and cumulative magnitude (or energy) are potentially useful metrics to generate for all catalogs at a 1-minute sample rate (directly comparable with RSAM and similar metrics derived from continuous data). Our framework includes tools to plot these metrics in a consistent manner. We work with data from unrest at Redoubt volcano and Soufriere Hills volcano to develop our framework.

  15. Seismic and Restoration Assessment of Monumental Masonry Structures

    PubMed Central

    Asteris, Panagiotis G.; Douvika, Maria G.; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-01-01

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained. PMID:28767073

  16. Seismic and Restoration Assessment of Monumental Masonry Structures.

    PubMed

    Asteris, Panagiotis G; Douvika, Maria G; Apostolopoulou, Maria; Moropoulou, Antonia

    2017-08-02

    Masonry structures are complex systems that require detailed knowledge and information regarding their response under seismic excitations. Appropriate modelling of a masonry structure is a prerequisite for a reliable earthquake-resistant design and/or assessment. However, modelling a real structure with a robust quantitative (mathematical) representation is a very difficult, complex and computationally-demanding task. The paper herein presents a new stochastic computational framework for earthquake-resistant design of masonry structural systems. The proposed framework is based on the probabilistic behavior of crucial parameters, such as material strength and seismic characteristics, and utilizes fragility analysis based on different failure criteria for the masonry material. The application of the proposed methodology is illustrated in the case of a historical and monumental masonry structure, namely the assessment of the seismic vulnerability of the Kaisariani Monastery, a byzantine church that was built in Athens, Greece, at the end of the 11th to the beginning of the 12th century. Useful conclusions are drawn regarding the effectiveness of the intervention techniques used for the reduction of the vulnerability of the case-study structure, by means of comparison of the results obtained.

  17. Evidence of non-extensivity and complexity in the seismicity observed during 2011-2012 at the Santorini volcanic complex, Greece

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Tzanis, A.; Michas, G.; Papadakis, G.

    2012-04-01

    Since the middle of summer 2011, an increase in the seismicity rates of the volcanic complex system of Santorini Island, Greece, was observed. In the present work, the temporal distribution of seismicity, as well as the magnitude distribution of earthquakes, have been studied using the concept of Non-Extensive Statistical Physics (NESP; Tsallis, 2009) along with the evolution of Shanon entropy H (also called information entropy). The analysis is based on the earthquake catalogue of the Geodynamic Institute of the National Observatory of Athens for the period July 2011-January 2012 (http://www.gein.noa.gr/). Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems. The observed distributions of seismicity rates at Santorini can be described (fitted) with NESP models to exceptionally well. This implies the inherent complexity of the Santorini volcanic seismicity, the applicability of NESP concepts to volcanic earthquake activity and the usefulness of NESP in investigating phenomena exhibiting multifractality and long-range coupling effects. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC". GM and GP wish to acknowledge the partial support of the Greek State Scholarships Foundation (ΙΚΥ).

  18. Advances through collaboration: sharing seismic reflection data via the Antarctic Seismic Data Library System for Cooperative Research (SDLS)

    USGS Publications Warehouse

    Wardell, N.; Childs, J. R.; Cooper, A. K.

    2007-01-01

    The Antarctic Seismic Data Library System for Cooperative Research (SDLS) has served for the past 16 years under the auspices of the Antarctic Treaty (ATCM Recommendation XVI-12) as a role model for collaboration and equitable sharing of Antarctic multichannel seismic reflection (MCS) data for geoscience studies. During this period, collaboration in MCS studies has advanced deciphering the seismic stratigraphy and structure of Antarctica’s continental margin more rapidly than previously. MCS data compilations provided the geologic framework for scientific drilling at several Antarctic locations and for high-resolution seismic and sampling studies to decipher Cenozoic depositional paleoenvironments. The SDLS successes come from cooperation of National Antarctic Programs and individual investigators in “on-time” submissions of their MCS data. Most do, but some do not. The SDLS community has an International Polar Year (IPY) goal of all overdue MCS data being sent to the SDLS by end of IPY. The community science objective is to compile all Antarctic MCS data to derive a unified seismic stratigraphy for the continental margin – a stratigraphy to be used with drilling data to derive Cenozoic circum-Antarctic paleobathymetry maps and local-to-regional scale paleoenvironmental histories.

  19. Towards Improved Considerations of Risk in Seismic Design (Plinius Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Sullivan, T. J.

    2012-04-01

    The aftermath of recent earthquakes is a reminder that seismic risk is a very relevant issue for our communities. Implicit within the seismic design standards currently in place around the world is that minimum acceptable levels of seismic risk will be ensured through design in accordance with the codes. All the same, none of the design standards specify what the minimum acceptable level of seismic risk actually is. Instead, a series of deterministic limit states are set which engineers then demonstrate are satisfied for their structure, typically through the use of elastic dynamic analyses adjusted to account for non-linear response using a set of empirical correction factors. From the early nineties the seismic engineering community has begun to recognise numerous fundamental shortcomings with such seismic design procedures in modern codes. Deficiencies include the use of elastic dynamic analysis for the prediction of inelastic force distributions, the assignment of uniform behaviour factors for structural typologies irrespective of the structural proportions and expected deformation demands, and the assumption that hysteretic properties of a structure do not affect the seismic displacement demands, amongst other things. In light of this a number of possibilities have emerged for improved control of risk through seismic design, with several innovative displacement-based seismic design methods now well developed. For a specific seismic design intensity, such methods provide a more rational means of controlling the response of a structure to satisfy performance limit states. While the development of such methodologies does mark a significant step forward for the control of seismic risk, they do not, on their own, identify the seismic risk of a newly designed structure. In the U.S. a rather elaborate performance-based earthquake engineering (PBEE) framework is under development, with the aim of providing seismic loss estimates for new buildings. The PBEE framework consists of the following four main analysis stages: (i) probabilistic seismic hazard analysis to give the mean occurrence rate of earthquake events having an intensity greater than a threshold value, (ii) structural analysis to estimate the global structural response, given a certain value of seismic intensity, (iii) damage analysis, in which fragility functions are used to express the probability that a building component exceeds a damage state, as a function of the global structural response, (iv) loss analysis, in which the overall performance is assessed based on the damage state of all components. This final step gives estimates of the mean annual frequency with which various repair cost levels (or other decision variables) are exceeded. The realisation of this framework does suggest that risk-based seismic design is now possible. However, comparing current code approaches with the proposed PBEE framework, it becomes apparent that mainstream consulting engineers would have to go through a massive learning curve in order to apply the new procedures in practice. With this in mind, it is proposed that simplified loss-based seismic design procedures are a logical means of helping the engineering profession transition from what are largely deterministic seismic design procedures in current codes, to more rational risk-based seismic design methodologies. Examples are provided to illustrate the likely benefits of adopting loss-based seismic design approaches in practice.

  20. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    NASA Astrophysics Data System (ADS)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  1. Cloud Computing Services for Seismic Networks

    NASA Astrophysics Data System (ADS)

    Olson, Michael

    This thesis describes a compositional framework for developing situation awareness applications: applications that provide ongoing information about a user's changing environment. The thesis describes how the framework is used to develop a situation awareness application for earthquakes. The applications are implemented as Cloud computing services connected to sensors and actuators. The architecture and design of the Cloud services are described and measurements of performance metrics are provided. The thesis includes results of experiments on earthquake monitoring conducted over a year. The applications developed by the framework are (1) the CSN---the Community Seismic Network---which uses relatively low-cost sensors deployed by members of the community, and (2) SAF---the Situation Awareness Framework---which integrates data from multiple sources, including the CSN, CISN---the California Integrated Seismic Network, a network consisting of high-quality seismometers deployed carefully by professionals in the CISN organization and spread across Southern California---and prototypes of multi-sensor platforms that include carbon monoxide, methane, dust and radiation sensors.

  2. Deriving micro- to macro-scale seismic velocities from ice-core c axis orientations

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Diez, Anja; Weikusat, Ilka; Eisen, Olaf

    2018-05-01

    One of the great challenges in glaciology is the ability to estimate the bulk ice anisotropy in ice sheets and glaciers, which is needed to improve our understanding of ice-sheet dynamics. We investigate the effect of crystal anisotropy on seismic velocities in glacier ice and revisit the framework which is based on fabric eigenvalues to derive approximate seismic velocities by exploiting the assumed symmetry. In contrast to previous studies, we calculate the seismic velocities using the exact c axis angles describing the orientations of the crystal ensemble in an ice-core sample. We apply this approach to fabric data sets from an alpine and a polar ice core. Our results provide a quantitative evaluation of the earlier approximative eigenvalue framework. For near-vertical incidence our results differ by up to 135 m s-1 for P-wave and 200 m s-1 for S-wave velocity compared to the earlier framework (estimated 1 % difference in average P-wave velocity at the bedrock for the short alpine ice core). We quantify the influence of shear-wave splitting at the bedrock as 45 m s-1 for the alpine ice core and 59 m s-1 for the polar ice core. At non-vertical incidence we obtain differences of up to 185 m s-1 for P-wave and 280 m s-1 for S-wave velocities. Additionally, our findings highlight the variation in seismic velocity at non-vertical incidence as a function of the horizontal azimuth of the seismic plane, which can be significant for non-symmetric orientation distributions and results in a strong azimuth-dependent shear-wave splitting of max. 281 m s-1 at some depths. For a given incidence angle and depth we estimated changes in phase velocity of almost 200 m s-1 for P wave and more than 200 m s-1 for S wave and shear-wave splitting under a rotating seismic plane. We assess for the first time the change in seismic anisotropy that can be expected on a short spatial (vertical) scale in a glacier due to strong variability in crystal-orientation fabric (±50 m s-1 per 10 cm). Our investigation of seismic anisotropy based on ice-core data contributes to advancing the interpretation of seismic data, with respect to extracting bulk information about crystal anisotropy, without having to drill an ice core and with special regard to future applications employing ultrasonic sounding.

  3. Performance-based design factors for pile foundations.

    DOT National Transportation Integrated Search

    2014-10-01

    The seismic design of pile foundations is currently performed in a relatively simple, deterministic manner. This : report describes the development of a performance-based framework to create seismic designs of pile group : foundations that consider a...

  4. Microtremors for seismic response assessments of important modern and historical structures of Crete

    NASA Astrophysics Data System (ADS)

    Margarita, Moisidi; Filippos, Vallianatos

    2017-12-01

    Strengthening seismic risk resilience undertaken by the civil protection authorities is an important issue towards to the guidelines given by Sendai Framework, 2013 European Union Civil Protection legislation and the global agenda 2030 for sustainable development. Moreover, in recent years it has been emphasized that site effect specifications are important issues for the seismic hazard assessments of modern, historical and monumental structures. This study assess the frequencies of vibration of historical, monumental and modern structures in the cities of Chania, Rethymno and Heraklion of Crete using ambient noise recordings processed through the Horizontal to Vertical spectral ratio and examines potential soil-structure interaction phenomena. Examples of the seismic response of high rise structures such as a church bell tower and the lighthouses in Chania are presented.

  5. A non extensive statistical physics analysis of the Hellenic subduction zone seismicity

    NASA Astrophysics Data System (ADS)

    Vallianatos, F.; Papadakis, G.; Michas, G.; Sammonds, P.

    2012-04-01

    The Hellenic subduction zone is the most seismically active region in Europe [Becker & Meier, 2010]. The spatial and temporal distribution of seismicity as well as the analysis of the magnitude distribution of earthquakes concerning the Hellenic subduction zone, has been studied using the concept of Non-Extensive Statistical Physics (NESP) [Tsallis, 1988 ; Tsallis, 2009]. Non-Extensive Statistical Physics, which is a generalization of Boltzmann-Gibbs statistical physics, seems a suitable framework for studying complex systems (Vallianatos, 2011). Using this concept, Abe & Suzuki (2003;2005) investigated the spatial and temporal properties of the seismicity in California and Japan and recently Darooneh & Dadashinia (2008) in Iran. Furthermore, Telesca (2011) calculated the thermodynamic parameter q of the magnitude distribution of earthquakes of the southern California earthquake catalogue. Using the external seismic zones of 36 seismic sources of shallow earthquakes in the Aegean and the surrounding area [Papazachos, 1990], we formed a dataset concerning the seismicity of shallow earthquakes (focal depth ≤ 60km) of the subduction zone, which is based on the instrumental data of the Geodynamic Institute of the National Observatory of Athens (http://www.gein.noa.gr/, period 1990-2011). The catalogue consists of 12800 seismic events which correspond to 15 polygons of the aforementioned external seismic zones. These polygons define the subduction zone, as they are associated with the compressional stress field which characterizes a subducting regime. For each event, moment magnitude was calculated from ML according to the suggestions of Papazachos et al. (1997). The cumulative distribution functions of the inter-event times and the inter-event distances as well as the magnitude distribution for each seismic zone have been estimated, presenting a variation in the q-triplet along the Hellenic subduction zone. The models used, fit rather well to the observed distributions, implying the complexity of the spatiotemporal properties of seismicity and the usefulness of NESP in investigating such phenomena, exhibiting scale-free nature and long range memory effects. Acknowledgments. This work was supported in part by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC". GM and GP wish to acknowledge the partial support of the Greek State Scholarships Foundation (ΙΚΥ).

  6. A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model

    NASA Astrophysics Data System (ADS)

    Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano

    2015-04-01

    The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.

  7. Integration of seismic-reflection and well data to assess the potential impact of stratigraphic and structural features on sustainable water supply from the Floridan aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.

    2014-01-01

    The U.S. Geological Survey and Broward County water managers commenced a 3.5-year cooperative study in July 2012 to refine the geologic and hydrogeologic framework of the Floridan aquifer system (FAS) in Broward County. A lack of advanced stratigraphic knowledge of the physical system and structural geologic anomalies (faults and fractures originating from tectonics and karst-collapse structures) within the FAS pose a risk to the sustainable management of the resource. The principal objective of the study is to better define the regional stratigraphic and structural setting of the FAS in Broward County. The objective will be achieved through the acquisition, processing, and interpretation of new seismic-reflection data along several canals in Broward County. The interpretation includes integration of the new seismic-reflection data with existing seismic-reflection profiles along Hillsboro Canal in Broward County and within northeast Miami-Dade County, as well as with data from nearby FAS wellbores. The scope of the study includes mapping the geologic, hydrogeologic, and seismic-reflection framework of the FAS, and identifying stratigraphic and structural characteristics that could either facilitate or preclude the sustainable use of the FAS as an alternate water supply or a treated effluent repository. In addition, the investigation offers an opportunity to: (1) improve existing groundwater flow models, (2) enhance the understanding of the sensitivity of the groundwater system to well-field development and upconing of saline fluids, and (3) support site selection for future FAS projects, such as Class I wells that would inject treated effluent into the deep Boulder Zone.

  8. Multicomponent ensemble models to forecast induced seismicity

    NASA Astrophysics Data System (ADS)

    Király-Proag, E.; Gischig, V.; Zechar, J. D.; Wiemer, S.

    2018-01-01

    In recent years, human-induced seismicity has become a more and more relevant topic due to its economic and social implications. Several models and approaches have been developed to explain underlying physical processes or forecast induced seismicity. They range from simple statistical models to coupled numerical models incorporating complex physics. We advocate the need for forecast testing as currently the best method for ascertaining if models are capable to reasonably accounting for key physical governing processes—or not. Moreover, operational forecast models are of great interest to help on-site decision-making in projects entailing induced earthquakes. We previously introduced a standardized framework following the guidelines of the Collaboratory for the Study of Earthquake Predictability, the Induced Seismicity Test Bench, to test, validate, and rank induced seismicity models. In this study, we describe how to construct multicomponent ensemble models based on Bayesian weightings that deliver more accurate forecasts than individual models in the case of Basel 2006 and Soultz-sous-Forêts 2004 enhanced geothermal stimulation projects. For this, we examine five calibrated variants of two significantly different model groups: (1) Shapiro and Smoothed Seismicity based on the seismogenic index, simple modified Omori-law-type seismicity decay, and temporally weighted smoothed seismicity; (2) Hydraulics and Seismicity based on numerically modelled pore pressure evolution that triggers seismicity using the Mohr-Coulomb failure criterion. We also demonstrate how the individual and ensemble models would perform as part of an operational Adaptive Traffic Light System. Investigating seismicity forecasts based on a range of potential injection scenarios, we use forecast periods of different durations to compute the occurrence probabilities of seismic events M ≥ 3. We show that in the case of the Basel 2006 geothermal stimulation the models forecast hazardous levels of seismicity days before the occurrence of felt events.

  9. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE PAGES

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...

    2017-10-17

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  10. Bayesian inversion of seismic and electromagnetic data for marine gas reservoir characterization using multi-chain Markov chain Monte Carlo sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan

    In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less

  11. Scalable Metadata Management for a Large Multi-Source Seismic Data Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaylord, J. M.; Dodge, D. A.; Magana-Zook, S. A.

    In this work, we implemented the key metadata management components of a scalable seismic data ingestion framework to address limitations in our existing system, and to position it for anticipated growth in volume and complexity.

  12. Seismic velocity uncertainties and their effect on geothermal predictions: A case study

    NASA Astrophysics Data System (ADS)

    Rabbel, Wolfgang; Köhn, Daniel; Bahadur Motra, Hem; Niederau, Jan; Thorwart, Martin; Wuttke, Frank; Descramble Working Group

    2017-04-01

    Geothermal exploration relies in large parts on geophysical subsurface models derived from seismic reflection profiling. These models are the framework of hydro-geothermal modeling, which further requires estimating thermal and hydraulic parameters to be attributed to the seismic strata. All petrophysical and structural properties involved in this process can be determined only with limited accuracy and thus impose uncertainties onto the resulting model predictions of temperature-depth profiles and hydraulic flow, too. In the present study we analyze sources and effects of uncertainties of the seismic velocity field, which translate directly into depth uncertainties of the hydraulically and thermally relevant horizons. Geological sources of these uncertainties are subsurface heterogeneity and seismic anisotropy, methodical sources are limitations in spread length and physical resolution. We demonstrate these effects using data of the EU-Horizon 2020 project DESCRAMBLE investigating a shallow super-critical geothermal reservoir in the Larderello area. The study is based on 2D- and 3D seismic reflection data and laboratory measurements on representative rock samples under simulated in-situ conditions. The rock samples consistently show P-wave anisotropy values of 10-20% order of magnitude. However, the uncertainty of layer depths induced by anisotropy is likely to be lower depending on the accuracy, with which the spatial orientation of bedding planes can be determined from the seismic reflection images.

  13. Multicomponent seismic loss estimation on the North Anatolian Fault Zone (Turkey)

    NASA Astrophysics Data System (ADS)

    karimzadeh Naghshineh, S.; Askan, A.; Erberik, M. A.; Yakut, A.

    2015-12-01

    Seismic loss estimation is essential to incorporate seismic risk of structures into an efficient decision-making framework. Evaluation of seismic damage of structures requires a multidisciplinary approach including earthquake source characterization, seismological prediction of earthquake-induced ground motions, prediction of structural responses exposed to ground shaking, and finally estimation of induced damage to structures. As the study region, Erzincan, a city on the eastern part of Turkey is selected which is located in the conjunction of three active strike-slip faults as North Anatolian Fault, North East Anatolian Fault and Ovacik fault. Erzincan city center is in a pull-apart basin underlain by soft sediments that has experienced devastating earthquakes such as the 27 December 1939 (Ms=8.0) and the 13 March 1992 (Mw=6.6) events, resulting in extensive amount of physical as well as economical losses. These losses are attributed to not only the high seismicity of the area but also as a result of the seismic vulnerability of the constructed environment. This study focuses on the seismic damage estimation of Erzincan using both regional seismicity and local building information. For this purpose, first, ground motion records are selected from a set of scenario events simulated with the stochastic finite fault methodology using regional seismicity parameters. Then, existing building stock are classified into specified groups represented with equivalent single-degree-of-freedom systems. Through these models, the inelastic dynamic structural responses are investigated with non-linear time history analysis. To assess the potential seismic damage in the study area, fragility curves for the classified structural types are derived. Finally, the estimated damage is compared with the observed damage during the 1992 Erzincan earthquake. The results are observed to have a reasonable match indicating the efficiency of the ground motion simulations and building analyses.

  14. The new Central American seismic hazard zonation: Mutual consensus based on up to day seismotectonic framework

    NASA Astrophysics Data System (ADS)

    Alvarado, Guillermo E.; Benito, Belén; Staller, Alejandra; Climent, Álvaro; Camacho, Eduardo; Rojas, Wilfredo; Marroquín, Griselda; Molina, Enrique; Talavera, J. Emilio; Martínez-Cuevas, Sandra; Lindholm, Conrad

    2017-11-01

    Central America is one of the most active seismic zones in the World, due to the interaction of five tectonic plates (North America, Caribbean, Coco, Nazca and South America), and its internal deformation, which generates almost one destructive earthquakes (5.4 ≤ Mw ≤ 8.1) every year. A new seismological zonation for Central America is proposed based on seismotectonic framework, a geological context (tectonic and geological maps), geophysical and geodetic evidence (gravimetric maps, magnetometric, GPS observations), and previous works. As a main source of data a depurated earthquake catalog was collected covering the period from 1522 to 2015. This catalog was homogenized to a moment magnitude scale (Mw). After a careful analysis of all the integrated geological and seismological information, the seismogenic zones were established into seismic areas defined by similar patterns of faulting, seismicity, and rupture mechanism. The tectonic environment has required considering seismic zones in two particular seismological regimes: a) crustal faulting (including local faults, major fracture zones of plate boundary limits, and thrust fault of deformed belts) and b) subduction, taking into account the change in the subduction angle along the trench, and the type and location of the rupture. The seismicity in the subduction zone is divided into interplate and intraplate inslab seismicity. The regional seismic zonation proposed for the whole of Central America, include local seismic zonations, avoiding discontinuities at the national boundaries, because of a consensus between the 7 countries, based on the cooperative work of specialists on Central American seismotectonics and related topics.

  15. Study on the application of seismic sedimentology in a stratigraphic-lithologic reservoir in central Junggar Basin

    NASA Astrophysics Data System (ADS)

    Yu, Yixin; Xia, Zhongmou

    2017-06-01

    This paper discusses the research idea of description for stratigraphic-lithologic reservoir based on seismic sedimentology methods. The sandstone reservoir of Jurrassic XiShanyao Formation in Junggar Basin is studied according to the theory and approaches of seismic sedimentology. By making full use of borehole data, the technologies of layer correlation based on the stratigraphic sequence framework, the forward seismic modeling, the stratal slicing and lithologic inversion are applied. It describes the range of denudation line, the distribution characteristics of sedimentary facies of the strata, the vertical and horizontal distribution of sand bodies and the favourable oil-gas bearing prospective area. The results shows that study area are dominated braided delta deposition including underwater distributary channel and distributary bay microfacies, the nip-out lines of the formation are northeast to southwest from north to south, the second Middle Jurassic sand body is the most widely distributed one among three sand bodies, the prospective oil-gas bearing area located in the south part and around the YG2 well area. The study result is effective on the practice of exploration in study area.

  16. Quaternary Geologic Framework of the St. Clair River between Michigan and Ontario, Canada

    USGS Publications Warehouse

    Foster, David S.; Denny, Jane F.

    2009-01-01

    Concern about the effect of geomorphic changes in the St. Clair River on water levels in the Upper Great Lakes resulted in the need for information on the geologic framework of the river. A geophysical survey of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada, was conducted to determine the Quaternary geologic framework of the region. Previously available and new sediment samples and photographic and video data support the interpretation of the seismic stratigraphy and surficial geology. Three seismic stratigraphic units and two unconformities were identified. Glacial drift, consisting of interbedded till and glaciolacustrine deposits, overlies shale. Glaciofluvial and modern fluvial processes have eroded the glacial drift. Glaciofluvial, glaciolacustrine, fluvial, and lacustrine deposits overlie this unconformity. Seismic facies were interpreted to identify areas where these geologic facies exist; however, in the absence of distinct boundaries between facies, these deposits were mapped as one undifferentiated unit. This unit is thickest in the northernmost 3 kilometers of the river, where it consists of relatively coarse-grained fluvial, reworked glaciofluvial, and possibly glaciofluvial deposits. To the south, this coarse-grained unit thins or is absent. The undifferentiated unit comprises most of the surficial deposits in the northernmost river area. Some areas of glacial drift, predominantly till, are exposed at the lake and riverbed. The shale is not exposed anywhere in the region. Geophysical surveys at sites downriver, together with the results of previous studies, indicate that the geologic framework is similar to that in the northernmost river area except for the absence or reduced thickness of the coarse-grained fluvial deposits. Instead, glacial drift is exposed at the riverbed or is covered by a veneer of sediment. This information on the substrate is important for ongoing sediment transport studies.

  17. Integrated geophysical and geological study of the tectonic framework of the 38th Parallel Lineament in the vicinity of its intersection with the extension of the New Madrid Fault Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braile, L.W.; Hinze, W.J.; Keller, G.R.

    1978-06-01

    Extensive gravity and aeromagnetic surveys have been conducted in critical areas of Kentucky, Illinois, and Indiana centering around the intersection of the 38th Parallel Lineament and the extension of the New Madrid Fault Zone. Available aeromagnetic maps have been digitized and these data have been processed by a suite of computer programs developed for this purpose. Seismic equipment has been prepared for crustal seismic studies and a 150 km long seismic refraction line has been observed along the Wabash River Valley Fault System. Preliminary basement rock and configuration maps have been prepared based on studies of the samples derived frommore » basement drill holes. Interpretation of these data are at a preliminary stage, but studies to this date indicate that the 38th Parallel Lineament features extend as far north as 39/sup 0/N and a subtle northeasterly striking magnetic and gravity anomaly cuts across Indiana from the southwest corner of the state, roughly on strike with the New Madrid Seismic Zone.« less

  18. Weighted stacking of seismic AVO data using hybrid AB semblance and local similarity

    NASA Astrophysics Data System (ADS)

    Deng, Pan; Chen, Yangkang; Zhang, Yu; Zhou, Hua-Wei

    2016-04-01

    The common-midpoint (CMP) stacking technique plays an important role in enhancing the signal-to-noise ratio (SNR) in seismic data processing and imaging. Weighted stacking is often used to improve the performance of conventional equal-weight stacking in further attenuating random noise and handling the amplitude variations in real seismic data. In this study, we propose to use a hybrid framework of combining AB semblance and a local-similarity-weighted stacking scheme. The objective is to achieve an optimal stacking of the CMP gathers with class II amplitude-variation-with-offset (AVO) polarity-reversal anomaly. The selection of high-quality near-offset reference trace is another innovation of this work because of its better preservation of useful energy. Applications to synthetic and field seismic data demonstrate a great improvement using our method to capture the true locations of weak reflections, distinguish thin-bed tuning artifacts, and effectively attenuate random noise.

  19. Revision of the geological context of the Port-au-Prince, Haiti, metropolitan area: implications for seismic microzonation

    NASA Astrophysics Data System (ADS)

    Terrier, M.; Bialkowski, A.; Nachbaur, A.; Prépetit, C.; Joseph, Y. F.

    2014-02-01

    A geological study has been conducted in the framework of the microzonation of Port-au-Prince, Haiti. It reveals the deposit of Miocene and Pliocene formations in a marine environment and the impact on these deposits of the Enriquillo-Plantain Garden N80° E fault system and of N110° E faults. The tectonic and morphological analysis indicates motion during the Quaternary along several mapped reverse left-lateral N110° E faults affecting the capital. Assessing ground-movement hazards represents an integral component of seismic microzonation. The geological results have provided essential groundwork for this assessment. Seismic microzonation aims to take seismic risk more fully into account in the city's urbanization and development policies. To this end, assumptions are made as to risks induced by surface rupture and ground movement from active faults.

  20. Multi scenario seismic hazard assessment for Egypt

    NASA Astrophysics Data System (ADS)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-01-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  1. Multi scenario seismic hazard assessment for Egypt

    NASA Astrophysics Data System (ADS)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  2. New Insights on Mt. Etna's Crust and Relationship with the Regional Tectonic Framework from Joint Active and Passive P-Wave Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Barberi, G.; Cocina, O.; Koulakov, I.; Scarfì, L.; Zuccarello, L.; Prudencio, J.; García-Yeguas, A.; Álvarez, I.; García, L.; Ibáñez, J. M.

    2018-01-01

    In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel `Sarmiento de Gamboa'. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan-southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW-SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian-Tindari-Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.

  3. Motorized Activity on Legacy Seismic Lines: A Predictive Modeling Approach to Prioritize Restoration Efforts.

    PubMed

    Hornseth, M L; Pigeon, K E; MacNearney, D; Larsen, T A; Stenhouse, G; Cranston, J; Finnegan, L

    2018-05-11

    Natural regeneration of seismic lines, cleared for hydrocarbon exploration, is slow and often hindered by vegetation damage, soil compaction, and motorized human activity. There is an extensive network of seismic lines in western Canada which is known to impact forest ecosystems, and seismic lines have been linked to declines in woodland caribou (Rangifer tarandus caribou). Seismic line restoration is costly, but necessary for caribou conservation to reduce cumulative disturbance. Understanding where motorized activity may be impeding regeneration of seismic lines will aid in prioritizing restoration. Our study area in west-central Alberta, encompassed five caribou ranges where restoration is required under federal species at risk recovery strategies, hence prioritizing seismic lines for restoration is of immediate conservation value. To understand patterns of motorized activity on seismic lines, we evaluated five a priori hypotheses using a predictive modeling framework and Geographic Information System variables across three landscapes in the foothills and northern boreal regions of Alberta. In the northern boreal landscape, motorized activity was most common in dry areas with a large industrial footprint. In highly disturbed areas of the foothills, motorized activity on seismic lines increased with low vegetation heights, relatively dry soils, and further from forest cutblocks, while in less disturbed areas of the foothills, motorized activity on seismic lines decreased proportional to seismic line density, slope steepness, and white-tailed deer abundance, and increased proportional with distance to roads. We generated predictive maps of high motorized activity, identifying 21,777 km of seismic lines where active restoration could expedite forest regeneration.

  4. A risk-mitigation approach to the management of induced seismicity.

    PubMed

    Bommer, Julian J; Crowley, Helen; Pinho, Rui

    2015-01-01

    Earthquakes may be induced by a wide range of anthropogenic activities such as mining, fluid injection and extraction, and hydraulic fracturing. In recent years, the increased occurrence of induced seismicity and the impact of some of these earthquakes on the built environment have heightened both public concern and regulatory scrutiny, motivating the need for a framework for the management of induced seismicity. Efforts to develop systems to enable control of seismicity have not yet resulted in solutions that can be applied with confidence in most cases. The more rational approach proposed herein is based on applying the same risk quantification and mitigation measures that are applied to the hazard from natural seismicity. This framework allows informed decision-making regarding the conduct of anthropogenic activities that may cause earthquakes. The consequent risk, if related to non-structural damage (when re-location is not an option), can be addressed by appropriate financial compensation. If the risk poses a threat to life and limb, then it may be reduced through the application of strengthening measures in the built environment-the cost of which can be balanced against the economic benefits of the activity in question-rather than attempting to ensure that some threshold on earthquake magnitude or ground-shaking amplitude is not exceeded. However, because of the specific characteristics of induced earthquakes-which may occur in regions with little or no natural seismicity-the procedures used in standard earthquake engineering need adaptation and modification for application to induced seismicity.

  5. Adapting Pipeline Architectures to Track Developing Aftershock Sequences and Recurrent Explosions

    DTIC Science & Technology

    2014-02-14

    Sumatra earthquake was used to study the performance of subspace detectors to detect and classify events from within a very large (Area = ~250,000 km2... detectors to identify and organize repeating waveforms discovered in multichannel seismic data streams. The framework has been tested and evaluated on...a variety of different test cases from mining blasts in Central Asia to moderate and large earthquake aftershock sequences. The framework performs

  6. Preliminary stratigraphic and hydrogeologic cross sections and seismic profile of the Floridan aquifer system of Broward County, Florida

    USGS Publications Warehouse

    Reese, Ronald S.; Cunningham, Kevin J.

    2013-01-01

    To help water-resource managers evaluate the Floridan aquifer system (FAS) as an alternative water supply, the U.S. Geological Survey initiated a study, in cooperation with the Broward County Environmental Protection and Growth Management Department, to refine the hydrogeologic framework of the FAS in the eastern part of Broward County. This report presents three preliminary cross sections illustrating stratigraphy and hydrogeology in eastern Broward County as well as an interpreted seismic profile along one of the cross sections. Marker horizons were identified using borehole geophysical data and were initially used to perform well-to-well correlation. Core sample data were integrated with the borehole geophysical data to support stratigraphic and hydrogeologic interpretations of marker horizons. Stratigraphic and hydrogeologic units were correlated across the county using borehole geophysical data from multiple wells. Seismic-reflection data were collected along the Hillsboro Canal. Borehole geophysical data were used to identify and correlate hydrogeologic units in the seismic-reflection profile. Faults and collapse structures that intersect hydrogeologic units were also identified in the seismic profile. The information provided in the cross sections and the seismic profile is preliminary and subject to revision.

  7. A conceptual evolutionary aseismic decision support framework for hospitals

    NASA Astrophysics Data System (ADS)

    Hu, Yufeng; Dargush, Gary F.; Shao, Xiaoyun

    2012-12-01

    In this paper, aconceptual evolutionary framework for aseismic decision support for hospitalsthat attempts to integrate a range of engineering and sociotechnical models is presented. Genetic algorithms are applied to find the optimal decision sets. A case study is completed to demonstrate how the frameworkmay applytoa specific hospital.The simulations show that the proposed evolutionary decision support framework is able to discover robust policy sets in either uncertain or fixed environments. The framework also qualitatively identifies some of the characteristicbehavior of the critical care organization. Thus, by utilizing the proposedframework, the decision makers are able to make more informed decisions, especially toenhance the seismic safety of the hospitals.

  8. A new database on subduction seismicity at the global scale

    NASA Astrophysics Data System (ADS)

    Presti, D.; Heuret, A.; Funiciello, F.; Piromallo, C.

    2012-04-01

    In the framework of the EURYI Project 'Convergent margins and seismogenesis: defining the risk of great earthquakes by using statistical data and modelling', a global collection of recent intraslab seismicity has been performed. Based on EHB hypocenter and CMT Harvard catalogues, the hypocenters, nodal planes and seismic moments of worldwide subduction-related earthquakes were extracted for the period 1976 - 2007. Data were collected for centroid depths between sea level and 700 km and for magnitude Mw ≥ 5.5. For each subduction zone, a set of trench-normal transects were constructed choosing a 120km width of the cross-section on each side of a vertical plane and a spacing of 1 degree along the trench. For each of the 505 resulting transects, the whole subduction seismogenic zone was mapped as focal mechanisms projected on to a vertical plane after their faulting type classification according to the Aki-Richards convention. Transect by transect, fist the seismicity that can be considered not related to the subduction process under investigation was removed, then was selected the upper plate seismicity (i.e. earthquakes generated within the upper plate as a result of the subduction process). After deletion from the so obtained event subset of the interplate seismicity as identified in the framework of this project by Heuret et al. (2011), we can be reasonably confident that the remaining seismicity can be related to the subducting plate. Among these earthquakes we then selected the intermediate and deep depth seismicity. The upper limit of the intermediate depth seismicity is generally fixed at 70 km depth in order to avoid possible mixing with interplate seismicity. The ranking of intermediate depth and deep seismicity was in most of cases referred to earthquakes with focal depth between 70-300 km and with depth exceeding 300 km, respectively. Outer-rise seismicity was also selected. Following Heuret et al. (2011), the 505 transects were merged into 62 larger segments that were ideally homogeneous in terms of their seismogenic zone characteristics. Comparisons between main seismic parameters (e.g. cumulated seismic moment, P- and T-axes distributions, spatial and temporal distribution of largest magnitudes) with relation to both the different categories selected and the different segments have been performed in order to obtain a snapshot on the general behaviour of global subduction-related seismicity.

  9. An analytical study on excitation of nuclear-coupled thermal-hydraulic instability due to seismically induced resonance in BWR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Masashi

    1997-07-01

    This paper describes the results of a scoping study on seismically induced resonance of nuclear-coupled thermal-hydraulic instability in BWRs, which was conducted by using TRAC-BF1 within a framework of a point kinetics model. As a result of the analysis, it is shown that a reactivity insertion could occur accompanied by in-surge of coolant into the core resulted from the excitation of the nuclear-coupled instability by the external acceleration. In order to analyze this phenomenon more in detail, it is necessary to couple a thermal-hydraulic code with a three-dimensional nuclear kinetics code.

  10. Probabilistic seismic hazard at the archaeological site of Gol Gumbaz in Vijayapura, south India

    NASA Astrophysics Data System (ADS)

    Patil, Shivakumar G.; Menon, Arun; Dodagoudar, G. R.

    2018-03-01

    Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, {M}w = 6.4 (1993). Disaggregation of PSHA results for the PGA and spectral acceleration ({S}a) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.

  11. Seismic Search Engine: A distributed database for mining large scale seismic data

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Vaidya, S.; Kuzma, H. A.

    2009-12-01

    The International Monitoring System (IMS) of the CTBTO collects terabytes worth of seismic measurements from many receiver stations situated around the earth with the goal of detecting underground nuclear testing events and distinguishing them from other benign, but more common events such as earthquakes and mine blasts. The International Data Center (IDC) processes and analyzes these measurements, as they are collected by the IMS, to summarize event detections in daily bulletins. Thereafter, the data measurements are archived into a large format database. Our proposed Seismic Search Engine (SSE) will facilitate a framework for data exploration of the seismic database as well as the development of seismic data mining algorithms. Analogous to GenBank, the annotated genetic sequence database maintained by NIH, through SSE, we intend to provide public access to seismic data and a set of processing and analysis tools, along with community-generated annotations and statistical models to help interpret the data. SSE will implement queries as user-defined functions composed from standard tools and models. Each query is compiled and executed over the database internally before reporting results back to the user. Since queries are expressed with standard tools and models, users can easily reproduce published results within this framework for peer-review and making metric comparisons. As an illustration, an example query is “what are the best receiver stations in East Asia for detecting events in the Middle East?” Evaluating this query involves listing all receiver stations in East Asia, characterizing known seismic events in that region, and constructing a profile for each receiver station to determine how effective its measurements are at predicting each event. The results of this query can be used to help prioritize how data is collected, identify defective instruments, and guide future sensor placements.

  12. Setting the Stage for Harmonized Risk Assessment by Seismic Hazard Harmonization in Europe (SHARE)

    NASA Astrophysics Data System (ADS)

    Woessner, Jochen; Giardini, Domenico; SHARE Consortium

    2010-05-01

    Probabilistic seismic hazard assessment (PSHA) is arguably one of the most useful products that seismology can offer to society. PSHA characterizes the best available knowledge on the seismic hazard of a study area, ideally taking into account all sources of uncertainty. Results form the baseline for informed decision making, such as building codes or insurance rates and provide essential input to each risk assessment application. Several large scale national and international projects have recently been launched aimed at improving and harmonizing PSHA standards around the globe. SHARE (www.share-eu.org) is the European Commission funded project in the Framework Programme 7 (FP-7) that will create an updated, living seismic hazard model for the Euro-Mediterranean region. SHARE is a regional component of the Global Earthquake Model (GEM, www.globalquakemodel.org), a public/private partnership initiated and approved by the Global Science Forum of the OECD-GSF. GEM aims to be the uniform, independent and open access standard to calculate and communicate earthquake hazard and risk worldwide. SHARE itself will deliver measurable progress in all steps leading to a harmonized assessment of seismic hazard - in the definition of engineering requirements, in the collection of input data, in procedures for hazard assessment, and in engineering applications. SHARE scientists will create a unified framework and computational infrastructure for seismic hazard assessment and produce an integrated European probabilistic seismic hazard assessment (PSHA) model and specific scenario based modeling tools. The results will deliver long-lasting structural impact in areas of societal and economic relevance, they will serve as reference for the Eurocode 8 (EC8) application, and will provide homogeneous input for the correct seismic safety assessment for critical industry, such as the energy infrastructures and the re-insurance sector. SHARE will cover the whole European territory, the Maghreb countries in the Southern Mediterranean and Turkey in the Eastern Mediterranean. By strongly including the seismic engineering community, the project maintains a direct connection to the Eurocode 8 applications and the definition of the Nationally Determined Parameters, through the participation of the CEN/TC250/SC8 committee in the definition of the output specification requirements and in the hazard validation. SHARE will thus produce direct outputs for risk assessment. With this contribution, we focus on providing an overview of the goals and current achievement of the project.

  13. Universality in the dynamical properties of seismic vibrations

    NASA Astrophysics Data System (ADS)

    Chatterjee, Soumya; Barat, P.; Mukherjee, Indranil

    2018-02-01

    We have studied the statistical properties of the observed magnitudes of seismic vibration data in discrete time in an attempt to understand the underlying complex dynamical processes. The observed magnitude data are taken from six different geographical locations. All possible magnitudes are considered in the analysis including catastrophic vibrations, foreshocks, aftershocks and commonplace daily vibrations. The probability distribution functions of these data sets obey scaling law and display a certain universality characteristic. To investigate the universality features in the observed data generated by a complex process, we applied Random Matrix Theory (RMT) in the framework of Gaussian Orthogonal Ensemble (GOE). For all these six places the observed data show a close fit with the predictions of RMT. This reinforces the idea of universality in the dynamical processes generating seismic vibrations.

  14. An integrated geophysical and geological study of the tectonic framework of the 38th Parallel Lineament in the vicinity of its intersection with the extension of the New Madrid Fault Zone. Geotechnical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braile, L.W.; Hinze, J.H.; Keller, G.R.

    1978-09-01

    Extensive gravity and aeromagnetic surveys have been conducted in critical areas of Kentucky, Illinois, and Indiana centering around the intersection of the 38th Parallel Lineament and the extension of the New Madrid Fault Zone. Available aeromagnetic maps have been digitized and these data have been processed by a suite of computer programs developed for this purpose. Seismic equipment has been prepared for crustal seismic studies and a 150 km long seismic refraction line has been observed along the Wabash River Valley Fault System. Preliminary basement rock and configuration maps have been prepared based on studies of the samples derived frommore » basement drill holes. Interpretation of these data are only at a preliminary stage, but studies to this date indicate that the 38th Parallel Lineament features extend as far north as 39 degrees N and a subtle northeasterly-striking magnetic and gravity anomaly cuts across Indiana from the southwest corner of the state, roughly on strike with the New Madrid Seismic Zone.« less

  15. Geophysical investigations in Jordan

    NASA Astrophysics Data System (ADS)

    Kovach, Robert L.; Andreasen, Gordon E.; Gettings, Mark E.; El-Kaysi, Kays

    1990-08-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source.

  16. Geophysical investigations in Jordan

    USGS Publications Warehouse

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  17. A comparison between rate-and-state friction and microphysical models, based on numerical simulations of fault slip

    NASA Astrophysics Data System (ADS)

    van den Ende, M. P. A.; Chen, J.; Ampuero, J.-P.; Niemeijer, A. R.

    2018-05-01

    Rate-and-state friction (RSF) is commonly used for the characterisation of laboratory friction experiments, such as velocity-step tests. However, the RSF framework provides little physical basis for the extrapolation of these results to the scales and conditions of natural fault systems, and so open questions remain regarding the applicability of the experimentally obtained RSF parameters for predicting seismic cycle transients. As an alternative to classical RSF, microphysics-based models offer means for interpreting laboratory and field observations, but are generally over-simplified with respect to heterogeneous natural systems. In order to bridge the temporal and spatial gap between the laboratory and nature, we have implemented existing microphysical model formulations into an earthquake cycle simulator. Through this numerical framework, we make a direct comparison between simulations exhibiting RSF-controlled fault rheology, and simulations in which the fault rheology is dictated by the microphysical model. Even though the input parameters for the RSF simulation are directly derived from the microphysical model, the microphysics-based simulations produce significantly smaller seismic event sizes than the RSF-based simulation, and suggest a more stable fault slip behaviour. Our results reveal fundamental limitations in using classical rate-and-state friction for the extrapolation of laboratory results. The microphysics-based approach offers a more complete framework in this respect, and may be used for a more detailed study of the seismic cycle in relation to material properties and fault zone pressure-temperature conditions.

  18. Shallow gas in Cenozoic sediments of the Southern North Sea

    NASA Astrophysics Data System (ADS)

    Trampe, Anna F.; Lutz, Rüdiger; Franke, Dieter; Thöle, Hauke; Arfai, Jashar

    2013-04-01

    Shallow petroleum systems in the southern North Sea are known for several decades but they were not actively explored for a long time. In recent years these unconventional shallow petroleum systems are studied in greater detail and one shallow gas field (A-12) is in production in the Netherlands. Additionally, oil was encountered in Miocene sandstones in the southern Danish North Sea (Lille John well) just north of the Danish-German border. Seismic amplitude anomalies are an indication for hydrocarbons in sediments. Therefore we have mapped the occurrence of seismic amplitude anomalies in the German North Sea based on more than 25.000 km of 2D seismic data and around 4.000 km2 of 3D seismic data. Amplitude anomalies are ubiquitous phenomena in the study area. These anomalies are not only caused by hydrocarbons but also by changing lithologies e.g. peat or fluid migration. Therefore several classes of seismic anomalies, e.g. bright spots, chimneys, blanking areas and velocity pull-down were mapped. Examples for these classes were studied with AVO (amplitude variation with offset) analyses to verify the existence or non-existence of gas in the sediments. Shallow gas can be produced and transported through the dense pipeline grid of the southern and central North Sea or it could be burned offshore close to wind parks in small power plants and the electric energy then transported through the existing power connections of the wind parks. Thus enabling a continuous energy supply during calm wind periods. This study is carried out within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)" in which the Cenozoic sedimentary system was mapped in great detail. A detailed model of delta evolution (Baltic river system) was developed which serves as a structural framework. The studied interval is time equivalent to the Utsira formation which is used offshore Norway for sequestration of CO2. These different possibilities of using or exploiting the underground emphasize the need for detailed knowledge on the underground for sound decisions on the future use of this area.

  19. Probabilistic inversion of AVO seismic data for reservoir properties and related uncertainty estimation

    NASA Astrophysics Data System (ADS)

    Zunino, Andrea; Mosegaard, Klaus

    2017-04-01

    Sought-after reservoir properties of interest are linked only indirectly to the observable geophysical data which are recorded at the earth's surface. In this framework, seismic data represent one of the most reliable tool to study the structure and properties of the subsurface for natural resources. Nonetheless, seismic analysis is not an end in itself, as physical properties such as porosity are often of more interest for reservoir characterization. As such, inference of those properties implies taking into account also rock physics models linking porosity and other physical properties to elastic parameters. In the framework of seismic reflection data, we address this challenge for a reservoir target zone employing a probabilistic method characterized by a multi-step complex nonlinear forward modeling that combines: 1) a rock physics model with 2) the solution of full Zoeppritz equations and 3) a convolutional seismic forward modeling. The target property of this work is porosity, which is inferred using a Monte Carlo approach where porosity models, i.e., solutions to the inverse problem, are directly sampled from the posterior distribution. From a theoretical point of view, the Monte Carlo strategy can be particularly useful in the presence of nonlinear forward models, which is often the case when employing sophisticated rock physics models and full Zoeppritz equations and to estimate related uncertainty. However, the resulting computational challenge is huge. We propose to alleviate this computational burden by assuming some smoothness of the subsurface parameters and consequently parameterizing the model in terms of spline bases. This allows us a certain flexibility in that the number of spline bases and hence the resolution in each spatial direction can be controlled. The method is tested on a 3-D synthetic case and on a 2-D real data set.

  20. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    NASA Astrophysics Data System (ADS)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  1. Seismic hazard maps of Mexico, the Caribbean, and Central and South America

    USGS Publications Warehouse

    Tanner, J.G.; Shedlock, K.M.

    2004-01-01

    The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures due to an insufficient knowledge of existing seismic hazard and/or economic constraints. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. We have produced a suite of seismic hazard estimates for Mexico, the Caribbean, and Central and South America. One of the preliminary maps in this suite served as the basis for the Caribbean and Central and South America portion of the Global Seismic Hazard Map (GSHM) published in 1999, which depicted peak ground acceleration (pga) with a 10% chance of exceedance in 50 years for rock sites. Herein we present maps depicting pga and 0.2 and 1.0 s spectral accelerations (SA) with 50%, 10%, and 2% chances of exceedance in 50 years for rock sites. The seismicity catalog used in the generation of these maps adds 3 more years of data to those used to calculate the GSH Map. Different attenuation functions (consistent with those used to calculate the U.S. and Canadian maps) were used as well. These nine maps are designed to assist in global risk mitigation by providing a general seismic hazard framework and serving as a resource for any national or regional agency to help focus further detailed studies required for regional/local needs. The largest seismic hazard values in Mexico, the Caribbean, and Central and South America generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes. High hazard values occur in areas where shallow-to-intermediate seismicity occurs frequently. ?? 2004 Elsevier B.V. All rights reserved.

  2. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where confining units appear to remain intact and unaffected by nearby subsidence activity. Each lake likely is underlain by several piping features rather than one large subsidence feature.

  3. Probabilistic properties of injection induced seismicity - implications for the seismic hazard analysis

    NASA Astrophysics Data System (ADS)

    Lasocki, Stanislaw; Urban, Pawel; Kwiatek, Grzegorz; Martinez-Garzón, Particia

    2017-04-01

    Injection induced seismicity (IIS) is an undesired dynamic rockmass response to massive fluid injections. This includes reactions, among others, to hydro-fracturing for shale gas exploitation. Complexity and changeability of technological factors that induce IIS, may result in significant deviations of the observed distributions of seismic process parameters from the models, which perform well in natural, tectonic seismic processes. Classic formulations of probabilistic seismic hazard analysis in natural seismicity assume the seismic marked point process to be a stationary Poisson process, whose marks - magnitudes are governed by a Gutenberg-Richter born exponential distribution. It is well known that the use of an inappropriate earthquake occurrence model and/or an inappropriate of magnitude distribution model leads to significant systematic errors of hazard estimates. It is therefore of paramount importance to check whether the mentioned, commonly used in natural seismicity assumptions on the seismic process, can be safely used in IIS hazard problems or not. Seismicity accompanying shale gas operations is widely studied in the framework of the project "Shale Gas Exploration and Exploitation Induced Risks" (SHEER). Here we present results of SHEER project investigations of such seismicity from Oklahoma and of a proxy of such seismicity - IIS data from The Geysers geothermal field. We attempt to answer to the following questions: • Do IIS earthquakes follow the Gutenberg-Richter distribution law, so that the magnitude distribution can be modelled by an exponential distribution? • Is the occurrence process of IIS earthquakes Poissonian? Is it segmentally Poissonian? If yes, how are these segments linked to cycles of technological operations? Statistical tests indicate that the Gutenberg-Richter relation born exponential distribution model for magnitude is, in general, inappropriate. The magnitude distribution can be complex, multimodal, with no ready-to-use functional model. In this connection, we recommend to use in hazard analyses non-parametric, kernel estimators of magnitude distribution. The earthquake occurrence process of IIS is not a Poisson process. When earthquakes' occurrences are influenced by a multitude of inducing factors, the interevent time distribution can be modelled by the Weibull distribution supporting a negative ageing property of the process. When earthquake occurrences are due to a specific injection activity, the earthquake rate directly depends on the injection rate and responds immediately to the changes of the injection rate. Furthermore, this response is not limited only to correlated variations of the seismic activity but it also concerns significant changes of the shape of interevent time distribution. Unlike the event rate, the shape of magnitude distribution does not exhibit correlation with the injection rate. This work was supported within SHEER: "Shale Gas Exploration and Exploitation Induced Risks" project funded from Horizon 2020 - R&I Framework Programme, call H2020-LCE 16-2014-1 and within statutory activities No3841/E-41/S/2016 of Ministry of Science and Higher Education of Poland.

  4. Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects

    NASA Astrophysics Data System (ADS)

    Long, M. D.

    2017-12-01

    Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing improvements in seismic observational strategies, experimental and computational mineral physics, and geodynamic modeling approaches are leading to new avenues for understanding flow in the deep mantle through the study of seismic anisotropy.

  5. An analysis of seismic hazard in the Upper Rhine Graben enlightened by the example of the New Madrid seismic zone.

    NASA Astrophysics Data System (ADS)

    Doubre, Cécile; Masson, Frédéric; Mazzotti, Stéphane; Meghraoui, Mustapha

    2014-05-01

    Seismic hazard in the "stable" continental regions and low-level deformation zones is one of the most difficult issues to address in Earth sciences. In these zones, instrumental and historical seismicity are not well known (sparse seismic networks, seismic cycle too long to be covered by the human history, episodic seismic activity) and many active structures remain poorly characterized or unknown. This is the case of the Upper Rhine Graben, the central segment of the European Cenozoic rift system (ECRIS) of Oligocene age, which extends from the North Sea through Germany and France to the Mediterranean coast over a distance of some 1100 km. Even if this region has already experienced some destructive earthquakes, its present-day seismicity is moderate and the deformation observed by geodesy is very small (below the current measurement accuracy). The strain rate does not exceed 10-10 and paleoseismic studies indicate an average return period of 2.5 to 3 103 ka for large earthquakes. The largest earthquake known for this zone is the 1356 Basel earthquake, with a magnitude generally estimated about 6.5 (Meghraoui et al., 2001) but recently re-evaluated between 6.7 and 7.1 (Fäh et al et al., 2009). A comparison of the Upper Rhine Graben with equivalent regions around the world could help improve our evaluation of seismic hazard of this region. This is the case of the New Madrid seismic zone, one of the best studied intraplate system in central USA, which experienced an M 7.0 - 7.5 earthquake in 1811-1812 and shares several characteristics with the Upper Rhine Graben, i.e. the general framework of inherited geological structures (reactivation of a failed rift / graben), seismicity patterns (spatial variability of small and large earthquakes), the null or low rate of deformation, and the location in a "stable" continental interior. Looking at the Upper Rhine Graben as an analogue of the New Madrid seismic zone, we can re-evaluate its seismic hazard and consider the possibility of an earthquake of magnitude 7 or greater.

  6. A risk-mitigation approach to the management of induced seismicity

    NASA Astrophysics Data System (ADS)

    Bommer, Julian J.; Crowley, Helen; Pinho, Rui

    2015-04-01

    Earthquakes may be induced by a wide range of anthropogenic activities such as mining, fluid injection and extraction, and hydraulic fracturing. In recent years, the increased occurrence of induced seismicity and the impact of some of these earthquakes on the built environment have heightened both public concern and regulatory scrutiny, motivating the need for a framework for the management of induced seismicity. Efforts to develop systems to enable control of seismicity have not yet resulted in solutions that can be applied with confidence in most cases. The more rational approach proposed herein is based on applying the same risk quantification and mitigation measures that are applied to the hazard from natural seismicity. This framework allows informed decision-making regarding the conduct of anthropogenic activities that may cause earthquakes. The consequent risk, if related to non-structural damage (when re-location is not an option), can be addressed by appropriate financial compensation. If the risk poses a threat to life and limb, then it may be reduced through the application of strengthening measures in the built environment—the cost of which can be balanced against the economic benefits of the activity in question—rather than attempting to ensure that some threshold on earthquake magnitude or ground-shaking amplitude is not exceeded. However, because of the specific characteristics of induced earthquakes—which may occur in regions with little or no natural seismicity—the procedures used in standard earthquake engineering need adaptation and modification for application to induced seismicity.

  7. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  8. Precision Seismic Monitoring of Volcanic Eruptions at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Wilcock, W. S. D.; Tolstoy, M.; Baillard, C.; Tan, Y. J.; Schaff, D. P.

    2017-12-01

    Seven permanent ocean bottom seismometers of the Ocean Observatories Initiative's real time cabled observatory at Axial Seamount off the coast of the western United States record seismic activity since 2014. The array captured the April 2015 eruption, shedding light on the detailed structure and dynamics of the volcano and the Juan de Fuca midocean ridge system (Wilcock et al., 2016). After a period of continuously increasing seismic activity primarily associated with the reactivation of caldera ring faults, and the subsequent seismic crisis on April 24, 2015 with 7000 recorded events that day, seismicity rates steadily declined and the array currently records an average of 5 events per day. Here we present results from ongoing efforts to automatically detect and precisely locate seismic events at Axial in real-time, providing the computational framework and fundamental data that will allow rapid characterization and analysis of spatio-temporal changes in seismogenic properties. We combine a kurtosis-based P- and S-phase onset picker and time domain cross-correlation detection and phase delay timing algorithms together with single-event and double-difference location methods to rapidly and precisely (tens of meters) compute the location and magnitudes of new events with respect to a 2-year long, high-resolution background catalog that includes nearly 100,000 events within a 5×5 km region. We extend the real-time double-difference location software DD-RT to efficiently handle the anticipated high-rate and high-density earthquake activity during future eruptions. The modular monitoring framework will allow real-time tracking of other seismic events such as tremors and sea-floor lava explosions that enable the timing and location of lava flows and thus guide response research cruises to the most interesting sites. Finally, rapid detection of eruption precursors and initiation will allow for adaptive sampling by the OOI instruments for optimal recording of future eruptions. With a higher eruption recurrence rate than land-based volcanoes the Axial OOI observatory offers the opportunity to monitor and study volcanic eruptions throughout multiple cycles.

  9. The importance of trenching in paleoseismic studies in Venezuela: brief historical summary

    NASA Astrophysics Data System (ADS)

    Murria, J.

    2009-04-01

    Paleoseismic studies have proved to be a powerful tool in seismic hazards assessment by he contributing to asses the seismogenic potential of a given fault by expanding the time window o seismic activity beyond the limits of historical and instrumental seismicity. Trenching has been an essential tool for paleoseismic studies in Venezuela. The first paleoseismic trenching project in Venezuela goes back to 1968 when Compania Shell de Venezuela retained the services of Woodward Clyde and Associates,(WCA), USA to asses the seismic integrity of the earthen dikes of Costa Oriental of Lake Maracaibo Protection System (COLM) in western Venezuela. The study was carried out under the general coordination of this author. An important part of this project included a seismology and seismic geology study under the direction of Geologist L.S. Cluff. This was the first ever study undertaken in Venezuela and included two excavations across the Oca Fault north of the city of Maracaibo. After several years of inactivity, FUNVISIS (The Venezuelan Foundation for Seismological Research) carried out in 1980 a seismic hazard (SHA) for the Uribante Caparo Hydroelectric Project southwest Venezuela. In 1989, MARAVEN, an operating company of PETROLE0S DE VENEUELA S.A. (PDVSA) undertook the project of a products pipeline form Maracaibo to El Vigia, south of Lake Maracaibo. Again, FUNVISIS was contracted to carry out a SHA, which included the digging of 5 trenches, which were supplemented with five more trenches for the COLM project. Trenching activity contined in Venezuela in the framework of SHA project, under the direction of Dr. Audemard. In 2001 Venezuelan trenching experience was exported to the neighboring Colombia as e Dr. Audemard t undertook a palaoseismicity project which included the digging of five trenches. In conclusion, paleoseismicty studies have given us the possibility of extending the scope of both instrumental and historical seismicity by some 10,000 years, trenching has proved for paleoseismic studies to be a valuable to.

  10. Pre-earthquake multiparameter analysis of the 2016 Amatrice-Norcia (Central Italy) seismic sequence: a case study for the application of the SAFE project concepts

    NASA Astrophysics Data System (ADS)

    De Santis, A.

    2017-12-01

    The SAFE (Swarm for Earthquake study) project (funded by European Space Agency in the framework "STSE Swarm+Innovation", 2014-2016) aimed at applying the new approach of geosystemics to the analysis of Swarm satellite (ESA) electromagnetic data for investigating the preparatory phase of earthquakes. We present in this talk the case study of the most recent seismic sequence in Italy. First a M6 earthquake on 24 August 2016 and then a M6.5 earthquake on 30 October 2016 shocked almost in the same region of Central Italy causing about 300 deaths in total (mostly on 24 August), with a revival of other significant seismicity on January 2017. Analysing both geophysical and climatological satellite and ground data preceding the major earthquakes of the sequence we present results that confirm a complex solid earth-atmosphere coupling in the preparation phase of the whole sequence.

  11. Seismic hazard map of North and Central America and the Caribbean

    USGS Publications Warehouse

    Shedlock, K.M.

    1999-01-01

    Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local government, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of North and Central America and the Caribbean is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful regional seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of North and Central America and the Caribbean depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings). The highest seismic hazard values in the region generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes.

  12. Hydraulic Fracturing Completion Volume is Associated with Induced Earthquake Productivity in the Duvernay Play

    NASA Astrophysics Data System (ADS)

    Schultz, R.; Atkinson, G. M.; Eaton, D. W. S.; Gu, Y. J.; Kao, H.

    2017-12-01

    A sharp increase in the frequency of earthquakes near Fox Creek, Alberta began in December 2013 as a result of hydraulic fracturing completions in the Duvernay Formation. Using a newly compiled hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We find that induced earthquakes are associated with pad completions that used larger injection volumes (104-5 m3) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have limited or insignificant correlation with the seismic response. Further findings suggest that geological susceptibilities play a prominent role in seismic productivity, as evidenced by spatial correlations in the seismicity patterns. Together, volume and geological susceptibilities account for 96% of the variability in the induced earthquake rate near Fox Creek. We suggest this result is fit by a modified Gutenberg-Richter earthquake frequency-magnitude distribution which provides a conceptual framework with which to forecast induced seismicity hazard.

  13. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play

    NASA Astrophysics Data System (ADS)

    Schultz, R.; Atkinson, G.; Eaton, D. W.; Gu, Y. J.; Kao, H.

    2018-01-01

    A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (104 to 105 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index–modified frequency-magnitude distribution, providing a framework to forecast induced seismicity.

  14. The Search for Fluid Injection-induced Seismicity in California Oilfields

    NASA Astrophysics Data System (ADS)

    Layland-Bachmann, C. E.; Brodsky, E. E.; Foxall, W.; Goebel, T.; Jordan, P. D.

    2017-12-01

    During recent years, earthquakes associated with human activity have become a matter of heightened public concern. Wastewater injection is a major concern, as seismic events with magnitudes larger than M5.5 have been linked to this practice. Much of the research in the United States is focused on the mid-continental regions, where low rates of naturally-occurring seismicity and high-volume injection activities facilitate easier identification by statistical correlation of potentially induced seismic events . However, available industry data are often limited in these regions and therefore limits our ability to connect specific human activities to earthquakes. Specifically, many previous studies have focused primarily on injection activity in single wells, ignoring the interconnectivity of production and injection in a reservoir. The situation in California differs from the central U.S. in two ways: (1) A rich dataset of oilfield activity is publically available from state agencies, which enables a more in-depth investigation of the human forcing; and (2) the identification of potential anthropogenically-induced earthquakes is complex as a result of high tectonic activity. Here we address both differences. We utilize a public database of hydrologically connected reservoirs to assess whether there are any statistically significant correlations between the net injected volumes, reservoir pressures and injection depths, and the earthquake locations and frequencies of occurrence. We introduce a framework of physical and empirical models and statistical techniques to identify potentially induced seismic events. While the aim is to apply the methods statewide, we first apply our methods in the Southern San Joaquin Valley. Although, we find an anomalously high earthquake rate in Southern Kern County oilfields, which is consistent with previous studies, we do not find a simple straightforward correlation. To successfully study induced seismicity we need a seismic catalog that is complete and consistent down to small magnitudes. During this study, we found some important seismic coverage gaps in critical oilfields in the Central Valley that need to be addressed in order to provide societally relevant assessments.

  15. Continuous seismic-reflection survey defining shallow sedimentary layers in the Charlotte Harbor and Venice areas, southwest Florida

    USGS Publications Warehouse

    Wolansky, R.M.; Haeni, F.P.; Sylvester, R.E.

    1983-01-01

    A continuous marine seismic-reflection survey system was used to define the configuration of shallow sedimentary layers underlying the Charlotte Harbor and Venice areas, southwest Florida. Seismic profiling was conducted over a distance of about 57 miles of Charlotte Harbor, the Peace and Myakka Rivers, and the Intracoastal Waterway near Venice using a high resolution energy source capable of penetrating 200 feet of sediments with a resolution of 1 to 3 feet. Five stratigraphic units defined from the seismic records includes sediments to Holocene to early Miocene age. All seismic-profile records are presented, along with geologic sections constructed from the records. Seismic reflection amplitude, frequency, continuity, configuration, external form, and areal association were utilized to interpret facies and depositional environments of the stratigraphic units. The despositional framework of the units ranges from shallow shelf to prograded slope. The stratigraphic units are correlated with the surficial aquifer and intermediate artesian aquifers, and permeable zones of the aquifers are related to the seismic records. (USGS)

  16. Use of raster-based data layers to model spatial variation of seismotectonic data in probabilistic seismic hazard assessment

    NASA Astrophysics Data System (ADS)

    Zolfaghari, Mohammad R.

    2009-07-01

    Recent achievements in computer and information technology have provided the necessary tools to extend the application of probabilistic seismic hazard mapping from its traditional engineering use to many other applications. Examples for such applications are risk mitigation, disaster management, post disaster recovery planning and catastrophe loss estimation and risk management. Due to the lack of proper knowledge with regard to factors controlling seismic hazards, there are always uncertainties associated with all steps involved in developing and using seismic hazard models. While some of these uncertainties can be controlled by more accurate and reliable input data, the majority of the data and assumptions used in seismic hazard studies remain with high uncertainties that contribute to the uncertainty of the final results. In this paper a new methodology for the assessment of seismic hazard is described. The proposed approach provides practical facility for better capture of spatial variations of seismological and tectonic characteristics, which allows better treatment of their uncertainties. In the proposed approach, GIS raster-based data models are used in order to model geographical features in a cell-based system. The cell-based source model proposed in this paper provides a framework for implementing many geographically referenced seismotectonic factors into seismic hazard modelling. Examples for such components are seismic source boundaries, rupture geometry, seismic activity rate, focal depth and the choice of attenuation functions. The proposed methodology provides improvements in several aspects of the standard analytical tools currently being used for assessment and mapping of regional seismic hazard. The proposed methodology makes the best use of the recent advancements in computer technology in both software and hardware. The proposed approach is well structured to be implemented using conventional GIS tools.

  17. Variational Bayesian Inversion of Quasi-Localized Seismic Attributes for the Spatial Distribution of Geological Facies

    NASA Astrophysics Data System (ADS)

    Nawaz, Muhammad Atif; Curtis, Andrew

    2018-04-01

    We introduce a new Bayesian inversion method that estimates the spatial distribution of geological facies from attributes of seismic data, by showing how the usual probabilistic inverse problem can be solved using an optimization framework still providing full probabilistic results. Our mathematical model consists of seismic attributes as observed data, which are assumed to have been generated by the geological facies. The method infers the post-inversion (posterior) probability density of the facies plus some other unknown model parameters, from the seismic attributes and geological prior information. Most previous research in this domain is based on the localized likelihoods assumption, whereby the seismic attributes at a location are assumed to depend on the facies only at that location. Such an assumption is unrealistic because of imperfect seismic data acquisition and processing, and fundamental limitations of seismic imaging methods. In this paper, we relax this assumption: we allow probabilistic dependence between seismic attributes at a location and the facies in any neighbourhood of that location through a spatial filter. We term such likelihoods quasi-localized.

  18. Probabilistic Reasoning Over Seismic Time Series: Volcano Monitoring by Hidden Markov Models at Mt. Etna

    NASA Astrophysics Data System (ADS)

    Cassisi, Carmelo; Prestifilippo, Michele; Cannata, Andrea; Montalto, Placido; Patanè, Domenico; Privitera, Eugenio

    2016-07-01

    From January 2011 to December 2015, Mt. Etna was mainly characterized by a cyclic eruptive behavior with more than 40 lava fountains from New South-East Crater. Using the RMS (Root Mean Square) of the seismic signal recorded by stations close to the summit area, an automatic recognition of the different states of volcanic activity (QUIET, PRE-FOUNTAIN, FOUNTAIN, POST-FOUNTAIN) has been applied for monitoring purposes. Since values of the RMS time series calculated on the seismic signal are generated from a stochastic process, we can try to model the system generating its sampled values, assumed to be a Markov process, using Hidden Markov Models (HMMs). HMMs analysis seeks to recover the sequence of hidden states from the observations. In our framework, observations are characters generated by the Symbolic Aggregate approXimation (SAX) technique, which maps RMS time series values with symbols of a pre-defined alphabet. The main advantages of the proposed framework, based on HMMs and SAX, with respect to other automatic systems applied on seismic signals at Mt. Etna, are the use of multiple stations and static thresholds to well characterize the volcano states. Its application on a wide seismic dataset of Etna volcano shows the possibility to guess the volcano states. The experimental results show that, in most of the cases, we detected lava fountains in advance.

  19. 3D seismic attribute expressions of deep offshore Niger Delta

    NASA Astrophysics Data System (ADS)

    Anyiam, Uzonna Okenna

    Structural and stratigraphic interpretation of 3D seismic data for reservoir characterization in an area affected by dense faulting, such as the Niger Delta, is typically difficult and strongly model driven because of problems with imaging. In the Freeman field, located about 120km offshore southwestern Niger Delta at about 1300m water depth, 3D seismic attribute-based analogs, and structural and stratigraphic based geometric models are combined to help enhance and constrain the interpretation. The objectives being to show how 3D seismic attribute analysis enhances seismic interpretation, develop structural style and stratigraphic architecture models and identify trap mechanisms in the study area; with the main purpose of producing structural and stratigraphic framework analogs to aid exploration and production companies, as well as researchers in better understanding the structural style, stratigraphic framework and trap mechanism of the Miocene to Pliocene Agbada Formation reservoirs in the deep Offshore Niger Delta Basin. A multidisciplinary approach which involved analyses of calculated variance-based coherence cube, spectral decomposition box probe and root-mean-square amplitude attributes, sequence stratigraphy based well correlation, and structural modeling; were undertaken to achieve these objectives. Studies reveal a massive northwest-southeast trending shale cored detachment fold anticline, with associated normal faults; interpreted to have been folded and faulted by localized compression resulting from a combination of differential loading on the deep-seated overpressured-ductile-undercompacted-marine Akata shale, and gravitational collapse of the Niger delta continental slope due to influx of sediments. Crestal extension resulting from this localized compression, is believed to have given rise to the synthetic, antithetic and newly observed crossing conjugate normal faults in the study area. This structure is unique to the existing types of principal oil field structures in the Niger Delta. Stratigraphic results show that the Mid-Miocene to Pliocene Agbada Formation reservoirs of the Freeman field occur as part of a channelized fan system; mostly deposited as turbidites in an unconfined distributary environment; except one that occurs as channel sand within a submarine canyon that came across and eroded previously deposited distributary fan complex, at the time. Hence, prospective area for hydrocarbon exploration is suggested southwest of the Freeman field.

  20. Revised self-noise estimates for Güralp broadband seismometers concerning ambient noise levels of the UK mainland: implications for detectability of induced seismic events

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Hill, P.; Goessen, S.; Rietbrock, A.; Garth, T.

    2016-12-01

    The self-noise level of a broadband seismometer sensor is a commonly-used parameter used to evaluate instrument performance. There are several independent studies of various instruments' self-noise (e.g. Ringler & Hutt, 2010; Tasič & Runovc, 2012). However, due to ongoing developments in instrument design (i.e. mechanics and electronics), it is essential to regularly assess any changes in self-noise, which could indicate improvements/deterioration in instrument design and performance over time. We present new self-noise estimates for a range of Güralp broadband seismometers (3T, 3ESPC, 40T, 6T). We use the three-channel coherence analysis estimate of Sleeman et al. (2006) to measure self-noise of these instruments. Based on coherency analysis, we also perform a mathematical rotation of measured waveforms to account for any relative sensor misalignment errors, which can cause artefacts of amplified self-noise around the microseismic peak (Tasič & Runovc, 2012). The instruments were tested for a period of several months at a seismic vault located at the Eskdalemuir array in southern Scotland. We discuss the implications of these self-noise estimates within the framework of the ambient noise level across the mainland United Kingdom. Using attenuation relationships derived for the United Kingdom, we investigate the detection capability thresholds of the UK National Seismic Network within the framework of a Traffic Light System (TLS) that has been proposed for monitoring of induced seismic events due to shale gas extraction.

  1. Issues related to handling Exploration Seismic data within the EU FP7 GeoSeas project

    NASA Astrophysics Data System (ADS)

    Diviacco, Paolo; Cox, Simon

    2010-05-01

    GeoSeas is a sibling of the SeaDataNet initiative, aiming at creating an e-infrastructure where users will be able to identify, locate and access pan-European, harmonized and federated marine Geological and Geophysical data. GeoSeas adopts many of the technologies developed within SeaDataNet. While for most of the designated data types, only minor tuning is required, the case of Exploration Seismics poses several issues needing specific solutions. The main issue is the sampling strategy, where the technologies, practices and the legacies of exploration geophysics differ considerably from those found in Oceanography (the original research field considered by SeaDataNet). Specific extensions to the SeaDataNet framework were required at many levels. The most significant interventions concerned the Common Data Index (CDI) metadatabase and data access mechanisms. The primary feature of interest in marine exploration geophysics is the seismic line (in the 2D case) or the seismic volume (3D). For various reasons seismic lines are often segmented, which poses serious problems to the one-to-one correspondence between the CDI and data files. Furthermore, common practice is for positioning and the observation data to be managed separately. Another issue is that the catalogue of metadata items needed for Seismic data discovery and browsing needs parameters that are not available in the standard CDI. However, in the context of data discovery a common framework for all data types is preferable, so we should avoid unnecessary customization for this data type. Both of these issues have been addressed using the framework provided by the OGC Observations and Measurements standard (O&M - see Cox, this conference). O&M provides a structure for observation metadata, allowing the description of the feature of interest, observation procedure, sampling features and the relationships between them, while still allowing the original encoding of the actual observation result. Thus, the additional indexing information is encoded in what is effectively an extension to CDI, but using cross-domain standards, which will allow geophysics data to be discovered and assessed in a common framework with other marine and oceanography data. Data access in this field poses further problems. There are significant economic interests in seismic data. The publication of relatively raw data through web service interfaces must follow a schedule that respect legitimate intellectual property concerns. Nevertheless, more open data publication can be used to position the data owner within the scientific community and to attract new projects and therefore funding. From the data owner point of view the difficulty in balancing opening and protection can be overcome only offering to external users a controlled, server-side, web-based data access. This is also preferred considering that data volumes are large (Seismic data (post-stack) is often 50-100 MB, while field data can easily reach GB).

  2. Detecting and characterizing high-frequency oscillations in epilepsy: a case study of big data analysis

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ni, Xuan; Ditto, William L.; Spano, Mark; Carney, Paul R.; Lai, Ying-Cheng

    2017-01-01

    We develop a framework to uncover and analyse dynamical anomalies from massive, nonlinear and non-stationary time series data. The framework consists of three steps: preprocessing of massive datasets to eliminate erroneous data segments, application of the empirical mode decomposition and Hilbert transform paradigm to obtain the fundamental components embedded in the time series at distinct time scales, and statistical/scaling analysis of the components. As a case study, we apply our framework to detecting and characterizing high-frequency oscillations (HFOs) from a big database of rat electroencephalogram recordings. We find a striking phenomenon: HFOs exhibit on-off intermittency that can be quantified by algebraic scaling laws. Our framework can be generalized to big data-related problems in other fields such as large-scale sensor data and seismic data analysis.

  3. Preliminary consideration on the seismic actions recorded during the 2016 Central Italy seismic sequence

    NASA Astrophysics Data System (ADS)

    Carlo Ponzo, Felice; Ditommaso, Rocco; Nigro, Antonella; Nigro, Domenico S.; Iacovino, Chiara

    2017-04-01

    After the Mw 6.0 mainshock of August 24, 2016 at 03.36 a.m. (local time), with the epicenter located between the towns of Accumoli (province of Rieti), Amatrice (province of Rieti) and Arquata del Tronto (province of Ascoli Piceno), several activities were started in order to perform some preliminary evaluations on the characteristics of the recent seismic sequence in the areas affected by the earthquake. Ambient vibration acquisitions have been performed using two three-directional velocimetric synchronized stations, with a natural frequency equal to 0.5Hz and a digitizer resolution of equal to 24bit. The activities are continuing after the events of the seismic sequence of October 26 and October 30, 2016. In this paper, in order to compare recorded and code provision values in terms of peak (PGA, PGV and PGD), spectral and integral (Housner Intensity) seismic parameters, several preliminary analyses have been performed on accelerometric time-histories acquired by three near fault station of the RAN (Italian Accelerometric Network): Amatrice station (station code AMT), Norcia station (station code NRC) and Castelsantangelo sul Nera station (station code CNE). Several comparisons between the elastic response spectra derived from accelerometric recordings and the elastic demand spectra provided by the Italian seismic code (NTC 2008) have been performed. Preliminary results retrieved from these analyses highlight several apparent difference between experimental data and conventional code provision. Then, the ongoing seismic sequence appears compatible with the historical seismicity in terms of integral parameters, but not in terms of peak and spectral values. It seems appropriate to reconsider the necessity to revise the simplified design approach based on the conventional spectral values. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  4. Modelling framework developed for managing and forecasting the El Hierro 2011-2014 unrest processes based on the analysis of the seismicity and deformation data rate.

    NASA Astrophysics Data System (ADS)

    Garcia, Alicia; Fernandez-Ros, Alberto; Berrocoso, Manuel; Marrero, Jose Manuel; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramon

    2014-05-01

    In July 2011 at El Hierro (Canary Islands, Spain), a volcanic unrest was detected, with significant deformations followed by increased seismicity. A submarine eruption started on 10 October 2011 and ceased on 5 March 2012, after the volcanic tremor signals persistently weakened through February 2012. However, the seismic activity did not end when the eruption, as several other seismic crises followed since. The seismic episodes presented a characteristic pattern: over a few days the number and magnitude of seismic event increased persistently, culminating in seismic events severe enough to be felt all over the island. In all cases the seismic activity was preceded by significant deformations measured on the island's surface that continued during the whole episode. Analysis of the available GNSS-GPS and seismic data suggests that several magma injection processes occurred at depth from the beginning of the unrest. A model combining the geometry of the magma injection process and the variations in seismic energy released has allowed successful forecasting of the new-vent opening. The model presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself.

  5. Integrated geophysical and geological study of the tectonic framework of the 38th parallel lineament in the vicinity of its intersection with the extension of the New Madrid fault zone. Annual progress report, fiscal year 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braile, L.W.; Hinze, W.J.; Sexton, J.L.

    1979-09-01

    An integrated gravity, magnetic, crustal seismic refraction, and basement geology study is being conducted of the northeastern extension of the New Madrid Fault Zone in the vicinity of the 38th Parallel Lineament. Gravity and magnetic anomaly maps prepared of this area plus regional seismicity suggest that the basement structural feature associated with the New Madrid seismicity extends northeasterly into southern Indiana to at least 39/sup 0/N latitude. Gravity and subsurface data indicate that the Rough Creek Fault Zone, a major element of the 38th Parallel Lineament, is the northern boundary of a complex graben which formed in late Precambrian-early Paleozoicmore » time and since has been reactivated. Surface wave studies indicate that the crustal thickness of the northern Mississippi Embayment is probably in the range of 50 to 55 km, and the structure of the crust obtained from these studies is highly suggestive of a failed rift. 40 figures, 3 tables.« less

  6. Archive of digital Chirp subbottom profile data collected during USGS cruise 08CCT01, Mississippi Gulf Islands, July 2008

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Worley, Charles R.

    2011-01-01

    In July of 2008, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Ship Island to Horn Island, Mississippi, for the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility project. Funding was provided through the Geologic Framework and Holocene Coastal Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php); this project is also part of a broader USGS study on Coastal Change and Transport (CCT). This report serves as an archive of unprocessed digital Chirp seismic reflection data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, observer's logbook, and formal Federal Geographic Data Committee (FGDC) metadata. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  7. An operational-oriented approach to the assessment of low probability seismic ground motions for critical infrastructures

    NASA Astrophysics Data System (ADS)

    Garcia-Fernandez, Mariano; Assatourians, Karen; Jimenez, Maria-Jose

    2018-01-01

    Extreme natural hazard events have the potential to cause significant disruption to critical infrastructure (CI) networks. Among them, earthquakes represent a major threat as sudden-onset events with limited, if any, capability of forecast, and high damage potential. In recent years, the increased exposure of interdependent systems has heightened concern, motivating the need for a framework for the management of these increased hazards. The seismic performance level and resilience of existing non-nuclear CIs can be analyzed by identifying the ground motion input values leading to failure of selected key elements. Main interest focuses on the ground motions exceeding the original design values, which should correspond to low probability occurrence. A seismic hazard methodology has been specifically developed to consider low-probability ground motions affecting elongated CI networks. The approach is based on Monte Carlo simulation, which allows for building long-duration synthetic earthquake catalogs to derive low-probability amplitudes. This approach does not affect the mean hazard values and allows obtaining a representation of maximum amplitudes that follow a general extreme-value distribution. This facilitates the analysis of the occurrence of extremes, i.e., very low probability of exceedance from unlikely combinations, for the development of, e.g., stress tests, among other applications. Following this methodology, extreme ground-motion scenarios have been developed for selected combinations of modeling inputs including seismic activity models (source model and magnitude-recurrence relationship), ground motion prediction equations (GMPE), hazard levels, and fractiles of extreme ground motion. The different results provide an overview of the effects of different hazard modeling inputs on the generated extreme motion hazard scenarios. This approach to seismic hazard is at the core of the risk analysis procedure developed and applied to European CI transport networks within the framework of the European-funded INFRARISK project. Such an operational seismic hazard framework can be used to provide insight in a timely manner to make informed risk management or regulating further decisions on the required level of detail or on the adoption of measures, the cost of which can be balanced against the benefits of the measures in question.

  8. Aftershock identification problem via the nearest-neighbor analysis for marked point processes

    NASA Astrophysics Data System (ADS)

    Gabrielov, A.; Zaliapin, I.; Wong, H.; Keilis-Borok, V.

    2007-12-01

    The centennial observations on the world seismicity have revealed a wide variety of clustering phenomena that unfold in the space-time-energy domain and provide most reliable information about the earthquake dynamics. However, there is neither a unifying theory nor a convenient statistical apparatus that would naturally account for the different types of seismic clustering. In this talk we present a theoretical framework for nearest-neighbor analysis of marked processes and obtain new results on hierarchical approach to studying seismic clustering introduced by Baiesi and Paczuski (2004). Recall that under this approach one defines an asymmetric distance D in space-time-energy domain such that the nearest-neighbor spanning graph with respect to D becomes a time- oriented tree. We demonstrate how this approach can be used to detect earthquake clustering. We apply our analysis to the observed seismicity of California and synthetic catalogs from ETAS model and show that the earthquake clustering part is statistically different from the homogeneous part. This finding may serve as a basis for an objective aftershock identification procedure.

  9. Seismic assessment of Technical Area V (TA-V).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medrano, Carlos S.

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and themore » evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.« less

  10. Expanded U.S. mid-Atlantic Margin Deep-Water Allostratigraphy; Bottom-Current Controls on Margin Evolution

    NASA Astrophysics Data System (ADS)

    Gibson, J. C.; Miller, N. C.; Hutchinson, D. R.; Ten Brink, U. S.; Mountain, G. S.; Chaytor, J. D.; Shillington, D. J.

    2017-12-01

    There is a long history of seismic stratigraphic interpretation/analysis of the sedimentary sequence along the U.S. mid-Atlantic Margin (MAM). Here we expand the allostratigraphic (unconformity-bound) framework from the outer continental shelf to the Hatteras Abyssal Plain by correlating recently acquired 2D multi-channel seismic reflection data with existing drill sites and legacy 2D seismic data collected over the past 42 yrs. The new 2D post-stack Kirchhoff time migrated seismic data were acquired using R/V Marcus G. Langseth in 2014-2015 during USGS ECS surveys MGL1407 & MGL1506 and NSF-funded ENAM-CSE survey MGL1408. We map six seismic horizons along 1.5x104 km of 2D data and tie each to stratigraphic unconformities sampled at DSDP site 603 (lower rise). From shallow to deep they are: (1) M2, latest Miocene; (2) X, middle Miocene; (3) Au, late Oligocene; (4) A*, Late Cretaceous; (5) Km, early Late Cretaceous; and (6) Beta, middle Early Cretaceous. The horizons were converted to depth (mbsl) using high-resolution interval velocity models generated for each 2D survey line and isopachs were produced using the depth-converted stratigraphic framework for each allostratigraphic unit. The time-to-depth function was confirmed to be within 5% of drilling results at DSDP Sites 603 and nearby 105. Additionally, we tie horizon Au to upper-slope ODP Sites 902 & 1073, and trace it to the outer shelf. Interpretation of the framework and resulting isopachs show total sediment thickness uniformly decreasing seaward from the shelf edge, and overall thickening to the south. Regional depositional trends display a combination of both down slope and along slope processes (e.g. mass wasting, submarine fan formation, contourite and sediment drift deposits). The unit bound by horizons Au & Beta confirms pervasive excavation from the mid-slope to the continental rise and across the central and southern MAM (from New Jersey to North Carolina). How the excavated sediments were redistributed is unknown, but the magnitude and spatial extent of the bottom-current erosion are well constrained by our study. The southern MAM has experienced a number of significant mass wasting events spanning the Miocene-Pleistocene, suggesting that bottom-current erosion may have played a role in undercutting, and therefore over-steepening the slope.

  11. Development of a new family of normalized modulus reduction and material damping curves

    NASA Astrophysics Data System (ADS)

    Darendeli, Mehmet Baris

    2001-12-01

    As part of various research projects [including the SRS (Savannah River Site) Project AA891070, EPRI (Electric Power Research Institute) Project 3302, and ROSRINE (Resolution of Site Response Issues from the Northridge Earthquake) Project], numerous geotechnical sites were drilled and sampled. Intact soil samples over a depth range of several hundred meters were recovered from 20 of these sites. These soil samples were tested in the laboratory at The University of Texas at Austin (UTA) to characterize the materials dynamically. The presence of a database accumulated from testing these intact specimens motivated a re-evaluation of empirical curves employed in the state of practice. The weaknesses of empirical curves reported in the literature were identified and the necessity of developing an improved set of empirical curves was recognized. This study focused on developing the empirical framework that can be used to generate normalized modulus reduction and material damping curves. This framework is composed of simple equations, which incorporate the key parameters that control nonlinear soil behavior. The data collected over the past decade at The University of Texas at Austin are statistically analyzed using First-order, Second-moment Bayesian Method (FSBM). The effects of various parameters (such as confining pressure and soil plasticity) on dynamic soil properties are evaluated and quantified within this framework. One of the most important aspects of this study is estimating not only the mean values of the empirical curves but also estimating the uncertainty associated with these values. This study provides the opportunity to handle uncertainty in the empirical estimates of dynamic soil properties within the probabilistic seismic hazard analysis framework. A refinement in site-specific probabilistic seismic hazard assessment is expected to materialize in the near future by incorporating the results of this study into state of practice.

  12. The effect of directivity in a PSHA framework

    NASA Astrophysics Data System (ADS)

    Spagnuolo, E.; Herrero, A.; Cultrera, G.

    2012-09-01

    We propose a method to introduce a refined representation of the ground motion in the framework of the Probabilistic Seismic Hazard Analysis (PSHA). This study is especially oriented to the incorporation of a priori information about source parameters, by focusing on the directivity effect and its influence on seismic hazard maps. Two strategies have been followed. One considers the seismic source as an extended source, and it is valid when the PSHA seismogenetic sources are represented as fault segments. We show that the incorporation of variables related to the directivity effect can lead to variations up to 20 per cent of the hazard level in case of dip-slip faults with uniform distribution of hypocentre location, in terms of spectral acceleration response at 5 s, exceeding probability of 10 per cent in 50 yr. The second one concerns the more general problem of the seismogenetic areas, where each point is a seismogenetic source having the same chance of enucleate a seismic event. In our proposition the point source is associated to the rupture-related parameters, defined using a statistical description. As an example, we consider a source point of an area characterized by strike-slip faulting style. With the introduction of the directivity correction the modulation of the hazard map reaches values up to 100 per cent (for strike-slip, unilateral faults). The introduction of directivity does not increase uniformly the hazard level, but acts more like a redistribution of the estimation that is consistent with the fault orientation. A general increase appears only when no a priori information is available. However, nowadays good a priori knowledge exists on style of faulting, dip and orientation of faults associated to the majority of the seismogenetic zones of the present seismic hazard maps. The percentage of variation obtained is strongly dependent on the type of model chosen to represent analytically the directivity effect. Therefore, it is our aim to emphasize more on the methodology following which, all the information collected may be easily converted to obtain a more comprehensive and meaningful probabilistic seismic hazard formulation.

  13. A Framework for the Validation of Probabilistic Seismic Hazard Analysis Maps Using Strong Ground Motion Data

    NASA Astrophysics Data System (ADS)

    Bydlon, S. A.; Beroza, G. C.

    2015-12-01

    Recent debate on the efficacy of Probabilistic Seismic Hazard Analysis (PSHA), and the utility of hazard maps (i.e. Stein et al., 2011; Hanks et al., 2012), has prompted a need for validation of such maps using recorded strong ground motion data. Unfortunately, strong motion records are limited spatially and temporally relative to the area and time windows hazard maps encompass. We develop a framework to test the predictive powers of PSHA maps that is flexible with respect to a map's specified probability of exceedance and time window, and the strong motion receiver coverage. Using a combination of recorded and interpolated strong motion records produced through the ShakeMap environment, we compile a record of ground motion intensity measures for California from 2002-present. We use this information to perform an area-based test of California PSHA maps inspired by the work of Ward (1995). Though this framework is flexible in that it can be applied to seismically active areas where ShakeMap-like ground shaking interpolations have or can be produced, this testing procedure is limited by the relatively short lifetime of strong motion recordings and by the desire to only test with data collected after the development of the PSHA map under scrutiny. To account for this, we use the assumption that PSHA maps are time independent to adapt the testing procedure for periods of recorded data shorter than the lifetime of a map. We note that accuracy of this testing procedure will only improve as more data is collected, or as the time-horizon of interest is reduced, as has been proposed for maps of areas experiencing induced seismicity. We believe that this procedure can be used to determine whether PSHA maps are accurately portraying seismic hazard and whether discrepancies are localized or systemic.

  14. Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design philosophy

    NASA Astrophysics Data System (ADS)

    Ramanathan, Karthik Narayan

    Quantitative and qualitative assessment of the seismic risk to highway bridges is crucial in pre-earthquake planning, and post-earthquake response of transportation systems. Such assessments provide valuable knowledge about a number of principal effects of earthquakes such as traffic disruption of the overall highway system, impact on the regions’ economy and post-earthquake response and recovery, and more recently serve as measures to quantify resilience. Unlike previous work, this study captures unique bridge design attributes specific to California bridge classes along with their evolution over three significant design eras, separated by the historic 1971 San Fernando and 1989 Loma Prieta earthquakes (these events affected changes in bridge seismic design philosophy). This research developed next-generation fragility curves for four multispan concrete bridge classes by synthesizing new knowledge and emerging modeling capabilities, and by closely coordinating new and ongoing national research initiatives with expertise from bridge designers. A multi-phase framework was developed for generating fragility curves, which provides decision makers with essential tools for emergency response, design, planning, policy support, and maximizing investments in bridge retrofit. This framework encompasses generational changes in bridge design and construction details. Parameterized high-fidelity three-dimensional nonlinear analytical models are developed for the portfolios of bridge classes within different design eras. These models incorporate a wide range of geometric and material uncertainties, and their responses are characterized under seismic loadings. Fragility curves were then developed considering the vulnerability of multiple components and thereby help to quantify the performance of highway bridge networks and to study the impact of seismic design principles on the performance within a bridge class. This not only leads to the development of fragility relations that are unique and better suited for bridges in California, but also leads to the creation of better bridge classes and sub-bins that have more consistent performance characteristics than those currently provided by the National Bridge Inventory. Another important feature of this research is associated with the development of damage state definitions and grouping of bridge components in a way that they have similar consequences in terms of repair and traffic implications following a seismic event. These definitions are in alignment with the California Department of Transportation’s design and operational experience, thereby enabling better performance assessment, emergency response, and management in the aftermath of a seismic event. The fragility curves developed as a part of this research will be employed in ShakeCast, a web-based post-earthquake situational awareness application that automatically retrieves earthquake shaking data and generates potential damage assessment notifications for emergency managers and responders.

  15. Seismic-reflection studies, offshore Santa Maria Province, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, K.J.; Childs, J.R.; Taylor, D.J.

    1991-02-01

    Well data and seismic-reflection records are being analyzed to provide a subsurface geologic framework for the US Geological Survey's Santa Maria Province project. This project, jointly sponsored by the Evolution of Sedimentary Basins and Onshore Oil and Gas Investigations Programs, in a basin-evolution and petroleum geology study focusing on the geologically complex and tectonically active south-central California margin. The area embraces several basins and basin fragments including the onshore Santa Maria, offshore Santa Maria, Pismo, Huasna, Sur, Santa Lucia, and western Santa Barbara-Ventura. These basins have many similarities, including generally synchronous formation at about the end of the Oligocene, developmentmore » on a complex assemblage of Mesozoic tectonostratigraphic terranes, and basin fill consisting of Neogene clastic marine and nonmarine deposits, minor volcanic rocks, and organic-rich biogenous deposits of the Monterey Formation. Despite these similarities, basin origins are controversial and paleogeographies uncertain. In 1990, the US Geological Survey collected approximately 130 line-mi of multichannel seismic reflection data in seven profiles off-shore California from Morro Bay south to the western Santa Barbara Channel. These are the first US Geological Survey seismic data collected in this area since the early 1980s exploratory drilling began in the offshore Santa Maria basin. Profiles were generally oriented perpendicular to structural grain and located to intersect as many well-sites and pre-existing seismic profiles as possible. Profile orientation and spacing were designed to provide the offshore extensions of onshore well-correlation profiles currently under construction. With synthetic seismograms the authors are integrating the stratigraphy of the wells with these seismic-reflection records.« less

  16. Open Source Tools for Seismicity Analysis

    NASA Astrophysics Data System (ADS)

    Powers, P.

    2010-12-01

    The spatio-temporal analysis of seismicity plays an important role in earthquake forecasting and is integral to research on earthquake interactions and triggering. For instance, the third version of the Uniform California Earthquake Rupture Forecast (UCERF), currently under development, will use Epidemic Type Aftershock Sequences (ETAS) as a model for earthquake triggering. UCERF will be a "living" model and therefore requires robust, tested, and well-documented ETAS algorithms to ensure transparency and reproducibility. Likewise, as earthquake aftershock sequences unfold, real-time access to high quality hypocenter data makes it possible to monitor the temporal variability of statistical properties such as the parameters of the Omori Law and the Gutenberg Richter b-value. Such statistical properties are valuable as they provide a measure of how much a particular sequence deviates from expected behavior and can be used when assigning probabilities of aftershock occurrence. To address these demands and provide public access to standard methods employed in statistical seismology, we present well-documented, open-source JavaScript and Java software libraries for the on- and off-line analysis of seismicity. The Javascript classes facilitate web-based asynchronous access to earthquake catalog data and provide a framework for in-browser display, analysis, and manipulation of catalog statistics; implementations of this framework will be made available on the USGS Earthquake Hazards website. The Java classes, in addition to providing tools for seismicity analysis, provide tools for modeling seismicity and generating synthetic catalogs. These tools are extensible and will be released as part of the open-source OpenSHA Commons library.

  17. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to first digitize the data, to have them in SEG-Y format. The second step is to apply some post-stack processing to obtain a good data quality before the final migration step. The third step is the final migration, using optimized migration velocities and the fourth step is the post-migration processing. In case of raw seismic data, the mandatory information for processing is made accessible, like from observer logs, coordinates and field seismic data. The processing sequence in order to obtain the final usable version of the seismic line is based on a pre-stack time migration. A complex processing sequence is applied. One main issue is to deal with the significant changes in the topography along the seismic lines and in the first twenty meter layer, this low velocity zone (LVZ) or weathered zone, where some lateral velocity variations occur and disturb the wave propagation, therefore the seismic signal. In seismic processing, this matter is solved by using the static corrections which allow removing these effects of lateral velocity variations and the effects of topography. Another main item is the good determination of root mean square velocities for migration, to improve the final result of seismic processing. Within GeoMol, generalized 3D velocity models of stack velocities are calculated in order to perform a rapid time-depth conversion. In final, all seismic lines of the project GeoMol will be at the same level of processing, the migration level. But to tie all these lines, a single appropriate datum plane and replacement velocity for the entire Molasse Basin and Po Plain, respectively, have to be carefully set up, to avoid misties at crossing points. The reprocessing and use of these 28 000 km of seismic lines in the project GeoMol provide the pivotal database to build a 3D framework model for regional subsurface information on the Alpine foreland basins (cf. Rupf et al. 2013, EGU2013-8924). The project GeoMol is co-funded by the Alpine Space Program as part of the European Territorial Cooperation 2007-2013. The project integrates partners from Austria, France, Germany, Italy, Slovenia and Switzerland and runs from September 2012 to June 2015. Further information on www.geomol.eu The GeoMol seismic interpretation team: Roland Baumberger (swisstopo), Agnès BRENOT (BRGM), Alessandro CAGNONI (RLB), Renaud COUËFFE (BRGM), Gabriel COURRIOUX (BRGM), Chiara D'Ambrogi (ISPRA), Chrystel Dezayes (BRGM), Charlotte Fehn (LGRB), Sunseare GABALDA (BRGM), Gregor Götzl (GBA), Andrej Lapanje (GeoZS), Stéphane MARC (BRGM), Alberto MARTINI (RER-SGSS), Fabio Carlo Molinari (RER-SGSS), Edgar Nitsch (LGRB), Robert Pamer (LfU BY), Marco PANTALONI (ISPRA), Sebastian Pfleiderer (GBA), Andrea PICCIN (RLB), (Nils Oesterling (swisstopo), Isabel Rupf (LGRB), Uta Schulz (LfU BY), Yves SIMEON (BRGM), Günter SÖKOL (LGRB), Heiko Zumsprekel (LGRB)

  18. Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera

    NASA Astrophysics Data System (ADS)

    Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Golan, Arik; Sivan, Dorit

    2016-05-01

    Sea-level fluctuations are a dominant mechanism that control coastal environmental changes through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on creating an integrated marine and terrestrial geophysical and litho-stratigraphic framework of the coastal zone of Hadera, north-central Israel. This research presents a case study, investigating the changing sedimentological units in the study area. Analysis suggest these represent various coastal environments and were deposited during times of lower than present sea level and during the later stages of the Holocene transgression. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, one hundred lithological borehole data-sets, and a 110 km-long sub-bottom geophysical survey. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. These seismic units have been correlated with the available borehole data to produce a chronologically constrained lithostratigraphy for the area. This approach allowed us to propose a relationship between the lithological units and sea-level change and thus enable the reconstruction of Hadera coastal evolution over the last 100 ka. This reconstruction suggests that the stratigraphy is dominated by lowstand aeolian and fluvial terrestrial environments, subsequently transgressed during the Holocene. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.

  19. Coseismic and blind fault of the 2015 Pishan Mw 6.5 earthquake: Implications for the sedimentary-tectonic framework of the western Kunlun Mountains, northern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Lu, Renqi; Xu, Xiwei; He, Dengfa; Liu, Bo; Tan, Xibin; Wang, Xiaoshan

    2016-04-01

    On 3 July 2015, the Mw 6.5 Pishan earthquake occurred in the western Kunlun Mountains front, at the northern margin of the Tibetan Plateau. To reveal the sedimentary-tectonic framework of the seismically active structure, three high-resolution seismic reflection profiles and well drilling data were collected for seismic interpretation. The western Kunlun Mountains and Tarim Basin have two gypseous detachments and one basement detachment that control the tectonic framework and structural deformation. The upper gypseous detachment (D1) is in the lower Paleocene, and the middle gypseous detachment (D2) is in the Middle to Lower Cambrian. A Neogene shallow thrust system is developing above D1 and includes the Zepu fault (F2) and Mazar Tagh fault (F3). A deep thrust system is developing between D1 and D2 and forms a large-scale structural wedge beneath the western Kunlun Mountains front. The Pishan Mw 6.5 earthquake was triggered on a frontal blind fault of this deep thrust system. The lower detachment is in the Proterozoic basement (D3), which extends into the Tarim Basin and develops another deep thrust (F4) beneath the F3 belt. D1, D2, D3, and the Tiekelike fault (F1) merge together at depth. Crustal shortening of the western Kunlun Mountains front continues for approximately 54 km. Two tectonic evolutionary stages have occurred since the Miocene according to sedimentary unconformity, axial analysis, and fault interpretation. The results of this study indicate a regime of episodic growth of the western Kunlun Mountains and Tarim Basin during the Cenozoic.

  20. Shallow geology, sea-floor texture, and physiographic zones of Vineyard and western Nantucket Sounds, Massachusetts

    USGS Publications Warehouse

    Baldwin, Wayne E.; Foster, David S.; Pendleton, Elizabeth A.; Barnhardt, Walter A.; Schwab, William C.; Andrews, Brian D.; Ackerman, Seth D.

    2016-09-02

    Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs/video, and surficial sediment samples collected within the 494-square-kilometer study area. Interpretations of seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.

  1. Probabilistic Seismic Hazard Assessment for Iraq Using Complete Earthquake Catalogue Files

    NASA Astrophysics Data System (ADS)

    Ameer, A. S.; Sharma, M. L.; Wason, H. R.; Alsinawi, S. A.

    2005-05-01

    Probabilistic seismic hazard analysis (PSHA) has been carried out for Iraq. The earthquake catalogue used in the present study covers an area between latitude 29° 38.5° N and longitude 39° 50° E containing more than a thousand events for the period 1905 2000. The entire Iraq region has been divided into thirteen seismogenic sources based on their seismic characteristics, geological setting and tectonic framework. The completeness of the seismicity catalogue has been checked using the method proposed by Stepp (1972). The analysis of completeness shows that the earthquake catalogue is not complete below Ms=4.8 for all of Iraq and seismic source zones S1, S4, S5, and S8, while it varies for the other seismic zones. A statistical treatment of completeness of the data file was carried out in each of the magnitude classes. The Frequency Magnitude Distributions (FMD) for the study area including all seismic source zones were established and the minimum magnitude of complete reporting (Mc) were then estimated. For the entire Iraq the Mc was estimated to be about Ms=4.0 while S11 shows the lowest Mc to be about Ms=3.5 and the highest Mc of about Ms=4.2 was observed for S4. The earthquake activity parameters (activity rate λ, b value, maximum regional magnitude mmax) as well as the mean return period (R) with a certain lower magnitude mmin ≥ m along with their probability of occurrence have been determined for all thirteen seismic source zones of Iraq. The maximum regional magnitude mmax was estimated as 7.87 ± 0.86 for entire Iraq. The return period for magnitude 6.0 is largest for source zone S3 which is estimated to be 705 years while the smallest value is estimated as 9.9 years for all of Iraq.

  2. INSPIRE Project (IoNospheric Sounding for Pre-seismic anomalies Identification REsearch): Main Results and Future Prospects

    NASA Astrophysics Data System (ADS)

    Pulinets, S. A.; Andrzej, K.; Hernandez-Pajares, M.; Cherniak, I.; Zakharenkova, I.; Rothkaehl, H.; Davidenko, D.

    2017-12-01

    The INSPIRE project is dedicated to the study of physical processes and their effects in ionosphere which could be determined as earthquake precursors together with detailed description of the methodology of ionospheric pre-seismic anomalies definition. It was initiated by ESA and carried out by international consortium. The physical mechanisms of the ionospheric pre-seismic anomalies generation from ground to the ionosphere altitudes were formulated within framework of the Lithosphere-Atmosphere-Ionosphere-Magnetosphere Coupling (LAIMC) model (Pulinets et al., 2015). The general algorithm for the identification of the ionospheric precursors was formalized which also takes into account the external Space Weather factors able to generate the false alarms. Importance of the special stable pattern called the "precursor mask" was highlighted which is based on self-similarity of pre-seismic ionospheric variations. The role of expert decision in pre-seismic anomalies interpretation for generation of seismic warning is important as well. The algorithm performance of the LAIMC seismo-ionospheric effect detection module has been demonstrated using the L'Aquila 2009 earthquake as a case study. The results of INSPIRE project have demonstrated that the ionospheric anomalies registered before the strong earthquakes could be used as reliable precursors. The detailed classification of the pre-seismic anomalies was presented in different regions of the ionosphere and signatures of the pre-seismic anomalies as detected by ground and satellite based instruments were described what clarified methodology of the precursor's identification from ionospheric multi-instrumental measurements. Configuration for the dedicated multi-observation experiment and satellite payload was proposed for the future implementation of the INSPIRE project results. In this regard the multi-instrument set can be divided by two groups: space equipment and ground-based support, which could be used for real-time monitoring. Together with scientific and technical tasks the set of political, logistic and administrative problems (including certification of approaches by seismological community, juridical procedures by the governmental authorities) should be resolved for the real earthquake forecast effectuation.

  3. Seismicity and Tectonics of the West Kaibab Fault Zone, AZ

    NASA Astrophysics Data System (ADS)

    Wilgus, J. T.; Brumbaugh, D. S.

    2014-12-01

    The West Kaibab Fault Zone (WKFZ) is the westernmost bounding structure of the Kaibab Plateau of northern Arizona. The WKFZ is a branching complex of high angle, normal faults downthrown to the west. There are three main faults within the WKFZ, the Big Springs fault with a maximum of 165 m offset, the Muav fault with 350 m of displacement, and the North Road fault having a maximum throw of approximately 90 m. Mapping of geologically recent surface deposits at or crossing the fault contacts indicates that the faults are likely Quaternary with the most recent offsets occurring <1.6 Ma. Slip rates are estimated to be less than 0.2 mm/yr. No historic fault slip has been documented. The WKFZ is one of the most seismically active areas in Arizona and lies within the Northern Arizona Seismic Belt (NASB), which stretches across northern Arizona trending NW-SE. The data set for this study includes 156 well documented events with the largest being a M5.75 in 1959 and including a swarm of seven earthquakes in 2012. The seismic data set (1934-2014) reveals that seismic activity clusters in two regions within the study area, the Fredonia cluster located in the NW corner of the study area and the Kaibab cluster located in the south central portion of the study area. The fault plane solutions to date indicate NE-SW to EW extension is occurring in the study area. Source relationships between earthquakes and faults within the WKFZ have not previously been studied in detail. The goal of this study is to use the seismic data set, the available data on faults, and the regional physiography to search for source relationships for the seismicity. Analysis includes source parameters of the earthquake data (location, depth, and fault plane solutions), and comparison of this output to the known faults and areal physiographic framework to indicate any active faults of the WKFZ, or suggested active unmapped faults. This research contributes to a better understanding of the present nature of the WKFZ and the NASB as well.

  4. Simultaneous multi-component seismic denoising and reconstruction via K-SVD

    NASA Astrophysics Data System (ADS)

    Hou, Sian; Zhang, Feng; Li, Xiangyang; Zhao, Qiang; Dai, Hengchang

    2018-06-01

    Data denoising and reconstruction play an increasingly significant role in seismic prospecting for their value in enhancing effective signals, dealing with surface obstacles and reducing acquisition costs. In this paper, we propose a novel method to denoise and reconstruct multicomponent seismic data simultaneously. This method lies within the framework of machine learning and the key points are defining a suitable weight function and a modified inner product operator. The purpose of these two processes are to perform missing data machine learning when the random noise deviation is unknown, and building a mathematical relationship for each component to incorporate all the information of multi-component data. Two examples, using synthetic and real multicomponent data, demonstrate that the new method is a feasible alternative for multi-component seismic data processing.

  5. Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework

    NASA Astrophysics Data System (ADS)

    Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.

    2015-12-01

    Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.

  6. Geophysical investigations of the area between the Mid-Atlantic Ridge and the Barents Sea: From water to the lithosphere-asthenosphere system

    NASA Astrophysics Data System (ADS)

    Grad, Marek; Mjelde, Rolf; Krysiński, Lech; Czuba, Wojciech; Libak, Audun; Guterch, Aleksander

    2015-03-01

    As a part of the large international panel "IPY Plate Tectonics and Polar Gateways" within the "4th International Polar Year" framework, extensive geophysical studies were performed in the area of southern Svalbard, between the Mid-Atlantic Ridge and the Barents Sea. Seismic investigations were performed along three refraction and wide-angle reflection seismic lines. Integrated with gravity data the seismic data were used to determine the structure of the oceanic crust, the transition between continent and ocean (COT), and the continental structures down to the lithosphere-asthenosphere system (LAB). We demonstrate how modeling of multiple water waves can be used to determine the sound velocity in oceanic water along a seismic refraction profile. Our 2D seismic and density models documents 4-9 km thick oceanic crust formed at the Knipovich Ridge, a distinct and narrow continent-ocean transition (COT), the Caledonian suture zone between Laurentia and Barentsia, and 30-35 km thick continental crust beneath the Barents Sea. The COT west of southern Spitsbergen expresses significant excess density (more than 0.1 g/cm3 in average), which is characteristic for mafic/ultramafic and high-grade metamorphic rocks. The results of the gravity modeling show relatively weak correlation of the density with seismic velocity in the upper mantle, which suggests that the horizontal differences between oceanic and continental mantle are dominated by mineralogical changes, although a thermal effect is also present. The seismic velocity change with depth suggests lherzolite composition of the uppermost oceanic mantle, and dunite composition beneath the continental crust.

  7. Effective seismic acceleration measurements for low-cost Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Pentaris, Fragkiskos; Makris, John P.

    2015-04-01

    There is increasing demand on cost effective Structural Health Monitoring systems for buildings as well as important and/or critical constructions. The front end for all these systems is the accelerometer. We present a comparative study of two low cost MEMS accelaration sensors against a very sensitive, high dynamic range strong motion accelerometer of force balance type but much more expensive. A real experiment was realized by deploying the three sesnors in a reinforced concrete building of the premises of TEI of Crete at Chania Crete, an earthquake prone region. The analysis of the collected accelararion data from many seismic events indicates that all sensors are able to efficiently reveal the seismic response of the construction in terms of PSD. Furthermore, it is shown that coherence diagrams between excitation and response of the building under study, depict structural characteristics but also the seismic energy distribution. This work is supported by the Archimedes III Program of the Ministry of Education of Greece, through the Operational Program "Educational and Lifelong Learning", in the framework of the project entitled "Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC)" and is co-financed by the European Union (European Social Fund) and Greek national funds.

  8. The Seismotectonic Map of Africa

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2015-04-01

    We present the Seismotectonic Map of Africa based on a geological, geophysical and geodetic database including the instrumental seismicity and re-appraisal of large historical events with harmonization and homogenization of earthquake parameters in catalogues. Although the seismotectonic framework and mapping of the African continent is a difficult task, several previous and ongoing projects provide a wealth of data and outstanding results. The database of large and moderate earthquakes in different geological domains includes the coseismic and Quaternary faulting that reveals the complex nature of the active tectonics in Africa. The map also benefits from previous works on local and regional seismotectonic maps that needed to be integrated with the lithospheric and upper mantle structures from tomographic anisotropy and gravity anomaly into a continental framework. The synthesis of earthquake and volcanic studies with the analysis of long-term (late Quaternary) and short-term (last decades and centuries) active deformation observed with geodetic and other approaches presented along with the seismotectonic map serves as a basis for hazard calculations and the reduction of seismic risks. The map may also be very useful in the assessment of seismic hazard and mitigation of earthquake risk for significant infrastructures and their implications in the socio-economic impact in Africa. In addition, the constant population increase and infrastructure growth in the continent that exacerbate the earthquake risk justify the necessity for a continuous updating of the seismotectonic map. The database and related map are prepared in the framework of the IGC Project-601 "Seismotectonics and Seismic Hazards in Africa" of UNESCO-IUGS, funded by the Swedish International Development Agency and UNESCO-Nairobi for a period of 4 years (2011 - 2014), extended to 2016. * Mustapha Meghraoui (Coordinator) EOST - IPG Strasbourg CNRS-UMR 7516 m.meghraoui@unistra.fr corresponding author. Paulina Amponsah (AECG, Accra), Abdelhakim Ayadi (CRAAG, Algiers), Atalay Ayele (Univ. Addis Ababa), Ateba Bekoa (Bueah Univ. Yaounde), Abdunnur Bensuleman (Tripoli Univ.), Damien Delvaux (MRAC-Tervuren); Mohamed El Gabry (NRIAG, Cairo), Rui-Manuel Fernandes (Beira Univ.) ; Vunganai Midzi & Magda Roos (CGS, Pretoria), Youssef Timoulali (Univ. Mohamed V, Rabat). Website: http://eost.u-strasbg.fr/igcp601/index.html

  9. Continuous, Large-Scale Processing of Seismic Archives for High-Resolution Monitoring of Seismic Activity and Seismogenic Properties

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2012-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring earthquake activity and verification of the Nuclear Test-Ban Treaty. We show results from our continuing effort in developing efficient waveform cross-correlation and double-difference analysis methods for the large-scale processing of regional and global seismic archives to improve existing earthquake parameter estimates, detect seismic events with magnitudes below current detection thresholds, and improve real-time monitoring procedures. We demonstrate the performance of these algorithms as applied to the 28-year long seismic archive of the Northern California Seismic Network. The tools enable the computation of periodic updates of a high-resolution earthquake catalog of currently over 500,000 earthquakes using simultaneous double-difference inversions, achieving up to three orders of magnitude resolution improvement over existing hypocenter locations. This catalog, together with associated metadata, form the underlying relational database for a real-time double-difference scheme, DDRT, which rapidly computes high-precision correlation times and hypocenter locations of new events with respect to the background archive (http://ddrt.ldeo.columbia.edu). The DDRT system facilitates near-real-time seismicity analysis, including the ability to search at an unprecedented resolution for spatio-temporal changes in seismogenic properties. In areas with continuously recording stations, we show that a detector built around a scaled cross-correlation function can lower the detection threshold by one magnitude unit compared to the STA/LTA based detector employed at the network. This leads to increased event density, which in turn pushes the resolution capability of our location algorithms. On a global scale, we are currently building the computational framework for double-difference processing the combined parametric and waveform archives of the ISC, NEIC, and IRIS with over three million recorded earthquakes worldwide. Since our methods are scalable and run on inexpensive Beowulf clusters, periodic re-analysis of such archives may thus become a routine procedure to continuously improve resolution in existing global earthquake catalogs. Results from subduction zones and aftershock sequences of recent great earthquakes demonstrate the considerable social and economic impact that high-resolution images of active faults, when available in real-time, will have in the prompt evaluation and mitigation of seismic hazards. These results also highlight the need for consistent long-term seismic monitoring and archiving of records.

  10. A reappraisal of seismic Q evaluated at Mt. Etna volcano. Receipt for the application to risk analysis

    NASA Astrophysics Data System (ADS)

    Del Pezzo, Edoardo; Bianco, Francesca; Giampiccolo, Elisabetta; Tusa, Giuseppina; Tuvé, Tiziana

    2015-01-01

    A new approach in dealing with seismic risk in the volcanic areas of Italy, by taking into account the possible occurrence of damaging pre- or syn-eruptive seismic events, is exciting the scientific interest and is actually the topic developed in several research projects funded by the European Community (e.g., UPStrat-MAFA, www.upstrat-mafa.ov.ingv.it/UPstrat/) and the Civil Defense Department of Italy. To achieve this goal, it is necessary to have a detailed knowledge of the local attenuation-distance relations. In the present paper, we make a survey of the estimates of the seismic quality factor of the medium reported in literature for the Etna area. In the framework of a similar paper published for the Campi Flegrei zone in Southern Italy, we first review the results on seismic attenuation already obtained for Etna and then apply a standard technique to separately measure intrinsic and scattering attenuation coefficients from passive seismic data recorded by the Etna seismological network. Indications are then given for the correct utilization of the attenuation parameters to obtain the best candidate quality factor Q to be used in this area for seismic risk purposes.

  11. Seismic hazard map of the western hemisphere

    USGS Publications Warehouse

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the horizontal force a building should be able to withstand during an earthquake. This seismic hazard map of the Americas depicts the likely level of short-period ground motion from earthquakes in a fifty-year window. Short-period ground motions effect short-period structures (e.g., one-to-two story buildings). The largest seismic hazard values in the western hemisphere generally occur in areas that have been, or are likely to be, the sites of the largest plate boundary earthquakes. Although the largest earthquakes ever recorded are the 1960 Chile and 1964 Alaska subduction zone earthquakes, the largest seismic hazard (PGA) value in the Americas is in Southern California (U.S.), along the San Andreas fault.

  12. Enhanced Geothermal Systems in Urban Areas - Lessons Learned from the 2006 Basel ML3.4 Earthquake

    NASA Astrophysics Data System (ADS)

    Kraft, T.; Mai, P. M.; Wiemer, S.; Deichmann, N.; Ripperger, J.; Kästli, P.; Bachmann, C. E.; Fäh, D.; Woessner, J.; Giardini, D.

    2009-12-01

    We report on a recent deep-heat mining experiment carried out in 2006/2007 in the city of Basel (Switzerland). This pilot project was designed to produce renewable geothermal energy using the Enhanced Geothermal System (EGS) methodology. For developing the geothermal reservoir, a deep borehole was brought down to 5 km depth. Then, in December 2006, the deep-heat-mining project entered the first critical phase when the water injections started for generating micro-fracturing of the rock. These fractures increase the permeability of the host rock, needed for efficient heat exchange between the rock and the cold water; however, these fracture are also source of micro-seismicity - small earthquakes that are continuously recorded and monitored by dedicated local seismic networks. In this stimulation phase, the seismic activity increased rapidly above the usual background seismicity, and culminated in a widely felt ML 3.4 earthquake, which caused some damage in the city of Basel. Due to the higher-than-expected seismic activity, and the reaction of the population, the media, and the politicians, the experiment was stalled only 6 days after the stimulations began. Although the injected water was allowed to escape immediately after the mainshock and pressure at the wellhead dropped rapidly, the seismic activity declined only slowly, with three ML > 3 events occurring one to two months later. Although the EGS technology has been applied and studied at various sites since the 1970s, the physical processes and parameters that control injection-induced seismicity - in terms of earthquake rate, size distribution and maximum magnitude - are still poorly understood. Consequently, the seismic hazard and risk associated with the creation and operation of EGS are difficult to estimate. The very well monitored Basel seismic sequence provides an excellent opportunity to advance the understanding of the physics of EGS. The Swiss Seismological Service (SED) is investigating the Basel dataset in the framework of the multidisciplinary research project GEOTHERM (www.geotherm.ethz.ch) Left) Seismic network in Basel, Switzerland. An epicenter map of the fluid injection-induced seismicity recorded by the seismic network, indicating high event densities in hot colors, is shown in the inset. Right) Fluid injection-induced seismicity recorded by the seismic network.

  13. Slow-Slip Phenomena Represented by the One-Dimensional Burridge-Knopoff Model of Earthquakes

    NASA Astrophysics Data System (ADS)

    Kawamura, Hikaru; Yamamoto, Maho; Ueda, Yushi

    2018-05-01

    Slow-slip phenomena, including afterslips and silent earthquakes, are studied using a one-dimensional Burridge-Knopoff model that obeys the rate-and-state dependent friction law. By varying only a few model parameters, this simple model allows reproducing a variety of seismic slips within a single framework, including main shocks, precursory nucleation processes, afterslips, and silent earthquakes.

  14. The crustal structures from Wuyi-Yunkai orogen to Taiwan orogen: the onshore-offshore wide-angle seismic experiment of TAIGER and ATSEE projects

    NASA Astrophysics Data System (ADS)

    Kuochen, H.; Kuo, N. Y. W.; Wang, C. Y.; Jin, X.; Cai, H. T.; Lin, J. Y.; Wu, F. T.; Yen, H. Y.; Huang, B. S.; Liang, W. T.; Okaya, D. A.; Brown, L. D.

    2015-12-01

    The crustal structure is key information for understanding the tectonic framework and geological evolution in the southeastern China and its adjacent area. In this study, we integrated the data sets from the TAIGER and ATSEE projects to resolve onshore-offshore deep crustal seismic profiles from the Wuyi-Yunkai orogen to the Taiwan orogen in southeastern China. Totally, there are three seismic profiles resolved and the longest profile is 850 km. Unlike 2D and 3D first arrival travel-time tomography from previous studies, we used both refracted and reflected phases (Pg, Pn, PcP, and PmP) to model the crustal structures and the crustal reflectors. 40 shots, 2 earthquakes, and about 1,950 stations were used and 15,319 arrivals were picked among three transects. As a result, the complex crustal evolution since Paleozoic era are shown, which involved the closed Paleozoic rifted basin in central Fujian, the Cenozoic extension due to South China sea opening beneath the coastline of southern Fujian, and the on-going collision of the Taiwan orogen.

  15. High-resolution seismic-reflection profiles and sidescan-sonar records collected on Block Island Sound by U.S. Geological Survey, R/V ASTERIAS, cruise AST 81-2

    USGS Publications Warehouse

    Needell, S. W.; Lewis, R.S.

    1982-01-01

    Cruise AST 81-2 was conducted aboard the R/V ASTERIAS during September 10-18, 1981, in Block Island Sound by the U.S. Geological Survey. It was funded in part by the Connecticut Geological and Natural History Survey. The purpose of the study was to define and map the geology and shallow structure, to determine the geologic framework and late Tertiary to Holocene history, and to identify and map any potential geologic hazards of Block Island Sound.The survey was conducted using an EG&G Uniboom seismic system and an EDO Western sidescan-sonar system. Seismic signals were band-passed between 400 and 4,000 Hz and were recorded at a quarter-second sweep rate. Sidescan sonographs were collected at a 100-m scan range to each side of the ship track. In all, 702 km of seismic-reflection profiles and 402 km of sidescan-sonar records were collected. Navigation was by Loran-C, and the ship position was recorded at 5-minute intervals. Seismic-reflection profiling is continuous and good in quality. Sidescan-sonar records are varied in quality; coverage was intermittent and eventu­ally terminated owing to difficulties with the recorder.Original records can be seen and studied at the U.S. Geological Survey Data Library at Woods Hole, MA 02543. Microfilm copies of the seismic-reflection pro­files and the sidescan sonographs can be purchased only from the National Geo­physical and Solar-Terrestrial Data Center, NOAA/EDIS/NGSDC, Code D621, 325 Broad­way, Boulder, CO 80303 (telephone 303-497-6338).

  16. A generalized formulation for noise-based seismic velocity change measurements

    NASA Astrophysics Data System (ADS)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N.; Droznin, D.; Droznina, S.; Senyukov, S.; Gordeev, E.

    2017-12-01

    The observation of continuous seismic velocity changes is a powerful tool for detecting seasonal variations in crustal structure, volcanic unrest, co- and post-seismic evolution of stress in fault areas or the effects of fluid injection. The standard approach for measuring such velocity changes relies on comparison of travel times in the coda of a set of seismic signals, usually noise-based cross-correlations retrieved at different dates, and a reference trace, usually a averaged function over dates. A good stability in both space and time of the noise sources is then the main assumption for reliable measurements. Unfortunately, these conditions are often not fulfilled, as it happens when ambient-noise sources are non-stationary, such as the emissions of low-frequency volcanic tremors.We propose a generalized formulation for retrieving continuous time series of noise-based seismic velocity changes without any arbitrary reference cross-correlation function. We set up a general framework for future applications of this technique performing synthetic tests. In particular, we study the reliability of the retrieved velocity changes in case of seasonal-type trends, transient effects (similar to those produced as a result of an earthquake or a volcanic eruption) and sudden velocity drops and recoveries as the effects of transient local source emissions. Finally, we apply this approach to a real dataset of noise cross-correlations. We choose the Klyuchevskoy volcanic group (Kamchatka) as a case study where the recorded wavefield is hampered by loss of data and dominated by strongly localized volcanic tremor sources. Despite the mentioned wavefield contaminations, we retrieve clear seismic velocity drops associated with the eruptions of the Klyuchevskoy an the Tolbachik volcanoes in 2010 and 2012, respectively.

  17. xQuake: A Modern Approach to Seismic Network Analytics

    NASA Astrophysics Data System (ADS)

    Johnson, C. E.; Aikin, K. E.

    2017-12-01

    While seismic networks have expanded over the past few decades, and social needs for accurate and timely information has increased dramatically, approaches to the operational needs of both global and regional seismic observatories have been slow to adopt new technologies. This presentation presents the xQuake system that provides a fresh approach to seismic network analytics based on complexity theory and an adaptive architecture of streaming connected microservices as diverse data (picks, beams, and other data) flow into a final, curated catalog of events. The foundation for xQuake is the xGraph (executable graph) framework that is essentially a self-organizing graph database. An xGraph instance provides both the analytics as well as the data storage capabilities at the same time. Much of the analytics, such as synthetic annealing in the detection process and an evolutionary programing approach for event evolution, draws from the recent GLASS 3.0 seismic associator developed by and for the USGS National Earthquake Information Center (NEIC). In some respects xQuake is reminiscent of the Earthworm system, in that it comprises processes interacting through store and forward rings; not surprising as the first author was the lead architect of the original Earthworm project when it was known as "Rings and Things". While Earthworm components can easily be integrated into the xGraph processing framework, the architecture and analytics are more current (e.g. using a Kafka Broker for store and forward rings). The xQuake system is being released under an unrestricted open source license to encourage and enable sthe eismic community support in further development of its capabilities.

  18. Worldwide seismicity in view of non-extensive statistical physics

    NASA Astrophysics Data System (ADS)

    Chochlaki, Kaliopi; Vallianatos, Filippos; Michas, George

    2014-05-01

    In the present work we study the distribution of worldwide shallow seismic events occurred from 1981 to 2011 extracted from the CMT catalog, with magnitude equal or greater than Mw 5.0. Our analysis based on the subdivision of the Earth surface into seismic zones that are homogeneous with regards to seismic activity and orientation of the predominant stress field. To this direction we use the Flinn-Engdahl regionalization (Flinn and Engdahl, 1965), which consists of 50 seismic zones as modified by Lombardi and Marzocchi (2007), where grouped the 50 FE zones into larger tectonically homogeneous ones, utilizing the cumulative moment tensor method. As a result Lombardi and Marzocchi (2007), limit the initial 50 regions to 39 ones, in which we apply the non- extensive statistical physics approach. The non-extensive statistical physics seems to be the most adequate and promising methodological tool for analyzing complex systems, such as the Earth's interior. In this frame, we introduce the q-exponential formulation as the expression of probability distribution function that maximizes the Sq entropy as defined by Tsallis, (1988). In the present work we analyze the interevent time distribution between successive earthquakes by a q-exponential function in each of the seismic zones defined by Lombardi and Marzocchi (2007).confirming the importance of long-range interactions and the existence of a power-law approximation in the distribution of the interevent times. Our findings supports the ideas of universality within the Tsallis approach to describe Earth's seismicity and present strong evidence on temporal clustering of seismic activity in each of the tectonic zones analyzed. Our analysis as applied in worldwide seismicity with magnitude equal or greater than Mw 5.5 and 6.) is presented and the dependence of our result on the cut-off magnitude is discussed. This research has been funded by the European Union (European Social Fund) and Greek national resources under the framework of the "THALES Program: SEISMO FEAR HELLARC" project of the "Education & Lifelong Learning" Operational Programme.

  19. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play.

    PubMed

    Schultz, R; Atkinson, G; Eaton, D W; Gu, Y J; Kao, H

    2018-01-19

    A sharp increase in the frequency of earthquakes near Fox Creek, Alberta, began in December 2013 in response to hydraulic fracturing. Using a hydraulic fracturing database, we explore relationships between injection parameters and seismicity response. We show that induced earthquakes are associated with completions that used larger injection volumes (10 4 to 10 5 cubic meters) and that seismic productivity scales linearly with injection volume. Injection pressure and rate have an insignificant association with seismic response. Further findings suggest that geological factors play a prominent role in seismic productivity, as evidenced by spatial correlations. Together, volume and geological factors account for ~96% of the variability in the induced earthquake rate near Fox Creek. This result is quantified by a seismogenic index-modified frequency-magnitude distribution, providing a framework to forecast induced seismicity. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  20. Effects of non-structural components and soil-structure interaction on the seismic response of framed structures

    NASA Astrophysics Data System (ADS)

    Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Antonella; Carlo Ponzo, Felice

    2017-04-01

    In this paper, several nonlinear numerical models of reinforced concrete framed structures have been defined in order to evaluate the effects of non-structural elements and soil-structure interaction on the elastic dynamic behaviour of buildings. In the last few years, many and various studies have highlighted the significant effects derived from the interaction between structural and non-structural components on the main dynamic characteristics of a building. Usually, structural and non-structural elements act together, adding both masses and stiffness. The presence of infill panels is generally neglected in the design process of structural elements, although these elements can significantly increase the lateral stiffness of a structure leading to a modification in the dynamic properties. Particularly, at the Damage Limit State (where an elastic behaviour is expected), soil-structure interaction effects and non-structural elements may further affect the elastic natural period of buildings, changing the spectral accelerations compared with those provided by seismic codes in case of static analyses. In this work, a parametric study has been performed in order to evaluate the elastic fundamental period of vibration of buildings as a function of structural morphology (height, plan area, ratio between plan dimensions), infills presence and distribution and soil characteristics. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  1. On a variational approach to some parameter estimation problems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.

    1985-01-01

    Examples (1-D seismic, large flexible structures, bioturbation, nonlinear population dispersal) in which a variation setting can provide a convenient framework for convergence and stability arguments in parameter estimation problems are considered. Some of these examples are 1-D seismic, large flexible structures, bioturbation, and nonlinear population dispersal. Arguments for convergence and stability via a variational approach of least squares formulations of parameter estimation problems for partial differential equations is one aspect of the problem considered.

  2. Integration of borehole and seismic data to unravel complex stratigraphy: Case studies from the Mannville Group, Western Canada

    NASA Astrophysics Data System (ADS)

    Sarzalejo Silva, Sabrina Ester

    Understanding the stratigraphic architecture of geologically complex reservoirs, such as the heavy oil deposits of Western Canada, is essential to achieve an efficient hydrocarbon recovery. Borehole and 3-D seismic data were integrated to define the stratigraphic architecture and generate 3-dimensional geological models of the Mannville Group in Saskatchewan. The Mannville is a stratigraphically complex unit formed of fluvial to marine deposits. Two areas in west-central and southern Saskatchewan were examined in this study. In west-central Saskatchewan, the area corresponds to a stratigraphically controlled heavy oil reservoir with production from the undifferentiated Dina-Cummings Members of the Lower Cretaceous Mannville Group. The southern area, although non-prospective for hydrocarbons, shares many similarities with time-equivalent strata in areas of heavy oil production. Seismic sequence stratigraphic principles together with log signatures permitted the subdivision of the Mannville into different packages. An initial geological model was generated integrating seismic and well-log data Multiattribute analysis and neural networks were used to generate a pseudo-lithology or gamma-ray volume. The incorporation of borehole core data to the model and the subsequent integration with the lithological prediction were crucial to capture the distribution of reservoir and non-reservoir deposits in the study area. The ability to visualize the 3-D seismic data in a variety of ways, including arbitrary lines and stratal or horizon slicing techniques helped the definition of stratigraphic features such as channels and scroll bars that affect fluid flow in hydrocarbon producing areas. Small-scale heterogeneities in the reservoir were not resolved due to the resolution of the seismic data. Although not undertaken in this study, the resulting stratigraphic framework could be used to help construct a static reservoir model. Because of the small size of the 3-D seismic surveys, horizontal slices through the data volume generally imaged only small portions of the paleogeomorphologic features thought to be present in this area. As such, it was only through the integration of datasets that the geological models were established.

  3. An earthquake rate forecast for Europe based on smoothed seismicity and smoothed fault contribution

    NASA Astrophysics Data System (ADS)

    Hiemer, Stefan; Woessner, Jochen; Basili, Roberto; Wiemer, Stefan

    2013-04-01

    The main objective of project SHARE (Seismic Hazard Harmonization in Europe) is to develop a community-based seismic hazard model for the Euro-Mediterranean region. The logic tree of earthquake rupture forecasts comprises several methodologies including smoothed seismicity approaches. Smoothed seismicity thus represents an alternative concept to express the degree of spatial stationarity of seismicity and provides results that are more objective, reproducible, and testable. Nonetheless, the smoothed-seismicity approach suffers from the common drawback of being generally based on earthquake catalogs alone, i.e. the wealth of knowledge from geology is completely ignored. We present a model that applies the kernel-smoothing method to both past earthquake locations and slip rates on mapped crustal faults and subductions. The result is mainly driven by the data, being independent of subjective delineation of seismic source zones. The core parts of our model are two distinct location probability densities: The first is computed by smoothing past seismicity (using variable kernel smoothing to account for varying data density). The second is obtained by smoothing fault moment rate contributions. The fault moment rates are calculated by summing the moment rate of each fault patch on a fully parameterized and discretized fault as available from the SHARE fault database. We assume that the regional frequency-magnitude distribution of the entire study area is well known and estimate the a- and b-value of a truncated Gutenberg-Richter magnitude distribution based on a maximum likelihood approach that considers the spatial and temporal completeness history of the seismic catalog. The two location probability densities are linearly weighted as a function of magnitude assuming that (1) the occurrence of past seismicity is a good proxy to forecast occurrence of future seismicity and (2) future large-magnitude events occur more likely in the vicinity of known faults. Consequently, the underlying location density of our model depends on the magnitude. We scale the density with the estimated a-value in order to construct a forecast that specifies the earthquake rate in each longitude-latitude-magnitude bin. The model is intended to be one branch of SHARE's logic tree of rupture forecasts and provides rates of events in the magnitude range of 5 <= m <= 8.5 for the entire region of interest and is suitable for comparison with other long-term models in the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP).

  4. Foraminiferal and seismic stratigraphy, paleoenvironments and depositional cycles in the Georges Bank Basin

    NASA Astrophysics Data System (ADS)

    Poag, C. W.

    Biostratigraphic analyses of foraminiferal assemblages sampled from rotary cuttings taken at 10 ft to 90 ft intervals were used with interpretation of seismic sequences to determine the presence of nonconformities and to establish a chronostratigraphic framework for COST G-1 and G-2 wells. The chronostratigraphic sequences were then used to calculate sediment accumulation rates. Lithostratigraphic and chronostratigraphic units were compared with those of the Scotian Basin of Canada, and correlations were established between the COST G-2 and the Shell Mohican L-100 wells. Paleoenvironmental analysis was based on the microfossil record of the G-1 and G-2 wells and on interpretation of seismic facies along USGS multichannel line 19.

  5. Dynamic of the volcanic activity of La Soufrière volcano (Guadeloupe, Lesser Antillles): Evidence for shallow fluid seismic sources

    NASA Astrophysics Data System (ADS)

    Ucciani, G.; Beauducel, F.; Bouin, M. P.; Nercessian, A.

    2015-12-01

    La Soufrière is one of the many hazardous volcanoes in the inner arc of Lesser Antilles. Located South of Basse-Terre island, it is the only active volcano of the Guadeloupe archipelago. Since the last significant magmatic eruption in 1535 AD, the activity has been exculsively phreatic. Since 1992 and the abrupt renewal of seismic and fumarollic activities, the Guadeloupe Volcanological and Seismological Observatory (OVSG-IPGP) has recorded a progressive increasing of seismicity and degassing that led scientists and authorities to set the alert level ``Vigilance'' and hold it until today. According to the recent geophysical, geochemical and geological studies, the current volcanic activity of la Soufrière volcano seems to be exclusively associated to the hydrothermal system, while the link with seismic activity is still poorly studied. In this context of possible pre-eruptive unrest, we investigated the spatial and temporal variations of the seismicity recorded between 1981 and 2013. From a consistent seismological framework coupling spectral, statistical, signal processing, clustering, and inverse problems methods, we demonstrate that this seismicity is largely generated by shallow hydrothermal fluid sources located in a complex plumbing system. Spatial variations of Vp/Vs ratio and B-value in seismogenic structures allow us to document three main seismic zones associated to : (1) migration of magmatic gas, (2) the storage and mixing of underground water and gas and (3) the shallow migration of hydrothermal fluids in high fractured and heterogeneous system. Waveform analysis revealed a low number of significant families consistent with fracturing process, and the temporal evolution of multiplet activities highlighted several variations associated with surface manifestations and brutal dynamic changes after major local tectonic earthquakes of Les Saintes (21 November 2004, Mw=6.3), its main aftershock (14 February 2005, Mw=5.7) and the last major earthquake of la Martinique (29 November 2007, Mw=7.4).

  6. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is collected along parallel lines by a shipborne gradiometer and the marine MT data set is composed of 41 stations that are distributed over the whole investigation area. Logging results from a borehole located in the central part of the investigation area enable us to derive parameter relationships between seismic velocities, resistivities and densities that are adequately describe the rock property behaviors of both the basaltic lava flows and sedimentary layers in this region. In addition, a 3-D reflection seismic survey covering the central part allows us to incorporate the top of basalt and other features as constraints in the joint inversions and to evaluate the quality of the final results. Literature: D. Colombo, M. Mantovani, S. Hallinan, M. Virgilio, 2008. Sub-basalt depth imaging using simultaneous joint inversion of seismic and electromagnetic (MT) data: a CRB field study. SEG Expanded Abstract, Las Vegas, USA, 2674-2678. M. Jordan, J. Ebbing, M. Brönner, J. Kamm , Z. Du, P. Eliasson, 2012. Joint Inversion for Improved Sub-salt and Sub-basalt Imaging with Application to the More Margin. EAGE Expanded Abstracts, Copenhagen, DK. M. Moorkamp, B. Heincke, M. Jegen, A.W.Roberts, R.W. Hobbs, 2011. A framework for 3-D joint inversion of MT, gravity and seismic refraction data. Geophysical Journal International, 184, 477-493.

  7. Providing Web Interfaces to the NSF EarthScope USArray Transportable Array

    NASA Astrophysics Data System (ADS)

    Vernon, Frank; Newman, Robert; Lindquist, Kent

    2010-05-01

    Since April 2004 the EarthScope USArray seismic network has grown to over 850 broadband stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. Providing secure, yet open, access to real-time and archived data for a broad range of audiences is best served by a series of platform agnostic low-latency web-based applications. We present a framework of tools that mediate between the world wide web and Boulder Real Time Technologies Antelope Environmental Monitoring System data acquisition and archival software. These tools provide comprehensive information to audiences ranging from network operators and geoscience researchers, to funding agencies and the general public. This ranges from network-wide to station-specific metadata, state-of-health metrics, event detection rates, archival data and dynamic report generation over a station's two year life span. Leveraging open source web-site development frameworks for both the server side (Perl, Python and PHP) and client-side (Flickr, Google Maps/Earth and jQuery) facilitates the development of a robust extensible architecture that can be tailored on a per-user basis, with rapid prototyping and development that adheres to web-standards. Typical seismic data warehouses allow online users to query and download data collected from regional networks, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have recently developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running the Antelope Real Time System. The software is freely available from the Antelope contributed code Git repository (http://www.antelopeusersgroup.org).

  8. Simulate earthquake cycles on the oceanic transform faults in the framework of rate-and-state friction

    NASA Astrophysics Data System (ADS)

    Wei, M.

    2016-12-01

    Progress towards a quantitative and predictive understanding of the earthquake behavior can be achieved by improved understanding of earthquake cycles. However, it is hindered by the long repeat times (100s to 1000s of years) of the largest earthquakes on most faults. At fast-spreading oceanic transform faults, the typical repeating time ranges from 5-20 years, making them a unique tectonic environment for studying the earthquake cycle. One important observation on OTFs is the quasi-periodicity and the spatial-temporal clustering of large earthquakes: same fault segment ruptured repeatedly at a near constant interval and nearby segments ruptured during a short time period. This has been observed on the Gofar and Discovery faults in the East Pacific Rise. Between 1992 and 2014, five clusters of M6 earthquakes occurred on the Gofar and Discovery fault system with recurrence intervals of 4-6 years. Each cluster consisted of a westward migration of seismicity from the Discovery to Gofar segment within a 2-year period, providing strong evidence for spatial-temporal clustering of large OTFs earthquakes. I simulated earthquake cycles of oceanic transform fault in the framework of rate-and-state friction, motivated by the observations at the Gofar and Discovery faults. I focus on a model with two seismic segments, each 20 km long and 5 km wide, separated by an aseismic segment of 10 km wide. This geometry is set based on aftershock locations of the 2008 M6.0 earthquake on Gofar. The repeating large earthquake on both segments are reproduced with similar magnitude as observed. I set the state parameter differently for the two seismic segments so initially they are not synchornized. Results also show that synchronization of the two seismic patches can be achieved after several earthquake cycles when the effective normal stress or the a-b parameter is smaller than surrounding aseismic areas, both having reduced the resistance to seismic rupture in the VS segment. These parameter settings likely reflect the alteration of stress and friction property by the enhanced hydrothermal activity suggested by McGuire et al., 2012. The seismic coupling ratio of the entire model is about 0.3, not far from the global average of 0.15.

  9. Parametric Studies for Scenario Earthquakes: Site Effects and Differential Motion

    NASA Astrophysics Data System (ADS)

    Panza, G. F.; Panza, G. F.; Romanelli, F.

    2001-12-01

    In presence of strong lateral heterogeneities, the generation of local surface waves and local resonance can give rise to a complicated pattern in the spatial groundshaking scenario. For any object of the built environment with dimensions greater than the characteristic length of the ground motion, different parts of its foundations can experience severe non-synchronous seismic input. In order to perform an accurate estimate of the site effects, and of differential motion, in realistic geometries, it is necessary to make a parametric study that takes into account the complex combination of the source and propagation parameters. The computation of a wide set of time histories and spectral information, corresponding to possible seismotectonic scenarios for different source and structural models, allows us the construction of damage scenarios that are out of reach of stochastic models. Synthetic signals, to be used as seismic input in a subsequent engineering analysis, e.g. for the design of earthquake-resistant structures or for the estimation of differential motion, can be produced at a very low cost/benefit ratio. We illustrate the work done in the framework of a large international cooperation following the guidelines of the UNESCO IUGS IGCP Project 414 "Realistic Modeling of Seismic Input for Megacities and Large Urban Areas" and show the very recent numerical experiments carried out within the EC project "Advanced methods for assessing the seismic vulnerability of existing motorway bridges" (VAB) to assess the importance of non-synchronous seismic excitation of long structures. >http://www.ictp.trieste.it/www_users/sand/projects.html

  10. Urban Vulnerability Assessment to Seismic Hazard through Spatial Multi-Criteria Analysis. Case Study: the Bucharest Municipality/Romania

    NASA Astrophysics Data System (ADS)

    Armas, Iuliana; Dumitrascu, Silvia; Bostenaru, Maria

    2010-05-01

    In the context of an explosive increase in value of the damage caused by natural disasters, an alarming challenge in the third millennium is the rapid growth of urban population in vulnerable areas. Cities are, by definition, very fragile socio-ecological systems with a high level of vulnerability when it comes to environmental changes and that are responsible for important transformations of the space, determining dysfunctions shown in the state of the natural variables (Parker and Mitchell, 1995, The OFDA/CRED International Disaster Database). A contributing factor is the demographic dynamic that affects urban areas. The aim of this study is to estimate the overall vulnerability of the urban area of Bucharest in the context of the seismic hazard, by using environmental, socio-economic, and physical measurable variables in the framework of a spatial multi-criteria analysis. For this approach the capital city of Romania was chosen based on its high vulnerability due to the explosive urban development and the advanced state of degradation of the buildings (most of the building stock being built between 1940 and 1977). Combining these attributes with the seismic hazard induced by the Vrancea source, Bucharest was ranked as the 10th capital city worldwide in the terms of seismic risk. Over 40 years of experience in the natural risk field shows that the only directly accessible way to reduce the natural risk is by reducing the vulnerability of the space (Adger et al., 2001, Turner et al., 2003; UN/ISDR, 2004, Dayton-Johnson, 2004, Kasperson et al., 2005; Birkmann, 2006 etc.). In effect, reducing the vulnerability of urban spaces would imply lower costs produced by natural disasters. By applying the SMCA method, the result reveals a circular pattern, signaling as hot spots the Bucharest historic centre (located on a river terrace and with aged building stock) and peripheral areas (isolated from the emergency centers and defined by precarious social and economic conditions). In effect, the example of Bucharest demonstrates how the results shape the ‘vulnerability to seismic hazard profile of the city, based on which decision makers could develop proper mitigation strategies. To sum up, the use of an analytical framework as the standard Spatial Multi-Criteria Analysis (SMCA) - despite all difficulties in creating justifiable weights (Yeh et al., 1999) - results in accurate estimations of the state of the urban system. Although this method was often mistrusted by decision makers (Janssen, 2001), we consider that the results can represent, based on precisely the level of generalization, a decision support framework for policy makers to critically reflect on possible risk mitigation plans. Further study will lead to the improvement of the analysis by integrating a series of daytime and nighttime scenarios and a better definition of the constructed space variables.

  11. Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution

    NASA Astrophysics Data System (ADS)

    Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.

    2018-02-01

    The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.

  12. Deterministic seismic hazard macrozonation of India

    NASA Astrophysics Data System (ADS)

    Kolathayar, Sreevalsa; Sitharam, T. G.; Vipin, K. S.

    2012-10-01

    Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6°-38°N and 68°-98°E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1° × 0.1° (approximately 10 × 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.

  13. Aseismic and seismic slip induced by fluid injection from poroelastic and rate-state friction modeling

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Deng, K.; Harrington, R. M.; Clerc, F.

    2016-12-01

    Solid matrix stress change and pore pressure diffusion caused by fluid injection has been postulated as key factors for inducing earthquakes and aseismic slip on pre-existing faults. In this study, we have developed a numerical model that simulates aseismic and seismic slip in a rate-and-state friction framework with poroelastic stress perturbations from multi-stage hydraulic fracturing scenarios. We apply the physics-based model to the 2013-2015 earthquake sequences near Fox Creek, Alberta, Canada, where three magnitude 4.5 earthquakes were potentially induced by nearby hydraulic fracturing activity. In particular, we use the relocated December 2013 seismicity sequence to approximate the fault orientation, and find the seismicity migration spatiotemporally correlate with the positive Coulomb stress changes calculated from the poroelastic model. When the poroelastic stress changes are introduced to the rate-state friction model, we find that slip on the fault evolves from aseismic to seismic in a manner similar to the onset of seismicity. For a 15-stage hydraulic fracturing that lasted for 10 days, modeled fault slip rate starts to accelerate after 3 days of fracking, and rapidly develops into a seismic event, which also temporally coincides with the onset of induced seismicity. The poroelastic stress perturbation and consequently fault slip rate continue to evolve and remain high for several weeks after hydraulic fracturing has stopped, which may explain the continued seismicity after shut-in. In a comparison numerical experiment, fault slip rate quickly decreases to the interseismic level when stress perturbations are instantaneously returned to zero at shut-in. Furthermore, when stress perturbations are removed just a few hours after the fault slip rate starts to accelerate (that is, hydraulic fracturing is shut down prematurely), only aseismic slip is observed in the model. Our preliminary results thus suggest the design of fracturing duration and flow-back strategy, either allowing stress perturbations to passively dissipate in the medium or actively dropping to the pre-perturbation level, is essential to inducing seismic versus aseismic slip on pre-existing faults.

  14. Challenges Ahead for Nuclear Facility Site-Specific Seismic Hazard Assessment in France: The Alternative Energies and the Atomic Energy Commission (CEA) Vision

    NASA Astrophysics Data System (ADS)

    Berge-Thierry, C.; Hollender, F.; Guyonnet-Benaize, C.; Baumont, D.; Ameri, G.; Bollinger, L.

    2017-09-01

    Seismic analysis in the context of nuclear safety in France is currently guided by a pure deterministic approach based on Basic Safety Rule ( Règle Fondamentale de Sûreté) RFS 2001-01 for seismic hazard assessment, and on the ASN/2/01 Guide that provides design rules for nuclear civil engineering structures. After the 2011 Tohohu earthquake, nuclear operators worldwide were asked to estimate the ability of their facilities to sustain extreme seismic loads. The French licensees then defined the `hard core seismic levels', which are higher than those considered for design or re-assessment of the safety of a facility. These were initially established on a deterministic basis, and they have been finally justified through state-of-the-art probabilistic seismic hazard assessments. The appreciation and propagation of uncertainties when assessing seismic hazard in France have changed considerably over the past 15 years. This evolution provided the motivation for the present article, the objectives of which are threefold: (1) to provide a description of the current practices in France to assess seismic hazard in terms of nuclear safety; (2) to discuss and highlight the sources of uncertainties and their treatment; and (3) to use a specific case study to illustrate how extended source modeling can help to constrain the key assumptions or parameters that impact upon seismic hazard assessment. This article discusses in particular seismic source characterization, strong ground motion prediction, and maximal magnitude constraints, according to the practice of the French Atomic Energy Commission. Due to increases in strong motion databases in terms of the number and quality of the records in their metadata and the uncertainty characterization, several recently published empirical ground motion prediction models are eligible for seismic hazard assessment in France. We show that propagation of epistemic and aleatory uncertainties is feasible in a deterministic approach, as in a probabilistic way. Assessment of seismic hazard in France in the framework of the safety of nuclear facilities should consider these recent advances. In this sense, the opening of discussions with all of the stakeholders in France to update the reference documents (i.e., RFS 2001-01; ASN/2/01 Guide) appears appropriate in the short term.

  15. Seismic Hazard and risk assessment for Romania -Bulgaria cross-border region

    NASA Astrophysics Data System (ADS)

    Simeonova, Stela; Solakov, Dimcho; Alexandrova, Irena; Vaseva, Elena; Trifonova, Petya; Raykova, Plamena

    2016-04-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanization and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard and risk is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. Romania and Bulgaria, situated in the Balkan Region as a part of the Alpine-Himalayan seismic belt, are characterized by high seismicity, and are exposed to a high seismic risk. Over the centuries, both countries have experienced strong earthquakes. The cross-border region encompassing the northern Bulgaria and southern Romania is a territory prone to effects of strong earthquakes. The area is significantly affected by earthquakes occurred in both countries, on the one hand the events generated by the Vrancea intermediate-depth seismic source in Romania, and on the other hand by the crustal seismicity originated in the seismic sources: Shabla (SHB), Dulovo, Gorna Orjahovitza (GO) in Bulgaria. The Vrancea seismogenic zone of Romania is a very peculiar seismic source, often described as unique in the world, and it represents a major concern for most of the northern part of Bulgaria as well. In the present study the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets is assessed. The hazard results are obtained by applying two alternative approaches - probabilistic and deterministic. The MSK64 intensity (MSK64 scale is practically equal to the new EMS98) is used as output parameter for the hazard maps. We prefer to use here the macroseismic intensity instead of PGA, because it is directly related to the degree of damages and, moreover, the epicentral intensity is the original parameter in the historical earthquake catalogues. A particular advantage of using intensities is that the very irregular pattern of the attenuation field of the Vrancea intermediate depth earthquakes can be estimated from detailed macroseismic observations that are available (in both countries) for the study region. Additionally, de-aggregation of the seismic hazard for a recurrence period of 475 years (probability of exceedance of 10% in 50 years) for intensity was performed for 9 cities (administrative centers) situated in northern Bulgaria. Finally, applying SELENA software earthquake risk for Bulgarian part of the cross-boarder region is analyzed. The results presented for the Romania-Bulgaria cross border region are part of the work carried out in the DACEA Project (2010-2013) that was implemented in the framework of the Romania - Bulgaria Cross Border Cooperation Programme (2007-2013).

  16. Geophysical Studies Based on Gravity and Seismic Data of Tule Desert, Meadow Valley Wash, and California Wash Basins, Southern Nevada

    USGS Publications Warehouse

    Scheirer, Daniel S.; Page, William R.; Miller, John J.

    2006-01-01

    Gravity and seismic data from Tule Desert, Meadow Valley Wash, and California Wash, Nevada, provide insight into the subsurface geometry of these three basins that lie adjacent to rapidly developing areas of Clark County, Nevada. Each of the basins is the product of Tertiary extension accommodated with the general form of north-south oriented, asymmetrically-faulted half-grabens. Geophysical inversion of gravity observations indicates that Tule Desert and Meadow Valley Wash basins are segmented into subbasins by shallow, buried basement highs. In this study, basement refers to pre-Cenozoic bedrock units that underlie basins filled with Cenozoic sedimentary and volcanic units. In Tule Desert, a small, buried basement high inferred from gravity data appears to be a horst whose placement is consistent with seismic reflection and magnetotelluric observations. Meadow Valley Wash consists of three subbasins separated by basement highs at structural zones that accommodated different styles of extension of the adjacent subbasins, an interpretation consistent with geologic mapping of fault traces oblique to the predominant north-south fault orientation of Tertiary extension in this area. California Wash is a single structural basin. The three seismic reflection lines analyzed in this study image the sedimentary basin fill, and they allow identification of faults that offset basin deposits and underlying basement. The degree of faulting and folding of the basin-fill deposits increases with depth. Pre-Cenozoic units are observed in some of the seismic reflection lines, but their reflections are generally of poor quality or are absent. Factors that degrade seismic reflector quality in this area are rough land topography due to erosion, deformed sedimentary units at the land surface, rock layers that dip out of the plane of the seismic profile, and the presence of volcanic units that obscure underlying reflectors. Geophysical methods illustrate that basin geometry is more complicated than would be inferred from extrapolation of surface topography and geology, and these methods aid in defining a three-dimensional framework to understand groundwater storage and flow in southern Nevada.

  17. Reservoir compartmentalization of deep-water Intra Qua Iboe sand (Pliocene), Edop field, offshore Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.

    An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less

  18. Complete description of all self-similar models driven by Lévy stable noise

    NASA Astrophysics Data System (ADS)

    Weron, Aleksander; Burnecki, Krzysztof; Mercik, Szymon; Weron, Karina

    2005-01-01

    A canonical decomposition of H -self-similar Lévy symmetric α -stable processes is presented. The resulting components completely described by both deterministic kernels and the corresponding stochastic integral with respect to the Lévy symmetric α -stable motion are shown to be related to the dissipative and conservative parts of the dynamics. This result provides stochastic analysis tools for study the anomalous diffusion phenomena in the Langevin equation framework. For example, a simple computer test for testing the origins of self-similarity is implemented for four real empirical time series recorded from different physical systems: an ionic current flow through a single channel in a biological membrane, an energy of solar flares, a seismic electric signal recorded during seismic Earth activity, and foreign exchange rate daily returns.

  19. A neural network based methodology to predict site-specific spectral acceleration values

    NASA Astrophysics Data System (ADS)

    Kamatchi, P.; Rajasankar, J.; Ramana, G. V.; Nagpal, A. K.

    2010-12-01

    A general neural network based methodology that has the potential to replace the computationally-intensive site-specific seismic analysis of structures is proposed in this paper. The basic framework of the methodology consists of a feed forward back propagation neural network algorithm with one hidden layer to represent the seismic potential of a region and soil amplification effects. The methodology is implemented and verified with parameters corresponding to Delhi city in India. For this purpose, strong ground motions are generated at bedrock level for a chosen site in Delhi due to earthquakes considered to originate from the central seismic gap of the Himalayan belt using necessary geological as well as geotechnical data. Surface level ground motions and corresponding site-specific response spectra are obtained by using a one-dimensional equivalent linear wave propagation model. Spectral acceleration values are considered as a target parameter to verify the performance of the methodology. Numerical studies carried out to validate the proposed methodology show that the errors in predicted spectral acceleration values are within acceptable limits for design purposes. The methodology is general in the sense that it can be applied to other seismically vulnerable regions and also can be updated by including more parameters depending on the state-of-the-art in the subject.

  20. A first step to compare geodynamical models and seismic observations of the inner core

    NASA Astrophysics Data System (ADS)

    Lasbleis, M.; Waszek, L.; Day, E. A.

    2016-12-01

    Seismic observations have revealed a complex inner core, with lateral and radial heterogeneities at all observable scales. The dominant feature is the east-west hemispherical dichotomy in seismic velocity and attenuation. Several geodynamical models have been proposed to explain the observed structure: convective instabilities, external forces, crystallisation processes or influence of outer core convection. However, interpreting such geodynamical models in terms of the seismic observations is difficult, and has been performed only for very specific models (Geballe 2013, Lincot 2014, 2016). Here, we propose a common framework to make such comparisons. We have developed a Python code that propagates seismic ray paths through kinematic geodynamical models for the inner core, computing a synthetic seismic data set that can be compared to seismic observations. Following the method of Geballe 2013, we start with the simple model of translation. For this, the seismic velocity is proposed to be function of the age or initial growth rate of the material (since there is no deformation included in our models); the assumption is reasonable when considering translation, growth and super rotation of the inner core. Using both artificial (random) seismic ray data sets and a real inner core data set (from Waszek et al. 2011), we compare these different models. Our goal is to determine the model which best matches the seismic observations. Preliminary results show that super rotation successfully creates an eastward shift in properties with depth, as has been observed seismically. Neither the growth rate of inner core material nor the relationship between crystal size and seismic velocity are well constrained. Consequently our method does not directly compute the seismic travel times. Instead, here we use age, growth rate and other parameters as proxies for the seismic properties, which represent a good first step to compare geodynamical and seismic observations.Ultimately we aim to release our codes to broader scientific community, allowing researchers from all disciplines to test their models of inner core growth against seismic observations or create a kinematic model for the evolution of the inner core which matches new geophysical observations.

  1. Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images

    NASA Astrophysics Data System (ADS)

    Ely, G.; Malcolm, A. E.; Poliannikov, O. V.

    2017-12-01

    Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.

  2. Promoting access to and use of seismic data in a large scientific community. SpaceInn data handling and archiving

    NASA Astrophysics Data System (ADS)

    Michel, Eric; Belkacem, Kevin; Samadi, Reza; Assis Peralta, Raphael de; Renié, Christian; Abed, Mahfoudh; Lin, Guangyuan; Christensen-Dalsgaard, Jørgen; Houdek, Günter; Handberg, Rasmus; Gizon, Laurent; Burston, Raymond; Nagashima, Kaori; Pallé, Pere; Poretti, Ennio; Rainer, Monica; Mistò, Angelo; Panzera, Maria Rosa; Roth, Markus

    2017-10-01

    The growing amount of seismic data available from space missions (SOHO, CoRoT, Kepler, SDO,…) but also from ground-based facilities (GONG, BiSON, ground-based large programmes…), stellar modelling and numerical simulations, creates new scientific perspectives such as characterizing stellar populations in our Galaxy or planetary systems by providing model-independent global properties of stars such as mass, radius, and surface gravity within several percent accuracy, as well as constraints on the age. These applications address a broad scientific community beyond the solar and stellar one and require combining indices elaborated with data from different databases (e.g. seismic archives and ground-based spectroscopic surveys). It is thus a basic requirement to develop a simple and effcient access to these various data resources and dedicated tools. In the framework of the European project SpaceInn (FP7), several data sources have been developed or upgraded. The Seismic Plus Portal has been developed, where synthetic descriptions of the most relevant existing data sources can be found, as well as tools allowing to localize existing data for given objects or period and helping the data query. This project has been developed within the Virtual Observatory (VO) framework. In this paper, we give a review of the various facilities and tools developed within this programme. The SpaceInn project (Exploitation of Space Data for Innovative Helio- and Asteroseismology) has been initiated by the European Helio- and Asteroseismology Network (HELAS).

  3. Ground Motion Prediction Models for Caucasus Region

    NASA Astrophysics Data System (ADS)

    Jorjiashvili, Nato; Godoladze, Tea; Tvaradze, Nino; Tumanova, Nino

    2016-04-01

    Ground motion prediction models (GMPMs) relate ground motion intensity measures to variables describing earthquake source, path, and site effects. Estimation of expected ground motion is a fundamental earthquake hazard assessment. The most commonly used parameter for attenuation relation is peak ground acceleration or spectral acceleration because this parameter gives useful information for Seismic Hazard Assessment. Since 2003 development of Georgian Digital Seismic Network has started. In this study new GMP models are obtained based on new data from Georgian seismic network and also from neighboring countries. Estimation of models is obtained by classical, statistical way, regression analysis. In this study site ground conditions are additionally considered because the same earthquake recorded at the same distance may cause different damage according to ground conditions. Empirical ground-motion prediction models (GMPMs) require adjustment to make them appropriate for site-specific scenarios. However, the process of making such adjustments remains a challenge. This work presents a holistic framework for the development of a peak ground acceleration (PGA) or spectral acceleration (SA) GMPE that is easily adjustable to different seismological conditions and does not suffer from the practical problems associated with adjustments in the response spectral domain.

  4. Comparison of fundamental natural period of masonry and reinforced concrete buildings retrieved from experimental campaigns performed in Italy, Greece and Spain

    NASA Astrophysics Data System (ADS)

    Nigro, Antonella; Ponzo, Felice C.; Ditommaso, Rocco; Auletta, Gianluca; Iacovino, Chiara; Nigro, Domenico S.; Soupios, Pantelis; García-Fernández, Mariano; Jimenez, Maria-Jose

    2017-04-01

    Aim of this study is the experimental estimation of the dynamic characteristics of existing buildings and the comparison of the related fundamental natural period of the buildings (masonry and reinforced concrete) located in Basilicata (Italy), in Madrid (Spain) and in Crete (Greece). Several experimental campaigns, on different kind of structures all over the world, have been performed in the last years with the aim of proposing simplified relationships to evaluate the fundamental period of buildings. Most of formulas retrieved from experimental analyses provide vibration periods smaller than those suggested by the Italian Seismic Code (NTC2008) and the European Seismic Code (EC8). It is known that the fundamental period of a structure play a key role in the correct estimation of the spectral acceleration for seismic static analyses and to detect possible resonance phenomena with the foundation soil. Usually, simplified approaches dictate the use of safety factors greater than those related to in depth dynamic linear and nonlinear analyses with the aim to cover any unexpected uncertainties. The fundamental period calculated with the simplified formula given by both NTC 2008 and EC8 is higher than the fundamental period measured on the investigated structures in Italy, Spain and Greece. The consequence is that the spectral acceleration adopted in the seismic static analysis may be significantly different than real spectral acceleration. This approach could produces a decreasing in safety factors obtained using linear seismic static analyses. Based on numerical and experimental results, in order to confirm the results proposed in this work, authors suggest to increase the number of numerical and experimental tests considering also the effects of non-structural components and soil during small, medium and strong motion earthquakes. Acknowledgements This study was partially funded by the Italian Department of Civil Protection within the project DPC-RELUIS 2016 - RS4 ''Seismic observatory of structures and health monitoring'' and by the "Centre of Integrated Geomorphology for the Mediterranean Area - CGIAM" within the Framework Agreement with the University of Basilicata "Study, Research and Experimentation in the Field of Analysis and Monitoring of Seismic Vulnerability of Strategic and Relevant Buildings for the purposes of Civil Protection and Development of Innovative Strategies of Seismic Reinforcement".

  5. Natural Gas Hydrates Estimation Using Seismic Inversion and Rock Physics

    NASA Astrophysics Data System (ADS)

    Dutta, N.; Dai, J.; Kleinberg, R.; Xu, H.

    2005-05-01

    Gas hydrate drilling worldwide indicates that the formation of gas hydrates in shallow sediments tends to increase P- and S-wave velocities of the hosting rocks. Rock physics models of gas hydrates provide the links between velocity anomalies and gas hydrate concentration. In this abstract, we evaluate the numerical predictions of some of the major rock physics models of gas hydrates and validate those with well log data from the Mallik and Blake Ridge wells. We find that a model in which the gas hydrate is a part of the rock framework produces results that are consistent with well log data. To enhance the accuracy of seismic estimation, we adopt a five-step, integrated workflow that enables us to identify and quantify gas hydrates in the deepwater Gulf of Mexico (GOM). It includes: 1) Reprocessing conventional 3D seismic data at high resolution using an amplitude-preserving flow with prestack time migration, 2) A detailed stratigraphic evaluation to identify potential hydrate zones, 3) Seismic attribute analysis to further delineate anomalous zones, 4) Full waveform prestack inversion to characterize acoustic properties of gas hydrates in 1D (Mallick, 1995; Mallick, 1999) and map in 3D using hybrid inversion techniques (Dutta, 2002; Mallick and Dutta, 2002), and 5) Quantitative estimation of gas hydrate saturation using rock property models. We illustrate the procedure using 3D seismic data, and estimate gas hydrate saturation in the study area in the GOM.

  6. Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion in the West Coast ShakeAlert System

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Murray, J. R.

    2016-12-01

    Finite-fault source algorithms can greatly benefit earthquake early warning (EEW) systems. Estimates of finite-fault parameters provide spatial information, which can significantly improve real-time shaking calculations and help with disaster response. In this project, we have focused on integrating a finite-fault seismic-geodetic algorithm into the West Coast ShakeAlert framework. The seismic part is FinDer 2, a C++ version of the algorithm developed by Böse et al. (2012). It interpolates peak ground accelerations and calculates the best fault length and strike from template matching. The geodetic part is a C++ version of BEFORES, the algorithm developed by Minson et al. (2014) that uses a Bayesian methodology to search for the most probable slip distribution on a fault of unknown orientation. Ultimately, these two will be used together where FinDer generates a Bayesian prior for BEFORES via the methodology of Minson et al. (2015), and the joint solution will generate estimates of finite-fault extent, strike, dip, best slip distribution, and magnitude. We have created C++ versions of both FinDer and BEFORES using open source libraries and have developed a C++ Application Protocol Interface (API) for them both. Their APIs allow FinDer and BEFORES to contribute to the ShakeAlert system via an open source messaging system, ActiveMQ. FinDer has been receiving real-time data, detecting earthquakes, and reporting messages on the development system for several months. We are also testing FinDer extensively with Earthworm tankplayer files. BEFORES has been tested with ActiveMQ messaging in the ShakeAlert framework, and works off a FinDer trigger. We are finishing the FinDer-BEFORES connections in this framework, and testing this system via seismic-geodetic tankplayer files. This will include actual and simulated data.

  7. MSNoise: A framework for Continuous Seismic Noise Analysis

    NASA Astrophysics Data System (ADS)

    Lecocq, Thomas; Caudron, Corentin; De Plaen, Raphaël; Mordret, Aurélien

    2016-04-01

    MSNoise is an Open and Free Python package known to be the only complete integrated workflow designed to analyse ambient seismic noise and study relative velocity changes (dv/v) in the crust. It is based on state of the art and well maintained Python modules, among which ObsPy plays an important role. To our knowledge, it is officially used for continuous monitoring at least in three notable places: the Observatory of the Piton de la Fournaise volcano (OVPF, France), the Auckland Volcanic Field (New Zealand) and on the South Napa earthquake (Berkeley, USA). It is also used by many researchers to process archive data to focus e.g. on fault zones, intraplate Europe, geothermal exploitations or Antarctica. We first present the general working of MSNoise, originally written in 2010 to automatically scan data archives and process seismic data in order to produce dv/v time series. We demonstrate that its modularity provides a new potential to easily test new algorithms for each processing step. For example, one could experiment new methods of cross-correlation (done by default in the frequency domain), stacking (default is linear stacking, averaging), or dv/v estimation (default is moving window cross-spectrum "MWCS", so-called "doublet"), etc. We present the last major evolution of MSNoise from a "single workflow: data archive to dv/v" to a framework system that allows plugins and modules to be developed and integrated into the MSNoise ecosystem. Small-scale plugins will be shown as examples, such as "continuous PPSD" (à la McNamarra & Buland) or "Seismic Amplitude Ratio Analysis" (Taisne, Caudron). We will also present the new MSNoise-TOMO package, using MSNoise as a "cross-correlation" toolbox and demystifying surface wave tomography ! Finally, the poster will be a meeting point for all those using or willing to use MSNoise, to meet the developer, exchange ideas and wishes !

  8. Seismic hydraulic fracture migration originated by successive deep magma pulses: The 2011-2013 seismic series associated to the volcanic activity of El Hierro Island

    NASA Astrophysics Data System (ADS)

    Díaz-Moreno, A.; Ibáñez, J. M.; De Angelis, S.; García-Yeguas, A.; Prudencio, J.; Morales, J.; Tuvè, T.; García, L.

    2015-11-01

    In this manuscript we present a new interpretation of the seismic series that accompanied eruptive activity off the coast of El Hierro, Canary Islands, during 2011-2013. We estimated temporal variations of the Gutenberg-Richter b value throughout the period of analysis, and performed high-precision relocations of the preeruptive and syneruptive seismicity using a realistic 3-D velocity model. Our results suggest that eruptive activity and the accompanying seismicity were caused by repeated injections of magma from the mantle into the lower crust. These magma pulses occurred within a small and well-defined volume resulting in the emplacement of fresh magma along the crust-mantle boundary underneath El Hierro. We analyzed the distribution of earthquake hypocenters in time and space in order to assess seismic diffusivity in the lower crust. Our results suggest that very high earthquake rates underneath El Hierro represent the response of a stable lower crust to stress perturbations with pulsatory character, linked to the injection of magma from the mantle. Magma input from depth caused large stress perturbations to propagate into the lower crust generating energetic seismic swarms. The absence of any preferential alignment in the spatial pattern of seismicity reinforces our hypothesis that stress perturbation and related seismicity, had diffusive character. We conclude that the temporal and spatial evolution of seismicity was neither tracking the path of magma migration nor it defines the boundaries of magma storage volumes such as a midcrustal sill. Our conceptual model considers pulsatory magma injection from the upper mantle and its propagation along the Moho. We suggest, within this framework, that the spatial and temporal distributions of earthquake hypocenters reflect hydraulic fracturing processes associated with stress propagation due to magma movement.

  9. CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential

    USGS Publications Warehouse

    Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O.

    2006-01-01

    This paper presents a complete methodology for both probabilistic and deterministic assessment of seismic soil liquefaction triggering potential based on the cone penetration test (CPT). A comprehensive worldwide set of CPT-based liquefaction field case histories were compiled and back analyzed, and the data then used to develop probabilistic triggering correlations. Issues investigated in this study include improved normalization of CPT resistance measurements for the influence of effective overburden stress, and adjustment to CPT tip resistance for the potential influence of "thin" liquefiable layers. The effects of soil type and soil character (i.e., "fines" adjustment) for the new correlations are based on a combination of CPT tip and sleeve resistance. To quantify probability for performancebased engineering applications, Bayesian "regression" methods were used, and the uncertainties of all variables comprising both the seismic demand and the liquefaction resistance were estimated and included in the analysis. The resulting correlations were developed using a Bayesian framework and are presented in both probabilistic and deterministic formats. The results are compared to previous probabilistic and deterministic correlations. ?? 2006 ASCE.

  10. Constitutive law for seismicity rate based on rate and state friction: Dieterich 1994 revisited.

    NASA Astrophysics Data System (ADS)

    Heimisson, E. R.; Segall, P.

    2017-12-01

    Dieterich [1994] derived a constitutive law for seismicity rate based on rate and state friction, which has been applied widely to aftershocks, earthquake triggering, and induced seismicity in various geological settings. Here, this influential work is revisited, and re-derived in a more straightforward manner. By virtue of this new derivation the model is generalized to include changes in effective normal stress associated with background seismicity. Furthermore, the general case when seismicity rate is not constant under constant stressing rate is formulated. The new derivation provides directly practical integral expressions for the cumulative number of events and rate of seismicity for arbitrary stressing history. Arguably, the most prominent limitation of Dieterich's 1994 theory is the assumption that seismic sources do not interact. Here we derive a constitutive relationship that considers source interactions between sub-volumes of the crust, where the stress in each sub-volume is assumed constant. Interactions are considered both under constant stressing rate conditions and for arbitrary stressing history. This theory can be used to model seismicity rate due to stress changes or to estimate stress changes using observed seismicity from triggered earthquake swarms where earthquake interactions and magnitudes are take into account. We identify special conditions under which influence of interactions cancel and the predictions reduces to those of Dieterich 1994. This remarkable result may explain the apparent success of the model when applied to observations of triggered seismicity. This approach has application to understanding and modeling induced and triggered seismicity, and the quantitative interpretation of geodetic and seismic data. It enables simultaneous modeling of geodetic and seismic data in a self-consistent framework. To date physics-based modeling of seismicity with or without geodetic data has been found to give insight into various processes related to aftershocks, VT and injection-induced seismicity. However, the role of various processes such as earthquake interactions and magnitudes and effective normal stress has been unclear. The new theory presented resolves some of the pertinent issues raised in the literature with application of the Dieterich 1994 model.

  11. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    NASA Astrophysics Data System (ADS)

    Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François

    2012-09-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic response at the free surface, depending on the energy dissipation rate. Free surface time histories, stress-strain hysteresis loops and in-depth profiles of octahedral stress and strain are estimated for each soil column. The combination of three separate 1D-1C non-linear analyses is compared to the proposed 1D-3C approach, evidencing the influence of the 3C-polarization and the 3-D loading path on strong seismic motions.

  12. MSNoise: Not Only dv/v! A Framework for Continuous Seismic Data Analysis

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Lecocq, T.; De Plaen, R.; Caudron, C.; Brenguier, F.

    2015-12-01

    MSNoise is an Open and Free Python package known to be the only complete integrated workflow designed to analyse ambient seismic noise and study relative velocity changes (dv/v) in the crust. It is based on state of the art and well maintained Python modules, among which ObsPy plays an important role. To our knowledge, it is officially used for continuous monitoring at least in three notable places: the Observatory of the Piton de la Fournaise volcano (OVPF, France), the Auckland Volcanic Field (New Zealand) and on the South Napa earthquake (Berkeley, USA). It is also used by many researchers to process archive data, e.g. focussing on fault zones, intraplate Europe, geothermal exploitations or Antarctica. We first present the general working of MSNoise, originally written in 2010 to automatically scan data archives and process seismic data in order to produce dv/v time series. We demonstrate that its modularity provides a new potential to easily test new algorithms for each processing step. For example, to experiment new methods of cross-correlation (done by default in the frequency domain), stacking (default is linear stacking, averaging), or dt/t or dv/v estimation (default is moving window cross-spectrum "MWCS", so-called "doublet"), etc. Finally, we present the last major evolution of MSNoise, from a "single workflow: data archive to dv/v" to a framework system that allows plugins and modules to be developed and integrated into the MSNoise ecosystem. Examples of plugins in development such as continuous PPSD (à la McNamarra & Buland) or continuous RSAM/SSAM (Endo & Murray, Stephens) will be presented.

  13. SKS splitting results in central Italy and Dinaric region inside the AlpArray-CASE project

    NASA Astrophysics Data System (ADS)

    Salimbeni, S.; Prevolnik, S.; Pondrelli, S.; Molinari, I.; Stipcevic, J.; Kissling, E.; Šipka, V.; Herak, M.

    2017-12-01

    In the framework of the AlpArray project (AlpArray Seismic Network, 2015), the complementary "Central Adriatic Seismic Experiment" (CASE; AlpArray Seismic Network, 2016) was established as collaboration between ETH Zürich, University of Zagreb, INGV and Republic Hydrometeorological Service of Republic of Srpska. The CASE project consists of 9 temporary stations, installed in October 2016, located in Bosnia and Herzegovina, Croatia and Italy. Temporary broadband seismic stations, with the permanent stations present in the region shared by the Croatian Seismological Service and INGV, make an almost continuous transect cutting the Central-Southern Appenines, the central Adriatic region, central External Dinarides and finishing at the eastern margin of the Internal Dinarides. The presence of the the Apenninic and Dinarides slabs, verging in opposite directions and plunging along the opposite sides of the Adriatic plate, make this area a peculiar spot to understand the complex dynamic of the region. Various tomographic images (e.g. Bijwaard and Spakman, 2000; Piromallo and Morelli, 2003) shows not continuous slabs under the Appenines and the Dinarides, suggesting the presence of slab-gaps right beneath the region covered by the CASE experiment. Here we present the preliminary results of the SKS splitting analysis performed on the data recorded by the temporary and permanent seismic stations included in the CASE project. The new results, in combination with previous interpretation, will provide clues about how Northern and Southern Apennines are connected at depth, how the slab rollback of the Apennines thrust belt acted and if and how the Apennines are in relation with the Dinaric region. Together with the measurements from previous studies and from the AlpArray project, our new data will support the mapping of the seismic anisotropy deformation pattern from Western Alps to Pannonian region.

  14. Comparison of the Data Products from Different Instrument Types with Application to Induced Seismic Monitoring Framework

    NASA Astrophysics Data System (ADS)

    Yenier, E.; Baturan, D.; Karimi, S.; Moores, A. O.; Spriggs, N.

    2016-12-01

    Earthquakes may be induced by man-made activity in the vicinity of critically-stressed fault segments. A number of earthquakes characterized as induced with magnitudes M>3 were recorded in British Columbia, Alberta, Oklahoma and Ohio, since 2013. In response to growing induced seismicity in North America, many jurisdictions have mandated near real-time seismic monitoring around operation sites. The data products from monitoring networks are used as drivers of operational traffic light systems designed to mitigate risks associated with induced seismicity. Most traffic light protocols developed to date use staged thresholds of earthquake magnitudes. Additionally, ground motions, which are used to estimate the impact of earthquakes and specify seismic hazard, have been proposed as an enhancement to the existing protocols. There are several challenges and options to consider at the time of planning and designing a monitoring network, the most important of which is the choice of ground motion sensing technology. In order to accurately estimate event source parameters and ground motions, monitoring instruments have to record and image the low-frequency plateau and the corner frequency of the anticipated event spectrum. A flat response over a wide frequency range with a wide dynamic range is desired for a maximum benefit from ground motion products. This study evaluates the performance of three types of instruments in terms of their suitability for induced seismic monitoring (ISM): broadband seismometers, accelerometers and geophones. Each instrument type is assessed in terms of self-noise, frequency response and clip level using instrument specifications and real-world ISM application data. The impact of each sensing technology on key ISM network performance criteria, event magnitude estimations and ground motion measurements are examined.

  15. Quantitative morphometric analysis for the tectonic characterisation of northern Tunisia.

    NASA Astrophysics Data System (ADS)

    Camafort, Miquel; Pérez-Peña, José Vicente; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Azañón, José Miguel; Melki, Fetheddine; Ouadday, Mohamed

    2016-04-01

    Northern Tunisia is characterized by low deformation rates and low to moderate seismicity. Although instrumental seismicity reaches maximum magnitudes of Mw 5.5, some historical earthquakes have occurred with catastrophic consequences in this region. Aiming to improve our knowledge of active tectonics in Tunisia, we carried out both a quantitative morphometric analysis and field study in the north-western region. We applied different morphometric tools, like river profiles, knickpoint analysis, hypsometric curves and integrals and drainage pattern anomalies in order to differentiate between zones with high or low recent tectonic activity. This analysis helps identifying uplift and subsidence zones, which we relate to fault activity. Several active faults in a sparse distribution were identified. A selected sector was studied with a field campaign to test the results obtained with the quantitative analysis. During the fieldwork we identified geological evidence of recent activity and a considerable seismogenic potential along El Alia-Teboursouk (ETF) and Dkhila (DF) faults. The ETF fault could be responsible of one of the most devastating historical earthquakes in northern Tunisia that destroyed Utique in 412 A.D. Geological evidence include fluvial terraces folded by faults, striated and cracked pebbles, clastic dikes, sand volcanoes, coseismic cracks, etc. Although not reflected in the instrumental seismicity, our results support an important seismic hazard, evidenced by the several active tectonic structures identified and the two seismogenic faults described. After obtaining the current active tectonic framework of Tunisia we discuss our results within the western Mediterranean trying to contribute to the understanding of the western Mediterranean tectonic context. With our results, we suggest that the main reason explaining the sparse and scarce seismicity of the area in contrast with the adjacent parts of the Nubia-Eurasia boundary is due to its extended continental platform and its lack of proto-oceanic crust northward.

  16. Induced seismicity response of hydraulic fracturing: results of a multidisciplinary monitoring at the Wysin site, Poland.

    PubMed

    López-Comino, J A; Cesca, S; Jarosławski, J; Montcoudiol, N; Heimann, S; Dahm, T; Lasocki, S; Gunning, A; Capuano, P; Ellsworth, W L

    2018-06-05

    Shale oil and gas exploitation by hydraulic fracturing experienced a strong development worldwide over the last years, accompanied by a substantial increase of related induced seismicity, either consequence of fracturing or wastewater injection. In Europe, unconventional hydrocarbon resources remain underdeveloped and their exploitation controversial. In UK, fracturing operations were stopped after the M w 2.3 Blackpool induced earthquake; in Poland, operations were halted in 2017 due to adverse oil market conditions. One of the last operated well at Wysin, Poland, was monitored independently in the framework of the EU project SHEER, through a multidisciplinary system including seismic, water and air quality monitoring. The hybrid seismic network combines surface mini-arrays, broadband and shallow borehole sensors. This paper summarizes the outcomes of the seismological analysis of these data. Shallow artificial seismic noise sources were detected and located at the wellhead active during the fracturing stages. Local microseismicity was also detected, located and characterised, culminating in two events of M w 1.0 and 0.5, occurring days after the stimulation in the vicinity of the operational well, but at very shallow depths. A sharp methane peak was detected ~19 hours after the M w 0.5 event. No correlation was observed between injected volumes, seismicity and groundwater parameters.

  17. Development of GIS Database for New Madrid Seismic Zone

    NASA Astrophysics Data System (ADS)

    Birhanemeskel, Y. T.; Vlahovic, G.; Arroucau, P.; Malhotra, R.; Powell, C. A.

    2010-12-01

    The New Madrid Seismic Zone (NMSZ) of the central Mississippi river valley is currently the most seismically active region in the central and eastern United States. A number of earthquakes occurred in NMSZ between 1811 and 1812, of which three major earthquakes with magnitudes greater than 7 destroyed the town of New Madrid, Missouri. Intraplate seismicity like the New Madrid seismicity is difficult to explain in the framework of plate tectonics and requires analyzing various geological, geophysical and seismological data to better understand its causes. ArcGIS® 9.3.1 software with license type ArcEditor was used to build a geodatabase containing multiple layers that are useful for the study of intraplate seismicity. These layers include earthquake locations, gravity and magnetic anomalies, lithology, topography, velocity anomalies as resolved by arrival time tomography and geological structures like intrusions and faults. The data for these layers were obtained from the U.S Geological Survey, from the Center for Earthquake Research and Information at the University of Memphis, TN, and from paper maps. Zipped files of various formats (.xls, .shp, .txt, .tar, etc) were downloaded and converted to a format compatible with ArcGIS. To keep compatibility of the data, editing of the attribute table of the raw data was completed before importing the data to Arc Catalog. Geo-referencing and digitizing processes were also done to import layers of contour lines and geological structures with correct vector information from papers maps. Layers were clipped in order to make sure that they fit the spatial extent of the study area (from 34°S to 40°N in latitude and from 93°W to 86°W in longitude). The New Madrid seismicity will be analyzed by looking for possible relationships that exist between the data layers using various spatial and geostatistical tools. For example the distribution of earthquakes will be analyzed with respect to the potential field and velocity anomalies. In addition to layers already imported in the database stream (river) layer will also be added and database will be continuously updated as new research results become available.

  18. Seismic intensity monitoring: from mature basins in the North Sea to sample-scale porosity measurements.

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Sketsiou, Panayiota

    2017-04-01

    We plan the application of a joint velocity, attenuation, and scattering tomography to the North Sea basins. By using seismic phases and intensities from previous passive and active surveys our aim is to image and monitor fluids under the subsurface. Seismic intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the volcanoes and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island), continental calderas (Campi Flegrei) and Quaternary Volcanoes (Mount. St. Helens) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability, with as key output a novel computational code with strong commercial potential. Data are readily available in the framework of the NERC CDT Oil & Gas project.

  19. An Application of the SSHAC Level 3 Process to the Probabilistic Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppersmith , Kevin J.; Bommer, Julian J.; Bryce, Robert W.

    Under the sponsorship of the US Department of Energy (DOE) and the electric utility Energy Northwest, the Pacific Northwest National Laboratory (PNNL) is conducting a probabilistic seismic hazard analysis (PSHA) within the framework of a SSHAC Level 3 procedure (Senior Seismic Hazard Analysis Committee; Budnitz et al., 1997). Specifically, the project is being conducted following the guidelines and requirements specified in NUREG-2117 (USNRC, 2012b) and consistent with approach given in the American Nuclear Standard ANSI/ANS-2.29-2008 Probabilistic Seismic Hazard Analysis. The collaboration between DOE and Energy Northwest is spawned by the needs of both organizations for an accepted PSHA with highmore » levels of regulatory assurance that can be used for the design and safety evaluation of nuclear facilities. DOE committed to this study after performing a ten-year review of the existing PSHA, as required by DOE Order 420.1C. The study will also be used by Energy Northwest as a basis for fulfilling the NRC’s 10CFR50.54(f) requirement that the western US nuclear power plants conduct PSHAs in conformance with SSHAC Level 3 procedures. The study was planned and is being carried out in conjunction with a project Work Plan, which identifies the purpose of the study, the roles and responsibilities of all participants, tasks and their associated schedules, Quality Assurance (QA) requirements, and project deliverables. New data collection and analysis activities are being conducted as a means of reducing the uncertainties in key inputs to the PSHA. It is anticipated that the results of the study will provide inputs to the site response analyses at multiple nuclear facility sites within the Hanford Site and at the Columbia Generating Station.« less

  20. Icequake Tremors During Glacier Calving (Invited)

    NASA Astrophysics Data System (ADS)

    Walter, F.; O'Neel, S.; Bassis, J. N.; Fricker, H. A.; Pfeffer, W. T.

    2009-12-01

    Calving poses the largest uncertainty in the prediction of sea-level rise in response to global climate changes. A physically-based calving law has yet to be successfully implemented into ice-sheet models in order to adequately describe the mass loss of tidewater glaciers and ice shelves. Observations from a variety of glacial environments are needed in order to develop a theoretical framework for glacier calving. To this end, several recent investigations on glacier calving have involved the recording of seismic waves. In this context, the study of icequakes has been of high value, as it allows for detecting and monitoring of calving activity. However, there are unanswered fundamental questions concerning source aspects of calving-related seismic activity, such as focal depths of icequakes preceding and accompanying calving events, failure mechanisms and the role of fracturing and crevasse formation upstream from the glacier terminus. Icequake sources associated with opening of surface crevasses are well understood. As glacier ice is often homogeneous these waveforms are relatively simple and can be modeled using the moment tensor representation of a seismic point source. Calving-related seismicity, on the other hand, is more complex, and occurs near the terminus of a glacier, which is often highly heterogeneous due to pervasive crevassing. The signals last up to several minutes or even hours and exhibit both low-frequency (1-3Hz) as well as high-frequency (10-20Hz) energy or tremor-like waveforms. These characteristics can be explained by finite source properties, such as connecting and migrating fractures and repeated slip across contact planes between two bodies of ice. In this presentation we discuss sources of calving-related seismicity by comparing seismic calving records from several different glacial settings. We consider icequakes recorded during tidewater calving at Columbia Glacier, Alaska, during lake calving on Gornergletscher, Switzerland, and during ice shelf calving in Antarctica. The similarities and differences in seismic signatures of these different calving settings provide valuable insights and will be helpful in the theoretical treatment of glacier calving.

  1. Seismic Activity offshore Martinique and Dominique islands (Lesser Antilles subduction zone)

    NASA Astrophysics Data System (ADS)

    Ruiz Fernandez, Mario; Galve, Audrey; Monfret, Tony; Charvis, Philippe; Laigle, Mireille; Flueh, Ernst; Gallart, Josep; Hello, Yann

    2010-05-01

    In the framework of the European project Thales was Right, two seismic surveys (Sismantilles II and Obsantilles) were carried out to better constrain the lithospheric structure of the Lesser Antilles subduction zone, its seismic activity and to evaluate the associated seismic hazards. Sismantilles II experiment was conducted in January, 2007 onboard R/V Atalante (IFREMER). A total of 90 OBS belonging to Géoazur, INSU-CNRS and IFM-Geomar were deployed on a regular grid, offshore Antigua, Guadeloupe, Dominique and Martinique islands. During the active part of the survey, more than 2500 km of multichannel seismic profiles were shot along the grid lines. Then the OBS remained on the seafloor continuously recording for the seismic activity for approximately 4 months. On April 2007 Obsantilles experiment, carried out onboard R/V Antea (IRD), was focused on the recovery of those OBS and the redeployment of 28 instruments (Géoazur OBS) off Martinique and Dominica Islands for 4 additional months of continuous recording of the seismicity. This work focuses on the analysis of the seismological data recorded in the southern sector of the study area, offshore Martinique and Dominique. During the two recording periods, extending from January to the end of August 2007, more than 3300 seismic events were detected in this area. Approximately 1100 earthquakes had enough quality to be correctly located. Station corrections, obtained from multichannel seismic profiles, were introduced to each OBS to take in to account the sedimentary cover and better constrain the hypocentral determinations. Results show events located at shallower depths in the northern sector of the array, close to the Tiburon Ridge, where the seismic activity is mainly located between 20 to 40 km depth. In the southern sector, offshore Martinique, hypocenters become deeper, ranging to 60 km depth and dipping to the west. Focal solutions have also been obtained using the P wave polarities of the best azimuthally constrained earthquakes (Gap smaller than 90°). Focal mechanisms also reveal some differences between the northern and southern sector of the array. Whereas in the southern sector most of the analysed events show purely reverse fault solutions, in the northern area events present strike slip and normal fault solutions and could be related to intraplate deformation.

  2. Upside-down sequence stratigraphy, sandy highstands, and muddy prograding complexes in the Surma Basin, Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radovich, B.J.; Hoffman, M.W.; Perlmutter, M.A.

    1995-12-31

    Several large, TCF-size gas fields have been discovered in the Surma Basin, Bangladesh. Detailed sequence stratigraphy was performed on log and seismic data to study these fields and future potential of the area. The prospective section is Upper Miocene sands caught up in a series of younger compressional fault-related folds caused by the Indian Plate colliding with S.E. Asia in the late Tertiary. World-class gas/water contacts are observed on the seismic data over the fields. Sequence stratigraphic techniques reveal an ordered, predictable stratigraphic architecture of sandy highstands and transgressions, and muddy aggraded prograding complexes with deep incisions at each sequencemore » boundary. This serves as a framework to understand the hydrocarbon accumulations in the area. Cyclostratigraphy is used to understand the unusual lithology distributions in the basin.« less

  3. Ambient seismic noise monitoring of the Super-Sauze landslide from a very dense temporary seismic array

    NASA Astrophysics Data System (ADS)

    Chtouki, Toufik; Vergne, Jerome; Provost, Floriane; Malet, Jean-Philippe; Burtin, Arnaud; Hibert, Clément

    2017-04-01

    The Super-Sauze landslide is located on the southern part of the Barcelonnette Basin (French Alps) and has developed in a soft clay-shale environment. It is one of the four sites continuously monitored through a wide variety of geophysical and hydro-geological techniques in the framework of the OMIV French national landslide observatory. From early June to mid-July 2016, a temporary dense seismic array has been installed in the most active part of the landslide and at its surroundings. 50 different sites with an average inter-station distance of 50m have been instrumented with 150 miniaturized and autonomous seismic stations (Zland nodes), allowing a continuous record of the seismic signal at frequencies higher than 0.2Hz over an almost regular grid. Concurrently, a Ground-Based InSAR device allowed for a precise and continuous monitoring of the surface deformation. Overall, this experiment is intended to better characterize the spatio-temporal evolution of the deformation processes related to various type of forcing. We analyze the continuous records of ambient seismic noise recorded by the dense array. Using power spectral densities, we characterize the various types of natural and anthropogenic seismic sources, including the effect of water turbulence and bedload transport in the small nearby torrents. We also compute the correlation of the ambient diffuse seismic noise in various frequency bands for the 2448 station pairs to recover the empirical Green functions between them. The temporal evolution of the coda part of these noise correlation functions allows monitoring and localizing shear wave velocity variations in the sliding mass. Here we present some preliminary results of this analysis and compare the seismic variations to meteorological data and surface deformation.

  4. Implementation of equity in resource allocation for regional earthquake risk mitigation using two-stage stochastic programming.

    PubMed

    Zolfaghari, Mohammad R; Peyghaleh, Elnaz

    2015-03-01

    This article presents a new methodology to implement the concept of equity in regional earthquake risk mitigation programs using an optimization framework. It presents a framework that could be used by decisionmakers (government and authorities) to structure budget allocation strategy toward different seismic risk mitigation measures, i.e., structural retrofitting for different building structural types in different locations and planning horizons. A two-stage stochastic model is developed here to seek optimal mitigation measures based on minimizing mitigation expenditures, reconstruction expenditures, and especially large losses in highly seismically active countries. To consider fairness in the distribution of financial resources among different groups of people, the equity concept is incorporated using constraints in model formulation. These constraints limit inequity to the user-defined level to achieve the equity-efficiency tradeoff in the decision-making process. To present practical application of the proposed model, it is applied to a pilot area in Tehran, the capital city of Iran. Building stocks, structural vulnerability functions, and regional seismic hazard characteristics are incorporated to compile a probabilistic seismic risk model for the pilot area. Results illustrate the variation of mitigation expenditures by location and structural type for buildings. These expenditures are sensitive to the amount of available budget and equity consideration for the constant risk aversion. Most significantly, equity is more easily achieved if the budget is unlimited. Conversely, increasing equity where the budget is limited decreases the efficiency. The risk-return tradeoff, equity-reconstruction expenditures tradeoff, and variation of per-capita expected earthquake loss in different income classes are also presented. © 2015 Society for Risk Analysis.

  5. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    NASA Astrophysics Data System (ADS)

    Dixit, Madan M.; Kumar, Sanjay; Catchings, R. D.; Suman, K.; Sarkar, Dipankar; Sen, M. K.

    2014-08-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  6. Structural development of the Dieppe-Hampshire Basin (Eastern English Channel): Contribution of new seismic data

    NASA Astrophysics Data System (ADS)

    Jollivet-Castelot, Martin; Gaullier, Virginie; Paquet, Fabien; Chanier, Frank; Thinon, Isabelle; Lasseur, Eric; Averbuch, Olivier

    2017-04-01

    The Dieppe-Hampshire Basin is a Cenozoic basin crossing the eastern English Channel, between SE of England and the French coast. This basin and its borders developed during the Cenozoic, a period of overall tectonic inversion, in response to the opening of the North Atlantic Ocean and Pyrenean-alpine deformation episodes. Both extensional and subsequent compressional deformations within this area involve the reactivation of older major regional structures, inherited from the Variscan Orogeny. However, the detailed structural development of the Dieppe-Hampshire Basin still remains poorly constrained, as well as the detailed stratigraphic framework of Cenozoic series, notably in terms of seismic stratigraphy and sequence stratigraphy. New very high resolution seismic data, acquired during the oceanographic cruise "TREMOR" (R/V "Côtes de la Manche", 2014, 1800 kilometers of Sparker profiles), and bathymetric data from SHOM and UKHO, have allowed to image the sedimentary filling and tectonic structures of the Dieppe-Hampshire Basin and adjacent areas. The interpretation was first focused on a seismic facies analysis that led to evidence numerous unconformities and seismic units ranging from the Upper Cretaceous to the Bartonian (Late Eocene). The interpretation of the seismic profiles also allowed to map precisely many tectonic features, as faults, folds and monoclinal flexures. Thanks to the new data, we especially imaged the complexity of the deformation within the highest tectonized zones of the region, along the Nord-Baie de Seine Basin and offshore the Boulonnais coast with an unprecedented resolution. The expression of the deformation appears to be very different between the Mesozoic and the Cenozoic series, with prevailing folding affecting the Cenozoic strata whereas the Mesozoic series are predominantly faulted. This deformation pattern illustrates two major structural trends, respectively E-W and NW-SE directed, both syn- to post-Bartonian in age. The first one is consistent in age and orientation with a late Pyrenean or early Alpine deformation phase, while the second one appears to have a different origin, in regards to the overall geodynamic framework. We suggest that the major heterogeneities of crustal blocks underlying the basin played an important role on the development and orientations of these deformations. These preliminary results will be improved soon thanks to a new cruise, "TREMOR 2" (2017), which will be focused on the acquisition of new VHR seismic lines, bathymetric data and coring.

  7. OGS improvements in the year 2011 in running the Northeastern Italy Seismic Network

    NASA Astrophysics Data System (ADS)

    Bragato, P. L.; Pesaresi, D.; Saraò, A.; Di Bartolomeo, P.; Durı, G.

    2012-04-01

    The Centro di Ricerche Sismologiche (CRS, Seismological Research Center) of the Istituto Nazionale di Oceanografia e di Geofisica Sperimentale (OGS, Italian National Institute for Oceanography and Experimental Geophysics) in Udine (Italy) after the strong earthquake of magnitude M=6.4 occurred in 1976 in the Italian Friuli-Venezia Giulia region, started to operate the Northeastern Italy Seismic Network: it currently consists of 15 very sensitive broad band and 21 simpler short period seismic stations, all telemetered to and acquired in real time at the OGS-CRS data center in Udine. Real time data exchange agreements in place with other Italian, Slovenian, Austrian and Swiss seismological institutes lead to a total number of about 100 seismic stations acquired in real time, which makes the OGS the reference institute for seismic monitoring of Northeastern Italy. Since 2002 OGS-CRS is using the Antelope software suite on several workstations plus a SUN Cluster as the main tool for collecting, analyzing, archiving and exchanging seismic data, initially in the framework of the EU Interreg IIIA project "Trans-national seismological networks in the South-Eastern Alps". SeisComP is also used as a real time data exchange server tool. In order to improve the seismological monitoring of the Northeastern Italy area, at OGS-CRS we tuned existing programs and created ad hoc ones like: a customized web server named PickServer to manually relocate earthquakes, a script for automatic moment tensor determination, scripts for web publishing of earthquake parametric data, waveforms, state of health parameters and shaking maps, noise characterization by means of automatic spectra analysis, and last but not least scripts for email/SMS/fax alerting. The OGS-CRS Real Time Seismological website (RTS, http://rts.crs.inogs.it/) operative since several years was initially developed in the framework of the Italian DPC-INGV S3 Project: the RTS website shows classic earthquake locations parametric data plus ShakeMap and moment tensor information. At OGS-CRS we also spent a considerable amount of efforts in improving the long-period performances of broadband seismic stations, either by carrying out full re-installations and/or applying thermal insulations to the seismometers: more examples of PSD plots of the PRED broad band seismic station installation in the cave tunnel of Cave del Predil using a Quanterra Q330HR high resolution digitizer and a Sterckeisen STS-2 broadband seismometer will be illustrated. Efforts in strengthening the reliability of data links, exploring the use of redundant satellite/radio/GPRS links will also be shown.

  8. Data Quality Control of the French Permanent Broadband Network in the RESIF Framework

    NASA Astrophysics Data System (ADS)

    Grunberg, Marc; Lambotte, Sophie; Engels, Fabien; Dretzen, Remi; Hernandez, Alain

    2014-05-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, a new information system is being setting up, allowing the improvement of the management and the distribution of high quality data from the different elements of RESIF and the associated networks. Within this information system, EOST (in Strasbourg) is in charge of collecting real-time permanent broadband seismic waveform, and performing Quality Control on these data. The real-time and validated data set are pushed to the French National Distribution Center (Isterre/Grenoble) in order to make them publicly available. Furthermore EOST hosts the BCSF-ReNaSS, in charge of the French metropolitan seismic bulletin. This allows to benefit from some high-end quality control based on the national and world-wide seismicity. Here we present first the real-time seismic data flow from the stations of the French National Broad Band Network to EOST, and then, the data Quality Control procedures that were recently installed, including some new developments. The data Quality Control consists in applying a variety of subprocesses to check the consistency of the whole system and process from the stations to the data center. This allows us to verify that instruments and data transmission are operating correctly. Moreover analysis of the ambient noise helps to characterize intrinsic seismic quality of the stations and to identify other kind of disturbances. The deployed Quality Control consist in a pipeline that starts with low-level procedures : check the real-time miniseed data file (file naming convention, data integrity), check for inconsistencies between waveform and meta-data (channel name, sample rate, etc.), compute waveform statistics (data availability, gap/overlap, mean, rms, time quality, spike). It is followed by some high-level procedures such as : power spectral density computation (PSD), STA/LTA computation to be correlated to the seismicity, phases picking and stations magnitudes discrepancies. The results of quality control is visualized through a web interface. This latter gathers data from different information systems to provide a global view on last events that could impact the data (like intervention on site or seismic events, etc.). This work is still an ongoing project. We intend to add more sophisticated procedures to enhanced our data Quality Control. Among them, we will deploy a seismic moment tensor inversion tool for amplitude, time and polarity control and a noise correlation procedure for time drift detections.

  9. Analysis of induced seismicity in geothermal reservoirs – An overview

    USGS Publications Warehouse

    Zang, Arno; Oye, Volker; Jousset, Philippe; Deichmann, Nicholas; Gritto, Roland; McGarr, Arthur F.; Majer, Ernest; Bruhn, David

    2014-01-01

    In this overview we report results of analysing induced seismicity in geothermal reservoirs in various tectonic settings within the framework of the European Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs (GEISER) project. In the reconnaissance phase of a field, the subsurface fault mapping, in situ stress and the seismic network are of primary interest in order to help assess the geothermal resource. The hypocentres of the observed seismic events (seismic cloud) are dependent on the design of the installed network, the used velocity model and the applied location technique. During the stimulation phase, the attention is turned to reservoir hydraulics (e.g., fluid pressure, injection volume) and its relation to larger magnitude seismic events, their source characteristics and occurrence in space and time. A change in isotropic components of the full waveform moment tensor is observed for events close to the injection well (tensile character) as compared to events further away from the injection well (shear character). Tensile events coincide with high Gutenberg-Richter b-values and low Brune stress drop values. The stress regime in the reservoir controls the direction of the fracture growth at depth, as indicated by the extent of the seismic cloud detected. Stress magnitudes are important in multiple stimulation of wells, where little or no seismicity is observed until the previous maximum stress level is exceeded (Kaiser Effect). Prior to drilling, obtaining a 3D P-wave (Vp) and S-wave velocity (Vs) model down to reservoir depth is recommended. In the stimulation phase, we recommend to monitor and to locate seismicity with high precision (decametre) in real-time and to perform local 4D tomography for velocity ratio (Vp/Vs). During exploitation, one should use observed and model induced seismicity to forward estimate seismic hazard so that field operators are in a position to adjust well hydraulics (rate and volume of the fluid injected) when induced events start to occur far away from the boundary of the seismic cloud.

  10. The contribution of the Global Change Observatory Central Asia to seismic hazard and risk assessment in the Central Asian region

    NASA Astrophysics Data System (ADS)

    Parolai, S.; Bindi, D.; Haberland, C. A.; Pittore, M.; Pilz, M.; Rosenau, M.; Schurr, B.; Wieland, M.; Yuan, X.

    2012-12-01

    Central Asia has one of the world's highest levels of earthquake hazard, owing to its exceptionally high deformation rates. Moreover, vulnerability to natural disasters in general is increasing, due to rising populations and a growing dependence on complex lifelines and technology. Therefore, there is an urgent need to undertake seismic hazard and risk assessment in this region, while at the same time improving upon existing methodologies, including the consideration of temporal variability in the seismic hazard, and in structural and social vulnerability. Over the last few years, the German Research Center for Geosciences (GFZ), in collaboration with local partners, has initiated a number of scientific activities within the framework of the Global Change Observatory Central Asia (GCO-CA). The work is divided into projects with specific concerns: - The installation and maintenance of the Central-Asian Real-time Earthquake MOnitoring Network (CAREMON) and the setup of a permanent wireless mesh network for structural health monitoring in Bishkek. - The TIPAGE and TIPTIMON projects focus on the geodynamics of the Tien-Shan, Pamir and Hindu Kush region, the deepest and most active intra-continental subduction zone in the world. The work covers time scales from millions of years to short-term snapshots based on geophysical measurements of seismotectonic activity and of the physical properties of the crust and upper mantle, as well as their coupling with other surface processes (e.g., landslides). - Existing risk analysis methods assume time-independent earthquake hazard and risk, although temporal changes are likely to occur due to, for example, co- and post-seismic changes in the regional stress field. We therefore aim to develop systematic time-dependent hazard and risk analysis methods in order to undertake the temporal quantification of earthquake activity (PROGRESS). - To improve seismic hazard assessment for better loss estimation, detailed site effects studies are necessary. Temporary seismic networks have been installed in several Central Asian cities (Bishkek and Karakol, Kyrgyzstan; Dushanbe, Tajikistan; Tashkent, Uzbekistan) within the framework of the Earthquake Model Central Asia (EMCA), a regional program of the Global Earthquake Model (GEM). The empirically estimated site effects have already helped to improve real-time risk scenarios for Bishkek and will be applied to other major cities. - A crucial requirement for disaster risk reduction involves the analysis of the vulnerability of existing building inventories. Whereas traditional approaches are very time- and cost-consuming, and even impossible given the high rate of urbanization in Central Asian capitals, our integrated approach is based on satellite remote sensing and ground-based omni-directional imaging, providing building inventories and thus structural vulnerability over large areas (EMCA, GEM-IDCT). All mentioned activities are carried out within the framework of cooperation between GFZ and regional national institutes, in particular the Central Asian Institute for Applied Geosciences. Altogether, this comprehensive and long-term risk analyses and research program will lead to a better understanding of the coupling of endogene and exogene processes and the identification of their impact on society.

  11. Scalable Metadata Management for a Large Multi-Source Seismic Data Repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaylord, J. M.; Dodge, D. A.; Magana-Zook, S. A.

    In this work, we implemented the key metadata management components of a scalable seismic data ingestion framework to address limitations in our existing system, and to position it for anticipated growth in volume and complexity. We began the effort with an assessment of open source data flow tools from the Hadoop ecosystem. We then began the construction of a layered architecture that is specifically designed to address many of the scalability and data quality issues we experience with our current pipeline. This included implementing basic functionality in each of the layers, such as establishing a data lake, designing a unifiedmore » metadata schema, tracking provenance, and calculating data quality metrics. Our original intent was to test and validate the new ingestion framework with data from a large-scale field deployment in a temporary network. This delivered somewhat unsatisfying results, since the new system immediately identified fatal flaws in the data relatively early in the pipeline. Although this is a correct result it did not allow us to sufficiently exercise the whole framework. We then widened our scope to process all available metadata from over a dozen online seismic data sources to further test the implementation and validate the design. This experiment also uncovered a higher than expected frequency of certain types of metadata issues that challenged us to further tune our data management strategy to handle them. Our result from this project is a greatly improved understanding of real world data issues, a validated design, and prototype implementations of major components of an eventual production framework. This successfully forms the basis of future development for the Geophysical Monitoring Program data pipeline, which is a critical asset supporting multiple programs. It also positions us very well to deliver valuable metadata management expertise to our sponsors, and has already resulted in an NNSA Office of Defense Nuclear Nonproliferation commitment to a multi-year project for follow-on work.« less

  12. The central branch of the North Anatolian Fault In The Southern Marmara Sea: Evidence for a distributed, Holocene-active fault system

    NASA Astrophysics Data System (ADS)

    Barın, Burcu; Okay, Seda; Çifçi, Günay; Dondurur, Derman; Cormier, Marie Helene; Sorlien, Christopher; Meriç İlkimen, Elif

    2015-04-01

    The North Anatolian Fault (NAF) is a major right-lateral transform fault in northern Turkey that branches westward into several strands in the vicinity of the Sea of Marmara. The main northern branch bisects the Marmara Sea from east to west, and seismic reflection profiles acquired over the past 15 years have revealed its complex geometry. Further, the several basins that developed along that branch record stratigraphic sequences that provide the needed framework to interpret the relative timing of tectonic deformation in the Marmara Sea. In contrast, the central branch, which snakes across the shallow southern shelf of the Marmara Sea, has been much less investigated. Here, we analyze a comprehensive dataset of high-resolution multi-channel, sparker, and CHIRP seismic profiles, which were collected with the facilities of Seismic Laboratory (SeisLab) in the Institute of Marine Sciences and Technology and R/V K. Piri Reis belonging to Dokuz Eylül University, along the central branch in 2008 (TAMAM expedition) and in 2013-2014 (SoMAR expedition), within the framework of a bilateral TÜBİTAK - NSF project. In combination with other existing seismic profiles, these new data reveal that the Central Branch consists of multiple faults strands that are distributed across the broad southern shelf. They also reveal that many of these strands are Holocene-active, although they slip at slower rates than the northern branch and are associated with slower basin subsidence or local uplift. Lastly, seismic data image a system of half-grabens across the southern shelf that are associated with the strands of the central branch. Strata within these half-grabens are progressively tilted and consistently dip to the south. Further analysis will be conducted to determine whether the formation of these grabens are controlled by oblique slip on the strands of the central branch, or by slip on detachment faults beneath the southern shelf.

  13. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations

    USGS Publications Warehouse

    Tsai, V.C.

    2011-01-01

    It is known that GPS time series contain a seasonal variation that is not due to tectonic motions, and it has recently been shown that crustal seismic velocities may also vary seasonally. In order to explain these changes, a number of hypotheses have been given, among which thermoelastic and hydrology-induced stresses and strains are leading candidates. Unfortunately, though, since a general framework does not exist for understanding such seasonal variations, it is currently not possible to quickly evaluate the plausibility of these hypotheses. To fill this gap in the literature, I generalize a two-dimensional thermoelastic strain model to provide an analytic solution for the displacements and wave speed changes due to either thermoelastic stresses or hydrologic loading, which consists of poroelastic stresses and purely elastic stresses. The thermoelastic model assumes a periodic surface temperature, and the hydrologic models similarly assume a periodic near-surface water load. Since all three models are two-dimensional and periodic, they are expected to only approximate any realistic scenario; but the models nonetheless provide a quantitative framework for estimating the effects of thermoelastic and hydrologic variations. Quantitative comparison between the models and observations is further complicated by the large uncertainty in some of the relevant parameters. Despite this uncertainty, though, I find that maximum realistic thermoelastic effects are unlikely to explain a large fraction of the observed annual variation in a typical GPS displacement time series or of the observed annual variations in seismic wave speeds in southern California. Hydrologic loading, on the other hand, may be able to explain a larger fraction of both the annual variations in displacements and seismic wave speeds. Neither model is likely to explain all of the seismic wave speed variations inferred from observations. However, more definitive conclusions cannot be made until the model parameters are better constrained. Copyright ?? 2011 by the American Geophysical Union.

  14. VizieR Online Data Catalog: Spectroscopic Indicators in SeisMic Archive (SISMA) (Rainer+, 2016)

    NASA Astrophysics Data System (ADS)

    Rainer, M.; Poretti, E.; Misto, A.; Panzera, M. R.; Molinaro, M.; Cepparo, F.; Roth, M.; Michel, E.; Monteiro, M. J. P. F. G.

    2017-02-01

    We created a large database of physical parameters and variability indicators by fully reducing and analyzing the large number of spectra taken to complement the asteroseismic observations of the COnvection, ROtation and planetary Transits (CoRoT) satellite. CoRoT was launched on 2006 December 27 and it was retired on 2013 June 24. 7103 spectra of 261 stars obtained with the ESO echelle spectrograph High Accuracy Radial velocity Planet Searcher (HARPS) have been stored in the VO-compliant database Spectroscopic Indicators in a SeisMic Archive (SISMA; http://sisma.brera.inaf.it/), along with the CoRoT photometric data of the 72 CoRoT asteroseismic targets. The ground-based activities started with the Large Programme 178.D-0361 using the FEROS spectrograph at the 2.2m telescope of the ESO-La Silla Observatory, and continued with the Large Programmes LP182.D-0356 and LP185.D-0056 using the HARPS instrument at the 3.6m ESO telescope. In the framework of the awarded two HARPS Large Programmes, 15 nights were allocated each semester over nine semesters, from 2008 December to 2013 January, for a total of 135 nights. The HARPS spectrograph covers the spectral range from 3780 to 6910Å, distributed over echelle orders 89-161. We usually used it in the high-efficiency mode EGGS, with resolving power R=80000 to obtain high signal-to-noise ratio (S/N) spectroscopic time series. All of the data (reduced spectra, indicators, and photometric series) are stored as either FITS or PDF files in the SISMA archive and can be accessed at http://sisma.brera.inaf.it/. The data can also be accessed through the Seismic Plus portal (http://voparis-spaceinn.obspm.fr/seismic-plus/), developed in the framework of the SpaceInn project in order to gather and help coordinated access to several different solar and stellar seismic data sources. (1 data file).

  15. Seismic reflection imaging with conventional and unconventional sources

    NASA Astrophysics Data System (ADS)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant seismic activity.

  16. Sand dune effects on seismic data

    NASA Astrophysics Data System (ADS)

    Arran, M.; Vriend, N. M.; Muyzert, E. J.

    2017-12-01

    Ground roll is a significant source of noise in land seismic data, with cross-line scattered ground roll particularly difficult to suppress. This noise arises from surface heterogeneities lateral to the receiver spread, and in desert regions sand dunes are a major contributor. However, the nature of this noise is poorly understood, preventing the design of more effective data acquisition or processing techniques. Here, we present numerical simulations demonstrating that sand dunes can act as resonators, scattering a seismic signal over an extensive period of time. We introduce a mathematical framework that quantitatively describes the properties of noise scattered by a barchan dune, and we discuss the relevance of heterogeneities within the dune. Having identified regions in time, space, and frequency space at which noise will be more significant, we propose the possibility of reducing dune-scattered noise through careful survey design and data processing.

  17. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    NASA Astrophysics Data System (ADS)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σ<0.5 in log units) in comparison to other regional models, at shorter periods brands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  18. Shallow geology, sea-floor texture, and physiographic zones of Buzzards Bay, Massachusetts

    USGS Publications Warehouse

    Foster, David S.; Baldwin, Wayne E.; Barnhardt, Walter A.; Schwab, William C.; Ackerman, Seth D.; Andrews, Brian D.; Pendleton, Elizabeth A.

    2015-01-07

    Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Buzzards Bay, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.

  19. Innovative Seismoeletromagnetic Research at the front of the Hellenic Arc

    NASA Astrophysics Data System (ADS)

    Makris, John P.; Chiappini, Massimo; Nardi, Adriano; Carluccio, Roberto; Rigakis, Hercules; Hloupis, George; Fragkiadakis, Kostantinos; Pentaris, Fragkiskos; Saltas, Vassilios; Vallianatos, Filippos

    2013-04-01

    Taking into account the complex nature and rarity of strong seismic events, as well as the form multiplicity and timing variety of possible preseismic signatures, the predominant view of the scientific community still seems nowadays to lean against earthquake prediction, especially the short-term one. On the other hand, seismoelectromagnetic (SEM) research appears to be a promising approach to earthquake prediction research. In this context, the project TeCH-SEM [Technologies Coalescence for Holistic Seismoelectromagnetic Research (Lithosphere-Atmosphere-Ionosphere Coupling)] aims to establish an integrated approach to SEM investigation, by developing and implementing novel-innovative technologies for the study of pre-seismic electric, magnetic and electromagnetic signatures in a broadband spectrum (ULF-ELF-VLF-LF-HF). In this framework, at the natural laboratory of the seismically active south- and south-western part of the Hellenic Arc (broader region of Crete) is being developed a permanent network of ULF-ELF seismoelectromagnetic stations featuring novel design that provides real-time telemetry, extended autonomy, light-weight and small-size but robust and powerful datalogging and self-diagnostics for reliable, long-term operation. This network is complemented by the simultaneous deployment of an innovative ELF-VLF seismoelectromagnetic telemetric network that will attempt to detect, in real conditions, VLF electromagnetic transients that have been repeatedly observed in the laboratory to be emitted from rock samples with various lithologies subjected to fracture under uniaxial compression. Both networks, it is anticipated to remain in operation for many years. Acknowledgements This research is implemented in the framework of the project entitled "Technologies Coalescence for Holistic Seismoelectromagnetic Research (Lithosphere-Atmosphere-Ionosphere Coupling)" of the Archimedes III Call through the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds.

  20. Determination of geohydrologic framework and extent of d- water contamination using surface geophysical techniques at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Lacombe, Pierre

    1986-01-01

    Seismic-refraction, electric-resistivity sounding, and electromagnetic conductivity techniques were used to determine the geohydrologic framework and extent of groundwater contamination at Picatinny Arsenal in northern New Jersey. The area studied encompasses about 4 sq mi at the southern end of the Arsenal. The bedrock surface beneath the glacial sediments was delineated by seismic-refraction techniques. Data for 12 seismic lines were collected using a 12-channel engineering seismograph. Competent bedrock crops out on both sides of the valley, but is about 290 ft below land surface in the deepest part of the topographic valley. Where the exposed bedrock surface forms steep slopes on the valley side, it remains steep below the valley fill. Likewise, gentle bedrock valley slopes have gentle subsurface slopes. The deepest part of the bedrock valley is along the southern extension of the Green Pond fault. The electric-resistivity sounding technique was used to determine the sediment types. Data were collected from four sites using the offset Wenner electrode configuration. Below the surface layer, the sediments have apparent and computed resistivity values of 120 to 170 ohm-meters. These values correspond to a saturated fine-grained sediment such as silt or interbedded sand and clay. Groundwater contamination was by electromagnetic conductivity techniques using transmitting and receiving coils separated by 32.8 ft and 12 ft. Thirteen sites have apparent conductivity values exceeding 15 millimhos/m. Of these, seven sites indicate groundwater contamination from a variety of sources including a sanitary landfill, pyrotechnic testing ground, burning area, former domestic sewage field, salt storage facility, hazardous waste disposal lagoon, sewage treatment plant, and fertilizer storage shed. Three areas underlain by clay or muck are interpreted to be free of contamination. (Author 's abstract)

  1. Subsurface mapping in the Iberian Pyrite Belt using seismic reflection profiling and potential-field data

    NASA Astrophysics Data System (ADS)

    Carvalho, João; Inverno, Carlos; Matos, João Xavier; Rosa, Carlos; Granado, Isabel; Branch, Tim; Represas, Patrícia; Carabaneanu, Livia; Matias, Luís; Sousa, Pedro

    2017-04-01

    The Iberian Pyrite Belt (IPB) hosts world-class massive sulphide deposits, such as Neves-Corvo in Portugal and Rio Tinto in Spain. In Portugal, the Palaeozoic Volcanic-Sedimentary Complex (VSC) hosts these ore deposits, extending from the Grândola-Alcácer region to the Spanish border with a NW-SE to WNW-ESE trend. In the study area, between the Neves-Corvo mine region and Alcoutim (close to the Spanish border), the VSC outcrops only in a small horst near Alcoutim. Sparse exploration drill-hole data indicate that the depth to the top of the VSC varies from several 100 m to about 1 km beneath the Mértola Formation Flysch cover. Mapping of the VSC to the SE of Neves-Corvo mine is an important exploration goal and motivated the acquisition of six 2D seismic reflection profiles with a total length of approximately 82 km in order to map the hidden extension of the VSC. The data, providing information deeper than 10 km at some locations, were integrated in a 3D software environment along with potential-field, geological and drill-hole data to form a 3D structural framework model. Seismic data show strong reflections that represent several long Variscan thrust planes that smoothly dip to the NNE. Outcropping and previously unknown Late Variscan near-vertical faults were also mapped. Our data strongly suggest that the structural framework of Neves-Corvo extends south-eastwards to Alcoutim. Furthermore, the VSC top is located at depths that show the existence within the IPB of new areas with good potential to develop exploration projects envisaging the discovery of massive sulphide deposits of the Neves-Corvo type.

  2. Seismic atlas of the "Messinian Salinity Crisis" markers in the Mediterranean and Black seas - Volume 2

    NASA Astrophysics Data System (ADS)

    Lofi, Johanna

    2014-05-01

    The Seismic atlas of the "Messinian Salinity Crisis" markers in the Mediterranean and Black seas - Volume 2 is a publication project in the framework of the study of the Messinian Salinity Crisis. It follows the publication of a first volume in 2011 (see Editors' websites: http://ccgm.free.fr & http://sgfr.free.fr) and aims to illustrate the seismic characteristics of the MSC markers over news study areas. The Messinian Salinity Crisis is a huge outstanding succession of events that deeply modified the Mediterranean area within a short time span at the geological scale. In 2011, a seismic atlas of the Messinian markers in the Mediterranean and Black seas has been published [1]. This collective work summarizes, in one publication with a common format, the most relevant seismic features related to this exceptional event in the offshore domain. It also proposes a new global and consistent terminology for the MSC markers in the entire offshore Mediterranean area in order to avoid nomenclatural problems. Throughout 13 study areas, the seismic facies, geometry and extend of the Messinian markers (bounding surfaces and depositional units) are described. The Atlas however does not provide a complete description of all what that is known about the MSC and about the geology of each study area. Accordingly, illustrations in the Atlas should be used for a global description of the offshore imprints of the MSC at a broad scale, or for local information or site-specific general interpretations. Interpreted seismic data were carefully selected according to their quality, position and significance. Raw and interpreted seismic profiles are available on CD-Rom. Volume 2 is currently under preparation with the objectives : (1) to image the Messinian seismic marker from margins and basins that have not been illustrated in the first volume and (2) to complete the extension map of the MSC markers in the offshore and onshore domains at the Mediterranean scale. As the first volume, Volume 2 will also aim to share the geological interpretation of seismic reflection data imaging Messinian markers, to make this information accessible to the non geophysician community and to be a reference work that can be used by teachers and future researchers working on the Messinian event. This publication project is still open to anybody from industry and academia willing to contribute. At the present time, 16 new sites have been identified. Publication of the Seismic atlas of the "Messinian Salinity Crisis" markers in the Mediterranean and Black seas - Volume 2 is planned for Fall 2014. For more details, contact presenting author J. Lofi (atlas coordinator). This contribution has been funded by the Actions Marges French research program. [1] : Lofi J., Deverchère J., Gaullier V., Gillet H., Gorini C., Guennoc P., Loncke L., Maillard A., Sage F. and Thinon I., 2011. Seismic atlas of the "Messinian Salinity Crisis" markers in the Mediterranean and Black Seas. Commission for the Geological Map of the World (CGMW) / Mémoires de la Société Géologique de France, n.s., 179, 72 pp., 1 CD. Atlas contributors (first authors): A. Camerlenghi, A. Del Ben, D. Do Couto, F. Estrada, F. Gallais, M. Garcia, V. Gaullier, A. Maillard, A. Micallef, M. Rossi, F. Sage, U. Schattner, A. Tassy, R. Urgeles

  3. Seismicity of Cascade Volcanoes: Characterization and Comparison

    NASA Astrophysics Data System (ADS)

    Thelen, W. A.

    2016-12-01

    Here we summarize and compare the seismicity around each of the Very High Threat Volcanoes of the Cascade Range of Washington, Oregon and California as defined by the National Volcanic Early Warning System (NVEWS) threat assessment (Ewert et al., 2005). Understanding the background seismic activity and processes controlling it is critical for assessing changes in seismicity and their implications for volcanic hazards. Comparing seismicity at different volcanic centers can help determine what critical factors or processes affect the observed seismic behavior. Of the ten Very High Threat Volcanoes in the Cascade Range, five volcanoes are consistently seismogenic when considering earthquakes within 10 km of the volcanic center or caldera edge (Mount Rainier, Mount St. Helens, Mount Hood, Newberry Caldera, Lassen Volcanic Center). Other Very High Threat volcanoes (South Sister, Mount Baker, Glacier Peak, Crater Lake and Mount Shasta) have comparatively low rates of seismicity and not enough recorded earthquakes to calculate catalog statistics. Using a swarm definition of 3 or more earthquakes occurring in a day with magnitudes above the largest of the network's magnitude of completenesses (M 0.9), we find that Lassen Volcanic Center is the "swarmiest" in terms of percent of seismicity occurring in swarms, followed by Mount Hood, Mount St. Helens and Rainier. The predominance of swarms at Mount Hood may be overstated, as much of the seismicity is occurring on surrounding crustal faults (Jones and Malone, 2005). Newberry Caldera has a relatively short record of seismicity since the permanent network was installed in 2011, however there have been no swarms detected as defined here. Future work will include developing discriminates for volcanic versus tectonic seismicity to better filter the seismic catalog and more precise binning of depths at some volcanoes so that we may better consider different processes. Ewert J. W., Guffanti, M. and Murray, T. L. (2005). An Assessment of Volcanic Threat and Monitoring Capabilities in the United States: Framework for a National Volcano Early Warning System, USGS Open File Report 2005-1164, 62 pp. Jones, J., & Malone, S. D. (2005). Mount hood earthquake activity: Volcanic or tectonic origins? Bulletin Of The Seismological Society Of America, 95(3), 818-832.

  4. The New Italian Seismic Hazard Model

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Meletti, C.; Albarello, D.; D'Amico, V.; Luzi, L.; Martinelli, F.; Pace, B.; Pignone, M.; Rovida, A.; Visini, F.

    2017-12-01

    In 2015 the Seismic Hazard Center (Centro Pericolosità Sismica - CPS) of the National Institute of Geophysics and Volcanology was commissioned of coordinating the national scientific community with the aim to elaborate a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap for releasing within three years a significantly renewed PSHA model, with regard both to the updated input elements and to the strategies to be followed. The main requirements of the model were discussed in meetings with the experts on earthquake engineering that then will participate to the revision of the building code. The activities were organized in 6 tasks: program coordination, input data, seismicity models, ground motion predictive equations (GMPEs), computation and rendering, testing. The input data task has been selecting the most updated information about seismicity (historical and instrumental), seismogenic faults, and deformation (both from seismicity and geodetic data). The seismicity models have been elaborating in terms of classic source areas, fault sources and gridded seismicity based on different approaches. The GMPEs task has selected the most recent models accounting for their tectonic suitability and forecasting performance. The testing phase has been planned to design statistical procedures to test with the available data the whole seismic hazard models, and single components such as the seismicity models and the GMPEs. In this talk we show some preliminary results, summarize the overall strategy for building the new Italian PSHA model, and discuss in detail important novelties that we put forward. Specifically, we adopt a new formal probabilistic framework to interpret the outcomes of the model and to test it meaningfully; this requires a proper definition and characterization of both aleatory variability and epistemic uncertainty that we accomplish through an ensemble modeling strategy. We use a weighting scheme of the different components of the PSHA model that has been built through three different independent steps: a formal experts' elicitation, the outcomes of the testing phase, and the correlation between the outcomes. Finally, we explore through different techniques the influence on seismic hazard of the declustering procedure.

  5. A unified approach to fluid-flow, geomechanical, and seismic modelling

    NASA Astrophysics Data System (ADS)

    Yarushina, Viktoriya; Minakov, Alexander

    2016-04-01

    The perturbations of pore pressure can generate seismicity. This is supported by observations from human activities that involve fluid injection into rocks at high pressure (hydraulic fracturing, CO2 storage, geothermal energy production) and natural examples such as volcanic earthquakes. Although the seismic signals that emerge during geotechnical operations are small both in amplitude and duration when compared to natural counterparts. A possible explanation for the earthquake source mechanism is based on a number of in situ stress measurements suggesting that the crustal rocks are close to its plastic yield limit. Hence, a rapid increase of the pore pressure decreases the effective normal stress, and, thus, can trigger seismic shear deformation. At the same time, little attention has been paid to the fact that the perturbation of fluid pressure itself represents an acoustic source. Moreover, non-double-couple source mechanisms are frequently reported from the analysis of microseismicity. A consistent formulation of the source mechanism describing microseismic events should include both a shear and isotropic component. Thus, improved understanding of the interaction between fluid flow and seismic deformation is needed. With this study we aim to increase the competence in integrating real-time microseismic monitoring with geomechanical modelling such that there is a feedback loop between monitored deformation and stress field modelling. We propose fully integrated seismic, geomechanical and reservoir modelling. Our mathematical formulation is based on fundamental set of force balance, mass balance, and constitutive poro-elastoplastic equations for two-phase media consisting of deformable solid rock frame and viscous fluid. We consider a simplified 1D modelling setup for consistent acoustic source and wave propagation in poro-elastoplastic media. In this formulation the seismic wave is generated due to local changes of the stress field and pore pressure induced by e.g. fault generation or strain localization. This approach gives unified framework to characterize microseismicity of both class-I (pressure induced) and class-II (stress triggered) type of events. We consider two modelling setups. In the first setup the event is located within the reservoir and associated with pressure/stress drop due to fracture initiation. In the second setup we assume that seismic wave from a distant source hits a reservoir. The unified formulation of poro-elastoplastic deformation allows us to link the macroscopic stresses to local seismic instability.

  6. Crustal structure of the St. Elias Mountains region, southern Alaska, from regional earthquakes and ambient noise tomography

    NASA Astrophysics Data System (ADS)

    Ruppert, N. A.; Stachnik, J. C.; Hansen, R. A.

    2011-12-01

    STEEP (SainT Elias TEctonics and Erosion Project) is a multi-disciplinary research project that took place in southern Alaska between 2005 and 2010. An important component of this undertaking was installation and operation of a dense array of 22 broadband seismometers to augment and improve the existing regional seismic network in the St. Elias Mountains. This allowed for a lower detection threshold and better accuracy for local seismicity and also provided a rich dataset of teleseismic recordings. While the seismic stations were designed to transmit the data in real time, due to harsh weather and difficult terrain conditions some data were recorded only on site and had to be post-processed months and years later. Despite these difficulties, the recorded dataset detected and located regional earthquakes as small as magnitude 0.5 in the network core area. The recorded seismicity shows some clear patterns. A majority of the earthquakes are concentrated along the coast in a distributed area up to 100 km wide. The coastal seismicity can be further subdivided into 3 distinct clusters: Icy Bay, Bering Glacier, and the Copper River delta. This coastal seismicity is abutted by a somewhat aseismic zone that roughly follows the Bagley Ice Field. Farther inland another active region of seismicity is associated with the Denali Fault system. All this seismicity is concentrated in the upper 25 km of the crust. The only region where earthquakes as deep as 100 km occur is beneath the Wrangell volcanoes in the northwestern corner of the study area. The earthquake focal mechanisms are predominately reverse, with some areas of strike-slip faulting also present. The seismicity patterns and faulting mechanisms indicate a high concentration of thrust faulting in the coastal region. The ambient noise cross correlations from the stations in the STEEP region reveal Rayleigh wave packets with good signal-to-noise ratios yielding well-defined interstation phase velocity dispersion curves. These dispersion measurements are inverted for two-dimensional phase velocity maps from 4 to 40 second period. Preliminary analysis indicates slower velocities in a 100-km-wide zone along the southern Alaska coast, with distinctly higher velocities farther inland. We will present results of precise earthquake relocations using waveform cross-correlation and double difference relocation techniques and interpret these within the framework of regional tectonics and subsurface structures as evidenced by the ambient noise tomography.

  7. Modeling dolomitized carbonate-ramp reservoirs: A case study of the Seminole San Andres unit. Part 2 -- Seismic modeling, reservoir geostatistics, and reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, F.P.; Dai, J.; Kerans, C.

    1998-11-01

    In part 1 of this paper, the authors discussed the rock-fabric/petrophysical classes for dolomitized carbonate-ramp rocks, the effects of rock fabric and pore type on petrophysical properties, petrophysical models for analyzing wireline logs, the critical scales for defining geologic framework, and 3-D geologic modeling. Part 2 focuses on geophysical and engineering characterizations, including seismic modeling, reservoir geostatistics, stochastic modeling, and reservoir simulation. Synthetic seismograms of 30 to 200 Hz were generated to study the level of seismic resolution required to capture the high-frequency geologic features in dolomitized carbonate-ramp reservoirs. Outcrop data were collected to investigate effects of sampling interval andmore » scale-up of block size on geostatistical parameters. Semivariogram analysis of outcrop data showed that the sill of log permeability decreases and the correlation length increases with an increase of horizontal block size. Permeability models were generated using conventional linear interpolation, stochastic realizations without stratigraphic constraints, and stochastic realizations with stratigraphic constraints. Simulations of a fine-scale Lawyer Canyon outcrop model were used to study the factors affecting waterflooding performance. Simulation results show that waterflooding performance depends strongly on the geometry and stacking pattern of the rock-fabric units and on the location of production and injection wells.« less

  8. A Bayesian analysis of the 2016 Pedernales (Ecuador) earthquake rupture process

    NASA Astrophysics Data System (ADS)

    Gombert, B.; Duputel, Z.; Jolivet, R.; Rivera, L. A.; Simons, M.; Jiang, J.; Liang, C.; Fielding, E. J.

    2017-12-01

    The 2016 Mw = 7.8 Pedernales earthquake is the largest event to strike Ecuador since 1979. Long period W-phase and Global CMT solutions suggest that slip is not perpendicular to the trench axis, in agreement with the convergence obliquity of the Ecuadorian subduction. In this study, we propose a new co-seismic kinematic slip model obtained from the joint inversion of multiple observations in an unregularized and fully Bayesian framework. We use a comprehensive static dataset composed of several InSAR scenes, GPS static offsets, and tsunami waveforms from two nearby DART stations. The kinematic component of the rupture process is constrained by an extensive network of High-Rate GPS and accelerometers. Our solution includes the ensemble of all plausible models that are consistent with our prior information and fit the available observations within data and prediction uncertainties. We analyse the source process in light of the historical seismicity, in particular the Mw = 7.8 1942 earthquake for which the rupture extent overlaps with the 2016 event. In addition, we conduct a probabilistic comparison of co-seismic slip with a stochastic interseismic coupling model obtained from GPS data, putting a light on the processes at play within the Ecuadorian subduction margin.

  9. Propagation of the velocity model uncertainties to the seismic event location

    NASA Astrophysics Data System (ADS)

    Gesret, A.; Desassis, N.; Noble, M.; Romary, T.; Maisons, C.

    2015-01-01

    Earthquake hypocentre locations are crucial in many domains of application (academic and industrial) as seismic event location maps are commonly used to delineate faults or fractures. The interpretation of these maps depends on location accuracy and on the reliability of the associated uncertainties. The largest contribution to location and uncertainty errors is due to the fact that the velocity model errors are usually not correctly taken into account. We propose a new Bayesian formulation that integrates properly the knowledge on the velocity model into the formulation of the probabilistic earthquake location. In this work, the velocity model uncertainties are first estimated with a Bayesian tomography of active shot data. We implement a sampling Monte Carlo type algorithm to generate velocity models distributed according to the posterior distribution. In a second step, we propagate the velocity model uncertainties to the seismic event location in a probabilistic framework. This enables to obtain more reliable hypocentre locations as well as their associated uncertainties accounting for picking and velocity model uncertainties. We illustrate the tomography results and the gain in accuracy of earthquake location for two synthetic examples and one real data case study in the context of induced microseismicity.

  10. Sequence stratigraphy of the Triassic in the Barentsz Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skjold, L.JU.; Van Veen, P.M.; Gjelberg, J.

    1990-05-01

    A regional study of the Triassic in the Barentsz Sea (20-32{degree}E, 71-74{degree}N) revealed sequences that correlate seismically for hundreds of kilometers. Recent offshore drilling results enabled them to establish a biostratigraphic time framework. Comparisons with information from onshore outcrops (such as the Svalbard Archipelago) aided the piecing together of these superregional sequences. Seismic character analysis identified three units with composite progradational patterns (Induan, Olenekian, and Anisian). Fluvial, deltaic, and marine deposits can be distinguished and located relative to the paleocoastlines. Corresponding downlap surfaces suggest the development of condensed intervals, predicted to consist of organic-rich source rocks, as was later confirmedmore » by drilling. Regional predictions based on this sequence-stratigraphic approach have proved valuable when correlating and evaluating well information. The sequences identified also help define third-order sea level curves for the area; these improve published curves thought to have global significance.« less

  11. Maps Showing Geology and Shallow Structure of Western Rhode Island Sound, Rhode Island

    USGS Publications Warehouse

    Needell, Sally W.; O'Hara, Charles J.; Knebel, Harley J.

    1983-01-01

    This report presents the results of a high-resolution, seismic-reflection, and sidescan-sonar survey conducted in western Rhode Island Sound south of Narragansett Bay (fig. 1 inset) by the U.S. Geological Survey in 1980. The study defines the geologic framework of the Atlantic Inner Continental Shelf between lat. 41 deg 09' and 41 deg 32'N and long. 71 deg 07' and 71 deg 37'W. A total of 580 kilometers (km) of seismic-reflection profiles and 580 km of sidescan sonographs was collected aboard the RV Neecho. Trackline spacing was 1 to 2 km at the mouth of Narragansett Bay, and dip lines were 2 km apart with widely spaced strike lines in Rhode Island Sound (fig. 1). The maps in this report adjoin those for eastern Rhode Island Sound and Vineyard Sound, Massachusetts, of O'Hara and Oldale (1980).

  12. Assessment of Seismic Damage on The Exist Buildings Using Fuzzy Logic

    NASA Astrophysics Data System (ADS)

    Pınar, USTA; Nihat, MOROVA; EVCİ, Ahmet; ERGÜN, Serap

    2018-01-01

    Earthquake as a natural disaster could damage the lives of many people and buildings all over the world. These is micvulnerability of the buildings needs to be evaluated. Accurate evaluation of damage sustained by buildings during natural disaster events is critical to determine the buildings safety and their suitability for future occupancy. The earthquake is one of the disasters that structures face the most. There fore, there is a need to evaluate seismic damage and vulnerability of the buildings to protect them. These days fuzzy systems have been widely used in different fields of science because of its simpli city and efficiency. Fuzzy logic provides a suitable framework for reasoning, deduction, and decision making in fuzzy conditions. In this paper, studies on earthquake hazard evaluation of buildings by fuzzy logic modeling concepts in the literature have been investigated and evaluated, as a whole.

  13. Semiautomatic and Automatic Cooperative Inversion of Seismic and Magnetotelluric Data

    NASA Astrophysics Data System (ADS)

    Le, Cuong V. A.; Harris, Brett D.; Pethick, Andrew M.; Takam Takougang, Eric M.; Howe, Brendan

    2016-09-01

    Natural source electromagnetic methods have the potential to recover rock property distributions from the surface to great depths. Unfortunately, results in complex 3D geo-electrical settings can be disappointing, especially where significant near-surface conductivity variations exist. In such settings, unconstrained inversion of magnetotelluric data is inexorably non-unique. We believe that: (1) correctly introduced information from seismic reflection can substantially improve MT inversion, (2) a cooperative inversion approach can be automated, and (3) massively parallel computing can make such a process viable. Nine inversion strategies including baseline unconstrained inversion and new automated/semiautomated cooperative inversion approaches are applied to industry-scale co-located 3D seismic and magnetotelluric data sets. These data sets were acquired in one of the Carlin gold deposit districts in north-central Nevada, USA. In our approach, seismic information feeds directly into the creation of sets of prior conductivity model and covariance coefficient distributions. We demonstrate how statistical analysis of the distribution of selected seismic attributes can be used to automatically extract subvolumes that form the framework for prior model 3D conductivity distribution. Our cooperative inversion strategies result in detailed subsurface conductivity distributions that are consistent with seismic, electrical logs and geochemical analysis of cores. Such 3D conductivity distributions would be expected to provide clues to 3D velocity structures that could feed back into full seismic inversion for an iterative practical and truly cooperative inversion process. We anticipate that, with the aid of parallel computing, cooperative inversion of seismic and magnetotelluric data can be fully automated, and we hold confidence that significant and practical advances in this direction have been accomplished.

  14. Influence of fluvial processes on the quaternary geologic framework of the continental shelf, North Carolina, USA

    USGS Publications Warehouse

    Boss, S.K.; Hoffman, C.W.; Cooper, B.

    2002-01-01

    Digital, single-channel, high-resolution seismic reflection profiles were acquired from the insular continental shelf of North Carolina, USA along a data grid extending from Oregon Inlet northward 48 km to Duck, North Carolina and from the nearshore zone seaward approximately 28 km (total surveyed area= 1334 km2). These data were processed and interpreted to delineate principal reflecting horizons and develop a three-dimensional seismic stratigraphic framework for the continental shelf that was compared to stratigraphic data from the shoreward back-barrier (estuarine) and barrier island system. Six principal reflecting horizons (designated R0 through R5) were present within the upper 60 m of the shelf stratigraphic succession. Three-dimensional mapping of reflector R1 demonstrated its origin from fluvial incision of the continental shelf during an episode (or episodes) of lowered sea-level. Fluvial processes during development of reflector R1 were responsible for extensive reworking and re-deposition of sediment throughout most of the northern half of the study area. Five seismic stratigraphic units (designated S1 through S5) were tentatively correlated with depositional sequences previously identified from the North Carolina back-barrier (estuarine) and barrier island system. These five stratigraphic units span the Quaternary Period (S1 = early Holocene; S2 = 51-78 ka; S3 = 330-530 ka; S4 = 1.1-1.8 Ma; S5 = earliest Pleistocene). Unit S1 is composed of fine-grained fluvial/estuarine sediment that back-filled incised streams during early Holocene sea-level rise. The four other stratigraphic units (S2-S5) display tabular depositional geometries, low total relief, and thicken toward the east-southeast as their basal reflectors dip gently between 0.41 m km-1 (0.02??) and 0.54 m km-1 (0.03??). Knowledge of the three-dimensional subsurface stratigraphic architecture of the continental shelf enhances understanding of the development of shelf depositional successions and provides a framework for development of better Quaternary sea-level data, especially offshore North Carolina where such data are sparse. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. A preliminary regional assessment of earthquake-induced landslide susceptibility for Vrancea Seismic Region

    NASA Astrophysics Data System (ADS)

    Micu, Mihai; Balteanu, Dan; Ionescu, Constantin; Havenith, Hans; Radulian, Mircea; van Westen, Cees; Damen, Michiel; Jurchescu, Marta

    2015-04-01

    In seismically-active regions, earthquakes may trigger landslides enhancing the short-to-long term slope denudation and sediment delivery and conditioning the general landscape evolution. Co-seismic slope failures present in general a low frequency - high magnitude pattern which should be addressed accordingly by landslide hazard assessment, with respect to the generally more frequent precipitation-triggered landslides. The Vrancea Seismic Region, corresponding to the curvature sector of the Eastern Romanian Carpathians, represents the most active sub-crustal (focal depth > 50 km) earthquake province of Europe. It represents the main seismic energy source throughout Romania with significant transboundary effects recorded as far as Ukraine and Bulgaria. During the last 300 years, the region featured 14 earthquakes with M>7, among which seven events with magnitude above 7.5 and three between 7.7 and 7.9. Apart from the direct damages, the Vrancea earthquakes are also responsible for causing numerous other geohazards, such as ground fracturing, groundwater level disturbances and possible deep-seated landslide occurrences (rock slumps, rock-block slides, rock falls, rock avalanches). The older deep-seated landslides (assumed to have been) triggered by earthquakes usually affect the entire slope profile. They often formed landslide dams strongly influencing the river morphology and representing potential threats (through flash-floods) in case of lake outburst. Despite the large potential of this research issue, the correlation between the region's seismotectonic context and landslide predisposing factors has not yet been entirely understood. Presently, there is a lack of information provided by the geohazards databases of Vrancea that does not allow us to outline the seismic influence on the triggering of slope failures in this region. We only know that the morphology of numerous large, deep-seated and dormant landslides (which can possibly be reactivated in future) with head scarps near mountain tops and close to faults is similar to the one of large mass movements for which a seismic origin is proved (such as in the Tien Shan, Pamir, Longmenshan, etc.). Thus, correlations between landslide occurrence and combined seismotectonic and climatic factors are needed to support a regional multi-hazard risk assessment. The purpose of this paper is to harmonize for the first time at a regional scale the landslide predisposing factors and seismotectonic triggers and to present a first qualitative insight into the earthquake-induced landslide susceptibility for the Vrancea Seismic Region in terms of a GIS-based analysis of Newmark displacement (ND). In this way, it aims at better defining spatial and temporal distribution patterns of earthquake-triggered landslides. Arias Intensity calculation involved in the assessment considers both regional seismic hazard aspects and singular earthquake scenarios (adjusted by topography amplification factors). The known distribution of landslides mapped through digital stereographic interpretation of high-resolution aerial photos is compared with digital active fault maps and the computed ND maps to statistically outline the seismotectonic influence on slope stability in the study area. The importance of this approach resides in two main outputs. The fist one, of a fundamental nature, by providing the first regional insight into the seismic landslides triggering framework, is allowing us to understand if deep-focus earthquakes may trigger massive slope failures in an area with a relatively smooth relief (compared to the high mountain regions in Central Asia, the Himalayas), considering possible geologic and topographic site effects. The second one, more applied, will allow a better accelerometer instrumentation and monitoring of slopes and also will provide a first correlation of different levels of seismic shaking with precipitation recurrences, an important relationship within a multi-hazard risk preparedness and prevention framework.

  16. Tsallis entropy and complexity theory in the understanding of physics of precursory accelerating seismicity.

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Chatzopoulos, George

    2014-05-01

    Strong observational indications support the hypothesis that many large earthquakes are preceded by accelerating seismic release rates which described by a power law time to failure relation. In the present work, a unified theoretical framework is discussed based on the ideas of non-extensive statistical physics along with fundamental principles of physics such as the energy conservation in a faulted crustal volume undergoing stress loading. We derive the time-to-failure power-law of: a) cumulative number of earthquakes, b) cumulative Benioff strain and c) cumulative energy released in a fault system that obeys a hierarchical distribution law extracted from Tsallis entropy. Considering the analytic conditions near the time of failure, we derive from first principles the time-to-failure power-law and show that a common critical exponent m(q) exists, which is a function of the non-extensive entropic parameter q. We conclude that the cumulative precursory parameters are function of the energy supplied to the system and the size of the precursory volume. In addition the q-exponential distribution which describes the fault system is a crucial factor on the appearance of power-law acceleration in the seismicity. Our results based on Tsallis entropy and the energy conservation gives a new view on the empirical laws derived by other researchers. Examples and applications of this technique to observations of accelerating seismicity will also be presented and discussed. This work was implemented through the project IMPACT-ARC in the framework of action "ARCHIMEDES III-Support of Research Teams at TEI of Crete" (MIS380353) of the Operational Program "Education and Lifelong Learning" and is co-financed by the European Union (European Social Fund) and Greek national funds

  17. Data Quality Control of the French Permanent Broadband Network in the RESIF Framework.

    NASA Astrophysics Data System (ADS)

    Grunberg, M.; Lambotte, S.; Engels, F.

    2014-12-01

    In the framework of the RESIF (Réseau Sismologique et géodésique Français) project, a new information system is setting up, allowing the improvement of the management and the distribution of high quality data from the different elements of RESIF. Within this information system, EOST (in Strasbourg) is in charge of collecting real-time permanent broadband seismic waveform, and performing Quality Control on these data. The real-time and validated data set are pushed to the French National Distribution Center (Isterre/Grenoble) to make them publicly available. Furthermore EOST hosts the BCSF-ReNaSS, in charge of the French metropolitan seismic bulletin. This allows to benefit from some high-end quality control based on the national and world-wide seismicity. Here we present the real-time seismic data flow from the stations of the French National Broad Band Network to EOST, and then, the data Quality Control procedures that were recently installed, including some new developments.The data Quality Control consists in applying a variety of processes to check the consistency of the whole system from the stations to the data center. This allows us to verify that instruments and data transmission are operating correctly. Moreover, time quality is critical for most of the scientific data applications. To face this challenge and check the consistency of polarities and amplitudes, we deployed several high-end processes including a noise correlation procedure to check for timing accuracy (intrumental time errors result in a time-shift of the whole cross-correlation, clearly distinct from those due to change in medium physical properties), and a systematic comparison of synthetic and real data for teleseismic earthquakes of magnitude larger than 6.5 to detect timing errors as well as polarity and amplitude problems.

  18. Seismicity, faulting, and structure of the Koyna-Warna seismic region, Western India from local earthquake tomography and hypocenter locations

    USGS Publications Warehouse

    Dixit, Madan M.; Kumar, Sanjay; Catchings, Rufus D.; Suman, K.; Sarkar, Dipankar; Sen, M.K.

    2014-01-01

    Although seismicity near Koyna Reservoir (India) has persisted for ~50 years and includes the largest induced earthquake (M 6.3) reported worldwide, the seismotectonic framework of the area is not well understood. We recorded ~1800 earthquakes from 6 January 2010 to 28 May 2010 and located a subset of 343 of the highest-quality earthquakes using the tomoDD code of Zhang and Thurber (2003) to better understand the framework. We also inverted first arrivals for 3-D Vp, Vs, and Vp/Vs and Poisson's ratio tomography models of the upper 12 km of the crust. Epicenters for the recorded earthquakes are located south of the Koyna River, including a high-density cluster that coincides with a shallow depth (<1.5 km) zone of relatively high Vp and low Vs (also high Vp/Vs and Poisson's ratios) near Warna Reservoir. This anomalous zone, which extends near vertically to at least 8 km depth and laterally northward at least 15 km, is likely a water-saturated zone of faults under high pore pressures. Because many of the earthquakes occur on the periphery of the fault zone, rather than near its center, the observed seismicity-velocity correlations are consistent with the concept that many of the earthquakes nucleate in fractures adjacent to the main fault zone due to high pore pressure. We interpret our velocity images as showing a series of northwest trending faults locally near the central part of Warna Reservoir and a major northward trending fault zone north of Warna Reservoir.

  19. Neogene Seismic Stratigraphic Framework and Fill History of the Northeastern Albemarle Embayment, North Carolina

    NASA Astrophysics Data System (ADS)

    Mallinson, D. J.; Riggs, S. R.; Thieler, R.; Culver, S. J.; Corbett, D. R.; Hoffman, C. W.; Wehmiller, J.; Foster, D. S.

    2002-12-01

    Seismic and chirp sonar surveys were conducted in the eastern Albemarle Sound and adjacent tributaries and the inner continental shelf to define the geologic framework and evolution of the North Carolina coastal system. Surveys were utilized to target paleofluvial channels for drilling and core recovery for the assessment of sea level and climate change during the Quaternary. Lithostratigraphic and chronostratigraphic data are derived from eight drill sites on the Outer Banks, and the Mobil #1 well in the eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 100 to >180 mbsl, and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined southward-prograding beds. The Quaternary section unconformably overlies the Pliocene unit, and consists of at least five depositional sequences exhibiting numerous incised channel-fill facies. The Quaternary section is 55 to 60 meters thick. Shallow stratigraphy (0-50 mbsl) is dominated by complex fill-stratigraphy within the incised paleo-Roanoke River valley. Radiocarbon and amino acid racemization (AAR) dates indicate that the valley-fill is late Pleistocene to Holocene in age. At least 6 distinct valley-fill units are identified in the seismic data based upon reflection geometry. Cores reveal a 3 to 6 meter thick basal fluvial channel lag that is overlain by a 15-meter thick unit of interbedded freshwater muds and sands. Organic materials within the freshwater deposits have ages of 13-11 cal. ka, and are overlain by several units comprised of shallow marine sediments. Shallow marine sediments within the valley are silty, fine- to medium-grained sands containing abundant neritic forams, suggesting that this area was an open embayment during much of the Holocene. Seismic data reveal that initial infilling occurred from the north and west during the late Pleistocene and early Holocene. Later infilling occurred from the east and is characterized by a large shoal body (Colington Island and Shoals; radiocarbon dated to 8.6 cal. ka) and adjacent inlet fill. Establishment of a continuous barrier island system resulted in the deposition of a final phase of fill characterized by estuarine organic-rich muds.

  20. Empirical Relationships Among Magnitude and Surface Rupture Characteristics of Strike-Slip Faults: Effect of Fault (System) Geometry and Observation Location, Dervided From Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Zielke, O.; Arrowsmith, J.

    2007-12-01

    In order to determine the magnitude of pre-historic earthquakes, surface rupture length, average and maximum surface displacement are utilized, assuming that an earthquake of a specific size will cause surface features of correlated size. The well known Wells and Coppersmith (1994) paper and other studies defined empirical relationships between these and other parameters, based on historic events with independently known magnitude and rupture characteristics. However, these relationships show relatively large standard deviations and they are based only on a small number of events. To improve these first-order empirical relationships, the observation location relative to the rupture extent within the regional tectonic framework should be accounted for. This however cannot be done based on natural seismicity because of the limited size of datasets on large earthquakes. We have developed the numerical model FIMozFric, based on derivations by Okada (1992) to create synthetic seismic records for a given fault or fault system under the influence of either slip- or stress boundary conditions. Our model features A) the introduction of an upper and lower aseismic zone, B) a simple Coulomb friction law, C) bulk parameters simulating fault heterogeneity, and D) a fault interaction algorithm handling the large number of fault patches (typically 5,000-10,000). The joint implementation of these features produces well behaved synthetic seismic catalogs and realistic relationships among magnitude and surface rupture characteristics which are well within the error of the results by Wells and Coppersmith (1994). Furthermore, we use the synthetic seismic records to show that the relationships between magntiude and rupture characteristics are a function of the observation location within the regional tectonic framework. The model presented here can to provide paleoseismologists with a tool to improve magnitude estimates from surface rupture characteristics, by incorporating the regional and local structural context which can be determined in the field: Assuming a paleoseismologist measures the offset along a fault caused by an earthquake, our model can be used to determine the probability distribution of magnitudes which are capable of producing the observed offset, accounting for regional tectonic setting and observation location.

  1. Pick- and waveform-based techniques for real-time detection of induced seismicity

    NASA Astrophysics Data System (ADS)

    Grigoli, Francesco; Scarabello, Luca; Böse, Maren; Weber, Bernd; Wiemer, Stefan; Clinton, John F.

    2018-05-01

    The monitoring of induced seismicity is a common operation in many industrial activities, such as conventional and non-conventional hydrocarbon production or mining and geothermal energy exploitation, to cite a few. During such operations, we generally collect very large and strongly noise-contaminated data sets that require robust and automated analysis procedures. Induced seismicity data sets are often characterized by sequences of multiple events with short interevent times or overlapping events; in these cases, pick-based location methods may struggle to correctly assign picks to phases and events, and errors can lead to missed detections and/or reduced location resolution and incorrect magnitudes, which can have significant consequences if real-time seismicity information are used for risk assessment frameworks. To overcome these issues, different waveform-based methods for the detection and location of microseismicity have been proposed. The main advantages of waveform-based methods is that they appear to perform better and can simultaneously detect and locate seismic events providing high-quality locations in a single step, while the main disadvantage is that they are computationally expensive. Although these methods have been applied to different induced seismicity data sets, an extensive comparison with sophisticated pick-based detection methods is still missing. In this work, we introduce our improved waveform-based detector and we compare its performance with two pick-based detectors implemented within the SeiscomP3 software suite. We test the performance of these three approaches with both synthetic and real data sets related to the induced seismicity sequence at the deep geothermal project in the vicinity of the city of St. Gallen, Switzerland.

  2. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  3. A Parallel Stochastic Framework for Reservoir Characterization and History Matching

    DOE PAGES

    Thomas, Sunil G.; Klie, Hector M.; Rodriguez, Adolfo A.; ...

    2011-01-01

    The spatial distribution of parameters that characterize the subsurface is never known to any reasonable level of accuracy required to solve the governing PDEs of multiphase flow or species transport through porous media. This paper presents a numerically cheap, yet efficient, accurate and parallel framework to estimate reservoir parameters, for example, medium permeability, using sensor information from measurements of the solution variables such as phase pressures, phase concentrations, fluxes, and seismic and well log data. Numerical results are presented to demonstrate the method.

  4. Shape preferred orientation of iron grains compatible with Earth's uppermost inner core hemisphericity

    NASA Astrophysics Data System (ADS)

    Calvet, Marie; Margerin, Ludovic

    2018-01-01

    Constraining the possible patterns of iron fabrics in the Earth's Uppermost Inner Core (UIC) is key to unravel the mechanisms controlling its growth and dynamics. In the framework of crystalline micro-structures composed of ellipsoidal, aligned grains, we discuss possible textural models of UIC compatible with observations of P-wave attenuation and velocity dispersion. Using recent results from multiple scattering theory in textured heterogeneous materials, we compute the P-wave phase velocity and scattering attenuation as a function of grain volume, shape, and orientation wrt to the propagation direction of seismic P-waves. Assuming no variations of the grain volume between the Eastern and Western hemisphere, we show that two families of texture are compatible with the degree-one structure of the inner core as revealed by the positive correlation between seismic velocity and attenuation. (1) Strong flattening of grains parallel to the Inner Core Boundary in the Western hemisphere and weak anisometry in the Eastern hemisphere. (2) Strong radial elongation of grains in the Western hemisphere and again weak anisometry in the Eastern hemisphere. Both textures can quantitatively explain the seismic data in a limited range of grain volumes. Furthermore, the velocity and attenuation anisotropy locally observed under Africa demands that the grains be locally elongated in the direction of Earth's meridians. Our study demonstrates that the hemispherical seismic structure of UIC can be entirely explained by changes in the shape and orientation of grains, thereby offering an alternative to changes in grain volumes. In the future, our theoretical toolbox could be used to systematically test the compatibility of textures predicted by geodynamical models with seismic observations.

  5. Sediment Volume Record of Paleogene-Neogene Transantarctic Mountains Erosion and Landscape Modification, McMurdo Sound Region, Antarctica

    NASA Astrophysics Data System (ADS)

    Hall, T.; Wilson, T. J.; Henrys, S.; Speece, M. A.

    2016-12-01

    The interplay of tectonics and climate is recorded in the sedimentary strata within Victoria Land Basin, McMurdo Sound, Antarctica. Patterns of Cenozoic sedimentation are documented from interpretation of seismic reflection profiles calibrated by drillhole data in McMurdo Sound, and these patterns provide enhanced constraints on the evolution of the coupled Transantarctic Mountains-West Antarctic Rift System and on ice sheet advance/retreat through multiple climate cycles. The research focuses on shifts from warm based to cold based ice sheets through the variable climate and ice sheet conditions that characterized the early to middle Miocene. The study seeks to test the view that cold based ice sheets in arid, polar deserts minimally erode the landscape by calculating sediment volumes for critical climatic intervals. Revised seismic mapping through McMurdo Sound has been completed, utilizing the seismic stratigraphic framework first established by Fielding et al. (2006) and new reflectors marking unconformities identified from the AND-2A core (Levy et al., 2016). Reflector age constraints are derived by tying surfaces to the Cape Roberts Project, CIROS-1, and AND-2A drillholes. Seismic facies coupled with AND-2A core provenance information provides insight into depositional mechanisms and ice sheet behavior. Seismic facies transitions occur across the major unconformity surfaces in the AND-2A core. Sediment volume calculations for subareas within McMurdo Sound where reflectors are most continuous indicate substantial decreases in preserved sediment volume between the Oligocene and Early Miocene sequences, and between the early and mid-Miocene sequences. Sediment volumes, used in combination with an ice sheet model in a backstacking procedure, provide constraints on landscape modification and further understanding of how landscapes erode under warm and cold based ice sheet regimes.

  6. Probabilistic, Seismically-Induced Landslide Hazard Mapping of Western Oregon

    NASA Astrophysics Data System (ADS)

    Olsen, M. J.; Sharifi Mood, M.; Gillins, D. T.; Mahalingam, R.

    2015-12-01

    Earthquake-induced landslides can generate significant damage within urban communities by damaging structures, obstructing lifeline connection routes and utilities, generating various environmental impacts, and possibly resulting in loss of life. Reliable hazard and risk maps are important to assist agencies in efficiently allocating and managing limited resources to prepare for such events. This research presents a new methodology in order to communicate site-specific landslide hazard assessments in a large-scale, regional map. Implementation of the proposed methodology results in seismic-induced landslide hazard maps that depict the probabilities of exceeding landslide displacement thresholds (e.g. 0.1, 0.3, 1.0 and 10 meters). These maps integrate a variety of data sources including: recent landslide inventories, LIDAR and photogrammetric topographic data, geology map, mapped NEHRP site classifications based on available shear wave velocity data in each geologic unit, and USGS probabilistic seismic hazard curves. Soil strength estimates were obtained by evaluating slopes present along landslide scarps and deposits for major geologic units. Code was then developed to integrate these layers to perform a rigid, sliding block analysis to determine the amount and associated probabilities of displacement based on each bin of peak ground acceleration in the seismic hazard curve at each pixel. The methodology was applied to western Oregon, which contains weak, weathered, and often wet soils at steep slopes. Such conditions have a high landslide hazard even without seismic events. A series of landslide hazard maps highlighting the probabilities of exceeding the aforementioned thresholds were generated for the study area. These output maps were then utilized in a performance based design framework enabling them to be analyzed in conjunction with other hazards for fully probabilistic-based hazard evaluation and risk assessment. a) School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, USA

  7. Properties of induced seismicity at the geothermal reservoir Insheim, Germany

    NASA Astrophysics Data System (ADS)

    Olbert, Kai; Küperkoch, Ludger; Thomas, Meier

    2017-04-01

    Within the framework of the German MAGS2 Project the processing of induced events at the geothermal power plant Insheim, Germany, has been reassessed and evaluated. The power plant is located close to the western rim of the Upper Rhine Graben in a region with a strongly heterogeneous subsurface. Therefore, the location of seismic events particularly the depth estimation is challenging. The seismic network consisting of up to 50 stations has an aperture of approximately 15 km around the power plant. Consequently, the manual processing is time consuming. Using a waveform similarity detection algorithm, the existing dataset from 2012 to 2016 has been reprocessed to complete the catalog of induced seismic events. Based on the waveform similarity clusters of similar events have been detected. Automated P- and S-arrival time determination using an improved multi-component autoregressive prediction algorithm yields approximately 14.000 P- and S-arrivals for 758 events. Applying a dataset of manual picks as reference the automated picking algorithm has been optimized resulting in a standard deviation of the residuals between automated and manual picks of about 0.02s. The automated locations show uncertainties comparable to locations of the manual reference dataset. 90 % of the automated relocations fall within the error ellipsoid of the manual locations. The remaining locations are either badly resolved due to low numbers of picks or so well resolved that the automatic location is outside the error ellipsoid although located close to the manual location. The developed automated processing scheme proved to be a useful tool to supplement real-time monitoring. The event clusters are located at small patches of faults known from reflection seismic studies. The clusters are observed close to both the injection as well as the production wells.

  8. Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA)

    NASA Astrophysics Data System (ADS)

    Selva, J.; Tonini, R.; Molinari, I.; Tiberti, M. M.; Romano, F.; Grezio, A.; Melini, D.; Piatanesi, A.; Basili, R.; Lorito, S.

    2016-06-01

    We propose a procedure for uncertainty quantification in Probabilistic Tsunami Hazard Analysis (PTHA), with a special emphasis on the uncertainty related to statistical modelling of the earthquake source in Seismic PTHA (SPTHA), and on the separate treatment of subduction and crustal earthquakes (treated as background seismicity). An event tree approach and ensemble modelling are used in spite of more classical approaches, such as the hazard integral and the logic tree. This procedure consists of four steps: (1) exploration of aleatory uncertainty through an event tree, with alternative implementations for exploring epistemic uncertainty; (2) numerical computation of tsunami generation and propagation up to a given offshore isobath; (3) (optional) site-specific quantification of inundation; (4) simultaneous quantification of aleatory and epistemic uncertainty through ensemble modelling. The proposed procedure is general and independent of the kind of tsunami source considered; however, we implement step 1, the event tree, specifically for SPTHA, focusing on seismic source uncertainty. To exemplify the procedure, we develop a case study considering seismic sources in the Ionian Sea (central-eastern Mediterranean Sea), using the coasts of Southern Italy as a target zone. The results show that an efficient and complete quantification of all the uncertainties is feasible even when treating a large number of potential sources and a large set of alternative model formulations. We also find that (i) treating separately subduction and background (crustal) earthquakes allows for optimal use of available information and for avoiding significant biases; (ii) both subduction interface and crustal faults contribute to the SPTHA, with different proportions that depend on source-target position and tsunami intensity; (iii) the proposed framework allows sensitivity and deaggregation analyses, demonstrating the applicability of the method for operational assessments.

  9. The shallow structure of Solfatara Volcano, Italy, revealed by dense, wide-aperture seismic profiling.

    PubMed

    Bruno, Pier Paolo G; Maraio, Stefano; Festa, Gaetano

    2017-12-12

    Two active-source, high-resolution seismic profiles were acquired in the Solfatara tuff cone in May and November 2014, with dense, wide-aperture arrays. Common Receiver Surface processing was crucial in improving signal-to-noise ratio and reflector continuity. These surveys provide, for the first time, high-resolution seismic images of the Solfatara crater, depicting a ~400 m deep asymmetrical crater filled by volcanoclastic sediments and rocks and carved within an overall non-reflective pre-eruptive basement showing features consistent with the emplacement of shallow intrusive bodies. Seismic reflection data were interpreted using the trace complex attributes and clearly display several steep and segmented collapse faults, generally having normal kinematics and dipping toward the crater centre. Fault/fracture planes are imaged as sudden amplitude drops that generate narrow low-similarity and high-dip attributes. Uprising fluids degassed by a magmatic source are the most probable cause of the small-scale amplitude reduction. Seismic data also support the interpretation of the shallow structure of the Solfatara crater as a maar. Our results provides a solid framework to constrain the near-surface geological interpretation of such a complex area, which improves our understanding of the temporal changes of the structure in relation with other geophysical and geochemical measurements.

  10. Stress accumulated mechanisms on strike-slip faults

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.

    1980-01-01

    The tectonic framework causing seismicity on the San Andreas and North Anatolian faults can be understood in terms of plate tectonics. However, the mechanisms responsible for the distribution of seismicity in space and time on these faults are poorly understood. The upper part of the crust apparently behaves elastically in storing energy that is released during an earthquake. The relatively small distances from the fault in which stress is stored argue in favor of a plate with a thickness of 5-10 km. The interaction of this plate with a lower crust that is behaving as a fluid damps the seismic cycling in distances of the order of 10 km from the fault. Low measured heat flow also argues in favor of a thin plate with a low stress level on the fault. Future measurements of stress, strain, and heat flow should help to provide a better understanding of the basic mechanisms governing the behavior of strike-slip faults.

  11. Decision making with epistemic uncertainty under safety constraints: An application to seismic design

    USGS Publications Warehouse

    Veneziano, D.; Agarwal, A.; Karaca, E.

    2009-01-01

    The problem of accounting for epistemic uncertainty in risk management decisions is conceptually straightforward, but is riddled with practical difficulties. Simple approximations are often used whereby future variations in epistemic uncertainty are ignored or worst-case scenarios are postulated. These strategies tend to produce sub-optimal decisions. We develop a general framework based on Bayesian decision theory and exemplify it for the case of seismic design of buildings. When temporal fluctuations of the epistemic uncertainties and regulatory safety constraints are included, the optimal level of seismic protection exceeds the normative level at the time of construction. Optimal Bayesian decisions do not depend on the aleatory or epistemic nature of the uncertainties, but only on the total (epistemic plus aleatory) uncertainty and how that total uncertainty varies randomly during the lifetime of the project. ?? 2009 Elsevier Ltd. All rights reserved.

  12. Seismotectonic framework of the 2010 February 27 Mw 8.8 Maule, Chile earthquake sequence

    USGS Publications Warehouse

    Hayes, Gavin P.; Bergman, Eric; Johnson, Kendra J.; Benz, Harley M.; Brown, Lucy; Meltzer, Anne S.

    2013-01-01

    After the 2010 Mw 8.8 Maule earthquake, an international collaboration involving teams and instruments from Chile, the US, the UK, France and Germany established the International Maule Aftershock Deployment temporary network over the source region of the event to facilitate detailed, open-access studies of the aftershock sequence. Using data from the first 9-months of this deployment, we have analyzed the detailed spatial distribution of over 2500 well-recorded aftershocks. All earthquakes have been relocated using a hypocentral decomposition algorithm to study the details of and uncertainties in both their relative and absolute locations. We have computed regional moment tensor solutions for the largest of these events to produce a catalogue of 465 mechanisms, and have used all of these data to study the spatial distribution of the aftershock sequence with respect to the Chilean megathrust. We refine models of co-seismic slip distribution of the Maule earthquake, and show how small changes in fault geometries assumed in teleseismic finite fault modelling significantly improve fits to regional GPS data, implying that the accuracy of rapid teleseismic fault models can be substantially improved by consideration of existing fault geometry model databases. We interpret all of these data in an integrated seismotectonic framework for the Maule earthquake rupture and its aftershock sequence, and discuss the relationships between co-seismic rupture and aftershock distributions. While the majority of aftershocks are interplate thrust events located away from regions of maximum co-seismic slip, interesting clusters of aftershocks are identified in the lower plate at both ends of the main shock rupture, implying internal deformation of the slab in response to large slip on the plate boundary interface. We also perform Coulomb stress transfer calculations to compare aftershock locations and mechanisms to static stress changes following the Maule rupture. Without the incorporation of uncertainties in earthquake locations, just 55 per cent of aftershock nodal planes align with faults promoted towards failure by co-seismic slip. When epicentral uncertainties are considered (on the order of just ±2–3 km), 90 per cent of aftershocks are consistent with occurring along faults demonstrating positive stress transfer. These results imply large sensitivities of Coulomb stress transfer calculations to uncertainties in both earthquake locations and models of slip distributions, particularly when applied to aftershocks close to a heterogeneous fault rupture; such uncertainties should therefore be considered in similar studies used to argue for or against models of static stress triggering.

  13. Seismic structure of oceanic crust at ODP borehole 504B: Investigating anisotropy and layer 2 characteristics

    NASA Astrophysics Data System (ADS)

    Gregory, E. P. M.; Hobbs, R. W.; Peirce, C.; Wilson, D. J.

    2015-12-01

    Fracture and fault networks in the upper oceanic crust influence the circulation of hydrothermal fluids and heat transfer between crust and ocean. These fractures form by extensional stresses, with a predominant orientation parallel to the ridge axis, creating porosity- and permeability-derived anisotropy that can be measured in terms of seismic velocity. These properties change as the crust ages and evolves through cooling, alteration and sedimentation. The rate at which these changes occur and their effects on oceanic crustal structure and hydrothermal flow patterns are currently not well constrained. The NERC-funded OSCAR project aims to understand the development of upper oceanic crust, the extent and influence of hydrothermal circulation on the crust, and the behavior of fluids flowing in fractured rock. We show P-wave velocity models centered on DSDP/ODP Hole 504B, located ~200 km south of the Costa Rica Rift, derived from data acquired during a recent integrated geophysics and oceanography survey of the Panama Basin. The data were recorded by 25 four-component OBSs deployed in a grid, that recorded ~10,000 full azimuthal coverage shots fired by a combined high- and low-frequency seismic source. Both reflection and refraction data are integrated to reveal the seismic velocity structure of the crust within the 25 km by 25 km grid. The down-hole geological structure of 6 Ma crust at 504B comprises 571.5 m of extrusive basalts overlying a 209 m transition zone of mixed pillows and dikes containing a clear alteration boundary, which grades to >1050 m of sheeted dikes. Our model results are compared with this lithological structure and other previously published results to better understand the nature of velocity changes within seismic layer 2. The data provide a 3D framework, which together with analysis of the S-wave arrivals and particle motion studies, constrain estimates of the seismic anisotropy and permeability structure of the upper oceanic crust as it ages.

  14. Results from the latest SN-4 multi-parametric benthic observatory experiment (MARsite EU project) in the Gulf of Izmit, Turkey: oceanographic, chemical and seismic monitoring

    NASA Astrophysics Data System (ADS)

    Embriaco, Davide; Marinaro, Giuditta; Frugoni, Francesco; Giovanetti, Gabriele; Monna, Stephen; Etiope, Giuseppe; Gasperini, Luca; Çağatay, Namık; Favali, Paolo

    2015-04-01

    An autonomous and long-term multiparametric benthic observatory (SN-4) was designed to study gas seepage and seismic energy release along the submerged segment of the North Anatolian Fault (NAF). Episodic gas seepage occurs at the seafloor in the Gulf of Izmit (Sea of Marmara, NW Turkey) along this submerged segment of the NAF, which ruptured during the 1999 Mw7.4 Izmit earthquake. The SN-4 observatory already operated in the Gulf of Izmit at the western end of the 1999 Izmit earthquake rupture for about one-year at 166 m water depth during the 2009-2010 experiment (EGU2014-13412-1, EGU General Assembly 2014). SN-4 was re-deployed in the same site for a new long term mission (September 2013 - April 2014) in the framework of MARsite (New Directions in Seismic Hazard assessment through Focused Earth Observation in the Marmara Supersite, http://marsite.eu/ ) EC project, which aims at evaluating seismic risk and managing of long-term monitoring activities in the Marmara Sea. A main scientific objective of the SN-4 experiment is to investigate the possible correlations between seafloor methane seepage and release of seismic energy. We used the same site of the 2009-2010 campaign to verify both the occurrence of previously observed phenomena and the reliability of results obtained in the previous experiment (Embriaco et al., 2014, doi:10.1093/gji/ggt436). In particular, we are interested in the detection of gas release at the seafloor, in the role played by oceanographic phenomena in this detection, and in the association of gas and seismic energy release. The scientific payload included, among other instruments, a three-component broad-band seismometer, and gas and oceanographic sensors. We present a technical description of the observatory, including the data acquisition and control system, results from the preliminary analysis of this new multidisciplinary data set, and a comparison with the previous experiment.

  15. Using Cross-Correlation Methods to Characterize Earthquakes Associated with the Socorro Magma Body

    NASA Astrophysics Data System (ADS)

    Vieceli, R.; Bilek, S. L.; Worthington, L. L.; Schmandt, B.; Aster, R. C.; Dodge, D. A.; Pyle, M. L.; Walter, W. R.

    2017-12-01

    The Socorro Magma Body (SMB), a thin, sill-like body with a top surface-depth of 19 km situated within the Rio Grande Rift in central New Mexico, is one of the largest recognized continental mid-crustal magma bodies in the world by area. SMB-associated inflation leads to slow regional uplift of a few mm/yr and has been linked to longstanding concentrated shallow seismicity (< 10 km depth) with variable spatial and temporal occurrence, including early 20th century events of magnitude 5.5 - 6. Recent small earthquakes (magnitudes 3 to -1) have been monitored with a variety of broadband and short-term local seismic networks over the past several decades, but these routine catalogs have not been relocated or fully interpreted in terms of newer models of the structure, or its emplacement and history. In February 2015 seismic data were collected above the northern and most rapidly uplifting region of the SMB with a densely spaced temporary array, consisting of seven broadband and 804 short period Fairfield nodal vertical component seismographs. The total array area was 50 x 25 km with typical node spacing of 300 m along a road network. In this study, we exploit all available seismic network data in a cross-correlation framework developed at Lawrence Livermore National Laboratory to detect events and characterize earthquake swarms, clusters, and patterns occurring over the last 15 years. We use a power detector to build an initial catalog of small magnitude earthquakes, including 33 events (M <= 2.5) recorded during the February 2015 deployment, as templates to detect additional events. We also develop an updated shallow velocity model for the region and refine event hypocenters using Bayesloc, a bayesian, multiple-event location algorithm. This enhanced seismicity catalog will be utilized in interpreting the recent seismicity of the SMB. LLNL-ABS-735529

  16. The KnowRISK project - Know your city, Reduce seISmic risK through non-structural elements

    NASA Astrophysics Data System (ADS)

    Sousa Oliveria, Carlos; Amaral Ferreira, Mónica; Lopez, Mário; Sousa Silva, Delta; Musacchio, Gemma; Rupakhety, Rajesh; Falsaperla, Susanna; Meroni, Fabrizio; Langer, Horst

    2016-04-01

    Historically, there is a tendency to focus on seismic structural performance of buildings, neglecting the potential for damage of non-structural elements. In particular, non-structural elements of buildings are their architectural parts (i.e. partitions, ceilings, cladding), electrical and mechanical components (i.e., distribution panels, piping, plumbing), and contents (e.g., furniture, bookcases, computers and desktop equipment). Damage of these elements often contributes significantly to earthquake impacts. In the 1999 Izmit Earthquake, Turkey, 50% of the injuries and 3% of human losses were caused by non-structural failures. In the 2010-2011 Christchurch Earthquakes (New Zealand), 40% of building damage was induced by non-structural malfunctions. Around 70%-85% of construction cost goes into these elements, and their damage can strongly influence the ability of communities to cope with and recover from earthquakes. The project Know your city, Reduce seISmic risK through non-structural elements (KnowRISK) aims at facilitating local communities' access to expert knowledge on non-structural seismic protection solutions. The project will study seismic scenarios critical for non-structural damage, produce a portfolio of non-structural protection measures and investigate the level of awareness in specific communities. We will implement risk communication strategies that will take into account the social and cultural background and a participatory approach to raise awareness in local communities. The paradox between the progress of scientific knowledge and the ongoing increase of losses from natural disasters worldwide is a well-identified gap in the UN Hyogo Framework for Action 2005-2015, in which one of the main priorities is the investment on "knowledge use, innovation and education to build a culture of safety and resilience". The KnowRISK is well aligned with these priorities and will contribute to participatory action aimed at: i) transferring expert knowledge on seismic risk and non-structural protective solutions into practical knowledge and ii) communication tools designed to engage communities in disaster risk reduction

  17. Back to the Future: Long-Term Seismic Archives Revisited

    NASA Astrophysics Data System (ADS)

    Waldhauser, F.; Schaff, D. P.

    2007-12-01

    Archives of digital seismic data recorded by seismometer networks around the world have grown tremendously over the last several decades helped by the deployment of seismic stations and their continued operation within the framework of monitoring seismic activity. These archives typically consist of waveforms of seismic events and associated parametric data such as phase arrival time picks and the location of hypocenters. Catalogs of earthquake locations are fundamental data in seismology, and even in the Earth sciences in general. Yet, these locations have notoriously low spatial resolution because of errors in both the picks and the models commonly used to locate events one at a time. This limits their potential to address fundamental questions concerning the physics of earthquakes, the structure and composition of the Earth's interior, and the seismic hazards associated with active faults. We report on the comprehensive use of modern waveform cross-correlation based methodologies for high- resolution earthquake location - as applied to regional and global long-term seismic databases. By simultaneous re-analysis of two decades of the digital seismic archive of Northern California, reducing pick errors via cross-correlation and model errors via double-differencing, we achieve up to three orders of magnitude resolution improvement over existing hypocenter locations. The relocated events image networks of discrete faults at seismogenic depths across various tectonic settings that until now have been hidden in location uncertainties. Similar location improvements are obtained for earthquakes recorded at global networks by re- processing 40 years of parametric data from the ISC and corresponding waveforms archived at IRIS. Since our methods are scaleable and run on inexpensive Beowulf clusters, periodic re-analysis of entire archives may thus become a routine procedure to continuously improve resolution in existing catalogs. We demonstrate the role of seismic archives in obtaining the precise location of new events in real-time. Such information has considerable social and economic impact in the evaluation and mitigation of seismic hazards, for example, and highlights the need for consistent long-term seismic monitoring and archiving of records.

  18. Trial Implementation of a Multihazard Risk Assessment Framework for High-Impact Low-Frequency Power Grid Events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.

    The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less

  19. Trial Implementation of a Multihazard Risk Assessment Framework for High-Impact Low-Frequency Power Grid Events

    DOE PAGES

    Veeramany, Arun; Coles, Garill A.; Unwin, Stephen D.; ...

    2017-08-25

    The Pacific Northwest National Laboratory developed a risk framework for modeling high-impact, low-frequency power grid events to support risk-informed decisions. In this paper, we briefly recap the framework and demonstrate its implementation for seismic and geomagnetic hazards using a benchmark reliability test system. We describe integration of a collection of models implemented to perform hazard analysis, fragility evaluation, consequence estimation, and postevent restoration. We demonstrate the value of the framework as a multihazard power grid risk assessment and management tool. As a result, the research will benefit transmission planners and emergency planners by improving their ability to maintain a resilientmore » grid infrastructure against impacts from major events.« less

  20. Retrieving robust noise-based seismic velocity changes from sparse data sets: synthetic tests and application to Klyuchevskoy volcanic group (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Gómez-García, C.; Brenguier, F.; Boué, P.; Shapiro, N. M.; Droznin, D. V.; Droznina, S. Ya; Senyukov, S. L.; Gordeev, E. I.

    2018-05-01

    Continuous noise-based monitoring of seismic velocity changes provides insights into volcanic unrest, earthquake mechanisms and fluid injection in the sub-surface. The standard monitoring approach relies on measuring travel time changes of late coda arrivals between daily and reference noise cross-correlations, usually chosen as stacks of daily cross-correlations. The main assumption of this method is that the shape of the noise correlations does not change over time or, in other terms, that the ambient-noise sources are stationary through time. These conditions are not fulfilled when a strong episodic source of noise, such as a volcanic tremor for example, perturbs the reconstructed Green's function. In this paper we propose a general formulation for retrieving continuous time series of noise-based seismic velocity changes without the requirement of any arbitrary reference cross-correlation function. Instead, we measure the changes between all possible pairs of daily cross-correlations and invert them using different smoothing parameters to obtain the final velocity change curve. We perform synthetic tests in order to establish a general framework for future applications of this technique. In particular, we study the reliability of velocity change measurements versus the stability of noise cross-correlation functions. We apply this approach to a complex dataset of noise cross-correlations at Klyuchevskoy volcanic group (Kamchatka), hampered by loss of data and the presence of highly non-stationary seismic tremors.

  1. Non Conventional Seismic Events Along the Himalayan Arc Detected in the Hi-Climb Dataset

    NASA Astrophysics Data System (ADS)

    Vergne, J.; Nàbĕlek, J. L.; Rivera, L.; Bollinger, L.; Burtin, A.

    2008-12-01

    From September 2002 to August 2005, more than 200 broadband seismic stations were operated across the Himalayan arc and the southern Tibetan plateau in the framework of the Hi-Climb project. Here, we take advantage of the high density of stations along the main profile to look for coherent seismic wave arrivals that can not be attributed to ordinary tectonic events. An automatic detection algorithm is applied to the continuous data streams filtered between 1 and 10 Hz, followed by a visual inspection of all detections. We discovered about one hundred coherent signals that cannot be attributed to local, regional or teleseismic earthquakes and which are characterized by emergent arrivals and long durations ranging from one minute to several hours. Most of these non conventional seismic events have a low signal to noise ratio and are thus only observed above 1 Hz in the frequency band where the seismic noise is the lowest. However, a small subset of them are strong enough to be observed in a larger frequency band and show an enhancement of long periods compared to standard earthquakes. Based on the analysis of the relative amplitude measured at each station or, when possible, on the correlation of the low frequency part of the signals, most of these events appear to be located along the High Himalayan range. But, because of their emergent character and the main orientation of the seismic profile, their longitude and depth remain poorly constrained. The origin of these non conventional seismic events is still unsealed but their seismic signature shares several characteristics with non volcanic tremors, glacial earthquakes and/or debris avalanches. All these phenomena may occur along the Himalayan range but were not seismically detected before. Here we discuss the pros and cons for each of these postulated candidates based on the analysis of the recorded waveforms and slip models.

  2. A preliminary assessment of geologic framework and sediment thickness studies relevant to prospective US submission on extended continental shelf

    USGS Publications Warehouse

    Hutchinson, Deborah R.; Childs, Jonathan R.; Hammar-Klose, Erika; Dadisman, Shawn; Edgar, N. Terrence; Barth, Ginger A.

    2004-01-01

    Under the provisions of Articles 76 and 77 of the United Nations Convention on the Law of the Sea (UNCLOS), coastal States have sovereign rights over the continental shelf territory beyond 200-nautical mile (nm) from the baseline from which the territorial sea is measured if certain conditions are met regarding the geologic and physiographic character of the legal continental shelf as defined in those articles. These claims to an extended continental shelf must be supported by relevant bathymetric, geophysical and geological data according to guidelines established by the Commission on the Limits of the Continental Shelf (CLCS, 1999). In anticipation of the United States becoming party to UNCLOS, Congress in 2001 directed the Joint Hydrographic Center/Center for Coastal and Ocean Mapping at the University of New Hampshire to conduct a study to evaluate data relevant to establishing the outer limit of the juridical continental shelf beyond 200 nm and to recommend what additional data might be needed to substantiate such an outer limit (Mayer and others, 2002). The resulting report produced an impressive and sophisticated GIS database of data sources. Because of the short time allowed to complete the report, all seismic reflection data were classified together; the authors therefore recommended that USGS perform additional analysis on seismic and related data holdings. The results of this additional analysis are the substance of this report, including the status of geologic framework, sediment isopach research, and resource potential in the eight regions1 identified by Mayer and others (2002) where analysis of seismic data might be crucial for establishing an outer limit . Seismic reflection and refraction data are essential in determining sediment thickness, one of the criteria used in establishing the outer limits of the juridical continental shelf. Accordingly, the initial task has been to inventory public-domain seismic data sources, primarily those regionally extensive data held within the Department of the Interior (DOI). The numerous seismic reflection and refraction surveys collected prior to 1970 by academic and governmental institutions are generally not included in this compilation, except where they provide unique data in a region. These data sources were omitted from this report because they were deemed to be of insufficient quality (poorly navigated or low resolution) to meet the CLCS standards for a submission, or they were redundant with higher-quality, more modern data. Hence, this report attempts to identify those data sets of highest utility for establishing the outer limits of the juridical continental shelf. If there was any ambiguity or uncertainty about the relevance of a data set to a continental shelf submission, either by its quality, location, or other parameter, it was included in this compilation. This report does not summarize other geophysical data (such as marine magnetics or gravity) that might be relevant to understanding crustal provenance and geological continuity. Detailed metadata tables and maps are included to facilitate the location and utilization of these sources when a comprehensive assessment (?desktop study?) is undertaken.

  3. Monitoring and Characterizing the Geysering and Seismic Activity at the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The Lusi eruption began on May 29, 2006 in the northeast of Java Island, Indonesia, and to date is still active. Lusi is a newborn sedimentary-hosted hydrothermal system characterized by continuous expulsion of liquefied mud and breccias and geysering activity. Lusi is located upon the Watukosek fault system, a left lateral wrench system connecting the volcanic arc and the bakarc basin. This fault system is still periodically reactivated as shown by field data. In the framework of the Lusi Lab project (ERC grant n° 308126) we conducted several types of monitoring. Based on camera observations, we characterized the Lusi erupting activity by four main behaviors occurring cyclically: (1) Regular activity, which consists in the constant emission of water and mud breccias (i.e. viscous mud containing clay, silt, sand and clasts) associated with the constant expulsion of gas (mainly aqueous vapor with minor amounts of CO2 and CH4) (2) Geysering phase with intense bubbling, consisting in reduced vapor emission and more powerful bursting events that do not seem to have a regular pattern. (3) Geysering phase with intense vapor and degassing discharge and a typically dense plume that propagates up to 100 m height. (4) Quiescent phase marking the end of the geysering activity (and the observed cycle) with no gas emissions or bursts observed. To investigate the possible seismic activity beneath Lusi and the mechanisms controlling the Lusi pulsating behaviour, we deployed a network of 5 seismic stations and a HD camera around the Lusi crater. We characterize the observed types of seismic activity as tremor and volcano-tectonic events. Lusi tremor events occur in 5-10 Hz frequency band, while volcano tectonic events are abundant in the high frequencies range from 5 Hz until 25 Hz. We coupled the seismic monitoring with the images collected with the HD camera to study the correlation between the seismic tremor and the different phases of the geysering activity. Key words: Lusi mud eruption, geysering activity, seismic activity

  4. Low Stress Drop Swarm Events in the Yilgarn Craton, Western Australia

    NASA Astrophysics Data System (ADS)

    Allen, T. I.; Cummins, P. R.; Leonard, M.; Collins, C. D.

    2004-12-01

    Since September 2001, the small rural community of Burakin, southwest Western Australia, has been at the focus of seismic activity in Australia. In the six month period following commencement of seismicity, some 18,000 events had occurred, the largest of which having a moment magnitude of M 4.6. At the onset of activity, Geoscience Australia made a concerted effort to deploy a temporary seismic network in the region. The primary objective of this network was to collect high-quality strong-motion data for use in attenuation studies. Levels of seismicity near Burakin have decreased significantly since the 2001-02 swarm, however the region continues to experience a few small earthquakes per month. Earthquake source and path parameters are evaluated for a subset of 67 earthquakes. The dataset comprises some 375 seismograph and accelerograph records for events of magnitude M 2.3-4.6, including strong-motion data for seven earthquakes of M 4.0 and greater recorded at hypocentral distances less than 10 km. Source parameters are evaluated from far-field displacement spectra. Average corner frequencies are typically quite low, chiefly ranging between 2-3 Hz for events M 3.0 and above. Given the small variability in corner frequency, stress drop is observed to increase with magnitude, from very low values of 0.04 MPa to 18 MPa for the largest events in the catalogue. The stress drops for lower magnitude events (M < 4.0) are typically lower than those obtained for southeastern Australian earthquakes of similar seismic moment. Since corner frequency is not observed to vary significantly with seismic moment, it is thought that the spectral content of shallow, small swarm events and consequently, the stress drop, is characteristically different to that of isolated intraplate earthquakes. We suggest that the larger events may be faulting previously unfractured rock or healed fault asperities, while the smaller events are adjustment events or aftershocks and occur on recently faulted surfaces. The work described has provided a useful framework for the development of regional ground-motion relations for Western Australia and will enable a better understanding of the mechanisms driving intraplate seismicity.

  5. Proceedings of the Annual Seismic Research Symposium (15th) Held in Vail, Colorado on 8-10 September 1993

    DTIC Science & Technology

    1993-08-01

    Inc., 445 Pineda C. Melbourne, FL 32940 Contract No. F19628-91-C-0172 OBJECTIVE The framework for a system for automatic global seismic event...placedinsde hoiona tunlwihi meddi ooeeu lsi mees X5 o w ie f h unl( n 10 mee ai) ah aito atrEahptensda o n tesm sclbtwhaspre manfcto atr * 40 U * I 1 9w...34" - a o * a • * ao * U°o " - x3 20 ’x i, 4, * . St. at l mees n o w ie fttne 5 an10mtradi. ahrdaio pten O is calculated at a semi-circular receiver

  6. Surficial Seismology: Landslides, Glaciers, and Volcanoes in the Pacific Northwest through a Seismic Lens

    NASA Astrophysics Data System (ADS)

    Allstadt, Kate

    The following work is focused on the use of both traditional and novel seismological tools, combined with concepts from other disciplines, to investigate shallow seismic sources and hazards. The study area is the dynamic landscape of the Pacific Northwest and its wide-ranging earthquake, landslide, glacier, and volcano-related hazards. The first chapter focuses on landsliding triggered by earthquakes, with a shallow crustal earthquake in Seattle as a case study. The study demonstrates that utilizing broadband synthetic seismograms and rigorously incorporating 3D basin amplification, 1D site effects, and fault directivity, allows for a more complete assessment of regional seismically induced landslide hazard. The study shows that the hazard is severe for Seattle, and provides a framework for future probabilistic maps and near real-time hazard assessment. The second chapter focuses on landslides that generate seismic waves and how these signals can be harnessed to better understand landslide dynamics. This is demonstrated using two contrasting Pacific Northwest landslides. The 2010 Mount Meager, BC, landslide generated strong long period waves. New full waveform inversion methods reveal the time history of forces the landslide exerted on the earth that is used to quantify event dynamics. Despite having a similar volume (˜107 m3), The 2009 Nile Valley, WA, landslide did not generate observable long period motions because of its smaller accelerations, but pulses of higher frequency waves were valuable in piecing together the complex sequence of events. The final chapter details the difficulties of monitoring glacier-clad volcanoes. The focus is on small, repeating, low-frequency earthquakes at Mount Rainier that resemble volcanic earthquakes. However, based on this investigation, they are actually glacial in origin: most likely stick-slip sliding of glaciers triggered by snow loading. Identification of the source offers a view of basal glacier processes, discriminates against alarming volcanic noises, and has implications for repeating earthquakes in tectonic environments. This body of work demonstrates that by combining methods and concepts from seismology and other disciplines in new ways, we can obtain a better understanding and a fresh perspective of the physics behind the shallow seismic sources and hazards that threaten the Pacific Northwest.

  7. Gas Hydrate Petroleum System Modeling in western Nankai Trough Area

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Aung, T. T.; Fujii, T.; Wada, N.; Komatsu, Y.

    2017-12-01

    Since 2003, we have been conducting Gas Hydrate (GH) petroleum system models covering the eastern Nankai Trough, Japan, and results of resource potential from regional model shows good match with the value depicted from seismic and log data. In this year, we have applied this method to explore GH potential in study area. In our study area, GH prospects have been identified with aid of bottom simulating reflector (BSR) and presence of high velocity anomalies above the BSR interpreted based on 3D migration seismic and high density velocity cubes. In order to understand the pathway of biogenic methane from source to GH prospects 1D-2D-3D GH petroleum system models are built and investigated. This study comprises lower Miocene to Pleistocene, deep to shallow marine sedimentary successions of Pliocene and Pleistocene layers overlain the basement. The BSR were interpreted in Pliocene and Pleistocene layers. Based on 6 interpreted sequence boundaries from 3D migration seismic and velocity data, construction of a depth 3D framework model is made and distributed by a conceptual submarine fan depositional facies model derived from seismic facies analysis and referring existing geological report. 1D models are created to analyze lithology sensitivity to temperature and vitrinite data from an exploratory well drilled in the vicinity of study area. The PSM parameters are applied in 2D and 3D modeling and simulation. Existing report of the explanatory well reveals that thermogenic origin are considered to exist. For this reason, simulation scenarios including source formations for both biogenic and thermogenic reaction models are also investigated. Simulation results reveal lower boundary of GH saturation zone at pseudo wells has been simulated with sensitivity of a few tens of meters in comparing with interpreted BSR. From sensitivity analysis, simulated temperature was controlled by different peak generation temperature models and geochemical parameters. Progressive folding and updipping layers including paleostructure can effectively assist biogenic gas migration to upward. Biogenic and Thermogenic mixing model shows that kitchen center only has a potential for generating thermogenic hydrocarbon. Our Prospect based on seismic interpretation is consistent with high GH saturation area based on 3D modeling results.

  8. Uniquely Acquired Vintage Seismic Reflection Data Reveal the Stratigraphic and Tectonic History of the Montana Disturbed Belt, USA

    NASA Astrophysics Data System (ADS)

    Speece, M. A.; Link, C. A.; Stickney, M.

    2011-12-01

    In 1983 and 1984 Techco of Denver, Colorado, acquired approximately 302 linear kilometers of two-dimensional (2D) seismic reflection data in Flathead and Lake Counties, Montana, USA, as part of an initiative to identify potential drilling targets beneath the Swan and Whitefish Mountain Ranges and adjacent basins of northwestern Montana. These seismic lines were collected in the Montana Disturbed Belt (MDB) or Montana thrust belt along the western edge of Glacier National Park in mountainous terrain with complicated subsurface structures including thrust faults and folds. These structures formed during the Laramide Orogeny as sedimentary rocks of the Precambrian Belt Supergroup were thrust eastward. Later, during the Cenozoic, high-angle normal faults produced prominent west-facing mountain scarps of the Mission, Swan and Whitefish mountains. The 1983 data set consisted of two profiles of 24-fold (96-channels) Vibroseis data and four profiles of 24-fold (96-channels) helicopter-assisted dynamite data. The dynamite data were collected using the Poulter Method in which explosives were placed on poles and air shots were recorded. The 1983 dynamite profiles extend from southwest to northeast across the Whitefish Mountain Range to the edge of Glacier National Park and the Vibroseis data were collected along nearby roadways. The 1984 data set consists of four profiles of 30-fold (120-channels) helicopter-assisted dynamite data that were also collected using the Poulter Method. The 1984 profiles cross the Swan Mountain Range between Flathead Lake and Glacier National Park. All of these data sets were recently donated to Montana Tech and subsequently recovered from nine-track tape. Conventionally processed seismic stacked sections from the 1980s of these data show evidence of a basement decollement that separates relatively undeformed basement from overlying structures of the MDB. Unfortunately, these data sets have not been processed using modern seismic processing techniques including linear noise suppression of the air wave and ground roll, refraction statics, and prestack migration. Reprocessing of these data using state-of-the-art seismic reflection processing techniques will provide a detailed picture of the stratigraphy and tectonic framework for this region. Moreover, extended correlations of the Vibroseis records to Moho depths might reveal new insights on crustal thickness and provide a framework for understanding crustal thickening during the Laramide Orogeny as well as later Cenozoic extension.

  9. Revisiting the 2004 Sumatra-Andaman earthquake in a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Bletery, Q.; Sladen, A.; Jiang, J.; Simons, M.

    2015-12-01

    The 2004 Mw 9.25 Sumatra-Andaman earthquake is the largest seismic event of the modern instrumental era. Despite considerable effort to analyze the characteristics of its rupture, the different available observations have proven difficult to simultaneously integrate jointly into a finite-fault slip model. In particular, the critical near-field geodetic records contain variable and significant post-seismic signal (between 2 weeks and 2 months) while the satellite altimetry records of the associated tsunami are affected by various sources of uncertainties (e.g. source rupture velocity, meso-scale oceanic currents). In this study, we investigate the quasi-static slip distribution of the Sumatra-Andaman earthquake by carefully accounting for the different sources of uncertainties in the joint inversion of an extended set of geodetic and tsunami data. To do so, we use non-diagonal covariance matrices reflecting both data and model uncertainties in a fully Bayesian inversion framework. As model errors are particularly large for mega-earthquakes, we also rely on advanced simulation codes (normal mode theory on a layered spherical Earth for the static displacement field and non-hydrostatic equations for the tsunami) and account for the 3D curvature of the megathrust interface to reduce the associated epistemic uncertainties. The fully Bayesian inversion framework then enables us to derive the families of possible models compatible with the unevenly distributed and sometimes ambiguous measurements. We find two regions of high slip at latitudes 3°-4°N and 7°-8°N with amplitudes that probably reached values as large as 40 m and possibly larger. Such amounts of slip were not proposed by previous studies, which might have been biased by smoothing regularizations. We also find significant slip (around 20 m) offshore Andaman islands absent in earlier studies. Furthermore, we find that the rupture very likely involved shallow slip, with the possibility of reaching the trench.

  10. Plate Tectonics: A Framework for Understanding Our Living Planet.

    ERIC Educational Resources Information Center

    Achache, Jose

    1987-01-01

    Discusses some of the events leading to the development of the theory of plate tectonics. Describes how seismic, volcanic, and tectonic features observed at the surface of the planet are now seen as a consequence of intense internal activity, and makes suggestions about their further investigation. (TW)

  11. Seismic refraction studies of volcanic crust in Costa Rica and of critical zones in the southern Sierra Nevada, California and Laramie Range, Wyoming

    NASA Astrophysics Data System (ADS)

    Hayes, Jorden L.

    This work demonstrates the utility of seismic refraction surveys to understanding geologic processes at a range of scales. Each chapter presents subsurface maps of seismic p-wave velocities, which vary due to contrasts in elastic material properties. In the following chapters we examine seismic p-wave velocity variations that result from volcanic and tectonic processes within Earth's crust and chemical and physical weathering processes within Earth's near-surface environment. Chapter one presents results from an across-arc wide-angle seismic refraction survey of the Costa Rican volcanic front. These results support the hypothesis that juvenile continental crust may form along volcanic island arcs if built upon relatively thick substrates (i.e., large igneous provinces). Comparisons of velocity-depth functions show that velocities within the active arc of Costa Rica are lower than other modern island arcs (i.e., volcanic arcs built upon oceanic crust) and within the high-velocity extreme of bulk continental crust. Chapter two shows that physical processes can dominate over chemical processes in generating porosity in the deep critical zone and outlines a new framework for interpreting subsurface chemical and physical weathering at the landscape scale. Direct measurements of saprolite from boreholes at the Southern Sierra Nevada Critical Zone Observatory show that, contrary to convention, saprolite may experience high levels of volumetric strain (>35%) and uniform mass loss in the upper 11 m. By combining observations from boreholes and seismic refraction surveys we create a map of volumetric strain across the landscape. Variations in inferred volumetric strain are consistent with opening-mode fracture patterns predicted by topographic and tectonic stress models. Chapter three is a characterization of fracture distribution in the deep critical zone from geophysical and borehole observations in the Laramie Mountains, Wyoming. Data from core and down-hole acoustic televiewer images show that fracture density not only decreases with depth but also varies with topography. Comparisons of seismic p-wave velocities and fracture density show that increases in seismic velocity at our site (i.e., from 1-4 km/s) correspond to decreasing fracture density. Observations of a seismological boundary layer coupled with weathering interpreted in borehole images suggest a significant change in chemical weathering with depth. These results emphasize the complex interplay of chemical and physical processes in the deep critical zone.

  12. Implementing the effect of the rupture directivity on PSHA maps: Application to the Marmara Region (Turkey)

    NASA Astrophysics Data System (ADS)

    Herrero, Andre; Spagnuolo, Elena; Akinci, Aybige; Pucci, Stefano

    2016-04-01

    In the present study we attempted to improve the seismic hazard assessment taking into account possible sources of epistemic uncertainty and the azimuthal variability of the ground motions which, at a particular site, is significantly influenced by the rupture mechanism and the rupture direction relative to the site. As a study area we selected Marmara Region (Turkey), especially the city of Istanbul which is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The seismic hazard in the city is mainly associated with two active fault segments which are located at about 20-30 km south of Istanbul. In this perspective first we proposed a methodology to incorporate this new information such as nucleation point in a probabilistic seismic hazard analysis (PSHA) framework. Secondly we introduced information about those fault segments by focusing on the fault rupture characteristics which affect the azimuthal variations of the ground motion spatial distribution i.e. source directivity effect and its influence on the probabilistic seismic hazard analyses (PSHA). An analytical model developed by Spudich and Chiou (2008) is used as a corrective factor that modifies the Next Generation Attenuation (NGA, Power et al. 2008) ground motion predictive equations (GMPEs) introducing rupture related parameters that generally lump together into the term directivity effect. We used the GMPEs as derived by the Abrahamson and Silva (2008) and the Boore and Atkinson (2008); our results are given in terms of 10% probability of exceedance of PSHA (at several periods from 0.5 s to 10 s) in 50 years on rock site condition; the correction for directivity introduces a significant contribution to the percentage ratio between the seismic hazards computed using the directivity model respect to the seismic hazard standard practice. In particular, we benefited the dynamic simulation from a previous study (Aochi & Utrich, 2015) aimed at evaluating the seismic potential of the Marmara region to derive a statistical distribution for nucleation position. Our results suggest that accounting for rupture related parameters in a PSHA using deterministic information from dynamic models is feasible and in particular, the use of a non-uniform statistical distribution for nucleation position has serious consequences on the hazard assessment. Since the directivity effect is conditional on the nucleation position the hazard map changes with the assumptions made. A worst case scenario (both the faults are rupturing towards the city of Istanbul) predicts up to 25% change than the standard formulation at 2 sec and increases with longer periods. The former result is heavily different if a deterministically based nucleation position is assumed.

  13. Louisiana continental slope: geologic and seismic stratigraphic framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, P.K.; Cooke, D.W.

    1987-05-01

    The continental slope of Louisiana from Green Canyon to Mississippi Canyon was studied by interpreting seismic CDP data and wells in the area. The slope is characterized by blocked canyon intraslope basins of various dimensions with maximum thickness of sediments in excess of 21,000 ft, rotational slump blocks and large-scale submarine slides. In the subsurface, the outer shelf and upper slope show contrasting character with that of the lower slope, especially below the Sigsbee Scarp. The seismic stratigraphic units established for the deep sea area can be recognized in their entirety up to a water depth of 6000 to 5500more » ft. In shallower water salt tectonics obliterates the sequence. Fragmental records of the sequence, especially the top of Challenger boundary, have been recognized in as shallow as 2000 to 3000 ft of water. The Tertiary units often downlap and onlap directly on the Challenger unit, indicating the progradational nature of the clastic slope. The Sigsbee unit has been traced through the entire slope area and can be divided into five subunits of unique acoustical characteristics. The slope constantly regrades in response to Neogene sea level fluctuations. Loading of the shelf by deltaic deposition contributes to salt sill formation and flowage of salt over deep-water sediments on the slope during high sea level. Regressive sea is represented by slope failure, formation of large-scale submarine slides, filling of blocked canyon intraslope basins which show similar seismic facies to that of Orca and Pigmy basins as reported from DSDP studies, and sporadic uplifting of salt diapirs and massifs and the formation of linear transverse salt ridges.« less

  14. Origin and Formation of Giant Mounds in Lake Ladoga (Russia) from High-Resolution Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Gromig, R.; Lebas, E.; Krastel, S.; Averes, T.; Wagner, B.; Melles, M.; Fedorov, G.

    2017-12-01

    In the framework of the German-Russian project `PLOT - Paleolimnological Transect' (for an overview of the project see Gromig et al., this meeting), a pilot seismic survey was carried out in Lake Ladoga (Russia) in late summer 2013. In total, 1500 km of seismic reflection profiles have been acquired using a mini-GI gun and a 32-channel seismic streamer. The high-resolution of the seismic data allows us to document in detail the sedimentary processes that occurred in the lake during the preglacial and postglacial history. The seismic stratigraphic architecture of the lake shows, from top to bottom, acoustically well-stratified Holocene muds overlaying rather transparent postglacial varves. These sediment successions are usually bordered by a hard reflector underneath, which may represent coarse-grained sediments or a till. The nature of the material composing the uppermost units have been tied to coring information from core Co1309, which was retrieved during the same survey. Of particular interest, are the single to composite, giant (kilometer-scale) mounds directly overlying the hard reflector. Internal architecture of the mounds reveals a complex formation history, with mound types showing significant structural deformation of different degrees; and other mound types showing a central deformation area, which strongly contrasts with the titled reflections or undisturbed stratification visible at the edges. The deepest seismic unit underlying the mounds is characterized by well-bedded, tilted reflectors in the southeastern part of the lake, while clear synclines are identified in the northwestern part of the lake. An erosional truncation separates the deepest unit from the overlying ones. In the work presented here, we focus on the understanding of the origin and the formation of the giant mounds with respect to the glacial history of Lake Ladoga.

  15. Tsunamis hazard assessment and monitoring for the Back Sea area

    NASA Astrophysics Data System (ADS)

    Partheniu, Raluca; Ionescu, Constantin; Constantin, Angela; Moldovan, Iren; Diaconescu, Mihail; Marmureanu, Alexandru; Radulian, Mircea; Toader, Victorin

    2016-04-01

    NIEP has improved lately its researches regarding tsunamis in the Black Sea. As part of the routine earthquake and tsunami monitoring activity, the first tsunami early-warning system in the Black Sea has been implemented in 2013 and is active during these last years. In order to monitor the seismic activity of the Black Sea, NIEP is using a total number of 114 real time stations and 2 seismic arrays, 18 of the stations being located in Dobrogea area, area situated in the vicinity of the Romanian Black Sea shore line. Moreover, there is a data exchange with the Black Sea surrounding countries involving the acquisition of real-time data for 17 stations from Bulgaria, Turkey, Georgia and Ukraine. This improves the capability of the Romanian Seismic Network to monitor and more accurately locate the earthquakes occurred in the Black Sea area. For tsunamis monitoring and warning, a number of 6 sea level monitoring stations, 1 infrasound barometer, 3 offshore marine buoys and 7 GPS/GNSS stations are installed in different locations along and near the Romanian shore line. In the framework of ASTARTE project, few objectives regarding the seismic hazard and tsunami waves height assessment for the Black Sea were accomplished. The seismic hazard estimation was based on statistical studies of the seismic sources and their characteristics, compiled using different seismic catalogues. Two probabilistic methods were used for the evaluation of the seismic hazard, the Cornell method, based on the Gutenberg Richter distribution parameters, and Gumbel method, based on extremes statistic. The results show maximum values of possible magnitudes and their recurrence periods, for each seismic source. Using the Tsunami Analysis Tool (TAT) software, a set of tsunami modelling scenarios have been generated for Shabla area, the seismic source that could mostly affect the Romanian shore. These simulations are structured in a database, in order to set maximum possible tsunami waves that could be generated and to establish minimum magnitude values that could trigger tsunamis in this area. Some particularities of Shabla source are: past observed magnitudes > 7 and a recurrence period of 175 years. Some other important objectives of NIEP are to continue the monitoring of the seismic activity of the Black Sea, to improve the data base of the tsunami simulations for this area, near real time fault plane solution estimations used for the warning system, and to add new seismic, GPS/GNSS and sea level monitoring equipment to the existing network. Acknowledgements: This work was partially supported by the FP7 FP7-ENV2013 6.4-3 "Assessment, Strategy And Risk Reduction For Tsunamis in Europe" (ASTARTE) Project 603839/2013 and PNII, Capacity Module III ASTARTE RO Project 268/2014. This work was partially supported by the "Global Tsunami Informal Monitoring Service - 2" (GTIMS2) Project, JRC/IPR/2015/G.2/2006/NC 260286, Ref. Ares (2015)1440256 - 01.04.2015.

  16. Enriquillo–Plantain Garden fault zone in Jamaica: paleoseismology and seismic hazard

    USGS Publications Warehouse

    Koehler, R.D.; Mann, P.; Prentice, Carol S.; Brown, L.; Benford, B.; Grandison-Wiggins, M.

    2013-01-01

    The countries of Jamaica, Haiti, and the Dominican Republic all straddle the Enriquillo–Plantain Garden fault zone ( EPGFZ), a major left-lateral, strike-slip fault system bounding the Caribbean and North American plates. Past large earthquakes that destroyed the capital cities of Kingston, Jamaica (1692, 1907), and Port-au-Prince, Haiti (1751, 1770), as well as the 2010 Haiti earthquake that killed more than 50,000 people, have heightened awareness of seismic hazards in the northern Caribbean. We present here new geomorphic and paleoseismic information bearing on the location and relative activity of the EPGFZ, which marks the plate boundary in Jamaica. Documentation of a river bank exposure and several trenches indicate that this fault is active and has the potential to cause major destructive earthquakes in Jamaica. The results suggest that the fault has not ruptured the surface in at least 500 yr and possibly as long as 28 ka. The long period of quiescence and subdued geomorphic expression of the EPGFZ indicates that it may only accommodate part of the ∼7–9 mm=yr plate deformation rate measured geodetically and that slip may be partitioned on other undocumented faults. Large uncertainties related to the neotectonic framework of Jamaica remain and more detailed fault characterization studies are necessary to accurately assess seismic hazards.

  17. Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3

    NASA Astrophysics Data System (ADS)

    Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.

    2017-12-01

    Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.

  18. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  19. Italian Case Studies Modelling Complex Earthquake Sources In PSHA

    NASA Astrophysics Data System (ADS)

    Gee, Robin; Peruzza, Laura; Pagani, Marco

    2017-04-01

    This study presents two examples of modelling complex seismic sources in Italy, done in the framework of regional probabilistic seismic hazard assessment (PSHA). The first case study is for an area centred around Collalto Stoccaggio, a natural gas storage facility in Northern Italy, located within a system of potentially seismogenic thrust faults in the Venetian Plain. The storage exploits a depleted natural gas reservoir located within an actively growing anticline, which is likely driven by the Montello Fault, the underlying blind thrust. This fault has been well identified by microseismic activity (M<2) detected by a local seismometric network installed in 2012 (http://rete-collalto.crs.inogs.it/). At this time, no correlation can be identified between the gas storage activity and local seismicity, so we proceed with a PSHA that considers only natural seismicity, where the rates of earthquakes are assumed to be time-independent. The source model consists of faults and distributed seismicity to consider earthquakes that cannot be associated to specific structures. All potentially active faults within 50 km of the site are considered, and are modelled as 3D listric surfaces, consistent with the proposed geometry of the Montello Fault. Slip rates are constrained using available geological, geophysical and seismological information. We explore the sensitivity of the hazard results to various parameters affected by epistemic uncertainty, such as ground motions prediction equations with different rupture-to-site distance metrics, fault geometry, and maximum magnitude. The second case is an innovative study, where we perform aftershock probabilistic seismic hazard assessment (APSHA) in Central Italy, following the Amatrice M6.1 earthquake of August 24th, 2016 (298 casualties) and the subsequent earthquakes of Oct 26th and 30th (M6.1 and M6.6 respectively, no deaths). The aftershock hazard is modelled using a fault source with complex geometry, based on literature data and field evidence associated with the August mainshock. Earthquake activity rates during the very first weeks after the deadly earthquake were used to calibrated an Omori-Utsu decay curve, and the magnitude distribution of aftershocks is assumed to follow a Gutenberg-Richter distribution. We apply uniform and non-uniform spatial distribution of the seismicity across the fault source, by modulating the rates as a decreasing function of distance from the mainshock. The hazard results are computed for short-exposure periods (1 month, before the occurrences of October earthquakes) and compared to the background hazard given by law (MPS04), and to observations at some reference sites. We also show the results of disaggregation computed for the city of Amatrice. Finally, we attempt to update the results in light of the new "main" events that occurred afterwards in the region. All source modeling and hazard calculations are performed using the OpenQuake engine. We discuss the novelties of these works, and the benefits and limitations of both analyses, particularly in such different contexts of seismic hazard.

  20. Hydrocarbon traps within a seismic sequence framework, Stevens turbidites, southern San Joaquin Valley, CA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewlett, J.S.; Jordan, D.W.; Crebs, T.J.

    1991-02-01

    Interpretation of the seismic sequence framework and log and lithologic character of upper Miocene Stevens turbidites on the Bakersfield arch has led to an improved understanding of the expression of stratigraphic trapping that should reduce exploration risk in the basin, and may aid exploration efforts in similar sand-rich systems globally. These deepwater sandstones are contained within three lowstand turbidite systems (LTS) that were deposited in a narrow deepwater basin adjacent to the ancestral Sierra Nevada. the oldest LTS, the Coulter, was transported through several submarine canyons incised into the Fruitvale Shale. In contrast, numerous smaller scale erosional features located onmore » the high-relief slopes of the highstand Santa Margarita deltas, fed the overlying Gosford and Bellevue LTS. The systems consist of sandy, high-density (primarily) and low-density turbidites that were deposited within channel-lobe complexes. On the arch, 472 MMBO and 1.3 tcf have been produced from four seismically detectable traps with strong stratigraphic components: (1) sandstone permeability changes within turbidite wedges that thin rapidly onto structure (2) confined (channelized) turbidites that lap out on a structure (e.g., F-1 sand, South Coles levee), (3) channelized turbidites that pinch out within slope gullies, and (4) depositional compaction anticlines occurring in conjunction with low-gradient regional structure. Condensed section sediments form regional and reservoir-scale seals. Rapid lateral facies changes and grain size variations provide additional seal facies.« less

  1. Considering the ranges of uncertainties in the New Probabilistic Seismic Hazard Assessment of Germany - Version 2016

    NASA Astrophysics Data System (ADS)

    Grunthal, Gottfried; Stromeyer, Dietrich; Bosse, Christian; Cotton, Fabrice; Bindi, Dino

    2017-04-01

    The seismic load parameters for the upcoming National Annex to the Eurocode 8 result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering . This 2016 version of hazard assessment for Germany as target area was based on a comprehensive involvement of all accessible uncertainties in models and parameters into the approach and the provision of a rational framework for facilitating the uncertainties in a transparent way. The developed seismic hazard model represents significant improvements; i.e. it is based on updated and extended databases, comprehensive ranges of models, robust methods and a selection of a set of ground motion prediction equations of their latest generation. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. In particular, seismic load parameters were calculated for rock conditions with a vS30 of 800 ms-1 for three hazard levels (10%, 5% and 2% probability of occurrence or exceedance within 50 years) in form of, e.g., uniform hazard spectra (UHS) based on 19 sprectral periods in the range of 0.01 - 3s, seismic hazard maps for spectral response accelerations for different spectral periods or for macroseismic intensities. The developed hazard model consists of a logic tree with 4040 end branches and essential innovations employed to capture epistemic uncertainties and aleatory variabilities. The computation scheme enables the sound calculation of the mean and any quantile of required seismic load parameters. Mean, median and 84th percentiles of load parameters were provided together with the full calculation model to clearly illustrate the uncertainties of such a probabilistic assessment for a region of a low-to-moderate level of seismicity. The regional variations of these uncertainties (e.g. ratios between the mean and median hazard estimations) were analyzed and discussed.

  2. Towards a Multi-Resolution Model of Seismic Risk in Central Asia. Challenge and perspectives

    NASA Astrophysics Data System (ADS)

    Pittore, M.; Wieland, M.; Bindi, D.; Parolai, S.

    2011-12-01

    Assessing seismic risk, defined as the probability of occurrence of economical and social losses as consequence of an earthquake, both at regional and at local scale is a challenging, multi-disciplinary task. In order to provide a reliable estimate, diverse information must be gathered by seismologists, geologists, engineers and civil authorities, and carefully integrated keeping into account the different levels of uncertainty. The research towards an integrated methodology, able to seamlessly describe seismic risk at different spatial scales is challenging, but discloses new application perspectives, particularly in those countries which suffer from a relevant seismic hazard but do not have resources for a standard assessment. Central Asian countries in particular, which exhibit one of the highest seismic hazard in the world, are experiencing a steady demographic growth, often accompanied by informal settlement and urban sprawling. A reliable evaluation of how these factors affect the seismic risk, together with a realistic assessment of the assets exposed to seismic hazard and their structural vulnerability is of particular importance, in order to undertake proper mitigation actions and to promptly and efficiently react to a catastrophic event. New strategies are needed to efficiently cope with systematic lack of information and uncertainties. An original approach is presented to assess seismic risk based on integration of information coming from remote-sensing and ground-based panoramic imaging, in situ measurements, expert knowledge and already available data. Efficient sampling strategies based on freely available medium-resolution multi-spectral satellite images are adopted to optimize data collection and validation, in a multi-scale approach. Panoramic imaging is also considered as a valuable ground-based visual data collection technique, suitable both for manual and automatic analysis. A full-probabilistic framework based on Bayes Network is proposed to integrate available information taking into account both aleatory and epistemic uncertainties. An improved risk model for the capital of Kyrgyz Republic, Biskek, has been developed following this approach and tested based on different earthquake scenarios. Preliminary results will be presented and discussed.

  3. EMERALD: A Flexible Framework for Managing Seismic Data

    NASA Astrophysics Data System (ADS)

    West, J. D.; Fouch, M. J.; Arrowsmith, R.

    2010-12-01

    The seismological community is challenged by the vast quantity of new broadband seismic data provided by large-scale seismic arrays such as EarthScope’s USArray. While this bonanza of new data enables transformative scientific studies of the Earth’s interior, it also illuminates limitations in the methods used to prepare and preprocess those data. At a recent seismic data processing focus group workshop, many participants expressed the need for better systems to minimize the time and tedium spent on data preparation in order to increase the efficiency of scientific research. Another challenge related to data from all large-scale transportable seismic experiments is that there currently exists no system for discovering and tracking changes in station metadata. This critical information, such as station location, sensor orientation, instrument response, and clock timing data, may change over the life of an experiment and/or be subject to post-experiment correction. Yet nearly all researchers utilize metadata acquired with the downloaded data, even though subsequent metadata updates might alter or invalidate results produced with older metadata. A third long-standing issue for the seismic community is the lack of easily exchangeable seismic processing codes. This problem stems directly from the storage of seismic data as individual time series files, and the history of each researcher developing his or her preferred data file naming convention and directory organization. Because most processing codes rely on the underlying data organization structure, such codes are not easily exchanged between investigators. To address these issues, we are developing EMERALD (Explore, Manage, Edit, Reduce, & Analyze Large Datasets). The goal of the EMERALD project is to provide seismic researchers with a unified, user-friendly, extensible system for managing seismic event data, thereby increasing the efficiency of scientific enquiry. EMERALD stores seismic data and metadata in a state-of-the-art open source relational database (PostgreSQL), and can, on a timed basis or on demand, download the most recent metadata, compare it with previously acquired values, and alert the user to changes. The backend relational database is capable of easily storing and managing many millions of records. The extensible, plug-in architecture of the EMERALD system allows any researcher to contribute new visualization and processing methods written in any of 12 programming languages, and a central Internet-enabled repository for such methods provides users with the opportunity to download, use, and modify new processing methods on demand. EMERALD includes data acquisition tools allowing direct importation of seismic data, and also imports data from a number of existing seismic file formats. Pre-processed clean sets of data can be exported as standard sac files with user-defined file naming and directory organization, for use with existing processing codes. The EMERALD system incorporates existing acquisition and processing tools, including SOD, TauP, GMT, and FISSURES/DHI, making much of the functionality of those tools available in a unified system with a user-friendly web browser interface. EMERALD is now in beta test. See emerald.asu.edu or contact john.d.west@asu.edu for more details.

  4. A Matched Field Processing Framework for Coherent Detection Over Local and Regional Networks (Postprint)

    DTIC Science & Technology

    2011-12-30

    the term " superresolution "). The single-phase matched field statistic for a given template was also demonstrated to be a viable detection statistic... Superresolution with seismic arrays using empirical matched field processing, Geophys. J. Int. 182: 1455–1477. Kim, K.-H. and Park, Y. (2010): The 20

  5. A Bayesian Approach to Real-Time Earthquake Phase Association

    NASA Astrophysics Data System (ADS)

    Benz, H.; Johnson, C. E.; Earle, P. S.; Patton, J. M.

    2014-12-01

    Real-time location of seismic events requires a robust and extremely efficient means of associating and identifying seismic phases with hypothetical sources. An association algorithm converts a series of phase arrival times into a catalog of earthquake hypocenters. The classical approach based on time-space stacking of the locus of possible hypocenters for each phase arrival using the principal of acoustic reciprocity has been in use now for many years. One of the most significant problems that has emerged over time with this approach is related to the extreme variations in seismic station density throughout the global seismic network. To address this problem we have developed a novel, Bayesian association algorithm, which looks at the association problem as a dynamically evolving complex system of "many to many relationships". While the end result must be an array of one to many relations (one earthquake, many phases), during the association process the situation is quite different. Both the evolving possible hypocenters and the relationships between phases and all nascent hypocenters is many to many (many earthquakes, many phases). The computational framework we are using to address this is a responsive, NoSQL graph database where the earthquake-phase associations are represented as intersecting Bayesian Learning Networks. The approach directly addresses the network inhomogeneity issue while at the same time allowing the inclusion of other kinds of data (e.g., seismic beams, station noise characteristics, priors on estimated location of the seismic source) by representing the locus of intersecting hypothetical loci for a given datum as joint probability density functions.

  6. Sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower intermediate confining unit and most of the Floridan aquifer system, Broward County, Florida

    USGS Publications Warehouse

    Cunningham, Kevin J.; Kluesner, Jared W.; Westcott, Richard L.; Robinson, Edward; Walker, Cameron; Khan, Shakira A.

    2017-12-08

    Deep well injection and disposal of treated wastewater into the highly transmissive saline Boulder Zone in the lower part of the Floridan aquifer system began in 1971. The zone of injection is a highly transmissive hydrogeologic unit, the Boulder Zone, in the lower part of the Floridan aquifer system. Since the 1990s, however, treated wastewater injection into the Boulder Zone in southeastern Florida has been detected at three treated wastewater injection utilities in the brackish upper part of the Floridan aquifer system designated for potential use as drinking water. At a time when usage of the Boulder Zone for treated wastewater disposal is increasing and the utilization of the upper part of the Floridan aquifer system for drinking water is intensifying, there is an urgency to understand the nature of cross-formational fluid flow and identify possible fluid pathways from the lower to upper zones of the Floridan aquifer system. To better understand the hydrogeologic controls on groundwater movement through the Floridan aquifer system in southeastern Florida, the U.S. Geological Survey and the Broward County Environmental Planning and Community Resilience Division conducted a 3.5-year cooperative study from July 2012 to December 2015. The study characterizes the sequence stratigraphy, seismic stratigraphy, and seismic structures of the lower part of the intermediate confining unit aquifer and most of the Floridan aquifer system.Data obtained to meet the study objective include 80 miles of high-resolution, two-dimensional (2D), seismic-reflection profiles acquired from canals in eastern Broward County. These profiles have been used to characterize the sequence stratigraphy, seismic stratigraphy, and seismic structures in a 425-square-mile study area. Horizon mapping of the seismic-reflection profiles and additional data collection from well logs and cores or cuttings from 44 wells were focused on construction of three-dimensional (3D) visualizations of eight sequence stratigraphic cycles that compose the Eocene to Miocene Oldsmar, Avon Park, and Arcadia Formations. The mapping of these seismic-reflection and well data has produced a refined Cenozoic sequence stratigraphic, seismic stratigraphic, and hydrogeologic framework of southeastern Florida. The upward transition from the Oldsmar Formation to the Avon Park Formation and the Arcadia Formation embodies the evolution from (1) a tropical to subtropical, shallow-marine, carbonate platform, represented by the Oldsmar and Avon Park Formations, to (2) a broad, temperate, mixed carbonate-siliciclastic shallow marine shelf, represented by the lower part of the Arcadia Formation, and to (3) a temperate, distally steepened carbonate ramp represented by the upper part of the Arcadia Formation.In the study area, the depositional sequences and seismic sequences have a direct correlation with hydrogeologic units. The approximate upper boundary of four principal permeable units of the Floridan aquifer system (Upper Floridan aquifer, Avon Park permeable zone, uppermost major permeable zone of the Lower Floridan aquifer, and Boulder Zone) have sequence stratigraphic and seismic-reflection signatures that were identified on cross sections, mapped, or both, and therefore the sequence stratigraphy and seismic stratigraphy were used to guide the development of a refined spatial representation of these hydrogeologic units. In all cases, the permeability of the four permeable units is related to stratiform megaporosity generated by ancient dissolution of carbonate rock associated with subaerial exposure and unconformities at the upper surfaces of carbonate depositional cycles of several hierarchical scales ranging from high-frequency cycles to depositional sequences. Additionally, interparticle porosity also contributes substantially to the stratiform permeability in much of the Upper Floridan aquifer. Information from seismic stratigraphy allowed 3D geomodeling of hydrogeologic units—an approach never before applied to this area. Notably, the 3D geomodeling provided 3D visualizations and geocellular models of the depositional sequences, hydrostratigraphy, and structural features. The geocellular data could be used to update the hydrogeologic structure inherent to groundwater flow simulations that are designed to address the sustainability of the water resources of the Floridan aquifer system.Two kinds of pathways that could enable upward cross-formational flow of injected treated wastewater from the Boulder Zone have been identified in the 80 miles of high-resolution seismic data collected for this study: a near-vertical reverse fault and karst collapse structures. The single reverse fault, inferred to be of tectonic origin, is in extreme northeastern Broward County and has an offset of about 19 feet at the level of the Arcadia Formation. Most of the 17 karst collapse structures identified manifest as columniform, vertically stacked sagging seismic reflections that span early Eocene to Miocene age rocks equivalent to much of the Floridan aquifer system and the lower part of the overlying intermediate confining unit. In some cases, the seismic-sag structures extend upward into strata of Pliocene age. The seismic-sag structures are interpreted to have a semicircular shape in plan view on the basis of comparison to (1) other seismic-sag structures in southeastern Florida mapped with two 2D seismic cross lines or 3D data, (2) comparison to these structures located in other carbonate provinces, and (3) plausible extensional ring faults detected with multi-attribute analysis. The seismic-sag structures in the study area have heights as great as 2,500 vertical feet, though importantly, one spans about 7,800 feet. Both multi-attribute analysis and visual detection of offset of seismic reflections within the seismic-sag structures indicate faults and fractures are associated with many of the structures. Multi-attribute analysis highlighting chimney fluid pathways also indicates that the seismic-sag structures have a high probability for potential vertical cross-formational fluid flow along the faulted and fractured structures. A collapse of the seismic-sag structures within a deep burial setting evokes an origin related to hypogenic karst processes by ascending flow of subsurface fluids. In addition, paleo-epigenic karst related to major regional subaerial unconformities within the Florida Platform generated collapse structures (paleo-sinkholes) that are much smaller in scale than the cross-formational seismic-sag structures.

  7. Earthquake forecasts for the CSEP Japan experiment based on the RI algorithm

    NASA Astrophysics Data System (ADS)

    Nanjo, K. Z.

    2011-03-01

    An earthquake forecast testing experiment for Japan, the first of its kind, is underway within the framework of the Collaboratory for the Study of Earthquake Predictability (CSEP) under a controlled environment. Here we give an overview of the earthquake forecast models, based on the RI algorithm, which we have submitted to the CSEP Japan experiment. Models have been submitted to a total of 9 categories, corresponding to 3 testing classes (3 years, 1 year, and 3 months) and 3 testing regions. The RI algorithm is originally a binary forecast system based on the working assumption that large earthquakes are more likely to occur in the future at locations of higher seismicity in the past. It is based on simple counts of the number of past earthquakes, which is called the Relative Intensity (RI) of seismicity. To improve its forecast performance, we first expand the RI algorithm by introducing spatial smoothing. We then convert the RI representation from a binary system to a CSEP-testable model that produces forecasts for the number of earthquakes of predefined magnitudes. We use information on past seismicity to tune the parameters. The final submittal consists of 36 executable computer codes: 4 variants corresponding to different smoothing parameters for each of the 9 categories. They will help to elucidate which categories and which smoothing parameters are the most meaningful for the RI hypothesis. The main purpose of our participation in the experiment is to better understand the significance of the relative intensity of seismicity for earthquake forecastability in Japan.

  8. Modern Workflow Full Waveform Inversion Applied to North America and the Northern Atlantic

    NASA Astrophysics Data System (ADS)

    Krischer, Lion; Fichtner, Andreas; Igel, Heiner

    2015-04-01

    We present the current state of a new seismic tomography model obtained using full waveform inversion of the crustal and upper mantle structure beneath North America and the Northern Atlantic, including the westernmost part of Europe. Parts of the eastern portion of the initial model consists of previous models by Fichtner et al. (2013) and Rickers et al. (2013). The final results of this study will contribute to the 'Comprehensive Earth Model' being developed by the Computational Seismology group at ETH Zurich. Significant challenges include the size of the domain, the uneven event and station coverage, and the strong east-west alignment of seismic ray paths across the North Atlantic. We use as much data as feasible, resulting in several thousand recordings per event depending on the receivers deployed at the earthquakes' origin times. To manage such projects in a reproducible and collaborative manner, we, as tomographers, should abandon ad-hoc scripts and one-time programs, and adopt sustainable and reusable solutions. Therefore we developed the LArge-scale Seismic Inversion Framework (LASIF - http://lasif.net), an open-source toolbox for managing seismic data in the context of non-linear iterative inversions that greatly reduces the time to research. Information on the applied processing, modelling, iterative model updating, what happened during each iteration, and so on are systematically archived. This results in a provenance record of the final model which in the end significantly enhances the reproducibility of iterative inversions. Additionally, tools for automated data download across different data centers, window selection, misfit measurements, parallel data processing, and input file generation for various forward solvers are provided.

  9. Detailed seismicity analysis revealing the dynamics of the southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, G.; Hofstetter, R.; Haberland, Ch.; Jaser, D.; El-Kelani, R.; Weber, M.

    2014-10-01

    Within the framework of the international DESIRE (DEad Sea Integrated REsearch) project, a dense temporary local seismological network was operated in the southern Dead Sea area. During 18 recording months, 648 events were detected. Based on an already published tomography study clustering, focal mechanisms, statistics and the distribution of the microseismicity in relation to the velocity models from the tomography are analysed. The determined b value of 0.74 leads to a relatively high risk of large earthquakes compared to the moderate microseismic activity. The distribution of the seismicity indicates an asymmetric basin with a vertical strike-slip fault forming the eastern boundary of the basin, and an inclined western boundary, made up of strike-slip and normal faults. Furthermore, significant differences between the area north and south of the Bokek fault were observed. South of the Bokek fault, the western boundary is inactive while the entire seismicity occurs on the eastern boundary and below the basin-fill sediments. The largest events occurred here, and their focal mechanisms represent the northwards transform motion of the Arabian plate along the Dead Sea Transform. The vertical extension of the spatial and temporal cluster from February 2007 is interpreted as being related to the locking of the region around the Bokek fault. North of the Bokek fault similar seismic activity occurs on both boundaries most notably within the basin-fill sediments, displaying mainly small events with strike-slip mechanism and normal faulting in EW direction. Therefore, we suggest that the Bokek fault forms the border between the single transform fault and the pull-apart basin with two active border faults.

  10. Comparing methods suitable for monitoring marine mammals in low visibility conditions during seismic surveys.

    PubMed

    Verfuss, Ursula K; Gillespie, Douglas; Gordon, Jonathan; Marques, Tiago A; Miller, Brianne; Plunkett, Rachael; Theriault, James A; Tollit, Dominic J; Zitterbart, Daniel P; Hubert, Philippe; Thomas, Len

    2018-01-01

    Loud sound emitted during offshore industrial activities can impact marine mammals. Regulations typically prescribe marine mammal monitoring before and/or during these activities to implement mitigation measures that minimise potential acoustic impacts. Using seismic surveys under low visibility conditions as a case study, we review which monitoring methods are suitable and compare their relative strengths and weaknesses. Passive acoustic monitoring has been implemented as either a complementary or alternative method to visual monitoring in low visibility conditions. Other methods such as RADAR, active sonar and thermal infrared have also been tested, but are rarely recommended by regulatory bodies. The efficiency of the monitoring method(s) will depend on the animal behaviour and environmental conditions, however, using a combination of complementary systems generally improves the overall detection performance. We recommend that the performance of monitoring systems, over a range of conditions, is explored in a modelling framework for a variety of species. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. The integration of gravity, magnetic and seismic data in delineating the sedimentary basins of northern Sinai and deducing their structural controls

    NASA Astrophysics Data System (ADS)

    Selim, El Sayed Ibrahim

    2016-01-01

    The Sinai Peninsula is a part of the Sinai sub-plate that located between the southeast Nubian-Arabian shield and the southeastern Mediterranean northward. The main objectives of this investigation are to deduce the main sedimentary basin and its subdivisions, identify the subsurface structural framework that affects the study area and determine the thickness of sedimentary cover of the basement surface. The total intensity magnetic map, Bouguer gravity map and seismic data were used to achieve the study aims. Structural interpretation of the gravity and magnetic data were done by applying advanced processing techniques. These techniques include; Reduce to the pole (RTP), Power spectrum, Tile derivative and Analytical Signal techniques were applied on gravity and magnetic data. Two dimensional gravity and magnetic modeling and interpretation of seismic sections were done to determine the thickness of sedimentary cover of the study area. The integration of our interpretation suggests that, the northern Sinai area consists of elongated troughs that contain many high structural trends. Four major structural trends have been identified, that, reflecting the influence of district regional tectonic movements. These trends are: (1) NE-SW trend; (2) NNW-SSE trend; (3) ENE-WSW trend and (4) WNW-ESE trend. There are also many minor trends, E-W, NW-SE and N-S structural trends. The main sedimentary basin of North Sinai is divided into four sub-basins; (1) Northern Maghara; (2) Northeastern Sinai; (3) Northwestern Sinai and (4) Central Sinai basin. The sedimentary cover ranges between 2 km and 7 km in the northern part of the study area.

  12. "3D Depositional Model in a Complex Incised Valley Fill: An example from the late Messinian Abu Madi Formation, Nile Delta Basin, Egypt"

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.; Abu El-Ata, A. S. A.

    2016-12-01

    The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.

  13. 3D Depositional Model in a Complex Incised Valley Fill: An Example from the Late Messinian Abu Madi Formation, Nile Delta Basin, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.

    2015-12-01

    The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.

  14. 3D Depositional Model in a Complex Incised Valley Fill: An Example from the Late Messinian Abu Madi Formation, Nile Delta Basin, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.

    2016-02-01

    The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.

  15. Glacier microseismicity

    USGS Publications Warehouse

    West, Michael E.; Larsen, Christopher F.; Truffer, Martin; O'Neel, Shad; LeBlanc, Laura

    2010-01-01

    We present a framework for interpreting small glacier seismic events based on data collected near the center of Bering Glacier, Alaska, in spring 2007. We find extremely high microseismicity rates (as many as tens of events per minute) occurring largely within a few kilometers of the receivers. A high-frequency class of seismicity is distinguished by dominant frequencies of 20–35 Hz and impulsive arrivals. A low-frequency class has dominant frequencies of 6–15 Hz, emergent onsets, and longer, more monotonic codas. A bimodal distribution of 160,000 seismic events over two months demonstrates that the classes represent two distinct populations. This is further supported by the presence of hybrid waveforms that contain elements of both event types. The high-low-hybrid paradigm is well established in volcano seismology and is demonstrated by a comparison to earthquakes from Augustine Volcano. We build on these parallels to suggest that fluid-induced resonance is likely responsible for the low-frequency glacier events and that the hybrid glacier events may be caused by the rush of water into newly opening pathways.

  16. Regional seismic wavefield computation on a 3-D heterogeneous Earth model by means of coupled traveling wave synthesis

    USGS Publications Warehouse

    Pollitz, F.F.

    2002-01-01

    I present a new algorithm for calculating seismic wave propagation through a three-dimensional heterogeneous medium using the framework of mode coupling theory originally developed to perform very low frequency (f < ???0.01-0.05 Hz) seismic wavefield computation. It is a Greens function approach for multiple scattering within a defined volume and employs a truncated traveling wave basis set using the locked mode approximation. Interactions between incident and scattered wavefields are prescribed by mode coupling theory and account for the coupling among surface waves, body waves, and evanescent waves. The described algorithm is, in principle, applicable to global and regional wave propagation problems, but I focus on higher frequency (typically f ??????0.25 Hz) applications at regional and local distances where the locked mode approximation is best utilized and which involve wavefields strongly shaped by propagation through a highly heterogeneous crust. Synthetic examples are shown for P-SV-wave propagation through a semi-ellipsoidal basin and SH-wave propagation through a fault zone.

  17. Comparison among different retrofitting strategies for the vulnerability reduction of masonry bell towers

    NASA Astrophysics Data System (ADS)

    Milani, Gabriele; Shehu, Rafael; Valente, Marco

    2017-11-01

    This paper investigates the effectiveness of reducing the seismic vulnerability of masonry towers by means of innovative and traditional strengthening techniques. The followed strategy for providing the optimal retrofitting for masonry towers subjected to seismic risk relies on preventing active failure mechanisms. These vulnerable mechanisms are pre-assigned failure patterns based on the crack patterns experienced during the past seismic events. An upper bound limit analysis strategy is found suitable to be applied for simplified tower models in their present state and the proposed retrofitted ones. Taking into consideration the variability of geometrical features and the uncertainty of the strengthening techniques, Monte Carlo simulations are implemented into the limit analysis. In this framework a wide range of idealized cases are covered by the conducted analyses. The retrofitting strategies aim to increase the shear strength and the overturning load carrying capacity in order to reduce vulnerability. This methodology gives the possibility to use different materials which can fulfill the structural implementability requirements.

  18. From Open Data to Science-Based Services for Disaster Risk Management: the Experience of the GEO Geohazards Supersite Network

    NASA Astrophysics Data System (ADS)

    Salvi, S.; Poland, M. P.; Sigmundsson, F.; Puglisi, G.; Borgstrom, S.; Ergintav, S.; Vogfjord, K. S.; Fournier, N.; Hamling, I. J.; Mothes, P. A.; Savvaidis, A.; Wicks, C. W., Jr.

    2017-12-01

    In 2010, the Geohazard Supersites and Natural Laboratories initiative (GSNL) established, in the framework of GEO, the concept of a global partnership among the geophysical scientific community, space agencies, and in-situ data providers, with the aim of promoting scientific advancements in the understanding of seismic and volcanic phenomena. This goal is achieved through open sharing of large volumes of remote sensing and in-situ data from specific volcanic or seismic areas of particularly high risk or scientific interest (the Supersites) as proposed by the scientific community. Data provision to the Supersites is coordinated by local research and monitoring institutions, which deploy and manage geophysical monitoring networks and have an institutional mandate for the provision of scientific data and services to the national government and other regional users. Starting in 2015, following the changes in GEO and the call for action given by the Sendai Framework 2015-2030, the GSNL initiative has promoted the rapid uptake of newly developed scientific information for maximum societal benefit in Disaster Risk Management (DRM). While the procedures by which the scientific products are provided to the local decision makers depend on the different national operational frameworks and are largely independent of the Supersite existence, the quality of the scientific information, and thus its actual benefit for DRM, is considerably enhanced at each Supersite. This growth in scientific understanding of specific volcanic and seismic areas is not only due to wider accessibility of data, but also to the increased collaboration and sharing of resources and capacities that occurs inside the Supersite scientific community. For maximum effectiveness, the GSNL initiative supports an Open Science approach, where different collaboration and communication approaches and technological solutions are developed, tested, and shared, thereby helping to sustain the scientific investigation process. We will present at the meeting the latest developments and results of the GSNL Supersite network.

  19. Seismotectonic features of the African plate: the possible dislocation of a continent

    NASA Astrophysics Data System (ADS)

    Meghraoui, Mustapha

    2014-05-01

    The African continent is made of seismically active structures with active deformation in between main substratum shields considered as stable continental interiors. Seismically active regions are primarily located along rift zones, thrust and fold mountain belts, transform faults and volcanic fields. The active tectonic structures generated large and destructive earthquakes in the past with significant damage and economic losses in Africa. Although some regions of the continent show a low-level of seismic activity, several large earthquakes (with M > 7) have occurred in the past. The presence of major active faults that generate destructive earthquakes is among the most important geological and geophysical hazards for the continent. National and International scientific projects dealing with the seismic hazards assessment are increasing in seismically active regions in Africa. The UNESCO-SIDA/IGCP (Project 601 http://eost.u-strasbg.fr/~igcp601/) support the preparation and implementation of the "Seismotectonic Map of Africa". Therefore, new seismotectonic data with the regional analysis of earthquake hazards became necessary as a basis for a mitigation of the earthquake damage. A database in historical and instrumental seismicity, active tectonics, stress tensor distribution, earthquake geology and paleoseismology, active deformation, earthquake geodesy (GPS) and gravity, crustal structure studies, magnetic and structural segmentation, volcanic fields, collision tectonics and rifting processes is prepared to constrain the geodynamic evolution of the continent. Taking into account the geological, tectonic and geophysical characteristics, we define six seismotectonic provinces that characterize the crustal deformation. With the previously identified Somalia tectonic block, the seismotectonic and geophysical framework of the continent reveal the existence of the Cameroon volcanic line, the South African tectonic block with transform faulting and Cape folding system, the Libyan rifting and Maghreb thrusting. Although bearing a relatively slow deformation with regards to the East Africa Rift System, the Nubia plate previously considered as a homogeneous tectonic block appears to be dislocating progressively also forming a system of microplates. A synthesis of earthquake studies and regional deformation exposed in a seismotectonic map hitherto serves as a basis for the seismic hazard evaluations and the reduction of seismic risks. * IGCP/SIDA: International Geoscience Program/Swedish International Cooperation Authority http://www.unesco.org/science/IGCP IGCP-601 Working Group: Paulina Amponsah (Ghana Atomic Energy Commission), Atalay Ayele (Addis Ababa University, Ethiopia), Bekoa Ateba (Inst. of Geol. and Min. Res., Buea, Cameroon), Abdelhakim Ayadi (CRAAG, Algeria), Abdunnur Bensuleman (University of Tripoli, Libya), Damien Delvaux (Royal Museum for Central Africa, Tervuren, Belgium), Mohamed El Gabry (National Research Institute of Geophysics, Cairo, Egypt), Rui-Manuel Fernandes (Universidade da Beira Interior, Portugal), Mustapha Meghraoui (IPG Strasbourg, France), Vunganai Midzi & Magda Roos (Council for Geoscience, Pretoria, South Africa), and Youssef Timoulali (CNRST, Rabat, Morocco).

  20. National Archive of Marine Seismic Surveys (NAMSS): A USGS-Boem Partnership to Provide Free and Easy Access to Previously Proprietary Seismic Reflection Data on the U.S. Outer Continental Shelf

    NASA Astrophysics Data System (ADS)

    Triezenberg, P. J.; Hart, P. E.; Childs, J. R.

    2014-12-01

    The National Archive of Marine Seismic Surveys (NAMSS) was established by the USGS in 2004 in an effort to rescue marine seismic reflection profile data acquired largely by the oil exploration industry throughout the US outer continental shelf (OCS). It features a Web interface for easy on-line geographic search and download. The commercial value of these data had decreased significantly because of drilling moratoria and newer acquisition technology, and large quantities were at risk of disposal. But, the data still had tremendous value for scientific research and education purposes, and an effort was undertaken to ensure that the data were preserved and publicly available. More recently, the USGS and Bureau of Ocean Energy Management (BOEM) have developed a partnership to make similarly available a much larger quantity of 2D and 3D seismic data acquired by the U.S. government for assessment of resources in the OCS. Under Federal regulation, BOEM is required to publicly release all processed geophysical data, including seismic profiles, acquired under an exploration permit, purchased and retained by BOEM, no sooner than 25 years after issuance of the permit. Data acquired prior to 1989 are now eligible for release. Currently these data are distributed on CD or DVD, but data discovery can be tedious. Inclusion of these data within NAMSS vastly increases the amount of seismic data available for research purposes. A new NAMSS geographical interface provides easy and intuitive access to the data library. The interface utilizes OpenLayers, Mapnik, and the Django web framework. In addition, metadata capabilities have been greatly increased using a PostgresSQL/PostGIS database incorporating a community-developed ISO-compliant XML template. The NAMSS database currently contains 452 2D seismic surveys comprising 1,645,956 line km and nine 3D seismic surveys covering 9,385 square km. The 2D data holdings consist of stack, migrated and depth sections, most in SEG-Y format.

  1. Crustal Structure across Rivera Plate and Jalisco Block (MEXICO): TsuJal Project

    NASA Astrophysics Data System (ADS)

    Nuñez-Cornu, F. J.; Nunez, D.; Barba, D. C., Sr.; Trejo, E.; Escalona, F.; Danobeitia, J.; Gutierrez Pena, Q. J.

    2015-12-01

    Located on the western margin of Mexico, the collision zone between Rivera, Cocos and North American plates is a complex tectonic collage with high seismic hazards and potential tsunamigenic sources. During the spring of 2014, within the framework of TSUJAL project, Spanish and Mexican scientists investigated this region with the main objective of defining the crustal architecture of this active margin and recognizing potential structural sources that can trigger earthquakes and tsunamis at the convergence between Rivera plate-Jalisco block with the North American Plate. To achieve these goals, a wide-ranging of geophysical data was acquired in this region both offshore and onshore. In this paper, we present the preliminary results obtained from this project about bathymetric, structural geology and wide-angle seismic data of the southern coast of Bahía de Banderas. A crustal P-wave velocity model for the southern coast of Bahía de Banderas was obtained using WAS data recorded by OBS and land seismic stations for more than 150 km across Rivera Plate and Jalisco Block. The thickness of the slab in this area is about 10 km and presents a dip angle about 8º. Continental crustal thickness below Puerto Vallarta is about 20 km, no evidence of continental Moho was found in this study. This model support that due to the convergence of Rivera Plate against Jalisco Block, the region of Bahía de Banderas is under strong crustal stresses that generate structural lineaments and have the same trends offshore and inland. Most of the seismicity reported can be associated to the main structural lineaments. The Banderas Canyon apparently is in an opening process from west to east, which seems to continue through the Rio Pitillal river valley. There is no seismic or morphological evidence to consider that the Banderas Canyon is a continuation of Vallarta Graben.South of María Cleofas Island, the SC marks the limit between RP and JB, possibly being the result of the RP against JB push, and where it is established the beginning of current subduction process with seismic activity associated. If a subduction type earthquake occurs in the SC, which is 100 km length, the associated magnitude will be about 7.5 and could be tsunamigenic. In the studied area, no clear subduction features (trench, accretionary prism) are observed.

  2. Seismic imaging of gas hydrate reservoir heterogeneities

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Wei

    Natural gas hydrate, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The presence of gas hydrate has been confirmed by core samples recovered from boreholes. Interests in the distribution of natural gas hydrate stem from its potential as a future energy source, geohazard to drilling activities and their possible impact on climate change. However the current geophysical investigations of gas hydrate reservoirs are still too limited to fully resolve the location and the total amount of gas hydrate due to its complex nature of distribution. The goal of this thesis is twofold, i.e., to model (1) the heterogeneous gas hydrate reservoirs and (2) seismic wave propagation in the presence of heterogeneities in order to address the fundamental questions: where are the location and occurrence of gas hydrate and how much is stored in the sediments. Seismic scattering studies predict that certain heterogeneity scales and velocity contrasts will generate strong scattering and wave mode conversion. Vertical Seismic Profile (VSP) techniques can be used to calibrate seismic characterization of gas hydrate expressions on surface seismograms. To further explore the potential of VSP in detecting the heterogeneities, a wave equation based approach for P- and S-wave separation is developed. Tests on synthetic data as well as applications to field data suggest alternative acquisition geometries for VSP to enable wave mode separation. A new reservoir modeling technique based on random medium theory is developed to construct heterogeneous multi-variable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this new technique, I modeled the density, and P- and S-wave velocities in combination with a modified Biot-Gassmann theory and provided a first order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768x10 6 m3/km2 of natural gas trapped within hydrate, nearly an order of magnitude lower than earlier estimates which excluded effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D Finite Difference method to study seismic attenuation. Thus a framework is built to further tune the models of gas hydrate reservoirs with constraints from well logs other disciplinary data.

  3. Regional seismic stratigraphy and controls on the Quaternary evolution of the Cape Hatteras region of the Atlantic passive margin, USA

    USGS Publications Warehouse

    Mallinson, D.J.; Culver, S.J.; Riggs, S.R.; Thieler, E.R.; Foster, D.; Wehmiller, J.; Farrell, K.M.; Pierson, J.

    2010-01-01

    Seismic and core data, combined with amino acid racemization and strontium-isotope age data, enable the definition of the Quaternary stratigraphic framework and recognition of geologic controls on the development of the modern coastal system of North Carolina, U.S.A. Seven regionally continuous high amplitude reflections are defined which bound six seismic stratigraphic units consisting of multiple regionally discontinuous depositional sequences and parasequence sets, and enable an understanding of the evolution of this margin. Data reveal the progressive eastward progradation and aggradation of the Quaternary shelf. The early Pleistocene inner shelf occurs at a depth of ca. 20-40 m beneath the western part of the modern estuarine system (Pamlico Sound). A mid- to outer shelf lowstand terrace (also early Pleistocene) with shelf sand ridge deposits comprising parasequence sets within a transgressive systems tract, occurs at a deeper level (ca. 45-70 m) beneath the modern barrier island system (the Outer Banks) and northern Pamlico Sound. Seismic and foraminiferal paleoenvironmental data from cores indicate the occurrence of lowstand strandplain shoreline deposits on the early to middle Pleistocene shelf. Middle to late Pleistocene deposits occur above a prominent unconformity and marine flooding surface that truncates underlying units, and contain numerous filled fluvial valleys that are incised into the early and middle Pleistocene deposits. The stratigraphic framework suggests margin progradation and aggradation modified by an increase in the magnitude of sea-level fluctuations during the middle to late Pleistocene, expressed as falling stage, lowstand, transgressive and highstand systems tracts. Thick stratigraphic sequences occur within the middle Pleistocene section, suggesting the occurrence of high capacity fluvial point sources debouching into the area from the west and north. Furthermore, the antecedent topography plays a significant role in the evolution of the geomorphology and stratigraphy of this marginal system. ?? 2009 Elsevier B.V.

  4. Eruptive pattern classification on Mount Etna (Sicily) and Piton de la Fournaise (La Réunion)

    NASA Astrophysics Data System (ADS)

    Falsaperla, Susanna; Langer, Horst; Ferrazzini, Valérie

    2016-04-01

    In the framework of the European MEDiterrranean Supersite Volcanoes (MED­SUV) project, Mt. Etna (Italy) and Piton de la Fournaise (La Réunion) were chosen as "European Supersite Demonstrator" and test site, respectively, to promote the transfer and implementation of efficient tools for the identification of impending volcanic activity. Both are "open-conduit volcanoes", forming ideal sites for the test and validation of innovative concepts, which can contribute to minimize volcanic hazard. One of the aims of the MED-SUV project was the development of software for machine learning applicable to data processing for early-warning purposes. Near-real time classification of continuous seismic data stream has been carried out in the control room of INGV Osservatorio Etneo since 2010. Subsequently, automatic alert procedures were activated. In the light of the excellent results for the 24/7 surveillance of Etna, we examine the portability of tools developed in the framework of the project when applied to seismic data recorded at Piton de la Fournaise. In the present application to data recorded at Piton de la Fournaise, the classifier aims at highlighting changes in the frequency content of the background seismic signal heralding the activation of the volcanic source and the imminent eruption. We describe the preliminary results of this test on a set of data of nearly two years starting on January 2014. This period follows three years of inactivity and deflation of the volcano and marks a renewal of the volcano activity with inflation, deep seismicity (-7km bsl) and five eruptions with fountains and lava flows that lasted from a few hours to more than two months. We discuss here the necessary tuning for the implementation of the software to the new dataset analyzed. We also propose a comparison with the results of pattern classification regarding recent eruptive activity at Etna.

  5. A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data

    NASA Astrophysics Data System (ADS)

    Kohl, B. C.; Given, J.

    2017-12-01

    The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in particular the spectral characteristics of events of interest, Is entirely model-based, i.e. does not rely on a priori's - particularly important for nuclear monitoring, Does not rely on individualized signal detection thresholds - it's the network solution that matters.

  6. Study of pre-seismic kHz EM emissions by means of complex systems

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Eftaxias, Konstantinos

    2010-05-01

    The field of study of complex systems holds that the dynamics of complex systems are founded on universal principles that may used to describe disparate problems ranging from particle physics to economies of societies. A corollary is that transferring ideas and results from investigators in hitherto disparate areas will cross-fertilize and lead to important new results. It is well-known that the Boltzmann-Gibbs statistical mechanics works best in dealing with systems composed of either independent subsystems or interacting via short-range forces, and whose subsystems can access all the available phase space. For systems exhibiting long-range correlations, memory, or fractal properties, non-extensive Tsallis statistical mechanics becomes the most appropriate mathematical framework. As it was mentioned a central property of the magnetic storm, solar flare, and earthquake preparation process is the possible occurrence of coherent large-scale collective with a very rich structure, resulting from the repeated nonlinear interactions among collective with a very rich structure, resulting from the repeated nonlinear interactions among its constituents. Consequently, the non-extensive statistical mechanics is an appropriate regime to investigate universality, if any, in magnetic storm, solar flare, earthquake and pre-failure EM emission occurrence. A model for earthquake dynamics coming from a non-extensive Tsallis formulation, starting from first principles, has been recently introduced. This approach leads to a Gutenberg-Richter type law for the magnitude distribution of earthquakes which provides an excellent fit to seismicities generated in various large geographic areas usually identified as "seismic regions". We examine whether the Gutenberg-Richter law corresponding to a non-extensive Tsallis statistics is able to describe the distribution of amplitude of earthquakes, pre-seismic kHz EM emissions (electromagnetic earthquakes), solar flares, and magnetic storms. The analysis shows that the introduced non-extensive model provides an excellent fit to the experimental data, incorporating the characteristics of universality by means of non-extensive statistics into the extreme events under study.

  7. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and determine variations in source depth and distribution in the conduit and larger geyser field over many eruption cycles.

  8. Multi-Parameter Observation and Detection of Pre-Earthquake Signals in Seismically Active Areas

    NASA Technical Reports Server (NTRS)

    Ouzounov, D.; Pulinets, S.; Parrot, M.; Liu, J. Y.; Hattori, K.; Kafatos, M.; Taylor, P.

    2012-01-01

    The recent large earthquakes (M9.0 Tohoku, 03/2011; M7.0 Haiti, 01/2010; M6.7 L Aquila, 04/2008; and M7.9 Wenchuan 05/2008) have renewed interest in pre-anomalous seismic signals associated with them. Recent workshops (DEMETER 2006, 2011 and VESTO 2009 ) have shown that there were precursory atmospheric /ionospheric signals observed in space prior to these events. Our initial results indicate that no single pre-earthquake observation (seismic, magnetic field, electric field, thermal infrared [TIR], or GPS/TEC) can provide a consistent and successful global scale early warning. This is most likely due to complexity and chaotic nature of earthquakes and the limitation in existing ground (temporal/spatial) and global satellite observations. In this study we analyze preseismic temporal and spatial variations (gas/radon counting rate, atmospheric temperature and humidity change, long-wave radiation transitions and ionospheric electron density/plasma variations) which we propose occur before the onset of major earthquakes:. We propose an Integrated Space -- Terrestrial Framework (ISTF), as a different approach for revealing pre-earthquake phenomena in seismically active areas. ISTF is a sensor web of a coordinated observation infrastructure employing multiple sensors that are distributed on one or more platforms; data from satellite sensors (Terra, Aqua, POES, DEMETER and others) and ground observations, e.g., Global Positioning System, Total Electron Content (GPS/TEC). As a theoretical guide we use the Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model to explain the generation of multiple earthquake precursors. Using our methodology, we evaluated retrospectively the signals preceding the most devastated earthquakes during 2005-2011. We observed a correlation between both atmospheric and ionospheric anomalies preceding most of these earthquakes. The second phase of our validation include systematic retrospective analysis for more than 100 major earthquakes (M>5.9) in Taiwan and Japan. We have found anomalous behavior before all of these events with no false negatives. Calculated false alarm ratio for the for the same month over the entire period of analysis (2003-2009) is less than 10% and was d as the earthquakes. The commonalities in detecting atmospheric/ionospheric anomalies show that they may exist over both land and sea in regions of maximum stress (i.e., along plate boundaries) Our results indicate that the ISTF model could provide a capability to observe pre-earthquake atmospheric/ionospheric signals by combining this information into a common framework.

  9. Multiparametric approach to unravel the mechanism of Strombolian activity at a multivent system: Mt. Etna case study

    NASA Astrophysics Data System (ADS)

    Cannata, Andrea; Del Bello, Elisabetta; Kueppers, Ulrich; Privitera, Eugenio; Ricci, Tullio; Scarlato, Piergiorgio; Sciotto, Mariangela; Spina, Laura; Taddeucci, Jacopo; Pena Fernandez, Juan Jose; Sesterhenn, Joern

    2016-04-01

    On 5th July 2014 an eruptive fissure (hereafter referred to as EF) opened at the base of North-East Crater (NEC) of Mt. Etna. EF produced both Strombolian explosions and lava effusion. Thanks to the multiparametric experiment planned in the framework of MEDSUV project, we had the chance to acquire geophysical and volcanological data, in order to investigate the ongoing volcanic activity at EF. Temporary instruments (2 broadband seismometers, 2 microphones, 3-microphone arrays, a high-speed video camera and a thermal-camera) were deployed near the active vents during 15-16 July 2014 and were integrated with the data recorded by the permanent networks. Several kinds of studies are currently in progress, such as: frequency analysis by Fourier Transform and Short Time Fourier Transform to evaluate the spectral content of both seismic and acoustic signals; partitioning of seismic and acoustic energies, whose time variations could reflect changes in the volcanic dynamics; investigation on the intertimes between explosions to investigate their recurrence behaviour; classification of the waveforms of infrasound events. Furthermore, joint analysis of video signals and seismic-acoustic wavefields outlined relationships between pyroclasts ejection velocity, total erupted mass, peak explosion pressure, and air-ground motion coupling. This multiparametric approach allowed distinguishing and characterizing individually the behavior of the two vents active along the eruptive fissure via their thermal, visible and infrasonic signatures and shed light in the eruptive dynamics.

  10. Crustal Seismicity and 3-D Velocity Structure in the Principal Cordillera of Central Chile (33- 34.5 S, 69.5-71 W): Implications on Andean Geodynamic and Seismic Hazard

    NASA Astrophysics Data System (ADS)

    Pardo, M.; Monfret, T.; Vera, E.; Yañez, G.; Eisenberg, A.

    2007-12-01

    Based on data from a dense local temporary seismological network, crustal seismicity is characterized, and a 3- D body wave velocity structure is obtained by tomographic inversion down to the subducted slab. In the framework of Fondecyt 1050758, GeoAzur-IRD and ACT-18 projects, 35 broadband and short period instruments, were deployed in the studied zone for 135 days recording in continuous mode. At this zone the Andean active volcanism reappears after a gap of volcanic activity since late Miocene occurring north of 33 S due to the Central Chile flat slab subduction zone. Crustal seismicity in the depth range 0-30 km is well correlated with known geological faults that become now important in the assessment of the regional seismic hazard. This seismicity also clusters around the giant porphyry cooper deposits in the region (Rio Blanco, El Teniente), and are neither related to mine-blasts nor induced by mining activity. Moreover, the local 3-D velocity structure shows that the zone surrounding each deposit is characterized by high Vp/Vs greater than 1.8, which may indicate fluid phases located in the weakest and more fractured zone of the crust. The body wave velocity pattern shown at depth by the local tomography indicates channels of high Vp/Vs connecting the subducted slab with the surface at places where active volcanism is present, suggesting upward migration of hydrous or melted rocks. This pattern agrees with the one observed with a previous regional tomography that includes this zone, while this Vp/Vs pattern tends to be horizontal at the flat slab zone. At depths of 20-25 km, a layer of high Vp/Vs is observed beneath the Andes Cordillera that could be associated to changes in the rheological properties between the upper and lower crust, or to accumulation of magma. The average stress tensor, derived from focal mechanisms, indicate that the Andean zone is under compression in the plate convergence direction.

  11. Source characteristics of 2000 small earthquakes nucleating on the Alto Tiberina fault system (central Italy).

    NASA Astrophysics Data System (ADS)

    Munafo, I.; Malagnini, L.; Tinti, E.; Chiaraluce, L.; Di Stefano, R.; Valoroso, L.

    2014-12-01

    The Alto Tiberina Fault (ATF) is a 60 km long east-dipping low-angle normal fault, located in a sector of the Northern Apennines (Italy) undergoing active extension since the Quaternary. The ATF has been imaged by analyzing the active source seismic reflection profiles, and the instrumentally recorded persistent background seismicity. The present study is an attempt to separate the contributions of source, site, and crustal attenuation, in order to focus on the mechanics of the seismic sources on the ATF, as well on the synthetic and the antithetic structures within the ATF hanging-wall (i.e. Colfiorito fault, Gubbio fault and Umbria Valley fault). In order to compute source spectra, we perform a set of regressions over the seismograms of 2000 small earthquakes (-0.8 < ML< 4) recorded between 2010 and 2014 at 50 permanent seismic stations deployed in the framework of the Alto Tiberina Near Fault Observatory project (TABOO) and equipped with three-components seismometers, three of which located in shallow boreholes. Because we deal with some very small earthquakes, we maximize the signal to noise ratio (SNR) with a technique based on the analysis of peak values of bandpass-filtered time histories, in addition to the same processing performed on Fourier amplitudes. We rely on a tool called Random Vibration Theory (RVT) to completely switch from peak values in the time domain to Fourier spectral amplitudes. Low-frequency spectral plateau of the source terms are used to compute moment magnitudes (Mw) of all the events, whereas a source spectral ratio technique is used to estimate the corner frequencies (Brune spectral model) of a subset of events chosen over the analysis of the noise affecting the spectral ratios. So far, the described approach provides high accuracy over the spectral parameters of earthquakes of localized seismicity, and may be used to gain insights into the underlying mechanics of faulting and the earthquake processes.

  12. Aftershock Distribution of the Mw=7.8 April 16, 2016 Pedernales Ecuador Subduction Earthquake: Constraints from 3D Earthquake Locations

    NASA Astrophysics Data System (ADS)

    Font, Y.; Agurto-Detzel, H.; Alvarado, A. P.; Regnier, M. M.; Rolandone, F.; Charvis, P.; Mothes, P. A.; Nocquet, J. M.; Jarrin, P.; Ambrois, D.; Maron, C.; Deschamps, A.; Cheze, J.; Peix, F., Sr.; Ruiz, M. C.; Gabriela, P.; Acero, W.; Singaucho, J. C.; Viracucha, C.; Vasconez, F.; De Barros, L.; Mercerat, D.; Courboulex, F.; Galve, A.; Godano, M.; Monfret, T.; Ramos, C.; Martin, X.; Rietbrock, A.; Beck, S. L.; Metlzer, A.

    2017-12-01

    The Mw7.8 Pedernales earthquake is associated with the subduction of the Nazca Plate beneath the South American Plate. The mainshock caused many casualties and widespread damage across the Manabi province. The 150 km-long coseismic rupture area extends beneath the coastline, near 25 km depth. The rupture propagated southward and involved the successive rupture of two discrete asperities, with a maximum slip ( 5 m) on the southern patch. The rupture area is consistent with the highly locked regions observed on interseismic coupling models, overlaps the 7.2 Mw rupture zone, and terminates near where the 1906 Mw 8.8 megathrust earthquake rupture zone is estimated to have ended. Two neighboring highly coupled patches remain locked: (A) south and updip of the coseismic rupture zone and (B) north and downdip. In this study, we are working on the earthquake locations of the first month of aftershocks and compare the seismicity distribution to the interseismic coupling, the rupture area and to early afterslip. We use continuous seismic traces recorded on the permanent network partly installed in the framework of the collaboration between l'Institut de Recherche pour le Développement (France) and the Instituto Geofísico, Escuela Politécnica Nacional (IGEPN), Quito, Ecuador. Detections are conducted using Seiscomp in play-back mode and arrival-times are manually picked. To improve earthquake locations, we use the MAXi technique and a heterogeneous a priori P-wave velocity model that approximates the large velocity variations of the Ecuadorian subduction system. Aftershocks align along 3 to 4 main clusters that strike perpendicularly to the trench, and mostly updip of the co-seismic rupture. Seismicity develops over portions of plate interface that are known to be strongly locked or almost uncoupled. The seismicity pattern is similar to the one observed during a decade of observation during the interseismic period with swarms such as the Galera alignment, Jama and Cabo Pasado, Manta to Puerto Lopez.

  13. Annual Rates on Seismogenic Italian Sources with Models of Long-Term Predictability for the Time-Dependent Seismic Hazard Assessment In Italy

    NASA Astrophysics Data System (ADS)

    Murru, Maura; Falcone, Giuseppe; Console, Rodolfo

    2016-04-01

    The present study is carried out in the framework of the Center for Seismic Hazard (CPS) INGV, under the agreement signed in 2015 with the Department of Civil Protection for developing a new model of seismic hazard of the country that can update the current reference (MPS04-S1; zonesismiche.mi.ingv.it and esse1.mi.ingv.it) released between 2004 and 2006. In this initiative, we participate with the Long-Term Stress Transfer (LTST) Model to provide the annual occurrence rate of a seismic event on the entire Italian territory, from a Mw4.5 minimum magnitude, considering bins of 0.1 magnitude units on geographical cells of 0.1° x 0.1°. Our methodology is based on the fusion of a statistical time-dependent renewal model (Brownian Passage Time, BPT, Matthews at al., 2002) with a physical model which considers the permanent effect in terms of stress that undergoes a seismogenic source in result of the earthquakes that occur on surrounding sources. For each considered catalog (historical, instrumental and individual seismogenic sources) we determined a distinct rate value for each cell of 0.1° x 0.1° for the next 50 yrs. If the cell falls within one of the sources in question, we adopted the respective value of rate, which is referred only to the magnitude of the event characteristic. This value of rate is divided by the number of grid cells that fall on the horizontal projection of the source. If instead the cells fall outside of any seismic source we considered the average value of the rate obtained from the historical and the instrumental catalog, using the method of Frankel (1995). The annual occurrence rate was computed for any of the three considered distributions (Poisson, BPT and BPT with inclusion of stress transfer).

  14. First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific

    2013-04-01

    The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.

  15. Determining Crust and Upper Mantle Structure by Bayesian Joint Inversion of Receiver Functions and Surface Wave Dispersion at a Single Station: Preparation for Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.

    2017-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.

  16. Automatic Phase Picker for Local and Teleseismic Events Using Wavelet Transform and Simulated Annealing

    NASA Astrophysics Data System (ADS)

    Gaillot, P.; Bardaine, T.; Lyon-Caen, H.

    2004-12-01

    Since recent years, various automatic phase pickers based on the wavelet transform have been developed. The main motivation for using wavelet transform is that they are excellent at finding the characteristics of transient signals, they have good time resolution at all periods, and they are easy to program for fast execution. Thus, the time-scale properties and flexibility of the wavelets allow detection of P and S phases in a broad frequency range making their utilization possible in various context. However, the direct application of an automatic picking program in a different context/network than the one for which it has been initially developed is quickly tedious. In fact, independently of the strategy involved in automatic picking algorithms (window average, autoregressive, beamforming, optimization filtering, neuronal network), all developed algorithms use different parameters that depend on the objective of the seismological study, the region and the seismological network. Classically, these parameters are manually defined by trial-error or calibrated learning stage. In order to facilitate this laborious process, we have developed an automated method that provide optimal parameters for the picking programs. The set of parameters can be explored using simulated annealing which is a generic name for a family of optimization algorithms based on the principle of stochastic relaxation. The optimization process amounts to systematically modifying an initial realization so as to decrease the value of the objective function, getting the realization acceptably close to the target statistics. Different formulations of the optimization problem (objective function) are discussed using (1) world seismicity data recorded by the French national seismic monitoring network (ReNass), (2) regional seismicity data recorded in the framework of the Corinth Rift Laboratory (CRL) experiment, (3) induced seismicity data from the gas field of Lacq (Western Pyrenees), and (4) micro-seismicity data from glacier monitoring. The developed method is discussed and tested using our wavelet version of the standard STA-LTA algorithm.

  17. A global database of seismically and non-seismically triggered landslides for 2D/3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Domej, Gisela; Bourdeau, Céline; Lenti, Luca; Pluta, Kacper

    2017-04-01

    Landsliding is a worldwide common phenomenon. Every year, and ranging in size from very small to enormous, landslides cause all too often loss of life and disastrous damage to infrastructure, property and the environment. One main reason for more frequent catastrophes is the growth of population on the Earth which entails extending urbanization to areas at risk. Landslides are triggered by a variety and combination of causes, among which the role of water and seismic activity appear to have the most serious consequences. In this regard, seismic shaking is of particular interest since topographic elevation as well as the landslide mass itself can trap waves and hence amplify incoming surface waves - a phenomenon known as "site effects". Research on the topic of landsliding due to seismic and non-seismic activity is extensive and a broad spectrum of methods for modeling slope deformation is available. Those methods range from pseudo-static and rigid-block based models to numerical models. The majority is limited to 2D modeling since more sophisticated approaches in 3D are still under development or calibration. However, the effect of lateral confinement as well as the mechanical properties of the adjacent bedrock might be of great importance because they may enhance the focusing of trapped waves in the landslide mass. A database was created to study 3D landslide geometries. It currently contains 277 distinct seismically and non-seismically triggered landslides spread all around the globe whose rupture bodies were measured in all available details. Therefore a specific methodology was developed to maintain predefined standards, to keep the bias as low as possible and to set up a query tool to explore the database. Besides geometry, additional information such as location, date, triggering factors, material, sliding mechanisms, event chronology, consequences, related literature, among other things are stored for every case. The aim of the database is to enable statistical analysis on a vast and newly updated set of data and to create numerical models in the future. It is possible to define groups of landslides sharing the same characteristics, or cases belonging to different groups can be used to compare their responses to external loads. Thus, different options exist to create input data for numerical models. This is very promising especially considering the possibility of comparing 2D and 3D models having the same framework conditions (i.e. geometry, material, etc.). Comparison of 2D and 3D approaches might contribute to a better understanding of landsliding phenomena to improve the hazard prevention.

  18. Sidescan-sonar imagery, multibeam bathymetry, and surficial geologic interpretations of the sea floor in Rhode Island Sound, off Sakonnet Point, Rhode Island

    USGS Publications Warehouse

    McMullen, Katherine Y.; Poppe, Lawrence J.; Twomey, Erin R.; Danforth, William W.; Haupt, Todd A.; Crocker, James M.

    2007-01-01

    The U.S. Geological Survey (USGS) is working with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology in estuaries and sounds along the northeastern coast of the United States. This report interprets the area covered by NOAA Survey H11320, about 72 km² of sea floor in eastern Rhode Island Sound (RIS), located about 8 km south of Sakonnet Point, Rhode Island (fig. 1). Previous work in RIS includes studies of both sea-floor processes and subsurface geologic framework. McMaster (1960) mapped surficial sediment samples in Narragansett Bay and RIS and McMaster and others (1968) conducted a seismic-reflection survey in Block Island Sound and RIS. O'Hara and Oldale (1980) collected seismic-reflection profiles, sidescan-sonar data, and vibracores in eastern RIS (fig. 2). They interpreted the geologic history, assessed sand and gravel resources, and evaluated the mining impact of these resources. McMaster's (1960) interpretation of the surficial sediment within this study area consisted of sand with several isolated areas of gravel. Several other sediment samples were previously obtained within the study area: three National Oceanographic Data Center (NODC) dredge samples from 1942 consisted of sand and one National Ocean Service (NOS) sample from 1939 was rocky (fig. 2; Poppe and others, 2003). The purpose of this report is to define the sea-floor morphology and sedimentary environments and interpret processes occurring on the sea floor using sidescan-sonar imagery, multibeam bathymetry, and historic seismic-reflection profiles.

  19. Reservoir description and future development plans for the Unam/Mfem Fields, OML 67, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofron, B.M.; Jenkinson, J.T.; Maxwell, G.S.

    1995-08-01

    The Unam/Mfem fields, which are currently produced from three platforms, are, located 25 km offshore (southeastern Nigeria) in water depths of 60 feet to 100 feet. Over 100 MMBO have been produced to date from both unconformity bounded and fault trap reservoirs in the Upper and Middle Biafra Sands. These structural and stratigraphic geometries define at least eleven different reservoirs that are not interconnected. STOIIP for all eleven reservoirs is estimated to exceed 900 MMBO based on a recently completed reservoir characterization study. A two year reservoir description study followed the acquisition of a 1991 3-D seismic survey and resultedmore » in the drilling of six successful wells and two sidetracks. A 3-D model of reservoir geometries and fluid flow properties was generated by integrating geologic, geophysical, and reservoir engineering data. These diverse data sets were interpreted using a combination of workstations, software packages, and displays that included Landmark, IREX, wireline log and seismic correlation charts. A detailed stratigraphic zonation scheme with 28 zones was defined and correlated field wide and subregionally to build the reservoir framework. Twenty seismic horizons were created. More than 300 critical compute, generated grids were then used to calculate STOIIP volumes. This study led to the identification of new pay zones along with a much better understanding of the spatial distribution of all pays within the fields. A revised exploitation strategy has subsequently been proposed which calls for 5 new platforms and the drilling of 21 additional wells over the next few years.« less

  20. Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.

    2011-12-01

    The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed technique to a training dataset of induced earthquakes recorded by Berkeley-Geysers network, which is installed in The Geysers geothermal area in Northern California. The reliability of the techniques is then tested by using a different dataset performing seismic hazard analysis in a time-evolving approach, which provides with ground-motion values having fixed probabilities of exceedence. Those values can be finally compared with the observations by using appropriate statistical tests.

  1. Tectonostratigraphy of the Passive Continental Margin Offshore Indus Pakistan

    NASA Astrophysics Data System (ADS)

    Aslam, K.; Khan, M.; Liu, Y.; Farid, A.

    2017-12-01

    The tectonic evolution and structural complexities are poorly understood in the passive continental margin of the Offshore Indus of Pakistan. In the present study, an attempt has been made to interpret the structural trends and seismic stratigraphic framework in relation to the tectonics of the region. Seismic reflection data revealed tectonically controlled, distinct episodes of normal faulting representing rifting at different ages and transpression in the Late Eocene time. This transpression has resulted in the reactivation of the Pre-Cambrian basement structures. The movement of these basement structures has considerably affected the younger sedimentary succession resulting in push up structures resembling anticlines. The structural growth of the push-up structures was computed. The most remarkable tectonic setting in the region is represented by the normal faulting and by the basement uplift which divides the rifting and transpression stages. Ten mappable seismic sequences have been identified on the seismic records. A Jurassic aged paleo-shelf has also been identified on all regional seismic profiles which is indicative of Indian-African Plates separation during the Jurassic time. Furthermore, the backstripping technique was applied which has been proved to be a powerful technique to quantify subsidence/uplift history of rift-type passive continental margins. The back strip curves suggest that transition from an extensional rifted margin to transpression occurred during Eocene time (50-30 Ma). The backstripping curves show uplift had happened in the area. We infer that the uplift has occurred due to the movement of basement structures by the transpression movements of Arabian and Indian Plates. The present study suggests that the structural styles and stratigraphy of the Offshore Indus Pakistan were significantly affected by the tectonic activities during the separation of Gondwanaland in the Mesozoic and northward movement of the Indian Plate, post-rifting, and sedimentations along its western margin during the Middle Cenozoic. The present comprehensive interpretation can help in understanding the structural complexities and stratigraphy associated with tectonics in other parts of the passive continental margins worldwide dominated by rifting and drifting tectonics.

  2. The December 2015 Mount Etna eruption: An analysis of inflation/deflation phases and faulting processes

    NASA Astrophysics Data System (ADS)

    Aloisi, Marco; Jin, Shuanggen; Pulvirenti, Fabio; Scaltrito, Antonio

    2017-06-01

    During the first days of December 2015, there were four paroxysmal events at the ;Voragine; crater on Mount Etna, which were among the most violent observed during the last two decades. A few days after the ;Voragine; paroxysms, the Pernicana - Provenzana fault system, located near the crater area, underwent an intense seismic swarm with a maximum ;local; magnitude ML of 3.6. This paper investigates the relationship between the eruptive phenomenon and the faulting process in terms of Coulomb stress changes. The recorded seismicity is compatible with a multicausal stress redistribution inside the volcano edifice, occurring after the four paroxysmal episodes that interrupted the usual trend of inflation observed at Mt. Etna. The recorded seismicity falls within the framework of a complex chain of various and intercorrelated processes that started with the inflation preparing the ;Voragine; magmatic activity. This was followed with the rapid deflation of the volcano edifice during the paroxysmal episodes. We determined that the recorded deflation was not the direct cause of the seismic swarm. In fact, the associated Coulomb stress change, in the area of seismic swarm, was of about -1 [bar]. Instead, the fast deflation caused the rarely observed inversion of dislocation in the eastern flank at the same time as intense hydrothermal activity that, consequently, underwent an alteration. This process probably reduced the friction along the fault system. Then, the new phase of inflation, observed at the end of the magmatic activity, triggered the faulting processes.

  3. A Hydrostratigraphic Framework Model and Alternatives for the Groundwater Flow and Contaminant Transport Model of Corrective Action Unit 98: Frenchman Flat, Clark, Lincoln and Nye Counties, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Nevada

    2005-09-01

    A new, revised three-dimensional (3-D) hydrostratigraphic framework model for Frenchman Flat was completed in 2004. The area of interest includes Frenchman Flat, a former nuclear testing area at the Nevada Test Site, and proximal areas. Internal and external reviews of an earlier (Phase I) Frenchman Flat model recommended additional data collection to address uncertainties. Subsequently, additional data were collected for this Phase II initiative, including five new drill holes and a 3-D seismic survey.

  4. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto Nazionale di Geofisica e Vulcanologia (I.N.G.V.) is conducting since May, 2012. The GAPSS experiment consists of a large aperture seismic array composed by 20 temporary and 2 permanent broad-band seismic stations. Besides the characterization of the seismic release of the geothermal field, our purpose is to investigate in depth the geothermal field applying cost-effective passive seismic techniques, such as local earthquake tomography, attenuation tomography, shear wave splitting analysis and surface-wave dispersion from noise correlation analysis.

  5. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    NASA Astrophysics Data System (ADS)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (<40 per cent) of crustal deformation occurs seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  6. Dynamic seismic signatures of saturated porous rocks containing two orthogonal sets of fractures: theory versus numerical simulations

    NASA Astrophysics Data System (ADS)

    Guo, Junxin; Rubino, J. Germán; Glubokovskikh, Stanislav; Gurevich, Boris

    2018-05-01

    The dispersion and attenuation of seismic waves are potentially important attributes for the non-invasive detection and characterization of fracture networks. A primary mechanism for these phenomena is wave-induced fluid flow (WIFF), which can take place between fractures and their embedding background (FB-WIFF), as well as within connected fractures (FF-WIFF). In this work, we propose a theoretical approach to quantify seismic dispersion and attenuation related to these two manifestations of WIFF in saturated porous rocks permeated by two orthogonal sets of fractures. The methodology is based on existing theoretical models for rocks with aligned fractures, and we consider three types of fracture geometries, namely, periodic planar fractures, randomly spaced planar fractures and penny-shaped cracks. Synthetic 2-D rock samples with different degrees of fracture intersections are then explored by considering both the proposed theoretical approach and a numerical upscaling procedure that provides the effective seismic properties of generic heterogeneous porous media. The results show that the theoretical predictions are in overall good agreement with the numerical simulations, in terms of both the stiffness coefficients and the anisotropic properties. For the seismic dispersion and attenuation caused by FB-WIFF, the theoretical model for penny-shaped cracks matches the numerical simulations best, whereas for representing the effects due to FF-WIFF the periodic planar fractures model turns out to be the most suitable one. The proposed theoretical approach is easy to apply and is applicable not only to 2-D but also to 3-D fracture systems. Hence, it has the potential to constitute a useful framework for the seismic characterization of fractured reservoirs, especially in the presence of intersecting fractures.

  7. Circuit-Detour Design and Implementation - Enhancing the Southern California's Seismic Network Reliability through Redundant Network Paths

    NASA Astrophysics Data System (ADS)

    Watkins, M.; Busby, R.; Rico, H.; Johnson, M.; Hauksson, E.

    2003-12-01

    We provide enhanced network robustness by apportioning redundant data communications paths for seismic stations in the field. By providing for more than one telemetry route, either physical or logical, network operators can improve availability of seismic data while experiencing occasional network outages, and also during the loss of key gateway interfaces such as a router or central processor. This is especially important for seismic stations in sparsely populated regions where a loss of a single site may result in a significant gap in the network's monitoring capability. A number of challenges arise in the application of a circuit-detour mechanism. One requirement is that it fits well within the existing framework of our real-time system processing. It is also necessary to craft a system that is not needlessly complex to maintain or implement, particularly during a crisis. The method that we use for circuit-detours does not require the reconfiguration of dataloggers or communications equipment in the field. Remote network configurations remain static, changes are only required at the central site. We have implemented standardized procedures to detour circuits on similar transport mediums, such as virtual circuits on the same leased line; as well as physically different communications pathways, such as a microwave link backed up by a leased line. The lessons learned from these improvements in reliability, and optimization efforts could be applied to other real-time seismic networks. A fundamental tenant of most seismic networks is that they are reliable and have a high percentage of real-time data availability. A reasonable way to achieve these expectations is to provide alternate means of delivering data to the central processing sites, with a simple method for utilizing these alternate paths.

  8. Amplification of seismic waves beneath active volcanoes

    NASA Astrophysics Data System (ADS)

    Navon, O.; Lensky, N. G.; Collier, L.; Neuberg, J.; Lyakhovsky, V.

    2003-04-01

    Long-period (LP) seismic events are typical of many volcanoes and are attributed to energy leaking from waves traveling through the volcanic conduit or along the conduit - country-rock interface. The LP events are triggered locally, at the volcanic edifice, but the source of energy for the formation of tens of events per day is not clear. Energy may be supplied by volatile-release from a supersaturated melt. If bubbles are present in equilibrium with the melt in the conduit, and the melt is suddenly decompressed, transfer of volatiles from the supersaturated melt into the bubbles transforms stored potential energy into expansion work. For example, small dome collapses may decompress the conduit by a few bars and lead to solubility decrease, exsolution of volatiles and, consequently, to work done by the expansion of the bubbles under pressure. This energy is released over a timescale that is similar to that of LP events and may amplify the original weak seismic signals associated with the collapse. Using the formulation of Lensky et al. (2002), following the decompression, when the transfer of volatiles into bubbles is fast enough, expansion accelerates and the bulk viscosity of the bubbly magma is negative. New calculations show that under such conditions a sinusoidal P-wave is amplified. We note that seismic waves created by tectonic earthquakes that are not associated with net decompression, do not lead to net release of volatiles or to net expansion. In this case, the bulk viscosity is positive and waves traveling through the magma should attenuate. The proposed model explains how weak seismic signals may be amplified as they travel through a conduit that contains supersaturated bubbly magma. It provides the general framework for amplifying volcanic seismicity such as the signals associated with long-period events.

  9. Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales

    NASA Astrophysics Data System (ADS)

    Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.

    2014-12-01

    Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.

  10. The 29 July 2014 (Mw 6.4) Southern Veracruz, Mexico Earthquake: Scenary Previous to Its Occurrence.

    NASA Astrophysics Data System (ADS)

    Yamamoto, J.

    2014-12-01

    On 29 July 2014 (10:46 UTC) a magnitude 6.4 (Mw) earthquake occurred at the southern Veracruz, Mexico region. The epicenter was preliminary located at 17.70° N and 95.63° W. It was a normal fault event with the slip on a fault that trend NNW and a focus approximately 117 km below the surface of the Gulf of Mexico costal plane. The earthquake was widely felt through centro and southern Mexico. In Oaxaca City 133 km to the south a person die of a hearth attack. No damages were reported. Most prominent moderate-sized earthquakes occurring in the southern Veracruz region since 1959 has been concentrated along two well defined seismic belts. One belt runs off the coast following nearly its contour. Here the earthquakes are shallow depth and mostly show a reverse fault mechanism. This belt of seismicity begins at the Los Tuxtlas volcanic field. Another seismic belt is located inland 70 km to the west. Here most earthquakes are of intermediate-depth (108-154 km) focus and normal faulting mechanism. The July 2014 earthquake is located near to this second seismic belt. In the present paper we discuss, within the regional geotectonic framework, the location and some aspects of the rupture process of the July 2014 earthquake.

  11. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    NASA Astrophysics Data System (ADS)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  12. Excitation mechanisms for Jovian seismic modes

    NASA Astrophysics Data System (ADS)

    Markham, Steve; Stevenson, Dave

    2018-05-01

    Recent (2011) results from the Nice Observatory indicate the existence of global seismic modes on Jupiter in the frequency range between 0.7 and 1.5 mHz with amplitudes of tens of cm/s. Currently, the driving force behind these modes is a mystery; the measured amplitudes are many orders of magnitude larger than anticipated based on theory analogous to helioseismology (that is, turbulent convection as a source of stochastic excitation). One of the most promising hypotheses is that these modes are driven by Jovian storms. This work constructs a framework to analytically model the expected equilibrium normal mode amplitudes arising from convective columns in storms. We also place rough constraints on Jupiter's seismic modal quality factor. Using this model, neither meteor strikes, turbulent convection, nor water storms can feasibly excite the order of magnitude of observed amplitudes. Next we speculate about the potential role of rock storms deeper in Jupiter's atmosphere, because the rock storms' expected energy scales make them promising candidates to be the chief source of excitation for Jovian seismic modes, based on simple scaling arguments. We also suggest some general trends in the expected partition of energy between different frequency modes. Finally we supply some commentary on potential applications to gravity, Juno, Cassini and Saturn, and future missions to Uranus and Neptune.

  13. Detailed Image of the Subducting Plate and Upper mantle Seismic Discontinuities in the Mariana Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tibi, R.; Wiens, D. A.; Shiobara, H.; Sugioka, H.; Yuan, X.

    2006-12-01

    We use P-to-S converted teleseismic phases recorded at island and ocean bottom stations in Mariana to image the subducting plate and the upper mantle seismic discontinuities in the Mariana subduction zone. The land and seafloor stations which operated from June 2003 to May 2004, were deployed within the framework of the MARGINS Subduction Factory experiment of the Mariana system. The crust in the sudducting plate is observed at about 80--90 km depth beneath the islands of Saipan, Tinian and Rota. For most of the island stations, a low velocity layer is imaged in the forearc at depth between about 20 and 60 km, with decreasing depths toward the arc. The nature of this feature is not yet clear. We found evidence for double seismic discontinuities at the base of the transition zone near the Mariana slab. A shallower discontinuity is imaged at depths of ~650--715 km, and a deeper interface lies at ~740-- 770 km depth. The amplitudes of the seismic signals suggest that the shear velocity contrasts across the two features are comparable. These characteristics support the interpretation that the discontinuities are the results of the phase transformations in olivine (ringwoodite to post-spinel) and garnet (ilminite to perovskite), respectively, for the pyrolite model of mantle composition.

  14. Preliminary Earthquake Hazard Map of Afghanistan

    USGS Publications Warehouse

    Boyd, Oliver S.; Mueller, Charles S.; Rukstales, Kenneth S.

    2007-01-01

    Introduction Earthquakes represent a serious threat to the people and institutions of Afghanistan. As part of a United States Agency for International Development (USAID) effort to assess the resource potential and seismic hazards of Afghanistan, the Seismic Hazard Mapping group of the United States Geological Survey (USGS) has prepared a series of probabilistic seismic hazard maps that help quantify the expected frequency and strength of ground shaking nationwide. To construct the maps, we do a complete hazard analysis for each of ~35,000 sites in the study area. We use a probabilistic methodology that accounts for all potential seismic sources and their rates of earthquake activity, and we incorporate modeling uncertainty by using logic trees for source and ground-motion parameters. See the Appendix for an explanation of probabilistic seismic hazard analysis and discussion of seismic risk. Afghanistan occupies a southward-projecting, relatively stable promontory of the Eurasian tectonic plate (Ambraseys and Bilham, 2003; Wheeler and others, 2005). Active plate boundaries, however, surround Afghanistan on the west, south, and east. To the west, the Arabian plate moves northward relative to Eurasia at about 3 cm/yr. The active plate boundary trends northwestward through the Zagros region of southwestern Iran. Deformation is accommodated throughout the territory of Iran; major structures include several north-south-trending, right-lateral strike-slip fault systems in the east and, farther to the north, a series of east-west-trending reverse- and strike-slip faults. This deformation apparently does not cross the border into relatively stable western Afghanistan. In the east, the Indian plate moves northward relative to Eurasia at a rate of about 4 cm/yr. A broad, transpressional plate-boundary zone extends into eastern Afghanistan, trending southwestward from the Hindu Kush in northeast Afghanistan, through Kabul, and along the Afghanistan-Pakistan border. Deformation here is expressed as a belt of major, north-northeast-trending, left-lateral strike-slip faults and abundant seismicity. The seismicity intensifies farther to the northeast and includes a prominent zone of deep earthquakes associated with northward subduction of the Indian plate beneath Eurasia that extends beneath the Hindu Kush and Pamirs Mountains. Production of the seismic hazard maps is challenging because the geological and seismological data required to produce a seismic hazard model are limited. The data that are available for this project include historical seismicity and poorly constrained slip rates on only a few of the many active faults in the country. Much of the hazard is derived from a new catalog of historical earthquakes: from 1964 to the present, with magnitude equal to or greater than about 4.5, and with depth between 0 and 250 kilometers. We also include four specific faults in the model: the Chaman fault with an assigned slip rate of 10 mm/yr, the Central Badakhshan fault with an assigned slip rate of 12 mm/yr, the Darvaz fault with an assigned slip rate of 7 mm/yr, and the Hari Rud fault with an assigned slip rate of 2 mm/yr. For these faults and for shallow seismicity less than 50 km deep, we incorporate published ground-motion estimates from tectonically active regions of western North America, Europe, and the Middle East. Ground-motion estimates for deeper seismicity are derived from data in subduction environments. We apply estimates derived for tectonic regions where subduction is the main tectonic process for intermediate-depth seismicity between 50- and 250-km depth. Within the framework of these limitations, we have developed a preliminary probabilistic seismic-hazard assessment of Afghanistan, the type of analysis that underpins the seismic components of modern building codes in the United States. The assessment includes maps of estimated peak ground-acceleration (PGA), 0.2-second spectral acceleration (SA), and 1.0-secon

  15. Towards the Wetness Characterization of Soil Subsurface Using Fibre Optic Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Ciocca, F.; Bodet, L.; Simon, N.; Karaulanov, R.; Clarke, A.; Abesser, C.; Krause, S.; Chalari, A.; Mondanos, M.

    2017-12-01

    Active seismic methods combined with detectors deployed at the soil surface, such as vertical collinear geophones, have revealed great potential for hydrogeophysical characterization of the soil vadose zone. In particular, recent findings have highlighted a clear dependence of both P-waves arrival times and surface-wave dispersion on the local degree of soil saturation, visible at laboratory as well as at field scale. In this study, we investigate the sensitivity of a fibre optic Distributed Acoustic Sensor (DAS) to different soil saturation. In vertical seismic applications, DAS have proven to offer equal and often better performance compared to the geophones, with the advantage that a fibre optic cable, whose length can reach 40 km, replaces the array of geophones as sensing element. We present the response to active seismic tests of 20 m of fibre optic cable buried in a poorly permeable bare soil. Tests were conducted in different moments of the year, with saturation monitored by means of independent dielectric probes. Body-wave travel times as well as surface-wave dispersion are compared. Finally, we discuss the possibility to determine a site-specific relation between the Poisson ratio and the soil saturation. This research has been performed in the framework of the British National Environmental Research Council (NERC) funded Distributed intelligent Heat Pulse System (DiHPS) project and of the Marie Curie H2020 Research and Innovation Staff Exchange (RISE) consortium Hi-Freq.

  16. Dominant seismic sources for the cities in South Sumatra

    NASA Astrophysics Data System (ADS)

    Sunardi, Bambang; Sakya, Andi Eka; Masturyono, Murjaya, Jaya; Rohadi, Supriyanto; Sulastri, Putra, Ade Surya

    2017-07-01

    Subduction zone along west of Sumatra and Sumatran fault zone are active seismic sources. Seismotectonically, South Sumatra could be affected by earthquakes triggered by these seismic sources. This paper discussed contribution of each seismic source to earthquake hazards for cities of Palembang, Prabumulih, Banyuasin, OganIlir, Ogan Komering Ilir, South Oku, Musi Rawas and Empat Lawang. These hazards are presented in form of seismic hazard curves. The study was conducted by using Probabilistic Seismic Hazard Analysis (PSHA) of 2% probability of exceedance in 50 years. Seismic sources used in analysis included megathrust zone M2 of Sumatra and South Sumatra, background seismic sources and shallow crustal seismic sources consist of Ketaun, Musi, Manna and Kumering faults. The results of the study showed that for cities relatively far from the seismic sources, subduction / megathrust seismic source with a depth ≤ 50 km greatly contributed to the seismic hazard and the other areas showed deep background seismic sources with a depth of more than 100 km dominate to seismic hazard respectively.

  17. Non-stationary background intensity and Caribbean seismic events

    NASA Astrophysics Data System (ADS)

    Valmy, Larissa; Vaillant, Jean

    2014-05-01

    We consider seismic risk calculation based on models with non-stationary background intensity. The aim is to improve predictive strategies in the framework of seismic risk assessment from models describing at best the seismic activity in the Caribbean arc. Appropriate statistical methods are required for analyzing the volumes of data collected. The focus is on calculating earthquakes occurrences probability and analyzing spatiotemporal evolution of these probabilities. The main modeling tool is the point process theory in order to take into account past history prior to a given date. Thus, the seismic event conditional intensity is expressed by means of the background intensity and the self exciting component. This intensity can be interpreted as the expected event rate per time and / or surface unit. The most popular intensity model in seismology is the ETAS (Epidemic Type Aftershock Sequence) model introduced and then generalized by Ogata [2, 3]. We extended this model and performed a comparison of different probability density functions for the triggered event times [4]. We illustrate our model by considering the CDSA (Centre de Données Sismiques des Antilles) catalog [1] which contains more than 7000 seismic events occurred in the Lesser Antilles arc. Statistical tools for testing the background intensity stationarity and for dynamical segmentation are presented. [1] Bengoubou-Valérius M., Bazin S., Bertil D., Beauducel F. and Bosson A. (2008). CDSA: a new seismological data center for the French Lesser Antilles, Seismol. Res. Lett., 79 (1), 90-102. [2] Ogata Y. (1998). Space-time point-process models for earthquake occurrences, Annals of the Institute of Statistical Mathematics, 50 (2), 379-402. [3] Ogata, Y. (2011). Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity, Earth, Planets and Space, 63 (3), 217-229. [4] Valmy L. and Vaillant J. (2013). Statistical models in seismology: Lesser Antilles arc case, Bull. Soc. géol. France, 2013, 184 (1), 61-67.

  18. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  19. Crustal structure of the northern margin of the eastern Tien Shan, China, and its tectonic implications for the 1906 M~7.7 Manas earthquake

    USGS Publications Warehouse

    Wang, Chun-Yong; Yang, Zhu-En; Luo, Hai; Mooney, W.D.

    2004-01-01

    The Tien Shan orogenic belt is the most active intracontinental mountain belt in the world. We describe an 86-km-long N–S-trending deep seismic reflection profile (which passes through the southern Junggar basin) located on the northeastern Tien Shan piedmont. Two distinct anticlines beneath the northern margin of the Tien Shan are clearly imaged in the seismic section. In addition, we have imaged two detachment surfaces at depths of ∼7 and ∼16 km. The detachment surface at 16-km depth corresponds to the main detachment that converges with the steep angle reverse fault (the Junggar Southern Marginal Fault) on which the 1906 M~7.7 Manas earthquake occurred. A 12–14-km-thick sedimentary basin is imaged beneath the southern Junggar basin near Shihezi. The crust beneath the northern margin of the Tien Shan is 50–55-km thick, and decreases beneath the Junggar basin to 40–45-km thick. The crustal image of the deep seismic reflection profile is consistent with models derived from nearby seismic refraction data and Bouguer gravity anomalies in the same region. The faulting associated with the 1906 Manas earthquake also fits within the structural framework imaged by the seismic reflection profile. Present-day micro-seismicity shows a hypocentral depth-distribution between 5 and 35 km, with a peak at 20 km. We hypothesize that the 1906 Manas earthquake initiated at a depth of ∼20 km and propagated upwards, causing northward slip on the sub-horizontal detachments beneath the southern Junggar basin. Thus, in accord with regional geological mapping, the current shortening within the eastern Tien Shan is accommodated both by high-angle reverse faulting and detachment faulting that can be clearly imaged at depth in seismic reflection data.

  20. The Seismic Event in North Korea on 12 May 2010: an assessment from available seismological data

    NASA Astrophysics Data System (ADS)

    Koch, Karl; Kim, Won-Young; Richards, Paul G.; Schaff, David P.

    2016-04-01

    North Korea conducted underground nuclear explosions in October 2006, May 2009, February 2013, and January 2016 that were subsequently officially announced. Based on a number of detections of radionuclides and noble gas elements in May 2010, claims were raised that North Korea conducted a small clandestine nuclear test on its test site on 11 or 12 May 2010, which, however, lacked any signs of an associated seismic event in IMS and non-IMS seismic data. First evidence was presented in fall 2014 and published in February 2015 that data from a Chinese seismic network showed signals that could be related to the claimed underground nuclear explosion in May 2010. Unfortunately, these data have not become openly available for further and wider seismological assessments. First openly available data were found for this seismic event from stations of the North-East China Extended SeiSmic (NECESS) Array consistent with an event on or near the North Korean test site. Later, additional data were obtained from stations of the nearby Dongbei Broadband Seismographic Network (DBSN), for the event of 12 May 2010 and for the underground nuclear tests conducted in 2006 and 2009. Together with data from the open GSN station Mudanjiang (MDJ) in northeastern China we developed a framework for relative location of the event, event characterization by measuring P/S amplitude ratios at different frequencies and by independently assessing the magnitude of the event. While the location of the event can be shown to be within several kilometers of previous nuclear tests, event characterization for frequencies between 5 and 10 Hz indicates that the known nuclear tests are explosion-like; the 12 May 2010 event is in contrast characterized as earthquake-like. Our assessment also indicates that seismic events about three-thousand times smaller than the UNEs in 2013 or 2016 may be monitored on or near the North Korean test site.

  1. Advanced Mechanistic 3D Spatial Modeling and Analysis Methods to Accurately Represent Nuclear Facility External Event Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sezen, Halil; Aldemir, Tunc; Denning, R.

    Probabilistic risk assessment of nuclear power plants initially focused on events initiated by internal faults at the plant, rather than external hazards including earthquakes and flooding. Although the importance of external hazards risk analysis is now well recognized, the methods for analyzing low probability external hazards rely heavily on subjective judgment of specialists, often resulting in substantial conservatism. This research developed a framework to integrate the risk of seismic and flooding events using realistic structural models and simulation of response of nuclear structures. The results of four application case studies are presented.

  2. Joint inversion of active and passive seismic data in Central Java

    NASA Astrophysics Data System (ADS)

    Wagner, Diana; Koulakov, I.; Rabbel, W.; Luehr, B.-G.; Wittwer, A.; Kopp, H.; Bohm, M.; Asch, G.

    2007-08-01

    Seismic and volcanic activities in Central Java, Indonesia, the area of interest of this study, are directly or indirectly related to the subduction of the Indo-Australian plate. In the framework of the MERapi AMphibious EXperiments (MERAMEX), a network consisting of about 130 seismographic stations was installed onshore and offshore in Central Java and operated for more than 150 days. In addition, 3-D active seismic experiments were carried out offshore. In this paper, we present the results of processing combined active and passive seismic data, which contain traveltimes from 292 local earthquakes and additional airgun shots along three offshore profiles. The inversion was performed using the updated LOTOS-06 code that allows processing for active and passive source data. The joint inversion of the active and passive data set considerably improves the resolution of the upper crust, especially in the offshore area in comparison to only passive data. The inversion results are verified using a series of synthetic tests. The resulting images show an exceptionally strong low-velocity anomaly (-30 per cent) in the backarc crust northward of the active volcanoes. In the upper mantle beneath the volcanoes, we observe a low-velocity anomaly inclined towards the slab, which probably reflects the paths of fluids and partially melted materials in the mantle wedge. The crust in the forearc appears to be strongly heterogeneous. The onshore part consists of two high-velocity blocks separated by a narrow low-velocity anomaly, which can be interpreted as a weakened contact zone between two rigid crustal bodies. The recent Java Mw = 6.3 earthquake (2006/05/26-UTC) occurred at the lower edge of this zone. Its focal strike slip mechanism is consistent with the orientation of this contact.

  3. Subsurface geometry of the San Andreas-Calaveras fault junction: influence of serpentinite and the Coast Range Ophiolite

    USGS Publications Warehouse

    Watt, Janet Tilden; Ponce, David A.; Graymer, Russell W.; Jachens, Robert C.; Simpson, Robert W.

    2014-01-01

    While an enormous amount of research has been focused on trying to understand the geologic history and neotectonics of the San Andreas-Calaveras fault (SAF-CF) junction, fundamental questions concerning fault geometry and mechanisms for slip transfer through the junction remain. We use potential-field, geologic, geodetic, and seismicity data to investigate the 3-D geologic framework of the SAF-CF junction and identify potential slip-transferring structures within the junction. Geophysical evidence suggests that the San Andreas and Calaveras fault zones dip away from each other within the northern portion of the junction, bounding a triangular-shaped wedge of crust in cross section. This wedge changes shape to the south as fault geometries change and fault activity shifts between fault strands, particularly along the Calaveras fault zone (CFZ). Potential-field modeling and relocated seismicity suggest that the Paicines and San Benito strands of the CFZ dip 65° to 70° NE and form the southwest boundary of a folded 1 to 3 km thick tabular body of Coast Range Ophiolite (CRO) within the Vallecitos syncline. We identify and characterize two steeply dipping, seismically active cross structures within the junction that are associated with serpentinite in the subsurface. The architecture of the SAF-CF junction presented in this study may help explain fault-normal motions currently observed in geodetic data and help constrain the seismic hazard. The abundance of serpentinite and related CRO in the subsurface is a significant discovery that not only helps constrain the geometry of structures but may also help explain fault behavior and the tectonic evolution of the SAF-CF junction.

  4. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    NASA Astrophysics Data System (ADS)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  5. Introduction to selected references on fossil fuels of the central and southern Appalachian basin: Chapter H.1 in Coal and petroleum resources in the Appalachian basin: distribution, geologic framework, and geochemical character

    USGS Publications Warehouse

    Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.

    2014-01-01

    The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.

  6. Structure and seismic activity of the Lesser Antilles subduction zone

    NASA Astrophysics Data System (ADS)

    Evain, M.; Galve, A.; Charvis, P.; Laigle, M.; Ruiz Fernandez, M.; Kopp, H.; Hirn, A.; Flueh, E. R.; Thales Scientific Party

    2011-12-01

    Several active and passive seismic experiments conducted in 2007 in the framework of the European program "Thales Was Right" and of the French ANR program "Subsismanti" provided a unique set of geophysical data highlighting the deep structure of the central part of the Lesser Antilles subduction zone, offshore Dominica and Martinique, and its seismic activity during a period of 8 months. The region is characterized by a relatively low rate of seismicity that is often attributed to the slow (2 cm/yr) subduction of the old, 90 My, Atlantic lithosphere beneath the Caribbean Plate. Based on tomographic inversion of wide-angle seismic data, the forearc can clearly be divided into an inner forearc, characterised by a high vertical velocity gradient in the igneous crust, and an outer forearc with lower crustal velocity gradient. The thick, high velocity, inner forearc is possibly the extension at depth of the Mesozoic Caribbean crust outcropping in La Désirade Island. The outer forearc, up to 70 km wide in the northern part of the study area, is getting narrower to the south and disappears offshore Martinique. Based on its seismic velocity structure with velocities higher than 6 km/s the backstop consists, at least partly, of magmatic rocks. The outer forearc is also highly deformed and faulted within the subducting trend of the Tiburon Ridge. With respect to the inner forearc velocity structure the outer forearc basement could either correspond to an accreted oceanic terrane or made of highly fractured rocks. The inner forearc is a dense, poorly deformable crustal block, tilted southward as a whole. It acts as a rigid buttress increasing the strain within both the overriding and subducting plates. This appears clearly in the current local seismicity affecting the subducting and the overriding plates that is located beneath the inner forearc. We detected earthquakes beneath the Caribbean forearc and in the Atlantic oceanic plate as well. The main seismic activity is concentrated in the lower crust and in the mantle wedge, close to the island arc beneath the inner forearc domain. In comparison, little seismicity is observed beneath the outer forearc domain. We propose that the difference of the seismicity beneath the inner and the outer forearc is related to a difference of crustal structure between the inner forearc interpreted as a dense, thick and rigid crustal block and the lighter and more flexible outer forearc. Seismicity is enhanced beneath the inner forearc because it likely increases the vertical stress applied to the subducting plate. At depth, interplate earthquakes observed between 35 and 45 km depth, deeper than the Moho of the forearc (~30 km), possibly reveal the downdip limit of the seismogenic zone. The Thales Scientific Party is composed of: Bayrakci, G., Bécel, A., Charvis, P., Diaz, J., Evain, M., Flueh, E., Gallart, J., Gailler, A., Galve, A., Hello, Y., Hirn, A., Kopp, H., Krabbenhoeft, A., Laigle, M., Lebrun, J. F., Monfret, T., Papenberg, C., Planert, L., Ruiz, M., Sapin, M., Weinzierl, W.

  7. Probabilistic reasoning over seismic RMS time series: volcano monitoring through HMMs and SAX technique

    NASA Astrophysics Data System (ADS)

    Aliotta, M. A.; Cassisi, C.; Prestifilippo, M.; Cannata, A.; Montalto, P.; Patanè, D.

    2014-12-01

    During the last years, volcanic activity at Mt. Etna was often characterized by cyclic occurrences of fountains. In the period between January 2011 and June 2013, 38 episodes of lava fountains has been observed. Automatic recognition of the volcano's states related to lava fountain episodes (Quiet, Pre-Fountaining, Fountaining, Post-Fountaining) is very useful for monitoring purposes. We discovered that such states are strongly related to the trend of RMS (Root Mean Square) of the seismic signal recorded in the summit area. In the framework of the project PON SIGMA (Integrated Cloud-Sensor System for Advanced Multirisk Management) work, we tried to model the system generating its sampled values (assuming to be a Markov process and assuming that RMS time series is a stochastic process), by using Hidden Markov models (HMMs), that are a powerful tool for modeling any time-varying series. HMMs analysis seeks to discover the sequence of hidden states from the observed emissions. In our framework, observed emissions are characters generated by SAX (Symbolic Aggregate approXimation) technique. SAX is able to map RMS time series values with discrete literal emissions. Our experiments showed how to predict volcano states by means of SAX and HMMs.

  8. Palaeotsunamis and tsunami hazards in the Eastern Mediterranean.

    PubMed

    England, Philip; Howell, Andrew; Jackson, James; Synolakis, Costas

    2015-10-28

    The dominant uncertainties in assessing tsunami hazard in the Eastern Mediterranean are attached to the location of the sources. Reliable historical reports exist for five tsunamis associated with earthquakes at the Hellenic plate boundary, including two that caused widespread devastation. Because most of the relative motion across this boundary is aseismic, however, the modern record of seismicity provides little or no information about the faults that are likely to generate such earthquakes. Independent geological and geophysical observations of two large historical to prehistorical earthquakes, in Crete and Rhodes, lead to a coherent framework in which large to great earthquakes occurred not on the subduction boundary, but on reverse faults within the overlying crust. We apply this framework to the less complete evidence from the remainder of the Hellenic plate boundary zone, identifying candidate sources for future tsunamigenic earthquakes. Each such source poses a significant hazard to the North African coast of the Eastern Mediterranean. Because modern rates of seismicity are irrelevant to slip on the tsunamigenic faults, and because historical and geological data are too sparse, there is no reliable basis for a probabilistic assessment of this hazard, and a precautionary approach seems advisable. © 2015 The Author(s).

  9. A Comparative Study on Seismic Analysis of Bangladesh National Building Code (BNBC) with Other Building Codes

    NASA Astrophysics Data System (ADS)

    Bari, Md. S.; Das, T.

    2013-09-01

    Tectonic framework of Bangladesh and adjoining areas indicate that Bangladesh lies well within an active seismic zone. The after effect of earthquake is more severe in an underdeveloped and a densely populated country like ours than any other developed countries. Bangladesh National Building Code (BNBC) was first established in 1993 to provide guidelines for design and construction of new structure subject to earthquake ground motions in order to minimize the risk to life for all structures. A revision of BNBC 1993 is undergoing to make this up to date with other international building codes. This paper aims at the comparison of various provisions of seismic analysis as given in building codes of different countries. This comparison will give an idea regarding where our country stands when it comes to safety against earth quake. Primarily, various seismic parameters in BNBC 2010 (draft) have been studied and compared with that of BNBC 1993. Later, both 1993 and 2010 edition of BNBC codes have been compared graphically with building codes of other countries such as National Building Code of India 2005 (NBC-India 2005), American Society of Civil Engineering 7-05 (ASCE 7-05). The base shear/weight ratios have been plotted against the height of the building. The investigation in this paper reveals that BNBC 1993 has the least base shear among all the codes. Factored Base shear values of BNBC 2010 are found to have increased significantly than that of BNBC 1993 for low rise buildings (≤20 m) around the country than its predecessor. Despite revision of the code, BNBC 2010 (draft) still suggests less base shear values when compared to the Indian and American code. Therefore, this increase in factor of safety against the earthquake imposed by the proposed BNBC 2010 code by suggesting higher values of base shear is appreciable.

  10. Workflows for Full Waveform Inversions

    NASA Astrophysics Data System (ADS)

    Boehm, Christian; Krischer, Lion; Afanasiev, Michael; van Driel, Martin; May, Dave A.; Rietmann, Max; Fichtner, Andreas

    2017-04-01

    Despite many theoretical advances and the increasing availability of high-performance computing clusters, full seismic waveform inversions still face considerable challenges regarding data and workflow management. While the community has access to solvers which can harness modern heterogeneous computing architectures, the computational bottleneck has fallen to these often manpower-bounded issues that need to be overcome to facilitate further progress. Modern inversions involve huge amounts of data and require a tight integration between numerical PDE solvers, data acquisition and processing systems, nonlinear optimization libraries, and job orchestration frameworks. To this end we created a set of libraries and applications revolving around Salvus (http://salvus.io), a novel software package designed to solve large-scale full waveform inverse problems. This presentation focuses on solving passive source seismic full waveform inversions from local to global scales with Salvus. We discuss (i) design choices for the aforementioned components required for full waveform modeling and inversion, (ii) their implementation in the Salvus framework, and (iii) how it is all tied together by a usable workflow system. We combine state-of-the-art algorithms ranging from high-order finite-element solutions of the wave equation to quasi-Newton optimization algorithms using trust-region methods that can handle inexact derivatives. All is steered by an automated interactive graph-based workflow framework capable of orchestrating all necessary pieces. This naturally facilitates the creation of new Earth models and hopefully sparks new scientific insights. Additionally, and even more importantly, it enhances reproducibility and reliability of the final results.

  11. The morphology and nature of the East Arctic ocean acoustic basement

    NASA Astrophysics Data System (ADS)

    Rekant, Pavel

    2017-04-01

    As the result of the thorough interpretation and cross-correlation of the large seismic dataset (>150000 km and >600 seismic lines), the depth structure map of the acoustic basement was constrained. Tectonic framework, basement surface morphology and linkage of the deep basin structures with shelves ones, was significantly clarified based on the map. It becomes clear that most morphostructures presently located within deep-water basin are tectonically connected with shelf structures. Acoustic basement contains a number of pre-Cambrian, Caledonian and Mesozoic consolidated blocks. The basement heterogeneity is highlighted by faults framework and basement surface morphology differences, as well thickness and stratigraphy of the sediment cover. The deepest basins of the East Arctic - Hanna Trough, North Chukchi and Podvodnikov Basins form a united mega-depression, wedged between pre-Cambrian continental blocks (Chukchi Borderland - Mendeleev Rise - Toll Saddle) from the north and the Caledonian deformation front from the south. The basement age/origin speculations are consistent with paleontological and U-Pb zircon ages from dredged rock samples. Most of morphological boundaries in the modern Arctic differ considerably from the tectonic framework. Only part of the Arctic morphostructures is constrained by tectonic boundaries. They are: eastern slope of the Lomonosov Ridge, continental slope in the Laptev Sea, upper continental slope in the Podvodnikov Basin, southern slope of the North Chukchi Basin and borders of the Chukchi Borderland. The rest significant part of modern morphological boundaries are caused by sedimentation processes.

  12. New Geologic Map and Structural Cross Sections of the Death Valley Extended Terrain (southern Sierra Nevada, California to Spring Mountains, Nevada): Toward 3D Kinematic Reconstructions

    NASA Astrophysics Data System (ADS)

    Lutz, B. M.; Axen, G. J.; Phillips, F. M.

    2017-12-01

    Tectonic reconstructions for the Death Valley extended terrain (S. Sierra Nevada to Spring Mountains) have evolved to include a growing number of offset markers for strike-slip fault systems but are mainly map view (2D) and do not incorporate a wealth of additional constraints. We present a new 1:300,000 digital geologic map and structural cross sections, which provide a geometric framework for stepwise 3D reconstructions of Late Cenozoic extension and transtension. 3D models will decipher complex relationships between strike-slip, normal, and detachment faults and their role in accommodating large magnitude extension/rigid block rotation. Fault coordination is key to understanding how extensional systems and transform margins evolve with changing boundary conditions. 3D geometric and kinematic analysis adds key strain compatibility unavailable in 2D reconstructions. The stratigraphic framework of Fridrich and Thompson (2011) is applied to rocks outside of Death Valley. Cenozoic basin deposits are grouped into 6 assemblages differentiated by age, provenance, and bounding unconformities, which reflect Pacific-North American plate boundary events. Pre-Cenozoic rocks are grouped for utility: for example, Cararra Formation equivalents are grouped because they form a Cordilleran thrust decollement zone. Offset markers are summarized in the associated tectonic map. Other constraints include fault geometries and slip rates, age, geometry and provenance of Cenozoic basins, gravity, cooling histories of footwalls, and limited seismic/well data. Cross sections were constructed parallel to net-transport directions of fault blocks. Surface fault geometries were compiled from previous mapping and projected to depth using seismic/gravity data. Cooling histories of footwalls guided geometric interpretation of uplifted detachment footwalls. Mesh surfaces will be generated from 2D section lines to create a framework for stepwise 3D reconstruction of extension and transtension in the study area. Analysis of all available data in a seamless 3D framework should force more unique solutions to outstanding kinematic problems, provide a better understanding of the Cordilleran thrust belt, and constrain the mechanisms of strain partitioning between the upper and lower crust.

  13. Thickness and geometry of Cenozoic deposits in California Wash area, Nevada, based on gravity and seismic-reflection data

    USGS Publications Warehouse

    Langenheim, V.E.; Miller, J.J.; Page, W.R.; Grow, J.A.

    2001-01-01

    Gravity and seismic-reflection data provide insights into the subsurface stratigraphy and structure of the California Wash area of southern Nevada. This area is part of the Lower Colorado flow system and stratigraphic and structural data are important inputs into developing the hydrogeologic framework. These data indicate that the basin beneath California Wash reaches depths of 2-3 km. The eastern margin of the basin coincides with a system of young (Quaternary and late Tertiary) faults, although both seismic and gravity data indicate that the major basin-bounding fault is 2-3 km west of the mapped young faults. Dry Lake Valley, the adjacent valley to the west, is characterized by thinner basin fill. The basin configuration beneath both California Wash and Dry Lake Valleys based on the inversion of gravity data is unconstrained because of the lack of gravity stations north of 36030?. Broad aeromagnetic anomalies beneath pre-Cenozoic basement in the Muddy Mountains and Arrow Canyon Range reflect Precambrian basement at depths of ~ 5 km. These rocks are probably barriers to ground-water flow,except where fractured.

  14. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  15. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    USGS Publications Warehouse

    Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some faults in the Wabash Valley Fault System produce discrete offset in Ordovician and younger strata only; one of the Wabash Valley faults cuts the top of the Precambrian on this seismic profile. 7. The data show clear evidence of late Paleozoic reverse faulting along both boundaries of the Rough Creek Graben in western Kentucky, although significant unreactivated Cambrian rift-bounding faults are also preserved. 8. Chaotic reflection patterns in the lower and middle Paleozoic strata near Hicks Dome, southern Illinois, are related to a combination of intrusive brecciation, intense faulting, and alteration of carbonate strata by acidic mineralizing fluids, all of which occurred in the Permian. 9. Late Paleozoic(?) reverse faulting is interpreted on one flank of the Rock Creek Graben, southern Illinois. 10. Permian and Mesozoic(?) extensional faulting is clearly imaged in the Fluorspar Area Fault Complex; neotectonic studies suggest that these structures were reactivated in the Quaternary.

  16. Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; Lyakhovsky, V.

    Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (tf-t)m, where tf is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks. The subcritical crack growth approach developed to describe deformation on a crack prior to the occurrence of dynamic rupture predicts great variability and low asymptotic values of the exponent m that are not compatible with observed ASR phases. Statistical physics studies assuming that system-size failures in a deforming region correspond to critical phase transitions predict establishment of long-range correlations of dynamic variables and power-law statistics before large events. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3-D elastic half space, we show that large model earthquakes are associated with nonrepeating cyclical establishment and destruction of long-range stress correlations, accompanied by nonstationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovskyet al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1-D case that the employed damage rheology leads to a singular power-law equation for strain proportional to (tf-t)-1/3, and a nonsingular power-law relation for cumulative Benioff strain proportional to (tf-t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power-law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = -1/3, the nonsingular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not. The results suggest that observations of moderate and large events contain two complementary end-member predictive signals on the time of future large earthquakes. In portions of seismicity following the characteristic earthquake distribution, such information exists directly in the associated quasi-periodic temporal distribution of large events. In portions of seismicity having broad frequency-size statistics with random or clustered temporal distribution of large events, the ASR phases have predictive information. The extent to which natural seismicity may be understood in terms of these end-member cases remains to be clarified. Continuing studies of evolving stress and other dynamic variables in model calculations combined with advanced analyses of simulated and observed seismicity patterns may lead to improvements in existing forecasting strategies.

  17. Ethical Implications of Seismic Risk Communication in Istanbul - Insights from a Transdisciplinary, Film-based Science Communication Workshop

    NASA Astrophysics Data System (ADS)

    Ickert, Johanna; Stewart, Iain S.

    2016-04-01

    For more than a decade, social science studies indicate that there is little or no correlation between the provision of scientific information about geohazards and risks and the adaptive changes in individual or community behaviour that would reduce risk. Bridging that gap to effectively convey hazard science 'the last mile' to those communities at risk raises a number of ethical issues about the role and responsibilities of geoscientists as communicators. Those issues emerge from a methodological shift away from the dominant interpretation of seismic risk communication as a transfer of scientific facts to "the public", towards more inclusive transdisciplinary communication strategies that incorporate peer-role models, adopt social network-based strategies and directly engage with communities in motivating preparedness actions. With this methodological shift comes ethical dilemmas. What are the target-groups that should be prioritised? What are the professional expectations and levels of personal engagement required of geo-communicators? How able and willing are geoscientists to include other forms of knowledge (e.g. from local communities or other disciplines)? What media formats can reconcile argumentative, informational "matters of fact" with sociocultural and psychological "matters of concern"? How should scientists react to political controversies related to risk mitigation and its communication? In the context of these ethical concerns, many geoscientist struggle to switch from conventional communication modes in which they are the technical 'experts' to more community-centered, participatory modes of public engagement. We examine this research question through a case study on seismic risk communication challenges in Istanbul, a megacity with one of the highest seismic vulnerabilities in the world. Currently, there are few formal mechanisms to facilitate interchange between academic geoscientists and the general public in Istanbul. In order to reduce the city's vulnerable building stock, the civic administration has initiated major seismic retrofitting and reconstruction projects. These projects have led to widespread civic unrest and social division, with inhabitants of urban transformation areas widely complaining that their views are neither represented in the procedures of the mitigation measures nor in the seismic risk communication that accompanies them. A growing lack of trust in risk mitigation measures adds to fatalistic attitudes to undermine individual and neighbourhood preparedness actions. It is in this contested, politicized arena of multi-stakeholder interests that geoscientists attempt to communicate Istanbul's acute seismic threat. Following a critical reflection on the geo-ethics of current science communication methods, we explore the potential of transdisciplinary film-based methods to provide alternative frameworks for communicating to and engaging with at-risk communities. We argue that such an approach offers novel opportunities to address key ethical concerns by bridging different communication cultures and promoting a greater reflexivity in science communication.

  18. Shallow lithological structure across the Dead Sea Transform derived from geophysical experiments

    USGS Publications Warehouse

    Stankiewicz, J.; Munoz, G.; Ritter, O.; Bedrosian, P.A.; Ryberg, T.; Weckmann, U.; Weber, M.

    2011-01-01

    In the framework of the DEad SEa Rift Transect (DESERT) project a 150 km magnetotelluric profile consisting of 154 sites was carried out across the Dead Sea Transform. The resistivity model presented shows conductive structures in the western section of the study area terminating abruptly at the Arava Fault. For a more detailed analysis we performed a joint interpretation of the resistivity model with a P wave velocity model from a partially coincident seismic experiment. The technique used is a statistical correlation of resistivity and velocity values in parameter space. Regions of high probability of a coexisting pair of values for the two parameters are mapped back into the spatial domain, illustrating the geographical location of lithological classes. In this study, four regions of enhanced probability have been identified, and are remapped as four lithological classes. This technique confirms the Arava Fault marks the boundary of a highly conductive lithological class down to a depth of ???3 km. That the fault acts as an impermeable barrier to fluid flow is unusual for large fault zone, which often exhibit a fault zone characterized by high conductivity and low seismic velocity. At greater depths it is possible to resolve the Precambrian basement into two classes characterized by vastly different resistivity values but similar seismic velocities. The boundary between these classes is approximately coincident with the Al Quweira Fault, with higher resistivities observed east of the fault. This is interpreted as evidence for the original deformation along the DST originally taking place at the Al Quweira Fault, before being shifted to the Arava Fault. 

  19. Amplification of seismic waves beneath active volcanoes

    NASA Astrophysics Data System (ADS)

    Navon, O.; Lensky, N. G.; Collier, L.; Neuberg, J.; Lyakhovsky, V.

    2003-04-01

    Long-period (LP) seismic events are typical for many volcanoes and are attributed to energy leaking from waves traveling along the conduit - country-rock interface. While the wave propagation is well understood, their actual trigger mechanism and their energy source are not. Here we test the hypothesis that energy may be supplied by volatile-release from a supersaturated melt. If bubbles are initially in equilibrium with the melt in the conduit, and the melt is suddenly decompressed, the transfer of volatiles from the supersaturated melt into the bubbles transforms stored potential energy into expansion work. For example, small dome collapse, opening of a crack or a displacement along the brittle part of the conduit may decompress the magma by a few bars and create the needed supersaturation. This energy is released over the timescale of accelerated expansion, which is longer than a typical LP event. Following decompression, when the transfer of volatiles into bubbles is fast enough, expansion accelerates and the bulk viscosity of the bubbly magma is negative (Lensky et al., 2002). New calculations show that under such conditions a sinusoidal P-wave is amplified. We note that seismic waves created by tectonic earthquakes that are not associated with net decompression, do not lead to net release of volatiles or to net expansion. In this case, the bulk viscosity is positive and waves traveling through the magma should attenuate. The proposed model explains how weak seismic signals may be amplified as they travel through a conduit that contains supersaturated bubbly magma. It provides the general framework for amplifying volcanic seismicity such as long-period events.

  20. Bedrock Geologic Map of the Greater Lefkosia Area, Cyprus

    USGS Publications Warehouse

    Harrison, Richard W.; Newell, Wayne L.; Panayides, Ioannis; Stone, Byron; Tsiolakis, Efthymios; Necdet, Mehmet; Batihanli, Hilmi; Ozhur, Ayse; Lord, Alan; Berksoy, Okan; Zomeni, Zomenia; Schindler, J. Stephen

    2008-01-01

    The island of Cyprus has a long historical record of earthquakes that have damaged pre-Roman to modern human settlements. Because the recurrent damaging earthquakes can have a significant economic and social impact on Cyprus, this project was initiated to develop a seismic-hazard assessment for a roughly 400 square kilometer area centered on Cyprus' capital and largest city, whose European name is Nicosia and whose local name is Lefkosia. In addition, geologic and seismotectonic evaluations for the project extended beyond the perimeter of the geologic map. Additional structural, stratigraphic, and paleontological data were collected island-wide as well as data from literature research throughout the eastern Mediterranean region, in order to accurately place the geology and seismic hazards of the Lefkosia area in a regional tectonic framework.

  1. Seismic waves in a self-gravitating planet

    NASA Astrophysics Data System (ADS)

    Brazda, Katharina; de Hoop, Maarten V.; Hörmann, Günther

    2013-04-01

    The elastic-gravitational equations describe the propagation of seismic waves including the effect of self-gravitation. We rigorously derive and analyze this system of partial differential equations and boundary conditions for a general, uniformly rotating, elastic, but aspherical, inhomogeneous, and anisotropic, fluid-solid earth model, under minimal assumptions concerning the smoothness of material parameters and geometry. For this purpose we first establish a consistent mathematical formulation of the low regularity planetary model within the framework of nonlinear continuum mechanics. Using calculus of variations in a Sobolev space setting, we then show how the weak form of the linearized elastic-gravitational equations directly arises from Hamilton's principle of stationary action. Finally we prove existence and uniqueness of weak solutions by the method of energy estimates and discuss additional regularity properties.

  2. Shear wave prediction using committee fuzzy model constrained by lithofacies, Zagros basin, SW Iran

    NASA Astrophysics Data System (ADS)

    Shiroodi, Sadjad Kazem; Ghafoori, Mohammad; Ansari, Hamid Reza; Lashkaripour, Golamreza; Ghanadian, Mostafa

    2017-02-01

    The main purpose of this study is to introduce the geological controlling factors in improving an intelligence-based model to estimate shear wave velocity from seismic attributes. The proposed method includes three main steps in the framework of geological events in a complex sedimentary succession located in the Persian Gulf. First, the best attributes were selected from extracted seismic data. Second, these attributes were transformed into shear wave velocity using fuzzy inference systems (FIS) such as Sugeno's fuzzy inference (SFIS), adaptive neuro-fuzzy inference (ANFIS) and optimized fuzzy inference (OFIS). Finally, a committee fuzzy machine (CFM) based on bat-inspired algorithm (BA) optimization was applied to combine previous predictions into an enhanced solution. In order to show the geological effect on improving the prediction, the main classes of predominate lithofacies in the reservoir of interest including shale, sand, and carbonate were selected and then the proposed algorithm was performed with and without lithofacies constraint. The results showed a good agreement between real and predicted shear wave velocity in the lithofacies-based model compared to the model without lithofacies especially in sand and carbonate.

  3. Archive of digital Chirp subbottom profile data collected during USGS cruises 09CCT03 and 09CCT04, Mississippi and Alabama Gulf Islands, June and July 2009

    USGS Publications Warehouse

    Forde, Arnell S.; Dadisman, Shawn V.; Flocks, James G.; Wiese, Dana S.

    2011-01-01

    In June and July of 2009, the U.S. Geological Survey (USGS) conducted geophysical surveys to investigate the geologic controls on island framework from Cat Island, Mississippi, to Dauphin Island, Alabama, as part of a broader USGS study on Coastal Change and Transport (CCT). The surveys were funded through the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project as part of the Holocene Evolution of the Mississippi-Alabama Region Subtask (http://ngom.er.usgs.gov/task2_2/index.php). This report serves as an archive of unprocessed digital Chirp seismic profile data, trackline maps, navigation files, Geographic Information System (GIS) files, Field Activity Collection System (FACS) logs, and formal Federal Geographic Data Committee (FGDC) metadata. Single-beam and Swath bathymetry data were also collected during these cruises and will be published as a separate archive. Gained (a relative increase in signal amplitude) digital images of the seismic profiles are also provided. Refer to the Acronyms page for expansion of acronyms and abbreviations used in this report.

  4. Geomorphology and seismic risk

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  5. Updating the Framework Geology of Padre Island National Seashore: Validation of Geophysical Surveys through Sediment Cores

    NASA Astrophysics Data System (ADS)

    Tuttle, L. F., II; Wernette, P. A.; Houser, C.

    2016-12-01

    Framework geology has been demonstrated to influence the geomorphology and affect the response of barrier islands to extreme storm events. Therefore, it is vital that we understand the framework geology before we can accurately assess the vulnerability and resiliency of the coast. Geophysical surveys consisting of ground-penetrating radar (GPR) and electromagnetic inductance (EMI) were collected along the length of Padre Island National Seashore (PAIS) to map subsurface infilled paleochannels identified in previous research. The most extensive published survey of PAIS framework geology was conducted in the 1950s as part of dredging the Intracoastal Waterway through Laguna Madre. Using cores and seismic surveys the previous study identified a series of relict infilled paleochannels in dissecting PAIS. The sediment cores presented in our poster were collected in Fall 2016 with a Geoprobe 6712DT. Cores were stored and processed using an X-ray fluorescence (XRF) scanner at the International Ocean Discovery Program repository in College Station, Texas. The XRF data was used to examine mineralogical differences that provide valuable insight into the evolutionary history of the island. This poster presents results from sediment cores collected to validate the geophysical survey data. The broader purpose of this research is to validate the subsurface framework geology features (i.e. infilled paleochannels) in order to more accurately predict future changes to the environmental and economic longevity of PAIS.

  6. Seismic characterization of fluid migration and Pockmarks in the Estremadura Spur, West Iberian Margin, Portugal

    NASA Astrophysics Data System (ADS)

    Duarte, Débora; Magalhães, Vitor Hugo; Terrinha, Pedro; Ribeiro, Carlos; Madureira, Pedro; Menezes Pinheiro, Luís; Benazzouz, Omar; Kim, Jung-Hyun; Duarte, Henrique

    2017-04-01

    Recently a field with more than 70 pockmarks was discovered in the NW region of the Estremadura Spur outer shelf (West Iberian margin), a trapezoidal promontory elongated in an east-west direction, between Cabo Carvoeiro and Cabo da Roca, extending until the Tore seamount. Pockmarks are the seabed culminations of fluid migration through the sedimentary column and their characteristic seabed morphologies correspond to cone-shaped circular or elliptical depressions. These features and the associated fluid escape process are the main objectives of this work. Here we characterize these structures to understand their structural and stratigraphic control based on: 1) Seismic processing and interpretation of the high resolution 2D single-channel sparker seismic dataset, 2) Bathymetric and Backscatter interpretation and 3) ROV direct observation of the seafloor. The analysis of the seismic profiles allowed the identification of six seismic units, disturbed by the migration and accumulation of fluids. The Estremadura Spur outer shelf has been affected by several episodes of fluid migration and fluid escape during the Pliocene-Quaternary that are expressed by a vast number of seabed and buried pockmarks. At present, the pockmarks are mainly inactive, as the seabed pockmarks are covered by recent sediments. The stacking of various pockmarks suggests a cyclical fluid flow activity that can possibly be the result of the eustatic sea level variations and the subsequent changes of the hydrostatic pressure. The origin of the seep fluids is still under debate but considering the low-sedimentation rate of the area and the low productivity a deep source for the fluids is most probable, possibly related with the Jurassic hydrocarbon system. It was concluded that the migration of fluids to the seabed occurred over the Pliocene-Quaternary in several episodes, as indicated by the buried pockmarks at different depths. Acknowledgements: This work was carried out in the framework of the PES project - Pockmarks and fluid seepage in the Estremadura Spur: implications for regional geology, biology, and petroleum systems (PTDC/GEOFIQ/5162/2014) financed by the Portuguese Foundation for Science and Technology (FCT). The seismic dataset was acquired within the PACEMAKER project funded by the European Research Council (ERC) under the European Union's Seventh Framework Program (FP7/2007-2013) ERC agreement (226600). The Instituto Portugues do Mar e da Atmosfera acknowledges support by Landmark Graphics (SeisWorks) via the Landmark University Grant Program. We thank the Estrutura de Missão para a Extensão da Plataforma Continental (EMEPC) for allowing me to have access and use the data collected in the Estremadura Spur during the EMEPC/PEPC/LUSO/2015 cruise and the ROV Luso team. We also thank Prof. Dr. Luis Matias (FCUL & IDL) for the help with SPW and processing steps.

  7. A multi-disciplinary approach for the structural monitoring of Cultural Heritages in a seismic area

    NASA Astrophysics Data System (ADS)

    Fabrizia Buongiorno, Maria; Musacchio, Massimo; Guerra, Ignazio; Porco, Giacinto; Stramondo, Salvatore; Casula, Giuseppe; Caserta, Arrigo; Speranza, Fabio; Doumaz, Fawzi; Giovanna Bianchi, Maria; Luzi, Guido; Ilaria Pannaccione Apa, Maria; Montuori, Antonio; Gaudiosi, Iolanda; Vecchio, Antonio; Gervasi, Anna; Bonali, Elena; Romano, Dolores; Falcone, Sergio; La Piana, Carmelo

    2014-05-01

    In the recent years, the concepts of seismic risk vulnerability and structural health monitoring have become very important topics in the field of both structural and civil engineering for the identification of appropriate risk indicators and risk assessment methodologies in Cultural Heritages monitoring. The latter, which includes objects, building and sites with historical, architectural and/or engineering relevance, concerns the management, the preservation and the maintenance of the heritages within their surrounding environmental context, in response to climate changes and natural hazards (e.g. seismic, volcanic, landslides and flooding hazards). Within such a framework, the complexity and the great number of variables to be considered require a multi-disciplinary approach including strategies, methodologies and tools able to provide an effective monitoring of Cultural Heritages form both scientific and operational viewpoints. Based on this rationale, in this study, an advanced, technological and operationally-oriented approach is presented and tested, which enables measuring and monitoring Cultural Heritage conservation state and geophysical/geological setting of the area, in order to mitigate the seismic risk of the historical public goods at different spatial scales*. The integration between classical geophysical methods with new emerging sensing techniques enables a multi-depth, multi-resolution, and multi-scale monitoring in both space and time. An integrated system of methodologies, instrumentation and data-processing approaches for non-destructive Cultural Heritage investigations is proposed, which concerns, in detail, the analysis of seismogenetic sources, the geological-geotechnical setting of the area and site seismic effects evaluation, proximal remote sensing techniques (e.g. terrestrial laser scanner, ground-based radar systems, thermal cameras), high-resolution aerial and satellite-based remote sensing methodologies (e.g. aeromagnetic surveys, synthetic aperture radar, optical, multispectral and panchromatic measurements), static and dynamic structural health monitoring analysis (e.g. screening tests with georadar, sonic instruments, sclerometers and optic fibers). The final purpose of the proposed approach is the development of an investigation methodology for short- and long-term Cultural Heritages preservation in response to seismic stress, which has specific features of scalability, modularity and exportability for every possible monitoring configuration. Moreover, it allows gathering useful information to furnish guidelines for Institution and local Administration to plan consolidation actions and therefore prevention activity. Some preliminary results will be presented for the test site of Calabria Region, where some architectural heritages have been properly selected as case studies for monitoring purposes. *The present work is supported and funded by Ministero dell'Università, dell'Istruzione e della Ricerca (MIUR) under the research project PON01-02710 "MASSIMO" - "Monitoraggio in Area Sismica di Sistemi Monumentali".

  8. Seismic velocity and crustal thickness inversions: Moon and Mars

    NASA Astrophysics Data System (ADS)

    Drilleau, Melanie; Blanchette-Guertin, Jean-François; Kawamura, Taichi; Lognonné, Philippe; Wieczorek, Mark

    2017-04-01

    We present results from new inversions of seismic data arrival times acquired by the Apollo active and passive experiments. Markov chain Monte Carlo inversions are used to constrain (i) 1-D lunar crustal and upper mantle velocity models and (ii) 3-D lateral crustal thickness models under the Apollo stations and the artificial and natural impact sites. A full 3-D model of the lunar crustal thickness is then obtained using the GRAIL gravimetric data, anchored by the crustal thicknesses under each Apollo station and impact site. To avoid the use of any seismic reference model, a Bayesian inversion technique is implemented. The advantage of such an approach is to obtain robust probability density functions of interior structure parameters governed by uncertainties on the seismic data arrival times. 1-D seismic velocities are parameterized using C1-Bézier curves, which allow the exploration of both smoothly varying models and first-order discontinuities. The parameters of the inversion include the seismic velocities of P and S waves as a function of depth, the thickness of the crust under each Apollo station and impact epicentre. The forward problem consists in a ray tracing method enabling both the relocation of the natural impact epicenters, and the computation of time corrections associated to the surface topography and the crustal thickness variations under the stations and impact sites. The results show geology-related differences between the different sites, which are due to contrasts in megaregolith thickness and to shallow subsurface composition and structure. Some of the finer structural elements might be difficult to constrain and might fall within the uncertainties of the dataset. However, we use the more precise LROC-located epicentral locations for the lunar modules and Saturn-IV upper stage artificial impacts, reducing some of the uncertainties observed in past studies. In the framework of the NASA InSight/SEIS mission to Mars, the method developed in this study will be used to constrain the Martian crustal thickness as soon as the first data will be available (late 2018). For Insight, impacts will be located by MRO data differential analysis, which provide a known location enabling the direct inversion of all differential travel times with respect to P arrival time. We have performed resolution tests to investigate to what extend impact events might help us to constrain the Martian crustal thickness. Due to the high flexibility of the Bayesian algorithm, the interior model will be refined each time a new event will be detected.

  9. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  10. Enhancing the revision of the static geological model of the Stuttgart Formation at the Ketzin pilot site by integration of reservoir simulations and 3D seismics

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Norden, Ben; Ivanova, Alexandra; Lüth, Stefan

    2017-04-01

    Pilot-scale carbon dioxide storage has been performed at the Ketzin pilot site in Germany from June 2007 to August 2013 with about 67 kt of CO2 injected into the Upper Triassic Stuttgart Formation. In this context, the main aims focussed on verification of the technical feasibility of CO2 storage in saline aquifers and development of efficient strategies for CO2 behaviour monitoring and prediction. A static geological model has been already developed at an early stage of this undertaking, and continuously revised with the availability of additional geological and operational data as well as by means of reservoir simulations, allowing for revisions in line with the efforts to achieve a solid history match in view of well bottomhole pressures and CO2 arrival times at the observation wells. Three 3D seismic campaigns followed the 2005 3D seismic baseline in 2009, 2012 and 2015. Consequently, the interpreted seismic data on spatial CO2 thickness distributions in the storage reservoir as well as seismic CO2 detection limits from recent conformity studies enabled us to enhance the previous history-matching results by adding a spatial component to the previous observations, limited to points only. For that purpose, we employed the latest version of the history-matched static geological reservoir model and revised the gridding scheme of the reservoir simulation model by coarsening and introducing local grid refinements at the areas of interest. Further measures to ensure computational efficiency included the application of the MUFITS reservoir simulator (BLACKOIL module) with PVT data derived from the MUFITS GASSTORE module. Observations considered in the inverse model calibration for a simulation time of about 5 years included well bottomhole pressures, CO2 arrival times and seismically determined CO2 thickness maps for 2009 and 2012. Pilot points were employed by means of the PEST++ inverse simulation framework to apply permeability multipliers, interpolated by kriging to the reservoir simulation model grid. Our results exhibit an excellent well bottomhole pressure match, good agreement with the observed CO2 arrival times at the observation wells, a reasonable agreement of the spatial CO2 distribution with the CO2 thickness maps derived from the 2009, 2012 and 2015 3D seismic campaigns as well as a good agreement with hydraulic tests conducted before CO2 injection. Hence, the inversely determined permeability multipliers provide an excellent basis for further revision of the static geological model of the Stuttgart Formation.

  11. An Algorithm Framework for Isolating Anomalous Signals in Electromagnetic Data

    NASA Astrophysics Data System (ADS)

    Kappler, K. N.; Schneider, D.; Bleier, T.; MacLean, L. S.

    2016-12-01

    QuakeFinder and its international collaborators have installed and currently maintain an array of 165 three-axis induction magnetometer instrument sites in California, Peru, Taiwan, Greece, Chile and Sumatra. Based on research by Bleier et al. (2009), Fraser-Smith et al. (1990), and Freund (2007), the electromagnetic data from these instruments are being analyzed for pre-earthquake signatures. This analysis consists of both private research by QuakeFinder, and institutional collaborators (PUCP in Peru, NCU in Taiwan, NOA in Greece, LASP at University of Colorado, Stanford, UCLA, NASA-ESI, NASA-AMES and USC-CSEP). QuakeFinder has developed an algorithm framework aimed at isolating anomalous signals (pulses) in the time series. Results are presented from an application of this framework to induction-coil magnetometer data. Our data driven approach starts with sliding windows applied to uniformly resampled array data with a variety of lengths and overlap. Data variance (a proxy for energy) is calculated on each window and a short-term average/ long-term average (STA/LTA) filter is applied to the variance time series. Pulse identification is done by flagging time intervals in the STA/LTA filtered time series which exceed a threshold. Flagged time intervals are subsequently fed into a feature extraction program which computes statistical properties of the resampled data. These features are then filtered using a Principal Component Analysis (PCA) based method to cluster similar pulses. We explore the extent to which this approach categorizes pulses with known sources (e.g. cars, lightning, etc.) and the remaining pulses of unknown origin can be analyzed with respect to their relationship with seismicity. We seek a correlation between these daily pulse-counts (with known sources removed) and subsequent (days to weeks) seismic events greater than M5 within 15km radius. Thus we explore functions which map daily pulse-counts to a time series representing the likelihood of a seismic event occurring at some future time. These "pseudo-probabilities" can in turn be represented as Molchan diagrams. The Molchan curve provides an effective cost function for optimization and allows for a rigorous statistical assessment of the validity of pre-earthquake signals in the electromagnetic data.

  12. Vulnerability and seismic damage scenarios for Barcelona (Spain) by using GIS

    NASA Astrophysics Data System (ADS)

    Lantada, N.; Pujades, L. G.; Barbat, A.

    2003-04-01

    An integrated GIS-based analysis (using ArcView GIS) is performed in order to estimate damage scenarios for VI, VII and VIII EMS-98 seismic intensities in Barcelona (Spain). The analysis of vulnerability and damage of individual buildings is performed according to a simplified method developed by Giovanazzi and Lagomarsino at the University of Genoa (Italy). An index of average vulnerability is associated to each building typology, which may be refined on the basis of behaviour modifiers. The index allows identification of an analytical relationship between seismic input (intensity) and damage, described by a binomial distribution. This methodology, which is based on the EMS-98 building typologies and preserves the compatibility with preceding methods, is applied to the two main residential building typologies of Barcelona, that is, unreinforced masonry and reinforced concrete buildings. Then, the specific residential buildings of Barcelona are classified in different groups characterized by a similar seismic behaviour. Therefore, all buildings belonging to each typology are cast in the most probable class according to vulnerability. In this way, the average vulnerability index is associated to each building typology of Barcelona and it is refined later on the basis of behaviour modifiers, linked to the number of stories, the year of construction and their state of maintenance. The ability of GIS tools to store, manage, analyse, and display the large amount of spatial and tabular data involved in this study allows to map average vulnerability indexes, and damage for the entire city. That is, vulnerability and damage scenarios. The obtained results show a high vulnerability and high expected seismic damage. For a VI degree of intensity, the maximum expected damage is in the range 15-30 % in the oldest zones of the city, the downtown, while for intensity VII it is in the range 45-60%. The developed GIS tool involves a friendly interface that allows new models and database information to be included in the same framework. As a new step to the seismic risk assessment, and in addition to the building characteristics, the destination of the building, as well as the essential buildings, and the density of population for census zones, have been included in the GIS database. Combining this information with the previous damage maps we will be able to obtain more complete damage scenarios including, deaths, injuries, and homeless.

  13. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    NASA Astrophysics Data System (ADS)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D is seismic moment density (Mo/m3) and V stim is stimulated rock volume (m3). Mopossible = D ∗ V stim(1) We applied this conceptual model to real microseismic data set from Basel EGS project where several induced seismicity with large magnitude occurred and brought constructive damage. Using the hypocenter location determined by the researcher of Tohoku Univ., Japan and moment magnitude estimated from Geothermal Explorers Ltd., operating company, we were able to estimate reasonable seismic moment density meaning that one representative parameter exists and can characterize seismic activity at Basel at each time step. With stimulated rock volume which was also inferred from microseismic information, we estimated possible seismic moment and assess the difference with observed value. Possible seismic moment significantly increased after shut-in when the seismic cloud (stimulated zone) mostly progressed, resulting that the difference with the observed cumulative seismic moment automatically became larger. This suggests that there is moderate seismic moment which will be released in near future. In next few hours, the largest event actually occurred. Therefore, our proposed model was successfully able to forecast occurrence of the large events. Furthermore, best forecast of maximum magnitude was Mw 3 level and the largest event was Mw 3.41, showing reasonable performance in terms of quantitative forecast in magnitude. Our attempt to assess the seismic activity from microseismic information was successful and it also suggested magnitude release can be correlate with the expansion of seismic cloud as the definition of possible seismic moment model indicates. This relationship has been observed in microseismic observational study and several previous study also suggested their correlation with stress released rock volume. Our model showed harmonic results with these studies and provide practical method having clear physical meaning to assess the seismic activity in real time, based on microseismic data.

  14. A 80 OBS and 30 Land 3-component seismometers array encompassing the 280 km segment of the Lesser Antilles subduction megathrust seismogenic zone: view of current seismicity

    NASA Astrophysics Data System (ADS)

    Laigle, Mireille; Sapin, Martine; Ruiz, Mario; Diaz, Jordi; Kissling, Edi; Charvis, Philippe; Flueh, Ernst; Hirn, Alfred

    2010-05-01

    An extensive onshore and offshore seismic station array in the Lesser Antilles subduction zone allows to monitor microearthquake activity for a period of 4 months in a region previously outside of reach for detailed observation. Such a network has been possible thanks to a cluster of 3 seismic surveys (TRAIL - F/S Merian, SISMANTILLESII - N/O Atalante, and OBSANTILLES - N/O Antea) for deploying and recovering the instruments from several pools (Geoazur, INSU-IPGP, IFM-GEOMAR, AWI ). It has been followed by an additional deployment of the 28 GeoAzur OBSs (OBSANTILLES - N/O Antea) during 5 months in the south-western half. These operations have been carried out for the seismic investigation of the Antilles megathrust seismogenic zone in the framework of the THALES WAS RIGHT european project, and with also the financial support of the french ANR Catastrophes Telluriques et Tsunamis (SUBSISMANTI) and by the EU SALVADOR Programme of IFM-GEOMAR. Onshore, 30 3-components land stations (CSIC Barcelone, IPG Paris, INSU-RLBM and -LITHOSCOPE) have been temporarily deployed. The deep seismic structure of the whole area has been investigated during these seismic surveys by wide-angle reflection and refraction seismics recorded by these instruments as well as multi-channel reflection seismic imaging (MCS) along a dense grid of crossing profiles at the OBS positions providing excellent velocity information for the upper plate. Both the location and the interpretation of the recorded earthquake activity require constraints on the deep seismic structure, which will be discussed with respect to the 3D geometry of the interplate boundary and oceanic Moho, as well as those of the forearc basement and Moho. Preliminary locations have been obtained within a simple 1D velocity model by taking into account corrections for the variable thickness of the mud- and sediments layers beneath each OBS. The latter are estimated for both P- and S-waves to compensate for the huge structural heterogeneity on the arrival times and their effects will be discussed in map and along vertical cross-sections aligned with the seismic profiles. A first order result is that the previously unsampled seaward region remains aseismic through the whole period of observation. Another main result, at least in a model not yet accounting for deep structural heterogeneity, is that the seismicity is principally located deeper than the contact between the forearc crust and the subducting oceanic crust as derived from the refraction-reflection approaches in the general project, and in both plates. Data are being prepared for a joint inversion of earthquake locations, shot first arrival times and 3D heterogeneity.

  15. Linking TERRA and DRex to relate mantle convection and seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Walker, Andrew; Davies, Huw; Davies, Rhodri; Wookey, James

    2015-04-01

    Seismic anisotropy caused by flow induced alignment of the olivine crystals in Earth's upper mantle provides a powerful way to test our ideas of mantle convection. We have been working to directly combine computer simulations of mantle dynamics, using fluid mechanics at the continuum scale, with models of rock deformation to capture fabric evolution at the grain scale. By combining models of deformation at these two scales we hope to be able to rigorously test hypothesis linking mantle flow to seismic anisotropy in regions as diverse as subduction zones, the lithosphere-asthenosphere boundary, and the transition zone. We also intend to permit feedback, for example via geometrical softening, from the model of fabric development into the material properties used in the convection simulation. We are building a flexible framework for this approach which we call Theia. Our initial implementation uses the TERRA convection code (Baumgardner, J. Stat. Phys. 39:501-511, 1985; Davies et al. Geosci. Model Dev. 6:1095-1107, 2013) to drive DRex (Kaminski et al. Geophys. J. Int. 158:744-752, 2004), which is used to predict the evolution of crystallographic preferred orientation in the upper mantle. Here we describe our current implementation which makes use of the ability of TERRA to track markers, or particles, through the evolving flow field. These tracers have previously been used to track attributes such as the bulk chemical composition or trace element ratios. Our modification is to use this technology to track a description of the current state of the texture and microstructure (encompassing an orientation distribution function, grain size parameters and dislocation density) such that we can advance models of polycrystalline deformation for many simultaneous DRex instances alongside and in sync with models of mantle convection. We will also describe initial results from our first use of the Theia framework where we are investigating the effect of asthenospheric viscosity on seismic anisotropy beneath the oceans. Key to this work is the ability of TERRA to incorporate plate motion history which acts to correctly locate the predicted anisotropy such that it can be directly compared with the anisotropy measured for the Earth.

  16. East Louisiana continental shelf sediments: a product of delta reworking

    USGS Publications Warehouse

    Brooks, Gregg R.; Kingdinger, Jack L.; Penland, Shea; Williams, S. Jeffress

    1995-01-01

    Data from 77 vibracores were integrated with 6,700 line-km of high- resolution seismic reflection profiles collected off the eastern Louisiana coast in the region of the St. Bernard Delta, the first of the Holocene highstand deltas of the Mississippi River. Seismic fades and sediment facies were integrated in order to establish the stratigraphic details within this relict delta. Results provide a regional geologic framework from which comparisons can be made with other areas. Holocene deposits in the study area overlie a heavily dissected surface interpreted to represent a lowstand erosional surface. Resting on this surface is a thin unit of relatively clean, quartz sand interpreted to have been deposited during early transgression. This unit is overlain by sediments of the St. Bernard Delta, a seaward-prograding, coarsening-upward wedge of sands and muds that contain vertically-stacked units of deltaic succession. Two or more prograding units separated by an unconformity, delineated from regional seismic profiles, may represent laterally shifting subdelta lobes. Surficial sediments consist of a thin unit of sands and muds derived from and reflecting the individual subenvirons of the underlying delta. Holocene inner-shelf development off eastern Louisiana has been controlled by relative sea-level rise and sediment supply. Sediment supply and deposition are a product of delta progradation and delta-lobe switching. The modern shelf configuration and surficial sediment distribution patterns reflect reworking of underlying deltaic deposits. The lack of modern sediment input helps to maintain the imprint of this ancient delta on the modern shelf surface.

  17. Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilya Tsvankin; Kenneth L. Larner

    2004-11-17

    Within the framework of this collaborative project with the Lawrence Livermore National Laboratory (LLNL) and Stanford University, the Colorado School of Mines (CSM) group developed and implemented a new efficient approach to the inversion and processing of multicomponent, multiazimuth seismic data in anisotropic media. To avoid serious difficulties in the processing of mode-converted (PS) waves, we devised a methodology for transforming recorded PP- and PS-wavefields into the corresponding SS-wave reflection data that can be processed by velocity-analysis algorithms designed for pure (unconverted) modes. It should be emphasized that this procedure does not require knowledge of the velocity model and canmore » be applied to data from arbitrarily anisotropic, heterogeneous media. The azimuthally varying reflection moveouts of the PP-waves and constructed SS-waves are then combined in anisotropic stacking-velocity tomography to estimate the velocity field in the depth domain. As illustrated by the case studies discussed in the report, migration of the multicomponent data with the obtained anisotropic velocity model yields a crisp image of the reservoir that is vastly superior to that produced by conventional methods. The scope of this research essentially amounts to building the foundation of 3D multicomponent, anisotropic seismology. We have also worked with the LLNL and Stanford groups on relating the anisotropic parameters obtained from seismic data to stress, lithology, and fluid distribution using a generalized theoretical treatment of fractured, poroelastic rocks.« less

  18. Geological Interpretation of the Sea Floor Offshore of Edgartown, Massachusetts

    USGS Publications Warehouse

    Poppe, L.J.; McMullen, K.Y.; Foster, D.S.; Blackwood, D.S.; Williams, S.J.; Ackerman, S.D.; Moser, M.S.; Glomb, K.A.

    2010-01-01

    Gridded bathymetry and sidescan-sonar imagery together cover approximately 37.3 square kilometers of sea floor in the vicinity of Edgartown Harbor, Massachusetts. Although originally collected for charting purposes during National Oceanic and Atmospheric Administration hydrographic survey H11346, these acoustic data, and the sea-floor stations and seismic-reflection lines subsequently occupied to verify them, 1) show the composition and terrain of the seabed, 2) provide information on sediment transport and benthic habitat, and 3) are part of an expanding series of studies that provide a fundamental framework for research and management (for example, windfarms, pipelines, and dredging) activities along the Massachusetts inner continental shelf.

  19. Integration of 2D and 3D reflection seismic data with deep boreholes in the Kevitsa Ni-Cu-PGE deposit, northern Finland

    NASA Astrophysics Data System (ADS)

    Koivisto, Emilia; Malehmir, Alireza; Voipio, Teemu; Wijns, Chris

    2013-04-01

    Kevitsa is a large disseminated sulphide Ni-Cu-PGE deposit hosted by the Kevitsa mafic-ultramafic intrusion in northern Finland and dated as about 2.06 Ga old. The Geological Survey of Finland first discovered the Kevitsa deposit in 1987. Open pit mining by Kevitsa Mining Oy/First Quantum Minerals Ltd. commenced in June 2012. The final pit depth is planned to be 550-600 m. The estimated ore reserves of the Kevitsa intrusion are about 240 million tones (using a nickel cut-off grade of 0.1%). The expected life-of-mine is 20-30 years. More than 400 hundred holes have been drilled in the Kevitsa area, but most are concentrated close to the known deposit and do not provide a comprehensive understanding of the extent of the intrusion. The basal contact of the intrusion is penetrated by only about 30 drill holes, most of which are shallow. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area. An exact knowledge on the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu. In December 2007, a series of 2D reflection seismic profiles was acquired in the Kevitsa area. It consisted of four connected survey lines between 6 and 11 km long. In 2010, the initial positive results of the 2D seismic survey led Kevitsa Mining Oy/First Quantum Minerals Ltd. to initiate a 3D reflection seismic survey. The 3D seismic survey is limited to the closer vicinity of the known deposit, while the 2D seismic survey was designed to provide a more regional view of the Kevitsa intrusive complex. The main aims of the 2D and 3D seismic surveys were to delineate the shape and extent of the ore-bearing Kevitsa intrusion and the geometry of some of the host rock and surrounding units, and extract information about the larger-scale structures and structures important for mine-planning purposes. The 2D and 3D seismic data were used to create a 3D lithological and structural model for the architecture of the whole complex. The information on the extent of the ore-bearing Kevitsa intrusion can be used for more effective exploration in the area. The base of the intrusion is particularly clear in the northern and eastern sectors. Toward the east, the base is mostly defined by disruption of the reflectors internal to the intrusion. The 2D seismic data, which extend beyond the 3D seismic study, reveal that the prominent reflectors at the base of the intrusion continue deeper toward the south-southwest. This has been interpreted as a previously unknown southern continuation of the intrusion. Furthermore, the data reveal strong reflectors at the base of the intrusion that have been penetrated by two deep drill holes in the area. These drill holes reveal contact-type mineralization at the onset of the reflectors. Thus, the seismic data can be directly used for exploration of the contact-type mineralization.

  20. Subsurface geology of the Lusi region: preliminary results from a comprehensive seismic-stratigraphic study.

    NASA Astrophysics Data System (ADS)

    Moscariello, Andrea; Do Couto, Damien; Lupi, Matteo; Mazzini, Adriano

    2016-04-01

    We investigate the subsurface data of a large sector in the Sidoarjo district (East Java, Indonesia) where the sudden catastrophic Lusi eruption started the 26th May 2006. Our goal is to understand the stratigraphic and structural features which can be genetically related to the surface manifestations of deep hydrothermal fluids and thus allow us to predict possible future similar phenomena in the region. In the framework of the Lusi Lab project (ERC grant n° 308126) we examined a series of densely spaced 2D reflection commercial seismic lines This allowed the reconstruction of the lateral variability of key stratigraphic horizons as well as the main tectonic features. In particular, we shed light on the deep structure of the Watukosek fault system and the associated fracture corridors crossing the entire stratigraphic successions. To the South-West, when approaching the volcanic complex, we could identify a clear contrast in seismic facies between chaotic volcanoclastic wedges and clastic-prone sedimentary successions as well as between the deeper stratigraphic units consisting of carbonates and lateral shales units. The latter show possible ductile deformation associated to fault-controlled diapirism which control in turns deformation of overlying stratigraphic units and deep geo-fluids circulation. Large collapse structures recognized in the study area (e.g. well PRG-1) are interpreted as the results of shale movement at depth. Similarly to Lusi, vertical deformation zones ("pipes"), likely associated with deeply rooted strike-slip systems seem to be often located at the interface between harder carbonate rocks forming isolated build ups and the laterally nearby clastic (shale-prone)-units. The mechanisms of deformation of structural features (strike vs dip slip systems) which may affect either the basement rock or the overlying deeper stratigraphic rocks is also being investigated to understand the relationship between deep and shallower (i.e. meteoric) fluid circulation. Seismic stratigraphic study of the basin margin (closer to volcanic accumulations) will also allow reconstructing the relationships between present and past volcanic activity recorded in the deep subsurface with the genesis of piercement structures and development of vertical deformation zones

  1. Integrated palynology and sequence stratigraphy of the upper Cretaceous (Maastrichtian) strata, Rio Grande Embayment, Texas, using well, outcrop, and seismic data

    NASA Astrophysics Data System (ADS)

    Mahmoud, Salah El-Din Ragab

    Numerous nomenclature problems surround the Campanian and Maastrichtian strata of the Rio Grande Embayment. Sellards et al. (1932) and Stephenson et al. (1942) placed the Upson Clay and San Miguel Formation in the Taylor Group (Campanian). These workers assigned the overlying Olmos Coal and the Escondido Formation to the Navarro Group (Maastrichtian). Pessagno (1969, p. 90--91) tentatively included the Upson Clay, the San Miguel Formation, the Olmos Coal, and the Escondido Formation in the Navarro Group, but noted that these strata are lithologically dissimilar to those of the type Navarro Group in Navarro County (northeast Texas). He (ibid, p. 91) suggested that "---Future workers should consider the possibility of excluding the entire sequence from the Navarro Group. It is perhaps more closely related to the Difunta Group of Mexico or deserves a group name of its own." Pessagno (1967; 1969, p. 91--92) utilized planktonic foraminiferal biostratigraphic data to determine (1) that the Upson Clay and San Miguel Formation are assignable to the lower Maastrichtian and (2) that the Escondido Formation is assignable to the upper Maastrichtian. The present investigation attempts to build on the chronostratigraphic framework established by Pessagno (1967, 1969). Palynology is used for the first time in this report to generate biostratigraphic, chronostratigraphic, and paleoecological data for the Maastrichtian strata in the study area. New palynological data, integrated with existing planktonic foraminifera and megafossils, indicate that San Miguel Formation and Olmos Coal are of Maastrichtian age. Tying results with seismic data results in dating interpreted sequence boundaries to be within the time interval of 83 and 63 MA. Five seismic facies are delineated and a rate of sediment supply higher than the rate of subsidence during a prolonged progradational episode is suggested in the study area. Three-dimensional seismic data are interpreted in terms of the structure and hydrocarbon potential. Analysis of structural elements indicates northwest-southeast compressional forces resulting from sediment loading. Parasequence-level mapping was carried out and paleogeographic and depositional history was inferred and used in interpreting systems tracts. The study on San Miguel Formation by Weise (1980) was revisited using sequence stratigraphic techniques.

  2. Seismic imaging of Q structures by a trans-dimensional coda-wave analysis

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    2017-04-01

    Wave scattering and intrinsic attenuation are important processes to describe incoherent and complex wave trains of high frequency seismic wave (>1Hz). The multiple lapse time window analysis (MLTWA) has been used to estimate scattering and intrinsic Q values by assuming constant Q in a study area (e.g., Hoshiba 1993). This study generalizes this MLTWA to estimate lateral variations of Q values under the Bayesian framework in dimension variable space. Study area is partitioned into small areas by means of the Voronoi tessellation. Scattering and intrinsic Q in each small area are constant. We define a misfit function for spatiotemporal variations of wave energy as with the original MLTWA, and maximize the posterior probability with changing not only Q values but the number and spatial layout of the Voronoi cells. This maximization is conducted by means of the reversible jump Markov chain Monte Carlo (rjMCMC) (Green 1995) since the number of unknown parameters (i.e., dimension of posterior probability) is variable. After a convergence to the maximum posterior, we estimate Q structures from the ensemble averages of MCMC samples around the maximum posterior probability. Synthetic tests showed stable reconstructions of input structures with reasonable error distributions. We applied this method for seismic waveform data recorded by ocean bottom seismograms at the outer-rise area off Tohoku, and estimated Q values at 4-8Hz, 8-16Hz and 16-32Hz. Intrinsic Q are nearly constant at all frequency bands, and scattering Q shows two distinct strong scattering regions at petit spot area and high seismicity area. These strong scattering are probably related to magma inclusions and fractured structure, respectively. Difference between these two areas becomes clear at high frequencies. It means that scale dependences of inhomogeneities or smaller scale inhomogeneity is important to discuss medium property and origins of structural variations. While the generalized MLTWA is based on a classical waveform modeling in constant Q medium, this method can be a fundamental basis for Q structure imaging in the crust.

  3. Seismic hazard assessment of the cultural heritage sites: A case study in Cappadocia (Turkey)

    NASA Astrophysics Data System (ADS)

    Seyrek, Evren; Orhan, Ahmet; Dinçer, İsmail

    2014-05-01

    Turkey is one of the most seismically active regions in the world. Major earthquakes with the potential of threatening life and property occur frequently here. In the last decade, over 50,000 residents lost their lives, commonly as a result of building failures in seismic events. The Cappadocia region is one of the most important touristic sites in Turkey. At the same time, the region has been included to the Word Heritage List by UNESCO at 1985 due to its natural, historical and cultural values. The region is undesirably affected by several environmental conditions, which are subjected in many previous studies. But, there are limited studies about the seismic evaluation of the region. Some of the important historical and cultural heritage sites are: Goreme Open Air Museum, Uchisar Castle, Ortahisar Castle, Derinkuyu Underground City and Ihlara Valley. According to seismic hazard zonation map published by the Ministry of Reconstruction and Settlement these heritage sites fall in Zone III, Zone IV and Zone V. This map show peak ground acceleration or 10 percent probability of exceedance in 50 years for bedrock. In this connection, seismic hazard assessment of these heritage sites has to be evaluated. In this study, seismic hazard calculations are performed both deterministic and probabilistic approaches with local site conditions. A catalog of historical and instrumental earthquakes is prepared and used in this study. The seismic sources have been identified for seismic hazard assessment based on geological, seismological and geophysical information. Peak Ground Acceleration (PGA) at bed rock level is calculated for different seismic sources using available attenuation relationship formula applicable to Turkey. The result of the present study reveals that the seismic hazard at these sites is closely matching with the Seismic Zonation map published by the Ministry of Reconstruction and Settlement. Keywords: Seismic Hazard Assessment, Probabilistic Approach, Deterministic Approach, Historical Heritage, Cappadocia.

  4. Recent Seismicity in Texas and Research Design and Progress of the TexNet-CISR Collaboration

    NASA Astrophysics Data System (ADS)

    Hennings, P.; Savvaidis, A.; Rathje, E.; Olson, J. E.; DeShon, H. R.; Datta-Gupta, A.; Eichhubl, P.; Nicot, J. P.; Kahlor, L. A.

    2017-12-01

    The recent increase in the rate of seismicity in Texas has prompted the establishment of an interdisciplinary, interinstitutional collaboration led by the Texas Bureau of Economic Geology which includes the TexNet Seismic Monitoring and Research project as funded by The State of Texas (roughly 2/3rds of our funding) and the industry-funded Center for Integrated Seismicity Research (CISR) (1/3 of funding). TexNet is monitoring and cataloging seismicity across Texas using a new backbone seismic network, investigating site-specific earthquake sequences by deploying temporary seismic monitoring stations, and conducting reservoir modeling studies. CISR expands TexNet research into the interdisciplinary realm to more thoroughly study the factors that contribute to seismicity, characterize the associated hazard and risk, develop strategies for mitigation and management, and develop methods of effective communication for all stakeholders. The TexNet-CISR research portfolio has 6 themes: seismicity monitoring, seismology, geologic and hydrologic description, geomechanics and reservoir modeling, seismic hazard and risk assessment, and seismic risk social science. Twenty+ specific research projects span and connect these themes. We will provide a synopsis of research progress including recent seismicity trends in Texas; Fort Worth Basin integrated studies including geological modeling and fault characterization, fluid injection data syntheses, and reservoir and geomechanical modeling; regional ground shaking characterization and mapping, infrastructure vulnerability assessment; and social science topics of public perception and information seeking behavior.

  5. Field observations of Flood Basalt structure: Implications for offshore interpretation and sub-volcanic investigation

    NASA Astrophysics Data System (ADS)

    Single, R.; Jerram, D.; Pearson, D.; Hobbs, R.

    2003-04-01

    Field investigations in Skye and Namibia have provided insight into structure and architecture of CFBs. The studies have been developed into lava sequence models in 3-D software GoCad. The understanding has been applied to interpretation of lavas in the Faeroe-Shetland trough. Volcanics hinder petroleum exploration in this play due to their complex internal geometries and velocity structure. Seismic resolution is poor beneath volcanics. Fieldwork has shown that lavas on Skye have developed from (olivine-phyric) compound basalts towards the base of the sequence, into more massive flows higher up the succession. Fieldwork in the Etendeka CFBs reveal a similar style of lava field development. The focus of the offshore study is through the area of the GFA-99 seismic data. Detailed 3-D interpretation over the central data area is 20x20km in dimensions. The lava sequence present may be sub-divided vertically and laterally into 4 zones between the following seismic picks: Base basalt/sub-basalt sills, top compound lava-dominated series, top Middle Series, top hyaloclastites, top massive basalt. Within the lava sequence, the surfaces have rugose topographies. Lower zone lavas are characterised by discontinuous, indistinct reflectors. These are interpreted to be sub-aerially effused basalts with compound-braided architecture. Middle Series basalts are considered to be a combination of compound lavas and more massive, tabular flows. Steeply dipping seismic reflectors also form part of the Middle Series and are interpreted as foreset-bedded hyaloclastites. The uppermost lavas have strong reflection characteristics and are laterally extensive. These are interpreted to be massive tabular lavas covering an area >8.4 x10^3 km^2. Such flows exist in upper parts of CFB sequences as evidenced from fieldwork. Complex stacking arrangements of lavas seen in the field, and the complexities observed in seismic, suggest that many factors need to be considered within CFBs for improved sub-volcanic imaging. Factors include understanding: The facies-zones present, changes in velocity structure and the geometries present within facies types. EU 5th Framework Project SIMBA is a collaborative research project combining industrial and academic partners in flood basalt research. SIMBA incorporates: TotalFinaElf GRC, ARK Geophysics, Norsk Hydro, Institut Français du Pétrole (IFP) and Universities of Durham, Cambridge, UC Dublin and Brest.

  6. Velocity variations associated with the large 2010 eruption of Merapi volcano, Java, retrieved from seismic multiplets and ambient noise cross-correlation

    NASA Astrophysics Data System (ADS)

    Budi-Santoso, Agus; Lesage, Philippe

    2016-07-01

    We present a study of the seismic velocity variations that occurred in the structure before the large 2010 eruption of Merapi volcano. For the first time to our knowledge, the technique of coda wave interferometry is applied to both families of similar events (multiplets) and to correlation functions of seismic noise. About half of the seismic events recorded at the summit stations belong to one of the ten multiplets identified, including 120 similar events that occurred in the last 20 hr preceding the eruption onset. Daily noise cross-correlation functions (NCF) were calculated for the six pairs of short-period stations available. Using the stretching method, we estimate time-series of apparent velocity variation (AVV) for each multiplet and each pair of stations. No significant velocity change is detected until September 2010. From 10 October to the beginning of the eruption on 26 October, a complex pattern of AVV is observed with amplitude of up to ±1.5 per cent. Velocity decrease is first observed from families of deep events and then from shallow earthquakes. In the same period, AVV with different signs and chronologies are estimated from NCF calculated for various station pairs. The location in the horizontal plane of the velocity perturbations related with the AVV obtained from NCF is estimated by using an approach based on the radiative transfer approximation. Although their spatial resolution is limited, the resulting maps display velocity decrease in the upper part of the edifice in the period 12-25 October. After the eruption onset, the pattern of velocity perturbations is significantly modified with respect to the previous one. We interpret these velocity variations in the framework of a scenario of magmatic intrusion that integrates most observations. The perturbation of the stress field associated with the magma migration can induce both decrease and increase of the seismic velocity of rocks. Thus the detected AVVs can be considered as precursors of volcanic eruptions in andesitic volcanoes, without taking their sign into account.

  7. e-Science on Earthquake Disaster Mitigation by EUAsiaGrid

    NASA Astrophysics Data System (ADS)

    Yen, Eric; Lin, Simon; Chen, Hsin-Yen; Chao, Li; Huang, Bor-Shoh; Liang, Wen-Tzong

    2010-05-01

    Although earthquake is not predictable at this moment, with the aid of accurate seismic wave propagation analysis, we could simulate the potential hazards at all distances from possible fault sources by understanding the source rupture process during large earthquakes. With the integration of strong ground-motion sensor network, earthquake data center and seismic wave propagation analysis over gLite e-Science Infrastructure, we could explore much better knowledge on the impact and vulnerability of potential earthquake hazards. On the other hand, this application also demonstrated the e-Science way to investigate unknown earth structure. Regional integration of earthquake sensor networks could aid in fast event reporting and accurate event data collection. Federation of earthquake data center entails consolidation and sharing of seismology and geology knowledge. Capability building of seismic wave propagation analysis implies the predictability of potential hazard impacts. With gLite infrastructure and EUAsiaGrid collaboration framework, earth scientists from Taiwan, Vietnam, Philippine, Thailand are working together to alleviate potential seismic threats by making use of Grid technologies and also to support seismology researches by e-Science. A cross continental e-infrastructure, based on EGEE and EUAsiaGrid, is established for seismic wave forward simulation and risk estimation. Both the computing challenge on seismic wave analysis among 5 European and Asian partners, and the data challenge for data center federation had been exercised and verified. Seismogram-on-Demand service is also developed for the automatic generation of seismogram on any sensor point to a specific epicenter. To ease the access to all the services based on users workflow and retain the maximal flexibility, a Seismology Science Gateway integating data, computation, workflow, services and user communities would be implemented based on typical use cases. In the future, extension of the earthquake wave propagation to tsunami mitigation would be feasible once the user community support is in place.

  8. Magnetotelluric investigation across the Agri Valley: preliminary results.

    NASA Astrophysics Data System (ADS)

    Balasco, Marianna; Romano, Gerardo; Siniscalchi, Agata; Alfredo Stabile, Tony

    2017-04-01

    The Agri Valley is an axial zone of the Southern Apennines thrust belt chain with a strong seismogenic potential where two important energy technologies responsible for inducing/triggering seismicity are active: (1) the disposal at the Costa Molina 2 injection well of the wastewater produced during the exploitation of the biggest onshore oil field in west Europe (27 wells producing more than 80,000 barrels of crude oil per day), managed by the Eni S.p.A., and (2) the water loading and unloading operations in the Pertusillo artificial reservoir. It is recognized the possibility that the fluctuation of the water level inside the reservoir, due to the hydrological cycle for example, produces pressure perturbations at the bottom of reservoir, causing induced seismicity. Furthermore it is even more known the role of fluids in the rupture processes which could cause an increase of pore pressure specially at high rate of injection fluids and/or for the presence of weakening of preexisting faults. With the aim to better characterize and understand the physical processes involved in the observed induced/triggered seismicity, in 2016 a broadband seismic network, covering an area of about 20 km x 20 km nearby the Pertusillo Dam and Costa Molina2 well has been installed in the framework of SIR-MIUR project INSIEME (INduced Seismicity in Italy: Estimation, Monitoring, and sEismic risk mitigation) and a MagnetoTelluric (MT) survey has been performed. The MT investigation consists of 25 soundings aligned along 30 km profile oriented at about N40 direction, orthogonal with the strike of the major and noticeable geological structures and crossing both of the source that may induce/trigger seismicity. In this work, we present the preliminary 2D resistivity model which provides useful deep geophysical information for understanding the geological and structural setting of the Agri Valley. Moreover, the comparison of the resistivity model with the earthquake location as inferred from the analysis of the data collected by the INSIEME network may provide new insight on the possible presence of active faults and on the causative origin of the earthquakes.

  9. Seismic and thermal structure of the crust and uppermost mantle beneath Antarctica from inversion of multiple seismic datasets

    NASA Astrophysics Data System (ADS)

    Wiens, D.; Shen, W.; Anandakrishnan, S.; Aster, R. C.; Gerstoft, P.; Bromirski, P. D.; Dalziel, I.; Hansen, S. E.; Heeszel, D.; Huerta, A. D.; Nyblade, A.; Stephen, R. A.; Wilson, T. J.; Winberry, J. P.; Stern, T. A.

    2017-12-01

    Since the last decade of the 20th century, over 200 broadband seismic stations have been deployed across Antarctica (e.g., temporary networks such as TAMSEIS, AGAP/GAMSEIS, POLENET/ANET, TAMNNET and RIS/DRIS by U.S. geoscientists as well as stations deployed by Japan, Britain, China, Norway, and other countries). In this presentation, we discuss our recent efforts to build reference crustal and uppermost mantle shear velocity (Vs) and thermal models for continental Antarctica based on those seismic arrays. By combing the high resolution Rayleigh wave dispersion maps derived from both ambient noise and teleseismic earthquakes, together with P receiver function waveforms, we develop a 3-D Vs model for the crust and uppermost mantle beneath Central and West Antarctica to a depth of 200 km. Additionally, using this 3-D seismic model to constrain the crustal structure, we re-invert for the upper mantle thermal structure using the surface wave data within a thermodynamic framework and construct a 3-D thermal model for the Antarctic lithosphere. The final product, a high resolution thermal model together with associated uncertainty estimates from the Monte Carlo inversion, allows us to derive lithospheric thickness and surface heat flux maps for much of the continent. West Antarctica shows a much thinner lithosphere ( 50-90 km) than East Antarctica ( 130-230 km), with a sharp transition along the Transantarctic Mountains (TAM). A variety of geological features, including a slower/hotter but highly heterogeneous West Antarctica and a much faster/colder East Antarctic craton, are present in the 3-D seismic/thermal models. Notably, slow seismic velocities observed in the uppermost mantle beneath the southern TAM are interpreted as a signature of lithospheric foundering and replacement with hot asthenosphere. The high resolution image of these features from the 3-D models helps further investigation of the dynamic state of Antarctica's lithosphere and underlying asthenosphere and provides key constraints on the interaction between the solid Earth and the West Antarctic Ice Sheet.

  10. Big Data and High-Performance Computing in Global Seismology

    NASA Astrophysics Data System (ADS)

    Bozdag, Ebru; Lefebvre, Matthieu; Lei, Wenjie; Peter, Daniel; Smith, James; Komatitsch, Dimitri; Tromp, Jeroen

    2014-05-01

    Much of our knowledge of Earth's interior is based on seismic observations and measurements. Adjoint methods provide an efficient way of incorporating 3D full wave propagation in iterative seismic inversions to enhance tomographic images and thus our understanding of processes taking place inside the Earth. Our aim is to take adjoint tomography, which has been successfully applied to regional and continental scale problems, further to image the entire planet. This is one of the extreme imaging challenges in seismology, mainly due to the intense computational requirements and vast amount of high-quality seismic data that can potentially be assimilated. We have started low-resolution inversions (T > 30 s and T > 60 s for body and surface waves, respectively) with a limited data set (253 carefully selected earthquakes and seismic data from permanent and temporary networks) on Oak Ridge National Laboratory's Cray XK7 "Titan" system. Recent improvements in our 3D global wave propagation solvers, such as a GPU version of the SPECFEM3D_GLOBE package, will enable us perform higher-resolution (T > 9 s) and longer duration (~180 m) simulations to take the advantage of high-frequency body waves and major-arc surface waves, thereby improving imbalanced ray coverage as a result of the uneven global distribution of sources and receivers. Our ultimate goal is to use all earthquakes in the global CMT catalogue within the magnitude range of our interest and data from all available seismic networks. To take the full advantage of computational resources, we need a solid framework to manage big data sets during numerical simulations, pre-processing (i.e., data requests and quality checks, processing data, window selection, etc.) and post-processing (i.e., pre-conditioning and smoothing kernels, etc.). We address the bottlenecks in our global seismic workflow, which are mainly coming from heavy I/O traffic during simulations and the pre- and post-processing stages, by defining new data formats for seismograms and outputs of our 3D solvers (i.e., meshes, kernels, seismic models, etc.) based on ORNL's ADIOS libraries. We will discuss our global adjoint tomography workflow on HPC systems as well as the current status of our global inversions.

  11. MULTI-FOLD, SEISMIC-STYLE TDEM INDUCTION OFFSET PROFILING AT KENTLAND FARMS, VA

    NASA Astrophysics Data System (ADS)

    Kazlauskas, E. M.; Weiss, C. J.

    2009-12-01

    An outstanding question in Valley and Ridge geology is the geomorphological history and hydrologic framework of the New River terraces. And while depth to bedrock on the upper terraces remains unknown, knowledge of the bedrock interface is key to addressing two specific issues: What is the geometry and connectivity of karst features such as sinkholes and what is the structure and depositional history of these terraces? To answer these questions, Kentland Farms (located in the Valley and Ridge of Southwest Virginia) has been chosen as the study site for its exceptional development of terrace deposits, nearly unrestricted access to its grounds, sparse vegetation coverage, and numerous sinkholes with a clear topographic expression. The Kentland Farms study area is characterized by heavily weathered, fluvial terrace deposits ranging from a few meters thickness to an estimated 70 m, overlying a karstic, Cambrian aged Elbrook Formation limestone. The terrace deposits consist of weathered clay units of varying composition with interbedded cobble and gravel horizons. The nature of the underlying bedrock coupled with the complex structure of the terrace deposits present difficulties in location of the bedrock interface. Due to complicated geology, a novel, multi-fold, seismic-style, Time Domain Electromagnetic (TDEM) induction survey was conducted in order to provide a more robust data set than a traditional common offset survey as well as to increase lateral resolution. This approach consists of taking multiple transmitter “shots” at a fixed position with a spread of receiver locations at fixed offset intervals (10m in this survey). The procedure is then repeated by moving the transmitter one interval at a time until the line is complete. 1-D inversions generated by using different transmitter-receiver offsets were analyzed to create a set of laterally constrained vertical profiles. In addition, multi-fold, seismic-style TDEM induction offset profiling allowed for split-spread moveout analysis, which shows possible evidence of super diffusion of eddy currents. While the ultimate goals of the research are twofold - to resolve sinkhole geometry to further our understanding of hydrologic framework in the area, and to provide additional constraints on the uncertainty in ages of the terraces - this presentation will focus on a discussion of the novel experiment design and the associated preliminary results.

  12. Optimism Experiment and Development of Space-qualified Seismometers in France

    NASA Technical Reports Server (NTRS)

    Lognonne, P.; Karczewski, J. F.

    1993-01-01

    The OPTIMISM experiment will put two magnetometers and two seismometers on the Martian floor in 1995, within the framework of the Mars '94 mission. The seismometers are put within the two small surface stations. The seismometer sensitivity will be better than 10 exp -9 g at 1 Hz, 2 orders of magnitude higher than the Viking seismometer sensitivity. A priori waveform modeling for seismic signals on Mars shows that it will be sufficient to detect quakes with a seismic moment greater than 10 exp 15 Nm everywhere on Mars. Such events, according to the hypothesis of a thermoelastic cooling of the Martian lithosphere, are expected to occur at a rate close to one per week and may therefore be observed within the l-year lifetime of the experiment. Other aspects of the experiment are discussed.

  13. Critical Zone structure inferred from multiscale near surface geophysical and hydrological data across hillslopes at the Eel River CZO

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Rempe, D. M.; Holbrook, W. S.; Schmidt, L.; Hahm, W. J.; Dietrich, W. E.

    2017-12-01

    Except for boreholes and road cut, landslide, and quarry exposures, the subsurface structure of the critical zone (CZ) of weathered bedrock is relatively invisible and unmapped, yet this structure controls the short and long term fluxes of water and solutes. Non-invasive geophysical methods such as seismic refraction are widely applied to image the structure of the CZ at the hillslope scale. However, interpretations of such data are often limited due to heterogeneity and anisotropy contributed from fracturing, moisture content, and mineralogy on the seismic signal. We develop a quantitative framework for using seismic refraction tomography from intersecting geophysical surveys and hydrologic data obtained at the Eel River Critical Zone Observatory (ERCZO) in Northern California to help quantify the nature of subsurface structure across multiple hillslopes of varying topography in the area. To enhance our understanding of modeled velocity gradients and boundaries in relation to lithological properties, we compare refraction tomography results with borehole logs of nuclear magnetic resonance (NMR), gamma and neutron density, standard penetration testing, and observation drilling logs. We also incorporate laboratory scale rock characterization including mineralogical and elemental analyses as well as porosity and density measurements made via pycnometry, helium and mercury porosimetry, and laboratory scale NMR. We evaluate the sensitivity of seismically inferred saprolite-weathered bedrock and weathered-unweathered bedrock boundaries to various velocity and inversion parameters in relation with other macro scale processes such as gravitational and tectonic forces in influencing weathered bedrock velocities. Together, our sensitivity analyses and multi-method data comparison provide insight into the interpretation of seismic refraction tomography for the quantification of CZ structure and hydrologic dynamics.

  14. Local SPTHA through tsunami inundation simulations: a test case for two coastal critical infrastructures in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Volpe, M.; Selva, J.; Tonini, R.; Romano, F.; Lorito, S.; Brizuela, B.; Argyroudis, S.; Salzano, E.; Piatanesi, A.

    2016-12-01

    Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) is a methodology to assess the exceedance probability for different thresholds of tsunami hazard intensity, at a specific site or region in a given time period, due to a seismic source. A large amount of high-resolution inundation simulations is typically required for taking into account the full variability of potential seismic sources and their slip distributions. Starting from regional SPTHA offshore results, the computational cost can be reduced by considering for inundation calculations only a subset of `important' scenarios. We here use a method based on an event tree for the treatment of the seismic source aleatory variability; a cluster analysis on the offshore results to define the important sources; epistemic uncertainty treatment through an ensemble modeling approach. We consider two target sites in the Mediterranean (Milazzo, Italy, and Thessaloniki, Greece) where coastal (non nuclear) critical infrastructures (CIs) are located. After performing a regional SPTHA covering the whole Mediterranean, for each target site, few hundreds of representative scenarios are filtered out of all the potential seismic sources and the tsunami inundation is explicitly modeled, obtaining a site-specific SPTHA, with a complete characterization of the tsunami hazard in terms of flow depth and velocity time histories. Moreover, we also explore the variability of SPTHA at the target site accounting for coseismic deformation (i.e. uplift or subsidence) due to near field sources located in very shallow water. The results are suitable and will be applied for subsequent multi-hazard risk analysis for the CIs. These applications have been developed in the framework of the Italian Flagship Project RITMARE, EC FP7 ASTARTE (Grant agreement 603839) and STREST (Grant agreement 603389) projects, and of the INGV-DPC Agreement.

  15. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  16. Implementing a C++ Version of the Joint Seismic-Geodetic Algorithm for Finite-Fault Detection and Slip Inversion for Earthquake Early Warning

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.

    2015-12-01

    The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.

  17. Seismic waveform sensitivity to global boundary topography

    NASA Astrophysics Data System (ADS)

    Colombi, Andrea; Nissen-Meyer, Tarje; Boschi, Lapo; Giardini, Domenico

    2012-09-01

    We investigate the implications of lateral variations in the topography of global seismic discontinuities, in the framework of high-resolution forward modelling and seismic imaging. We run 3-D wave-propagation simulations accurate at periods of 10 s and longer, with Earth models including core-mantle boundary topography anomalies of ˜1000 km spatial wavelength and up to 10 km height. We obtain very different waveform signatures for PcP (reflected) and Pdiff (diffracted) phases, supporting the theoretical expectation that the latter are sensitive primarily to large-scale structure, whereas the former only to small scale, where large and small are relative to the frequency. PcP at 10 s seems to be well suited to map such a small-scale perturbation, whereas Pdiff at the same frequency carries faint signatures that do not allow any tomographic reconstruction. Only at higher frequency, the signature becomes stronger. We present a new algorithm to compute sensitivity kernels relating seismic traveltimes (measured by cross-correlation of observed and theoretical seismograms) to the topography of seismic discontinuities at any depth in the Earth using full 3-D wave propagation. Calculation of accurate finite-frequency sensitivity kernels is notoriously expensive, but we reduce computational costs drastically by limiting ourselves to spherically symmetric reference models, and exploiting the axial symmetry of the resulting propagating wavefield that collapses to a 2-D numerical domain. We compute and analyse a suite of kernels for upper and lower mantle discontinuities that can be used for finite-frequency waveform inversion. The PcP and Pdiff sensitivity footprints are in good agreement with the result obtained cross-correlating perturbed and unperturbed seismogram, validating our approach against full 3-D modelling to invert for such structures.

  18. Seismic risk assessment and application in the central United States

    USGS Publications Warehouse

    Wang, Z.

    2011-01-01

    Seismic risk is a somewhat subjective, but important, concept in earthquake engineering and other related decision-making. Another important concept that is closely related to seismic risk is seismic hazard. Although seismic hazard and seismic risk have often been used interchangeably, they are fundamentally different: seismic hazard describes the natural phenomenon or physical property of an earthquake, whereas seismic risk describes the probability of loss or damage that could be caused by a seismic hazard. The distinction between seismic hazard and seismic risk is of practical significance because measures for seismic hazard mitigation may differ from those for seismic risk reduction. Seismic risk assessment is a complicated process and starts with seismic hazard assessment. Although probabilistic seismic hazard analysis (PSHA) is the most widely used method for seismic hazard assessment, recent studies have found that PSHA is not scientifically valid. Use of PSHA will lead to (1) artifact estimates of seismic risk, (2) misleading use of the annual probability of exccedance (i.e., the probability of exceedance in one year) as a frequency (per year), and (3) numerical creation of extremely high ground motion. An alternative approach, which is similar to those used for flood and wind hazard assessments, has been proposed. ?? 2011 ASCE.

  19. Infrasound Generation from the HH Seismic Hammer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  20. New results concerning geophysical and geological-engineering data. Case study Telega, Romania

    NASA Astrophysics Data System (ADS)

    Maftei, Raluca-Mihaela; Rusu, Emil; Cristea, Paul; Manj, Valeriu; Avram, Ovidiu; Tudor, Elena; Porumbescu, Constantina; Ciurean, Roxana

    2010-05-01

    New results concerning geophysical and geological-engineering data. Case study Telega, Romania R.Maftei, E.Rusu, P.Cristea, V.Manj, R.Ciurean, O.Avram, E.Tudor, C.Porumbescu Geological Institute of Romania, Geohazard, Bucharest, Romania (mafteir@yahoo.com) Geophysical tests The geoelectric investigation (October-November 2009) outlines horizontally the sliding area, and vertically the elements of the landslide surface - position, depth, shape, and the bedrock's relief. The quantitative interpretation of the resistivity geoelectrical vertical tests, and the correlation with the geological structure identified 3 sliding surfaces, from which only the upper one (2-6m depth) was known before the stability works. There were localized the rainfall waters circulation and accumulation zones, areas with high sliding risk. Same results were obtained in sliding zones, been localized the principal elements of the landslides, with practical implications in land instability and estimation of the evolution of the destructive phenomena mechanisms. With this study we try to quantify the complex relationship between the natural factors that generate the terrain instability phenomena and the intensity of the socio-economic effects, at a regional and local scale, by correlating the engineering geology information and geophysical data. Recent seismic research program (September 2009) conceived for "La Butoi" landslide, Telega locality, aims to a specific monitoring of the dynamic deformations, more active in the central part of the landslide, with reference to the shallow seismic refraction information obtained in the 2004 - 2005 period. The investigations were performed on a seismic lines network, and two seismic boundaries, in the shallow seismic section, were exhibited. As a result, one can observe the curvature tendency of the first arrivals sin-phase for the end-off shot devices, setting off the velocity increasing regime with depth; relative high variations and irregularities of the time distance curves on short intervals are interpreted as a response to the bedrock's irregular surface. Based on the centralized time - distance curve of the L longitudinal profile, from which a fragment - 0-115 m is being reproduced in Fig. 4, the shallow section was redefined for the most part of the seismic line (Fig. 5). The picket positions are identical along the seismic line for the seismo-geological section represented in Fig. 2 and Fig. 5. Within the section, based on the recent acquired seismic data, seismic velocities regimes associated to the main compartments are being reproduced. Hence, a new seismic limit is imposed by the t1 refracted wave presence as a result of the apparent velocities of about 400 - 500 m/s. Therefore, underlying the intensively weathered shallow formation, defined by velocities of about 250 m/s, one can find a thin layer (1.5 - 4 m), above which the t1 wave travels; the thicknesses increases downstream. Following the vertical distribution, the seismic velocities regime does not modify significantly comparing with the section determined by the observations made 4 years before present. We can presume that the weathering process is continuously and gradually active in depth, leading to a dynamic behavior of the loose material. Complementary, we must emphasize the discreet tendency of increasing velocities (with 50 m/s) characterizing the main inferior body of the sliding mass (between 0m to 100m stakes), presumably as an effect of the high pressure exerted by the upstream unstable complex. Additional information will be yield by the recordings over transversal profiles, located especially on the maximum development of the landslide area. Geological-engineering data The field trip (September-November 2009) was made to observe the changes in the studied area. After a rainy period, a lot of terrain's surface transformations were observed. Comparing with the last year situation, 2 other steps appeared on the sliding mass. Also, the landslide expended both lateral and in depth. The excess water areas were enlarged and become deeper. Same the cracks and fissures. This paper is part of the DIGISOIL project dissemination plan. The DIGISOIL project is financed by the European Commission under the 7th Framework Programme for Research and Technological Development, Area "Environment", Activity 6.3 "Environmental Technologies".

  1. Seismic and tsunami hazard investigation in Valparaiso in the framework of the project "MAR VASTO"

    NASA Astrophysics Data System (ADS)

    Romanelli, F.; Razafindrakoto, H.

    2009-04-01

    In the framework of the MAR VASTO Project ("Risk Management in Valparaíso/Manejo de Riesgos en Valparaíso"), completed in 2008 and funded by BID/IDB (Banco InterAmericano de Desarrollo/ InterAmerican Development Bank), managed by ENEA (Italian Agency for New Technologies, Energy and Environment), with the participation of Italian and Chilean partners and the support of local stakeholders, the most important hazards have been investigated carried out. Valparaíso represents a distinctive case of growth, inside a remarkable landscape, of an important Pacific Ocean seaport (over the 19th and 20th centuries), up to reaching a strategic importance in shipping trade, declined after the Panama Canal opening (1914). Thus, Valparaíso tells the never-ending story of a tight interaction between society and environment, stratifying different urban and architectonic layers, sometimes struck by disasters and always in danger. Certainly, the city has been subjected to various natural hazards (seismic events, but also tsunamis, landslides, etc.) and anthropic calamities (mainly wild and human-induced fires). These features make Valparaíso a paradigmatic study case about hazard mitigation, and risk factors must be very well evaluated during the restoration phases to be planned in the future. Seismic Hazrad. The major goal is to provide a dataset of synthetic time series representative of the potential ground motion at the bedrock of Valparaiso, especially at selected sites (e.g. the three important churches located in the Valparaiso urban area: La Matriz, San Francisco, Las Hermanitas de la Providencia), for different scenarios; the characteristics of the calculated signals (e.g. amplitude, frequency content and duration of shaking) are determined by the earthquake source process and the wave propagation effects of the path between the source and the site. The synthetic signals, to be used as seismic input in a subsequent engineering analysis, have been produced at a very low cost/benefit ratio taking into account a broad range of source characteristics, path and local (geological and geotechnical) conditions. The realistic modeling of ground motion requires the simultaneous knowledge of the geotechnical, lithological, geophysical parameters and topography of the medium, on one side, and tectonic, historical, paleoseismological, seismotectonic models, on the other, for the best possible definition of the probable seismic source. Many parametric studies of the ground motion have been performed, taking into account the variations due to the choice of the focal mechanism parameters, the geometry of the seismic source and the rupture process. Tsunami Hazard. The Chilean coast is currently exposed to the effects of near and far field tsunamis generated in the Pacific Ocean. For instance, the catastrophic events of the last century, 1868 and 1877, overwhelmed the coast of the northern region of the country. This historic situation has contributed to an awareness of the risk involved and therefore to the development of research on the subject in Chile. The organisation in charge of detecting and issuing the warning is the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The SHOA report has been used as the reference document for the tsunami hazard assessement for the Valparaiso site and it has been complemented with a) set of parametric studies about the tsunamigenic potential of the 1985 and 1906 scenario earthquakes; b) analytical modelling of tsunami waveforms for different scenarios, in order to provide a complementary dataset to be used for the tsunami hazard assessment at Valparaiso. Using as a base of knowledge the inundation map provided by SHOA associated to the 1906 event, an upper bound of the multiplication factor for the tsunami hazard associated to be used for the different scenarios has been obtained.

  2. New comprehensive standard seismic noise models and 3D seismic noise variation for Morocco territory, North Africa, obtained using seismic broadband stations

    NASA Astrophysics Data System (ADS)

    El Fellah, Younes; El-Aal, Abd El-Aziz Khairy Abd; Harnafi, Mimoun; Villaseñor, Antonio

    2017-05-01

    In the current work, we constructed new comprehensive standard seismic noise models and 3D temporal-spatial seismic noise level cubes for Morocco in north-west Africa to be used for seismological and engineering purposes. Indeed, the original global standard seismic noise models published by Peterson (1993) and their following updates by Astiz and Creager (1995), Ekström (2001) and Berger et al. (2003) had no contributing seismic stations deployed in North Africa. Consequently, this preliminary study was conducted to shed light on seismic noise levels specific to north-west Africa. For this purpose, 23 broadband seismic stations recently installed in different structural domains throughout Morocco are used to study the nature and characteristics of seismic noise and to create seismic noise models for Morocco. Continuous data recorded during 2009, 2010 and 2011 were processed and analysed to construct these new noise models and 3D noise levels from all stations. We compared the Peterson new high-noise model (NHNM) and low-noise model (NLNM) with the Moroccan high-noise model (MHNM) and low-noise model (MLNM). These new noise models are comparable to the United States Geological Survey (USGS) models in the short period band; however, in the period range 1.2 s to 1000 s for MLNM and 10 s to 1000 s for MHNM display significant variations. This variation is attributed to differences in the nature of seismic noise sources that dominate Morocco in these period bands. The results of this study have a new perception about permanent seismic noise models for this spectacular region and can be considered a significant contribution because it supplements the Peterson models and can also be used to site future permanent seismic stations in Morocco.

  3. Deep Structures of The Angola Margin

    NASA Astrophysics Data System (ADS)

    Moulin, M.; Contrucci, I.; Olivet, J.-L.; Aslanian, D.; Géli, L.; Sibuet, J.-C.

    1 Ifremer Centre de Brest, DRO/Géosciences Marines, B.P. 70, 29280 Plouzané cedex (France) mmoulin@ifremer.fr/Fax : 33 2 98 22 45 49 2 Université de Bretagne Occidentale, Institut Universitaire Europeen de la Mer, Place Nicolas Copernic, 29280 Plouzane (France) 3 Total Fina Elf, DGEP/GSR/PN -GEOLOGIE, 2,place de la Coupole-La Defense 6, 92078 Paris la Defense Cedex Deep reflection and refraction seismic data were collected in April 2000 on the West African margin, offshore Angola, within the framework of the Zaiango Joint Project, conducted by Ifremer and Total Fina Elf Production. Vertical multichannel reflection seismic data generated by a « single-bubble » air gun array array (Avedik et al., 1993) were recorded on a 4.5 km long, digital streamer, while refraction and wide angle reflection seismic data were acquired on OBSs (Ocean Bottom Seismometers). Despite the complexity of the margin (5 s TWT of sediment, salt tectonics), the combination of seismic reflection and refraction methods results in an image and a velocity model of the ground structures below the Aptian salt layer. Three large seismic units appear in the reflection seismic section from the deep part on the margin under the base of salt. The upper seismic unit is layered with reflectors parallel to the base of the salt ; it represents unstructured sediments, filling a basin. The middle unit is seismically transparent. The lower unit is characterized by highly energetic reflectors. According to the OBS refraction data, these two units correspond to the continental crust and the base of the high energetic unit corresponds to the Moho. The margin appears to be divided in 3 domains, from east to west : i) a domain with an unthinned, 30 km thick, continental crust ; ii) a domain located between the hinge line and the foot of the continental slope, where the crust thins sharply, from 30 km to less than 7 km, this domain is underlain by an anormal layer with velocities comprising between 7,2 and 7,4 km/s. The maximum thickness of this layer is located where the crust shows the strongest thinning at the foot of the continental slope ; and iii) a transitional domain, 160 km wide, with an average crustal thickness of 6 km. Moreover, no tilted blocks nor detachment faults are observed on the reflection seismic sections. The consequences of these observations on the models of crustal thinning classically used in the litterature are examined. Avedik, F., V. Renard, J-P. Allenou, B. Morvan, "Single bubble" air gun for deep exploration, Geophysics, 58, 366-382, 1993.

  4. Hydrogeologic framework of Antelope Valley and Bedell Flat, Washoe County, west-central Nevada

    USGS Publications Warehouse

    Berger, D.L.; Ponce, D.A.; Ross, W.C.

    2001-01-01

    Description of the hydrogeologic framework of Antelope Valley and Bedell Flat in west-central Nevada adds to the general knowledge of regional ground-water flow north of the Reno-Sparks metropolitan area. The hydrogeologic framework is defined by the rocks and deposits that transmit ground water or impede its movement and by the combined thickness of Cenozoic deposits. When data are lacking about the subsurface geology of an area, geophysical methods can be used to provide additional information. In this study, gravimetric and seismic-refraction methods were used to infer the form of structural features and to estimate the thickness of Cenozoic deposits in each of the two valleys. In Antelope Valley, the thickness of these deposits probably does not exceed about 300 feet, suggesting that ground-water storage in the basin-fill aquifer is limited. Beneath Bedell Flat is an elongated, northeast-trending structural depression in the pre-Cenozoic basement; the maximum thickness of Cenozoic deposits is about 2,500 feet beneath the south-central part of the valley. Shallow ground water in the northwest corner of Bedell Flat may be a result of decreasing depth to the pre-Cenozoic basement.

  5. Integrated approach based on non-invasive investigations for the structural diagnosis of monuments: the case of the San Francesco della Scarpa Church in Lecce

    NASA Astrophysics Data System (ADS)

    Gizzi, Fabrizio; Leucci, Giovanni; Masini, Nicola; Persico, Raffaele; Quarta, Giovanni

    2015-04-01

    The paper shows the results of a diagnostics survey, based on the ground penetrating radar (GPR), seismic tomography and microtremor horizontal-to-vertical ratio (HVSR) method, to understand the causes of some static instability problems affecting the Church of San Francesco della Scarpa in Lecce (Apulia region, Southern Italy). The prospecting falls within the more general framework of a diagnostic investigation campaign for the restoration of the monument. This study case points out the great effectiveness of the employed diagnostic methods, when used in an integrated way, for detecting cracks and inhomogeneities in the inner structure of masonry building elements [1-2]. With regard to GPR prospecting, in order to better evidence the micro-fracture, a new algorithm, based on a clutter removal technique, has been used. In particular, it removes various unwanted signals such as cross talk, initial ground reflection and antenna ringing. Moreover, seismic tomographies provided complementary information on the mediocre state of conservation of some load bearing structures of the church. Finally, HVSR method allowed to study the relationship between decay patterns, instability problems and seismic response of the monument. Reference [1] Leucci G., Masini N., Persico R., Soldovieri F. 2011. GPR and sonic tomography for structural restoration: the case of the cathedral of Tricarico, Journal of Geophysics and Engineering, 8 (3), 76-92, doi:10.1088/1742-2132/8/3/S08. [2] Calia A., Leucci G., Masini N., Matera L., Persico R., Sileo M., 2012. Integrated prospecting in the Crypt of the Basilica of Saint Nicholas in Bari, Italy. Journal of Geophysics and Engineering, 9(3), 271-281, doi:10.1088/1742-2132/9/3/271.

  6. Uniform California earthquake rupture forecast, version 2 (UCERF 2)

    USGS Publications Warehouse

    Field, E.H.; Dawson, T.E.; Felzer, K.R.; Frankel, A.D.; Gupta, V.; Jordan, T.H.; Parsons, T.; Petersen, M.D.; Stein, R.S.; Weldon, R.J.; Wills, C.J.

    2009-01-01

    The 2007 Working Group on California Earthquake Probabilities (WGCEP, 2007) presents the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2). This model comprises a time-independent (Poisson-process) earthquake rate model, developed jointly with the National Seismic Hazard Mapping Program and a time-dependent earthquake-probability model, based on recent earthquake rates and stress-renewal statistics conditioned on the date of last event. The models were developed from updated statewide earthquake catalogs and fault deformation databases using a uniform methodology across all regions and implemented in the modular, extensible Open Seismic Hazard Analysis framework. The rate model satisfies integrating measures of deformation across the plate-boundary zone and is consistent with historical seismicity data. An overprediction of earthquake rates found at intermediate magnitudes (6.5 ??? M ???7.0) in previous models has been reduced to within the 95% confidence bounds of the historical earthquake catalog. A logic tree with 480 branches represents the epistemic uncertainties of the full time-dependent model. The mean UCERF 2 time-dependent probability of one or more M ???6.7 earthquakes in the California region during the next 30 yr is 99.7%; this probability decreases to 46% for M ???7.5 and to 4.5% for M ???8.0. These probabilities do not include the Cascadia subduction zone, largely north of California, for which the estimated 30 yr, M ???8.0 time-dependent probability is 10%. The M ???6.7 probabilities on major strike-slip faults are consistent with the WGCEP (2003) study in the San Francisco Bay Area and the WGCEP (1995) study in southern California, except for significantly lower estimates along the San Jacinto and Elsinore faults, owing to provisions for larger multisegment ruptures. Important model limitations are discussed.

  7. Joint Bayesian inference for near-surface explosion yield

    NASA Astrophysics Data System (ADS)

    Bulaevskaya, V.; Ford, S. R.; Ramirez, A. L.; Rodgers, A. J.

    2016-12-01

    A near-surface explosion generates seismo-acoustic motion that is related to its yield. However, the recorded motion is affected by near-source effects such as depth-of-burial, and propagation-path effects such as variable geology. We incorporate these effects in a forward model relating yield to seismo-acoustic motion, and use Bayesian inference to estimate yield given recordings of the seismo-acoustic wavefield. The Bayesian approach to this inverse problem allows us to obtain the probability distribution of plausible yield values and thus quantify the uncertainty in the yield estimate. Moreover, the sensitivity of the acoustic signal falls as a function of the depth-of-burial, while the opposite relationship holds for the seismic signal. Therefore, using both the acoustic and seismic wavefield data allows us to avoid the trade-offs associated with using only one of these signals alone. In addition, our inference framework allows for correlated features of the same data type (seismic or acoustic) to be incorporated in the estimation of yield in order to make use of as much information from the same waveform as possible. We demonstrate our approach with a historical dataset and a contemporary field experiment.

  8. Geoscience technology application to optimize field development, Seligi Field, Malay Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.S.; Wiggins, B.D.

    1994-07-01

    Integration of well log, core, 3-D seismic, and engineering data within a sequence stratigraphic framework, has enabled prediction of reservoir distribution and optimum development of Seligi field. Seligi is the largest field in the Malay Basin, with half of the reserves within lower Miocene Group J reservoirs. These reservoirs consist of shallow marine sandstones and estuarine sandstones predominantly within an incised valley. Variation in reservoir quality has been a major challenge in developing Seligi. Recognizing and mapping four sequences within the Group J incised valley fill has resulted in a geologic model for predicting the distribution of good quality estuarinemore » reservoir units and intercalated low-permeability sand/shale units deposited during marine transgressions. These low-permeability units segregate the reservoir fluids, causing differential contact movement in response to production thus impacting completion strategy and well placement. Seismic calibration shows that a large impedance contrast exists between the low-permeability rock and adjacent good quality oil sand. Application of sequence stratigraphic/facies analysis coupled with the ability to identify the low-permeability units seismically is enabling optimum development of each of the four sequences at Seligi.« less

  9. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  10. A synoptic view of the Third Uniform California Earthquake Rupture Forecast (UCERF3)

    USGS Publications Warehouse

    Field, Edward; Jordan, Thomas H.; Page, Morgan T.; Milner, Kevin R.; Shaw, Bruce E.; Dawson, Timothy E.; Biasi, Glenn; Parsons, Thomas E.; Hardebeck, Jeanne L.; Michael, Andrew J.; Weldon, Ray; Powers, Peter; Johnson, Kaj M.; Zeng, Yuehua; Bird, Peter; Felzer, Karen; van der Elst, Nicholas; Madden, Christopher; Arrowsmith, Ramon; Werner, Maximillan J.; Thatcher, Wayne R.

    2017-01-01

    Probabilistic forecasting of earthquake‐producing fault ruptures informs all major decisions aimed at reducing seismic risk and improving earthquake resilience. Earthquake forecasting models rely on two scales of hazard evolution: long‐term (decades to centuries) probabilities of fault rupture, constrained by stress renewal statistics, and short‐term (hours to years) probabilities of distributed seismicity, constrained by earthquake‐clustering statistics. Comprehensive datasets on both hazard scales have been integrated into the Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3). UCERF3 is the first model to provide self‐consistent rupture probabilities over forecasting intervals from less than an hour to more than a century, and it is the first capable of evaluating the short‐term hazards that result from multievent sequences of complex faulting. This article gives an overview of UCERF3, illustrates the short‐term probabilities with aftershock scenarios, and draws some valuable scientific conclusions from the modeling results. In particular, seismic, geologic, and geodetic data, when combined in the UCERF3 framework, reject two types of fault‐based models: long‐term forecasts constrained to have local Gutenberg–Richter scaling, and short‐term forecasts that lack stress relaxation by elastic rebound.

  11. Seismic instrumentation plan for the Hawaiian Volcano Observatory

    USGS Publications Warehouse

    Thelen, Weston A.

    2014-01-01

    The installation of new seismic stations is only the first part of building a volcanic early warning capability for seismicity in the State of Hawaii. Additional personnel will likely be required to study the volcanic processes at work under each volcano, analyze the current seismic activity at a level sufficient for early warning, build new tools for monitoring, maintain seismic computing resources, and maintain the new seismic stations.

  12. MARSite-MARMARA SUPERSITE: Accomplishments and Outlook

    NASA Astrophysics Data System (ADS)

    Meral Ozel, Nurcan; Necmioglu, Ocal; Ergintav, Semih; Oguz Ozel, Asım; Italiano, Franco; Favali, Paolo; Bigarre, Pascal; Cakir, Ziyadin; Geli, Louis; Aochi, Hideo; Bossu, Remy; Zulfikar, Can; Sesetyan, Karin

    2017-04-01

    MARsite Project, funded under FP7-ENV.2012 6.4-2 (Grant 308417) and successfully implemented to Marmara Region during 2014-2016 indicated that focusing on the monitoring of the region and the integration of data from land, sea and space and the processing of this composed data based on sound earth-science research is an effective tool for mitigating damage from future earthquakes. This was achieved by monitoring the earthquake hazard through the ground-shaking and forecast maps, short- and long-term earthquake rate forecasting and time-dependent seismic hazard maps to make important risk-mitigation decisions regarding building design, insurance rates, land-use planning, and public-policy issues that need to balance safety and economic and social interests. MARSite has demonstrated the power of the use of different sensors in the assessment of the earthquake hazard. In addition to the more than 30 scientific publication within the MARsite Project framework, a multidisciplinary innovative borehole seismic observatory and a dilatometer have been installed within MARSite where its a data can be used for a range of seismic studies. Due to the encouraging results obtained from this experiment, it was determined that in the future likely smaller number of stations will be required reducing the cost of national seismic networks. The technical infrastructure of the continuous GPS stations of MAGNET network has been updated within MARSite. Tsunami hazard studies in MARSite in Marmara Sea showed that the tsunami hazard in the Marmara Region is primarily due to submarine landslides triggered by an earthquake and a conceptual Tsunami Early Warning System in the Marmara region strongly coupled with the strong ground motion and existing Earthquake Early Warning System was developed. The existing Earthquake Early Warning and Rapid Response system in the Marmara Region was improved and the installation and test of a pilot seismic landslide monitoring system was taken place in the Avcilar-Beylikdüzü Peninsula, a large landslide prone area located in westward part of Istanbul and facing the North Anatolian Fault Zone (NAFZ). An integrated approach based on multi-parameter seafloor observatories was implemented to continuously monitor the micro-seismicity along with the fluid expulsion activity within the submerged fault zone. During MARSite, strong integration and links had been established with major European initiatives focused on the collection of multidisciplinary data, their dissemination, interpretation and fusion to produce consistent theoretical and practical models, the implementation of good practices so as to provide the necessary information to end users, and the updating of seismic hazard and risk evaluations in the Marmara region. In this perspective, to continue the understanding of and improvement in the preparedness for geological disasters, the existing monitoring infrastructure of Marsite requires the continuation of a strong a European initiative. This presentation will provide a venue for information exchange towards the establishment of such an initiative.

  13. Node Resource Manager: A Distributed Computing Software Framework Used for Solving Geophysical Problems

    NASA Astrophysics Data System (ADS)

    Lawry, B. J.; Encarnacao, A.; Hipp, J. R.; Chang, M.; Young, C. J.

    2011-12-01

    With the rapid growth of multi-core computing hardware, it is now possible for scientific researchers to run complex, computationally intensive software on affordable, in-house commodity hardware. Multi-core CPUs (Central Processing Unit) and GPUs (Graphics Processing Unit) are now commonplace in desktops and servers. Developers today have access to extremely powerful hardware that enables the execution of software that could previously only be run on expensive, massively-parallel systems. It is no longer cost-prohibitive for an institution to build a parallel computing cluster consisting of commodity multi-core servers. In recent years, our research team has developed a distributed, multi-core computing system and used it to construct global 3D earth models using seismic tomography. Traditionally, computational limitations forced certain assumptions and shortcuts in the calculation of tomographic models; however, with the recent rapid growth in computational hardware including faster CPU's, increased RAM, and the development of multi-core computers, we are now able to perform seismic tomography, 3D ray tracing and seismic event location using distributed parallel algorithms running on commodity hardware, thereby eliminating the need for many of these shortcuts. We describe Node Resource Manager (NRM), a system we developed that leverages the capabilities of a parallel computing cluster. NRM is a software-based parallel computing management framework that works in tandem with the Java Parallel Processing Framework (JPPF, http://www.jppf.org/), a third party library that provides a flexible and innovative way to take advantage of modern multi-core hardware. NRM enables multiple applications to use and share a common set of networked computers, regardless of their hardware platform or operating system. Using NRM, algorithms can be parallelized to run on multiple processing cores of a distributed computing cluster of servers and desktops, which results in a dramatic speedup in execution time. NRM is sufficiently generic to support applications in any domain, as long as the application is parallelizable (i.e., can be subdivided into multiple individual processing tasks). At present, NRM has been effective in decreasing the overall runtime of several algorithms: 1) the generation of a global 3D model of the compressional velocity distribution in the Earth using tomographic inversion, 2) the calculation of the model resolution matrix, model covariance matrix, and travel time uncertainty for the aforementioned velocity model, and 3) the correlation of waveforms with archival data on a massive scale for seismic event detection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  14. Seismic Hazard Assessment at Esfaraen‒Bojnurd Railway, North‒East of Iran

    NASA Astrophysics Data System (ADS)

    Haerifard, S.; Jarahi, H.; Pourkermani, M.; Almasian, M.

    2018-01-01

    The objective of this study is to evaluate the seismic hazard at the Esfarayen-Bojnurd railway using the probabilistic seismic hazard assessment (PSHA) method. This method was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. Attenuation equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 1.2 × 1.2 km covering the study area, ground acceleration for every node was calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to return periods of 74, 475 and 2475 years.

  15. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  16. Sequential Data Assimilation for Seismicity: a Proof of Concept

    NASA Astrophysics Data System (ADS)

    van Dinther, Y.; Fichtner, A.; Kuensch, H. R.

    2015-12-01

    Our physical understanding and probabilistic forecasting ability of earthquakes is significantly hampered by limited indications of the state of stress and strength on faults and their governing parameters. Using the sequential data assimilation framework developed in meteorology and oceanography (e.g., Evensen, JGR, 1994) and a seismic cycle forward model based on Navier-Stokes Partial Differential Equations (van Dinther et al., JGR, 2013), we show that such information with its uncertainties is within reach, at least for laboratory setups. We aim to provide the first, thorough proof of concept for seismicity related PDE applications via a perfect model test of seismic cycles in a simplified wedge-like subduction setup. By evaluating the performance with respect to known numerical input and output, we aim to answer wether there is any probabilistic forecast value for this laboratory-like setup, which and how many parameters can be constrained, and how much data in both space and time would be needed to do so. Thus far our implementation of an Ensemble Kalman Filter demonstrated that probabilistic estimates of both the state of stress and strength on a megathrust fault can be obtained and utilized even when assimilating surface velocity data at a single point in time and space. An ensemble-based error covariance matrix containing velocities, stresses and pressure links surface velocity observations to fault stresses and strengths well enough to update fault coupling accordingly. Depending on what synthetic data show, coseismic events can then be triggered or inhibited.

  17. Assessing the Uncertainties on Seismic Source Parameters: Towards Realistic Estimates of Moment Tensor Determinations

    NASA Astrophysics Data System (ADS)

    Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.

    2014-12-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.

  18. Mini-Sosie high-resolution seismic method aids hazards studies

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.

    1992-01-01

    The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors

  19. Development of a low cost method to estimate the seismic signature of a geothermal field from ambient seismic noise analysis, Authors: Tibuleac, I. M., J. Iovenitti, S. Pullammanapallil, D. von Seggern, F.H. Ibser, D. Shaw and H. McLahlan

    NASA Astrophysics Data System (ADS)

    Tibuleac, I. M.; Iovenitti, J. L.; Pullammanappallil, S. K.; von Seggern, D. H.; Ibser, H.; Shaw, D.; McLachlan, H.

    2015-12-01

    A new, cost effective and non-invasive exploration method using ambient seismic noise has been tested at Soda Lake, NV, with promising results. Seismic interferometry was used to extract Green's Functions (P and surface waves) from 21 days of continuous ambient seismic noise. With the advantage of S-velocity models estimated from surface waves, an ambient noise seismic reflection survey along a line (named Line 2), although with lower resolution, reproduced the results of the active survey, when the ambient seismic noise was not contaminated by strong cultural noise. Ambient noise resolution was less at depth (below 1000m) compared to the active survey. Useful information could be recovered from ambient seismic noise, including dipping features and fault locations. Processing method tests were developed, with potential to improve the virtual reflection survey results. Through innovative signal processing techniques, periods not typically analyzed with high frequency sensors were used in this study to obtain seismic velocity model information to a depth of 1.4km. New seismic parameters such as Green's Function reflection component lateral variations, waveform entropy, stochastic parameters (Correlation Length and Hurst number) and spectral frequency content extracted from active and passive surveys showed potential to indicate geothermal favorability through their correlation with high temperature anomalies, and showed potential as fault indicators, thus reducing the uncertainty in fault identification. Geothermal favorability maps along ambient seismic Line 2 were generated considering temperature, lithology and the seismic parameters investigated in this study and compared to the active Line 2 results. Pseudo-favorability maps were also generated using only the seismic parameters analyzed in this study.

  20. Spatial Distribution of Seismic Anisotropy in the Crust in the Northeast Front Zone of Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, Q.; SHI, Y.

    2017-12-01

    There are orogenic belts and strong deformation in northeastern zone of Tibetan Plateau. The media in crust and in the upper mantle are seismic anisotropic there. This study uses seismic records by permanent seismic stations and portable seismic arrays, and adopts analysis techniques on body waves to obtain spatial anisotropic distribution in northeastern front zone of Tibetan Plateau. With seismic records of small local earthquakes, we study shear-wave splitting in the upper crust. The polarization of fast shear wave (PFS) can be obtained, and PFS is considered parallel to the strike of the cracks, as well as the direction of maximum horizontal compressive stress. However, the result shows the strong influence from tectonics, such as faults. It suggests multiple-influence including stress and fault. Spatial distribution of seismic anisotropy in study zone presents the effect in short range. PFS at the station on the strike-slip fault is quite different to PFS at station just hundreds of meters away from the fault. With seismic records of teleseismic waveforms, we obtained seismic anisotropy in the whole crust by receiver functions. The PFS directions from Pms receiver functions show consistency, generally in WNW. The time-delay of slow S phases is significant. With seismic records of SKS, PKS and SKKS phases, we can detect seismic anisotropy in the upper mantle by splitting analysis. The fast directions of these phases also show consistency, generally in WNW, similar to those of receiver functions, but larger time-delays. It suggests significant seismic anisotropy in the crust and crustal deformation is coherent to that in the upper mantle.Seismic anisotropy in the upper crust, in the whole crust and in the upper mantle are discussed both in difference and tectonic implications [Grateful to the support by NSFC Project 41474032].

  1. NSR&D Program Fiscal Year (FY) 2015 Call for Proposals Mitigation of Seismic Risk at Nuclear Facilities using Seismic Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin

    2015-02-01

    Seismic isolation (SI) has the potential to drastically reduce seismic response of structures, systems, or components (SSCs) and therefore the risk associated with large seismic events (large seismic event could be defined as the design basis earthquake (DBE) and/or the beyond design basis earthquake (BDBE) depending on the site location). This would correspond to a potential increase in nuclear safety by minimizing the structural response and thus minimizing the risk of material release during large seismic events that have uncertainty associated with their magnitude and frequency. The national consensus standard America Society of Civil Engineers (ASCE) Standard 4, Seismic Analysismore » of Safety Related Nuclear Structures recently incorporated language and commentary for seismically isolating a large light water reactor or similar large nuclear structure. Some potential benefits of SI are: 1) substantially decoupling the SSC from the earthquake hazard thus decreasing risk of material release during large earthquakes, 2) cost savings for the facility and/or equipment, and 3) applicability to both nuclear (current and next generation) and high hazard non-nuclear facilities. Issue: To date no one has evaluated how the benefit of seismic risk reduction reduces cost to construct a nuclear facility. Objective: Use seismic probabilistic risk assessment (SPRA) to evaluate the reduction in seismic risk and estimate potential cost savings of seismic isolation of a generic nuclear facility. This project would leverage ongoing Idaho National Laboratory (INL) activities that are developing advanced (SPRA) methods using Nonlinear Soil-Structure Interaction (NLSSI) analysis. Technical Approach: The proposed study is intended to obtain an estimate on the reduction in seismic risk and construction cost that might be achieved by seismically isolating a nuclear facility. The nuclear facility is a representative pressurized water reactor building nuclear power plant (NPP) structure. Figure 1: Project activities The study will consider a representative NPP reinforced concrete reactor building and representative plant safety system. This study will leverage existing research and development (R&D) activities at INL. Figure 1 shows the proposed study steps with the steps in blue representing activities already funded at INL and the steps in purple the activities that would be funded under this proposal. The following results will be documented: 1) Comparison of seismic risk for the non-seismically isolated (non-SI) and seismically isolated (SI) NPP, and 2) an estimate of construction cost savings when implementing SI at the site of the generic NPP.« less

  2. Short-Period Seismic Noise in Vorkuta (Russia)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishkina, S B; Spivak, A A; Sweeney, J J

    Cultural development of new subpolar areas of Russia is associated with a need for detailed seismic research, including both mapping of regional seismicity and seismic monitoring of specific mining enterprises. Of special interest are the northern territories of European Russia, including shelves of the Kara and Barents Seas, Yamal Peninsula, and the Timan-Pechora region. Continuous seismic studies of these territories are important now because there is insufficient seismological knowledge of the area and an absence of systematic data on the seismicity of the region. Another task of current interest is the necessity to consider the seismic environment in the design,more » construction, and operation of natural gas extracting enterprises such as the construction of the North European Gas Pipeline. Issues of scientific importance for seismic studies in the region are the complex geodynamical setting, the presence of permafrost, and the complex tectonic structure. In particular, the Uralian Orogene (Fig. 1) strongly affects the propagation of seismic waves. The existing subpolar seismic stations [APA (67,57{sup o}N; 33,40{sup o}E), LVZ (67,90{sup o}N; 34,65{sup o}E), and NRIL (69,50{sup o}N; 88,40{sup o}E)] do not cover the extensive area between the Pechora and Ob Rivers (Fig. 1). Thus seismic observations in the Vorkuta area, which lies within the area of concern, represent a special interest. Continuous recording at a seismic station near the city of Vorkuta (67,50{sup o}N; 64,11{sup o}E) [1] has been conducted since 2005 for the purpose of regional seismic monitoring and, more specifically, detection of seismic signals caused by local mining enterprises. Current surveys of local seismic noise [7,8,9,11], are particularly aimed at a technical survey for the suitability of the site for installation of a small-aperture seismic array, which would include 10-12 recording instruments, with the Vorkuta seismic station as the central element. When constructed, this seismic array will considerably improve the recording capacity of regional and local seismic events. It will allow detection of signatures of seismic waves propagating in submeridional and sublatitudinal directions. The latter is of special interest not only to access the influence of the Urals on propagation patterns of seismic waves, but also to address other questions, such as the structure and dynamic characteristics of the internal dynamo of the Earth [9,13]. Recording seismic waves at low angular distances from seismically active subpolar zones will allow us to collect data on vortical and convective movements in subpolar lithosphere blocks and at the boundary of the inner core of the Earth, possibly giving essential clues to the modeling of the Earth's electromagnetic field [3,13]. The present study considers basic features of seismic noise at the Vorkuta station obtained through the analysis of seismic records from March, 2006 till December, 2007.« less

  3. Systematic assessment of fault stability in the Northern Niger Delta Basin, Nigeria: Implication for hydrocarbon prospects and increased seismicities

    NASA Astrophysics Data System (ADS)

    Adewole, E. O.; Healy, D.

    2017-03-01

    Accurate information on fault networks, the full stress tensor, and pore fluid pressures are required for quantifying the stability of structure-bound hydrocarbon prospects, carbon dioxide sequestration, and drilling prolific and safe wells, particularly fluid injections wells. Such information also provides essential data for a proper understanding of superinduced seismicities associated with areas of intensive hydrocarbon exploration and solid minerals mining activities. Pressure and stress data constrained from wells and seismic data in the Northern Niger Delta Basin (NNDB), Nigeria, have been analysed in the framework of fault stability indices by varying the maximum horizontal stress direction from 0° to 90°, evaluated at depths of 2 km, 3.5 km and 4 km. We have used fault dips and azimuths interpreted from high resolution 3D seismic data to calculate the predisposition of faults to failures in three faulting regimes (normal, pseudo-strike-slip and pseudo-thrust). The weighty decrease in the fault stability at 3.5 km depth from 1.2 MPa to 0.55 MPa demonstrates a reduction of the fault strength by high magnitude overpressures. Pore fluid pressures > 50 MPa have tendencies to increase the risk of faults to failure in the study area. Statistical analysis of stability indices (SI) indicates faults dipping 50°-60°, 80°-90°, and azimuths ranging 100°-110° are most favourably oriented for failure to take place, and thus likely to favour migrations of fluids given appropriate pressure and stress conditions in the dominant normal faulting regime of the NNDB. A few of the locally assessed stability of faults show varying results across faulting regimes. However, the near similarities of some model-based results in the faulting regimes explain the stability of subsurface structures are greatly influenced by the maximum horizontal stress (SHmax) direction and magnitude of pore fluid pressures.

  4. Structural features of the Pernicana Fault (M. Etna, Sicily, Italy) inferred by high precise location of the microseismicity

    NASA Astrophysics Data System (ADS)

    Alparone, S.; Gambino, S.; Mostaccio, A.; Spampinato, S.; Tuvè, T.; Ursino, A.

    2009-04-01

    The north-eastern flank of Mt. Etna is crossed by an important and active tectonic structure, the Pernicana Fault having a mean strike WNW-ESE. It links westward to the active NE Rift and seems to have an important role in controlling instability processes affecting the eastern flank of the volcano. Recent studies suggest that Pernicana Fault is very active through sinistral, oblique-slip movements and is also characterised by frequent shallow seismicity (depth < 2 km bsl) on the uphill western segment and by remarkable creeping on the downhill eastern one. The Pernicana Fault earthquakes, which can reach magnitudes up to 4.2, sometimes with coseismic surface faulting, caused severe damages to tourist resorts and villages along or close this structure. In the last years, a strong increase of seismicity, also characterized by swarms, was recorded by INGV-CT permanent local seismic network close the Pernicana Fault. A three-step procedure was applied to calculate precise hypocentre locations. In a first step, we chose to apply cross-correlation analysis, in order to easily evaluate the similarity of waveforms useful to identify earthquakes families. In a second step, we calculate probabilistic earthquake locations using the software package NONLINLOC, which includes systematic, complete grid search and global, non-linear search methods. Subsequently, we perform relative relocation of correlated event pairs using the double-difference earthquake algorithm and the program HypoDD. The double-difference algorithm minimizes the residuals between observed and calculated travel time difference for pairs of earthquakes at common stations by iteratively adjusting the vector difference between the hypocenters. We show the recognized spatial seismic clusters identifying the most active and hazarding sectors of the structure, their geometry and depth. Finally, in order to clarify the geodynamic framework of the area, we associate these results with calculated focal mechanisms for the most energetic earthquakes.

  5. Deep reaching versus vertically restricted Quaternary normal faults: Implications on seismic potential assessment in tectonically active regions: Lessons from the middle Aterno valley fault system, central Italy

    NASA Astrophysics Data System (ADS)

    Falcucci, E.; Gori, S.; Moro, M.; Fubelli, G.; Saroli, M.; Chiarabba, C.; Galadini, F.

    2015-05-01

    We investigate the Middle Aterno Valley fault system (MAVF), a poorly investigated seismic gap in the central Apennines, adjacent to the 2009 L'Aquila earthquake epicentral area. Geological and paleoseismological analyses revealed that the MAVF evolved through hanging wall splay nucleation, its main segment moving at 0.23-0.34 mm/year since the Middle Pleistocene; the penultimate activation event occurred between 5388-5310 B.C. and 1934-1744 B.C., the last event after 2036-1768 B.C. and just before 1st-2nd century AD. These data define hard linkage (sensu Walsh and Watterson, 1991; Peacock et al., 2000; Walsh et al., 2003, and references therein) with the contiguous Subequana Valley fault segment, able to rupture in large magnitude earthquakes (up to 6.8), that did not rupture since about two millennia. By the joint analysis of geological observations and seismological data acquired during to the 2009 seismic sequence, we derive a picture of the complex structural framework of the area comprised between the MAVF, the Paganica fault (the 2009 earthquake causative fault) and the Gran Sasso Range. This sector is affected by a dense array of few-km long, closely and regularly spaced Quaternary normal fault strands, that are considered as branches of the MAVF northern segment. Our analysis reveals that these structures are downdip confined by a decollement represented by to the presently inactive thrust sheet above the Gran Sasso front limiting their seismogenic potential. Our study highlights the advantage of combining Quaternary geological field analysis with high resolution seismological data to fully unravel the structural setting of regions where subsequent tectonic phases took place and where structural interference plays a key role in influencing the seismotectonic context; this has also inevitably implications for accurately assessing seismic hazard of such structurally complex regions.

  6. Probabilistic Analysis of Earthquake-Led Water Contamination: A Case of Sichuan, China

    NASA Astrophysics Data System (ADS)

    Yang, Yan; Li, Lin; Benjamin Zhan, F.; Zhuang, Yanhua

    2016-06-01

    The objective of this paper is to evaluate seismic-led point source and non-point source water pollution, under the seismic hazard of 10 % probability of exceedance in 50 years, and with the minimum value of the water quality standard in Sichuan, China. The soil conservation service curve number method of calculating the runoff depth in the single rainfall event combined with the seismic damage index were applied to estimate the potential degree of non-point source water pollution. To estimate the potential impact of point source water pollution, a comprehensive water pollution evaluation framework is constructed using a combination of Water Quality Index and Seismic Damage Index methods. The four key findings of this paper are: (1) The water catchment that has the highest factory concentration does not have the highest risk of non-point source water contamination induced by the outbreak of potential earthquake. (2) The water catchment that has the highest numbers of cumulative water pollutants types are typically located in the south western parts of Sichuan where the main river basins in the regions flow through. (3) The most common pollutants in sample factories studied is COD and NH3-N which are found in all catchments. The least common pollutant is pathogen—found present in W1 catchment which has the best rating in the water quality index. (4) Using water quality index as a standardization parameter, parallel comparisons is made among the 16 water catchments. Only catchment W1 reaches level II water quality status which has the rating of moderately polluted in events of earthquake induced water contamination. All other areas suffer from severe water contamination with multiple pollution sources. The results from the data model are significant to urban planning commissions and businesses to strategically choose their factory locations in order to minimize potential hazardous impact during the outbreak of earthquake.

  7. Cenozoic Circulation History of the North Atlantic Ocean From Seismic Stratigraphy of the Newfoundland Ridge Drift Complex

    NASA Astrophysics Data System (ADS)

    Boyle, P. R.; Romans, B.; Norris, R. D.; Tucholke, B. E.; Swift, S. A.; Sexton, P. F.

    2014-12-01

    In the North Atlantic Ocean, contour-following bottom currents have eroded regional unconformities and deposited contourite drifts that exceed two km in thickness and extend for 100s of km. The character of deep-water masses that are conveyed through ocean basins by such currents influence global heat transfer and ocean-atmosphere partitioning of CO2. The Newfoundland Ridge Drift Complex lies directly under the modern Deep Western Boundary Current southeast of Newfoundland, close to the site of overturning in the northwest Atlantic Ocean and at the intersection of the warm Gulf Stream and cool Labrador surface currents. To the south are regions of the western North Atlantic basin that are influenced by southern- as well as northern-sourced bottom waters. Here, we document the evolution of North Atlantic deep-water circulation by seismic-stratigraphic analysis of the long-lived and areally extensive Newfoundland Ridge Drift Complex. IODP Expedition 342 boreholes provide age control on seismic units, allowing sedimentation patterns to be placed in a temporal framework. We find three major phases of sedimentation: pre-contourite drift (~115-50 Ma), active contourite drift (~50-2.6 Ma), and late-contourite drift (~2.6-0 Ma). Bottom-current-controlled deposition of terrigenous-rich sediment began at ~50 Ma, which correlates to the onset of a long-term global cooling trend. A further change in deep circulation near the Eocene-Oligocene transition (~30 Ma) is indicated by more focused drift sedimentation with greatly increased accumulation rates and stratal architecture dominated by mud waves. At ~2.6 Ma to present the axis of drift accumulation shifted markedly towards shallower water depths, corresponding with the onset of Northern Hemisphere ice sheets. We discuss how these reorganizations of deep circulation correlate with results of other North Atlantic seismic stratigraphic studies to the north and south.

  8. Coupled Hydrodynamic and Wave Propagation Modeling for the Source Physics Experiment: Study of Rg Wave Sources for SPE and DAG series.

    NASA Astrophysics Data System (ADS)

    Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.

    2017-12-01

    This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.

  9. The ESA Geohazard Exploitation Platform

    NASA Astrophysics Data System (ADS)

    Bally, Philippe; Laur, Henri; Mathieu, Pierre-Philippe; Pinto, Salvatore

    2015-04-01

    Earthquakes represent one of the world's most significant hazards in terms both of loss of life and damages. In the first decade of the 21st century, earthquakes accounted for 60 percent of fatalities from natural disasters, according to the United Nations International Strategy for Disaster Reduction (UNISDR). To support mitigation activities designed to assess and reduce risks and improve response in emergency situations, satellite EO can be used to provide a broad range of geo-information services. This includes for instance crustal block boundary mapping to better characterize active faults, strain rate mapping to assess how rapidly faults are deforming, soil vulnerability mapping to help estimate how the soil is behaving in reaction to seismic phenomena, geo-information to assess the extent and intensity of the earthquake impact on man-made structures and formulate assumptions on the evolution of the seismic sequence, i.e. where local aftershocks or future main shocks (on nearby faults) are most likely to occur. In May 2012, the European Space Agency and the GEO Secretariat convened the International Forum on Satellite EO for Geohazards now known as the Santorini Conference. The event was the continuation of a series of international workshops such as those organized by the Geohazards Theme of the Integrated Global Observing Strategy Partnership. In Santorini the seismic community has set out a vision of the EO contribution to an operational global seismic risk program, which lead to the Geohazard Supersites and Natural Laboratories (GSNL) initiative. The initial contribution of ESA to suuport the GSNL was the first Supersites Exploitation Platform (SSEP) system in the framework of Grid Processing On Demand (GPOD), now followed by the Geohazard Exploitation Platform (GEP). In this presentation, we will describe the contribution of the GEP for exploiting satellite EO for geohazard risk assessment. It is supporting the GEO Supersites and has been further expanded to address broader objectives of the geohazards community. In particular it is a contribution to the CEOS WG Disasters and its Seismic Hazards Pilot and terrain deformation applications of its Volcano Pilot. The geohazards platform is sourced with elements - data, tools, and processing- relevant to the geohazards theme and related exploitation scenarios. For example, platform provides access to large SAR data collections and services to support SAR Interferometry (InSAR), in particular the Persistent Scatterer Interferometry (PSI) and Small Baseline Subset (SBAS) techniques, to provide precise terrain deformation. The GEP includes data coming from the ENVISAT ASAR and ERS archives, already hosted in the ESA clusters and in ESA's Virtual Archive and further extended to cover the requirements of the CEOS Pilot on Seismic Hazards. The GEP is gradually accessing Sentinel-1A data alongside with EO data from other space agencies with an interest in the geohazard exploitation platform. Further to this, the platform is intended to be available in the framework of the European Plate Observing System (EPOS) initiative, in order to help its users exploit EO data to support solid Earth monitoring and geophysical and geological analysis.

  10. Probabilistic Approaches for Multi-Hazard Risk Assessment of Structures and Systems

    NASA Astrophysics Data System (ADS)

    Kwag, Shinyoung

    Performance assessment of structures, systems, and components for multi-hazard scenarios has received significant attention in recent years. However, the concept of multi-hazard analysis is quite broad in nature and the focus of existing literature varies across a wide range of problems. In some cases, such studies focus on hazards that either occur simultaneously or are closely correlated with each other. For example, seismically induced flooding or seismically induced fires. In other cases, multi-hazard studies relate to hazards that are not dependent or correlated but have strong likelihood of occurrence at different times during the lifetime of a structure. The current approaches for risk assessment need enhancement to account for multi-hazard risks. It must be able to account for uncertainty propagation in a systems-level analysis, consider correlation among events or failure modes, and allow integration of newly available information from continually evolving simulation models, experimental observations, and field measurements. This dissertation presents a detailed study that proposes enhancements by incorporating Bayesian networks and Bayesian updating within a performance-based probabilistic framework. The performance-based framework allows propagation of risk as well as uncertainties in the risk estimates within a systems analysis. Unlike conventional risk assessment techniques such as a fault-tree analysis, a Bayesian network can account for statistical dependencies and correlations among events/hazards. The proposed approach is extended to develop a risk-informed framework for quantitative validation and verification of high fidelity system-level simulation tools. Validation of such simulations can be quite formidable within the context of a multi-hazard risk assessment in nuclear power plants. The efficiency of this approach lies in identification of critical events, components, and systems that contribute to the overall risk. Validation of any event or component on the critical path is relatively more important in a risk-informed environment. Significance of multi-hazard risk is also illustrated for uncorrelated hazards of earthquakes and high winds which may result in competing design objectives. It is also illustrated that the number of computationally intensive nonlinear simulations needed in performance-based risk assessment for external hazards can be significantly reduced by using the power of Bayesian updating in conjunction with the concept of equivalent limit-state.

  11. Multi-Hazard Advanced Seismic Probabilistic Risk Assessment Tools and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin L.; Bolisetti, Chandu; Veeraraghavan, Swetha

    Design of nuclear power plant (NPP) facilities to resist natural hazards has been a part of the regulatory process from the beginning of the NPP industry in the United States (US), but has evolved substantially over time. The original set of approaches and methods was entirely deterministic in nature and focused on a traditional engineering margins-based approach. However, over time probabilistic and risk-informed approaches were also developed and implemented in US Nuclear Regulatory Commission (NRC) guidance and regulation. A defense-in-depth framework has also been incorporated into US regulatory guidance over time. As a result, today, the US regulatory framework incorporatesmore » deterministic and probabilistic approaches for a range of different applications and for a range of natural hazard considerations. This framework will continue to evolve as a result of improved knowledge and newly identified regulatory needs and objectives, most notably in response to the NRC activities developed in response to the 2011 Fukushima accident in Japan. Although the US regulatory framework has continued to evolve over time, the tools, methods and data available to the US nuclear industry to meet the changing requirements have not kept pace. Notably, there is significant room for improvement in the tools and methods available for external event probabilistic risk assessment (PRA), which is the principal assessment approach used in risk-informed regulations and risk-informed decision-making applied to natural hazard assessment and design. This is particularly true if PRA is applied to natural hazards other than seismic loading. Development of a new set of tools and methods that incorporate current knowledge, modern best practice, and state-of-the-art computational resources would lead to more reliable assessment of facility risk and risk insights (e.g., the SSCs and accident sequences that are most risk-significant), with less uncertainty and reduced conservatisms.« less

  12. Application of seismic-refraction techniques to hydrologic studies

    USGS Publications Warehouse

    Haeni, F.P.

    1986-01-01

    During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations, and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high seismic-velocity surfaces, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits,are ideally suited for applying seismic-refraction methods. These methods allow the economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies.This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of this technique in hydrologic investigations and describes the planning, equipment, field procedures, and intrepretation techniques needed for this type of study.Examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.

  13. Application of seismic-refraction techniques to hydrologic studies

    USGS Publications Warehouse

    Haeni, F.P.

    1988-01-01

    During the past 30 years, seismic-refraction methods have been used extensively in petroleum, mineral, and engineering investigations and to some extent for hydrologic applications. Recent advances in equipment, sound sources, and computer interpretation techniques make seismic refraction a highly effective and economical means of obtaining subsurface data in hydrologic studies. Aquifers that can be defined by one or more high-seismic-velocity surface, such as (1) alluvial or glacial deposits in consolidated rock valleys, (2) limestone or sandstone underlain by metamorphic or igneous rock, or (3) saturated unconsolidated deposits overlain by unsaturated unconsolidated deposits, are ideally suited for seismic-refraction methods. These methods allow economical collection of subsurface data, provide the basis for more efficient collection of data by test drilling or aquifer tests, and result in improved hydrologic studies. This manual briefly reviews the basics of seismic-refraction theory and principles. It emphasizes the use of these techniques in hydrologic investigations and describes the planning, equipment, field procedures, and interpretation techniques needed for this type of study. Further-more, examples of the use of seismic-refraction techniques in a wide variety of hydrologic studies are presented.

  14. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga

    USGS Publications Warehouse

    Artemieva, I.M.; Thybo, H.; Kaban, M.K.; ,

    2006-01-01

    We present a summary of geophysical models of the subcrustal lithosphere of Europe. This includes the results from seismic (reflection and refraction profiles, P- and S-wave tomography, mantle anisotropy), gravity, thermal, electromagnetic, elastic and petrological studies of the lithospheric mantle. We discuss major tectonic processes as reflected in the lithospheric structure of Europe, from Precambrian terrane accretion and subduction to Phanerozoic rifting, volcanism, subduction and continent-continent collision. The differences in the lithospheric structure of Precambrian and Phanerozoic Europe, as illustrated by a comparative analysis of different geophysical data, are shown to have both a compositional and a thermal origin. We propose an integrated model of physical properties of the European subcrustal lithosphere, with emphasis on the depth intervals around 150 and 250 km. At these depths, seismic velocity models, constrained by body-and surface-wave continent-scale tomography, are compared with mantle temperatures and mantle gravity anomalies. This comparison provides a framework for discussion of the physical or chemical origin of the major lithospheric anomalies and their relation to large-scale tectonic processes, which have formed the present lithosphere of Europe. ?? The Geological Society of London 2006.

  15. Accelerated Seismic Release and Related Aspects of Seismicity Patterns on Earthquake Faults

    NASA Astrophysics Data System (ADS)

    Ben-Zion, Y.; Lyakhovsky, V.

    2001-05-01

    Observational studies indicate that large earthquakes are sometimes preceded by phases of accelerated seismic release (ASR) characterized by cumulative Benioff strain following a power law time-to-failure relation with a term (tf - t)m, where tf is the failure time of the large event and observed values of m are close to 0.3. We discuss properties of ASR and related aspects of seismicity patterns associated with several theoretical frameworks, with a focus on models of heterogeneous faults in continuum solids. Using stress and earthquake histories simulated by the model of Ben-Zion (1996) for a discrete fault with quenched heterogeneities in a 3D elastic half space, we show that large model earthquakes are associated with non-repeating cyclical establishment and destruction of long-range stress correlations, accompanied by non-stationary cumulative Benioff strain release. We then analyze results associated with a regional lithospheric model consisting of a seismogenic upper crust governed by the damage rheology of Lyakhovsky et al. (1997) over a viscoelastic substrate. We demonstrate analytically for a simplified 1D case that the employed damage rheology leads to a singular power law equation for strain proportional to (tf - t)-1/3, and a non-singular power law relation for cumulative Benioff strain proportional to (tf - t)1/3. A simple approximate generalization of the latter for regional cumulative Benioff strain is obtained by adding to the result a linear function of time representing a stationary background release. To go beyond the analytical expectations, we examine results generated by various realizations of the regional lithospheric model producing seismicity following the characteristic frequency-size statistics, Gutenberg-Richter power law distribution, and mode switching activity. We find that phases of ASR exist only when the seismicity preceding a given large event has broad frequency-size statistics. In such cases the simulated ASR phases can be fitted well by the singular analytical relation with m = -1/3, the non-singular equation with m = 0.2, and the generalized version of the latter including a linear term with m = 1/3. The obtained good fits with all three relations highlight the difficulty of deriving reliable information on functional forms and parameter values from such data sets. The activation process in the simulated ASR phases is found to be accommodated both by increasing rates of moderate events and increasing average event size, with the former starting a few years earlier than the latter. The lack of ASR in portions of the seismicity not having broad frequency-size statistics may explain why some large earthquakes are preceded by ASR and other are not.

  16. New seismic observation on the lithosphere and slab subduction beneath the Indo-Myanmar block: Implications for continent oblique subduction and transition to oceanic slab subduction

    NASA Astrophysics Data System (ADS)

    Jiang, M.; He, Y.; Zheng, T.; Mon, C. T.; Thant, M.; Hou, G.; Ai, Y.; Chen, Q. F.; Sein, K.

    2017-12-01

    The Indo-Myanmar block locates to the southern and southeastern of the Eastern Himalayan Syntax (EHS) and marks a torsional boundary of the collision between the Indian and Eurasian plates. There are two fundamental questions concerned on the tectonics of Indo-Myanmar block since the Cenozoic time. One is whether and how the oblique subduction is active in the deep; the other is where and how the transition from oceanic subduction and continental subduction operates. However, the two problems are still under heated debate mainly because the image of deep structure beneath this region is still blurring. Since June, 2016, we have executed the China-Myanmar Geophysical Survey in the Myanmar Orogen (CMGSMO) and deployed the first portable seismic array in Myanmar in cooperation with Myanmar Geosciences Society (MGS). This array contains 70 stations with a dense-deployed main profile across the Indo-Myanmar Range, Central Basin and Shan State Plateau along latitude of 22° and a 2-D network covering the Indo-Myanmar Range and the western part of the Central Basin. Based on the seismic data collected by the new array, we conducted the studies on the lithospheric structure using the routine surface wave tomography and receiver function CCP stacking. The preliminary results of surface wave tomography displayed a remarkable high seismic velocity fabric in the uppermost of mantle beneath the Indo-Myanmar Range and Central Basin, which was interpreted as the subducted slab eastward. Particularly, we found a low velocity bulk within the high-velocity slab, which was likely to be a slab window due to the slab tearing. The preliminary results of receiver function CCP stacking showed the obvious variations of the lithospheric structures from the Indo-Myanmar Range to the Central Basin and Shan State Plateau. The lithospheric structure beneath the Indo-Myanmar Range is more complex than that beneath the Central Basin and Shan State Plateau. Our resultant high-resolution images will provide important constrains for establishing the tectonic framework of Indian plate eastward subduction. This study is supported by the National Natural Science Foundation of China (grants 41490612, 41274002).

  17. BurnMan: Towards a multidisciplinary toolkit for reproducible deep Earth science

    NASA Astrophysics Data System (ADS)

    Myhill, R.; Cottaar, S.; Heister, T.; Rose, I.; Unterborn, C. T.; Dannberg, J.; Martin-Short, R.

    2016-12-01

    BurnMan (www.burnman.org) is an open-source toolbox to compute thermodynamic and thermoelastic properties as a function of pressure and temperature using published mineral physical parameters and equations-of-state. The framework is user-friendly, written in Python, and modular, allowing the user to implement their own equations of state, endmember and solution model libraries, geotherms, and averaging schemes. Here we introduce various new modules, which can be used to: Fit thermodynamic variables to data from high pressure static and shock wave experiments, Calculate equilibrium assemblages given a bulk composition, pressure and temperature, Calculate chemical potentials and oxygen fugacities for given assemblages Compute 3D synthetic seismic models using output from geodynamic models and compare these results with global seismic tomographic models, Create input files for synthetic seismogram codes. Users can contribute scripts that reproduce the results from peer-reviewed articles and practical demonstrations (e.g. Cottaar et al., 2014).

  18. On the powerful use of simulations in the quake-catcher network to efficiently position low-cost earthquake sensors

    USGS Publications Warehouse

    Benson, K.; Estrada, T.; Taufer, M.; Lawrence, J.; Cochran, E.

    2011-01-01

    The Quake-Catcher Network (QCN) uses low-cost sensors connected to volunteer computers across the world to monitor seismic events. The location and density of these sensors' placement can impact the accuracy of the event detection. Because testing different special arrangements of new sensors could disrupt the currently active project, this would best be accomplished in a simulated environment. This paper presents an accurate and efficient framework for simulating the low cost QCN sensors and identifying their most effective locations and densities. Results presented show how our simulations are reliable tools to study diverse scenarios under different geographical and infrastructural constraints. ?? 2011 IEEE.

  19. AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times

    NASA Astrophysics Data System (ADS)

    Lou, X.; van der Lee, S.; Lloyd, S.

    2013-12-01

    Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.

  20. Mapping the rheology of the Central Chile subduction zone with aftershocks

    NASA Astrophysics Data System (ADS)

    Frank, William B.; Poli, Piero; Perfettini, Hugo

    2017-06-01

    The postseismic deformation following a large (Mw >7) earthquake is expressed both seismically and aseismically. Recent studies have appealed to a model that suggests that the aseismic slip on the plate interface following the mainshock can be the driving factor in aftershock sequences, reproducing both the geodetic (afterslip) and seismic (aftershocks) observables of postseismic deformation. Exploiting this model, we demonstrate how a dense catalog of aftershocks following the 2015 Mw 8.3 Illapel earthquake in Central Chile can constrain the frictional and rheological properties of the creeping regions of the subduction interface. We first expand the aftershock catalog via a 19 month continuous matched-filter search and highlight the log-time expansion of seismicity following the mainshock, suggestive of afterslip as the main driver of aftershock activity. We then show how the time history of aftershocks can constrain the temporal evolution of afterslip. Finally, we use our dense aftershock catalog to estimate the rate and state rheological parameter (a - b)σ as a function of depth and demonstrate that this low value is compatible either with a nearly velocity-neutral friction (a≈b) in the regions of the megathrust that host afterslip, or an elevated pore fluid pressure (low effective normal stress σ) along the plate interface. Our results present the first snapshot of rheology in depth together with the evolution of the tectonic stressing rate along a plate boundary. The framework described here can be generalized to any tectonic context and provides a novel way to constrain the frictional properties and loading conditions of active faults.

  1. Explosion Source Characteristics in Frozen and Unfrozen Rock

    DTIC Science & Technology

    2008-09-30

    Alaska in August 2006 to provide empirical data on seismically -estimated yield from explosions it frozen rock Iaboratory studies have demonstrated that...can alter seismic yield. Central Alaska has abrupt lateral boundaries in discontinuous permafrost, and we detonated 3 shots in frozen, saturated rock...SUBJECT TERMS Seismic attenuation, Seismic propagation, Seismic characterization 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME

  2. A Numerical and Theoretical Study of Seismic Wave Diffraction in Complex Geologic Structure

    DTIC Science & Technology

    1989-04-14

    element methods for analyzing linear and nonlinear seismic effects in the surficial geologies relevant to several Air Force missions. The second...exact solution evaluated here indicates that edge-diffracted seismic wave fields calculated by discrete numerical methods probably exhibits significant...study is to demonstrate and validate some discrete numerical methods essential for analyzing linear and nonlinear seismic effects in the surficial

  3. Active seismic experiment

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.; Watkins, J. S.; Talwani, P.

    1972-01-01

    The Apollo 16 active seismic experiment (ASE) was designed to generate and monitor seismic waves for the study of the lunar near-surface structure. Several seismic energy sources are used: an astronaut-activated thumper device, a mortar package that contains rocket-launched grenades, and the impulse produced by the lunar module ascent. Analysis of some seismic signals recorded by the ASE has provided data concerning the near-surface structure at the Descartes landing site. Two compressional seismic velocities have so far been recognized in the seismic data. The deployment of the ASE is described, and the significant results obtained are discussed.

  4. VERCE: a productive e-Infrastructure and e-Science environment for data-intensive seismology research

    NASA Astrophysics Data System (ADS)

    Vilotte, Jean-Pierre; Atkinson, Malcolm; Carpené, Michele; Casarotti, Emanuele; Frank, Anton; Igel, Heiner; Rietbrock, Andreas; Schwichtenberg, Horst; Spinuso, Alessandro

    2016-04-01

    Seismology pioneers global and open-data access -- with internationally approved data, metadata and exchange standards facilitated worldwide by the Federation of Digital Seismic Networks (FDSN) and in Europe the European Integrated Data Archives (EIDA). The growing wealth of data generated by dense observation and monitoring systems and recent advances in seismic wave simulation capabilities induces a change in paradigm. Data-intensive seismology research requires a new holistic approach combining scalable high-performance wave simulation codes and statistical data analysis methods, and integrating distributed data and computing resources. The European E-Infrastructure project "Virtual Earthquake and seismology Research Community e-science environment in Europe" (VERCE) pioneers the federation of autonomous organisations providing data and computing resources, together with a comprehensive, integrated and operational virtual research environment (VRE) and E-infrastructure devoted to the full path of data use in a research-driven context. VERCE delivers to a broad base of seismology researchers in Europe easily used high-performance full waveform simulations and misfit calculations, together with a data-intensive framework for the collaborative development of innovative statistical data analysis methods, all of which were previously only accessible to a small number of well-resourced groups. It balances flexibility with new integrated capabilities to provide a fluent path from research innovation to production. As such, VERCE is a major contribution to the implementation phase of the ``European Plate Observatory System'' (EPOS), the ESFRI initiative of the solid-Earth community. The VRE meets a range of seismic research needs by eliminating chores and technical difficulties to allow users to focus on their research questions. It empowers researchers to harvest the new opportunities provided by well-established and mature high-performance wave simulation codes of the community. It enables active researchers to invent and refine scalable methods for innovative statistical analysis of seismic waveforms in a wide range of application contexts. The VRE paves the way towards a flexible shared framework for seismic waveform inversion, lowering the barriers to uptake for the next generation of researchers. The VRE can be accessed through the science gateway that puts together computational and data-intensive research into the same framework, integrating multiple data sources and services. It provides a context for task-oriented and data-streaming workflows, and maps user actions to the full gamut of the federated platform resources and procurement policies, activating the necessary behind-the-scene automation and transformation. The platform manages and produces domain metadata, coupling them with the provenance information describing the relationships and the dependencies, which characterise the whole workflow process. This dynamic knowledge base, can be explored for validation purposes via a graphical interface and a web API. Moreover, it fosters the assisted selection and re-use of the data within each phase of the scientific analysis. These phases can be identified as Simulation, Data Access, Preprocessing, Misfit and data processing, and are presented to the users of the gateway as dedicated and interactive workspaces. By enabling researchers to share results and provenance information, VERCE steers open-science behaviour, allowing researchers to discover and build on prior work and thereby to progress faster. A key asset is the agile strategy that VERCE deployed in a multi-organisational context, engaging seismologists, data scientists, ICT researchers, HPC and data resource providers, system administrators into short-lived tasks each with a goal that is a seismology priority, and intimately coupling research thinking with technical innovation. This changes the focus from HPC production environments and community data services to user-focused scenario, avoiding wasteful bouts of technology centricity where technologists collect requirements and develop a system that is not used because the ideas of the planned users have moved on. As such the technologies and concepts developed in VERCE are relevant to many other disciplines in computational and data driven Earth Sciences and can provide the key technologies for a European wide computational and data intensive framework in Earth Sciences.

  5. Crustal seismicity associated to rpid surface uplift at Laguna del Maule Volcanic Complex, Southern Volcanic Zone of the Andes

    NASA Astrophysics Data System (ADS)

    Cardona, Carlos; Tassara, Andrés; Gil-Cruz, Fernando; Lara, Luis; Morales, Sergio; Kohler, Paulina; Franco, Luis

    2018-03-01

    Laguna del Maule Volcanic Complex (LMVC, Southern Andes of Chile) has been experiencing large rates (ca. 30 cm/yr) of surface uplift as detected since 2008 by satellite geodetic measurements. Previous works have modeled the source of this deformation as an inflating rectangular sub-horizontal sill underlying LMVC at 5 km depth, which is supposedly related to an active process of magmatic replenishment of a shallow silicic reservoir. However little is known about the tectonic context on which this activity is taking place, particularly its relation with crustal seismicity that could help understanding and monitoring the current deformation process. Here we present the first detailed characterization of the seismic activity taking place at LMVC and integrate it with structural data acquired in the field in order to illuminate the possible connection between the ongoing process of surface uplift and the activation of crustal faults. Our main finding is the recognition of repetitive volcano-tectonic (VT) seismic swarms that occur periodically between 2011 and 2014 near the SW corner of the sill modeled by InSAR studies. A cross-correlation analysis of the waveforms recorded for these VT events allows identifying three different seismic families. Families F1 and F3 share some common features in the stacked waveform and its locations, which markedly differ from those of family F2. Swarms belonging to this later family are more energetic and its energy was increasing since 2011 to a peak in January 2013, which coincide with maximum vertical velocities detected by local GPS stations. This points to a common process relating both phenomena. The location of VT seismic swarms roughly coincides with the intersection of a NE-SW lineament with a WNW-ESE lineament. The former shows clear field evidences of dextral strike-slip that are fully consistent with one nodal plane of focal mechanism for well-recorded F2 events. The conjugate nodal plane of these focal mechanisms could coincide with the WNW-ESE lineament, for which our field reconnaissance suggests a dominant normal motion. Events belonging to families F1 and F3 are also dominantly strike-slip but with some mixture with thrust and normal components. Our results, in conjunction with results of previous authors, suggest a complex mechanical interaction between the arrangement of crustal faults forming the structural framework on which the magmatic plumbing system of LMVC is emplaced and the inflating source at depth.

  6. Pattern Informatics Approach to Earthquake Forecasting in 3D

    NASA Astrophysics Data System (ADS)

    Toya, Y.; Tiampo, K. F.; Rundle, J. B.; Chen, C.; Li, H.; Klein, W.

    2009-05-01

    Natural seismicity is correlated across multiple spatial and temporal scales, but correlations in seismicity prior to a large earthquake are locally subtle (e.g. seismic quiescence) and often prominent in broad scale (e.g., seismic activation), resulting in local and regional seismicity patterns, e.g. a Mogi's donut. Recognizing that patterns in seismicity rate are reflecting the regional dynamics of the directly unobservable crustal stresses, the Pattern Informatics (PI) approach was introduced by Tiampo et al. in 2002 [Europhys. Lett., 60 (3), 481-487,] Rundle et al., 2002 [PNAS 99, suppl. 1, 2514-2521.] In this study, we expand the PI approach to forecasting earthquakes into the third, or vertical dimension, and illustrate its further improvement in the forecasting performance through case studies of both natural and synthetic data. The PI characterizes rapidly evolving spatio-temporal seismicity patterns as angular drifts of a unit state vector in a high dimensional correlation space, and systematically identifies anomalous shifts in seismic activity with respect to the regional background. 3D PI analysis is particularly advantageous over 2D analysis in resolving vertically overlapped seismicity anomalies in a highly complex tectonic environment. Case studies will help to illustrate some important properties of the PI forecasting tool. [Submitted to: Concurrency and Computation: Practice and Experience, Wiley, Special Issue: ACES2008.

  7. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; De Oliveira, Paulo H S; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Do Nascimento, Aderson F

    2014-12-01

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  8. Seismogenic faulting in the Meruoca granite, NE Brazil, consistent with a local weak fracture zone.

    PubMed

    Moura, Ana Catarina A; Oliveira, Paulo H S DE; Ferreira, Joaquim M; Bezerra, Francisco H R; Fuck, Reinhardt A; Nascimento, Aderson F DO

    2014-10-24

    A sequence of earthquakes occurred in 2008 in the Meruoca granitic pluton, located in the northwestern part of the Borborema Province, NE Brazil. A seismological study defined the seismic activity occurring along the seismically-defined Riacho Fundo fault, a 081° striking, 8 km deep structure. The objective of this study was to analyze the correlation between this seismic activity and geological structures in the Meruoca granite. We carried out geological mapping in the epicentral area, analyzed the mineralogy of fault rocks, and compared the seismically-defined Riacho Fundo fault with geological data. We concluded that the seismically-defined fault coincides with ∼E-W-striking faults observed at outcrop scale and a swarm of Mesozoic basalt dikes. We propose that seismicity reactivated brittle structures in the Meruoca granite. Our study highlights the importance of geological mapping and mineralogical analysis in order to establish the relationships between geological structures and seismicity at a given area.

  9. Preliminary seismic evaluation and ranking of bridges along I-24 in Western Kentucky.

    DOT National Transportation Integrated Search

    2006-09-01

    This study represents one of the Seismic Evaluation of I-24 Bridges investigative series. The focus is on preliminary seismic evaluation and ranking of bridges according to their seismic vulnerability. Bridges along I-24 are considered in this invest...

  10. Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada

    NASA Astrophysics Data System (ADS)

    Malehmir, R.; Schmitt, D. R.; Chan, J.

    2014-12-01

    Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic

  11. Seismic imaging and hydrogeologic characterization of the Potomac Formation in northern New Castle County, Delaware

    NASA Astrophysics Data System (ADS)

    Zullo, Claudia Cristina

    Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to short distances, contrary to correlations in previous studies that have indicated connection of sands at distances of at least 3 km. The results highlight the importance of integrating multiple sources of geologic information for the interpretation of the stratigraphic architecture of non-marine sediments, and the value of roadway-based land-streamer seismic data for the interpretation of near-surface (less than 300-m-depth) aquifer sand characteristics in developed areas.

  12. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  13. Lunar seismic profiling experiment natural activity study

    NASA Technical Reports Server (NTRS)

    Duennebier, F. K.

    1976-01-01

    The Lunar Seismic Experiment Natural Activity Study has provided a unique opportunity to study the high frequency (4-20 Hz) portion to the seismic spectrum on the moon. The data obtained from the LSPE was studied to evaluate the origin and importance of the process that generates thermal moonquakes and the characteristics of the seismic scattering zone at the lunar surface. The detection of thermal moonquakes by the LSPE array made it possible to locate the sources of many events and determine that they are definitely not generated by astronaut activities but are the result of a natural process on the moon. The propagation of seismic waves in the near-surface layers was studied in a qualitative manner. In the absence of an adequate theoretical model for the propagation of seismic waves in the moon, it is not possible to assign a depth for the scattering layer. The LSPE data does define several parameters which must be satisfied by any model developed in the future.

  14. Seismic reflection and vibracoring studies of the continental shelf offshore central and western Long Island, New York

    USGS Publications Warehouse

    Kelly, W.M.; Albanese, J.R.; Coch, N.K.; Harsch, A.A.

    1999-01-01

    The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughs is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic units identified are an upper, generally oxidized, nearshore facies, an underlying fine- to medium-sand and silty-clay unit considered to be an estuarine facies, and a lower, coarse-grained deeply oxidized, cross-laminated pre-Holocene unit. Grain-size analysis shows that medium- to fine-grained sand makes up most (68-99%) of the surficial sediments. Gravel exists in trace amounts up to 19%. Silt ranges between 3% and 42% and clay ranges from 1% to 10%.The ridge-and-swale topography on the continental shelf south of Fire Island, New York, is characterized by northeast-trending linear shoals that are shore attached and shore oblique on the inner shelf and isolated and shore parallel on the middle shelf. High-resolution seismic reflection profiles show that the ridges and swales occur independent of, and are not controlled by, the presence of internal structures (for example, filled tidal inlet channels, paleobarrier strata) or underlying structure (for example, high-relief Cretaceous unconformity). Grab samples of surficial sediments on the shelf south of Fire Island average 98% sand. Locally, benthic fauna increase silt and clay content through fecal pellet production or increase the content of gravel-size material by contribution of their fragmented shell remains. Surficial sand on the ridges is unimodal at 0.33 mm (medium sand, about 50 mesh), and surficial sand in troughts is bimodal at 0.33 mm and 0.15 mm (fine sand, about 100 mesh). In addition to seismic studies, 26 vibracores were recovered from the continental shelf in state and federal waters from south of Rockaway and Long Beaches, Long Island, New York. Stratigraphic and sedimentological data gleaned from these cores were used to outline the geologic framework in the study area. A variety of sedimentary features were noted in the cores, including burrow-mottled sections of sand in a finer silty-sand, rhythmic lamination of sand and silty-sand that reflect cyclic changes in sediment transport, layers of shell hash and shells that probably represent tempestites, and changes from dark color to light color in the sediments that probably represent changes in the oxidation-reduction conditions in the area with time. The stratigraphic un

  15. Foundations for a multiscale collaborative Earth model

    NASA Astrophysics Data System (ADS)

    Afanasiev, Michael; Peter, Daniel; Sager, Korbinian; Simutė, Saulė; Ermert, Laura; Krischer, Lion; Fichtner, Andreas

    2016-01-01

    We present a computational framework for the assimilation of local to global seismic data into a consistent model describing Earth structure on all seismically accessible scales. This Collaborative Seismic Earth Model (CSEM) is designed to meet the following requirements: (i) Flexible geometric parametrization, capable of capturing topography and bathymetry, as well as all aspects of potentially resolvable structure, including small-scale heterogeneities and deformations of internal discontinuities. (ii) Independence of any particular wave equation solver, in order to enable the combination of inversion techniques suitable for different types of seismic data. (iii) Physical parametrization that allows for full anisotropy and for variations in attenuation and density. While not all of these parameters are always resolvable, the assimilation of data that constrain any parameter subset should be possible. (iv) Ability to accommodate successive refinements through the incorporation of updates on any scale as new data or inversion techniques become available. (v) Enable collaborative Earth model construction. The structure of the initial CSEM is represented on a variable-resolution tetrahedral mesh. It is assembled from a long-wavelength 3-D global model into which several regional-scale tomographies are embedded. We illustrate the CSEM workflow of successive updating with two examples from Japan and the Western Mediterranean, where we constrain smaller scale structure using full-waveform inversion. Furthermore, we demonstrate the ability of the CSEM to act as a vehicle for the combination of different tomographic techniques with a joint full-waveform and traveltime ray tomography of Europe. This combination broadens the exploitable frequency range of the individual techniques, thereby improving resolution. We perform two iterations of a whole-Earth full-waveform inversion using a long-period reference data set from 225 globally recorded earthquakes. At this early stage of the CSEM development, the broad global updates mostly act to remove artefacts from the assembly of the initial CSEM. During the future evolution of the CSEM, the reference data set will be used to account for the influence of small-scale refinements on large-scale global structure. The CSEM as a computational framework is intended to help bridging the gap between local, regional and global tomography, and to contribute to the development of a global multiscale Earth model. While the current construction serves as a first proof of concept, future refinements and additions will require community involvement, which is welcome at this stage already.

  16. Adding seismic broadband analysis to characterize Andean backarc seismicity in Argentina

    NASA Astrophysics Data System (ADS)

    Alvarado, P.; Giuliano, A.; Beck, S.; Zandt, G.

    2007-05-01

    Characterization of the highly seismically active Andean backarc is crucial for assessment of earthquake hazards in western Argentina. Moderate-to-large crustal earthquakes have caused several deaths, damage and drastic economic consequences in Argentinean history. We have studied the Andean backarc crust between 30°S and 36°S using seismic broadband data available from a previous ("the CHARGE") IRIS-PASSCAL experiment. We collected more than 12 terabytes of continuous seismic data from 22 broadband instruments deployed across Chile and Argentina during 1.5 years. Using free software we modeled full regional broadband waveforms and obtained seismic moment tensor inversions of crustal earthquakes testing for the best focal depth for each event. We also mapped differences in the Andean backarc crustal structure and found a clear correlation with different types of crustal seismicity (i.e. focal depths, focal mechanisms, magnitudes and frequencies of occurrence) and previously mapped terrane boundaries. We now plan to use the same methodology to study other regions in Argentina using near-real time broadband data available from the national seismic (INPRES) network and global seismic networks operating in the region. We will re-design the national seismic network to optimize short-period and broadband seismic station coverage for different network purposes. This work is an international effort that involves researchers and students from universities and national government agencies with the goal of providing more information about earthquake hazards in western Argentina.

  17. Integrated multi-parameters Probabilistic Seismic Landslide Hazard Analysis (PSLHA): the case study of Ischia island, Italy

    NASA Astrophysics Data System (ADS)

    Caccavale, Mauro; Matano, Fabio; Sacchi, Marco; Mazzola, Salvatore; Somma, Renato; Troise, Claudia; De Natale, Giuseppe

    2014-05-01

    The Ischia island is a large, complex, partly submerged, active volcanic field located about 20 km east to the Campi Flegrei, a major active volcano-tectonic area near Naples. The island is morphologically characterized in its central part by the resurgent block of Mt. Epomeo, controlled by NW-SE and NE-SW trending fault systems, by mountain stream basin with high relief energy and by a heterogeneous coastline with alternation of beach and tuff/lava cliffs in a continuous reshape due to the weather and sea erosion. The volcano-tectonic process is a main factor for slope stability, as it produces seismic activity and generated steep slopes in volcanic deposits (lava, tuff, pumice and ash layers) characterized by variable strength. In the Campi Flegrei and surrounding areas the possible occurrence of a moderate/large seismic event represents a serious threat for the inhabitants, for the infrastructures as well as for the environment. The most relevant seismic sources for Ischia are represented by the Campi Flegrei caldera and a 5 km long fault located below the island north coast. However those sources are difficult to constrain. The first one due to the on-shore and off-shore extension not yet completely defined. The second characterized only by few large historical events is difficult to parameterize in the framework of probabilistic hazard approach. The high population density, the presence of many infrastructures and the more relevant archaeological sites associated with the natural and artistic values, makes this area a strategic natural laboratory to develop new methodologies. Moreover Ischia represents the only sector, in the Campi Flegrei area, with documented historical landslides originated by earthquake, allowing for the possibility of testing the adequacy and stability of the method. In the framework of the Italian project MON.I.C.A (infrastructural coastlines monitoring) an innovative and dedicated probabilistic methodology has been applied to identify the areas with higher susceptibility of landslide occurrence due to the seismic effect. The (PSLHA) combines the probability of exceedance maps for different GM parameters with the geological and geomorphological information, in terms of critical acceleration and dynamic stability factor. Generally the maps are evaluated for Peak Ground Acceleration, Velocity or Intensity, are well related with anthropic infrastructures (e.g. streets, building, etc.). Each ground motion parameter represents a different aspect in the hazard and has a different correlation with the generation of possible damages. Many works pointed out that other GM like Arias and Housner intensity and the absolute displacement could represent a better choice to analyse for example the cliffs stability. The selection of the GM parameter is of crucial importance to obtain the most useful hazard maps. However in the last decades different Ground Motion Prediction Equations for a new set of GM parameters have been published. Based on this information a series of landslide hazard maps can be produced. The new maps will lead to the identification of areas with highest probability of landslide induced by an earthquake. In a strategic site like Ischia this new methodologies will represent an innovative and advanced tool for the landslide hazard mitigation.

  18. Georgia-Armenia Transboarder seismicity studies

    NASA Astrophysics Data System (ADS)

    Godoladze, T.; Tvaradze, N.; Javakishvili, Z.; Elashvili, M.; Durgaryan, R.; Arakelyan, A.; Gevorgyan, M.

    2012-12-01

    In the presented study we performed Comprehensive seismic analyses for the Armenian-Georgian transboarder active seismic fault starting on Armenian territory, cutting the state boarder and having possibly northern termination on Adjara-Triealeti frontal structure in Georgia. In the scope of International projects: ISTC A-1418 "Open network of scientific Centers for mitigation risk of natural hazards in the Southern Caucasus and Central Asia" and NATO SfP- 983284 Project "Caucasus Seismic Emergency Response" in Akhalkalaki (Georgia) seismic center, Regional Summer school trainings and intensive filed investigations were conducted. Main goal was multidisciplinary study of the Javakheti fault structure and better understanding seismicity of the area. Young scientists from Turkey, Armenia, Azerbaijan and Georgia were participated in the deployment of temporal seismic network in order to monitor seisimity on the Javakheti highland and particularly delineate fault scarf and identify active seismic structures. In the scope of international collaboration the common seismic database has been created in the southern Caucasus and collected data from the field works is available now online. Javakheti highland, which is located in the central part of the Caucasus, belongs to the structure of the lesser Caucasus and represents a history of neotectonic volcanism existed in the area. Jasvakheti highland is seismicalu active region devastating from several severe earthquakes(1088, 1283, 1899…). Hypocenters located during analogue network were highly scattered and did not describe real pattern of seismicity of the highland. We relocated hypocenters of the region and improved local velocity model. The hypocenters derived from recently deployed local seismic network in the Javakheti highland, clearly identified seismically active structures. Fault plane solutions of analogue data of the Soviet times have been carefully analyzed and examined. Moment tensor inversion were preformed for the recent moderate size earthquakes and the results are in an agreement with paleo-trenching data showing normal fault mechanism on the south and strake slip on the northern edge of the fault. Local seismic tomography of Javakheti area has been performed in order to improve 3D structure of the region.

  19. The theory and method of variable frequency directional seismic wave under the complex geologic conditions

    NASA Astrophysics Data System (ADS)

    Jiang, T.; Yue, Y.

    2017-12-01

    It is well known that the mono-frequency directional seismic wave technology can concentrate seismic waves into a beam. However, little work on the method and effect of variable frequency directional seismic wave under complex geological conditions have been done .We studied the variable frequency directional wave theory in several aspects. Firstly, we studied the relation between directional parameters and the direction of the main beam. Secondly, we analyzed the parameters that affect the beam width of main beam significantly, such as spacing of vibrator, wavelet dominant frequency, and number of vibrator. In addition, we will study different characteristics of variable frequency directional seismic wave in typical velocity models. In order to examine the propagation characteristics of directional seismic wave, we designed appropriate parameters according to the character of direction parameters, which is capable to enhance the energy of the main beam direction. Further study on directional seismic wave was discussed in the viewpoint of power spectral. The results indicate that the energy intensity of main beam direction increased 2 to 6 times for a multi-ore body velocity model. It showed us that the variable frequency directional seismic technology provided an effective way to strengthen the target signals under complex geological conditions. For concave interface model, we introduced complicated directional seismic technology which supports multiple main beams to obtain high quality data. Finally, we applied the 9-element variable frequency directional seismic wave technology to process the raw data acquired in a oil-shale exploration area. The results show that the depth of exploration increased 4 times with directional seismic wave method. Based on the above analysis, we draw the conclusion that the variable frequency directional seismic wave technology can improve the target signals of different geologic conditions and increase exploration depth with little cost. Due to inconvenience of hydraulic vibrators in complicated surface area, we suggest that the combination of high frequency portable vibrator and variable frequency directional seismic wave method is an alternative technology to increase depth of exploration or prospecting.

  20. Redistribution Principle Approach for Evaluation of Seismic Active Earth Pressure Behind Retaining Wall

    NASA Astrophysics Data System (ADS)

    Maskar, A. D.; Madhekar, S. N.; Phatak, D. R.

    2017-11-01

    The knowledge of seismic active earth pressure behind the rigid retaining wall is very essential in the design of retaining wall in earthquake prone regions. Commonly used Mononobe-Okabe (MO) method considers pseudo-static approach. Recently there are many pseudo-dynamic methods used to evaluate the seismic earth pressure. However, available pseudo-static and pseudo-dynamic methods do not incorporate the effect of wall movement on the earth pressure distribution. Dubrova (Interaction between soils and structures, Rechnoi Transport, Moscow, 1963) was the first, who considered such effect and till date, it is used for cohesionless soil, without considering the effect of seismicity. In this paper, Dubrova's model based on redistribution principle, considering the seismic effect has been developed. It is further used to compute the distribution of seismic active earth pressure, in a more realistic manner, by considering the effect of wall movement on the earth pressure, as it is displacement based method. The effects of a wide range of parameters like soil friction angle (ϕ), wall friction angle (δ), horizontal and vertical seismic acceleration coefficients (kh and kv); on seismic active earth pressure (Kae) have been studied. Results are presented for comparison of pseudo-static and pseudo-dynamic methods, to highlight the realistic, non-linearity of seismic active earth pressure distribution. The current study results in the variation of Kae with kh in the same manner as that of MO method and Choudhury and Nimbalkar (Geotech Geol Eng 24(5):1103-1113, 2006) study. To increase in ϕ, there is a reduction in static as well as seismic earth pressure. Also, by keeping constant ϕ value, as kh increases from 0 to 0.3, earth pressure increases; whereas as δ increases, active earth pressure decreases. The seismic active earth pressure coefficient (Kae) obtained from the present study is approximately same as that obtained by previous researchers. Though seismic earth pressure obtained by pseudo-dynamic approach and seismic earth pressure obtained by redistribution principle have different background of formulation, the final earth pressure distribution is approximately same.

  1. Source-Type Identification Analysis Using Regional Seismic Moment Tensors

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Dreger, D. S.; Ford, S. R.; Walter, W. R.

    2012-12-01

    Waveform inversion to determine the seismic moment tensor is a standard approach in determining the source mechanism of natural and manmade seismicity, and may be used to identify, or discriminate different types of seismic sources. The successful applications of the regional moment tensor method at the Nevada Test Site (NTS) and the 2006 and 2009 North Korean nuclear tests (Ford et al., 2009a, 2009b, 2010) show that the method is robust and capable for source-type discrimination at regional distances. The well-separated populations of explosions, earthquakes and collapses on a Hudson et al., (1989) source-type diagram enables source-type discrimination; however the question remains whether or not the separation of events is universal in other regions, where we have limited station coverage and knowledge of Earth structure. Ford et al., (2012) have shown that combining regional waveform data and P-wave first motions removes the CLVD-isotropic tradeoff and uniquely discriminating the 2009 North Korean test as an explosion. Therefore, including additional constraints from regional and teleseismic P-wave first motions enables source-type discrimination at regions with limited station coverage. We present moment tensor analysis of earthquakes and explosions (M6) from Lop Nor and Semipalatinsk test sites for station paths crossing Kazakhstan and Western China. We also present analyses of smaller events from industrial sites. In these sparse coverage situations we combine regional long-period waveforms, and high-frequency P-wave polarity from the same stations, as well as from teleseismic arrays to constrain the source type. Discrimination capability with respect to velocity model and station coverage is examined, and additionally we investigate the velocity model dependence of vanishing free-surface traction effects on seismic moment tensor inversion of shallow sources and recovery of explosive scalar moment. Our synthetic data tests indicate that biases in scalar seismic moment and discrimination for shallow sources are small and can be understood in a systematic manner. We are presently investigating the frequency dependence of vanishing traction of a very shallow (10m depth) M2+ chemical explosion recorded at several kilometer distances, and preliminary results indicate at the typical frequency passband we employ the bias does not affect our ability to retrieve the correct source mechanism but may affect the retrieval of the correct scalar seismic moment. Finally, we assess discrimination capability in a composite P-value statistical framework.

  2. Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering

    NASA Astrophysics Data System (ADS)

    Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo

    2011-01-01

    The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.

  3. High-resolution seismic imaging of the Kevitsa mafic-ultramafic Cu-Ni-PGE hosted intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Malehmir, Alireza; Koivisto, Emilia; Wjins, Chris; Tryggvason, Ari; Juhlin, Christopher

    2014-05-01

    Kevitsa, in northern Finland, is a large nickel/copper ore body hosted by a massive mafic-ultramafic intrusion with measured and indicated resources of 240 million tons (cutoff 0.1%) grading 0.30% Ni and 0.41% Cu. Mining started in 2012 with an open pit that will extend down to about 550-600 m depth. The expected mine life is more than 20 years. Numerous boreholes are available in the area, but the majority of them are shallow and do not provide a comprehensive understanding of the dimensions of the intrusion. However, a number of boreholes do penetrate the basal contact of the intrusion. Most of these are also shallow and concentrated at the edge of the intrusion. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area, but also a better understanding of the geology. Exact mapping of the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu than the disseminated mineralization away from the contact. With the objective of better characterizing the intrusion, a series of 2D profiles were acquired followed by a 3D reflection survey that covered an area of about 3 km by 3 km. Even though the geology is complex and the seismic P-wave velocity ranges between 5 to 8 km/s, conventional processing results show gently- to steeply-dipping reflections from depths of approximately 2 km to as shallow as 100 m. Many of these reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Correlations between the 3D surface seismic data and VSP data, based upon time shifts or phase changes along the reflections, support the interpretation that numerous faults are imaged in the volume. Some of these faults cross the planned open-pit mine at depths of about 300-500 m, and it is, therefore, critical to map them for mine planning. The seismic 3D volume better represents the geology around the mine and in the vicinity of the known deposit, while the 2D seismic profiles were designed to provide information on larger-scale structures in the area. Both the 2D and 3D seismic data were used to create a 3D lithological and structural model of the entire complex. Information on the dimensions of the ore-bearing Kevitsa intrusion can be used for more effective exploration in the area. The base of the intrusion is particularly clear in the northern and western sectors of the seismic data. Toward the east, the base is mostly defined by disruption of the reflectors internal to the intrusion. Recent tests using prestack migration methods on the 3D data show partial improvements in the image, especially at shallow depths. 3D seismic tomography has also been performed and the results indicate low velocity zones crossing the open pit that can be interpreted as zones of weakness. Future studies will focus on using the tomography results as the input velocity field for prestack depth migration of the 3D data and also improving the 3D geological model of the study area. Acknowledgments: FQM, GTK, HiSeis and Vibrometric

  4. Seismic anisotropy of the crystalline crust: What does it tell us?

    USGS Publications Warehouse

    Rabbel, Wolfgang; Mooney, Walter D.

    1996-01-01

    The study of the directional dependence of seismic velocities (seismic anisotropy) promises more refined insight into mineral composition and physical properties of the crystalline crust than conventional deep seismic refraction or reflection profiles providing average values of P-and S-wave velocities. The alignment of specific minerals by ductile rock deformation, for instance, causes specific types of seismic anisotropy which can be identified by appropriate field measurements.Vice versa, the determination of anisotropy can help to discriminate between different rock candidates in the deep crust. Seismic field measurements at the Continental Deep Drilling Site (KTB, S Germany) are shown as an example that anisotropy has to be considered in crustal studies. At the KTB, the dependence of seismic velocity on the direction of wave propagation in situ was found to be compatible with the texture, composition and fracture density of drilled crustal rocks.

  5. Seismic site survey investigations in urban environments: The case of the underground metro project in Copenhagen, Denmark.

    NASA Astrophysics Data System (ADS)

    Martínez, K.; Mendoza, J. A.; Colberg-Larsen, J.; Ploug, C.

    2009-05-01

    Near surface geophysics applications are gaining more widespread use in geotechnical and engineering projects. The development of data acquisition, processing tools and interpretation methods have optimized survey time, reduced logistics costs and increase results reliability of seismic surveys during the last decades. However, the use of wide-scale geophysical methods under urban environments continues to face great challenges due to multiple noise sources and obstacles inherent to cities. A seismic pre-investigation was conducted to investigate the feasibility of using seismic methods to obtain information about the subsurface layer locations and media properties in Copenhagen. Such information is needed for hydrological, geotechnical and groundwater modeling related to the Cityringen underground metro project. The pre-investigation objectives were to validate methods in an urban environment and optimize field survey procedures, processing and interpretation methods in urban settings in the event of further seismic investigations. The geological setting at the survey site is characterized by several interlaced layers of clay, till and sand. These layers are found unevenly distributed throughout the city and present varying thickness, overlaying several different unit types of limestone at shallow depths. Specific results objectives were to map the bedrock surface, ascertain a structural geological framework and investigate bedrock media properties relevant to the construction design. The seismic test consisted of a combined seismic reflection and refraction analyses of a profile line conducted along an approximately 1400 m section in the northern part of Copenhagen, along the projected metro city line. The data acquisition was carried out using a 192 channels array, receiver groups with 5 m spacing and a Vibroseis as a source at 10 m spacing. Complementarily, six vertical seismic profiles (VSP) were performed at boreholes located along the line. The reflection data underwent standard interpretation and the refraction included wavepath Eikonal traveltime tomography. The reflection results indicate the presence of horizontal reflectors with discontinuities likely related to deep lying structural features in deeper lying chalk layers. The refraction interpretation allowed the identification of the upper limestone surface, relevant to map for tunneling design. The VSP provided additional information regarding limestone quality and provided correlation data for improved refraction interpretation. In general, the pre-investigation results demonstrated that it is possible to image the limestone surface using the seismic method. The satisfactory results lead to the implementation of a 15 km survey planned during the spring 2009. The survey will combine reflection, refraction, walkaway-VSP and electrical resistivity tomography (ERT). The authors wish to acknowledge Metroselskabet I/S for permission in presenting the preliminary results and the Cityringen Joint Venture partners Arup and Systra.

  6. Oil and Gas Development in the Arctic Ocean -- Understanding the Legal and Regulatory Framework

    DTIC Science & Technology

    2008-09-01

    by the U.S. Department of Commerce, National Oceanic Atmospheric Administration, National Marine Fisheries Service (NMFS), and the U.S. Department of...in the Arctic Slope Region.60 To the present day, native communities continue to argue that "their continued social, cultural, and economic well...sound levels from seismic and drilling operations. The hunt for the Bowhead is central to some native cultures.62 Native Alaskan communities have argued

  7. Lattice Boltzmann Simulation of Seismic Mobilization of Residual Oil in Sandstone

    NASA Astrophysics Data System (ADS)

    Guo, R.; Jiang, F.; Deng, W.

    2017-12-01

    Seismic stimulation is a promising technology for enhanced oil recovery. However, current mechanism studies are mainly in the single constricted tubes or idealized porous media, and no study has been conducted in real reservoir porous media. We have developed a numerical simulation which uses the lattice Boltzmann method to directly calculate the characteristics of residual oil clusters to quantify seismic mobilization of residual oil in real Berea sandstone in a scale of 400μm x 400μm x 400μm. The residual oil clusters will be firstly obtained by applying the water flooding scheme to the oil-saturated sandstone. Then, we will apply the seismic stimulation to the sandstone by converting the seismic effect to oscillatory inertial force and add to the pore fluids. This oscillatory inertial force causes the mobilization of residual oil by overcoming the capillary force. The response of water and oil to the seismic stimulation will be observed in our simulations. Two seismic oil mobilization mechanisms will be investigated: (1) the passive response of residual oil clusters to the seismic stimulation, and (2) the resonance of oil clusters subject to low frequency seismic stimulation. We will then discuss which mechanism should be the dominant mechanism for the seismic stimulation oil recovery for practical applications.

  8. Quantifying Risks and Uncertainties Associated with Induced Seismicity due to CO2 Injection into Geologic Formations with Faults

    NASA Astrophysics Data System (ADS)

    Hou, Z.; Nguyen, B. N.; Bacon, D. H.; White, M. D.; Murray, C. J.

    2016-12-01

    A multiphase flow and reactive transport simulator named STOMP-CO2-R has been developed and coupled to the ABAQUS® finite element package for geomechanical analysis enabling comprehensive thermo-hydro-geochemical-mechanical (THMC) analyses. The coupled THMC simulator has been applied to analyze faulted CO2 reservoir responses (e.g., stress and strain distributions, pressure buildup, slip tendency factor, pressure margin to fracture) with various complexities in fault and reservoir structures and mineralogy. Depending on the geological and reaction network settings, long-term injection of CO2 can have a significant effect on the elastic stiffness and permeability of formation rocks. In parallel, an uncertainty quantification framework (UQ-CO2), which consists of entropy-based prior uncertainty representation, efficient sampling, geostatistical reservoir modeling, and effective response surface analysis, has been developed for quantifying risks and uncertainties associated with CO2 sequestration. It has been demonstrated for evaluating risks in CO2 leakage through natural pathways and wellbores, and for developing predictive reduced order models. Recently, a parallel STOMP-CO2-R has been developed and the updated STOMP/ABAQUS model has been proven to have a great scalability, which makes it possible to integrate the model with the UQ framework to effectively and efficiently explore multidimensional parameter space (e.g., permeability, elastic modulus, crack orientation, fault friction coefficient) for a more systematic analysis of induced seismicity risks.

  9. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    NASA Astrophysics Data System (ADS)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  10. DARHT Multi-intelligence Seismic and Acoustic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Garrison Nicole; Van Buren, Kendra Lu; Hemez, Francois M.

    The purpose of this report is to document the analysis of seismic and acoustic data collected at the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory for robust, multi-intelligence decision making. The data utilized herein is obtained from two tri-axial seismic sensors and three acoustic sensors, resulting in a total of nine data channels. The goal of this analysis is to develop a generalized, automated framework to determine internal operations at DARHT using informative features extracted from measurements collected external of the facility. Our framework involves four components: (1) feature extraction, (2) data fusion, (3) classification, andmore » finally (4) robustness analysis. Two approaches are taken for extracting features from the data. The first of these, generic feature extraction, involves extraction of statistical features from the nine data channels. The second approach, event detection, identifies specific events relevant to traffic entering and leaving the facility as well as explosive activities at DARHT and nearby explosive testing sites. Event detection is completed using a two stage method, first utilizing signatures in the frequency domain to identify outliers and second extracting short duration events of interest among these outliers by evaluating residuals of an autoregressive exogenous time series model. Features extracted from each data set are then fused to perform analysis with a multi-intelligence paradigm, where information from multiple data sets are combined to generate more information than available through analysis of each independently. The fused feature set is used to train a statistical classifier and predict the state of operations to inform a decision maker. We demonstrate this classification using both generic statistical features and event detection and provide a comparison of the two methods. Finally, the concept of decision robustness is presented through a preliminary analysis where uncertainty is added to the system through noise in the measurements.« less

  11. China's first intermediate resolution multi-channel seismic survey in the northern Victoria Land Basin and Terror Rift, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Shen, Zhongyan; Gao, Jinyao; Zhang, Tao; Wang, Wei; Ding, Weifeng; Zhang, Sheng

    2017-04-01

    The West Antarctic Rift System (WARS) represents one of the largest active continental rift systems on Earth and is less well known than other rift systems because it is largely covered by thick ice. The Terror Rift (TR), superimposing on the Victoria Land Basin (VLB) in the western Ross Sea, is identified as the most recent deformational zone of the WARS, thus will provide knowledge of the active deformation process of the WARS. The structure and kinematics of the TR is under debate. Originally, the TR was thought to consist of two parts: the Discovery Graben and the magmatically-intruded Lee Arch. New denser seismic grid in the middle and southern segments of the TR revealed a different structure of the Lee Arch while the northern segment of the TR is not well studied. The glacial history of the VLB/TR region is another attractive issue to the geologists since this area records the behavior information of EAIS and WAIS. In the southern part of the VLB, especially in the McMurdo Sound, the framework of the glacial history is well established after several deep cores which recovery the whole stratigraphic sequences since the onset of the glaciation. However, the glacial history of the northern part of the VLB/TR is less well studied and here we emphasize its importance because the northern part of the VLB/TR is a link between the well-studied southern VLB and the sediment-well-preserved Northern Basin. During the 32nd Chinese National Antarctic Research Expedition, on the board of the RV XueLong, we collected intermediate resolution multi-channel seismic reflection data in the northern VLB/TR. These data will establish new constraints on the timing of deformation, structure and kinematics of the TR, and the history of the EAIS and WAIS.

  12. RMT focal plane sensitivity to seismic network geometry and faulting style

    USGS Publications Warehouse

    Johnson, Kendra L.; Hayes, Gavin; Herrmann, Robert B.; Benz, Harley M.; McNamara, Daniel E.; Bergman, Eric A.

    2016-01-01

    Modern tectonic studies often use regional moment tensors (RMTs) to interpret the seismotectonic framework of an earthquake or earthquake sequence; however, despite extensive use, little existing work addresses RMT parameter uncertainty. Here, we quantify how network geometry and faulting style affect RMT sensitivity. We examine how data-model fits change with fault plane geometry (strike and dip) for varying station configurations. We calculate the relative data fit for incrementally varying geometries about a best-fitting solution, applying our workflow to real and synthetic seismograms for both real and hypothetical station distributions and earthquakes. Initially, we conduct purely observational tests, computing RMTs from synthetic seismograms for hypothetical earthquakes and a series of well-behaved network geometries. We then incorporate real data and station distributions from the International Maule Aftershock Deployment (IMAD), which recorded aftershocks of the 2010 MW 8.8 Maule earthquake, and a set of regional stations capturing the ongoing earthquake sequence in Oklahoma and southern Kansas. We consider RMTs computed under three scenarios: (1) real seismic records selected for high data quality; (2) synthetic seismic records with noise computed for the observed source-station pairings and (3) synthetic seismic records with noise computed for all possible station-source pairings. To assess RMT sensitivity for each test, we observe the ‘fit falloff’, which portrays how relative fit changes when strike or dip varies incrementally; we then derive the ranges of acceptable strikes and dips by identifying the span of solutions with relative fits larger than 90 per cent of the best fit. For the azimuthally incomplete IMAD network, Scenario 3 best constrains fault geometry, with average ranges of 45° and 31° for strike and dip, respectively. In Oklahoma, Scenario 3 best constrains fault dip with an average range of 46°; however, strike is best constrained by Scenario 1, with a range of 26°. We draw two main conclusions from this study. (1) Station distribution impacts our ability to constrain RMTs using waveform time-series; however, in some tectonic settings, faulting style also plays a significant role and (2) increasing station density and data quantity (both the number of stations and the number of individual channels) does not necessarily improve RMT constraint. These results may be useful when organizing future seismic deployments (e.g. by concentrating stations in alignment with anticipated nodal planes), and in computing RMTs, either by guiding a more rigorous data selection process for input data or informing variable weighting among the selected data (e.g. by eliminating the transverse component when strike-slip mechanisms are expected).

  13. Experience with a Shallow Water Seismic Pre-Site Survey for combined IODP and ICDP Drilling Campaigns in the Gulf of Naples and Pozzuoli Bay, Tyrrhenian Sea

    NASA Astrophysics Data System (ADS)

    Spiess, V.; Metzen, J.; Fekete, N.; Palamenghi, L.; Sacchi, M.

    2009-04-01

    The Gulf of Naples receives particular attention due to its proximity to major volcanic features, as the Somma-Vesuvius stratovolcano and the Campi Flegrei Volcanic Fields, both being viewed to bear extreme hazard potential in the highly populated area. Accordingly, a better understanding of the geologic history of the region and its volcanic activity is of high value for predictive approaches. In January 2008, a dedicated shallow water multichannel seismic survey on R/V URANIA was carried out by the Institute for Coastal Marine Environment in cooperation with the University of Bremen in Pozzuoli Bay as well as in its surroundings to image subseafloor volcanic features as well as the neotectonic framework, as it is documented in Holocene sediments. Furthermore, volcanoclastic events, volcanic edifices, pyroclastic flows and lava flows were identified complicating the stratigraphic interpretation. Major units as the Campanian Ignimbrite and the Neapoltian Yellow Tuff could be traced on regional scales. Particular focus was put on the nearshore surveys, to connect the onland future ICDP drilling results with the marine deposits and planned IODP drill sites in the vicinity of the survey area. It turned out particularly difficult to collect seismic data in the coastal zone due to intense usage and protected areas. The equipment used was optimized to collect multichannel seismic data in shallow and very shallow environments. A 50 m long streamer with 48 single hydrophone channels allowed to record undistorted seismic response in waters shallower than 10 meters, and high shot rates - 2 to 4 seconds - provide high coverage and a lateral resolution as good as 1 meter. A modified mini-GI Gun with a reduced volume of only 0.1 L, called micro-GI Gun, generated a frequency spectrum up to 1000 Hz, optimizing also the vertical resolution to less than 1 meter. Examples will be shown to demonstrate the capability of the equipment for use in amphibic projects, where ICDP and IODP cross the borders of land and sea, and where quality and seismic resolution play a major role to achieve goals of proper site surveys and stratigraphic interpretation.

  14. Spontaneous Aseismic and Seismic Slip Transients on Evolving Faults Simulated in a Continuum-Mechanics Framework

    NASA Astrophysics Data System (ADS)

    Herrendoerfer, R.; Gerya, T.; van Dinther, Y.

    2016-12-01

    The convergent plate motion in subduction zones is accommodated by different slip modes: potentially dangerous seismic slip and imperceptible, but instrumentally detectable slow slip transients or steady slip. Despite an increasing number of observations and insights from laboratory experiments, it remains enigmatic which local on- and off-fault conditions favour slip modes of different source characteristics (i.e., slip velocity, duration, seismic moment). Therefore, we are working towards a numerical model that is able to simulate different slip modes in a consistent way with the long-term evolution of the fault system. We extended our 2D, continuum mechanics-based, visco-elasto-plastic seismo-thermo-mechanical (STM) model, which simulated cycles of earthquake-like ruptures, albeit only at plate tectonic slip rates (van Dinther et al, JGR, 2013). To model a wider slip spectrum including seismic slip rates, we, besides improving the general numerical approach, implemented an invariant reformulation of the conventional rate-and state dependent friction (RSF) and an adaptive time-stepping scheme (Lapusta and Rice, JGR, 2001). In a simple setup with predominantly elastic plates that are juxtaposed along a predefined fault of certain width, we vary the characteristic slip distance, the mean normal stress and the size of the rate-weakening zone. We show that the resulting stability transitions from decaying oscillations, periodic slow slip, complex periodic to seismic slip agree with those of conventional RSF seismic cycle simulations (e.g. Liu and Rice, JGR, 2007). Additionally, we will present results of the investigation concerning the effect of the fault width and geometry on the generation of different slip modes. Ultimately, instead of predefining a fault, we simulate the spatio-temporal evolution of a complex fault system that is consistent with the plate motions and rheology. For simplicity, we parametrize the fault development through linear slip-weakening of cohesion and apply RSF friction only in cohesionless material. We report preliminary results of the interaction between slip modes and the fault growth during different fault evolution stages.

  15. Quantifying the Uncertainties and Multi-parameter Trade-offs in Joint Inversion of Receiver Functions and Surface Wave Velocity and Ellipticity

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2016-12-01

    When constraining the structure of the Earth's continental lithosphere, multiple seismic observables are often combined due to their complementary sensitivities.The transdimensional Bayesian (TB) approach in seismic inversion allows model parameter uncertainties and trade-offs to be quantified with few assumptions. TB sampling yields an adaptive parameterization that enables simultaneous inversion for different model parameters (Vp, Vs, density, radial anisotropy), without the need for strong prior information or regularization. We use a reversible jump Markov chain Monte Carlo (rjMcMC) algorithm to incorporate different seismic observables - surface wave dispersion (SWD), Rayleigh wave ellipticity (ZH ratio), and receiver functions - into the inversion for the profiles of shear velocity (Vs), compressional velocity (Vp), density (ρ), and radial anisotropy (ξ) beneath a seismic station. By analyzing all three data types individually and together, we show that TB sampling can eliminate the need for a fixed parameterization based on prior information, and reduce trade-offs in model estimates. We then explore the effect of different types of misfit functions for receiver function inversion, which is a highly non-unique problem. We compare the synthetic inversion results using the L2 norm, cross-correlation type and integral type misfit function by their convergence rates and retrieved seismic structures. In inversions in which only one type of model parameter (Vs for the case of SWD) is inverted, assumed scaling relationships are often applied to account for sensitivity to other model parameters (e.g. Vp, ρ, ξ). Here we show that under a TB framework, we can eliminate scaling assumptions, while simultaneously constraining multiple model parameters to varying degrees. Furthermore, we compare the performance of TB inversion when different types of model parameters either share the same or use independent parameterizations. We show that different parameterizations can lead to differences in retrieved model parameters, consistent with limited data constraints. We then quantitatively examine the model parameter trade-offs and find that trade-offs between Vp and radial anisotropy might limit our ability to constrain shallow-layer radial anisotropy using current seismic observables.

  16. Seismic Data from Roosevelt Hot Springs, Utah FORGE Study Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, John

    This set of data contains raw and processed 2D and 3D seismic data from the Utah FORGE study area near Roosevelt Hot Springs. The zipped archives numbered from 1-100 to 1001-1122 contain 3D seismic uncorrelated shot gatherers SEG-Y files. The zipped archives numbered from 1-100C to 1001-1122C contain 3D seismic correlated shot gatherers SEG-Y files. Other data have intuitive names.

  17. Seismic imaging of post-glacial sediments - test study before Spitsbergen expedition

    NASA Astrophysics Data System (ADS)

    Szalas, Joanna; Grzyb, Jaroslaw; Majdanski, Mariusz

    2017-04-01

    This work presents results of the analysis of reflection seismic data acquired from testing area in central Poland. For this experiment we used total number of 147 vertical component seismic stations (DATA-CUBE and Reftek "Texan") with accelerated weight drop (PEG-40). The profile was 350 metres long. It is a part of pilot study for future research project on Spitsbergen. The purpose of the study is to recognise the characteristics of seismic response of post-glacial sediments in order to design the most adequate survey acquisition parameters and processing sequence for data from Spitsbergen. Multiple tests and comparisons have been performed to obtain the best possible quality of seismic image. In this research we examine the influence of receiver interval size, front mute application and surface wave attenuation attempts. Although seismic imaging is the main technique we are planning to support this analysis with additional data from traveltime tomography, MASW and other a priori information.

  18. Shallow Geologic Framework and Geomorphic Evolution of a Paleo-barrier Shoreline, Terrebonne and Timbalier Bay, Louisiana, USA.

    NASA Astrophysics Data System (ADS)

    Culling, D. P.; Allison, M. A.; Kulp, M. A.; Georgiou, I. Y.; Weathers, H. D., III

    2016-12-01

    The Louisiana coast is an invaluable asset to the nation's human, economic, and ecological welfare. However, due to the combined effects of coastal erosion, subsidence, and sea level rise, Louisiana is losing on average 25 km2 of its valuable coastal wetlands per year. Terrebonne- Timbalier Bay and the associated Lafourche deltaic lobe headland is a critical section of this coast for wetlands and infrastructure protection and restoration in the State's Master Plan. Historical imagery and bathymetry clearly show the rapid transgression and erosional degradation of both sets of headland-flanking barrier island shorelines due to wave attack and relative sea level rise in the past 150 y. The focus of the present study is a barrier island system: an ocean-fronting modern-barrier shoreline and a paleo-deltaic headland barrier arc inland of the active barrier. The evolution of the modern barrier arc is closely tied to the shallow geologic framework over which it is transgressing, and specifically the sand re-activation capacity of the antecedent geology once erosional forces are introduced. To understand the evolution of these barrier systems and how to address their protection and re-nourishment, it is important to quantify (1) the depositional facies geometry and (2) the volume of sand in these back-barrier sandy lithosomes. Here we present new observations from CHIRP sub-bottom seismic multibeam bathymetry and LIDAR topography, and surface grab and vibracore sampling in an effort to quantify the sediment availability within the underlying geologic framework and reconstruct the geomorphic evolution of these barrier shorelines. Preliminary results show the morphologic expression of antecedent geology, which is evident in seismic and bathymetric patterns, and the presence of near-surface and surface sandy stratigraphy within the back barrier bay. Observations of sandy units agree with results from Kulp et al. (2005), who showed the presence and extent of sandy lithofacies within 3 m of the surface proximal to the Raccoon Pass tidal-inlet. We suggest this sand is an important potential resource for the longevity of proximal sandy barriers as transgression continues; one identified lithesome alone is estimated to contain 5.25 km3 of fine-grained sand.

  19. Quantifying the uncertainty in site amplification modeling and its effects on site-specific seismic-hazard estimation in the upper Mississippi embayment and adjacent areas

    USGS Publications Warehouse

    Cramer, C.H.

    2006-01-01

    The Mississippi embayment, located in the central United States, and its thick deposits of sediments (over 1 km in places) have a large effect on earthquake ground motions. Several previous studies have addressed how these thick sediments might modify probabilistic seismic-hazard maps. The high seismic hazard associated with the New Madrid seismic zone makes it particularly important to quantify the uncertainty in modeling site amplification to better represent earthquake hazard in seismic-hazard maps. The methodology of the Memphis urban seismic-hazard-mapping project (Cramer et al., 2004) is combined with the reference profile approach of Toro and Silva (2001) to better estimate seismic hazard in the Mississippi embayment. Improvements over previous approaches include using the 2002 national seismic-hazard model, fully probabilistic hazard calculations, calibration of site amplification with improved nonlinear soil-response estimates, and estimates of uncertainty. Comparisons are made with the results of several previous studies, and estimates of uncertainty inherent in site-amplification modeling for the upper Mississippi embayment are developed. I present new seismic-hazard maps for the upper Mississippi embayment with the effects of site geology incorporating these uncertainties.

  20. Post-seismic velocity changes following the 2010 Mw 7.1 Darfield earthquake, New Zealand, revealed by ambient seismic field analysis

    NASA Astrophysics Data System (ADS)

    Heckels, R. EG; Savage, M. K.; Townend, J.

    2018-05-01

    Quantifying seismic velocity changes following large earthquakes can provide insights into fault healing and reloading processes. This study presents temporal velocity changes detected following the 2010 September Mw 7.1 Darfield event in Canterbury, New Zealand. We use continuous waveform data from several temporary seismic networks lying on and surrounding the Greendale Fault, with a maximum interstation distance of 156 km. Nine-component, day-long Green's functions were computed for frequencies between 0.1 and 1.0 Hz for continuous seismic records from immediately after the 2010 September 04 earthquake until 2011 January 10. Using the moving-window cross-spectral method, seismic velocity changes were calculated. Over the study period, an increase in seismic velocity of 0.14 ± 0.04 per cent was determined near the Greendale Fault, providing a new constraint on post-seismic relaxation rates in the region. A depth analysis further showed that velocity changes were confined to the uppermost 5 km of the subsurface. We attribute the observed changes to post-seismic relaxation via crack healing of the Greendale Fault and throughout the surrounding region.

  1. Interpretation and mapping of carbonate mounds within the Ordovician on Gotland, Sweden

    NASA Astrophysics Data System (ADS)

    Levendal, Tegan; Sopher, Daniel; Juhlin, Christopher

    2017-04-01

    Oljeprospecketering AB (OPAB), a Swedish state owned company, acquired an extensive data set in the 1970s and 1980s for the purposes of hydrocarbon exploration. This OPAB data set is largely unpublished and consists of over 300 well data reports and logs and over 33000 km of 2D marine seismic data, as well as land seismic data from the island of Gotland. In this study we use processed land seismic profiles from Gotland and well data to interpret the thickness of the Ordovician across the island. As well as gain insight into the internal stratigraphy and structural framework of the Ordovician. The Ordovician sequence is 100-150 m thick consisting of three formations (Fm), informally defined by OPAB, the Bentonitic Limestone Fm, the Kvarne Fm and the Klasen Fm. Carbonate mounds are locally formed from siliciclastic rich muds. In the lower sequences carbonate mounds are present that are observed both in the seismic and well data. These mounds were of great interest during the exploration phase since they are sometimes host to hydrocarbon accumulations. In the present study we place emphasis on mapping the size, distribution and density of the carbonate mounds within the Ordovician. The original driving force for the development of these mounds are related to sea level and climate changes during deposition. Post depositional erosion, biotic factors and basin evolution also played a role in their development. During the Late Ordovician-Early Silurian, Baltica moved northwards towards the equator resulting in a typical depositional environment consisting of proximal coastal areas, and transgressive, lowstand shelf settings conducive to mound development. The mounds act as potential reservoirs, in the form of isolated bodies of limestone capped by tabular and tight argillaceous limestones acting as a cap rock. To date studies of carbonate mound features have primarily focused on detailed analysis of well log, core and outcrop information. This extensive dataset therefore provides a rare opportunity to map out and characterize an Ordovician carbonate mound system across a wide area in 3D. This will provide valuable information about the size and distribution of these mounds. In addition, the mounds are today of interest as potential reservoirs for energy storage in the form of compressed air or hydrogen. In order to investigate this potential, it is important to map their extent and characterize their reservoir properties.

  2. Exploiting IoT Technologies and Open Source Components for Smart Seismic Network Instrumentation

    NASA Astrophysics Data System (ADS)

    Germenis, N. G.; Koulamas, C. A.; Foundas, P. N.

    2017-12-01

    The data collection infrastructure of any seismic network poses a number of requirements and trade-offs related to accuracy, reliability, power autonomy and installation & operational costs. Having the right hardware design at the edge of this infrastructure, embedded software running inside the instruments is the heart of pre-processing and communication services implementation and their integration with the central storage and processing facilities of the seismic network. This work demonstrates the feasibility and benefits of exploiting software components from heterogeneous sources in order to realize a smart seismic data logger, achieving higher reliability, faster integration and less development and testing costs of critical functionality that is in turn responsible for the cost and power efficient operation of the device. The instrument's software builds on top of widely used open source components around the Linux kernel with real-time extensions, the core Debian Linux distribution, the earthworm and seiscomp tooling frameworks, as well as components from the Internet of Things (IoT) world, such as the CoAP and MQTT protocols for the signaling planes, besides the widely used de-facto standards of the application domain at the data plane, such as the SeedLink protocol. By using an innovative integration of features based on lower level GPL components of the seiscomp suite with higher level processing earthworm components, coupled with IoT protocol extensions to the latter, the instrument can implement smart functionality such as network controlled, event triggered data transmission in parallel with edge archiving and on demand, short term historical data retrieval.

  3. Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using parametric-historic procedure

    NASA Astrophysics Data System (ADS)

    Bellalem, Fouzi; Talbi, Abdelhak; Djellit, Hamou; Ymmel, Hayet; Mobarki, Mourad

    2018-03-01

    The region of Blida is characterized by a relatively high seismic activity, pointed especially during the past two centuries. Indeed, it experienced a significant number of destructive earthquakes such as the earthquakes of March 2, 1825 and January 2, 1867, with intensity of X and IX, respectively. This study aims to investigate potential seismic hazard in Blida city and its surrounding regions. For this purpose, a typical seismic catalog was compiled using historical macroseismic events that occurred over a period of a few hundred years, and the recent instrumental seismicity dating back to 1900. The parametric-historic procedure introduced by Kijko and Graham (1998, 1999) was applied to assess seismic hazard in the study region. It is adapted to deal with incomplete catalogs and does not use any subjective delineation of active seismic zones. Because of the lack of recorded strong motion data, three ground prediction models have been considered, as they seem the most adapted to the seismicity of the study region. Results are presented as peak ground acceleration (PGA) seismic hazard maps, showing expected peak accelerations with 10% probability of exceedance in 50-year period. As the most significant result, hot spot regions with high PGA values are mapped. For example, a PGA of 0.44 g has been found in a small geographical area centered on Blida city.

  4. Seismic Hazard Assessment for a Characteristic Earthquake Scenario: Probabilistic-Deterministic Method

    NASA Astrophysics Data System (ADS)

    mouloud, Hamidatou

    2016-04-01

    The objective of this paper is to analyze the seismic activity and the statistical treatment of seismicity catalog the Constantine region between 1357 and 2014 with 7007 seismic event. Our research is a contribution to improving the seismic risk management by evaluating the seismic hazard in the North-East Algeria. In the present study, Earthquake hazard maps for the Constantine region are calculated. Probabilistic seismic hazard analysis (PSHA) is classically performed through the Cornell approach by using a uniform earthquake distribution over the source area and a given magnitude range. This study aims at extending the PSHA approach to the case of a characteristic earthquake scenario associated with an active fault. The approach integrates PSHA with a high-frequency deterministic technique for the prediction of peak and spectral ground motion parameters in a characteristic earthquake. The method is based on the site-dependent evaluation of the probability of exceedance for the chosen strong-motion parameter. We proposed five sismotectonique zones. Four steps are necessary: (i) identification of potential sources of future earthquakes, (ii) assessment of their geological, geophysical and geometric, (iii) identification of the attenuation pattern of seismic motion, (iv) calculation of the hazard at a site and finally (v) hazard mapping for a region. In this study, the procedure of the earthquake hazard evaluation recently developed by Kijko and Sellevoll (1992) is used to estimate seismic hazard parameters in the northern part of Algeria.

  5. Incorporating induced seismicity in the 2014 United States National Seismic Hazard Model: results of the 2014 workshop and sensitivity studies

    USGS Publications Warehouse

    Petersen, Mark D.; Mueller, Charles S.; Moschetti, Morgan P.; Hoover, Susan M.; Rubinstein, Justin L.; Llenos, Andrea L.; Michael, Andrew J.; Ellsworth, William L.; McGarr, Arthur F.; Holland, Austin A.; Anderson, John G.

    2015-01-01

    The U.S. Geological Survey National Seismic Hazard Model for the conterminous United States was updated in 2014 to account for new methods, input models, and data necessary for assessing the seismic ground shaking hazard from natural (tectonic) earthquakes. The U.S. Geological Survey National Seismic Hazard Model project uses probabilistic seismic hazard analysis to quantify the rate of exceedance for earthquake ground shaking (ground motion). For the 2014 National Seismic Hazard Model assessment, the seismic hazard from potentially induced earthquakes was intentionally not considered because we had not determined how to properly treat these earthquakes for the seismic hazard analysis. The phrases “potentially induced” and “induced” are used interchangeably in this report, however it is acknowledged that this classification is based on circumstantial evidence and scientific judgment. For the 2014 National Seismic Hazard Model update, the potentially induced earthquakes were removed from the NSHM’s earthquake catalog, and the documentation states that we would consider alternative models for including induced seismicity in a future version of the National Seismic Hazard Model. As part of the process of incorporating induced seismicity into the seismic hazard model, we evaluate the sensitivity of the seismic hazard from induced seismicity to five parts of the hazard model: (1) the earthquake catalog, (2) earthquake rates, (3) earthquake locations, (4) earthquake Mmax (maximum magnitude), and (5) earthquake ground motions. We describe alternative input models for each of the five parts that represent differences in scientific opinions on induced seismicity characteristics. In this report, however, we do not weight these input models to come up with a preferred final model. Instead, we present a sensitivity study showing uniform seismic hazard maps obtained by applying the alternative input models for induced seismicity. The final model will be released after further consideration of the reliability and scientific acceptability of each alternative input model. Forecasting the seismic hazard from induced earthquakes is fundamentally different from forecasting the seismic hazard for natural, tectonic earthquakes. This is because the spatio-temporal patterns of induced earthquakes are reliant on economic forces and public policy decisions regarding extraction and injection of fluids. As such, the rates of induced earthquakes are inherently variable and nonstationary. Therefore, we only make maps based on an annual rate of exceedance rather than the 50-year rates calculated for previous U.S. Geological Survey hazard maps.

  6. Generalized statistical mechanics approaches to earthquakes and tectonics.

    PubMed

    Vallianatos, Filippos; Papadakis, Giorgos; Michas, Georgios

    2016-12-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes.

  7. Generalized statistical mechanics approaches to earthquakes and tectonics

    PubMed Central

    Papadakis, Giorgos; Michas, Georgios

    2016-01-01

    Despite the extreme complexity that characterizes the mechanism of the earthquake generation process, simple empirical scaling relations apply to the collective properties of earthquakes and faults in a variety of tectonic environments and scales. The physical characterization of those properties and the scaling relations that describe them attract a wide scientific interest and are incorporated in the probabilistic forecasting of seismicity in local, regional and planetary scales. Considerable progress has been made in the analysis of the statistical mechanics of earthquakes, which, based on the principle of entropy, can provide a physical rationale to the macroscopic properties frequently observed. The scale-invariant properties, the (multi) fractal structures and the long-range interactions that have been found to characterize fault and earthquake populations have recently led to the consideration of non-extensive statistical mechanics (NESM) as a consistent statistical mechanics framework for the description of seismicity. The consistency between NESM and observations has been demonstrated in a series of publications on seismicity, faulting, rock physics and other fields of geosciences. The aim of this review is to present in a concise manner the fundamental macroscopic properties of earthquakes and faulting and how these can be derived by using the notions of statistical mechanics and NESM, providing further insights into earthquake physics and fault growth processes. PMID:28119548

  8. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys.

    PubMed

    Abadi, Shima H; Tolstoy, Maya; Wilcock, William S D

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

  9. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

    PubMed Central

    Abadi, Shima H.; Tolstoy, Maya; Wilcock, William S. D.

    2017-01-01

    In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus G. Langseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations. PMID:28199400

  10. Comparing Low-Frequency Earthquakes During Triggered and Ambient Tremor in Taiwan

    NASA Astrophysics Data System (ADS)

    Alvarado Lara, F., Sr.; Ledezma, C., Sr.

    2014-12-01

    In South America, larger magnitude seismic events originate in the subduction zone between the Nazca and Continental plates, as opposed to crustal events. Crustal seismic events are important in areas very close to active fault lines; however, seismic hazard analyses incorporate crust events related to a maximum distance from the site under study. In order to use crustal events as part of a seismic hazard analysis, it is necessary to use the attenuation relationships which represent the seismic behavior of the site under study. Unfortunately, in South America the amount of compiled crustal event historical data is not yet sufficient to generate a firm regional attenuation relationship. In the absence of attenuation relationships for crustal earthquakes in the region, the conventional approach is to use attenuation relationships from other regions which have a large amount of compiled data and which have similar seismic conditions to the site under study. This practice permits the development of seismic hazard analysis work with a certain margin of accuracy. In South America, in the engineering practice, new generation attenuation relationships (NGA-W) are used among other alternatives in order to incorporate the effect of crustal events in a seismic hazard analysis. In 2014, the NGA-W Version 2 (NGA-W2) was presented with a database containing information from Taiwan, Turkey, Iran, USA, Mexico, Japan, and Alaska. This paper examines whether it is acceptable to utilize the NGA-W2 in seismic hazard analysis in South America. A comparison between response spectrums of the seismic risk prepared in accordance with NGA-W2 and actual response spectrums of crustal events from Argentina is developed in order to support the examination. The seismic data were gathered from equipment installed in the cities of Santiago, Chile and Mendoza, Argentina.

  11. Revision of the Applicability of the NGA's in South America, Chile - Argentina.

    NASA Astrophysics Data System (ADS)

    Alvarado Lara, F., Sr.; Ledezma, C., Sr.

    2015-12-01

    In South America, larger magnitude seismic events originate in the subduction zone between the Nazca and Continental plates, as opposed to crustal events. Crustal seismic events are important in areas very close to active fault lines; however, seismic hazard analyses incorporate crust events related to a maximum distance from the site under study. In order to use crustal events as part of a seismic hazard analysis, it is necessary to use the attenuation relationships which represent the seismic behavior of the site under study. Unfortunately, in South America the amount of compiled crustal event historical data is not yet sufficient to generate a firm regional attenuation relationship. In the absence of attenuation relationships for crustal earthquakes in the region, the conventional approach is to use attenuation relationships from other regions which have a large amount of compiled data and which have similar seismic conditions to the site under study. This practice permits the development of seismic hazard analysis work with a certain margin of accuracy. In South America, in the engineering practice, new generation attenuation relationships (NGA-W) are used among other alternatives in order to incorporate the effect of crustal events in a seismic hazard analysis. In 2014, the NGA-W Version 2 (NGA-W2) was presented with a database containing information from Taiwan, Turkey, Iran, USA, Mexico, Japan, and Alaska. This paper examines whether it is acceptable to utilize the NGA-W2 in seismic hazard analysis in South America. A comparison between response spectrums of the seismic risk prepared in accordance with NGA-W2 and actual response spectrums of crustal events from Argentina is developed in order to support the examination. The seismic data were gathered from equipment installed in the cities of Santiago, Chile and Mendoza, Argentina.

  12. Calibration of a geophysically based model using soil moisture measurements in mountainous terrains

    NASA Astrophysics Data System (ADS)

    Pellet, Cécile; Hilbich, Christin; Marmy, Antoine; Hauck, Christian

    2016-04-01

    The use of geophysical methods in the field of permafrost research is well established and crucial since it is the only way to infer the composition of the subsurface material. Since geophysical measurements are indirect, ambiguities in the interpretation of the results can arise, hence the simultaneous use of several methods (e.g. electrical resistivity tomography and refraction seismics) is often necessary. The so-called four-phase model, 4PM (Hauck et al., 2011) constitutes a further step towards clarification of interpretation from geophysical measurements. It uses two well-known petrophysical relationships, namely Archie's law and an extension of Timur's time-averaged equation for seismic P-wave velocities, to quantitatively estimate the different phase contents (air, water and ice) in the ground from tomographic electric and seismic measurements. In this study, soil moisture measurements were used to calibrate the 4PM in order to assess the spatial distribution of water, ice and air content in the ground at three high elevation sites with different ground properties and thermal regimes. The datasets used here were collected as part of the SNF-project SOMOMOUNT. Within the framework of this project a network of six entirely automated soil moisture stations was installed in Switzerland along an altitudinal gradient ranging from 1'200 m. a.s.l. to 3'400 m. a.s.l. The standard instrumentation of each station comprises the installation of Frequency Domain Reflectometry (FDR) and Time Domain Reflectometry (TDR) sensors for long term monitoring coupled with repeated Electrical Resistivity Tomography (ERT) and Refraction Seismic Tomography (RST) as well as spatial FDR (S-FDR) measurements. The use of spatially distributed soil moisture data significantly improved the 4PM calibration process and a semi-automatic calibration scheme was developed. This procedure was then tested at three different locations, yielding satisfactory two dimensional distributions of water-, ice- and air content (Pellet et al., 2016). REFERENCES Hauck, C., Böttcher, M., & Maurer, H. 2011: A new model for estimating subsurface ice content based on combined electrical and seismic data sets, The Cryosphere, 5(2), 453-468. Pellet, C., Hilbich, C., Marmy, A., & Hauck, C. 2016: Soil moisture data for the validation of permafrost models using direct and indirect measurement approaches at three alpine sites, Front. Earth Sci., 3(91).

  13. Induced Seismicity Monitoring of an Underground Salt Cavern Prone to Collapse

    NASA Astrophysics Data System (ADS)

    Mercerat, E. D.; Driad-Lebeau, L.; Bernard, P.

    2010-02-01

    Within the framework of a large research project launched to assess the feasibility of microseismic monitoring of growing underground caverns, this specific work focuses on the analysis of the induced seismicity recorded in a salt mine environment. A local seismic network has been installed over an underground salt cavern located in the Lorraine basin (Northeast of France). The microseismic network includes four 3-components and three single component geophones deployed at depths between 30 and 125 m in cemented boreholes drilled in the vicinity of the study area. The underground cavern under monitoring is located within a salt layer at 180 m depth and it presents a rather irregular shape that can be approximated by a cylindrical volume of 50 m height and 180 m diameter. Presently, the cavern is full of saturated brine inducing a significant pressure on its walls (~2.0 MPa) to keep the overburden mechanically stable. Nevertheless some small microseismic events were recorded by the network and analyzed (approximately 2,000 events in 2 years of recording). In October 2005 and April 2007, two controlled pressure transient experiments were carried out in the cavern, in order to analyze the mechanical response of the overburden by tracking the induced microseismicity. The recorded events were mainly grouped in clusters of 3-30 s of signal duration with emergent first arrivals and rather low frequency content (between 20 and 120 Hz). Some of these events have been spatially located by travel-time picking close to the actual cavern and its immediate roof. Preliminary spectral analysis of isolated microearthquakes suggests sources with non-negligible tensile components possibly related to fluid-filled cracks. Rock-debris falling into the cavern from delamination of clay marls in the immediate roof is probably another source of seismic excitation. This was later confirmed when the most important seismic swarms occurred at the site during May 2007, accompanied by the detachment of more than 8 × 104 m3 of marly material on top of the cavern roof. In any case, no clear evidence of classical brittle ruptures in the most competent layers of the overburden has been observed during the analyzed period. Current work is focused on the discrimination of all these possible mechanisms to better understand the damage processes in the cavern overburden and to assess its final collapse hazard.

  14. Late Neogene and Quaternary evolution of the northern Albemarle Embayment (mid-Atlantic continental margin, USA)

    USGS Publications Warehouse

    Mallinson, D.; Riggs, S.; Thieler, E.R.; Culver, S.; Farrell, K.; Foster, D.S.; Corbett, D.R.; Horton, B.; Wehmiller, J.F.

    2005-01-01

    Seismic surveys in the eastern Albemarle Sound, adjacent tributaries and the inner continental shelf define the regional geologic framework and provide insight into the sedimentary evolution of the northern North Carolina coastal system. Litho- and chronostratigraphic data are derived from eight drill sites on the Outer Banks barrier islands, and the Mobil #1 well in eastern Albemarle Sound. Within the study area, parallel-bedded, gently dipping Miocene beds occur at 95 to > 160 m below sea level (m bsl), and are overlain by a southward-thickening Pliocene unit characterized by steeply inclined, southward-prograding beds. The lower Pliocene unit consists of three seismic sequences. The 55–60 m thick Quaternary section unconformably overlies the Pliocene unit, and consists of 18 seismic sequences exhibiting numerous incised channel-fill facies. Shallow stratigraphy (< 40 m bsl) is dominated by complex fill patterns within the incised paleo-Roanoke River valley. Radiocarbon and amino-acid racemization (AAR) ages indicate that the valley-fill is latest Pleistocene to Holocene in age. At least six distinct valley-fill units are identified in the seismic data. Cores in the valley-fill contain a 3–6 m thick basal fluvial channel deposit that is overlain by a 15 m thick unit of interlaminated muds and sands of brackish water origin that exhibit increasing marine influence upwards. Organic materials within the interlaminated deposits have ages of 13–11 cal. ka. The interlaminated deposits within the valley are overlain by several units that comprise shallow marine sediments (bay-mouth and shoreface environments) that consist of silty, fine- to medium-grained sands containing open neritic foraminifera, suggesting that this area lacked a fronting barrier island system and was an open embayment from ∼10 ka to ∼4.5 ka. Seismic data show that initial infilling of the paleo-Roanoke River valley occurred from the north and west during the late Pleistocene and early Holocene. Later infilling occurred from the south and east and is characterized by a large shoal body (Colington Island and Shoals) and adjacent inlet fill. Establishment of a continuous barrier island system across the bay-mouth resulted in deposition of the latest phase of valley-fill, characterized by estuarine organic-rich muds.

  15. An interdisciplinary perspective on social and physical determinants of seismic risk

    NASA Astrophysics Data System (ADS)

    Lin, K.-H.; Chang, Y.-C.; Liu, G.-Y.; Chan, C.-H.; Lin, T.-H.; Yeh, C.-H.

    2015-01-01

    While disaster studies researchers usually view risk as a function of hazard, exposure, and vulnerability, few studies have systematically examined the relationships among the various physical and socioeconomic determinants underlying disasters, and fewer have done so through seismic risk analysis. In the context of the 1999 Chi-Chi earthquake in Taiwan, this study constructs five hypothetical models to test different determinants that affect disaster fatality at the village level, namely seismic hazard intensity, population, building fragility, demographics and socioeconomics. The Poisson Regression Model is used to estimate the impact of natural hazards and social factors on fatality. Results indicate that although all of the determinants have an impact on the specific dimension of seismic fatality, some indicators of social inequality, such as gender ratio, dependency ratio, income and its SD, are the driving determinants deteriorating vulnerability to seismic risk. These findings have strong social implications for policy interventions to mitigate such disasters. This study presents an interdisciplinary investigation into social and physical determinants in seismic risk.

  16. Induced seismicity in Carbon and Emery counties, Utah

    NASA Astrophysics Data System (ADS)

    Brown, Megan R. M.

    Utah is one of the top producers of oil and natural gas in the United States. Over the past 18 years, more than 4.2 billion gallons of wastewater from the petroleum industry have been injected into the Navajo Sandstone, Kayenta Formation, and Wingate Sandstone in two areas in Carbon and Emery County, Utah, where seismicity has increased during the same period. In this study, I investigated whether or not wastewater injection is related to the increased seismicity. Previous studies have attributed all of the seismicity in central Utah to coal mining activity. I found that water injection might be a more important cause. In the coal mining area, seismicity rate increased significantly 1-5 years following the commencement of wastewater injection. The increased seismicity consists almost entirely of earthquakes with magnitudes of less than 3, and is localized in areas seismically active prior to the injection. I have established the spatiotemporal correlations between the coal mining activities, the wastewater injection, and the increased seismicity. I used simple groundwater models to estimate the change in pore pressure and evaluate the observed time gap between the start of injection and the onset of the increased seismicity in the areas surrounding the injection wells. To ascertain that the increased seismicity is not fluctuation of background seismicity, I analyzed the magnitude-frequency relation of these earthquakes and found a clear increase in the b-value following the wastewater injection. I conclude that the marked increase of seismicity rate in central Utah is induced by both mining activity and wastewater injection, which raised pore pressure along pre-existing faults.

  17. Sidescan-Sonar Imagery and Surficial Geologic Interpretations of the Sea Floor in Central Rhode Island Sound

    USGS Publications Warehouse

    McMullen, K.Y.; Poppe, L.J.; Denny, J.F.; Haupt, T.A.; Crocker, J.M.

    2008-01-01

    The U.S. Geological Survey (USGS) has been working with the National Oceanic and Atmospheric Administration (NOAA) to interpret the surficial geology of areas along the northeastern coast of the United States. During 2004, the NOAA Ship RUDE conducted Hydrographic Survey H11321 in Rhode Island Sound. This sidescan-sonar and bathymetry survey covers an area of 93 km? located 12 km southeast of Brenton Point, RI in water depths of 28-39 m (fig. 1). The purpose of this report is to delineate sea floor features and sedimentary environments of this area in central Rhode Island Sound using sidescan-sonar and bathymetric data from NOAA Survey H11321 and seismic-reflection data from a previous USGS field study (Needell and others, 1983a). This is important for the study of benthic habitats and provides a framework for future research. Prior work in this area includes the mapping of surface sediments and surficial geology. McMaster (1960) collected sediment samples from Rhode Island Sound and Narragansett Bay and mapped our study area as having a sandy sea floor. In addition, one sample of sand from the National Ocean Service (NOS) Hydrographic Database came from a location in the northeast part of our study area in 1939 (fig. 2; Poppe and others, 2003). McMaster and others (1968) used seismic-reflection profiles to map the locations of a cuesta of Cretaceous sediments crossing Rhode Island Sound and post-Cretaceous drainage channels. Knebel and others (1982) identified sedimentary environments in Rhode Island Sound using sidescan sonographs. Needell and others (1983b) studied the Quaternary geology and mapped the structure, sedimentary environments, and geologic hazards in Rhode Island Sound using sidescan-sonar and seismic-reflection data. Sidescan-sonar and bathymetric data from NOAA Survey H11320, which overlaps the far eastern edge of our study area, was interpreted to consist of basins surrounded by a moraine and bathymetric highs composed of till with areas of rocks, sand waves, hummocks, glaciolacustrine erosional outliers, small scarps and elongate hills (fig. 1; McMullen and others, 2007). Some of those features extend into this study area.

  18. Effects of Irregular Bridge Columns and Feasibility of Seismic Regularity

    NASA Astrophysics Data System (ADS)

    Thomas, Abey E.

    2018-05-01

    Bridges with unequal column height is one of the main irregularities in bridge design particularly while negotiating steep valleys, making the bridges vulnerable to seismic action. The desirable behaviour of bridge columns towards seismic loading is that, they should perform in a regular fashion, i.e. the capacity of each column should be utilized evenly. But, this type of behaviour is often missing when the column heights are unequal along the length of the bridge, allowing short columns to bear the maximum lateral load. In the present study, the effects of unequal column height on the global seismic performance of bridges are studied using pushover analysis. Codes such as CalTrans (Engineering service center, earthquake engineering branch, 2013) and EC-8 (EN 1998-2: design of structures for earthquake resistance. Part 2: bridges, European Committee for Standardization, Brussels, 2005) suggests seismic regularity criterion for achieving regular seismic performance level at all the bridge columns. The feasibility of adopting these seismic regularity criterions along with those mentioned in literatures will be assessed for bridges designed as per the Indian Standards in the present study.

  19. Interpreting intraplate tectonics for seismic hazard: a UK historical perspective

    NASA Astrophysics Data System (ADS)

    Musson, R. M. W.

    2012-04-01

    It is notoriously difficult to construct seismic source models for probabilistic seismic hazard assessment in intraplate areas on the basis of geological information, and many practitioners have given up the task in favour of purely seismicity-based models. This risks losing potentially valuable information in regions where the earthquake catalogue is short compared to the seismic cycle. It is interesting to survey how attitudes to this issue have evolved over the past 30 years. This paper takes the UK as an example, and traces the evolution of seismic source models through generations of hazard studies. It is found that in the UK, while the earliest studies did not consider regional tectonics in any way, there has been a gradual evolution towards more tectonically based models. Experience in other countries, of course, may differ.

  20. Hydra—The National Earthquake Information Center’s 24/7 seismic monitoring, analysis, catalog production, quality analysis, and special studies tool suite

    USGS Publications Warehouse

    Patton, John M.; Guy, Michelle R.; Benz, Harley M.; Buland, Raymond P.; Erickson, Brian K.; Kragness, David S.

    2016-08-18

    This report provides an overview of the capabilities and design of Hydra, the global seismic monitoring and analysis system used for earthquake response and catalog production at the U.S. Geological Survey National Earthquake Information Center (NEIC). Hydra supports the NEIC’s worldwide earthquake monitoring mission in areas such as seismic event detection, seismic data insertion and storage, seismic data processing and analysis, and seismic data output.The Hydra system automatically identifies seismic phase arrival times and detects the occurrence of earthquakes in near-real time. The system integrates and inserts parametric and waveform seismic data into discrete events in a database for analysis. Hydra computes seismic event parameters, including locations, multiple magnitudes, moment tensors, and depth estimates. Hydra supports the NEIC’s 24/7 analyst staff with a suite of seismic analysis graphical user interfaces.In addition to the NEIC’s monitoring needs, the system supports the processing of aftershock and temporary deployment data, and supports the NEIC’s quality assurance procedures. The Hydra system continues to be developed to expand its seismic analysis and monitoring capabilities.

  1. An automatic tsunami warning system: TREMORS application in Europe

    NASA Astrophysics Data System (ADS)

    Reymond, D.; Robert, S.; Thomas, Y.; Schindelé, F.

    1996-03-01

    An integrated system named TREMORS (Tsunami Risk Evaluation through seismic Moment of a Real-time System) has been installed in EVORA station, in Portugal which has been affected by historical tsunamis. The system is based on a three component long period seismic station linked to a compatible IBM_PC with a specific software. The goals of this system are the followings: detect earthquake, locate them, compute their seismic moment, give a seismic warning. The warnings are based on the seismic moment estimation and all the processing are made automatically. The finality of this study is to check the quality of estimation of the main parameters of interest in a goal of tsunami warning: the location which depends of azimuth and distance, and at last the seismic moment, M 0, which controls the earthquake size. The sine qua non condition for obtaining an automatic location is that the 3 main seismic phases P, S, R must be visible. This study gives satisfying results (automatic analysis): ± 5° errors in azimuth and epicentral distance, and a standard deviation of less than a factor 2 for the seismic moment M 0.

  2. Borehole seismic monitoring of seismic stimulation at OccidentalPermian Ltd's -- South Wason Clear Fork Unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daley, Tom; Majer, Ernie

    2007-04-30

    Seismic stimulation is a proposed enhanced oil recovery(EOR) technique which uses seismic energy to increase oil production. Aspart of an integrated research effort (theory, lab and field studies),LBNL has been measuring the seismic amplitude of various stimulationsources in various oil fields (Majer, et al., 2006, Roberts,et al.,2001, Daley et al., 1999). The amplitude of the seismic waves generatedby a stimulation source is an important parameter for increased oilmobility in both theoretical models and laboratory core studies. Theseismic amplitude, typically in units of seismic strain, can be measuredin-situ by use of a borehole seismometer (geophone). Measuring thedistribution of amplitudes within amore » reservoir could allow improved designof stimulation source deployment. In March, 2007, we provided in-fieldmonitoring of two stimulation sources operating in Occidental (Oxy)Permian Ltd's South Wasson Clear Fork (SWCU) unit, located near DenverCity, Tx. The stimulation source is a downhole fluid pulsation devicedeveloped by Applied Seismic Research Corp. (ASR). Our monitoring used aborehole wall-locking 3-component geophone operating in two nearbywells.« less

  3. Earthquake Hazard and Risk Assessment based on Unified Scaling Law for Earthquakes: Altai-Sayan Region

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.; Nekrasova, A.

    2017-12-01

    We continue applying the general concept of seismic risk analysis in a number of seismic regions worldwide by constructing regional seismic hazard maps based on morphostructural analysis, pattern recognition, and the Unified Scaling Law for Earthquakes, USLE, which generalizes the Gutenberg-Richter relationship making use of naturally fractal distribution of earthquake sources of different size in a seismic region. The USLE stands for an empirical relationship log10N(M, L) = A + B·(5 - M) + C·log10L, where N(M, L) is the expected annual number of earthquakes of a certain magnitude M within an seismically prone area of linear dimension L. We use parameters A, B, and C of USLE to estimate, first, the expected maximum credible magnitude in a time interval at seismically prone nodes of the morphostructural scheme of the region under study, then map the corresponding expected ground shaking parameters (e.g. peak ground acceleration, PGA, or macro-seismic intensity etc.). After a rigorous testing against the available seismic evidences in the past (usually, the observed instrumental PGA or the historically reported macro-seismic intensity), such a seismic hazard map is used to generate maps of specific earthquake risks for population, cities, and infrastructures (e.g., those based on census of population, buildings inventory, etc.). This, USLE based, methodology of seismic hazard and risks assessment is applied to the territory of Altai-Sayan Region, of Russia. The study supported by the Russian Science Foundation Grant No. 15-17-30020.

  4. The use of vertical seismic profiles in seismic investigations of the earth

    USGS Publications Warehouse

    Balch, Alfred H.; Lee, M.W.; Miller, J.J.; Ryder, Robert T.

    1982-01-01

    During the past 8 years, the U.S. Geological Survey has conducted an extensive investigation on the use of vertical seismic profiles (VSP) in a variety of seismic exploration applications. Seismic sources used were surface air guns, vibrators, explosives, marine air guns, and downhole air guns. Source offsets have ranged from 100 to 7800 ft. Well depths have been from 1200 to over 10,000 ft. We have found three specific ways in which VSPs can be applied to seismic exploration. First, seismic events observed at the surface of the ground can be traced, level by level, to their point of origin within the earth. Thus, one can tie a surface profile to a well log with an extraordinarily high degree of confidence. Second, one can establish the detectability of a target horizon, such as a porous zone. One can determine (either before or after surface profiling) whether or not a given horizon or layered sequence returns a detectable reflection to the surface. The amplitude and character of the reflection can also be observed. Third, acoustic properties of a stratigraphic sequence can be measured and sometimes correlated to important exploration parameters. For example, sometimes a relationship between apparent attenuation and sand percentage can be established. The technique shows additional promise of aiding surface exploration indirectly through studies of the evolution of the seismic pulse, studies of ghosts and multiples, and studies of seismic trace inversion techniques. Nearly all current seismic data‐processing techniques are adaptable to the processing of VSP data, such as normal moveout (NMO) corrections, stacking, single‐and multiple‐channel filtering, deconvolution, and wavelet shaping.

  5. Late-Pleistocene evolution of the East Mediterranean shallow continental shelf of north-central Israel

    NASA Astrophysics Data System (ADS)

    Shtienberg, Gilad; Dix, Justin; Waldmann, Nicolas; Makovsky, Yizhaq; Bookman, Revital; Roskin, Joel; Bialik, Or; Golan, Arik; Sivan, Dorit

    2016-04-01

    Sea-level fluctuations are a dominant and dynamic mechanism that control coastal environmental through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on an integrated high-resolution marine and terrestrial litho-stratigraphic and geophysical framework of the north-central Mediterranean coastal zone of Israel. The interpretation enabled the reconstruction of the coastal evolution over the last ˜130 ka. A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, detailed lithological borehole data-sets, a dense 110 km long sub-bottom geophysical survey and seven continuous boreholes sediment records. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. Meanwhile, the chronostratigraphy of the terrestrial side was constructed through integration of magnetic susceptibility, sedimentological and geochemical analysis with 17 new OSL ages. The seismic units were correlated with the available terrestrial borehole data and then associated to the retrieved terrestrial chronostratigraphy to produce a 4D reconstruction model of the paleo-landscape. The entire unconsolidated sequence overlies a calcareous aeolianite (locally named Kurkar unit) dated from ˜131 - ˜104 ka, which represents the top of the last interglacial cycle dune sediments. The lower unconsolidated unit consists of a red silty loam dated to ˜71 ka. This Red-Paleosol unit is overlaid by a dark brown clayey silty loam This Brown-Paleosol unit dates to ˜58 - ˜36 ka and is overlaid by a dark silty clay wetland deposit dated to ˜21 - ˜10 ka. The wetland unit is topped by a quartz sand dated to ˜6.6 - 0.1 ka. This approach allowed us to investigate the relationship between the lithological units and sea-level change and thus enable the reconstruction of the coastal evolution over the last ˜130 ka. This reconstruction suggests that the stratigraphy is dominated by a sea level lowstand during which aeolian, fluvial and paleosol sediments were deposited in a terrestrial environment. The coastal-terrestrial landscape was flooded by the early to middle Holocene transgression. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time.

  6. Site Amplification Characteristics of the Several Seismic Stations at Jeju Island, in Korea, using S-wave Energy, Background Noise, and Coda waves from the East Japan earthquake (Mar. 11th, 2011) Series.

    NASA Astrophysics Data System (ADS)

    Seong-hwa, Y.; Wee, S.; Kim, J.

    2016-12-01

    Observed ground motions are composed of 3 main factors such as seismic source, seismic wave attenuation and site amplification. Among them, site amplification is also important factor and should be considered to estimate soil-structure dynamic interaction with more reliability. Though various estimation methods are suggested, this study used the method by Castro et. al.(1997) for estimating site amplification. This method has been extended to background noise, coda waves and S waves recently for estimating site amplification. This study applied the Castro et. al.(1997)'s method to 3 different seismic waves, that is, S-wave Energy, Background Noise, and Coda waves. This study analysed much more than about 200 ground motions (acceleration type) from the East Japan earthquake (March 11th, 2011) Series of seismic stations at Jeju Island (JJU, SGP, HALB, SSP and GOS; Fig. 1), in Korea. The results showed that most of the seismic stations gave similar results among three types of seismic energies. Each station showed its own characteristics of site amplification property in low, high and specific resonance frequency ranges. Comparison of this study to other studies can give us much information about dynamic amplification of domestic sites characteristics and site classification.

  7. GISMO: A MATLAB toolbox for seismic research, monitoring, & education

    NASA Astrophysics Data System (ADS)

    Thompson, G.; Reyes, C. G.; Kempler, L. A.

    2017-12-01

    GISMO is an open-source MATLAB toolbox which provides an object-oriented framework to build workflows and applications that read, process, visualize and write seismic waveform, catalog and instrument response data. GISMO can retrieve data from a variety of sources (e.g. FDSN web services, Earthworm/Winston servers) and data formats (SAC, Seisan, etc.). It can handle waveform data that crosses file boundaries. All this alleviates one of the most time consuming part for scientists developing their own codes. GISMO simplifies seismic data analysis by providing a common interface for your data, regardless of its source. Several common plots are built-in to GISMO, such as record section plots, spectrograms, depth-time sections, event count per unit time, energy release per unit time, etc. Other visualizations include map views and cross-sections of hypocentral data. Several common processing methods are also included, such as an extensive set of tools for correlation analysis. Support is being added to interface GISMO with ObsPy. GISMO encourages community development of an integrated set of codes and accompanying documentation, eliminating the need for seismologists to "reinvent the wheel". By sharing code the consistency and repeatability of results can be enhanced. GISMO is hosted on GitHub with documentation both within the source code and in the project wiki. GISMO has been used at the University of South Florida and University of Alaska Fairbanks in graduate-level courses including Seismic Data Analysis, Time Series Analysis and Computational Seismology. GISMO has also been tailored to interface with the common seismic monitoring software and data formats used by volcano observatories in the US and elsewhere. As an example, toolbox training was delivered to researchers at INETER (Nicaragua). Applications built on GISMO include IceWeb (e.g. web-based spectrograms), which has been used by Alaska Volcano Observatory since 1998 and became the prototype for the USGS Pensive system.

  8. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that failure mechanisms documented by passive monitoring of hydraulic fractures may contain a significant component of tensile failure, including fracture opening and closing, although creation of extensive new fracture surfaces may be a seismically inefficient process that radiates at sub-audio frequencies.

  9. Effects of Bounded Fault on Seismic Radiation and Rupture Propagation

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yang, H.

    2016-12-01

    It has been suggested that narrow rectangle fault may emit stopping phases that can largely affect seismic radiation and thus rupture propagation, e.g., generation of short-duration pulse-like ruptures. Here we investigate the effects of narrow along-dip rectangle fault (analogously to 2015 Nepal earthquake with 200 km * 40 km) on seismic radiation and rupture propagation through numerical modeling in the framework of the linear slip-weakening friction law. First, we found the critical slip-weakening distance Dc may largely affect the seismic radiation and other source parameters, such as rupture speed, final slip and stress drop. Fixing all other uniform parameters, decreasing Dc could decrease the duration time of slip rate and increase the peak slip rate, thus increase the seismic radiation energy spectrum of slip acceleration. In addition, smaller Dc could lead to larger rupture speed (close to S wave velocity), but smaller stress drop and final slip. The results show that Dc may control the efficiency of far-field radiation. Furthermore, the duration time of slip rate at locations close to boundaries is 1.5 - 4 s less than that in the center of the fault. Such boundary effect is especially remarkable for smaller Dc due to the smaller average duration time of slip rate, which could increase the high-frequency radiation energy and impede low-frequency component near the boundaries from the analysis of energy spectrum of slip acceleration. These results show high frequency energy tends to be radiated near the fault boundaries as long as Dc is small enough. In addition, ruptures are fragile and easy to self-arrest if the width of the seismogenic zone is very narrow. In other words, the sizes of nucleation zone need to be larger to initiate runaway ruptures. Our results show the critical sizes of nucleation zones increase as the widths of seismogenic zones decrease.

  10. Using Antelope and Seiscomp in the framework of the Romanian Seismic Network

    NASA Astrophysics Data System (ADS)

    Marius Craiu, George; Craiu, Andreea; Marmureanu, Alexandru; Neagoe, Cristian

    2014-05-01

    The National Institute for Earth Physics (NIEP) operates a real-time seismic network designed to monitor the seismic activity on the Romania territory, dominated by the Vrancea intermediate-depth (60-200 km) earthquakes. The NIEP real-time network currently consists of 102 stations and two seismic arrays equipped with different high quality digitizers (Kinemetrics K2, Quanterra Q330, Quanterra Q330HR, PS6-26, Basalt), broadband and short period seismometers (CMG3ESP, CMG40T, KS2000, KS54000, KS2000, CMG3T, STS2, SH-1, S13, Mark l4c, Ranger, Gs21, Mark 22) and acceleration sensors (Episensor Kinemetrics). The primary goal of the real-time seismic network is to provide earthquake parameters from more broad-band stations with a high dynamic range, for more rapid and accurate computation of the locations and magnitudes of earthquakes. The Seedlink and AntelopeTM program packages are completely automated Antelope seismological system is run at the Data Center in Măgurele. The Antelope data acquisition and processing software is running for real-time processing and post processing. The Antelope real-time system provides automatic event detection, arrival picking, event location, and magnitude calculation. It also provides graphical displays and automatic location within near real time after a local, regional or teleseismic event has occurred SeisComP 3 is another automated system that is run at the NIEP and which provides the following features: data acquisition, data quality control, real-time data exchange and processing, network status monitoring, issuing event alerts, waveform archiving and data distribution, automatic event detection and location, easy access to relevant information about stations, waveforms, and recent earthquakes. The main goal of this paper is to compare both of these data acquisitions systems in order to improve their detection capabilities, location accuracy, magnitude and depth determination and reduce the RMS and other location errors.

  11. SISYPHUS: A high performance seismic inversion factory

    NASA Astrophysics Data System (ADS)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with branches for the static process setup, inversion iterations, and solver runs, each branch specifying information at the event, station and channel levels. The workflow management framework is based on an embedded scripting engine that allows definition of various workflow scenarios using a high-level scripting language and provides access to all available inversion components represented as standard library functions. At present the SES3D wave propagation solver is integrated in the solution; the work is in progress for interfacing with SPECFEM3D. A separate framework is designed for interoperability with an optimization module; the workflow manager and optimization process run in parallel and cooperate by exchanging messages according to a specially designed protocol. A library of high-performance modules implementing signal pre-processing, misfit and adjoint computations according to established good practices is included. Monitoring is based on information stored in the inversion state database and at present implements a command line interface; design of a graphical user interface is in progress. The software design fits well into the common massively parallel system architecture featuring a large number of computational nodes running distributed applications under control of batch-oriented resource managers. The solution prototype has been implemented on the "Piz Daint" supercomputer provided by the Swiss Supercomputing Centre (CSCS).

  12. Local spatiotemporal time-frequency peak filtering method for seismic random noise reduction

    NASA Astrophysics Data System (ADS)

    Liu, Yanping; Dang, Bo; Li, Yue; Lin, Hongbo

    2014-12-01

    To achieve a higher level of seismic random noise suppression, the Radon transform has been adopted to implement spatiotemporal time-frequency peak filtering (TFPF) in our previous studies. Those studies involved performing TFPF in full-aperture Radon domain, including linear Radon and parabolic Radon. Although the superiority of this method to the conventional TFPF has been tested through processing on synthetic seismic models and field seismic data, there are still some limitations in the method. Both full-aperture linear Radon and parabolic Radon are applicable and effective for some relatively simple situations (e.g., curve reflection events with regular geometry) but inapplicable for complicated situations such as reflection events with irregular shapes, or interlaced events with quite different slope or curvature parameters. Therefore, a localized approach to the application of the Radon transform must be applied. It would serve the filter method better by adapting the transform to the local character of the data variations. In this article, we propose an idea that adopts the local Radon transform referred to as piecewise full-aperture Radon to realize spatiotemporal TFPF, called local spatiotemporal TFPF. Through experiments on synthetic seismic models and field seismic data, this study demonstrates the advantage of our method in seismic random noise reduction and reflection event recovery for relatively complicated situations of seismic data.

  13. Design concepts for a Global Telemetered Seismograph Network

    USGS Publications Warehouse

    Peterson, Jon; Orsini, Nicholas A.

    1982-01-01

    This study represents a first step in developing an integrated, real-time global seismic data acquisition system a Global Telemetered Seismograph Network (GTSN). The principal objective of the GTSN will be to acquire reliable, high-quality, real-time seismic data for rapid location and analysis of seismic events. A secondary, but important, objective of the GTSN is to augment the existing off-line seismic data base available for research. The deployment of the GTSN will involve a variety of interrelated activities development of the data acquisition and receiving equipment, establishment of satellite and terrestrial communication links, site selection and preparation, training of station personnel, equipment installation, and establishment of support facilities. It is a complex program and the development of a sound management plan will be essential. The purpose of this study is not to fix design goals or dictate avenues of approach but to develop working concepts that may be used as a framework for program planning.The international exchange of seismic data has been an important factor in the progress that has been made during the past two decades in our understanding of earthquakes and global tectonics. The seismic data base available for analysis and research is derived principally from the Global Seismograph Network (GSN), which is funded and managed by the U.S. Geological Survey (USGS). The GSN comprises some 120 seismograph stations located in more than 60 countries of the world. Established during the 1960 s with the installation of the World-Wide Standardized Seismograph Network (WWSSN) , the GSN has been augmented in recent years by the installation of more advanced data systems, such as the Seismic Research Observatories (SRO), the modified High-Gain LongPeriod (ASRO) seismographs, and the digital WWSSN (DWWSSN). The SRO, ASRO, and DWWSSN stations have the common, distinctive feature of digital data recording, so they are known collectively as the Global Digital Seismograph Network (GDSN).The fundamental objective in operating the GSN is to create and update a seismic data base that is accessible without restrictions to organizations and research scientists throughout the world. The USGS provides cooperating stations with instrumentation, training, and continuing support, including supplies and on-site maintenance. In return, the host organization operates the equipment and sends the recorded data to the USGS. Analog data (seismograms) are microfilmed and about four million copies are requested annually by researchers. Digital data, which are recorded on magnetic tape, are organized by the USGS Albuquerque Seismological Laboratory (ASL) into networkday tapes and copies of the day tapes are furnished to data users through national and regional data centers. After copying, original data are returned to the stations and used for local research. Most of the stations in the GSN also provide the USGS with seismic readings « phase arrival times and amplitudes scaled from the seismograms. These readings are transmitted on a daily or biweekly basis via commercial or diplomatic communication channels. They are used by the USGS National Earthquake Information Service (NEIS) to determine the location and magnitude of earthquakes occurring throughout the world. The results are published monthly in bulletins that are distributed to the participating stations and virtually all scientific organizations that are involved in seismological studies. It is a much-valued service that provides a current, updated catalog of seismic activity on a global scale.The NEIS also has the responsibility for rapid reporting of large and potentially destructive earthquakes. The NEIS issues news bulletins as soon as possible after the occurrence of magnitude 6.5 or greater earthquakes (magnitude 5 or greater in the conterminous United States). The news bulletins are sent to disaster relief, public safety, and other interested organizations. Tsunami warnings issued to countries bordering the Pacific Ocean are based initially on earthquake location and magnitude data. Rapid reporting of earthquakes requires real-time waveform data or readings. Currently, signals are being telemetered from more than thirty stations in the United States to the NEIS, which is located in Golden, Colorado. An extension of the telemetry network to other countries will provide the seismological community with a significantly improved means of monitoring earthquake activity in real time; it will lower the response time for determining the location and magnitude of potentially destructive or tsunamigenic earthquakes and it will provide more timely information that may be needed by governments to respond promptly.

  14. Improvements of the Regional Seismic network of Northwestern Italy in the framework of ALCoTra program activities

    NASA Astrophysics Data System (ADS)

    Bosco, Fabrizio

    2014-05-01

    Arpa Piemonte (Regional Agency for Environmental Protection), in partnership with University of Genoa, manages the regional seismic network, which is part of the Regional Seismic network of Northwestern Italy (RSNI). The network operates since the 80s and, over the years, it has developed in technological features, analysis procedures and geographical coverage. In particular in recent years the network has been further enhanced through the integration of Swiss and French stations installed in the cross-border area. The environmental context enables the installation of sensors in sites with good conditions as regards ambient noise and limited local amplification effects (as proved by PSD analysis, signal quality monitoring via PQLX, H/V analysis). The instrumental equipment consists of Broadband and Very Broadband sensors (Nanometrics Trillium 40" and 240") and different technological solutions for signals real-time transmission (cable, satellite, GPRS), according to the different local environment, with redundant connections and with experimental innovative systems. Digital transmission and acquisition systems operate through standard protocols (Nanometrics, SeedLink), with redundancy in data centers (Genoa, Turin, Rome). Both real-time automatic and manual operational procedures are in use for signals analysis (events detection, picking, focal parameters and ground shaking determination). In the framework of cross-border cooperation program ALCoTra (http://www.interreg-alcotra.org), approved by the European Commission, several projects have been developed to improve the performances of seismic monitoring systems used by partners (Arpa Piemonte, Aosta Valley Region, CNRS, Joseph Fourier University). The cross-border context points out first of all the importance of signals sharing (from 14 to 23 stations in narrow French-Italian border area, with an increase of over 50%) and of coordination during new stations planning and installation in the area. In the ongoing ALCoTra project "CASSAT" (Coordination and Analysis of Alpine Trans-border Seismic Surveillance), we evaluate the improvement of monitoring systems performances in terms of localizations precision and number of detections. Furthermore, we update the procedures for the production of ground shaking maps, with installation of accelerometers and integration of new available data for site effects assessment (VS30 map, FA-VS30 correlations by numerical simulations of seismic response), determined for the specific regional context from geophysical surveys data and geological analysis. As a consequence of the increase of available data due to new stations installation and recently recorded events, a new local magnitude scaling law is calibrated for the area. We also develop a parametric methodology to improve network real-time localization procedures in Northwestern Italy. The area, surrounded by Western Alps and Northern Apennines, presents a complex system of lithospheric structures, characterized by strong heterogeneities of various physical parameters (Ivrea Body, subducting European lithosphere, Ligurian Sea Moho, Po Valley deposits). We work with a localization algorithm (Hypoinverse-2000) suitable for such a heterogeneous context , adopting multi-1d crustal velocities models, linked to epicentral coordinates. In this analysis, first we build velocities models integrating several available geophysical and geo-structural data; then we test jointly both models and algorithm parameters with specifically developed automatic iterative procedures, through batch scripting, database, GIS and statistical analysis tools.

  15. Integrated study of high resolution geophysical and geological information of Osaka Bay, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Inoue, Naoto; Kitada, Naoko; Itoh, Yasuto; Takemura, Keiji; Nakagawa, Koichi

    The stratigraphic framework of Quaternary sediments in the Osaka Basin, Southwest Japan was revealed by high resolution geophysical and geological surveys acquired after the 1995 Kobe Earthquake. Osaka Bay is located in the central part of the Osaka Basin and is underlaid with Pre-Neogene basement rocks covered by an unconsolidated sequence of Plio-Pleistocene marine, fluvial and lacustrine sediments. Fifteen laterally continuous marine clays (from Ma-1 to Ma13, in ascending order) have been identified throughout the Osaka Basin that have been correlated with the marine eustatic record. Deep borehole and high resolution seismic data were acquired in Kobe (northern part of the basin) and Kansai International Airport (southern part of the basin). Sequence stratigraphy defined by seismic reflectors was used to reveal the stratigraphic differences between the two areas. By identifying reflectors as marine clay layers throughout the basin, we were able to divide the study area into three parts (northern, middle and southern parts) and to estimate the sedimentation rate in each location. The sedimentation rate increases from the northern and southern margins of the basin towards central Osaka Bay in the middle of the basin. In the southern parts, the sharp decline of sedimentation rate between Ma2 and Ma4 and thinning or complete lack of the reflectors corresponding to Ma5 and Ma6 layers result from tilting in this region.

  16. First results from a temporary seismological network in the Southern Dead Sea area

    NASA Astrophysics Data System (ADS)

    Braeuer, B.; Asch, G.; Hofstetter, A.; Haberland, C.; Darwish, J.; El-Kelani, R.; Weber, M.

    2008-12-01

    Within the framework of the international project DESIRE (Dead Sea Integrated Research Project) a local seismological network was operated in the Southern Dead Sea area as a co-operation between the GFZ Germany, GII Israel, NRA Jordan and An-Najah National Univer-sity Palestine. From October 2006 to March 2008 about 65 short period (38) and broadband (27) instruments recorded continuously the seismicity of the Dead Sea basin. This investiga-tion aims in studying the deeper structure of the Dead Sea area based on the distribution of the local seismicity. About 500 local events have been recorded and more than 300 have been processed up to now. A dominant feature in this first part of the dataset we found a cluster of 78 earthquakes, occurring in February 2007, including multiplets. We determined a 1D-reference model of P- and S-velocities using Velest (Kissling et al., 1994). The model shows a high velocity increase between 6 and 10 km depth. This could be related to a prominent reflector found in the results of the wide angle reflection experiment in the area in 2006 (Mechie et al., 2008). The station corrections suggest a 2D structure with the basin in the middle and the shoulders on the east and west. Additionally the results are compared with receiver function and magnetotelluric studies, part of the DESIRE project.

  17. Waveform Retrieval and Phase Identification for Seismic Data from the CASS Experiment

    NASA Astrophysics Data System (ADS)

    Li, Zhiwei; You, Qingyu; Ni, Sidao; Hao, Tianyao; Wang, Hongti; Zhuang, Cantao

    2013-05-01

    The little destruction to the deployment site and high repeatability of the Controlled Accurate Seismic Source (CASS) shows its potential for investigating seismic wave velocities in the Earth's crust. However, the difficulty in retrieving impulsive seismic waveforms from the CASS data and identifying the seismic phases substantially prevents its wide applications. For example, identification of the seismic phases and accurate measurement of travel times are essential for resolving the spatial distribution of seismic velocities in the crust. Until now, it still remains a challenging task to estimate the accurate travel times of different seismic phases from the CASS data which features extended wave trains, unlike processing of the waveforms from impulsive events such as earthquakes or explosive sources. In this study, we introduce a time-frequency analysis method to process the CASS data, and try to retrieve the seismic waveforms and identify the major seismic phases traveling through the crust. We adopt the Wigner-Ville Distribution (WVD) approach which has been used in signal detection and parameter estimation for linear frequency modulation (LFM) signals, and proves to feature the best time-frequency convergence capability. The Wigner-Hough transform (WHT) is applied to retrieve the impulsive waveforms from multi-component LFM signals, which comprise seismic phases with different arrival times. We processed the seismic data of the 40-ton CASS in the field experiment around the Xinfengjiang reservoir with the WVD and WHT methods. The results demonstrate that these methods are effective in waveform retrieval and phase identification, especially for high frequency seismic phases such as PmP and SmS with strong amplitudes in large epicenter distance of 80-120 km. Further studies are still needed to improve the accuracy on travel time estimation, so as to further promote applicability of the CASS for and imaging the seismic velocity structure.

  18. Angola Seismicity MAP

    NASA Astrophysics Data System (ADS)

    Neto, F. A. P.; Franca, G.

    2014-12-01

    The purpose of this job was to study and document the Angola natural seismicity, establishment of the first database seismic data to facilitate consultation and search for information on seismic activity in the country. The study was conducted based on query reports produced by National Institute of Meteorology and Geophysics (INAMET) 1968 to 2014 with emphasis to the work presented by Moreira (1968), that defined six seismogenic zones from macro seismic data, with highlighting is Zone of Sá da Bandeira (Lubango)-Chibemba-Oncócua-Iona. This is the most important of Angola seismic zone, covering the epicentral Quihita and Iona regions, geologically characterized by transcontinental structure tectono-magmatic activation of the Mesozoic with the installation of a wide variety of intrusive rocks of ultrabasic-alkaline composition, basic and alkaline, kimberlites and carbonatites, strongly marked by intense tectonism, presenting with several faults and fractures (locally called corredor de Lucapa). The earthquake of May 9, 1948 reached intensity VI on the Mercalli-Sieberg scale (MCS) in the locality of Quihita, and seismic active of Iona January 15, 1964, the main shock hit the grade VI-VII. Although not having significant seismicity rate can not be neglected, the other five zone are: Cassongue-Ganda-Massano de Amorim; Lola-Quilengues-Caluquembe; Gago Coutinho-zone; Cuima-Cachingues-Cambândua; The Upper Zambezi zone. We also analyzed technical reports on the seismicity of the middle Kwanza produced by Hidroproekt (GAMEK) region as well as international seismic bulletins of the International Seismological Centre (ISC), United States Geological Survey (USGS), and these data served for instrumental location of the epicenters. All compiled information made possible the creation of the First datbase of seismic data for Angola, preparing the map of seismicity with the reconfirmation of the main seismic zones defined by Moreira (1968) and the identification of a new seismic zone Porto Amboim in the coastal portion of Kwanza basin sedimentary.

  19. Evaluation and developmental studies of possible active seismic experiments during the post-Apollo period

    NASA Technical Reports Server (NTRS)

    Kovach, R. L.

    1974-01-01

    Seismic velocity studies pertinent to the lunar crust and mantle are briefly summarized. The compressional and shear wave velocities in loose aggregates are discussed along with the effects of temperature on seismic velocity in compacted powders. Abstracts of papers concerning the lunar structure are included.

  20. The importance of geological data and derived information in seismic response assessment for urban sites. An example from the Island of Crete, Greece

    NASA Astrophysics Data System (ADS)

    Tsangaratos, Paraskevas; Loupasakis, Constantinos; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonios; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Nikos; Sarris, Apostolos

    2015-04-01

    The magnitude, frequency content and duration of an earthquake ground motion depends mainly on the surrounding geological, tectonic and geomorphological conditions. Numerous reports have been contacted illustrating the necessity of providing accurate geological information in order to estimate the level of seismic hazard. In this context, geological information is the outcome of processing primary, raw field data and geotechnical investigation data that are non - organized and associated with the geological model of the study area. In most cases, the geological information is provided as an advance element, a key component of the "function" that solves any geo-environmental problem and is primarily reflected on analogue or digital maps. The main objective of the present study is to illustrate the importance of accurate geological information in the thirteen (13) selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island, in order to estimate the seismic action according to Eurocode (EC8). As an example the detailed geological-geotechnical map of the area around HAN site in Rethymno city, Crete is presented. The research area covers a 250m radius surrounding the RTHE HAN-station at a scale of 1: 2000 with detail description of the geological and geotechnical characteristics of the formations as well as the tectonic features (cracks, upthrust, thrust, etc) of the rock mass. The field survey showed that the RTHE station is founded over limestones and dolomites formations. The formations exhibit very good geomechanical behaviour; however they present extensive fragmentation and karstification. At this particular site the identification of a fault nearby the station proved to be significant information for the geophysical research as the location and orientation of the tectonic setting provided new perspective on the models of seismic wave prorogation. So, the geological data and the induced information along with the tectonic structure of the area, revealed variations that could alter the seismic wave prorogation models as well as the ground type/soil category of the foundation formations. In conclusion, the produced geological-geotechnical maps are the main mean of communication and flow of geological information between different scientific disciplines providing the bases for defining the ground type at each HAN site and calibrating the corresponding code prescribed spectra. This study is part of the on-going project that has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  1. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides occurred. Comparison of reconstructed critical stability conditions with the known distribution of landslide deposits reveals minimum and maximum threshold conditions for slopes that failed or remained stable, respectively. The resulting correlations reveal good agreements and suggest that the slope stability model generally succeeds in reproducing past events. The basin-wide mapping of subaquatic slope failure susceptibility through time thus can also be considered as a promising paleoseismologic tool that allows quantification of past earthquake ground shaking intensities. Furthermore, it can be used to assess the present-day slope failure susceptibility allowing for identification of location and estimation of size of future, potentially tsunamigenic subaquatic landslides. The new approach presented in our comprehensive lake study and resulting conceptual ideas can be vital to improve our understanding of larger marine slope instabilities and related seismic and oceanic geohazards along formerly glaciated ocean margins and closed basins worldwide.

  2. Using Seismic and Infrasonic Data to Identify Persistent Sources

    NASA Astrophysics Data System (ADS)

    Nava, S.; Brogan, R.

    2014-12-01

    Data from seismic and infrasound sensors were combined to aid in the identification of persistent sources such as mining-related explosions. It is of interest to operators of seismic networks to identify these signals in their event catalogs. Acoustic signals below the threshold of human hearing, in the frequency range of ~0.01 to 20 Hz are classified as infrasound. Persistent signal sources are useful as ground truth data for the study of atmospheric infrasound signal propagation, identification of manmade versus naturally occurring seismic sources, and other studies. By using signals emanating from the same location, propagation studies, for example, can be conducted using a variety of atmospheric conditions, leading to improvements to the modeling process for eventual use where the source is not known. We present results from several studies to identify ground truth sources using both seismic and infrasound data.

  3. Rock formation characterization for CO2-EOR and carbon geosequestration; 3D seismic amplitude and coherency anomalies, Wellington Field, Kansas, USA

    USGS Publications Warehouse

    Ohl, D.; Raef, A.; Watnef, L.; Bhattacharya, S.

    2011-01-01

    In this paper, we present a workflow for a Mississipian carbonates characterization case-study integrating post-stack seismic attributes, well-logs porosities, and seismic modeling to explore relating changes in small-scale "lithofacies" properties and/or sub-seismic resolution faulting to key amplitude and coherency 3D seismic attributes. The main objective of this study is to put emphasis on reservoir characterization that is both optimized for and subsequently benefiting from pilot tertiary CO2-EOR in preparation for future carbon geosequestration in a depleting reservoir and a deep saline aquifer. The extracted 3D seismic coherency attribute indicated anomalous features that can be interpreted as a lithofacies change or a sub-seismic resolution faulting. A 2D finite difference modeling has been undertaken to understand and potentially build discriminant attributes to map structural and/or lithofacies anomalies of interest especially when embarking upon CO2-EOR and/or carbon sequestration monitoring and management projects. ?? 2011 Society of Exploration Geophysicists.

  4. The characteristics of seismic activity during the 2016 Kumamoto Earthquake sequence

    NASA Astrophysics Data System (ADS)

    Yano, T. E.; Matsubara, M.

    2016-12-01

    We have relocated hypocenters (total number of hypocenters to be relocated within five independent regions; N= 37,136) during the 2016 Kumamoto Earthquake sequence applying the NIED Hi-net phase pick data and waveform cross-correlations to hypoDD (Waldhauser and Ellsworth, 2000), the double-difference method. The relocated seismicity clearly trace linearly to the background seismicity, such as the Hinagu, Futagawa, and Beppu-Haneyama fault zone, and Mt. Aso area, but also form a linear seismic activity at the previously quiet area including northern edge of the caldera of Mt. Aso (Aso caldera) and some areas within the Beppu-Haneyama fault zone. Two mainshocks of M6.5 on April 14th and M7.3 on April 16th occurred at the region where the Hinagu and Futagawa faults meet each other. Our results show that the seismicity forming a shape enough to identify a line along the Hinagu fault for about 20 km immediately after the M6.3 and continues after the M7.5 event. It also make enable to trace a line of seismicity along the Futagawa fault to the east (total of about 28 km), northern part of the Aso caldera, and Ohita region along the Beppu-Haneyama fault zone becomes active only after the M7.5 event. Not only seismicity following the known faults but also seismicity unconfirmed from background seismicity in previous relocation study between 2000 and 2012 (Yano, et al., 2016) appears during the Kumamoto Earthquake sequence. By comparing our high resolution relocated catalog in the Kumamoto region from previous study and this study enable us to identified interesting characteristics; (1) the quiet area making as a gap of seismicity between the northeast extension of the Futagawa fault zone and Mt. Aso region appears only after the M7.5 event, (2) the seismicity forming a vertical or high angle dip in Aso and Ohita regions are selectively activated, (3) the linear seismicity at previously unconfirmed regions where at the northern part of the Aso caldera and along the Beppu-Haneyama fault zone. We present these characteristics of seismicity during the Kumamoto Earthquake sequence in detail.

  5. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  6. Evaluation Seismicity west of block-lut for Deterministic Seismic Hazard Assessment of Shahdad ,Iran

    NASA Astrophysics Data System (ADS)

    Ney, B.; Askari, M.

    2009-04-01

    Evaluation Seismicity west of block-lut for Deterministic Seismic Hazard Assessment of Shahdad ,Iran Behnoosh Neyestani , Mina Askari Students of Science and Research University,Iran. Seismic Hazard Assessment has been done for Shahdad city in this study , and four maps (Kerman-Bam-Nakhil Ab-Allah Abad) has been prepared to indicate the Deterministic estimate of Peak Ground Acceleration (PGA) in this area. Deterministic Seismic Hazard Assessment has been preformed for a region in eastern Iran (Shahdad) based on the available geological, seismological and geophysical information and seismic zoning map of region has been constructed. For this assessment first Seimotectonic map of study region in a radius of 100km is prepared using geological maps, distribution of historical and instrumental earthquake data and focal mechanism solutions it is used as the base map for delineation of potential seismic sources. After that minimum distance, for every seismic sources until site (Shahdad) and maximum magnitude for each source have been determined. In Shahdad ,according to results, peak ground acceleration using the Yoshimitsu Fukushima &Teiji Tanaka'1990 attenuation relationship is estimated to be 0.58 g, that is related to the movement of nayband fault with distance 2.4km of the site and maximum magnitude Ms=7.5.

  7. a Comparative Case Study of Reflection Seismic Imaging Method

    NASA Astrophysics Data System (ADS)

    Alamooti, M.; Aydin, A.

    2017-12-01

    Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.

  8. Seismicity Structure of the Downgoing Nazca Slab in Northern Chile

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Schurr, B.

    2017-12-01

    We applied an automatized earthquake detection and location algorithm to 8 years of continuous seismic data from the IPOC network in Northern Chile, located in the forearc between about 18.5°S and 24°S. The resulting seismicity catalog contains more than 113k double-difference relocated earthquake hypocenters and features a completeness magnitude around 2.8. Despite the occurrence of two megathrust earthquakes with vigorous aftershock seismicity in the studied time period (the 2007 Tocopilla and the 2014 Iquique earthquakes), >60% of the retrieved seismicity is located in a highly active band of intermediate-depth earthquakes (80-120 km deep) within the downgoing Nazca slab.We obtain a triple seismic zone in the updip part of the slab, with the three parallel dipping planes corresponding to the plate interface, the oceanic Moho (ca. 8 km below the interface) and a third band in the mantle lithosphere 26-28 km beneath the slab top. The plate interface seismicity terminates abruptly at a depth of 55 km. At about 80-90 km depth, the remaining two planes of seismicity then merge into the single, 20 km thick cluster of vigorous seismicity mentioned above, which terminates at 120 km depth. This cluster is located directly beneath the volcanic arc and shows a pronounced kink in the slab dipping angle. Intra-slab seismicity is most likely related to metamorphic dehydration reactions, hence our high-resolution earthquake distribution can be considered a map of metamorphic reactions (although a possibly incomplete one, since not all reactions necessarily invoke seismicity). By correlating this distribution with isotherms from thermal models as well as geophysical imaging results from previous studies, we attempt to get a glimpse at the processes that produce the different patches of intraslab seismicity at intermediate depths.

  9. Seismic sample areas defined from incomplete catalogues: an application to the Italian territory

    NASA Astrophysics Data System (ADS)

    Mulargia, F.; Tinti, S.

    1985-11-01

    The comprehensive understanding of earthquake source-physics under real conditions requires the study not of single faults as separate entities but rather of a seismically active region as a whole, accounting for the interaction among different structures. We define "seismic sample area" the most convenient region to be used as a natural laboratory for the study of seismic source physics. This coincides with the region where the average large magnitude seismicity is the highest. To this end, time and space future distributions of large earthquakes are to be estimated. Using catalog seismicity as an input, the rate of occurrence is not constant but appears generally biased by incompleteness in some parts of the catalog and possible nonstationarities in seismic activity. We present a statistical procedure which is capable, under a few mild assumptions, of both detecting nonstationarities in seismicity and finding the incomplete parts of a seismic catalog. The procedure is based on Kolmogorov-Smirnov nonparametric statistics, and can be applied without a priori assuming the parent distribution of the events. The efficiency of this procedure allows the analysis of small data sets. An application to the Italian territory is presented, using the most recent version of the ENEL seismic catalog. Seismic activity takes place in six well defined areas but only five of them have a number of events sufficient for analysis. Barring a few exceptions, seismicity is found stationary throughout the whole catalog span 1000-1980. The eastern Alps region stands out as the best "sample area", with the highest average probability of event occurrence per time and area unit. Final objective of this characterization is to stimulate a program of intensified research.

  10. Analysis of Focal Mechanism and Microseismicity around the Lusi Mud Eruption Site, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Karyono, Karyono; Obermann, Anne; Mazzini, Adriano; Lupi, Matteo; Syafri, Ildrem; Abdurrokhim, Abdurrokhim; Masturyono, Masturyono; Hadi, Soffian

    2016-04-01

    The 29th of May 2006 numerous eruption sites started in northeast Java, Indonesia following to a M6.3 earthquake striking the island.Within a few weeks an area or nearly 2 km2 was covered by boiling mud and rock fragments and a prominent central crater (named Lusi) has been erupting for the last 9.5 years. The M.6.3 seismic event also triggered the activation of the Watukosek strike slip fault system that originates from the Arjuno-Welirang volcanic complex and extends to the northeast of Java hosting Lusi and other mud volcanoes. Since 2006 this fault system has been reactivated in numerous instances mostly following to regional seismic and volcanic activity. However the mechanism controlling this activity have never been investigated and remain poorly understood. In order to investigate the relationship existing between seismicity, volcanism, faulting and Lusi activity, we have deployed a network of 31 seismometers in the framework of the ERC-Lusi Lab project. This network covers a large region that monitors the Lusi activity, the Watukosek fault system and the neighboring Arjuno-Welirang volcanic complex. In particular, to understand the consistent pattern of the source mechanism, relative to the general tectonic stress in the study area, a detailed analysis has been carried out by performing the moment tensor inversion for the near field data collected from the network stations. Furthermore these data have been combined with the near field data from the regional network of the Meteorological, Climatological and Geophysical Agency of Indonesia that covers the whole country on a broader scale. Keywords: Lusi, microseismic event, focal mechanism

  11. RST (Robust Satellite Techniques) analysis for monitoring earth emitted radiation in seismically active area of California (US): a long term (2006-2011) analysis of GOES-W/IMAGER thermal data

    NASA Astrophysics Data System (ADS)

    Tramutoli, V.; Armandi, B.; Filizzola, C.; Genzano, N.; Lisi, M.; Paciello, R.; Pergola, N.

    2014-12-01

    More than ten years of applications of the RST (Robust Satellite Techniques) methodology for monitoring earthquake prone area by using satellite TIR(Thermal InfraRed) data, have shown the ability of this approach to discern anomalous TIR signals possibly associated to seismic activity from normal fluctuations of Earth's thermal emission related to other causes independent on the earthquake occurrence. The RST approach was already tested in the case of tens of earthquakes occurred in different continents (Europe, Asia, America and Africa), in various geo-tectonic settings (compressive, extensional and transcurrent) and with a wide range of magnitudes (from 4.0 to 7.9), by analyzing time series of TIR images acquired by sensors on board of polar (like NOAA/AVHRR, EOS/MODIS) and geostationary satellites (like MFG/MVIRI, MSG/SEVIRI, GOES/IMAGER). In addition RST method has been independently tested by several researchers around the world as well as in the framework of several projects funded by different national space agencies (like the Italian ASI, the U.S. NASA and the German DLR) and recently during the EC-FP7 projectPRE-EARTHQUAKES (www.pre-earthquakes.org),which was devoted to study the earthquake precursors using satellite techniques. This paper will show the results of RST analysis on 6 years (2006-2011)of TIR satellite record collected by GOES-W/IMAGER over Southern part United State (California).Results will be discussed particularly in the prospective of an integrated approach devoted to systematically collectand analyze in real-time, independent observations for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  12. Quaternary evolution of the Fennoscandian Ice Sheet from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Montelli, A.; Dowdeswell, J. A.; Ottesen, D.; Johansen, S. E.

    2016-12-01

    The Quaternary seismic stratigraphy and architecture of the mid-Norwegian continental shelf and slope are investigated using extensive grids of marine 2D and 3D seismic reflection data that cover more than 100,000 km2 of the continental margin. At least 26 distinct regional palaeo-surfaces have been interpreted within the stratigraphy of the Quaternary Naust Formation on the mid-Norwegian margin. Multiple assemblages of buried glacigenic landforms are preserved within the Naust Formation across most of the study area, facilitating detailed palaeo-glaciological reconstructions. We document a marine-terminating, calving Fennoscandian Ice Sheet (FIS) margin present periodically on the Norwegian shelf since at least the beginning of the Quaternary. Elongate, streamlined landforms interpreted as mega-scale glacial lineations (MSGLs) have been found within the upper part of the Naust sequence N ( 1.9-1.6 Ma), sugesting the development of fast-flowing ice streams since that time. Shifts in the location of depocentres and direction of features indicative of fast ice-flow suggest that several reorganisations in the FIS drainage have occurred since 1.5 Ma. Subglacial landforms reveal a complex and dynamic ice sheet, with converging palaeo-ice streams and several flow-switching events that may reflect major changes in topography and internal ice-sheet structure. Lack of subglacial meltwater channels suggests a largely distributed, low-volume meltwater system that drained the FIS through permeable subglacial till without leaving much erosional evidence. This regional palaeo-environmental examination of the FIS provides a useful framework for ice-sheet modelling and shows that fragmentary preservation of buried surfaces and variability of ice-sheet dynamics should be taken into account when reconstructing glacial history from spatially limited datasets.

  13. Convective Patterns under the Indo-Atlantic box

    NASA Astrophysics Data System (ADS)

    Davaille, A.; Stutzmann, E.; Silveira, G.; Besse, J.; Courtillot, V.

    2005-12-01

    Using recent fluid mechanics results as a framework, we reinterpret the images of the Indo-Atlantic mantle obtained from global and regional tomography studies together with geochemical, geological and paleomagnetic observations to unravel the pattern of convection in the Indo-Atlantic box and its temporal evolution over the last 260 Myr. Seismic tomography sections at different depths show that the Earth's mantle seems to be divided in two boxes by the subducted plates, the Pacific and the Indo-Atlantic boxes. The latter presently contains a) a broad slow seismic anomaly at the CMB which has a similar shape to Pangea 250 Myr ago, and which divides into several branches higher in the lower mantle, b) one superswell centered on the western edge of South Africa, c) at least 6 primary hotspots with long tracks related to traps, and d) numerous smaller hotspots. Moreover, in the last 260 Myr, this mantle box has undergone 10 traps events, 7 of them related to continental break up. Several of these past events are spatially correlated with present-day seismic anomalies and/or upwellings, suggesting episodicity. Laboratory experiments show that superswells, long-lived hotspot tracks and traps may represent three evolutionnary stages of the same phenomenon, i.e. the episodic destabilization of a hot, chemically heterogeneous thermal boundary layer, close to the bottom of the mantle. When scaled to the Earth's mantle, the recurrence time of this phenomenon is on the order of 100-200 Myr. Also, at any given time, the Indo-Atlantic box should contain 3 to 9 of these instabilities at different stages of their development. This is in agreement with observations. The return flow of the downwelling slabs, although confined to two main boxes by subduction zone geometry, may therefore not be passive, but rather take the form of active thermochemical instabilities.

  14. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  15. Flexible Software Architecture for Visualization and Seismic Data Analysis

    NASA Astrophysics Data System (ADS)

    Petunin, S.; Pavlov, I.; Mogilenskikh, D.; Podzyuban, D.; Arkhipov, A.; Baturuin, N.; Lisin, A.; Smith, A.; Rivers, W.; Harben, P.

    2007-12-01

    Research in the field of seismology requires software and signal processing utilities for seismogram manipulation and analysis. Seismologists and data analysts often encounter a major problem in the use of any particular software application specific to seismic data analysis: the tuning of commands and windows to the specific waveforms and hot key combinations so as to fit their familiar informational environment. The ability to modify the user's interface independently from the developer requires an adaptive code structure. An adaptive code structure also allows for expansion of software capabilities such as new signal processing modules and implementation of more efficient algorithms. Our approach is to use a flexible "open" architecture for development of geophysical software. This report presents an integrated solution for organizing a logical software architecture based on the Unix version of the Geotool software implemented on the Microsoft NET 2.0 platform. Selection of this platform greatly expands the variety and number of computers that can implement the software, including laptops that can be utilized in field conditions. It also facilitates implementation of communication functions for seismic data requests from remote databases through the Internet. The main principle of the new architecture for Geotool is that scientists should be able to add new routines for digital waveform analysis via software plug-ins that utilize the basic Geotool display for GUI interaction. The use of plug-ins allows the efficient integration of diverse signal-processing software, including software still in preliminary development, into an organized platform without changing the fundamental structure of that platform itself. An analyst's use of Geotool is tracked via a metadata file so that future studies can reconstruct, and alter, the original signal processing operations. The work has been completed in the framework of a joint Russian- American project.

  16. Multi-parameter Observations and Validation of Pre-earthquake Atmospheric Signals

    NASA Astrophysics Data System (ADS)

    Ouzounov, D.; Pulinets, S. A.; Hattori, K.; Mogi, T.; Kafatos, M.

    2014-12-01

    We are presenting the latest development in multi-sensors observations of short-term pre-earthquake phenomena preceding major earthquakes. We are exploring the potential of pre-seismic atmospheric and ionospheric signals to alert for large earthquakes. To achieve this, we start validating anomalous ionospheric /atmospheric signals in retrospective and prospective modes. The integrated satellite and terrestrial framework (ISTF) is our method for validation and is based on a joint analysis of several physical and environmental parameters (Satellite thermal infrared radiation (OLR), electron concentration in the ionosphere (GPS/TEC), VHF-bands radio waves, radon/ion activities, air temperature and seismicity patterns) that were found to be associated with earthquakes. The science rationale for multidisciplinary analysis is based on concept Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) [Pulinets and Ouzounov, 2011], which explains the synergy of different geospace processes and anomalous variations, usually named short-term pre-earthquake anomalies. Our validation processes consist in two steps: (1) A continuous retrospective analysis preformed over two different regions with high seismicity- Taiwan and Japan for 2003-2009 The retrospective tests (100+ major earthquakes, M>5.9, Taiwan and Japan) show OLR anomalous behavior before all of these events with no false negatives. False alarm ratio for false positives is less then 25%. (2) Prospective testing using multiple parameters with potential for M5.5+ events. The initial testing shows systematic appearance of atmospheric anomalies in advance (days) to the M5.5+ events for Taiwan and Japan (Honshu and Hokkaido areas). Our initial prospective results suggest that our approach show a systematic appearance of atmospheric anomalies, one to several days prior to the largest earthquakes That feature could be further studied and tested for advancing the multi-sensors detection of pre-earthquake atmospheric signals.

  17. Study on the application of ambient vibration tests to evaluate the effectiveness of seismic retrofitting

    NASA Astrophysics Data System (ADS)

    Liang, Li; Takaaki, Ohkubo; Guang-hui, Li

    2018-03-01

    In recent years, earthquakes have occurred frequently, and the seismic performance of existing school buildings has become particularly important. The main method for improving the seismic resistance of existing buildings is reinforcement. However, there are few effective methods to evaluate the effect of reinforcement. Ambient vibration measurement experiments were conducted before and after seismic retrofitting using wireless measurement system and the changes of vibration characteristics were compared. The changes of acceleration response spectrum, natural periods and vibration modes indicate that the wireless vibration measurement system can be effectively applied to evaluate the effect of seismic retrofitting. The method can evaluate the effect of seismic retrofitting qualitatively, it is difficult to evaluate the effect of seismic retrofitting quantitatively at this stage.

  18. Obtaining Unique, Comprehensive Deep Seismic Sounding Data Sets for CTBT Monitoring and Broad Seismological Studies

    DTIC Science & Technology

    2007-07-02

    TYPE Final Report 3. DATES COVERED (From - To) 26-Sep-01 to 26-Jun-07 4. TITLE AND SUBTITLE OBTAINING UNIQUE, COMPREHENSIVE DEEP SEISMIC ... seismic records from 12 major Deep Seismic Sounding (DSS) projects acquired in 1970-1980’s in the former Soviet Union. The data include 3-component...records from 22 Peaceful Nuclear Explosions (PNEs) and over 500 chemical explosions recorded by a grid of linear, reversed seismic profiles covering a

  19. OpenSeesPy: Python library for the OpenSees finite element framework

    NASA Astrophysics Data System (ADS)

    Zhu, Minjie; McKenna, Frank; Scott, Michael H.

    2018-01-01

    OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.

  20. Analysis of volcano-related seismicity to constrain the magmatic plumbing system beneath Fogo, Cape Verde, by (multi-)array techniques

    NASA Astrophysics Data System (ADS)

    Dietrich, Carola; Wölbern, Ingo; Faria, Bruno; Rümpker, Georg

    2017-04-01

    Fogo is the only island of the Cape Verde archipelago with regular occurring volcanic eruptions since its discovery in the 15th century. The volcanism of the archipelago originates from a mantle plume beneath an almost stationary tectonic plate. With an eruption interval of approximately 20 years, Fogo belongs to the most active oceanic volcanoes. The latest eruption started in November 2014 and ceased in February 2015. This study aims to characterize and investigate the seismic activity and the magmatic plumbing system of Fogo, which is believed to be related to a magmatic source close to the neighboring island of Brava. According to previous studies, using conventional seismic network configurations, most of the seismic activity occurs offshore. Therefore, seismological array techniques represent powerful tools in investigating earthquakes and other volcano-related events located outside of the networks. Another advantage in the use of seismic arrays is their possibility to detect events of relatively small magnitude and to locate seismic signals without a clear onset of phases, such as volcanic tremors. Since October 2015 we have been operating a test array on Fogo as part of a pilot study. This array consists of 10 seismic stations, distributed in a circular shape with an aperture of 700 m. The stations are equipped with Omnirecs CUBE dataloggers, and either 4.5 Hz geophones (7 stations) or Trillium-Compact broad-band seismometers (3 stations). In January 2016 we installed three additional broad-band stations distributed across the island of Fogo to improve the capabilities for event localization. The data of the pilot study is dominated by seismic activity around Brava, but also exhibit tremors and hybrid events of unknown origin within the caldera of Fogo volcano. The preliminary analysis of these events includes the characterization and localization of the different event types using seismic array processing in combination with conventional localization methods. In the beginning of August 2016, a "seismic crisis" occurred on the island of Brava which led to the evacuation of a village. The seismic activity recorded by our instruments on Fogo exhibits more than 40 earthquakes during this time. Locations and magnitudes of these events will be presented. In January 2017 the pilot project discussed here will be complemented by three additional seismic arrays (two on Fogo, one on Brava) to improve seismic event localization and structural imaging based on scattered seismic phases by using multi-array techniques. Initial recordings from the new arrays are expected to be available by April 2017.

Top