Detrital zircon U-Pb reconnaissance of the Franciscan subduction complex in northwestern California
Dimitru, Trevor; Ernst, W. Gary; Hourigan, Jeremy K.; McLaughlin, Robert J.
2015-01-01
In northwestern California, the Franciscan subduction complex has been subdivided into seven major tectonostratigraphic units. We report U-Pb ages of ≈2400 detrital zircon grains from 26 sandstone samples from 5 of these units. Here, we tabulate each unit's interpreted predominant sediment source areas and depositional age range, ordered from the oldest to the youngest unit. (1) Yolla Bolly terrane: nearby Sierra Nevada batholith (SNB); ca. 118 to 98 Ma. Rare fossils had indicated that this unit was mostly 151-137 Ma, but it is mostly much younger. (2) Central Belt: SND; ca. 103 too 53 Ma (but poorly constrained), again mostly younger than previously thought. (3) Yager terrane: distant Idaho batholith (IB); ca. 52 to 50 Ma. Much of the Yager's detritus was shed during major core complex extension and erosion in Idaho that started 53 Ma. An eocene Princeton River-Princeton submarine canyon system transported this detritus to the Great Valley forearc basin and thence to the Franciscan trench. (4) Coastal terrane: mostly IB, ±SNB, ±nearby Cascade arc, ±Nevada Cenozoic ignimbrite belt; 52 to <32 Ma. (5) King Range terrane: dominated by IB and SNB zircons; parts 16-14 Ma based on microfossils. Overall, some Franciscan units are younger than previously thought, making them more compatible with models for the growth of subduction complexes by positive accretion. From ca. 118 to 70 Ma, Franciscan sediments were sourced mainly from the nearby Sierra Nevada region and were isolated from southwestern US and Mexican sources. From 53 to 49 Ma, the Franciscan was sourced from both Idaho and the Sierra Nevada. By 37-32 Ma, input from Idaho had ceased. The influx from Idaho probably reflects major tectonism in Idaho, Oregon, and Washington, plus development of a through-going Princeton River to California, rather than radical changes in the subduction system at the Franciscan trench itself.
Dumitru, Trevor A.; Ernst, W.G.; Wright, James E.; Wooden, Joseph L.; Wells, Ray E.; Farmer, Lucia P.; Kent, Adam J.R.; Graham, Stephan A.
2013-01-01
The Franciscan Complex accretionary prism was assembled during an ∼165-m.y.-long period of subduction of Pacific Ocean plates beneath the western margin of the North American plate. In such fossil subduction complexes, it is generally difficult to reconstruct details of the accretion of continent-derived sediments and to evaluate the factors that controlled accretion. New detrital zircon U-Pb ages indicate that much of the major Coastal belt subunit of the Franciscan Complex represents a massive, relatively brief, surge of near-trench deposition and accretion during Eocene time (ca. 53–49 Ma). Sediments were sourced mainly from the distant Idaho Batholith region rather than the nearby Sierra Nevada. Idaho detritus also fed the Great Valley forearc basin of California (ca. 53–37 Ma), the Tyee forearc basin of coastal Oregon (49 to ca. 36 Ma), and the greater Green River lake basin of Wyoming (50–47 Ma). Plutonism in the Idaho Batholith spanned 98–53 Ma in a contractional setting; it was abruptly superseded by major extension in the Bitterroot, Anaconda, Clearwater, and Priest River metamorphic core complexes (53–40 Ma) and by major volcanism in the Challis volcanic field (51–43 Ma). This extensional tectonism apparently deformed and uplifted a broad region, shedding voluminous sediments toward depocenters to the west and southeast. In the Franciscan Coastal belt, the major increase in sediment input apparently triggered a pulse of massive accretion, a pulse ultimately controlled by continental tectonism far within the interior of the North American plate, rather than by some tectonic event along the plate boundary itself.
Snow, C.A.; Wakabayashi, J.; Ernst, W.G.; Wooden, J.L.
2010-01-01
We present new U/Pb ages for detrital zircons separated from six quartzose metagraywackes collected from different Franciscan Complex imbricate nappes around San Francisco Bay. All six rocks contain a broad spread of Late Jurassic-Cretaceous grains originating from the Klamath-Sierra Nevada volcanic-plutonic arc. Units young structurally downward, consistent with models of progressive underplating and offscraping within a subduction complex. The youngest specimen is from the structurally lowest San Bruno Mountain sheet; at 52 Ma, it evidently was deposited during the Eocene. None of the other metagraywackes yielded zircon ages younger than 83 Ma. Zircons from both El Cerrito units are dominated by ca. 100-160 Ma grains; the upper El Cerrito also contains several grains in the 1200-1800 Ma interval. These samples are nearly identical to 97 Ma metasedimentary rock from the Hunters Point shear zone. Zircon ages from this m??lange block exhibit a broad distribution, ranging from 97 to 200 Ma, with only a single pre-Mesozoic age. The Albany Hill specimen has a distribution of pre-Mesozoic grains from 1300 to 1800 Ma, generally similar to that of the upper El Cerrito sheet; however, it contains zircons as young as 83 Ma, suggesting that it is significantly younger than the upper El Cerrito unit. The Skaggs Spring Schist is the oldest studied unit; its youngest analyzed grains were ca. 144 Ma, and it is the only investigated specimen to display a significant Paleozoic detrital component. Sedimentation and subduction-accretion of this tract of the trench complex took place along the continental margin during Early to early-Late Cretaceous time, and perhaps into Eocene time. Franciscan and Great Valley deposition attests to erosion of an Andean arc that was active over the entire span from ca. 145 to 80 Ma, with an associated accretionary prism built by progressive underthrusting. We use these new data to demonstrate that the eastern Franciscan Complex in the northern and central Coast Ranges is a classic accretionary prism, where younger, structurally lower allochthons are exposed on the west, and older, structurally higher allochthons occur to the east, in the heavily studied San Francisco Bay area. ?? 2009 Geological Society of America.
Structure of Franciscan complex in the Stanley Mountain window, Southern Coast ranges, California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsch, R.J.
1982-11-01
Three sets of deformational events are recognized in the Franciscan Complex of the Stanley Mt. area, S. Coast ranges, California. First, in pre-melange time, shortening of the relatively cohesive sequence of interbedded graywacke and mudstone formed isoclinal folds and an axial-plane slaty cleavage. Second, fragmentation of the once cohesive sequence, probably over a considerable period of time, produced the configuration now considered a melange. Third, after the melange developed, the Franciscan Complex was deformed along with the surrounding upper Mesozoic Great Valley sequence into the Stanley Mt. antiform. In the cohesive Upper Cretaceous Carrie Creek Formation, macroscopic and mesoscopic foldsmore » have 2 predominant orientations. The less cohesive Franciscan Complex attempted to fold, as shown by the distribution of shear foliations on stereographic projections, but lack of lithologic continuity and slip along previously formed shear fractures prevents the recognition of macroscopic folds. Hence, in the Franciscan Complex of the Stanley Mt. window, several lines of evidence show that the melange structure is tectonic in origin, not just a tectonic imprint superimposed upon already chaotic rocks of sedimentary origin (olistostromes). 43 references.« less
Hagstrum, J.T.; Murchey, B.L.
1993-01-01
Red radiolarian cherts from three localities within the Franciscan subduction complex of northern California contain three components of remanent magnetization which are best isolated by progressive thermal demagnetization. The available paleomagnetic, biostratigraphic, and geochemical data indicate deposition of these cherts along the paleoequator (0??-2??N or S paleolatitude) between Pliensbachian and Oxfordian time as the oceanic plate moved eastward, relative to North America, beneath the equatorial zone of high biologic productivity. The chert sequences were subsequently accreted to the American continental margin. Plate reconstruction models for the Farallon plate corrobotate low-paleolatitude trajectories from ridge crest to subduction zone, and they imply subsequent northward translation of the Franciscan Complex by strike-slip faulting related to relative motions between the Farallon, Kula, Pacific, and North American plates. -from Authors
[The medical world of Juan Gil de Zamora's Historia Naturalis (ca. 1275-1296)].
García Ballester, L; Domínguez, A
1994-01-01
The article describes the authors and works which were quoted by the Franciscan Juan Gil de Zamora in his Historia naturalis, a scientific encyclopaedia written between c. 1275 and before 1296, probably in the Franciscan monastery of Zamora (Kingdom of Castille). Juan Gil made wide use of the Avicenna's Canon, Gilbertus de Aquila (Anglicus)'s Compendium medicine, and Salernitan medical literature. His work contributed to the diffusion of these medical authors and works throughout the Christian intellectual milieu of late medieval Castille. This diffusion was not without problems.
Franciscan complex calera limestones: Accreted remnants of farallon plate oceanic plateaus
Tarduno, J.A.; McWilliams, M.; Debiche, M.G.; Sliter, W.V.; Blake, M.C.
1985-01-01
The Calera Limestone, part of the Franciscan Complex of northern California, may have formed in a palaeoenvironment similar to Hess and Shatsky Rises of the present north-west Pacific1. We report here new palaeomagnetic results, palaeontological data and recent plate-motion models that reinforce this assertion. The Calera Limestone may have formed on Farallon Plate plateaus, north of the Pacific-Farallon spreading centre as a counterpart to Hess or Shatsky Rises. In one model2, the plateaus were formed by hotspots close to the Farallon_Pacific ridge axis. On accretion to North America, plateau dissection in the late Cretaceous to Eocene (50-70 Myr) could explain the occurrence of large volumes of pillow basalt and exotic blocks of limestone in the Franciscan Complex. Partial subduction of the plateaus could have contributed to Laramide (70-40 Myr) compressional events3. ?? 1985 Nature Publishing Group.
Depositional and deformational history of the Franciscan complex, northernmost California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalto, K.R.
1990-05-01
Pervasive extensional shear fractures and curvilinear arrays of clay and silt-filled veins in Franciscan Complex melanges and turbidites formed when Franciscan sediments were unlithified. Sandstone dikes both crosscut and follow fractures. Several scales of extensional faulting account for the juxtaposition of turbidites of different facies and/or with varying degrees of stratal disruption, the formation of sandstone lozenges and pinch-and-swell structures, and the formation of scaly foliation within the matrix of melange units. Within turbidites, the upper laminated portions of beds commonly contain abundant listric microfaults and the more massive lower portions of beds contain sediment-filled vein arrays. Veining and faultingmore » occurred concurrently and resulted in differential extension of upper verses lower portions of beds. The finer sediment in veins reflects both cataclasis and filtering in of clay and silt from vein walls. Most Franciscan rocks record an early pervasive, layer-parallel flattening strain, which may be related to the gravitational collapse of late Mesozoic Franciscan inner trench slope sediments that accompanied accretionary prism expansion resulting from underplating. However, some turbidites record noncoaxial extension that resulted from downslope creep of sediments. At Crescent City, sediment creep resulted in oversteepening of the Franciscan inner trench slope, which, in turn, may have triggered large-scale failure of slope materials resulting in the emplacement of the Crescent City olistostrome. The olistostrome crops out for 12 km along the coast, is up to 600 m thick, is in depositional contact with turbidites, and contains chiefly sandstone, greenstone, chert olistoliths up to 200 m across, and zones of slump-folded turbidites.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... comment form for this document as posted within Docket No. TTB-2013-0004 at `` Regulations.gov ,'' the... ridge of the California Coast Range. The steep peaks of the Laughlin Range form the northern portion of... Franciscan Complex and early Tertiary micro-fossils of 65 to 1.5 million years old. Shale is older Franciscan...
Petrogenesis of Franciscan Complex and Coast Range Ophiolite Serpentinites in northern California
NASA Astrophysics Data System (ADS)
Eldam, R.; Barnes, J.; Lee, C.; Errico, J. C.; Loewy, S. L.; Cisneros, M.
2012-12-01
Franciscan Complex serpentinites have been interpreted as eroded pieces of the overriding Coast Range Ophiolite (CRO), off-scraped pieces of the subducting oceanic plate, and as sedimentary serpentinites (e.g., Wakabayashi, 2004); however, most of these interpretations are based on tectonic models and field relationships. Here we present bulk rock major and trace element geochemistry, pyroxene and spinel geochemistry, and stable isotope data (O, H, Cl) for serpentinite samples with the goal of determining protolith origin and subsequent serpentinizing fluid sources of several metasomatized Franciscan and CRO ultramafic rocks in order to decipher the tectonic setting of serpentinization. We focused on serpentinite bodies found in the Franciscan Complex (west of Cuesta Ridge; south of San Francisco; Tiburon Peninsula; Healdsburg) (n = 12). Three samples from Cuesta Ridge (CRO) were also analyzed for comparison. All samples are >~95% serpentinized and consist of lizardite +/- chrysotile. Relict grains are rarely preserved. Franciscan serpentinites (Tiburon Peninsula, west of Cuesta Ridge) show positive-sloped REE patterns. This depletion in LREE is typical of abyssal peridotites. Relict clinopyroxenes from Tiburon Peninsula have high HREE concentrations, also supporting an abyssal origin. 2 of the 3 samples from the Cuesta Ridge show flat REE patterns; whereas, one is U-shaped. This enrichment in LREE is similar to forearc peridotites. Spinels from Cuesta Ridge have Cr# > 0.60 also implying a forearc setting; whereas, Franciscan localities have typically have lower Cr# (0.21 to 0.51). All samples show remarkable positive Ce and Y anomalies. We speculate that these anomalies may be due to interaction with ferromanganese nodules and crusts (also high in Ce and Y) on the seafloor prior to subduction. Cuesta Ridge samples have δ18O values between +6.0 to +6.6‰. Franciscan serpentinites (except those south of San Francisco) have δ18O values of +5.4 to +7.9‰. These δ18O values are similar to typical oceanic serpentinites and likely represent low-T seawater hydration on the seafloor. δD values of all samples are extremely low (-107 to -90‰) and likely result from post-serpentinization, post-emplacement interaction with meteoric water at low temperature. Samples south of San Francisco lie on the San Andreas fault and have high δ18O values (+7.2 to +9.5‰) and low δD values (-107 to -104‰) likely due to low-T interaction with meteoric water at high fluid-rock ratios. Most of the serpentinites (12 of the 15) have δ37Cl values between +0.2 and +0.9‰, typical values for serpentinites formed by interaction with seawater. Based on bulk rock geochemistry and pyroxene and spinel compositions, serpentinites located within the Franciscan Complex have geochemical characteristics of abyssal peridotites; whereas, those from Cuesta Ridge are more chemically heterogeneous with most having affinity to forearc peridotites. All stable isotope geochemistry indicates seafloor serpentinization by seawater. Wakabayashi, J., 2004, International Geology Review, 46, 1103-1118.
NASA Astrophysics Data System (ADS)
Catlos, E. J.; Sorensen, S. S.
2001-12-01
Deciphering processes by which volatile components are released during metamorphism in subduction zone settings is essential for understanding mass transfer from slabs to arc magmas. Because phengitic muscovite is stable to >750\\deg C and >7 GPa, it can transport alkali and alkaline-earth elements to great depths. Phengite dehydration may facilitate material transfer from the subducted slab to the overlying mantle wedge at higher pressures than those at which the slab melts. Sorensen et al (1997) showed that some phengite grains in eclogites from the Franciscan Complex of California and from the Samana Peninsula, Dominican Republic, formed from metasomatic fluids produced by phengite decomposition found at greater depths and temperatures. These phengites have the potential to show timing relationships for the expulsion of K-rich metasomatic fluids from the two paleosubduction zones. Large (500μm - to 4mm-sized) Ba-rich phengite grains are present in eclogites and associated metasomatites from both the Samana Peninsula and the Franciscan Complex. Many grains display patchy variation in Ba, likely related to different compositions of metasomatic fluids present during phengite crystallization or alteration. For example, a Samana grain (SS8527B1) contains 0.4-1.1 wt% BaO and a Franciscan grain (T902Ablue) has 0.5-0.9 wt% BaO. Higher BaO contents correlate with brighter regions in BSE images. A total of 19 grains from 7 Samana rocks and 23 grains from 11 Franciscan rocks were dated using the laser 40Ar/39Ar method to discern age discrepancies between the compositionally variable areas seen in the BSE images. Ages of Samana samples vary from 25+/-4 Ma (SS8527B2) to 50+/-4 Ma (SS8527B1). Some show little age variation within a single grain (SS8424D, 11 spots, 39+/-3 Ma, MSWD=1.2), whereas others appear age zoned (SS8424C, 4 spots, 36+/-1 Ma to 42+/-1 Ma, MSWD=7). These results are similar to mica 40Ar/39Ar ages from eclogites in northern Venezuela (Smith and Sisson, 1999), and may indicate the initial stages of the regional tectonic reorganization from subduction to transcurrent uplift along both the northern and southern margins of the Caribbean plate. A large range of ages is also seen with the Franciscan phengites, which range from 114+/-8 Ma (GL1604) to 161+/-3 Ma (T902B). Individual spots on Franciscan grain MH9011C range from 134+/-3 Ma to 149+/-1 Ma (4 spots, MSWD=7), whereas sample T902Ahost shows 153+/-2 Ma (6 spots, MSWD=1.2). The latter values resemble 160+/-3 Ma (Ross and Sharp, 1988) and 160-170 Ma (Baldwin and Harrison, 1992) dates for hornblendes from Franciscan and Baja California amphibolite mélange blocks, which have been interpreted as 'initiation of subduction' ages, whereas the younger dates resemble values these authors attributed to the continuation of subduction at lower P-T conditions. Phengite grains, which record ~50 Ma of fluid-rock interaction in Franciscan, and ~25 Ma in the Samana eclogites, thus may prove to be a powerful tool that links fluid-rock interactions to broader tectonic events.
NASA Astrophysics Data System (ADS)
Schmidt, W. L.; Platt, J. P.
2017-12-01
Previous work done on metamorphic temperatures across the lawsonite-albite to blueschist facies rocks of the Eastern Belt of the Franciscan accretionary complex has relied on a combination of many methods, and suggests that temperature broadly increases from west to east. The Taliaferro Metamorphic Complex is an exception to this pattern and shows higher pressures, and possibly higher temperatures, than its surroundings. The exact location and nature of the faults separating accreted packets in the Eastern Belt is somewhat controversial. A recently calibrated low-temperature laser Raman geothermometer for use on carbonaceous material provides a uniform method of estimating peak metamorphic temperature across the eastern Franciscan and is here used to identify the position of major tectonic boundaries. Temperatures were obtained from exposures in Thomes Creek, Cottonwood Creek, Grindstone Creek, and the middle fork of the Eel River. Peak T in the South Fork Mountain Schist, the highest grade and easternmost unit in the Franciscan, is 310-375°C, whereas in immediately underlying lawsonite-albite facies rocks below the Log Springs thrust, peak T is 270 - 300°C. The Taliaferro Metamorphic Complex reached a peak temperature of 336°C, whereas the surrounding lawsonite-albite facies rocks yield peak temperatures as low as 232°C. Preliminary temperature profiles clearly allow the major faults bounding the Taliaferro Metamorphic Complex and the South Fork Mountain Schist to be located. Extension of the temperature profile has the potential to reveal further detail within these units and the lower grade rocks surrounding them.
Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.
1993-01-01
The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.
NASA Astrophysics Data System (ADS)
Koski, Randolph A.; Lamons, Roberta C.; Dumoulin, Julie A.; Bouse, Robin M.
1993-02-01
The Island Mountain deposit, an anomalous massive sulfide in the Central belt of the Franciscan subduction complex, northern California Coast Ranges, formed during hydrothermal activity in a sediment-dominated paleo-sea-floor environment. Although the base of the massive sulfide is juxtaposed against a 500-m-wide melange band, its gradational upper contact within a coherent sequence of sandstone, siltstone, and mudstone indicates that hydrothermal activity was concurrent with turbidite deposition. Accumulations of sulfide breccia and clastic sulfide were produced by mass wasting of the sulfide mound prior to burial by turbidites. The bulk composition of sulfide samples (pyrrhotite rich; high Cu, As, and Au contents; radiogenic Pb isotope ratios) is consistent with a hydrothermal system dominated by fluid-sediment interaction. On the basis of a comparison with possible contemporary tectonic analogues at the southern Gorda Ridge and the Chile margin triple junction, we propose that massive sulfide mineralization in the Central belt of the Franciscan complex resulted from hydrothermal activity at a late Mesozoic sediment-covered ridge axis prior to collision with the North American plate.
NASA Astrophysics Data System (ADS)
Wakabayashi, J.
2014-12-01
The >1000 km by >100 km Franciscan complex of California records >100 Ma of subduction history that terminated with conversion to a transform margin. It affords an ideal natural laboratory to study the rock record of subduction-interface and related processes exhumed from 10-70 km. The Franciscan comprises coherent and block-in-matrix (mélange) units forming a nappe stack that youngs structurally downward in accretion age, indicating progressive subduction accretion. Gaps in accretion ages indicate periods of non-accretion or subduction erosion. The Franciscan comprises siliciclastic trench fill rocks, with lesser volcanic and pelagic rocks and serpentinite derived from the downgoing plate, as well as serpentinite and felsic-intermediate igneous blocks derived as detritus from the upper plate. The Franciscan records subduction, accretion, and metamorphism (including HP), spanning an extended period of subduction, rather than a single event superimposed on pre-formed stratigraphy. Melanges (serpentinite and siliciclastic matrix) with exotic blocks, that include high-grade metamorphic blocks, and felsic-intermediate igneous blocks from the upper plate, are mostly/entirely of sedimentary origin, whereas block-in-matrix rocks formed by tectonism lack exotic blocks and comprise disrupted ocean plate stratigraphy. Mélanges with exotic blocks are interbedded with coherent sandstones. Many blocks-in-melange record two HP burial events followed by surface exposure, and some record three. Paleomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow fault zones of <100's of m thickness, and <50 m in best constrained cases; these zones lack exotic blocks. Large-scale displacements, whether paleomegathrust horizons, shortening within accreted nappes, or exhumation structures, are accommodated by discrete faults or narrow shear zones, rather than by significant penetrative strain. Exhumation of Franciscan HP units, both coherent and mélange, was accommodated by significant extension of the overlying plate, and possibly extension within the subduction complex, with cross-sectional extrusion, and like subduction burial, took place at different times.
NASA Astrophysics Data System (ADS)
Marks, N.; Schiffman, P.; Yin, Q.; Zierenberg, R.
2005-12-01
Ultrabasic springs within the Franciscan Complex of the California Coast Range have been intensely investigated by geochemists and geobiologists. Springs located in Sonoma County in an area historically known as The Cedars are of particular interest to scientists exploring Martian analogues (Johnson et al. 2004) or investigating serpentinization processes (Barnes and O'Neil, 1969; Barnes et al. 1972). Laser ablation and solution phase multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) were used to obtain 87Sr/86Sr isotope ratios in fluid, travertine and serpentinite samples collected at the Cedars. 87Sr/86Sr isotopic ratios in the serpentinizing springs range from 0.70926 to 0.70955; the Mg2+-HCO3- type stream water has an isotopic ratio of 0.70848. The 87Sr/86Sr ratio in the travertines ranges from 0.70931 to 0.70966. The mean 87Sr/86Sr ratio of the travertine (0.7094) is far more radiogenic than typical mantle values of 0.703 to 0.705, indicating that the peridotite is an unlikely source of the radiogenic Sr. Similarly, the measured ratio is much higher than the expected Sr isotope ratio of seawater that might be trapped in Jurassic Franciscan Sediments or oceanic crust. Strontium leached from Franciscan sediments themselves should reflect a Sierran or Klamath source with expected values in the range of 0.705 to 0.706. Indeed the measured isotope ratios even exceed modern seawater values. The observed radiogenic values suggest the presence of older, potassium (and rubidium)-rich rocks within the fluid flow path. Alternatively, the presence of clay minerals that readily substitute Sr for Ca may well account for the radiogenic strontium signal. It is possible that the serpentinization observed at The Cedars initiated along a ridge flank and the Sr isotopic chemistry reflects the site of initiation. The radiogenic strontium in these springs may result from fluid interaction with seafloor sediments deposited along the flank of a slow spreading ridge. If this is the case, it may be possible to use 87Sr/86Sr to determine the location of serpentinization initiation (Gruau et al, 1998). Such a revelation might provide insight into the geochemical processes associated with mid-ocean ridge flank serpentinization at sites like Lost City (Kelley et al., 2005). The implications of this correlation could provide information about the preservation of geochemical systems through obduction of ophiolitic sequences and provide insights into ridge flank hydrothermal and serpentinizing processes.
NASA Astrophysics Data System (ADS)
Ernst, W. G.; Dumitru, T. A.; Tsujimori, T.; McLaughlin, R. J.; Makishima, A.; Nakamura, E.
2012-12-01
In the Cape Mendocino-Garberville-Covelo area, the Franciscan Complex comprises an imbricate stack of east-rooting allochthons. Five structurally higher to lower thrust sheets crop out from east to west: Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; and Coastal Belt King Range/False Cape terranes. We analyzed detrital zircons from 11 rocks: 2 Eastern Belt; 5 Central Belt; 4 King Range/False Cape terrane. Combined with earlier analyses of 3 Yager terrane and 3 Coastal terrane zircon suites (Dumitru et al., in review), 17 rocks were investigated. Maximum ages of sedimentation and inferred ultimate sources of these units as follows. Eastern Belt (Yolla Bolly): 98-120 Ma Sierran batholith, 140- 230 Ma Andean arc, minor 1300-1400 Ma Mazatzal granites, minor 1800 Ma Yavapai basement, trace >2.5 Ga Archean craton. Central Belt: minor 62-80 Ma Idaho batholith, 85-200 Ma Sierran batholith-Andean arc, 1300-1400 Ma Mazatzal granites, minor 1600-1750 Ma Mazatzal-Yavapai basement. Yager terrane: 50-75 Ma Idaho batholith, 85-120 Ma Sierran batholith, minor 160-200 Ma Andean arc. Coastal terrane: 30-50 Ma, Cascade + Challis volcanics, 55-80 Ma Idaho batholith, 100 Ma Sierran batholith, 1300-1400 Ma, Mazatzal granites. King Range/False Cape terrane: 22-50 Ma Cascade + Challis Idaho batholith, 100-180 Ma Sierran batholith-Andean arc, minor 1400 Ma Mazatzal-Yavapai granites. Depositional ages of Franciscan imbricate thrust sheets young westward from the mid Cretaceous Eastern Belt through the end-of-Cretaceous Central Belt, to the Paleogene Coastal Belt. Over time, the Franciscan received greater proportions of younger clastics derived from more northerly sources. Although mostly arc-derived, some recycled 1400 and 1700-1800 Ma ± 2.5 Ga arc zircons probably were supplied to the Franciscan Complex by erosion and westward transport of detrital grains from Lower Paleozoic miogeoclinal strata covering the cratonal edge. Except for metagraywackes of the Early Cretaceous Skaggs Spring Schist and Picket Peak terrane, Grenville and Appalachian igneous zircons are conspicuously missing from mid-Cretaceous and younger Franciscan rocks, supporting northwestward offset of the trench deposits relative to SW North America.
Structure and metamorphism of the Franciscan Complex, Mt. Hamilton area, Northern California
Blake, M.C.; Wentworth, C.M.
1999-01-01
Truncation of metamorphic isograds and fold axes within coherent terranes of Franciscan metagraywacke by intervening zones of melange indicate that the melange is tectonic and formed after the subduction-related metamorphism and folding. These relations are expressed in two terranes of blueschist-facies rocks of the Franciscan Complex in the Mt. Hamilton area, northern California-the Jurassic Yolla Bolly terrane and the structurally underlying Cretaceous Burnt Hills terrane. Local preservation in both terranes of basal radiolarian chert and oceanic basalt beneath continent-derived metagraywacke and argillite demonstrates thrust repetition within the coherent terranes, although these relations are scarce near Mt. Hamilton. The metagraywackes range from albite-pumpellyite blueschists to those containing well-crystallized jadeitic pyroxene, and a jadeite-in isograd can be defined in parts of the area. Primary bedding defines locally coherent structural orientations and folds within the metagraywacke units. These units are crosscut by thin zones of tectonic melange containing blocks of high-grade blueschist, serpentinite, and other exotic rocks, and a broader, but otherwise identical melange zone marks the discordant boundary between the two terranes.
Transition from slab to slabless: Results from the 1993 Mendocino triple junction seismic experiment
Beaudoin, B.C.; Godfrey, N.J.; Klemperer, S.L.; Lendl, C.; Trehu, A.M.; Henstock, T.J.; Levander, A.; Holl, J.E.; Meltzer, A.S.; Luetgert, J.H.; Mooney, W.D.
1996-01-01
Three seismic refraction-reflection profiles, part of the Mendocino triple junction seismic experiment, allow us to compare and contrast crust and upper mantle of the North American margin before and after it is modified by passage of the Mendocino triple junction. Upper crustal velocity models reveal an asymmetric Great Valley basin overlying Sierran or ophiolitic rocks at the latitude of Fort Bragg, California, and overlying Sierran or Klamath rocks near Redding, California. In addition, the upper crustal velocity structure indicates that Franciscan rocks underlie the Klamath terrane east of Eureka, California. The Franciscan complex is, on average, laterally homogeneous and is thickest in the triple junction region. North of the triple junction, the Gorda slab can be traced 150 km inboard from the Cascadia subduction zone. South of the triple junction, strong precritical reflections indicate partial melt and/or metamorphic fluids at the base of the crust or in the upper mantle. Breaks in these reflections are correlated with the Maacama and Bartlett Springs faults, suggesting that these faults extend at least to the mantle. We interpret our data to indicate tectonic thickening of the Franciscan complex in response to passage of the Mendocino triple junction and an associated thinning of these rocks south of the triple junction due to assimilation into melt triggered by upwelling asthenosphere. The region of thickened Franciscan complex overlies a zone of increased scattering, intrinsic attenuation, or both, resulting from mechanical mixing of lithologies and/or partial melt beneath the onshore projection of the Mendocino fracture zone. Our data reveal that we have crossed the southern edge of the Gorda slab and that this edge and/or the overlying North American crust may have fragmented because of the change in stress presented by the edge.
NASA Astrophysics Data System (ADS)
Wakabayashi, John
2017-12-01
The transfer (accretion) of materials from a subducting oceanic plate to a subduction-accretionary complex has produced rock assemblages recording the history of the subducted oceanic plate from formation to arrival at the trench. These rock assemblages, comprising oceanic igneous rocks progressively overlain by pelagic sedimentary rocks (chert and/or limestone) and trench-fill clastic sedimentary rocks (mostly sandstone, shale/mudstone), have been called ocean plate stratigraphy (OPS). During accretion of OPS, megathrust slip is accommodated by imbricate faults and penetrative strain, shortening the unit and leading to tectonic repetition of the OPS sequence, whereas OPS accreted at different times are separated by non-accretionary megathrust horizons. The Franciscan subduction complex of California accreted episodically over a period of over 150 million years and incorporated OPS units with a variety of characteristics separated by non-accretionary megathrust horizons. Most Franciscan OPS comprises MORB (mid-ocean-ridge basalt) progressively overlain by chert and trench-fill clastic sedimentary rocks that are composed of variable proportions of turbidites and siliciclastic and serpentinite-matrix olistostromes (sedimentary mélanges). Volumetrically, the trench-fill component predominates in most Franciscan OPS, but some units have a significant component of igneous and pelagic rocks. Ocean island basalt (OIB) overlain by limestone is less common than MORB-chert assemblages, as are abyssal serpentinized peridotite slabs. The earliest accreted OPS comprises metabasite of supra-subduction zone affinity imbricated with smaller amounts of metaultramafic rocks and metachert, but lacking a clastic component. Most deformation of Franciscan OPS is localized along discrete faults rather than being distributed in the form of penetrative strain. This deformation locally results in block-in-matrix tectonic mélanges, in contrast to the sedimentary mélanges making up part of the clastic OPS component. Such tectonic mélanges may include blocks and matrix derived from the olistostromes. Franciscan subduction and OPS accretion initiated in island arc crust at about 165-170 Ma, after which MORB and OIB were subducted and accreted following a long (tens of mega-ampere) gap with little or no accretion. Following subduction initiation, a ridge crest approached the trench but probably went dormant prior to its subduction (120-125 Ma), after which the subducted oceanic crust became progressively older until about 95 Ma. From 95 Ma, the age of subducted oceanic crust decreased progressively until arrival of the Pacific-Farallon spreading center led to termination of subduction and conversion to a transform plate boundary.
Hauksson, E.; Oppenheimer, D.; Brocher, T.M.
2004-01-01
Data collected from the 2003 Mw6.5 San Simeon earthquake sequence in central California and a 1986 seismic refraction experiment demonstrate that the weak Franciscan subduction complex suffered brittle failure in a region without significant velocity contrast across a slip plane. Relocated hypocenters suggest a spatial relationship between the seismicity and the Oceanic fault, although blind faulting on a nearby, unknown fault is an equally plausible alternative. The aftershock volume is sandwiched between the Nacimiento and Oceanic faults and is characterized by rocks of low compressional velocity (Vp) abutted to the east and west by rocks of higher Vp. This volume of inferred Franciscan rocks is embedded within the larger Santa Lucia anticline. Pore fluids, whose presence is implied by elevated Vp/Vs values, may locally decrease normal stress and limit the aftershock depth distribution between 3 to 10 km within the hanging wall. The paucity of aftershocks along the mainshock rupture surface may reflect either the absence of a damage zone or an almost complete stress drop within the low Vp or weak rock matrix surrounding the mainshock rupture. Copyright 2004 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Dumitru, T. A.; Ernst, W. G.; Wakabayashi, J.
2011-12-01
Subduction at the Franciscan trench began ≈170-165 Ma and continues today off Oregon-Washington. Plate motion reconstructions, high-P metamorphic rocks, and the arc magmatic record suggest that convergence and thus subduction were continuous throughout this period, although data for 170 to 120 Ma are less definitive. About 25% of modern subduction zones are actively building an accretionary prism, whereas 75% are nonaccretionary, in which subduction erosion is gradually removing the prism and/or forearc basement. These contrasting behaviors in modern subduction zones suggest that the Franciscan probably fluctuated between accretionary and nonaccretionary modes at various times and places during its 170 million year lifespan. Accumulating geochronologic data are beginning to clarify certain accretionary vs. nonaccretionary intervals. (1) The oldest Franciscan rocks are high-P mafic blocks probably metamorphosed in a subophiolitic sole during initiation of subduction. They yield garnet Lu-Hf and hornblende Ar/Ar ages from ≈169 to 147 Ma. Their combined volume is extremely small and much of the Franciscan was probably in an essentially nonaccretionary mode during this period. (2) The South Fork Mountain Schist forms the structural top of the preserved wedge in northern California and thus was apparently the first genuinely large sedimentary body to accrete. This occurred at ≈123 Ma (Ar/Ar ages), suggesting major accretion was delayed a full ≈45 million years after the initiation of subduction. The underlying Valentine Spring Fm. accreted soon thereafter. This shift into an accretionary mode was nearly synchronous with the end of the Early Cretaceous magmatic lull and the beginning of the prolonged Cretaceous intensification of magmatism in the Sierra Nevada arc. (3) The Yolla Bolly terrane has generally been assigned a latest Jurassic to earliest Cretaceous age. Detrital zircon data confirm that some latest Jurassic sandstones are present, but they may be blocks in olistotromes and the bulk of the terrane may be mid-Cretaceous trench sediments. (4) New data from the Central mélange belt are pending. (5) Detrital zircon ages suggest much of the voluminous Coastal belt was deposited in a short, rapid surge in the Middle Eocene, coincident with major extension, core complex development, volcanism, and erosion in sediment source areas in Idaho-Montana. Rapid Tyee Fm deposition in coastal Oregon occurred at virtually the same time from the same sources. (6) Exposed post-Eocene Franciscan rocks are rare. It is tempting to ascribe subduction zone tectonic events directly to changes in relative motions between the subducting and overriding lithospheric plates. However, in modern subduction zones, varying sediment supply to the trench appears to be a more important control on accretionary prism evolution and this seems to be the case in the Franciscan as well. Franciscan accretion was apparently influenced primarily by complex continental interior tectonics controlling sediment supply from the North American Cordillera (which may in part reflect plate motion changes), rather than directly by changes in the motions of tectonic plates.
Langenheim, V.E.; Jachens, R.C.; McLaughlin, R.J.
2011-01-01
The Coastal belt of the Franciscan Complex represents a Late Cretaceous to Miocene accretionary prism and overlying slope deposits. Its equivalents may extend from the offshore outer borderland of southern California to north of the Mendocino Triple Junction under the Eel River Basin and in the offshore of Cascadia. The Coastal belt is exposed on land in northern California, yet its structure and stratigraphy are incompletely known because of discontinuous exposure, structural disruption, and lithologically non-distinctive clastic rocks. The intent of this report is to make available, in map form, aeromagnetic data covering the Coastal belt that provide a new dataset to aid in mapping, understanding, and interpreting the incompletely understood geology and structure in northern California.The newly merged aeromagnetic data over the Coastal belt of the Franciscan Complex reveal long, linear anomalies that indicate remarkably coherent structure within a terrane where mapping at the surface indicates complex deformation and that has been described as "broken formation" and, even locally as "mélange". The anomalies in the Coastal belt are primarily sourced by volcanic-rich graywackes and exotic blocks of basalt. Some anomalies along the contact of the Coastal belt with the Central belt are likely caused by local interleaving of components of the Coast Ranges ophiolite. These data can be used to map additional exotic blocks within the Coastal belt and to distinguish lithologically indistinct graywackes within the Coastal terrane. Using anomaly asymmetry allows projection of these "layers" into the subsurface. This analysis indicates predominant northeast dips consistent with tectonic interleaving of blocks within a subduction zone.
Fraticelli, Luis A.; Albers, John P.; Irwin, William P.; Blake, Milton C. Jr.; Wentworth, Carl M.
2012-01-01
The Redding 1° x 2 quadrangle in northwestern California transects the Franciscan Complex and southern Klamath Mountains province as well as parts of the Great Valley Complex, northern Great Valley, and southernmost Cascades volcanic province. The tectonostratigraphic terranes of the Klamath province represent slices of oceanic crust, island arcs, and overlying sediment that range largely from Paleozoic to Jurassic in age. The Eastern Klamath terrane forms the nucleus to which the other terranes were added westward, primarily during Jurassic time, and that package was probably accreted to North America during earliest Cretaceous time. The younger Franciscan Complex consists of a sequence of westward younging tectonostratigraphic terranes of late Jurassic to Miocene age that were accreted to North America from mid-Cretaceous through Miocene time, with the easternmost being the most strongly metamorphosed. The marine Great Valley sequence, of late Jurassic and Cretaceous age, was deposited unconformably across the southernmost Klamath rocks, but in turn was underthrust at its western margin by Eastern belt Franciscan rocks. Pliocene and Quaternary volcanic rocks and sediment of the Cascades province extend into the southeastern part of the quadrangle, abutting the northernmost part of the great central valley of California. This map and database represent a digital rendition of Open-File Report 87-257, 1987, by L.A. Fraticelli, J.P. Albers, W.P. Irwin, and M.C. Blake, Jr., with various improvements and additions.
NASA Astrophysics Data System (ADS)
Hagstrum, Jonathan T.
1990-10-01
Previous paleomagnetic studies of accreted oceanic rocks within the Franciscan Complex of northern California have concluded that these rocks originated far to the south of their present positions with respect to the North American continent. Based on positive "fold" tests, the characteristic remanent magnetizations were inferred to predate accretion-related deformation and metamorphism, and to have been acquired during or soon after deposition of these rocks. Thus, the paleomagnetic data were thought to provide direct information on ancient oceanic plate motions. However, the plate motions implied by some of these paleomagnetic data are problematic (e.g., exceptional plate velocities), and uniform-polarity magnetizations in almost all of these rocks indicate the possibility of remagnetization. Recent work on oceanic rocks in similar subduction complexes of Japan and Mexico have shown that they were most likely chemically remagnetized during accretion prior to disruption of the original stratigraphic sequences. Modern analogs indicate that the oceanic rocks in Mexico were probably remagnetized while still part of a shallow-dipping subducting slab (<10°) at the base of an accretionary prism. Assuming these rocks were near horizontal at the time of remagnetization, paleolatitudes at which these rocks were subducted and subsequent arc-parallel displacements along the western margin of North America can be inferred. In this paper, Franciscan rocks in northern California are reinterpreted as also having been remagnetized prior to accretion-related deformation. This scenario satisfies both geologic and paleomagnetic constraints for these rocks, and resolves conflicts between data indicating both remagnetization and tectonic displacement. Transport of the Laytonville Limestone from the southern hemisphere is not required. Paleolatitudes of subduction and remagnetization in the northern hemisphere (12° to 33°) appear to be inversely proportional to age of accretion (middle Cretaceous to Oligocene) for the Franciscan rocks. Subsequent northward diplacements (800 to 3700 km) and clockwise rotations (56° and 154°) of these rocks inferred from the paleomagnetic data are consistent with potential displacements along the western margin of North America during late Mesozoic and Cenozoic time calculated using examples of modern subduction zones and current plate reconstruction models.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-83,070] Harrison Medical Center, a Subsidiary of Franciscan Health System Bremerton, Washington; Notice of Negative Determination... workers of Harrison Medical Center, a subsidiary of Franciscan Health System, Bremerton, Washington...
NASA Astrophysics Data System (ADS)
Little, Crispin T. S.; Herrington, Richard J.; Haymon, Rachel M.; Danelian, Taniel
1999-02-01
The Figueroa massive sulfide deposit, located in Franciscan Complex rocks in the San Rafael Mountains of California, preserves the only known Jurassic hydrothermal vent fossils. The Figueroa fossil assemblage is specimen rich but of low diversity and comprises, in order of decreasing abundance, vestimentiferan worm tubes, the rhynchonellid brachiopod Anarhynchia cf. gabbi and a species of ?nododelphinulid gastropod. The Figueroa fossil organisms lived at a deep-water, high-temperature vent site located on a mid-ocean ridge or seamount at an equatorial latitude. The fossil vent site was then translated northwestward by the motion of the Farallon plate and was subsequently accreted to its present location. An iron-silica exhalite bed, the probable lateral equivalent of the Figueroa deposit, contains abundant filamentous microfossils with two distinct morphologies and probably represents a lower-temperature, diffuse-flow environment. The Figueroa fossil community was subject to the same environmental conditions as modern vent communities, but it is unique among modern and other fossil vent communities in having rhynchonellid brachiopods.
Three-dimensional upper crustal velocity structure beneath San Francisco Peninsula, California
Parsons, T.; Zoback, M.L.
1997-01-01
This paper presents new seismic data from, and crustal models of the San Francisco Peninsula. In much of central California the San Andreas fault juxtaposes the Cretaceous granitic Salinian terrane on its west and the Late Mesozoic/Early Tertiary Franciscan Complex on its east. On San Francisco Peninsula, however, the present-day San Andreas fault is completely within a Franciscan terrane, and the Pilarcitos fault, located southwest of the San Andreas, marks the Salinian-Franciscan boundary. This circumstance has evoked two different explanations: either the Pilarcitos is a thrust fault that has pushed Franciscan rocks over Salinian rocks or the Pilarcitos is a transform fault that has accommodated significant right-lateral slip. In an effort to better resolve the subsurface structure of the peninsula faults, we established a temporary network of 31 seismographs arrayed across the San Andreas fault and the subparallel Pilarcitos fault at ???1-2 km spacings. These instruments were deployed during the first 6 months of 1995 and recorded local earthquakes, air gun sources set off in San Francisco Bay, and explosive sources. Travel times from these sources were used to augment earthquake arrival times recorded by the Northern California Seismic Network and were inverted for three-dimensional velocity structure. Results show lateral velocity changes at depth (???0.5-7 km) that correlate with downward vertical projections of the surface traces of the San Andreas and Pilarcitos faults. We thus interpret the faults as high-angle to vertical features (constrained to a 70??-110?? dip range). From this we conclude that the Pilarcitos fault is probably an important strike-slip fault that accommodated much of the right-lateral plate boundary strain on the peninsula prior to the initiation of the modern-day San Andreas fault in this region sometime after about 3.0 m.y. ago.
Ernst, W.G.; McLaughlin, Robert J.
2012-01-01
The Franciscan Complex is a classic subduction-zone assemblage. In northwest California, it comprises a stack of west vergent thrust sheets: westernmost Eastern Belt outliers; Central Belt mélange; Coastal Belt Yager terrane; Coastal Belt Coastal terrane; Coastal Belt King Range/False Cape terranes. We collected samples and determined P-T conditions of recrystallization for 88 medium-fine-grained metasandstones to assess their subduction-exhumation histories and assembly of the host allochthons. Feebly recrystallized Yager, Coastal, and King Range strata retain clear detrital features. Scattered neoblastic prehnite occurs in several Coastal terrane metasandstones; traces of possible pumpellyite are present in three Yager metaclastic rocks. Pumpellyite ± lawsonite ± aragonite-bearing Central Belt metasandstones are moderately deformed and reconstituted. Intensely contorted, thoroughly recrystallized Eastern Belt affinity quartzose metagraywackes contain lawsonite + jadeitic pyroxene ± aragonite ± glaucophane. We microprobed neoblastic phases in 23 rocks, documenting mineral parageneses that constrain the tectonic accretion and metamorphic P-T evolution of these sheets. Quasi-stable mineral assemblages typify Eastern Belt metasandstones, but mm-sized domains in the Central and Coastal belt rocks failed to achieve chemical equilibrium. Eastern Belt slabs rose from subduction depths approaching 25–30 km, whereas structurally lower Central Belt mélanges returned from ∼15–18 km. Coastal Belt assemblages suggest burial depths less than 5–8 km. Eastern and Central belt allochthons sequentially decoupled from the downgoing oceanic lithosphere and ascended into the accretionary margin; K-feldspar-rich Coastal Belt rocks were stranded along the continental edge without undergoing appreciable subduction, probably during Paleogene unroofing of the older, deeply subducted units of the Franciscan Complex in east-vergent crustal wedges.
Wong, Florence L.; Woodrow, Donald L.; McGann, Mary
2013-01-01
Heavy or high-specific gravity minerals make up a small but diagnostic component of sediment that is well suited for determining the provenance and distribution of sediment transported through estuarine and coastal systems worldwide. By this means, we see that surficial sand-sized sediment in the San Francisco Bay Coastal System comes primarily from the Sierra Nevada and associated terranes by way of the Sacramento and San Joaquin Rivers and is transported with little dilution through the San Francisco Bay and out the Golden Gate. Heavy minerals document a slight change from the strictly Sierran-Sacramento mineralogy at the confluence of the two rivers to a composition that includes minor amounts of chert and other Franciscan Complex components west of Carquinez Strait. Between Carquinez Strait and the San Francisco Bar, Sierran sediment is intermingled with Franciscan-modified Sierran sediment. The latter continues out the Gate and turns southward towards beaches of the San Francisco Peninsula. The Sierran sediment also fans out from the San Francisco Bar to merge with a Sierran province on the shelf in the Gulf of the Farallones. Beach-sand sized sediment from the Russian River is transported southward to Point Reyes where it spreads out to define a Franciscan sediment province on the shelf, but does not continue southward to contribute to the sediment in the Golden Gate area.
Overview of the Ground and Its Movement in Part of Northwestern California
Stephen D. Ellen; Juan de la Fuente; James N. Falls; Robert J. McLaughlin
2007-01-01
The Eureka area of northwestern California is characterized by a variety of terrain forms that reflect a variety of geologic materials, most of which are components of the highly disrupted and heterogeneous Franciscan Complex. Recent regional geologic mapping by McLaughlin and others (2000) has delineated the distribution of contrasting materials within the principal...
Amar, Zohar; Lev, Efraim
2005-12-01
During the Mamluk and Ottoman periods, the monks of the Franciscan Order were the only representatives of the Catholic Church in Jerusalem and they provided medical treatment for Christians. This article looks at the activities of the Franciscans, in particular in their pharmacy, which was associated with the production of Jerusalem balsam, famous both in the East and in Europe. It compares these activities with those of Jewish physicians in Jerusalem and looks at the relationships between the two groups and their effects on medical development in the Levant.
Three-dimensional modelling and geothermal process simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, K.L.
1990-01-01
The subsurface geological model or 3-D GIS is constructed from three kinds of objects, which are a lithotope (in boundary representation), a number of fault systems, and volumetric textures (vector fields). The chief task of the model is to yield an estimate of the conductance tensors (fluid permeability and thermal conductivity) throughout an array of voxels. This is input as material properties to a FEHM numerical physical process model. The main task of the FEHM process model is to distinguish regions of convective from regions of conductive heat flow, and to estimate the fluid phase, pressure and flow paths. Themore » temperature, geochemical, and seismic data provide the physical constraints on the process. The conductance tensors in the Franciscan Complex are to be derived by the addition of two components. The isotropic component is a stochastic spatial variable due to disruption of lithologies in melange. The deviatoric component is deterministic, due to smoothness and continuity in the textural vector fields. This decomposition probably also applies to the engineering hydrogeological properties of shallow terrestrial fluvial systems. However there are differences in quantity. The isotropic component is much more variable in the Franciscan, to the point where volumetric averages are misleading, and it may be necessary to select that component from several, discrete possible states. The deviatoric component is interpolated using a textural vector field. The Franciscan field is much more complicated, and contains internal singularities. 27 refs., 10 figs.« less
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Gooding, James L.
1991-01-01
Although results from the Giotto and Vega spacecraft flybys of comet P/Halley indicate a complex chemistry for both the ices and dust in the nucleus, carbonaceous chondrite meteorites are still regarded as useful analogs for the rocky components. Carbonaceous chondrites mixed with water enable simulation of water/rock interactions which may occur in cometary nuclei. Three general types of interactions can be expected between water and minerals at sub-freezing temperatures: heterogeneous nucleation of ice by insoluble minerals; adsorption of water vapor by hygroscopic phases; and freezing and melting point depression of liquid water sustained by soluble minerals. Two series of experiments were performed in a differential scanning calorimeter (DSC) with homogenized powders of the following whole-rock meteorites and comparison samples: Allende (CV3), Murchison (CM2), Orgueil (CI), Holbrook (L6), and Pasamonte (eucrite) meteorites as well as on peridotite (PCC-1, USGS), saponite (Sap-Ca-1, CMS), montmorillonite (STx-1, CMS), and serpentine (Franciscan Formation, California). Results are briefly discussed.
NASA Astrophysics Data System (ADS)
Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.
2007-12-01
We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a consequent enrichment in heavy Hg isotopes in the upper crust through time.
Bosnian Franciscans and the Monasteries in Kresevo and Fojnica as Source of Scientific Bibliography
Skrbo, Armin; Masic, Izet; Skrbo, Selma; Ramakic, Elma; Zunic, Lejla
2017-01-01
All of these centuries-old records contain enormous treasures, and the modern medicine is increasingly searching for the sources of natural remedies. The Franciscans should be credited for carefully collecting the methods folk treatment and passed them on to future generations. In the words of Br. Marko Karamatić: „The fact that the Friars were engaged in healthcare, that they became the first graduate doctors in Bosnia and Herzegovina, that they wrote” herbal manuals „ and other medical records, is the result of historical opportunities in these areas, and this activity became one of the most important tasks for the Franciscans. They performed their duties regardless of the circumstances. PMID:28883781
Saleeby, J.; Farley, K.A.; Kistler, R.W.; Fleck, R.J.
2007-01-01
The Tehachapi complex lies at the southern end of the Sierra Nevada batholith adjacent to the Neogene-Quaternary Garlock fault. The complex is composed principally of high-pressure (8-10 kbar) Cretaceous batholithic rocks, and it represents the deepest exposed levels of a continuous oblique crustal section through the southern Sierra Nevada batholith. Over the southern ???100 km of this section, structural/petrologic continuity and geochronological data indicate that ???35 km of felsic to intermediate-composition crust was generated by copious arc magmatism primarily between 105 and 99 Ma. In the Tehachapi complex, these batholithic rocks intrude and are bounded to the west by similar-composition gneissic-textured high-pressure batholithic rocks emplaced at ca. 115-110 Ma. This lower crustal complex is bounded below by a regional thrust system, which in Late Cretaceous time tectonically eroded the underlying mantle lithosphere, and in series displaced and underplated the Rand Schist subduction assemblage by low-angle slip from the outboard Franciscan trench. Geophysical and mantle xenolith studies indicate that the remnants of this shallow subduction thrust descend northward through the crust and into the mantle, leaving the mantle lithosphere intact beneath the greater Sierra Nevada batholith. This north-dipping regional structure records an inflection in the Farallon plate, which was segmented into a shallow subduc-tion trajectory to the south and a normal steeper trajectory to the north. We combine new and published data from a broad spectrum of thermochronom-eters that together form a coherent data array constraining the thermal evolution of the complex. Integration of these data with published thermobarometric and petro-genetic data also constrains the tectonically driven decompression and exhumation history of the complex. The timing of arc magmatic construction of the complex, as denoted above, is resolved by a large body of U/Pb zircon ages. High-confidence thermochronometric data track a single retrogressing path commencing from widely established solidus conditions at ca. 100 Ma, and traversing through time-temperature space as follows: (1) Sm/Nd garnet ???770-680 ??C at ca. 102-95 Ma, (2) U/Pb titanite ???750-600 ??C at ca. 102-95 Ma, (3) Ar/Ar hornblende ???570-490 ??C at ca. 94-91 Ma, (4) Rb/Sr biotite ???390-260 ??C at ca. 90-86 Ma, (5) Ar/Ar biotite ???320-240 ??C at ca. 88-85 Ma, and (6) (U-Th)/He zircon ???230-170 ??C at ca. 88-83 Ma. Additional stratigraphic constraints place the complex at surface conditions in Paleocene-early Eocene time (ca. 66-55 Ma). Integration of these results with thermobarometric and structural data, including published data on the underlying Rand Schist, reveals a profound tectonic event whereby rapid cooling and exhumation at rates potentially as high as 100s ??C/m.y. and >5 mm/yr initiated at ca. 98 Ma and peaked between 96 and 94 Ma. Between 93 and 85 Ma, cooling rates remained high, but decelerated with or without significant exhumation. Subsequent cooling and exhumation rates are poorly constrained but were much slower and ultimately resulted in Paleocene-Eocene surface exposure. Initial rapid exhumation and cooling are hypothesized to have been driven by abrupt flattening in the corresponding segment of the Farallon plate and the resulting tectonic erosion of the underlying mantle lithosphere. Protolith as well as meta-morphic pressure-temperature and age constraints on the Rand Schist indicate its rapid low-angle subduction between 93 and 88 Ma. Comparison of the Rand Schist and Tehachapi complex pressure-temperature-time paths in conjunction with structural relations strongly suggest that the schist ascended the equivalent of ???4 kbar relative to the Tehachapi complex by low-angle normal displacement along the Rand fault between 88 and 80 Ma to attain its current underplated structural position. Such extensional tectonism is hypothesized to have been driven by slab rollback
Significance of zircon U-Pb ages from the Pescadero felsite, west-central California coast ranges
McLaughlin, Robert J.; Moore, Diane E.; ,; Martens, UWE C.; Clark, J.C.
2011-01-01
Weathered felsite is associated with the late Campanian–Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio–Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ∼185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ± prehnite ± laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe–reverse geometry (SHRIMP-RG) and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefly Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86–90 Ma. Reflecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio–Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ∼100 km to the east in the Diablo Range–San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous forearc units of the Transverse Ranges. Based on zircon U-Pb ages, geologic and petrographic relations, the Pescadero felsite and a capping, sheared metaconglomerate underlie the Pigeon Point Formation. We infer that the magma formed by anatexis of Franciscan or Great Valley clastic sedimentary rocks originating from a parental Mesozoic Sierran-Mojave-Salinian calc-alkaline arc. The felsite erupted during Late Cretaceous time, was metamorphosed to pumpellyite-prehnite grade within the subduction zone, and then was rapidly exhumed, weakly zeolitized, and exposed before Pigeon Point forearc deposition. Pescadero volcanism apparently reflects a previously unrecognized ca. 86–90 Ma felsic igneous event in the accretionary margin.
Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.
2011-01-01
Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous forearc units of the Transverse Ranges. Based on zircon U-Pb ages, geologic and petrographic relations, the Pescadero felsite and a capping, sheared metaconglomerate underlie the Pigeon Point Formation. We infer that the magma formed by anatexis of Franciscan or Great Valley clastic sedimentary rocks originating from a parental Mesozoic Sierran-Mojave-Salinian calcalkaline arc. The felsite erupted during Late Cretaceous time, was metamorphosed to pumpellyite-prehnite grade within the subduction zone, and then was rapidly exhumed, weakly zeolitized, and exposed before Pigeon Point forearc deposition. Pescadero vol canism apparently reflects a previously unrecognized ca. 86-90 Ma felsic igneous event in the accretionary margin. ?? 2011 Geological Society of America.
NASA Astrophysics Data System (ADS)
Li, W. Y.; Teng, F. Z.; Xiao, Y.
2016-12-01
To investigate the behaviour of Mg isotopes during metasomatic reactions between peridotites and infiltrating fluids along the slab-mantle interface, we analyzed Mg isotopic compositions of a set of well-characterized samples from the ultramafic blocks in the Franciscan Complex of California [1]. The Group 1 and Group 2 samples that were defined by the initial serpentinization and complete serpentinization of peridotites at temperatures of 450-500 ºC, respectively [1], have δ26Mg values (from -0.26 to -0.14‰) clustered around the mantle value. This suggests that Mg isotope fractionation during serpentinization by slab-derived fluids, if any, is small. By contrast, the Group 3 samples that were defined by the replacement of serpentine by talc [1], are enriched in heavy Mg isotopes (δ26Mg of -0.13 to -0.01‰). This may reflect the loss of light Mg isotopes into fluids during the dehydration reaction that produced talc from serpentine, which is consistent with previous observations that secondary clay minerals preferentially incorporate heavy Mg isotopes during water-rock interactions [2, 3]. The Group 4 samples that were defined by the further replacement of talc by tremolite [1], however, have light Mg isotopic compositions (δ26Mg of -0.50 to -0.41‰). Such a shift towards light Mg isotopic compositions likely results from metasomatism by fluids that derived from isotopically light carbonates, which is supported by the remarkably higher CaO content of Group 4 samples (from 6.9 to 9.2 wt%) than Group 3 ones (from 1.1 to 1.4 wt%). Collectively, significant Mg isotopic variations occur during metasomatism of peridotites in the mantle wedge, which would potentially lead to heterogeneous Mg isotopic compositions in arc lavas [4]. Therefore, Mg isotopes can be used as a powerful tracer of crust-mantle interaction at subduction zones. [1] King et al. (2003) Geol. Soc. Am. Bull. 115, 1097-1109. [2] Teng et al. (2010) Earth Planet. Sci. Lett. 300, 63-71. [3] Wimpenny et al. (2014) Geochim. Cosmochim. Acta 128, 178-194. [4] Teng et al. (2016) Proc. Natl. Acad. Sci. 113, 7082-7087. et al. (2016) Proc. Natl. Acad. Sci. 113, 7082-7087.
'For Good, God, and the Empire': French Franciscan Sisters in Ethiopia 1896-1937
ERIC Educational Resources Information Center
Guidi, Pierre
2018-01-01
In 1897, four French Franciscan sisters arrived in Ethiopia, having been summoned there by the Capuchin missionaries. In 1925, they ran an orphanage, a dispensary, a leper colony and 10 schools with 350 girl students. The students were freed slaves, orphans and upper-class Ethiopian and European girls. After providing a brief background to the…
ERIC Educational Resources Information Center
Zamagni, Stefano
2017-01-01
After a brief historical reconstruction of the emergence of the market economy as a model of social order in Europe, dating back to the eleventh century--the century of the commercial revolution--the paper focuses on the decisive contribution of the Franciscan school of thought to furnish the theoretical infrastructure of the new mode of…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-05
...We, the U.S. Fish and Wildlife Service (Service), propose to designate critical habitat for Arctostaphylos franciscana (Franciscan manzanita) under the Endangered Species Act of 1973, as amended (Act). In total, approximately 318 acres (129 hectares) are being proposed for designation as critical habitat. The proposed critical habitat is located in San Francisco County and City, California.
NASA Astrophysics Data System (ADS)
Bailey, R.
2012-12-01
The San Francisco Bay Area is underlain in numerous locales by rocks of the Franciscan Formation, a significant number of which contain amphibole minerals which may occur in a fibrous or asbestiform habit. Such rocks include altered mafic volcanic rocks, serpentine complexes and high pressure metamorphic rocks (e.g. green schist, blue schist, amphibolite, eclogite, etc.). Although it is commonly known that actinolite/tremolite may occur within these rock bodies, it is also true that all of the other "regulated" amphiboles (riebeckite (crocidolite), amosite (grunerite) and anthophyllite, have been identified as well. In addition, a considerable number of other "non-regulated" amphiboles with a fibrous or asbestiform habit have been identified including: glaucophane, winchite, richterite, "Libby amphibole", hornblende, barroisite, cummingtonite and others. Extensive solid solution exists between many of these amphiboles which can make definitive identification difficult. Also, the possibility of complex pressure-temperature paths for these rocks means a single amphibole fiber/crystal can exhibit zonation of, and/or intergrowths between, multiple amphibole phases. It is important that regulators and laboratories are aware of the potential presence of these amphibole minerals, and possibly others, in rock and soil found in the San Francisco Bay Area and that they are not automatically discarded from asbestos fiber counts when they are observed. Criteria for identifying the amphiboles discussed above will be presented.
Post-middle Miocene accretion of Franciscan rocks, northwestern California.
McLaughlin, R.J.; Kling, S.A.; Poore, R.Z.; McDougall, K.; Beutner, E.C.
1982-01-01
Deformed sedimentary rocks assigned to the Franciscan assemblage in the King Range S of Cape Mendocino, N California, are dominantly deep-water argillite and sandstone occurring as thick- to thin-bedded, locally channelized marine turbidities of arkosic to andesitic volcaniclastic composition. The King Range appears to be a displaced terrane of oceanic basement overlain by Palaeogene(?) and Neogene sedimentary and igneous rocks of continental and oceanic derivation.-Authors
Underwood, M.B.; Shelton, K.L.; McLaughlin, R.J.; Laughland, M.M.; Solomon, R.M.
1999-01-01
This study documents three localities in the Franciscan accretionary complex of northern California, now adjacent to the San Andreas fault, that were overprinted thermally between 13.9 and 12.2 Ma: Point Delgada-Shelter Cove (King Range terrane); Bolinas Ridge (San Bruno Mountain terrane); and Mount San Bruno (San Bruno Mountain terrane). Vein assemblages of quartz, carbonate, sulfide minerals, and adularia were precipitated locally in highly fractured wall rock. Vitrinite reflectance (Rm) values and illite crystallinity decrease away from the zones of metalliferous veins, where peak wall-rock temperatures, as determined from Rm, were as high as 315??C. The ??18O values of quartz and calcite indicate that two separate types of fluid contributed to vein precipitation. Higher ??18O fluids produced widespread quartz and calcite veins that are typical of the regional paleothermal regime. The widespread veins are by-products of heat conduction and diffuse fluid flow during zeolite and prehnite-pumpellyite-grade metamorphism, and we interpret their paleofluids to have evolved through dehydration reactions and/or extensive isotopic exchange with accreted Franciscan rocks. Lower ??18O fluids, in contrast, evolved from relatively high temperature exchange between seawater (or meteoric water) and basaltic and/or sedimentary host rocks; focused flow of those fluids resulted in local deposition of the metalliferous veins. Heat sources for the three paleothermal anomalies remain uncertain and may have been unrelated to one another. Higher temperature metalliferous fluids in the King Range terrane could have advected either from a site of ridge-trench interaction north of the Mendocino fracture zone or from a "slabless window" in the wake of the northward migrating Mendocino triple junction. A separate paradox involves the amount of Quaternary offset of Franciscan basement rocks near Shelter Cove by on-land faults that some regard as the main active trace of the San Andreas plate boundary. Contouring of vitrinite reflectance values to the north of an area affected by A.D. 1906 surface rupture indicates that the maximum dextral offset within the interior of the King Range terrane is only 2.5 km. If this fault extends inland, and if it has been accommodating most of the strike-slip component of San Andreas offset at a rate of 3-4 cm/yr, then its activity began only 83-62 ka. This interpretation would also mean that a longer term trace of the San Andreas fault must be nearby, either offshore or along the northeast boundary of the King Range terrane. An offshore fault trace would be consistent with peak heating of King Range strata north of the Mendocino triple junction. Conversely, shifting the fault to the east would be compatible with a slabless window heat source and long-distance northward translation of the King Range terrane after peak heating.
NASA Astrophysics Data System (ADS)
Smith, Christopher N.; Kesler, Stephen E.; Blum, Joel D.; Rytuba, James J.
2008-05-01
We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300 m) and silica-carbonate deposits that extend to depths of 1000 m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions ( δ202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ± 0.5‰) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO 2 vapor or reduction and volatilization of Hg (0) in the near-surface environment are likely the most important processes causing the observed Hg isotope fractionation. This should result in the release of mercury with low δ202Hg values into the atmosphere from the top of these hydrothermal systems. Estimates of mass balance suggest that residual Hg reservoirs are not measurably enriched in heavy Hg isotopes as a result of this process because only a small amount of Hg (< 4%) leaves actively ore-forming systems.
Smith, C.N.; Kesler, S.E.; Blum, J.D.; Rytuba, J.J.
2008-01-01
We present here the first study of the isotopic composition of mercury in rocks, ore deposits, and active spring deposits from the California Coast Ranges, a part of Earth's crust with unusually extensive evidence of mercury mobility and enrichment. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of mercury deposits, hot-spring deposits that form at shallow depths (< 300??m) and silica-carbonate deposits that extend to depths of 1000??m. Active springs and geothermal areas continue to precipitate Hg and Au and are modern analogues to the fossil hydrothermal systems preserved in the ore deposits. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of mercury than volcanic rocks of the Clear Lake Volcanic Field. Mean mercury isotopic compositions (??202Hg) for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate mercury deposits have similar average mercury isotopic compositions that are indistinguishable from averages for the three rock units, although ??202Hg values for the mercury deposits have a greater variance than the country rocks. Precipitates from spring and geothermal waters in the area have similarly large variance and a mean ??202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate that there is little or no isotopic fractionation (< ?? 0.5???) during release of mercury from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of mercury in deposits, however, especially in their uppermost parts. Boiling of hydrothermal fluids, separation of a mercury-bearing CO2 vapor or reduction and volatilization of Hg(0) in the near-surface environment are likely the most important processes causing the observed Hg isotope fractionation. This should result in the release of mercury with low ??202Hg values into the atmosphere from the top of these hydrothermal systems. Estimates of mass balance suggest that residual Hg reservoirs are not measurably enriched in heavy Hg isotopes as a result of this process because only a small amount of Hg (< 4%) leaves actively ore-forming systems. ?? 2008 Elsevier B.V. All rights reserved.
Changing with the times to keep the meaning of mission.
Schuster, J; Thomas, J M
1988-06-01
In the fall of 1987, the Franciscan Sisters of the Poor Health System, Inc. (HSI), took over Madison Square Garden's Felt Forum to hold a fund-raiser. Called the Franciscan Health Care Games, the weekend-long event pitted employees from 14 HSI facilities against one another in basketball and volleyball tournaments; featured 40 stars of film, television, and the sports world in competition; and ended with a gala dinner for 950 people. The event, a first for the Franciscans, raised $800,000. Some of the programs the money will benefit include: The Young Fathers Project, a program in Cincinnati that helps fathers between the ages of 16 and 21 adjust to being a parent. Eldercare, which provides health services to some 5,000 elderly patients at 13 congregate housing sites throughout the Columbus, OH, area. The St. Elizabeth Medical Center in Dayton, OH, which helps support services at a hotel for the homeless sponsored by St. Vincent de Paul Society.
NASA Astrophysics Data System (ADS)
Hirauchi, K.
2006-12-01
Serpentinite bodies, zonally occurring as a component of fault zones, without any association with ophiolitic rocks might be a mantle in origin tectonically intruded from a considerable depth. Typical occurrences of serpentinites that experienced a unique emplacement process different from surrounding rocks are found in the Sand Dollar Beach, Gorda, California. The serpentinite bodies are widely outcropped in the Franciscan Complex. All the serpentinites exhibit a block-in-matrix fabric, the blocks of which are classified into either massive or schistose types. The former retains relict minerals such as olivine, orthopyroxene and clinopyroxene and chromian spinel, and has serpentine minerals (lizardite and chrysotile) of mesh texture and bastite. The latter is characterized by ribbon textures as ductilely deformed mesh textures. The matrix is composed of aligned tabular lizardite, penetrating into the interior core of the blocks. The schistosities in the blocks and the attitude of the foliated matrix are both consistent with the elongate direction of the larger serpentinite bodies. The massive mesh textures is converted by the schistose ribbon textures with ductile deformation, further penetrated by tabular lizardite of the matrix. These series of the continuous deformation and recrystallization may occur along a regional deep fault zone, after undergoing partial serpentinization at lower crust and upper mantle.
NASA Astrophysics Data System (ADS)
Hein, James R.; Koski, Randolph A.
1987-08-01
Numerous manganese deposits in the Franciscan Complex, California, occur as conformable lenses within bedded radiolarian chert-argillite sequences that are, in turn, intercalated within thicker sections of sandstone and shale. The field relations, composition, and petro-graphic and isotopic characteristics indicate that the manganese was concentrated by diagenetic reconstitution of siliceous and hemipelagic sediment during burial. The ore lenses are Mn-rich and Fe-poor assemblages consisting largely of rhodochrosite, manganese silicates, opal-CT (disordered cristobalite-tridymite), and quartz. Highly negative δ13C values for the carbonate carbon in rhodochrosite indicate that CO2 likely originated from oxidation of methane; less negative values result from mixing of methanogenic carbon and CO2 derived from bacterial degradation of organic matter. The δ18O values for the carbonate of rhodochrosite indicate temperatures of formation between 12 and 100 °C. The oxidation of methane prior to carbonate precipitation may have used the minor (0.4% 0.5%) Mn and Fe oxyhydroxides and oxides deposited with the sediment. The mobilization of manganese from biogenic and terrigenous sources in the sediment column into discrete horizons and the fractioriation of manganese from iron reflect the presence of oxidation-reduction boundaries and gradients in the sediment column. Fluids derived from compaction and silica-dehydration reactions in the transformation of opal-A (X-ray amorphous biogenic silica) to quartz were involved in transportation of principal components. Sedimentary and geochemical attributes suggest that the deposits formed in a deep-water environment in a zone of oceanic upwelling near a continental margin.
The western transverse ranges microplate as a native terrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, M.D.; Reed, W.E.
1994-04-01
Palocurrent measurements from the entire Cretaceous section of the western Transverse Ranges microplate (WTRM) yield a northerly flow direction. Point count data indicate a mixed provenance for both conglomerates and associated sandstones. The dominant provenance was mixed magmatic arc/recycled orogen and disected/transitional arc terranes. Petrographic, quantitative SEM and microprobe analysis also indicate the presence of diagnostic Franciscan mineralogy in these sediments, including glaucophane, riebeckite, lawsonite, and serpentine, suggesting derivation from a subduction complex. Olistoclasts of chert, jadeitic graywacke, serpentine and blueschist are found intermixed within the arc-derived sediments. Olistoclasts range in size from sub-millimeter to centimeter scale and olistoliths rangemore » up to 150 m. Well preserved internal bedding in some of the olistoliths suggest emplacement by landsliding indicating very short transport distance. This Franciscan material represents the oldest melange-derived material reported from this part of California and documents uplift and erosion of the subduction complex earlier than previously suggested. These data are consistent with deposition in a Cretaceous fore-arc basin located west or south of the San Diego area. The allochthonous WTRM of southern California can be reconstructed to an originally north-south oriented fore-arc basin. After deposition of the Sespe Formation (22 Ma [+-]) the microplate was slivered by strike-slip faults and rotated clockwise approximately 90[degrees], after which, the block again accreted against the continental margin. Our reconstruction suggest that depositional and structural trends for Eocene and Cretaceous sediments is likely to be different from that in the Miocene Monterey pay zones in the Santa Barbara channel region. If our reconstruction is correct, exploration strategy for Eocene and Cretaceous petroleum in the southern California Bight should take this tectonic model into account.« less
Thermal Anomaly Engendered by the Emplacement of AN Au-DEPOSIT: Example from the Franciscan Complex
NASA Astrophysics Data System (ADS)
Lahfid, A.; Lacroix, B.; Delchini, S.; Hughes, J.
2016-12-01
The thermal history of the Lucia subterrane located within the Franciscan Complex (California, USA) has been previously proposed by Underwood et al. (1995). Based on both vitrinite reflectance (Rm) and illite cristallinity methods, these authors suggest that the Lucia subterrane is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both the thermal anomaly and the deposit seem spatially correlated, their relationship is still poorly constrained. In order to better explain the anomalous temperatures recorded in the vicinity of the deposit and their possible link with mineralization processes, we first performed detailed geological and structural mapping within the Los Burros district coupled to a thermal study. The peak temperature reached by metasediments from the Lucia subterrane have been regionally investigated using Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through a careful fluid-inclusion study of the deposit, the potential source and the temperature of the fluid responsible for the Los Burros Au-deposit emplacement are currently being investigated. Our preliminary results confirm the previous temperatures and the presence of the thermal anomaly in the range 260-320ºC as inferred by Underwood et al (1995). In addition, our structural interpretation shows that the Los Burros deposit was emplaced during a late tectonic event marked by local reorientation of the regional tectonic features and the emplacement of meter-wide, quartz-calcite-sulfide extension veins. The temperatures determined by both methods (RSCM thermometry and fluid inclusion microthermometry) are consistent and support that the thermal anomaly is likely generated by the emplacement of the Los Burros Au-deposit during a local tectonic event.
Langenheim, Victoria; Jachens, Robert C.; Wentworth, Carl M.; McLaughlin, Robert J.
2013-01-01
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confi ned mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies defi ne simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
Langenheim, V.E.; Jachens, R.C.; Wentworth, C.M.; McLaughlin, R.J.
2013-01-01
Magnetic anomalies provide surprising structural detail within the previously undivided Coastal Belt, the westernmost, youngest, and least-metamorphosed part of the Franciscan Complex of northern California. Although the Coastal Belt consists almost entirely of arkosic graywacke and shale of mainly Eocene age, new detailed aeromagnetic data show that it is pervasively marked by long, narrow, and regularly spaced anomalies. These anomalies arise from relatively simple tabular bodies composed principally of magnetic basalt or graywacke confined mainly to the top couple of kilometers, even though metamorphic grade indicates that these rocks have been more deeply buried, at depths of 5–8 km. If true, this implies surprisingly uniform uplift of these rocks. The basalt (and associated Cretaceous limestone) occurs largely in the northern part of the Coastal Belt; the graywacke is recognized only in the southern Coastal Belt and is magnetic because it contains andesitic grains. The magnetic grains were not derived from the basalt, and thus require a separate source. The anomalies define simple patterns that can be related to folding and faulting within the Coastal Belt. This apparent simplicity belies complex structure mapped at outcrop scale, which can be explained if the relatively simple tabular bodies are internally deformed, fault-bounded slabs. One mechanism that can explain the widespread lateral extent of the thin layers of basalt is peeling up of the uppermost part of the oceanic crust into the accretionary prism, controlled by porosity and permeability contrasts caused by alteration in the upper part of the subducting slab. It is not clear, however, how this mechanism might generate fault-bounded layers containing magnetic graywacke. We propose that structural domains defined by anomaly trend, wavelength, and source reflect imbrication and folding during the accretion process and local plate interactions as the Mendocino triple junction migrated north, a hypothesis that should be tested by more detailed structural studies.
NOA at the Calaveras Dam Replacement Project (CDRP) - Challenges and Solutions
NASA Astrophysics Data System (ADS)
Erskine, B.
2012-12-01
The San Francisco Public Utilities Commission is one year into construction of the Calaveras Dam Replacement Project (CDRP), a new earthen dam east of Sunol designed to withstand an M 7.1 earthquake on the nearby active Calaveras fault. The zoned earthen dam will be constructed primarily of on-site materials, many of which contain NOA. The upstream shell will be composed of Franciscan complex blueschist which contains crocidolite. This material will be blasted and processed at an on-site quarry. The impermeable core of the dam will be constructed of clay-rich alluvium that contains asbestos derived from Franciscan rocks. This material will be excavated from the south end of the reservoir and transported several miles to the dam. Currently, approximately 3 million yards of Franciscan complex material is being excavated and disposed of within permitted on-site engineered landfills. NOA-bearing rocks that include serpentinite, greenschist, blueschist, and eclogite contain variable amounts and assemblages of chrysotile, actinolite, crocidolite, tremolite, and winchite-class amphiboles. All of these are detected in air samples collected within a sophisticated air monitoring array and analyzed by TEM. The CDRP represents the largest construction project involving NOA in the country. As such, applying regulations that were designed for building materials and routine construction sites, and controlling airborne emissions on such a massive scale, is a major challenge requiring innovative solutions. Because construction occurs simultaneously at distinct and distant parts of the site, and the rugged topography of the site induces complex meteorological conditions, it is sometimes difficult to ascertain the driving activity and location of a source that caused a trigger level exceedance at a perimeter monitoring station. One helpful tool is forensic correlation of source material and air test data using speciation of amphiboles. At the CDRP, we are developing the ability to correlate rock mineralogy at a location with the species of amphiboles identified on air samples using TEM. Using amphibole species as a fingerprinting tool, we have been successful in determining whether an exceedance of a trigger level was caused from onsite or offsite sources. In one case, multiple exceedances by an unusual mix of chrysotile and amphiboles (crocidolite, actinolite, tremolite, and Libby-class amphiboles in the same sample) narrowed the source to one of two locations: Disposal Site 3 where a mix of materials from the entire site is disposed of, and water recycled in the decontamination zone wheel wash equipment. Using perimeter air monitoring around and between each location it was possible to identify the wheel wash as the source. As a result, the wheel wash system, track out procedures, and road wetting protocol have been re-engineered to eliminate the potential for significant offsite emissions. These and other examples will describe how the SFPUC NOA team is managing the field determination of NOA, on-site control measures, and perimeter air monitoring to assure that construction is conducted in a safe manner and no offsite exposures to the public occur.
Spatial variation of crustal coda Q in California
Philips, W.S.; Lee, W.H.K.; Newberry, J.T.
1988-01-01
Coda wave data from California microearthquakes were studied in order to delineate regional fluctuations of apparent crustal attenuation in the band 1.5 to 24 Hz. Apparent attenuation was estimated using a single back scattering model of coda waves. The coda wave data were restricted to ???30 s following the origin time; this insures that crustal effects dominate the results as the backscattered shear waves thought to form the coda would not have had time to penetrate much deeper. Results indicate a strong variation in apparent crustal attenuation at high frequencies between the Franciscan and Salinian regions of central California and the Long Valley area of the Sierra Nevada. Although the coda Q measurements coincide at 1.5 Hz (Qc=100), at 24 Hz there is a factor of four difference between the measurements made in Franciscan (Qc=525) and Long Valley (Qc=2100) with the Salinian midway between (Qc=900). These are extremely large variations compared to measures of seismic velocities of comparable resolution, demonstrating the exceptional sensitivity of the high frequency coda Q measurement to regional geology. In addition, the frequency trend of the results is opposite to that seen in a compilation of coda Q measurements made worldwide by other authors which tend to converge at high and diverge at low frequencies, however, the worldwide results generally were obtained without limiting the coda lengths and probably reflect upper mantle rather than crustal properties. Our results match those expected due to scattering in random media represented by Von Karman autocorrelation functions of orders 1/2 to 1/3. The Von Karman medium of order 1/3 corresponding to the Franciscan coda Q measurement contains greater amounts of high wavenumber fluctuations. This indicates relatively large medium fluctuations with wavelengths on the order of 100 m in the highly deformed crust associated with the Franciscan, however, the influence of scattering on the coda Q measurement is currently a matter of controversy. ?? 1988 Birkha??user Verlag.
Imprints of an "Arc" Signature onto Subduction Zone Eclogites from Central Guatemala
NASA Astrophysics Data System (ADS)
Simons, K. K.; Sorensen, S. S.; Harlow, G. E.; Brueckner, H. K.; Goldstein, S. L.; Hemming, N. G.; Langmuir, C. H.
2007-12-01
High-pressure, low-temperature (HP-LT) rocks associated with the Motagua fault zone in central Guatemala occur as tectonic blocks in serpentinite mélange. Dismembered jadeitite and albitite veins within the melange are crystallization products of subduction fluids at <400° C and 0.4-1.4 GPa. Lawsonite eclogites represent the deepest, coldest rocks, with peak metamorphic conditions of approx. 2.6 GPa and 480°C. They contain a subduction fluid overprint acquired during retrogression to blue- and green-schist-facies conditions, seen mostly as hydrous phases (e.g. phengite, glaucophane) in veins and overgrowths. The low temperatures recorded in these rocks indicate they have only seen an aqueous fluid, not a melt, and therefore, could provide a window into the acquisition of an arc signature at a cold margin. Trace-element patterns for both eclogite and jadeitite resemble arc lavas, with large enrichments in the most fluid mobile elements (e.g. Cs, Tl, Ba, Pb), moderate enrichments in U, Th, Be and LREE and generally little to no enrichment in HFSE and HREE, although enriched Nb in jadeitite indicates some HFSE mobility. Trace-element patterns also have similarities to average subducting sediment (GLOSS), with enrichments in Th, Be, Ba and Li that suggest a sediment contribution. Nd versus Sr isotopes lie to the right of the mantle array, indicating a hydrous fluid contribution from altered ocean crust or sediment. Overall, Guatemalan eclogites resemble counterparts from the Franciscan Complex (CA) and the Dominican Republic. Guatemalan and Franciscan eclogites are interpreted to have had a MORB protolith despite the arc trace element signature because of: 1) similarities in major elements to MORB; 2) HREE and HFSE abundances similar to MORB; and 3) high 143Nd/144Nd that overlap MORB values. The modifications that transformed these eclogites from a MORB trace element pattern to an arc one can be attributed to an aqueous subduction fluid at moderate depths (<75km). This transformation may be due to the increased solubilities of some minerals (e.g., jadeite, albite, clays, sulfates) at high pressure, high water/rock ratios from dehydration reactions, and an abundance of alkali-aluminosilicate components in subduction fluids. Together these may act to dissolve and transport trace elements (including elements considered insoluble like Nb) out of the slab and into the mantle wedge. The Guatemala data thus indicate that the arc geochemical fingerprint may be achieved at cold margins without the need for melting.
Dependence of frictional strength on compositional variations of Hayward fault rock gouges
Morrow, Carolyn A.; Moore, Diane E.; Lockner, David A.
2010-01-01
The northern termination of the locked portion of the Hayward Fault near Berkeley, California, is found to coincide with the transition from strong Franciscan metagraywacke to melange on the western side of the fault. Both of these units are juxtaposed with various serpentinite, gabbro and graywacke units to the east, suggesting that the gouges formed within the Hayward Fault zone may vary widely due to the mixing of adjacent rock units and that the mechanical behavior of the fault would be best modeled by determining the frictional properties of mixtures of the principal rock types. To this end, room temperature, water-saturated, triaxial shearing tests were conducted on binary and ternary mixtures of fine-grained gouges prepared from serpentinite and gabbro from the Coast Range Ophiolite, a Great Valley Sequence graywacke, and three different Franciscan Complex metasedimentary rocks. Friction coefficients ranged from 0.36 for the serpentinite to 0.84 for the gabbro, with four of the rock types having coefficients of friction ranging from 0.67-0.84. The friction coefficients of the mixtures can be predicted reliably by a simple weighted average of the end-member dry-weight percentages and strengths for all samples except those containing serpentinite. For the serpentinite mixtures, a linear trend between end-member values slightly overestimates the coefficients of friction in the midcomposition ranges. The range in strength for these rock admixtures suggests that both theoretical and numerical modeling of the fault should attempt to account for variations in rock and gouge properties.
Moore, Diane E.; Lockner, David A.; Hickman, Stephen H.
2016-01-01
We compare frictional strengths in the temperature range 25–250 °C of fault gouge from SAFOD (CDZ and SDZ) with quartzofeldspathic wall rocks typical of the central creeping section of the San Andreas Fault (Great Valley sequence and Franciscan Complex). The Great Valley and Franciscan samples have coefficients of friction, μ > 0.35 at all experimental conditions. Strength is unchanged between 25° and 150 °C, but μ increases at higher temperatures, exceeding 0.50 at 250 °C. Both samples are velocity strengthening at room temperature but show velocity-weakening behavior beginning at 150 °C and stick-slip motion at 250 °C. These rocks, therefore, have the potential for unstable seismic slip at depth. The CDZ gouge, with a high saponite content, is weak (μ = 0.09–0.17) and velocity strengthening in all experiments, and μ decreases at temperatures above 150 °C. Behavior of the SDZ is intermediate between the CDZ and wall rocks: μ < 0.2 and does not vary with temperature. Although saponite is probably not stable at depths greater than ∼3 km, substitution of the frictionally similar minerals talc and Mg-rich chlorite for saponite at higher temperatures could potentially extend the range of low strength and stable slip down to the base of the seismogenic zone.
Microbanded manganese formations; protoliths in the Franciscan Complex, California
Huebner, J. Stephen; Flohr, Marta J.
1990-01-01
The Buckeye manganese deposit, 93 km southeast of San Francisco in the California Coast Ranges, preserves a geologic history that provides clues to the origin of numerous lenses of manganese carbonate, oxides, and silicates that occur with interbedded radiolarian chert and metashale of the Franciscan Complex. Compositionally and mineralogically laminated Mn-rich protoliths were deformed and dismembered, in a manner that mimics in smaller scale the deformation of the host complex, and then were incipiently metamorphosed at blueschistfacies conditions. Eight phases occur as almost monomineralic protoliths and mixtures: rhodochrosite, caryopilite, chlorite, gageite, taneyamalite, braunite, hausmannite, and laminated chert (quartz). Braunite, gageite, and some chlorite and caryopilite layers were deposited as gel-like materials; rhodochrosite, most caryopilite, and at least some hausmannite layers as lutites; and the chert as turbidites of radiolarian sand. Some gel-like materials are now preserved as transparent, sensibly isotropic relics of materials that fractured or shattered when deformed, creating curved surfaces. In contrast, the micrites flowed between the fragments of gel-like materials. The orebody and most of its constituent minerals have unusually Mn-rich compositions that are described by the system MnO-SiO2-O2-CO2-H2O. High values of Mn/Fe and U/Th, and low concentrations of Co, Cu, and Ni, distinguish the Buckeye deposit from many high-temperature hydrothermal deposits and hydrogenous or diagenetic manganese and ferromanganese nodules and pavements. This chemical signature suggests that ore deposition was related to fluids from the sediment column and seawater. Tungsten is associated exclusively with gageite, in concentrations as high as 80 parts per million. The source of the manganese is unknown; because basalts do not occur near the deposit, it was probably manganese leached from the sediment column by reducing solutions. Low concentrations of calcium (CaO approximately 0.6 weight percent) suggest that the host sediments formed beneath the carbonate-compensation depth. The most probable cause of the microbanding is changing proportions of chemical fluxes supplied to the sediment-seawater interface. The principal fluxes were biogenic silica from the water column, carbon dioxide from organic matter in the sediment column, O2 and other seawater constituents, and Mn +2-bearing fluid. The presence of Al2O3 and TiO2 (supplied by a detrital flux) in the metashale but not the ore lens suggests rapid ore deposition. Material supply-rate changes were probably due to a complex combination of episodic variations in the hydrothermal flux and periodic flows of radiolarian sand (silica and CO2 fluxes) that may be related to climate variations. The processes that form recent marine hydrothermal mounds may be the same as processes that formed the Buckeye deposit. Features common to both include the presence of Mn-oxyhydroxide crusts (corresponding to the Buckeye orebody), a large Mn/Fe ratio, low abundances of most minor elements, and small size. The most important differences are the absence of rhodochrosite and manganese silicates, interlayered with oxide, and the absence of adjacent chert in the contemporary deposits. These differences may be due to an absence of the debris of siliceous pelagic organisms, which accumulated in the Buckeye paleoenvironment. Periodic turbidity flows of chert-forming radiolarian sand could provide the changes in the fluxes of silica and organic matter necessary to form manganese carbonate and silicates. Turbidity flows of graywacke indicate proximity to an environment with high relief. A possible paleodepositional environment is an oceanic spreading center approaching a continental margin at which subduction occurred.
NASA Astrophysics Data System (ADS)
Lahfid, A.; Delchini, S.; Lacroix, B.
2015-12-01
The occurrence of deposits hosted by carbonaceous materials-rich metasediments is widespread. Therefore, we aims in this study to investigate the potential of the Raman Spectroscopy of Carbonaceous Material (RSCM) geothermometry to detect thermal anomalies in hydrothermal ore deposits environment and to demonstrate the ability of warm fluids, migrating through the sedimentary sequence to locally disturb the thermal gradient and associated peak temperatures. For this purpose, we have chosen the Lucia subterrane in the Franciscan Complex (California, USA), which includes gold-bearing quartz veins that witness a hydrothermal overprint (Underwood et al., 1995).The sediments in this zone essentially comprise greywacke and shale-matrix mélange (e.g. Frey and Robinson, 1999), which have undergone high-pressure, low-temperature metamorphism. The thermal history of the Lucia subterrane has been previously proposed by Underwood et al. (1995), essentially using vitrinite reflectance method (Rm). Rm values increase from the south to the north; they vary between 0.9 and 3.7 % (~150-280°C). All these results suggest that the Lucia subterrane underwent a regional increase of thermal gradient toward the north. Anomalous Rm values from 4.5% to 4.9% (~305-315°C) are recorded near Cape San Martin. These highest temperatures estimated are likely, associated with a late hydrothermal event (Underwood et al., 1995). Estimated Raman temperatures 1) confirmed the increase in the metamorphic grade towards the north already shown by Underwood et al. (1995), using classical methods like mineralogy and vitrinite reflectance and 2) exhibit anomalous values (temperatures reach 350°C). These anomalies are probably due to the later hydrothermal event. This result suggests that RSCM could be used as a reliable tool to determine thermal anomalies caused by hot fluid-flow.
NASA Astrophysics Data System (ADS)
Wassmann, Sara; Stöckhert, Bernhard
2012-09-01
Exhumed high pressure-low temperature metamorphic mélanges of tectonic origin are believed to reflect high strain accumulated in large scale interplate shear zones during subduction. Rigid blocks of widely varying size are embedded in a weak matrix, which takes up the deformation and controls the rheology of the composite. The microfabrics of a highly deformed jadeite-blueschist from the Franciscan Complex, California, are investigated to help understand deformation mechanisms at depth. The specimen shows a transposed foliation with dismembered fold hinges and boudinage structures. Several generations of open fractures have been sealed to become veins at high-pressure metamorphic conditions. The shape of these veins, frequently restricted to specific layers, indicates distributed host rock deformation during and after sealing. Small cracks in jadeite and lawsonite are healed, with tiny quartz inclusions aligned along the former fracture surface. Large jadeite porphyroblasts show strain caps and strain shadows. Open fractures are sealed by quartz and new jadeite epitactically grown on the broken host. Monophase glaucophane aggregates consist of undeformed needles with a diameter between 0.1 and 2 μm, grown after formation of isoclinal folds. Only quartz microfabrics indicate some stage of crystal-plastic deformation, followed by annealing and grain growth. Aragonite in the latest vein generation shows retrogression to calcite along its rims. The entire deformation happened under HP-LT metamorphic conditions in the stability field of jadeite and quartz, at temperatures between 300 and 450 °C and pressures exceeding 1-1.4 GPa. The microfabrics indicate that dissolution precipitation creep was the predominant deformation mechanism, accompanied by brittle failure and vein formation at quasi-lithostatic pore fluid pressure. This indicates low flow strength and, combined with high strain rates expected for localized deformation between the plates, a very low viscosity of material in the interplate shear zone at a depth > 30-45 km.
NASA Astrophysics Data System (ADS)
Bartram, H.; Tobin, H. J.; Goodwin, L. B.
2015-12-01
Plate-bounding subduction zone thrust systems are the source of major earthquakes and tsunamis, but their mechanics and internal structure remain poorly understood and relatively little-studied compared to faults in continental crust. Exposures in exhumed accretionary wedges present an opportunity to study seismogenic subduction thrusts in detail. In the Marin Headlands, a series of thrusts imbricates mechanically distinct lithologic units of the Mesozoic Franciscan Complex including pillow basalt, radiolarian chert, black mudstone, and turbidites. We examine variations in distribution and character of structure and vein occurrence in two exposures of the Rodeo Cove thrust, a fossil plate boundary exposed in the Marin Headlands. We observe a lithologic control on the degree and nature of fault localization. At Black Sand Beach, deformation is localized in broad fault cores of sheared black mudstone. Altered basalts, thrust over greywacke, mudstone, and chert, retain their coherence and pillow structures. Veins are only locally present. In contrast, mudstone is virtually absent from the exposure 2 km away at Rodeo Beach. At this location, deformation is concentrated in the altered basalts, which display evidence of extensive vein-rock interaction. Altered basalts exhibit a pervasive foliation, which is locally disrupted by both foliation-parallel and cross-cutting carbonate-filled veins and carbonate cemented breccia. Veins are voluminous (~50%) at this location. All the structures are cut by anastomosing brittle shear zones of foliated cataclasite or gouge. Analyses of vein chemistry will allow us to compare the sources of fluids that precipitated the common vein sets at Rodeo Beach to the locally developed veins at Black Sand Beach. These observations lead us to hypothesize that in the absence of a mechanically weak lithology, elevated pore fluid pressure is required for shear failure. If so, the vein-rich altered basalt at Rodeo Beach may record failure of an igneous basement asperity.
Mosier, Dan L.; Page, Norman J
1988-01-01
Four types of volcanogenic manganese deposits, distinguished on the basis of geologic, geochemical, and geophysical characteristics, appear to result from a combination of volcanic and hydrothermal processes related to hot-spring activity in oceanic environments. We compare these four desposit types, here called the Franciscan, Cuban, Olympic Peninsula, and Cyprus, with respect to host rocks, associated rocks, minerals, deposit shape, dimensions, volume, tonnage, grade, and mineral-deposit density (number of deposits per unit area). Franciscan-type deposits occur in obducted oceanic ridge and backarc marginal-basin environments, are associated with chert, shale, and graywacke aroun the margins of mafic volcanic centers, and have a median tonnage of 450 t and median grades of 36 weight percent Mn and less than 5.1 weight percent Fe. Cuban-type deposits occur in island-arc environments, are associated with tuff and limestone around domal structures or intrusions inferred to be volcanic centers, and have a median tonnage of 6,400 t and median grades of 39 weight percent Mn and less than 4.4 weight percent Fe. Olympic Peninsula-type deposits occur in obducted oceanic midplate settings, are associated with argillaceous limestone, argillite, and graywacke around mafic volcanic centers (seamounts or islands), and have a median tonnage of 340 t and median grades of 35 weight percent Mn and less than 6.5 weight percent Fe. Cyprus-type deposits occur in the same tectonic environments as Franciscan type but are associated with basalt, marl, chalk, silt, and chert off the ridge-axis position and have a median tonnage of 41,000 t and median grades of 33 weight percent Fe and 8 weight percent Mn. All these deposits are thin ellipsoids, concordant to the host rocks, but Cyprus-and Cuban-type deposits are larger than Franciscan- and Olympic Peninsula-type deposits. Except for Cyprus-type deposits, which are manganiferous iron (umber) deposits composed of hydrated iron and manganese oxides, all volcanogenic manganese deposits contain manganese oxides, silicates, and carbonates. Mineral-deposit densities, along with grade and tonnage information, are useful for estimating the number, size, andgrades of these deposits in resource assessments.
Hagstrum, J.T.; Murchey, B.L.; Bogar, R.S.
1996-01-01
Lower Jurassic radiolarian chert sampled at two localities in the San Rafael Mountains of southern California (???20 km north of Santa Barbara) contains four components of remanent magnetization. Components A, B???, and B are inferred to represent uplift, Miocene volcanism, and subduction/accretion overprint magnetizations, respectively. The fourth component (C), isolated between 580?? and 680??C, shows a magnetic polarity stratigraphy and is interpreted as a primary magnetization acquired by the chert during, or soon after, deposition. Both sequences are late Pliensbachian to middle Toarcian in age, and an average paleolatitude calculated from all tilt-corrected C components is 1?? ?? 3?? north or south. This result is consistent with deposition of the cherts beneath the equatorial zone of high biologic productivity and is similar to initial paleolatitudes determined for chert blocks in northern California and Mexico. This result supports our model in which deep-water Franciscan-type cherts were deposited on the Farallon plate as it moved eastward beneath the equatorial productivity high, were accreted to the continental margin at low paleolatitudes, and were subsequently distributed northward by strike-slip faulting associated with movements of the Kula, Farallon, and Pacific plates. Upper Cretaceous turbidites of the Cachuma Formation were sampled at Agua Caliente Canyon to determine a constraining paleolatitude for accretion of the Jurassic chert sequences. These apparently unaltered rocks, however, were found to be completely overprinted by the A component of magnetization. Similar in situ directions and demagnetization behaviors observed in samples of other Upper Cretaceous turbidite sequences in southern and Baja California imply that these rocks might also give unreliable results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griscom, A.; Roberts, C.W.; Halvorson, P.F.
1993-04-01
Aeromagnetic and isostatic residual gravity maps of an east-west transect across northern California show important tectonic features. A linear magnetic anomaly and west-sloping gradient extends over 300 km along the Franciscan-Great Valley contact (FGC) and across the Klamath Mountains province (KM) north to lat. 40[degree]45'N. The anomaly source lies at depths of 5--10 km beneath the KM and the FGC, and implies that the Franciscan complex of the Coast Ranges is thrust (and wedged) at least 80 km eastward beneath the KM to approximately long. 122[degree]40 minutes W. Calculations on a circular gravity low of [minus]50 mGal centered at themore » circular Bald Rock pluton (diameter about 15 km) in the Sierran foothills indicate a pluton thickness of about 15 km. The nearby Cascade and Merrimac plutons are located on the gradients of this gravity anomaly, have a relatively minor effect on it, and thus are interpreted to be thick (up to 5 km) laccolithic sills that emanate from the Bald Rock pluton, thinning away from it to a feather edge. Model studies indicate that the northeast contact of the Feather River periodotite body (FRPB) north of lat. 39[degree]40 minutes N. generally dips steeply northeast or vertical. The same contact south of this latitude dips east at angles of about 45[degree] to depths of at least 10 km. Magnetic patterns extending from the northern Sierra across the Cascades to the Klamath Mountains suggest that the FRPB may correlate with the Trinity ophiolite.« less
NASA Astrophysics Data System (ADS)
Pourteau, Amaury; Scherer, Erik; Schmidt, Alexander; Bast, Rebecca
2015-04-01
The thermal structure of subduction zones plays a key role on mechanical and chemical processes taking place along the slab-mantle interface. Until now, changes through time of this thermal structure have been explored mostly by the means of numerical simulations. However, both "warm" (i.e., epidote-bearing), and "cold" (i.e., lawsonite-bearing) HP oceanic rocks have been reported in some fossil subduction complexes exposed at the Earth's surface (e.g., Franciscan Complex, California; Rio San Juan Complex, Hispañola; Halilbağı Unit, Central Anatolia). These a-priori "incompatible" rocks witness different thermal stages of ancient subduction zones and their study might provide complementary constraints to numerical models. To decipher the meaning of these contrasting metamorphic rocks in the Halilbağı Unit, we are carrying out Lu-Hf geochronology on garnet (grt) and lws from a variety of HP oceanic rocks, as well as the metamorphic sole of the overlying ophiolite. We selected five samples that are representative of the variety of metamorphic evolutions (i.e. peak conditions and P-T paths) encountered in this area. Preliminary analyses yielded 110 Ma (grt-hbl isochron) for a sub-ophiolitic grt amphibolite; 92 Ma (grt-omp) for an eclogite with prograde and retrograde ep; 90 Ma (grt-omp) for an eclogitic metabasite with prograde ep and retrograde ep+lws; 87 Ma (grt-gln) for a lws eclogite with prograde ep; and 86 Ma (grt-gln) for a blueschist with prograde and retrograde lws. These ages are mainly two-point isochrons. Further-refined data will be presented at the EGU General Assembly 2015, in Vienna. The consistent younging trend from "warm" to "cold" metamorphic rocks revealed by these first-order results points to metamorphic-sole formation during the initiation of intra-oceanic subduction at ~110 Ma, and subsequent cooling of the slab-mantle interface between 92 and 86 Ma. Therefore, the contrasting metamorphic evolutions encountered in the Halilbağı Unit record the progressive thermal maturation of the juvenile Neotethyan subduction zone. This period of ~23 myr between subduction initiation and thermal "steady state" is significantly shorter than that obtained for the Rio San Juan Complex (~60 myr; Krebs et al. 2008, Lithos, 103, 106-137), but compares well with that for the Franciscan Complex (~22 myr; Anczkiewicz et al. 2004, EPSL, 225, 147-161) and falls in the range predicted in numerical simulations (e.g., Gerya et al. 2002, Tectonics, 21/6, 1056).
Compilation of gas geochemistry and isotopic analyses from The Geysers geothermal field: 1978-1991
Lowenstern, Jacob B.; Janik, Cathy; Fahlquist, Lynne; Johnson, Linda S.
1999-01-01
We present 45 chemical and isotopic analyses from well discharges at The Geysers geothermal field and summarize the most notable geochemical trends. H2 and H2S concentrations are highest in the Southeast Geysers, where steam samples have δD and δ18O values that reflect replenishment by meteoric water. In the Northwest Geysers, samples are enriched in gas/steam, CO2, CH4, and N2/Ar relative to the rest of the field, and contain steam that is elevated in δD and δ18O, most likely due to substantial contributions from Franciscan-derived fluids. The δ13C of CO2, trends in CH4 vs. N2, and abundance of NH3 indicate that the bulk of the non-condensable gases are derived from thermal breakdown of organic materials in Franciscan meta-sediments.
Shervais, J.W.; Kimbrough, D.L.; Renne, P.; Hanan, B.B.; Murchey, B.; Snow, C.A.; Zoglman, Schuman M.M.; Beaman, J.
2004-01-01
The Coast Range ophiolite of California is one of the most extensive ophiolite terranes in North America, extending over 700 km from the northernmost Sacramento Valley to the southern Transverse Ranges in central California. This ophiolite, and other ophiolite remnants with similar mid-Jurassic ages, represent a major but short-lived episode of oceanic crust formation that affected much of western North America. The history of this ophiolite is important for models of the tectonic evolution of western North America during the Mesozoic, and a range of conflicting interpretations have arisen. Current petrologic, geochemical, stratigraphic, and radiometric age data all favor the interpretation that the Coast Range ophiolite formed to a large extent by rapid extension in the forearc region of a nascent subduction zone. Closer inspection of these data, however, along with detailed studies of field relationships at several locales, show that formation of the ophiolite was more complex, and requires several stages of formation. Our work shows that exposures of the Coast Range ophiolite preserve evidence for four stages of magmatic development. The first three stages represent formation of the ophiolite above a nascent subduction zone. Rocks associated with the first stage include ophiolite layered gabbros, a sheeted complex, and volcanic rocks vith arc tholeiitic or (roore rarely) low-K calc-alkaline affinities. The second stage is characterized by intrusive wehrlite-clinopyroxenite complexes, intrusive gabbros, Cr-rich diorites, and volcanic rocks with high-Ca boninitic or tholeiitic ankaramite affinities. The third stage includes diorite and quartz diorite plutons, felsic dike and sill complexes, and calc-alkaline volcanic rocks. The first three stages of ophiolite formation were terminated by the intrusion of mid-ocean ridge basalt dikes, and the eruption of mid-ocean ridge basalt or ocean-island basalt volcanic suites. We interpret this final magmatic event (MORB dikes) to represent the collision of an active spreading ridge. Subsequent reorganization of relative plate motions led to sinistral transpression, along with renewed subduction and accretion of the Franciscan Complex. The latter event resulted in uplift and exhumation of the ophiolite by the process of accretionary uplift. ?? 2004 by V. H. Winston and Son, Inc. All rights reserved.
Brocher, T.M.
2005-01-01
Compressional-wave (sonic) and density logs from 119 oil test wells provide knowledge of the physical properties and impedance contrasts within urban sedimentary basins in northern California, which is needed to better understand basin amplification. These wire-line logs provide estimates of sonic velocities and densities for primarily Upper Cretaceous to Pliocene clastic rocks between 0.1 - and 5.6-km depth to an average depth of 1.8 km. Regional differences in the sonic velocities and densities in these basins largely 1reflect variations in the lithology, depth of burial, porosity, and grain size of the strata, but not necessarily formation age. For example, Miocene basin filling strata west of the Calaveras Fault exhibit higher sonic velocities and densities than older but finer-grained and/or higher-porosity rocks of the Upper Cretaceous Great Valley Sequence. As another example, hard Eocene sandstones west of the San Andreas Fault have much higher impedances than Eocene strata, mainly higher-porosity sandstones and shales, located to the east of this fault, and approach those expected for Franciscan Complex basement rocks. Basement penetrations define large impedence contrasts at the sediment/basement contact along the margins of several basins, where Quaternary, Pliocene, and even Miocene deposits directly overlie Franciscan or Salinian basement rocks at depths as much as 1.7 km. In contrast, in the deepest, geographic centers of the basins, such logs exhibit only a modest impedance contrast at the sediment/basement contact at depths exceeding 2 km. Prominent (up to 1 km/sec) and thick (up to several hundred meters) velocity and density reversals in the logs refute the common assumption that velocities and densities increase monotonically with depth.
NASA Astrophysics Data System (ADS)
Dumitru, T. A.; Wright, J. E.; Wakabayashi, J.; Wooden, J. L.
2006-12-01
Using the SHRIMP-RG, we have determined U-Pb ages of 285 detrital zircon grains from 7 metagraywacke samples of the Franciscan Eastern Belt in the Yolla Bolly area. The youngest clusters of zircon ages place upper brackets on the depositional ages of the protoliths of the various Eastern Belt units at the specific sampled locations as follows: South Fork Mtn Schist (SFMS), <=135 Ma; Valentine Springs Fm (VSF), <=120 Ma; Yolla Bolly terrane (YBT), <=111 Ma. An Ar/Ar age of small sills farther SW indicates the YBT also contains protolith >= 119 Ma (Mertz et al., 2001). Ages of subsequent accretion and metamorphism must be younger. Three new step-heat Ar/Ar analyses on metamorphic white mica separates from the SFMS at Yolla Bolly clustered tightly at 121 Ma. Therefore the depositional age of at least part of the SFMS protolith is bracketed between 135 and c. 123 Ma. Small amounts of excess argon are apparent in two of these samples, but excellent isochron fits permit correction for this complication. About 38 Ar/Ar total gas (not step heat) and K-Ar total gas ages have previously been reported on whole rock samples from the SFMS proper and generally cluster around 120 Ma. However, some ages deviate markedly. These deviations show little correlation with location, structural position, etc. Reconsideration of these data in light of our new data strongly suggests that the entire 330-km-long outcrop belt of the SFMS is characterized by a single, strikingly consistent argon cooling age of approximately 121 Ma. Older SFMS argon ages appear to be unreliable, possibly due to excess argon in some cases. The total volume of exposed Franciscan rocks that are demonstrably older than the SFMS is exceedingly small (e.g., high-grade blocks, Ward Creek, Skaggs Spring schist), whereas the volume that is slightly younger is large (e.g., VSF, YBT, Diablo Range). This suggests that the accretion of the SFMS marks a transition from predominately nonaccretionary to accretionary conditions in the Franciscan subduction zone. The SFMS protolith was predominately mudstone, whereas younger units contain substantial metagraywacke, so there may have been a simultaneous transition in sedimentary facies as well. The well-known c. 140-120 Ma magmatic lull in the Sierra Nevada also ended at essentially the same time. The SFMS exhibits some features suggestive of an inverted metamorphic gradient generated at the initiation of subduction, but other SFMS characteristics do not match this model very well, such as the low metamorphic temperatures and the mildness of the gradient. Instead, it is more likely that accretion, metamorphism, and cooling of the SFMS and the near-simultaneous rejuvenation of the Sierran arc mark some major change in subduction (acceleration?, shift to more orthogonal convergence?) at approximately 122 Ma and a transition of the forearc from a nonaccretionary to an accretionary state. Speculatively, the Pacific-Farallon-Phoenix triple junction jumped about 800 km to the south at virtually this time and reorganization of oceanic plates may have changed relative plate velocities at the Franciscan trench.
Gaining internal support for a marketing effort.
Barron, E
1988-06-01
Franciscan Health System, Chadds Ford, Pa., developed a systemwide marketing initiative to assure positive participation from its internal market segments. In the first of a series, the author outlines the goals, objectives and positioning of the marketing mix used to achieve voluntary involvement from these segments.
Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey
Hole, J.A.; Ryberg, T.; Fuis, G.S.; Bleibinhaus, F.; Sharma, A.K.
2006-01-01
Refraction traveltimes from a 46-km long seismic survey across the San Andreas Fault were inverted to obtain two-dimensional velocity structure of the upper crust near the SAFOD drilling project. The model contains strong vertical and lateral velocity variations from <2 km/s to ???6 km/s. The Salinian terrane west of the San Andreas Fault has much higher velocity than the Franciscan terrane east of the fault. Salinian basement deepens from 0.8 km subsurface at SAFOD to ???2.5 km subsurface 20 km to the southwest. A strong reflection and subtle velocity contrast suggest a steeply dipping fault separating the Franciscan terrane from the Great Valley Sequence. A low-velocity wedge of Cenozoic sedimentary rocks lies immediately southwest of the San Andreas Fault. This body is bounded by a steep fault just northeast of SAFOD and approaches the depth of the shallowest earthquakes. Multiple active and inactive fault strands complicate structure near SAFOD. Copyright 2006 by the American Geophysical Union.
HYDROGEOLOGY OF THE THERMAL LANDSLIDE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vantine, J.
1985-01-22
The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.
Metamorphic records of multiple seismic cycles during subduction
Hacker, Bradley R.; Seward, Gareth G. E.; Kelley, Chris S.
2018-01-01
Large earthquakes occur in rocks undergoing high-pressure/low-temperature metamorphism during subduction. Rhythmic major-element zoning in garnet is a common product of such metamorphism, and one that must record a fundamental subduction process. We argue that rhythmic major-element zoning in subduction zone garnets from the Franciscan Complex, California, developed in response to growth-dissolution cycles driven by pressure pulses. Using electron probe microanalysis and novel techniques in Raman and synchrotron Fourier transform infrared microspectroscopy, we demonstrate that at least four such pressure pulses, of magnitude 100–350 MPa, occurred over less than 300,000 years. These pressure magnitude and time scale constraints are most consistent with the garnet zoning having resulted from periodic overpressure development-dissipation cycles, related to pore-fluid pressure fluctuations linked to earthquake cycles. This study demonstrates that some metamorphic reactions can track individual earthquake cycles and thereby opens new avenues to the study of seismicity. PMID:29568800
Age and correlation of the Calera Limestone in the Permanente terrane of northern California
Sliter, William V.; McGann, Mary
1992-01-01
Planktonic foraminifers indicate that outcrops of Calera Limestone from the Permanente terrane in the Franciscan Complex of northern California range in age from possibly as old as Barremian to late Turonian. Underlying black limestone, which is devoid of planktonic foraminifers, presumably is Barremian in age or older. The top of the sequence exposed in major quarries is always faulted. Improved biostratigraphic resolution shows two patterns of missing time intervals. The primary pattern, which is found at all localities and involves missing planktonic foraminiferal zones in the late Aptian to early Albian and the late Albian, is linked to paleoceanographic changes in the Cretaceous Pacific Ocean. The secondary pattern, which is found at the scattered outcrops outside the major quarries and involves missing zones in the Albian and Cenomanian, suggests the results of a common tectonic history related to the accretion of a large seamount.
Reflections on Recruitment for Mission and Catholic Identity: Lessons Learned
ERIC Educational Resources Information Center
Gilroy, Maryellen
2009-01-01
This article presents how the division of student affairs at Siena College developed a framework for communicating its Franciscan and Catholic identity to job candidates and current staff. The recruitment for mission process described in this article has a dual purpose. The first is to educate and provide development opportunities for existing…
Deformation of the Eastern Franciscan Belt, northern California
Jayko, A.S.; Blake, M.C.
1989-01-01
The late Jurassic and Cretaceous Eastern Franciscan belt of the northern California Coast Range consists of two multiply deformed, blueschist-facies terranes; the Pickett Peak and Yolla Bolly terranes. Four deformations have been recognized in the Pickett Peak terrane, and three in the Yolla Bolly terrane. The earliest recognized penetrative fabric, D1, occurs only in the Pickett Peak terrane. The later penetrative fabrics, D2 and D3, occur in both the Yolla Bolly and Pickett Peak terranes. D1 and D2 apparently represent fabrics that formed during subduction and accretion of the terranes. Fabrics from both D1 and D2 are consistent with SW-NE movement directions with respect to their present geographic positions. D3 postdates blueschist-facies metamorphism of the terranes and may be related to emplacement of the terranes to higher structural levels. A broad regional warping, D4, is evident from the map pattern and folding of large metamorphosed thrust sheets. D4 folds may be related to deformation associated with oblique convergence along the continental margin in late Cretaceous and (or) early Tertiary time. ?? 1989.
NASA Astrophysics Data System (ADS)
Ogawa, Yujiro; Kawamura, Kiichiro; Tsunogae, Toshiaki; Mori, Ryota; Chiba, Tae; Sasaki, Tomoyuki
2010-05-01
Four different types of chaotic formations were recognized by the submersible observation around the Japanese trenches, including the Nankai and Sagami troughs, Boso triple junction, Japan trench, and Izu-Bonin arc, and each type is summarized and discussed in view of comparison to the on land examples, such as from the Franciscan, Shimanto and Miura-Boso belts in the circum Pacifc margins, and the Ankara. The submarine geologies are present actual examples to give us a critical key to understanding the formation processes and emplacement mechanisms for the so-called mélange bodies, either sedimentary, tectonic or diapiric. Some are made of alternated beds of sandstone and mudstone that show broken or block-in-matrix fashion, in most cases in muddy matrix. These are commonly developed on the trench landward slope toe of the Nankai and Sagami troughs and Boso triple junction area as well as the Japan trench slope. One type is from the landward slope, but another type is from the oceanward slopes. The former type is in places calcareous cemented, probably caused by hydraulic fracturing by high pore pressure along the thrust fault and oxidized methane-made carbonate precipitation. They are seen on the feet of the thrust-dominated slope and to be compared to the so-called sedimentary mélanges due to the gravitational sliding, which occur because of tectonically induced steep slopes. Most of such thrusts are related to large subduction type earthquakes, and await for further critical consideration on to the relation to the asperity problem. Some of large scale gravitational collapses may be related to the seamount or ridge subduction to the trench, both in case of accretionary and non-accretionary type margins, the former is for the examples from the Nankai and Sagami troughs and the Boso triple junction, latter for the Japan trench. In all cases on land and under the sea in the trench landward slope, some calcareous breccias are associated with methane-fluid supported animals within injection or diapiric intrusion. On the other hand, in the Nankai prism and the on land Miura-Boso Peninsulas, many examples of sandy matrix supported mudstone breccia are a result of liquefaction and injection of such coarse-grained clastic fragments during the earthquake shake and subsequent landsliding. Those deposits are faulted, folded and injected in various stages, some before accretionary prism incorporation, some after. Some are of sedimentary origin by gravitational process, others tectonic or diapiric, but in most cases thrust duplexes and complex folds are common. The third and fourth are mélanges including igneous, metamorphic and/or ophiolitic rock blocks. They look similar to the on land examples in the Franciscan, Mineoka (Boso, central Japan) and the Ankara, and used to be attributable to the diapiric origin, as those that have been already known as serpenitine mud volcanoes with metamorphic block at the foot of the Izu-Bonin-Mariana forearc. However, such analogue need careful consideration how the rock association would form to the final emplacement. As the fourth new type, we found an example of deep (1.5 to 2 GPa) metamorphic rock blocks of eclogitic conditions from the fault line in the schistose serpentinite (antigorite-dominated) in the middle part of the Izu arc near the Ohmachi seamount. This implies for the incorporation and exhumation of igneous and metamorphic rocks in the island arc setting, and may give an adequate analogue to the specific mélange formation of the Franciscan, Mineoka and Ankara.
NASA Astrophysics Data System (ADS)
Krohe, A.; Wassmann, S.; Trepmann, C.; Stoeckhert, B.
2009-12-01
The characteristic feature of the Franciscan Subduction Complex (FSC) is a chaotic mélange structure with centimeter- to about one kilometer-sized tectonic blocks composed of metabasalts, floating in a matrix of oceanic meta-sediments or, locally, serpentinites. Investigating map scale structures, microfabrics, and P-T-histories of the FSC, we try to gain information on the mechanical properties of rocks and their influence on the kinematics of material transport in a subduction channel. Structures and microfabrics indicate that metabasalts from the oceanic crust as well as mantle-derived ultramafic rocks (i) underwent fragmentation and sealing under high pore fluid pressure, (ii) remaining internally undeformed, or (iii) deform by dissolution precipitation creep. Importantly, microfabrics which would indicate crystal plastic deformation or dislocation creep are systematically absent. This means that, during the entire P-T history, differential stresses generally remained too low to activate crystal plastic deformation or dislocation creep. Hence the material in the subduction channel is characterized by a low strength, being either limited by brittle failure at high pore fluid pressure, or a Newton viscosity, which is expected for dissolution precipitation creep. We interpret the characteristic mélange structure as to reflect this mechanical state of the system: Brittle failure at quasi-lithostatic fluid pressures down to great depths is recorded in the tectonic blocks by the widespread occurrence of aragonite-bearing veins. This leads to fragmentation into the blocks of variable size and moderate aspect ratios, which behave as rigid inclusions in a flowing matrix with distributed deformation by dissolution precipitation creep. In contrast, a power law rheology characteristic for dislocation creep, would favor strain localization into shear zones at sites of stress concentration. However, such shear zones formed at high-P metamorphic conditions are not identified. Mechanical contrasts within the mélange are presumably governed by variations in grain sizes and the nature of interphase boundaries, which both control viscous deformation by dissolution precipitation creep. As such, huge viscosity contrasts between matrix and rigid blocks can persist during burial to HP metamorphic conditions and decompression, while the mélange is deformed to very high bulk strain. These findings pose constraints on the large scale properties of a subduction channel presently active at depth, to be identified by geophysical methods.
Structural implications of an offset Early Cretaceous shoreline in northern California
Jones, D.L.; Irwin, W.P.
1971-01-01
Recognition of a nonmarine to marine transition in sedimentary rocks at Glade Creek and Big Bar in the southern Klamath Mountains permits reconstruction of the approximate position of a north-trending Early Cretaceous (Valanginian) shoreline. At the southern end of the Klamath Mountains, the shoreline is displaced 60 mi or more to the east by a west-northwest-trending fault zone. South of this fault zone the shoreline is buried at a much lower level beneath late Cenozoic rocks in the Great Valley. This large displacement probably is the result of differential movement along a system of left-lateral tear faults in the upper plate of the Coast Range thrust. The westward bulge of the Klamath arc also may have resulted from this faulting, as the amount and direction of the bulge is comparable with the displacement of the Valanginian shoreline.Basal clastic strata at both Glade Creek and Big Bar contain abundant fresh-water or brackish-water clams, many of which consist of unabraded paired valves. These are conformably overlain by Valanginian marine strata containing Buchia crassicollis solida.The position of the Valanginian shoreline beneath the Great Valley cannot be directly observed because it is buried by thick late Cenozoic deposits. However, its approximate westernmost limit must lie between the outcrop belt of marine strata on the west side of the valley and drill holes to basement on the east side, in which equivalent strata are absent.Franciscan rocks containing Valanginian fossils occur 10 mi southwest of Glade Creek, but these are deep-water marine eugeosynclinal rocks that were deposited far to the west of the shoreline. The deformation responsible for the displacement of the Valanginian shoreline and juxtaposition of the Franciscan rocks and Klamath Mountain basement rocks involved eastward under-thrusting of the Franciscan beneath the Coast Range thrust contemporaneous with differential movement along tear faults within the upper plate.
ERIC Educational Resources Information Center
Karnieli, Mira
2014-01-01
Israel is a multicultural state where ultra-Orthodox groups run their own separate schools. The present phenomenological study examined and compared the management patterns and educational emphases of three women principals of religious schools (Muslim, Christian [Franciscan], and ultra-Orthodox Jewish). The findings show that the ultra-Orthodox…
The Amuesha People of Central Peru: Their Struggle to Survive. IWGIA Document No. 16.
ERIC Educational Resources Information Center
Smith, Richard Chase
In 1742, the national liberation movement led by Juan Santos Atahualpa forced the Franciscan missionaries, their military back-up, and the Spanish colonists they brought, out of central Peru and allowed the Amuesha and Campa peoples of the area to continue determining their own destinies independent of the Spanish and later Peruvian occupational…
An Early Researcher in the Field of Education: Bernardino de Sahagun in Sixteenth-Century Mexico
ERIC Educational Resources Information Center
Spieker, Susanne
2008-01-01
Bernardino de Sahagun (1499/1500-1590), a Franciscan missionary in the colony of New Spain, can be seen as an early researcher in the field of education. Through his ethnographic work "General History of the Things of New Spain" he has been most influential in the historiography of Meso-American pre-Hispanic cultures. This paper focuses…
77 FR 38078 - U.S. Nominations to the World Heritage List: San Antonio Franciscan Missions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-26
... (NPS) are authorized by Title IV of the Historic Preservation Act Amendments of 1980 and conducted in..., Scientific and Cultural Organization) to develop a process to revise the tentative list by 2016. A discussion... completing the update in 2016, the year of the centennial of the National Park Service. Next Steps in the...
Learning the Faith in England in the Later Middle Ages: Contributions of the Franciscan Friars
ERIC Educational Resources Information Center
Lawson, Kevin E.
2012-01-01
In popular understanding, the late Middle Ages has been viewed as a time of relative religious ignorance for both laity and clergy. Recent scholarship is indicating a more knowledgeable and vigorous faith experience in this time period. This article examines the major educational ministry renewal of the church in England following the Fourth…
Thermobarometric and fluid expulsion history of subduction zones
NASA Astrophysics Data System (ADS)
Ernst, W. G.
1990-06-01
Phanerozoic, unmetamorphosed, weathered, and altered lithotectonic complexes subjected to subduction exhibit the prograde metamorphic facies sequence: zeolite → prehnite-pumpellyite → glaucophane schist → eclogite. Parageneses reflect relatively high-P trajectories, accompanied by semicontinuous devolatilization. The thermal evolution of convergent plate junctions results in early production of high-rank blueschists, high-P amphibolites, and eclogues at depth within narrow subduction zones while the hanging wall lithosphere is still hot. Protracted underflow drains heat from the nonsubducted plate and, even at profound depths, generates very low-T/high-P parageneses. Inclusion studies suggest that two-phase immiscible volatiles (liquid H2O, and gaseous high-hydrocarbons, CH4 and CO2) are evolved in turn during progressive metamorphism of the subducted sections. Expulsion of pore fluids and transitions from weathered and altered supracrustal rocks to zeolite facies assemblages release far more fluid than the better understood higher-grade transformations. Many blueschist parageneses, such as those of the internal Western Alps, have been partially overprinted by later greenschist and/or epidote-amphibolite facies assemblages. Alpine-type postblueschist metamorphic paths involved fairly rapid, nearly adiabatic decompression; some terranes even underwent modest continued heating and fluid evolution during early stages of ascent. Uplift probably occurred as a consequence of the underthrusting of low-density island arc or microcontinental crust along the convergent plate junction, resulting in marked deceleration or cessation of lithospheric underflow, decoupling, and nearly isothermal rise of the recrystallized subduction complex. Other, less common blueschist terranes, such as the eastern Franciscan belt of western California, preserve metamorphic aragonite and other high-P minerals, and lack a low-pressure overprint; physical conditions during retrogression approximately retraced the prograde path or, for early formed high-grade blocks, reflect somewhat higher pressures and lower temperatures. Subducted sections constituting portions of the Franciscan-type of metamorphic belt evidently moved slowly back up the inclined lithospheric plate junction during continued convergence and sustained refrigeration. Upward motion due to isostatic forces was produced by tectonic imbrication of fault suces, laminar return flow in melange zones, and lateral extension of the underplated accretionary prism. The ease with which volatiles are expelled from a subduction complex and migrate upward along the plate junction zone is roughly proportional to the sandstone/shale ratio: low-permeability mudstones tend to maintain fluid values approaching lithostatic, lose strength, and deform chaotically (forming melange belts), whereas permeable sandstone-rich sections retain structural/stratigraphic coherence and fail brittlely (forming coherent terranes). Because of substantial updip expulsion of volatiles during prograde recrystallization, only small amounts of H2O and CO2 are available to support hydration and carbonation of the accretionary complex during its return toward the surface; thus limited back reaction takes place and occurs at low Pfluid/Plithostatic ratios, unless an abundance of volatiles is introduced during uplift.
Halling, D. Brent; Kenrick, Sophia A.; Riggs, Austen F.
2014-01-01
Ca2+ activates SK Ca2+-activated K+ channels through the protein Ca2+ sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca2+ regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca2+ concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca2+, SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At <5 nM Ca2+, 1SKp/1CaM and 2SKp/1CaM were observed; however, 1SKp/2CaM was absent. Analytical ultracentrifugation was used to characterize the physical properties of the three SKp/CaM stoichiometries. In high Ca2+, the sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca2+ and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca2+ or with CaM in molar excess. In low Ca2+ both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca2+. These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating. PMID:24420768
Halling, D Brent; Kenrick, Sophia A; Riggs, Austen F; Aldrich, Richard W
2014-02-01
Ca(2+) activates SK Ca(2+)-activated K(+) channels through the protein Ca(2+) sensor, calmodulin (CaM). To understand how SK channels operate, it is necessary to determine how Ca(2+) regulates CaM binding to its target on SK. Tagless, recombinant SK peptide (SKp), was purified for binding studies with CaM at low and high Ca(2+) concentrations. Composition gradient multi-angle light scattering accurately measures the molar mass, stoichiometry, and affinity of protein complexes. In 2 mM Ca(2+), SKp and CaM bind with three different stoichiometries that depend on the molar ratio of SKp:CaM in solution. These complexes include 28 kD 1SKp/1CaM, 39 kD 2SKp/1CaM, and 44 kD 1SKp/2CaM. A 2SKp/2CaM complex, observed in prior crystallographic studies, is absent. At <5 nM Ca(2+), 1SKp/1CaM and 2SKp/1CaM were observed; however, 1SKp/2CaM was absent. Analytical ultracentrifugation was used to characterize the physical properties of the three SKp/CaM stoichiometries. In high Ca(2+), the sedimentation coefficient is smaller for a 1SKp:1CaM solution than it is for either 2SKp:1CaM or 1SKp:2CaM. At low Ca(2+) and at >100 µM protein concentrations, a molar excess of SKp over CaM causes aggregation. Aggregation is not observed in Ca(2+) or with CaM in molar excess. In low Ca(2+) both 1SKp:1CaM and 1SKp:2CaM solutions have similar sedimentation coefficients, which is consistent with the absence of a 1SKp/2CaM complex in low Ca(2+). These results suggest that complexes with stoichiometries other than 2SKp/2CaM are important in gating.
Morgan, J.W.; Czamanske, G.K.; Gregory, Wandless A.
1985-01-01
Instrumental-neutron-activation analyses are reported for two uncontaminated rocks, a phlogopite-rich clot, and two contaminated rocks from the Coyote Peak diatreme, northwestern California. These data, combined with Nd, Sr, and Pb isotopic evidence, have been modeled to a multi-stage evolution for the uncontaminated rocks. Fertile mantle material (refractory elements 2.5?? chondritic abundances; Rb/Sr = 0.029 by weight) was depleted about 900 m.y. ago by congruent melting and removal of ~4% basaltic liquid; this depleted residue provided the source rock from which the Coyote Peak magma was ultimately derived. About 66 m.y. ago, the depleted mantle residue was incongruently melted in the presence of H2O and CO2 at a total pressure > 26 kb to yield ~0.5% of a Si-poor, Ca-rich melt. This melt then metasomatized depleted garnet-free harzburgite in the upper mantle at about 26 kb to produce a rock similar to phlogopite-bearing wehrlite. About 29 m.y. ago, this rock was subjected to an increase in pressure to >26 kb and incongruently melted to give ~0.5% of a second-stage melt resembling olivine melilitite in composition. Enroute to the surface, about 28% olivine and 2% titanomagnetite were lost from the highly fluid melt. Coarse-grained phlogopite-rich clots in the uncontaminated rocks apparently crystallized from a latestage liquid derived from the uncontaminated melt. Contaminated rocks appear to be the result of partial assimilation of, and dilution by, ~14% Franciscan graywacke country rock. The diatreme was emplaced near a converging plate margin where young hot oceanic mantle and crust of the Juan de Fuca plate was probably subducting obliquely beneath a thin lip of the North American plate. The unusual chemistry of the rocks may be the result of this complex tectonic setting which could also have included local strike-slip and extensional environments within the two plates pierced by the diatreme. ?? 1985.
Artificial synthetic Mn(IV)Ca-oxido complexes mimic the oxygen-evolving complex in photosystem II.
Chen, Changhui; Zhang, Chunxi; Dong, Hongxing; Zhao, Jingquan
2015-03-14
A novel family of heteronuclear Mn(IV)Ca-oxido complexes containing Mn(IV)Ca-oxido cuboidal moieties and reactive water molecules on Ca(2+) have been synthesized and characterized to mimic the oxygen-evolving complex (OEC) of photosystem II (PSII) in nature.
Marine magnetic survey and onshore gravity and magnetic survey, San Pablo Bay, northern California
Ponce, David A.; Denton, Kevin M.; Watt, Janet T.
2016-09-12
IntroductionFrom November 2011 to August 2015, the U.S. Geological Survey (USGS) collected more than 1,000 line-kilometers (length of lines surveyed in kilometers) of marine magnetic data on San Pablo Bay, 98 onshore gravity stations, and over 27 line-kilometers of ground magnetic data in northern California. Combined magnetic and gravity investigations were undertaken to study subsurface geologic structures as an aid in understanding the geologic framework and earthquake hazard potential in the San Francisco Bay Area. Furthermore, marine magnetic data illuminate local subsurface geologic features in the shallow crust beneath San Pablo Bay where geologic exposure is absent.Magnetic and gravity methods, which reflect contrasting physical properties of the subsurface, are ideal for studying San Pablo Bay. Exposed rock units surrounding San Pablo Bay consist mainly of Jurassic Coast Range ophiolite, Great Valley sequence, Franciscan Complex rocks, Miocene sedimentary rocks, and unconsolidated alluvium (Graymer and others, 2006). The contrasting magnetic and density properties of these rocks enable us to map their subsurface extent.
Skeletal Remains from World War II Mass Grave: from Discovery to Identification
Definis Gojanović, Marija; Sutlović, Davorka
2007-01-01
Aim To present the process of identification of skeletal remains from a mass grave found on a Dalmatian mountain-range in 2005, which allegedly contained the remains of civilians from Herzegovina killed in the World War II, including a group of 8 Franciscan monks. Methods Excavation of the site in Dalmatian hinterland, near the village of Zagvozd, was accomplished according to archeological procedures. Anthropological analysis was performed to estimate sex, age at death, and height of the individuals, as well as pathological and traumatic changes of the bones. Due to the lack of ante-mortem data, DNA typing using Y-chromosome was performed. DNA was isolated from bones and teeth samples using standard phenol/chloroform/isoamyl alcohol extraction. Two Y-chromosome short tandem repeats (STR) systems were used for DNA quantification and amplification. Typing of polymerase chain reaction (PCR) products was performed on an ABI Prism 310 Genetic Analyzer. PCR typing results were matched with results from DNA analysis of samples collected from the relatives of supposed victims – blood samples from the living relatives and bone samples collected during further exhumation of died parents or relatives of the supposed victims. Results The remains contained 18 almost complete skeletons, with considerable post-mortal damage. All remains were men, mainly middle-aged, with gunshot wounds to the head. DNA analysis and cross-matching of the results with relatives’ data resulted in three positive identifications using the Y-chromosomal short tandem repeat (Y-STR) systems. All of the positively identified remains belonged to the Franciscan friars allegedly killed in Herzegovina and buried at the analyzed site. Conclusion Our analysis of remains from a mass grave from the World War II confirmed the value of patrilineal lineage based on Y-STRs, even when missing persons had left no offspring, as was the case with Franciscan monks. Although this report is primarily focused on the identification of remains from a mass grave, it also emphasizes the role of forensic approach in documenting human right violations. PMID:17696307
Multiple C-terminal tail Ca2+/CaMs regulate CaV1.2 function but do not mediate channel dimerization
Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L
2010-01-01
Interactions between voltage-gated calcium channels (CaVs) and calmodulin (CaM) modulate CaV function. In this study, we report the structure of a Ca2+/CaM CaV1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca2+/CaMs and two Ca2+/CaM–IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca2+/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes CaV1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca2+/CaMs in the complex have different properties. Ca2+/CaM bound to the PreIQ C-region is labile, whereas Ca2+/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca2+/CaMs can bind the CaV1.2 tail simultaneously and indicate a functional role for Ca2+/CaM at the C-region site. PMID:20953164
Kim, Eun Young; Rumpf, Christine H; Van Petegem, Filip; Arant, Ryan J; Findeisen, Felix; Cooley, Elizabeth S; Isacoff, Ehud Y; Minor, Daniel L
2010-12-01
Interactions between voltage-gated calcium channels (Ca(V)s) and calmodulin (CaM) modulate Ca(V) function. In this study, we report the structure of a Ca(2+)/CaM Ca(V)1.2 C-terminal tail complex that contains two PreIQ helices bridged by two Ca(2+)/CaMs and two Ca(2+)/CaM-IQ domain complexes. Sedimentation equilibrium experiments establish that the complex has a 2:1 Ca(2+)/CaM:C-terminal tail stoichiometry and does not form higher order assemblies. Moreover, subunit-counting experiments demonstrate that in live cell membranes Ca(V)1.2s are monomers. Thus, contrary to previous proposals, the crystallographic dimer lacks physiological relevance. Isothermal titration calorimetry and biochemical experiments show that the two Ca(2+)/CaMs in the complex have different properties. Ca(2+)/CaM bound to the PreIQ C-region is labile, whereas Ca(2+)/CaM bound to the IQ domain is not. Furthermore, neither of lobes of apo-CaM interacts strongly with the PreIQ domain. Electrophysiological studies indicate that the PreIQ C-region has a role in calcium-dependent facilitation. Together, the data show that two Ca(2+)/CaMs can bind the Ca(V)1.2 tail simultaneously and indicate a functional role for Ca(2+)/CaM at the C-region site.
NASA Astrophysics Data System (ADS)
Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.
2015-12-01
The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.
NASA Astrophysics Data System (ADS)
Hahm, W. J.; Dietrich, W. E.; Dawson, T. E.; Lovill, S.; Rempe, D.
2016-12-01
Water availability regulates ecosystem function, particularly in seasonally dry climates where lack of moisture in the growing season acts as an ecological bottleneck. Water within hillslopes is extracted by plants during transpiration and also delivered to streams to support baseflow for riparian ecosystems and human use. How water is stored and then released from hillslopes is strongly influenced by the structure of the critical zone (CZ) that emerges from the complex interaction of lithology, climate, and tectonics. Here we show how contrasting CZ development has extreme ecohydrological consequences in the seasonally dry climate of the Northern California Coast Ranges. To explore how the CZ transmits and stores water, we studied hydrologic dynamics at two sites with similar climate across belts of the Franciscan Formation in the Eel River CZO. We monitored plant water use, precipitation inputs and stream runoff, groundwater and vadose zone moisture dynamics and documented near-surface hydraulic conductivity and runoff-generation processes. We investigated CZ structure via boreholes and geophysical methods. We find that CZ thickness determines the extent to which hillslopes `shed' or `store' wet season precipitation, and fundamentally controls the structure of plant communities and summer low-flows. In a climate where winter precipitation regularly exceeds 2000 mm, the thin CZ of the sheared argillite matrix Central belt rapidly fills, resulting in wet-season saturation overland flow that drives flashy winter runoff in channels that then quickly run dry in the early summer. The maximum unsaturated moisture storage of approximately 200 mm is sufficient to host an ecologically diverse yet sparsely forested oak savanna. In contrast, the thick CZ of the interbedded argillite and greywacke Coastal belt stores up to 600 mm of winter precipitation in the unsaturated zone and a seasonal groundwater system within fractured bedrock provides year-round flow to channels, supporting dense mixed coniferous-broadleaf evergreen forest and native resident salmonids. These findings underscore the importance of understanding how the structure of the CZ develops by directly pairing hillslope moisture storage and release to the composition and resilience of terrestrial and aquatic ecosystems.
Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S
2014-01-01
Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011
1. Adorni (Cheng 1997a, Sawyer 1981a)
Sheauchi Cheng
2004-01-01
This established RNA is on the Six Rivers National Forest. It lies about 3 miles (5 km) N. of Weitchpec, Humboldt County, covering portions of sects. 25 and 26 T10N, R4E HBM (41°14'N., 123°41'W.), USGS Weitchpec quad (fig. 3). Ecological subsections â Gasquet Mountain Ultramafics (M261Ab) and Eastern Franciscan (M261Ba).
The Varieties of Religious Experience: Baptized Indians at Mission San Francisco de Asis, 1776-1821
ERIC Educational Resources Information Center
Newell, Quincy D.
2008-01-01
Paseos, which are defined as trips away from the mission authorized by the Franciscan priests, were common among Indians baptized at Mission San Francisco during the period between 1700s to 1800s. Indians went on these journeys in order to harvest acorns and other wild foods, to hunt and fish, and to visit friends and family outside the mission.…
The prevalence and correlates of depression, anxiety, and stress in a sample of college students.
Beiter, R; Nash, R; McCrady, M; Rhoades, D; Linscomb, M; Clarahan, M; Sammut, S
2015-03-01
Over the past four years, the Franciscan University Counseling Center has reported a 231% increase in yearly visits, as well as a 173% increase in total yearly clients. This trend has been observed at many universities as mental health issues pose significant problems for many college students. The objective of this study was to investigate potential correlates of depression, anxiety, and stress in a sample of college students. The final analyzed sample consisted of 374 undergraduate students between the ages of 18 and 24 attending Franciscan University, Steubenville, Ohio. Subjects completed a survey consisting of demographic questions, a section instructing participants to rate the level of concern associated with challenges pertinent to daily life (e.g. academics, family, sleep), and the 21 question version of the Depression Anxiety Stress Scale (DASS21). The results indicated that the top three concerns were academic performance, pressure to succeed, and post-graduation plans. Demographically, the most stressed, anxious, and depressed students were transfers, upperclassmen, and those living off-campus. With the propensity for mental health issues to hinder the success of college students, it is vital that colleges continually evaluate the mental health of their students and tailor treatment programs to specifically target their needs. Copyright © 2014 Elsevier B.V. All rights reserved.
Prediction of maximum earthquake intensities for the San Francisco Bay region
Borcherdt, Roger D.; Gibbs, James F.
1975-01-01
The intensity data for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the empirical relation derived between 1906 intensities and distance perpendicular to the fault for 917 sites underlain by rocks of the Franciscan Formation is: Intensity = 2.69 - 1.90 log (Distance) (km). For sites on other geologic units intensity increments, derived with respect to this empirical relation, correlate strongly with the Average Horizontal Spectral Amplifications (AHSA) determined from 99 three-component recordings of ground motion generated by nuclear explosions in Nevada. The resulting empirical relation is: Intensity Increment = 0.27 +2.70 log (AHSA), and average intensity increments for the various geologic units are -0.29 for granite, 0.19 for Franciscan Formation, 0.64 for the Great Valley Sequence, 0.82 for Santa Clara Formation, 1.34 for alluvium, 2.43 for bay mud. The maximum intensity map predicted from these empirical relations delineates areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hazard fault.
Lee, Jun-Yeop; Yun, Jong-Il
2013-07-21
The chemical behavior of ternary Ca-UO2-CO3 complexes was investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) in combination with EDTA complexation at pH 7-9. A novel TRLFS revealed two distinct fluorescence lifetimes of 12.7 ± 0.2 ns and 29.2 ± 0.4 ns for uranyl complexes which were formed increasingly dependent upon the calcium ion concentration, even though nearly indistinguishable fluorescence peak shapes and positions were measured for both Ca-UO2-CO3 complexes. For identifying the stoichiometric number of complexed calcium ions, slope analysis in terms of relative fluorescence intensity versus calcium concentration was employed in a combination with the complexation reaction of CaEDTA(2-) by adding EDTA. The formation of CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) was identified under given conditions and their formation constants were determined at I = 0.1 M Na/HClO4 medium, and extrapolated to infinitely dilute solution using specific ion interaction theory (SIT). As a result, the formation constants for CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) were found to be log β113(0) = 27.27 ± 0.14 and log β213(0) = 29.81 ± 0.19, respectively, providing that the ternary Ca-UO2-CO3 complexes were predominant uranium(vi) species at neutral to weakly alkaline pH in the presence of Ca(2+) and CO3(2-) ions.
Uchikoga, Nobuyuki; Hirokawa, Takatsugu
2010-05-11
Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG), CaM kinase kinase (CaMKK) and the plasma membrane Ca2+ ATPase pump (PMCA), and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.
Complexation of the calcium cation with antamanide: an experimental and theoretical study
NASA Astrophysics Data System (ADS)
Makrlík, Emanuel; Böhm, Stanislav; Vaňura, Petr; Ruzza, Paolo
2015-06-01
By using extraction experiments and γ-activity measurements, the extraction constant corresponding to the equilibrium Ca2+(aq) + 1 .Sr2+(nb) ? 1 .Ca2+(nb) + Sr2+(aq) occurring in the two-phase water-nitrobenzene system (1 = antamanide; aq = aqueous phase, nb = nitrobenzene phase) was determined as log Kex (Ca2+, 1 .Sr2+) = 1.6 ± 0.1. Further, the stability constant of the 1 .Ca2+ complex in nitrobenzene saturated with water was calculated for a temperature of 25 °C: log βnb (1 .Ca2+) = 10.9 ± 0.2. Finally, applying quantum mechanical density functional level of theory calculations, the most probable structure of the cationic complex species 1 .Ca2+ was derived. In the resulting complex, the 'central' cation Ca2+ is bound by six strong bonding interactions to the corresponding six carbonyl oxygen atoms of the parent ligand 1. Besides, the whole 1 .Ca2+ complex structure is stabilised by two intramolecular hydrogen bonds. The interaction energy of the considered 1 .Ca2+ complex, involving the Boys-Bernardi counterpoise corrections of the basis set superposition error, was found to be -1219.3 kJ/mol, confirming the formation of this cationic species.
Sorensen, Sorena S.; Grossman, J.N.; Perfit, M.R.
1997-01-01
Geochemical differences between island arc basalts (LAB) and ocean-floor basalts (mid-ocean ridge basalts; MORB) suggest that the large-ion lithophile elements (LILE) K, Ba, Rb and Cs are probably mobilized in subduction zone fluids and melts. This study documents LILE enrichment of eclogite, amphibolite, and epidote ?? garnet blueschist tectonic blocks and related rocks from melanges of two subduction complexes. The samples are from six localities of the Franciscan Complex, California, and related terranes of Oregon and Baja California, and from the Samana Metamorphic Complex, Samana Peninsula, Dominican Republic. Most Franciscan blocks are MORB-like in their contents of rare earth elements (REE) and high field strength elements (HFSE); in contrast, most Samana blocks show an LAB signature of these elements. The whole-rock K2O contents of both groups range from 1 to 3 wt %; K, Ba, Rb, and Cs are all strongly intercorrelated. Many blocks display K/Ba similar to melasomatized transition zones and rinds at their outer margins. Some transition zones and rinds are enriched in LILE compared with host blocks; others are relatively depleted in these elements. Some LILE-rich blocks contain 'early' coarse-grained muscovite that is aligned in the foliation defined by coarse-grained omphacite or amphibole grains. Others display 'late' muscovite in veins and as a partial replacement of garnet; many contain both textural types. The muscovite is phengite that contains ???3??25-3??55 Si per 11 oxygens, and ???0??25-0??50 Mgper 11 oxygens. Lower-Si phengite has a significant paragonite component: Na per 11 oxygens ranges to ???0??12. Ba contents of phengite range to over 1 wt % (0??027 per 11 oxygens). Ba in phengite does not covary strongly with either Na or K. Ba contents of phengite increase from some blocks to their transition zones or rinds, or from blocks to their veins. Averaged KlBa ratios for phengite and host samples define an array which describes other subsamples of the block and other analyzed blocks. Phengite carries essentially all of the LILE in otherwise mafic eclogite, amphibolite, and garnet blueschist blocks that are enriched in these elements compared with MORE. It evidently tracks a distinctive type of LILE metasomatism that attends both high-T and retrograde subduction zone metamorphism. An obvious source for the LILE is a fluid in equilibrium with metasedimentary rocks. High-grade semipelitic schists from subduction complexes and subductable sediment display LILE values that resemble those seen in the most LILE-rich blocks. Modeling of Ba and Ti suggests that 1-40 wt % of phengite added to MORB can produce their observed LILE enrichment. Thus, the release of LILE from such rocks to fluids or melts in very high-T and -P parts of subduction zones probably depends critically on the stability and solubility relations of phengite, which is thought to be stable at pressures as high as 95-110 kbar at T= 750-1050??C.
Lawlis, V B; Roche, T E
1980-11-20
NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex was compared at 10 microM free Ca2+ or in the absence of Ca2+ (i.e., less than 1.0 nM free Ca2+). In the presence of Ca2+, NADH inhibition was appreciably decreased for a wide range of NADH:NAD+ ratios. A half-maximal decrease in NADH inhibition occurred at slightly less than 1 microM free Ca/+ (as determined with EGTA-Ca buffers). Of necessity this was observed on top of an effect of Ca2+ on the S0.5 for alpha-ketoglutarate which was decreased by Ca2+ with a half-maximal effect at a similar concentration. The effect of Ca2+ on NADH inhibition was not observed in assays of the dihydrolipoyl dehydrogenase component (using dihydrolipoamide as a substrate) or in assays of bovine kidney pyruvate dehydrogenase complex. This indicates that the overall reaction catalyzed by the alpha-ketoglutarate dehydrogenase complex is required to elicit the effect of Ca2+ on NADH inhibition. At a fixed alpha-ketoglutarate concentration (50 microM), removal of Ca2+ reduced the activity of the alpha-ketoglutarate dehydrogenase complex by 8.5-fold (due to an increase in S0.5 for alpha-ketoglutarate) and, in the presence of different NADH:NAD+ ratios, decreased the activity of the complex by 50 to 100-fold. Effects of the phosphate potential (ATP/ADPxPi) or a combination of the phosphate potential and NADH:NAD+ ratio are also described. The possibility that the level of intramitochondrial free Ca/+ serves as a signal amplifier normally coupled to the energy state of mitochondria is discussed.
Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor
Shen, Mei; Zhang, Ning; Zheng, Sanduo; Zhang, Wen-Bo; Zhang, Hai-Man; Lu, Zekuan; Su, Qian Peter; Sun, Yujie; Li, Xiang-dong
2016-01-01
The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca2+-dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca2+-dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca2+-bound CaM (Ca2+-CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca2+-CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca2+-CaM structure, the N-lobe and the C-lobe of Ca2+-CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca2+-CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca2+ transition and that the binding of CaM to IQ1 increases Ca2+ affinity and substantially changes the kinetics of the Ca2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca2+ sensor responding to distinct calcium signals. PMID:27647889
Calmodulin in complex with the first IQ motif of myosin-5a functions as an intact calcium sensor.
Shen, Mei; Zhang, Ning; Zheng, Sanduo; Zhang, Wen-Bo; Zhang, Hai-Man; Lu, Zekuan; Su, Qian Peter; Sun, Yujie; Ye, Keqiong; Li, Xiang-Dong
2016-10-04
The motor function of vertebrate myosin-5a is inhibited by its tail in a Ca 2+ -dependent manner. We previously demonstrated that the calmodulin (CaM) bound to the first isoleucine-glutamine (IQ) motif (IQ1) of myosin-5a is responsible for the Ca 2+ -dependent regulation of myosin-5a. We have solved the crystal structure of a truncated myosin-5a containing the motor domain and IQ1 (MD-IQ1) complexed with Ca 2+ -bound CaM (Ca 2+ -CaM) at 2.5-Å resolution. Compared with the structure of the MD-IQ1 complexed with essential light chain (an equivalent of apo-CaM), MD-IQ1/Ca 2+ -CaM displays large conformational differences in IQ1/CaM and little difference in the motor domain. In the MD-IQ1/Ca 2+ -CaM structure, the N-lobe and the C-lobe of Ca 2+ -CaM adopt an open conformation and grip the C-terminal and the N-terminal portions of the IQ1, respectively. Remarkably, the interlobe linker of CaM in IQ1/Ca 2+ -CaM is in a position opposite that in IQ1/apo-CaM, suggesting that CaM flip-flops relative to the IQ1 during the Ca 2+ transition. We demonstrated that CaM continuously associates with the IQ1 during the Ca 2+ transition and that the binding of CaM to IQ1 increases Ca 2+ affinity and substantially changes the kinetics of the Ca 2+ transition, suggesting that the IQ1/CaM complex functions as an intact Ca 2+ sensor responding to distinct calcium signals.
Gibbs, James F.; Borcherdt, Roger D.
1974-01-01
Measurements of ground motion generated by nuclear explosions in Nevada have been completed for 99 locations in the San Francisco Bay region, California. The seismograms, Fourier amplitude spectra, spectral amplification curves for the signal, and the Fourier amplitude spectra of the seismic noise are presented for 60 locations. Analog amplifications, based on the maximum signal amplitude, are computed for an additional 39 locations. The recordings of the nuclear explosions show marked amplitude variations which are consistently related to the local geologic conditions of the recording site. The average spectral amplifications observed for vertical and horizontal ground motions are, respectively: (1, 1) for granite, (1.5, 1.6) for the Franciscan Formation, (2.3, 2.3), for other pre-Tertiary and Tertiary rocks, (3.0, 2.7) for the Santa Clara Formation, (3.3, 4.4) for older bay sediments, and (3.7, 11.3) for younger bay mud. Spectral amplification curves define predominant ground frequencies for younger bay mud sites and for some older bay sediment sites. The predominant frequencies for most sites were not clearly defined by the amplitude spectra computed from the seismic background noise. The intensities ascribed to various sites in the San Francisco Bay region for the California earthquake of April 18, 1906, are strongly dependent on distance from the zone of surface faulting and the geological character of the ground. Considering only those sites (approximately one square city block in size) for which there is good evidence for the degree of ascribed intensity, the intensities for 917 sites on Franciscan rocks generally decrease with the logarithm of distance as Intensity = 2.69 - 1.90 log (Distance Km). For sites on other geologic units, intensity increments, derived from this empirical rela.tion, correlate strongly with the Average Horizontal Spectral Amplifications (MISA) according to the empirical relation Intensity Increment= 0.27 + 2.70 log(AHSA). Average intensity increments predicted for various geologic units are -0.3 for granite, 0.2 for Franciscan Formation, 0.6 for other pre-Tertiary, Tertiary bedrock, 0.8 for Santa Clara Formation, 1 .3 for older bay sediments, 2.4 for younger bay mud. These empirical relations, together with detailed geologic maps, delineate areas in the San Francisco Bay region of potentially high intensity from future earthquakes on either the San Andreas fault or the Hayward fault.
The Cedars ultramafic mass, Sonoma County, California
Blake, M. Clark; Bailey, Edgar H.; Wentworth, Carl M.
2012-01-01
The Cedars ultramafic mass is a mantle fragment that consists of partially serpentinized spinel harzburgite and dunite. Compositional layering and a chromite lineation define a penetrative metamorphic foliation that almost certainly formed in the upper mantle. Although detailed petrofabric and mineral chemistry are presently lacking, it seems reasonable that the Cedars peridotite represents a slice of mantle tectonite that once formed the base of the Coast Range ophiolite, and not an abyssal peridotite tectonically emplaced within the Franciscan accretionary prism.
Plan, do, study, act model to improve an orientation program.
Ragsdale, Mary Alice; Mueller, John
2005-01-01
The Franciscan Health System has designed a new employee orientation program that is both interactive and thought-provoking. The program has transitioned from a predominantly lecture-based format to one that consists of group discussion, role playing, lunch with senior leaders in the organization, and the utilization of adult learning principles. This article describes the shortcomings of the previous program, gaps identified in the needs assessment, and performance improvement methodology used to enhance the program.
Base and precious metal occurrences along the San Andreas Fault, Point Delgada, California
McLaughlin, Robert J.; Sorg, D.H.; Ohlin, H.N.; Heropoulos, Chris
1979-01-01
Previously unrecognized veins containing lead, zinc, and copper sulfide minerals at Point Delgada, Calif., are associated with late Mesozoic(?) and Tertiary volcanic and sedimentary rocks of the Franciscan assemblage. Sulfide minerals include pyrite, sphalerite, galena, and minor chalcopyrite, and galena-rich samples contain substantial amounts of silver. These minerals occur in a quartz-carbonate gangue along northeast-trending faults and fractures that exhibit (left?) lateral and vertical slip. The sense of fault movement and the northeasterly strike are consistent with predicted conjugate fault sets of the present San Andreas fault system. The sulfide mineralization is younger than the Franciscan rocks of Point Delgada and King Range, and it may have accompanied or postdated the inception of San Andreas faulting. Mineralization largely preceded uplift, the formation of a marine terrace, and the emplacement of landslide-related debris-flow breccias that overlie the mineralized rocks and truncate the sulfide veins. These field relations indicate that the sulfide mineralization and inception of San Andreas faulting were clearly more recent than the early Miocene and that the mineralization could be younger than about 1.2 m.y. The sulfide veins at Point Delgada may be of economic significance. However, prior to any exploitation of the occurrence, economic and environmental conflicts of interest involving private land ownership, the Shelter Cove home development, and proximity of the coast must be resolved.
Yang, Jianjun; Wang, Jian; Pan, Weinan; Regier, Tom; Hu, Yongfeng; Rumpel, Cornelia; Bolan, Nanthi; Sparks, Donald
2016-01-01
Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorption and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. These findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils. PMID:27212680
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jianjun; Wang, Jian; Pan, Weinan
Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less
Yang, Jianjun; Wang, Jian; Pan, Weinan; ...
2016-05-23
Organic carbon (OC) stability in tropical soils is strongly interlinked with multivalent cation interaction and mineral association. Low molecular weight organic acids (LMWOAs) represent the readily biodegradable OC. Therefore, investigating retention mechanisms of LMWOAs in mineral-cation-LMWOAs systems is critical to understanding soil C cycling. Given the general acidic conditions and dominance of kaolinite in tropical soils, we investigated the retention mechanisms of citric acid (CA) in kaolinite-Fe(III)-CA systems with various Fe/CA molar ratios at pH ~3.5 using Fe K-edge EXAFS and L- 3,2-edge XANES techniques. With Fe/CA molar ratios >2, the formed ferrihydrite mainly contributed to CA retention through adsorptionmore » and/or coprecipitation. With Fe/CA molar ratios from 2 to 0.5, ternary complexation of CA to kaolinite via a five-coordinated Fe(III) bridge retained higher CA than ferrihydrite-induced adsorption and/or coprecipitation. With Fe/CA molar ratios ≤ 0.5, kaolinite-Fe(III)-citrate complexation preferentially occurred, but less CA was retained than via outer-sphere kaolinite-CA complexation. This study highlighted the significant impact of varied Fe/CA molar ratios on CA retention mechanisms in kaolinite-Fe(III)-CA systems under acidic conditions, and clearly showed the important contribution of Fe-bridged ternary complexation on CA retention. In conclusion, these findings will enhance our understanding of the dynamics of CA and other LMWOAs in tropical soils.« less
Mohandes, Fatemeh; Salavati-Niasari, Masoud
2014-07-01
In this work, hydroxyapatite (HAP), Ca10(PO4)6(OH)2, nanostructures including nanorods, nanobundles and nanoparticles have been prepared via a simple precipitation method. In the present method, Ca(NO3)2·4H2O and (NH4)2HPO4 were used as calcium and phosphorus precursors, respectively. Besides, the Schiff bases derived from 2-hydroxyacetophenone and different diamines were used as complexing agents for the in situ formation of Ca(2+) complexes. The formation mechanism of 0-D and 1-D nanostructures of HAP was also considered. When the complexing agents could coordinate to the Ca(2+) ions through N and O atoms to form the [CaN2O2](2+) complexes, HAP nanoparticles were generated. On the other hand, nanorods and nanobundles of HAP were obtained by forming the [CaN2](2+) as well as [CaO2](2+) complexes in the reaction solution. This work is the first successful synthesis of pure HAP nanostructures in the presence of Schiff bases instead of using the common surfactants. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ebata, T.; Shimada, D.; Kusaka, R.; Inokuchi, Y.; Ehara, M.
2012-06-01
The lifetimes of methyl 4-hydroxycinnamate (OMpCA) and its mono-hydrated complex (OMpCA-H_2O) in the S_1 state have been measured by picosecond pump-probe spectroscopy in a supersonic beam. For OMpCA, the lifetime of the S_1 - S_0 origin is 8 - 9 ps. On the other hand, the lifetime of OMpCA-H_2O complex at the origin is 930 ps, which is 100 times longer than that. Furthermore, in the complex the S_1 lifetime shows rapid decrease at an energy of 200 cm-1 above the origin and becomes as short as 9 ps at 500 cm-1. Theoretical calculations with symmetry-adapted cluster-configuration interaction (SAC-CI) method suggest that in OMpCA, the trans - cis isomerization occurs smoothly without a barrier on the S_1surface, while in OMpCA-H_2O complex, there exists a barrier along the isomerization coordinate. The calculated barrier height of OMpCA-H_2O is in good agreement with that estimated from the lifetime measurements.
Assembly and Properties of Heterobimetallic CoII/III/CaII Complexes with Aquo and Hydroxo Ligands
Lacy, David C.; Park, Young Jun; Ziller, Joseph W.; Yano, Junko; Borovik, A. S.
2012-01-01
The use of water as a reagent in redox-driven reactions is advantageous because it is abundant and environmentally compatible. The conversion of water to dioxygen in photosynthesis illustrates one example, in which a redox-inactive CaII ion and four manganese ions are required for function. In this report we describe the stepwise formation of two new heterobimetallic complexes containing CoII/III and CaII ions, and either hydroxo or aquo ligands. The preparation of a 4-coordinate CoII synthon was achieved with the tripodal ligand, N,N′,N″-[2,2′,2″-nitrilotris(ethane-2,1-diyl)]tris(2,4,6-trimethylbenzenesulfonamido, [MST]3−. Water binds to [CoIIMST]− to form the 5-coordinate [CoIIMST(OH2)]− complex that was used to prepare the CoII/CaII complex [CoIIMST(μ-OH2)CaII⊂15-crown-5(OH2)]+ ([CoII(μ-OH2)CaIIOH2]+). [CoII(μ-OH2)CaOH2]+ contained two aquo ligands, one bonded to the CaII ion and one bridging between the two metal ions and thus represents an unusual example of a heterobimetallic complex containing 2 aquo ligands spanning different metal ions. Both aquo ligands formed intramolecular hydrogen bonds with the [MST]3− ligand. [CoIIMST(OH2)]− was oxidized to form [CoIIIMST(OH2)] that was further converted to [CoIIIMST(μ-OH)CaII⊂15-crown-5]+ ([CoIII(μ-OH)CaII]+) in the presence of base and CaIIOTf2/15-crown-5. [CoIII(μ-OH)CaII]+ was also synthesized from the oxidation of [CoIIMST]− with PhIO in the presence of CaIIOTf2/15-crown-5. Allowing [CoIII(μ-OH)CaII]+ to react with diphenylhydrazine afforded [CoII(μ-OH2)CaIIOH2]+ and azobenzene. Additionally, the characterization of [CoIII(μ-OH)CaII]+ provides another formulation for the previously reported CoIV–oxo complex, [(TMG3tren)CoIV(μ-O)ScIII(OTf)3]2+ to one that instead could contain a CoIII–OH unit. PMID:22998407
Holbrook, W.S.; Brocher, T.M.; ten Brink, Uri S.; Hole, J.A.
1996-01-01
Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Goltz, A. E.; Hoover, W. F.; Page, F. Z.; Moreira, H.; Storey, C.; Kitajima, K.; Valley, J. W.
2017-12-01
Mélange fluids play a vital role in metamorphic processes; however, because of the complexity of the mélange, the fluid signals are hard to isolate. Microanalysis of Heavy Rare Earth Elements (HREE) in garnet has the potential to be a powerful tool in understanding the nature of these fluids. When coupled to oxygen isotope analysis, HREE signals may be attributed to an internal or external fluid source. This study pairs microanalysis of HREE and oxygen isotopes in garnet to reveal the origin of HREE enrichment events in two rocks (02WC1 and 02WC4) from the Ward Creek area of the Franciscan Complex. 02WC1 is an intergrown epidote-blueschist and eclogite, with the assemblage omph + ep + glc + gt + sph ± rt ± ab. Its whole-rock major element composition is similar to altered oceanic crust. Two generations of epidote are evident: the first Mn-rich, the other Mn-poor. Garnets have prograde zoning profiles with high spessartine contents ( 40%) in their cores, are unzoned in oxygen isotopes from core (9.6±0.4‰, 2SD, VSMOW) to rim (9.8±0.4‰), and have HREE peaks in their mantles. 02WC4 is also banded with zones of differing epidote content and overall assemblage ep + gt + hbl + omph + sph ± phg ± chl. The whole rock composition of 02WC4 is unusual; it is broadly basaltic but is also SiO2 poor (41.95%) and Cr and Ni rich (675 and 182 ppm, respectively). Epidote shows two generations with higher (cores) and lower (rims) Mn content. Garnet cores are high in spessartine ( 50%), and some garnet mantles have pronounced Mn and Fe plateaux. Garnets are zoned in oxygen isotopes from core (10.2±0.6‰) to rim (6.9±0.4‰). There is one HREE peak in the mantle, coincident with high values of δ18O and one in the rims corresponding to lower values of δ18O. The HREE peaks that occur in high δ18O areas throughout 02WC1 and 02WC4 are likely internally derived within the sample. Mn annuli in garnets and dissolution textures in epidote cores implicate epidote dehydration as the cause of HREE transfer in this case. On the other hand, HREE peaks in lower δ18O regimes are probably externally derived. In addition to δ18O and HREE zoning in the rims of garnets, the enrichment of Cr and Ni and depletion of SiO2 suggest a late-stage mantle metasomatic event in the rock. Correlated HREE and δ18O analysis in garnet provides a powerful new technique to unravel complicated fluid histories in rocks.
Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.
2013-01-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726
Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2013-02-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.
NASA Astrophysics Data System (ADS)
Prabu, Samikannu; Swaminathan, Meenakshisundaram; Sivakumar, Krishnamoorthy; Rajamohan, Rajaram
2015-11-01
The formation through supramolecular interaction of a host-guest inclusion complex of caffeine (CA) with nano-hydrophobic cavity beta-cyclodextrin (β-CD) is achieved by a physical mixture, a kneading method and a co-precipitation method. The formation of the inclusion complex of CA with β-CD in solution state is confirmed by UV-visible spectrophotometer, fluorescence spectrophotometer and time-resolved fluorescence spectrophotometer. The stoichiometry of the inclusion complex is 1:1; the imidazole ring and pyrimidine ring of caffeine is deeply entrapped in the beta-cyclodextrin as confirmed by spectral shifts. The Benesi-Hildebrand plot is used to calculate the binding constant of the inclusion complex of CA with β-CD at room temperature. The Gibbs free energy change of the inclusion complex process is calculated and the process is found to be spontaneous. The thermal stability of the inclusion complex of CA with β-CD is analyzed using differential scanning calorimetry. The crystal structure modification of a solid inclusion complex is confirmed by scanning electron microscopy image analysis. The formation of the inclusion complex of CA with β-CD in the solid phase is also confirmed by FT-IR and XRD. The formation of the inclusion complex between CA and β-CD, as confirmed by molecular docking studies, is in good relationship with the results obtained through different experimental methods.
First-principles molecular dynamics simulation of the Ca 2UO 2(CO 3) 3 complex in water
Priest, Chad; Tian, Ziqi; Jiang, De-en
2016-01-22
Recent experiments have shown that the neutral Ca 2UO 2(CO 3) 3 complex is the dominant species of uranium in many uranyl-containing streams. However, the structure and solvation of such a species in water has not been investigated from first principles. Herein we present a first principles molecular dynamics perspective of the Ca 2UO 2(CO 3) 3 complex in water based on density functional theory and Born–Oppenheimer approximation. We find that the Ca 2UO 2(CO 3) 3 complex is very stable in our simulation timeframe for three different concentrations considered and that the key distances from our simulation are inmore » good agreement with the experimental data from extended X-ray absorption fine structure (EXAFS) spectroscopy. More important, we find that the two Ca ions bind differently in the complex, as a result of the hydrogen-bonding network around the whole complex. Furthermore, this finding invites confirmation from time-resolved EXAFS and has implications in understanding the dissociative equilibrium of the Ca 2UO 2(CO 3) 3 complex in water.« less
NASA Astrophysics Data System (ADS)
Nikolaeva, L. S.; Semenov, A. N.
2018-02-01
The anticoagulant activity of high-molecular-weight heparin is increased by developing a new highly active heparin complex with glutamate using the thermodynamic model of chemical equilibria based on pH-metric data. The anticoagulant activity of the developed complexes is estimated in the pH range of blood plasma according to the drop in the calculated equilibrium Ca2+ concentration associated with the formation of mixed ligand complexes of Ca2+ ions, heparin (Na4hep), and glutamate (H2Glu). A thermodynamic model is calculated by mathematically modelling chemical equilibria in the CaCl2-Na4hep-H2Glu-H2O-NaCl system in the pH range of 2.30 ≤ pH ≤ 10.50 in diluted saline that acts as a background electrolyte (0.154 M NaCl) at 37°C and initial concentrations of the main components of ν × 10-3 M, where n ≤ 4. The thermodynamic model is used to determine the main complex of the monomeric unit of heparin with glutamate (HhepGlu5-) and the most stable mixed ligand complex of Ca2+ with heparin and glutamate (Ca2hepGlu2-) in the pH range of blood plasma (6.80 ≤ pH ≤ 7.40). It is concluded that the Ca2hepGlu2- complex reduces the Ca2+ concentration 107 times more than the Ca2+ complex with pure heparin. The anticoagulant effect of the developed HhepGlu5- complex is confirmed in vitro and in vivo via coagulation tests on the blood plasma of laboratory rats. Additional antithrombotic properties of the developed complex are identified. The new highly active anticoagulant, HhepGlu5- complex with additional antithrombotic properties, is patented.
Alaimo, Alysha A; Koumousi, Evangelia S; Cunha-Silva, Luís; McCormick, Laura J; Teat, Simon J; Psycharis, Vassilis; Raptopoulou, Catherine P; Mukherjee, Shreya; Li, Chaoran; Gupta, Sayak Das; Escuer, Albert; Christou, George; Stamatatos, Theocharis C
2017-09-05
One-pot reactions between the [Mn 3 O(O 2 CPh) 6 (py) x ] +/0 triangular precursors and either CaBr 2 ·xH 2 O or CaCl 2 ·6H 2 O, in the presence of salicylhydroxamic acid (shaH 2 ), have afforded the heterometallic complexes [Mn III 4 Ca 2 (O 2 CPh) 4 (shi) 4 (H 2 O) 3 (Me 2 CO)] (1) and (pyH)[Mn II 2 Mn III 4 Ca 2 Cl 2 (O 2 CPh) 7 (shi) 4 (py) 4 ] (2), respectively, in good yields. Further reactions but using a more flexible synthetic scheme comprising the Mn(NO 3 ) 2 ·4H 2 O/Ca(NO 3 ) 2 ·4H 2 O and Mn(O 2 CPh) 2 ·2H 2 O/Ca(ClO 4 ) 2 ·4H 2 O "metal blends" and shaH 2 , in the presence of external base NEt 3 , led to the new complexes (NHEt 3 ) 2 [Mn III 4 Mn IV 4 Ca(OEt) 2 (shi) 10 (EtOH) 2 ] (3) and (NHEt 3 ) 4 [Mn III 8 Ca 2 (CO 3 ) 4 (shi) 8 ] (4), respectively. In all reported compounds, the anion of the tetradentate (N,O,O,O)-chelating/bridging ligand salicylhydroxime (shi 3- ), resulting from the in situ metal-ion-assisted amide-iminol tautomerism of shaH 2 , was found to bridge both Mn and Ca atoms. Complexes 1-4 exhibit a variety of different structures, metal stoichiometries, and Mn oxidation-state descriptions; 1 possesses an overall octahedral metal arrangement, 2 can be described as a Mn 4 Ca 2 octahedron bound to an additional Mn 2 unit, 3 consists of a Mn 8 "ring" surrounding a Ca II atom, and 4 adopts a rectangular cuboidal motif of eight Mn atoms accommodating two Ca II atoms. Solid-state direct-current magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the Mn centers, leading to S = 0 spin ground-state values for all complexes. From a bioinorganic chemistry perspective, the reported compounds may demonstrate some relevance to both high-valent scheme (3) and lower-oxidation-level species (1, 2, and 4) of the catalytic cycle of the oxygen-evolving complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas-Clark, J.
1988-03-01
Paleogene strata of California commonly yield usable preserved organic material. Fossil pollen, spores, and dinoflagellates of chronostratigraphic significance are recovered from Paleogene rocks that contain no other usable fossil material. Palynofacies analysis, which combines data from fossil species with data from kerogen analysis, is used to interpret paleo-environmental aspects such as paleobathymetry, probable upwelling, turbulence, and rates of sedimentation. Examples of applications come from Paleogene submarine canyon deposits, the northern California Franciscan coastal belt, and southern California Transverse Ranges.
Targeting mechanisms of high voltage-activated Ca2+ channels.
Herlitze, Stefan; Xie, Mian; Han, Jing; Hümmer, Alexander; Melnik-Martinez, Katya V; Moreno, Rosa L; Mark, Melanie D
2003-12-01
Functional voltage-dependent Ca2+ channel complexes are assembled by three to four subunits: alpha1, beta, alpha2delta subunits (C. Leveque et al., 1994, J. Biol Chem. 269, 6306-6312; M. W. McEnery et al., 1991, Proc. Natl. Acad. Sci. U.S.A. 88, 11095-11099) and at least in muscle cells also y subunits (B. M. Curtis and W. A. Catterall, 1984, Biochemistry 23, 2113-2118). Ca2+ channels mediate the voltage-dependent Ca2+ influx in subcellular compartments, triggering such diverse processes as neurotransmitter release, dendritic action potentials, excitation-contraction, and excitation-transcription coupling. The targeting of biophysically defined Ca2+ channel complexes to the correct subcellular structures is, thus, critical to proper cell and physiological functioning. Despite their importance, surprisingly little is known about the targeting mechanisms by which Ca2+ channel complexes are transported to their site of function. Here we summarize what we know about the targeting of Ca2+ channel complexes through the cell to the plasma membrane and subcellular structures.
Complexin and Ca2+ stimulate SNARE-mediated membrane fusion
Yoon, Tae-Young; Lu, Xiaobind; Diao, Jiajie; Lee, Soo-Min; Ha, Taekjip; Shin, Yeon-Kyun
2008-01-01
Ca2+-triggered, synchronized synaptic vesicle fusion underlies interneuronal communication. Complexin is a major binding partner of the SNARE complex, the core fusion machinery at the presynapse. The physiological data on complexin, however, have been at odds with each other, making delineation of its molecular function difficult. Here we report direct observation of two-faceted functions of complexin using the single-vesicle fluorescence fusion assay and EPR. We show that complexin I has two opposing effects on trans-SNARE assembly: inhibition of SNARE complex formation and stabilization of assembled SNARE complexes. Of note, SNARE-mediated fusion is markedly stimulated by complexin, and it is further accelerated by two orders of magnitude in response to an externally applied Ca2+ wave. We suggest that SNARE complexes, complexins and phospholipids collectively form a complex substrate for Ca2+ and Ca2+-sensing fusion effectors in neurotransmitter release. PMID:18552825
Magupalli, Venkat G.; Mochida, Sumiko; Yan, Jin; Jiang, Xin; Westenbroek, Ruth E.; Nairn, Angus C.; Scheuer, Todd; Catterall, William A.
2013-01-01
Ca2+/calmodulin-dependent protein kinase II (CaMKII) forms a major component of the postsynaptic density where its functions in synaptic plasticity are well established, but its presynaptic actions are poorly defined. Here we show that CaMKII binds directly to the C-terminal domain of CaV2.1 channels. Binding is enhanced by autophosphorylation, and the kinase-channel signaling complex persists after dephosphorylation and removal of the Ca2+/CaM stimulus. Autophosphorylated CaMKII can bind the CaV2.1 channel and synapsin-1 simultaneously. CaMKII binding to CaV2.1 channels induces Ca2+-independent activity of the kinase, which phosphorylates the enzyme itself as well as the neuronal substrate synapsin-1. Facilitation and inactivation of CaV2.1 channels by binding of Ca2+/CaM mediates short term synaptic plasticity in transfected superior cervical ganglion neurons, and these regulatory effects are prevented by a competing peptide and the endogenous brain inhibitor CaMKIIN, which blocks binding of CaMKII to CaV2.1 channels. These results define the functional properties of a signaling complex of CaMKII and CaV2.1 channels in which both binding partners are persistently activated by their association, and they further suggest that this complex is important in presynaptic terminals in regulating protein phosphorylation and short term synaptic plasticity. PMID:23255606
Gaszner, B; Simor, T; Hild, G; Elgavish, G A
2001-11-01
The 23Na NMR shift-reagent complexes (Dy(PPP)2, Dy(TTHA), and Tm(DOTP)) bind stoichiometric amounts of Ca2+. Thus, in perfused rat heart systems, a supplementation of Ca2+ is required to maintain the requisite extracellular free calcium concentration ([Ca(o)]f) and to approximate a physiological level of contractile function. The amount of reagent-bound Ca2+ in a heart perfusate that contains a shift-reagent depends on: (1) Ca2+ binding by excess ligand used during the preparation of the shift-reagent; and (2) the Ca2+ binding affinity of the shift-reagent. To address point 1), we introduced a 1H and 31P NMR spectroscopic titration method to quantify directly the concentration of the excess ligand. We also used this method to minimize the amount of excess ligand (L) and thus the amount of Ca*L complex. To address point (2), we determined the stepwise Kd (microm) values of the Ca complexes of the three shift-reagents.: Dy(PPP)2, Kd=0.09, Kd2=7.9; Dy(TTHA), Kd1=10.66, Kd2=10.12; and Tm(DOTP), K(d1)=0.502, Kd2=4.98. The Kd values of the Ca complexes of the phosphonate and triphosphate based shift-reagents, Tm(DOTP) and Dy(PPP)2, respectively, are lower than those of the polyaminocarboxylate-based Dy(TTHA), indicating stronger Ca binding affinities for the former two types of complexes. We have also shown a positive correlation between [Ca(o)]f and left ventricular developed pressure (LVDP) in perfused rat hearts. Dy(TTHA) has shown no effect on LVDP v[Ca(o)]f. The LVDP values in the presence of the phosphonate and triphosphate based shift-reagents, however, were significantly higher than expected from the [Ca(o)]f levels alone. Thus a positive inotropic effect, independent of [Ca(o)]f, is evident in the presence of Tm(DOTP) or Dy(PPP)2. Copyright 2001 Academic Press.
Findeisen, Felix; Minor, Daniel L
2009-03-01
Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.
Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation
Findeisen, Felix
2009-01-01
Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker. PMID:19237593
NASA Astrophysics Data System (ADS)
Hara, Yotamu Stephen Rainford
2014-01-01
Mineral sulphide (MS)-lime (CaO) ion exchange reactions (MS + CaO = MO + CaS) and the effect of CaO/C mole ratio during carbothermic reduction (MS + CaO + C = M + CaS + CO(g)) were investigated for complex froth flotation mineral sulphide concentrates. Phases in the partially and fully reacted samples were characterised by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The primary phases during mineral sulphide-lime ion exchange reactions are Fe3O4, CaSO4 Cu2S, and CaS. A complex liquid phase of Ca2CuFeO3S forms during mineral sulphide-lime exchange reactions above 1173 K. The formation mechanisms of Ca2CuFeO3S liquid phase are determined by characterising the partially reacted samples. The reduction rate and extent of mineral sulphides in the presence of CaO and C increase with the increase in CaO/C ratio. The metallic phases are surrounded by the CaS rich phase at CaO/C > 1, but the metallic phases and CaS are found as separate phases at CaO/C < 1. Experimental results show that the stoichiometric ratio of carbon should be slightly higher than that of CaO. The reactions between CaO and gangue minerals (SiO2 and Al2O3) are only observed at CaO/C > 1 and the reacted samples are excessively sintered.
Hydrocarbon-soluble calcium hydride: a "worker-bee" in calcium chemistry.
Spielmann, Jan; Harder, Sjoerd
2007-01-01
The reactivity of the hydrocarbon-soluble calcium hydride complex [{CaH(dipp-nacnac)(thf)}(2)] (1; dipp-nacnac=CH{(CMe)(2,6-iPr(2)C(6)H(3)N)}(2)) with a large variety of substrates has been investigated. Addition of 1 to C=O and C=N functionalities gave easy access to calcium alkoxide and amide complexes. Similarly, reduction of the C[triple chemical bond]N bond in a cyanide or an isocyanide resulted in the first calcium aldimide complexes [Ca{N=C(H)R}(dipp-nacnac)] and [Ca{C(H)=NR}(dipp-nacnac)], respectively. Complexation of 1 with borane or alane Lewis acids gave the borates and alanates as contact ion pairs. In reaction with epoxides, nucleophilic ring-opening is observed as the major reaction. The high reactivity of hydrocarbon-soluble 1 with most functional groups contrasts strongly with that of insoluble CaH(2), which is essentially inert and is used as a common drying agent. Crystal structures of the following products are presented: [{Ca{OC(H)Ph(2)}(dipp-nacnac)}(2)], [{Ca{N=C(H)Ph}(dipp-nacnac)}(2)], [{Ca{C(H)=NC(Me)(2)CH(2)C(Me)(3)}(dipp-nacnac)}(2)], [{Ca{C(H)=NCy}(dipp-nacnac)}(2)], [Ca(dipp-nacnac)(thf)](+)[H(2)BC(8)H(14)](-) and [{Ca(OCy)(dipp-nacnac)}(2)]. The generally smooth and clean conversions of 1 with a variety of substrates and the stability of most intermediates against ligand exchange make 1 a valuable key precursor in the syntheses of a wide variety of beta-diketiminate calcium complexes.
Shimada, Daiki; Kusaka, Ryoji; Inokuchi, Yoshiya; Ehara, Masahiro; Ebata, Takayuki
2012-07-07
The lifetimes of methyl 4-hydroxycinnamate (OMpCA) and its mono-hydrated complex (OMpCA-H(2)O) in the S(1) state have been measured by picosecond pump-probe spectroscopy in a supersonic beam. For OMpCA, the lifetime of the S(1)-S(0) origin is 8-9 ps. On the other hand, the lifetime of the OMpCA-H(2)O complex at the origin is 930 ps, which is ∼100 times longer than that of OMpCA. Furthermore, in the complex the S(1) lifetime shows rapid decrease at an energy of ∼200 cm(-1) above the origin and finally becomes as short as 9 ps at ∼500 cm(-1). Theoretical calculations with a symmetry-adapted cluster-configuration interaction (SAC-CI) method suggest that the observed lifetime behavior of the two species is described by nonradiative decay dynamics involving trans → cis isomerization. That is both OMpCA and OMpCA-H(2)O in the S(1) state decay due to the trans → cis isomerization, and the large difference of the lifetimes between them is due to the difference of the isomerization potential energy curve. In OMpCA, the trans → cis isomerization occurs smoothly without a barrier on the S(1) surface, while in the OMpCA-H(2)O complex, there exists a barrier along the isomerization coordinate. The calculated barrier height of OMpCA-H(2)O is in good agreement with that observed experimentally.
Structure and reactivity of ferrihydrite-soil organic carbon-calcium ternary complexes
NASA Astrophysics Data System (ADS)
Yang, Y.; Adhikari, D.; Sowers, T.; Stuckey, J.; Poulson, S.; Sparks, D. L.
2017-12-01
Complete understanding about the interactions between soil organic carbon (SOC) and minerals is important for predicting the stability of SOC and its response to climate change. Recent studies have shown the importance of calcium (Ca)-bearing minerals and iron (Fe) oxide in associating with and stabilizing SOC. In this study, we have investigated the formation and reactivity of ferrihydrite-SOC-Ca ternary complexes. During the co-precipitation of ferrihydrite with SOC in the presence of Ca2+, 60% of SOC can be co-precipitated with ferrihydrite at a C/Fe (molar ratio) of up to 10, whereas the Ca/Fe ratio was saturated at 0.2. Increasing amount of Ca2+ did not affect the co-precipitation of SOC with ferrihydrite or the lability of ferrihydrite-bound SOC. In addition, microbial reduction of ferrihydrite and reductive release of ferrihydrite-bound SOC were not influenced by the presence of Ca, but the pathway for Fe mineral transformation during the reduction was affected by Ca. In the meantime, Fe reduction selectively released carboxylic-enriched SOC. As a comparison, the presence of SOC increased the incorporation of Ca into the structure of ferrihydrite. Our results indicate the formation of ferrihydrite-SOC-Ca complexes, with organic carbon bridging the ferrihydrite and Ca. Such ternary complexes potentially play an important role in regulating the interactions between SOC and mineral phases in soil.
NASA Astrophysics Data System (ADS)
Muñoz Noval, Álvaro; Nishio, Daisuke; Kuruma, Takuya; Hayakawa, Shinjiro
2018-06-01
The determination of the structure of Ca(II)-acetate in aqueous solution has been addressed by combining Raman and X-ray absorption fine structure spectroscopies. The pH-dependent speciation of the acetate/Ca(II) system has been studied observing modifications in specific Raman bands of the carboxyl group. The current results evidence the Ca(II)-acetate above acetate pKa forms a bidentate complex and presents a coordination 6, in which the Ca-O shell radius decrease of about 0.1 Å with respect the hydrated Ca2+ with coordination 8. The experimental results show the OCO angle of the carboxyl in the complex is close to 124°, being the OCaO angle about 60°.
Lau, Sze-Yi; Procko, Erik
2012-01-01
Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca2+–CaM) in complex with the TRPV1-CT segment, determined to 1.95-Å resolution. The two lobes of Ca2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca2+–CaM, respectively. This structure is similar to canonical Ca2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms. PMID:23109716
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lau, Sze-Yi; Procko, Erik; Gaudet, Rachelle
2012-11-01
Transient receptor potential (TRP) vanilloid 1 (TRPV1) is a molecular pain receptor belonging to the TRP superfamily of nonselective cation channels. As a polymodal receptor, TRPV1 responds to heat and a wide range of chemical stimuli. The influx of calcium after channel activation serves as a negative feedback mechanism leading to TRPV1 desensitization. The cellular calcium sensor calmodulin (CaM) likely participates in the desensitization of TRPV1. Two CaM-binding sites are identified in TRPV1: the N-terminal ankyrin repeat domain (ARD) and a short distal C-terminal (CT) segment. Here, we present the crystal structure of calcium-bound CaM (Ca 2+–CaM) in complex withmore » the TRPV1-CT segment, determined to 1.95-Å resolution. The two lobes of Ca 2+–CaM wrap around a helical TRPV1-CT segment in an antiparallel orientation, and two hydrophobic anchors, W787 and L796, contact the C-lobe and N-lobe of Ca 2+–CaM, respectively. This structure is similar to canonical Ca 2+–CaM-peptide complexes, although TRPV1 contains no classical CaM recognition sequence motif. Using structural and mutational studies, we established the TRPV1 C terminus as a high affinity Ca 2+–CaM-binding site in both the isolated TRPV1 C terminus and in full-length TRPV1. Although a ternary complex of CaM, TRPV1-ARD, and TRPV1-CT had previously been postulated, we found no biochemical evidence of such a complex. In electrophysiology studies, mutation of the Ca 2+–CaM-binding site on TRPV1-ARD abolished desensitization in response to repeated application of capsaicin, whereas mutation of the Ca 2+–CaM-binding site in TRPV1-CT led to a more subtle phenotype of slowed and reduced TRPV1 desensitization. In summary, our results show that the TRPV1-ARD is an important mediator of TRPV1 desensitization, whereas TRPV1-CT has higher affinity for CaM and is likely involved in separate regulatory mechanisms.« less
Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes
NASA Astrophysics Data System (ADS)
Jouaville, Laurence S.; Ichas, François; Holmuhamedov, Ekhson L.; Camacho, Patricia; Lechleiter, James D.
1995-10-01
INXenopus oocytes, as well as other cells, inositol-l,4,5-tris-phosphate (Ins(l,4,5)P3)-induced Ca2+ release1-4 is an excitable process that generates propagating Ca2+ waves5-7 that annihilate upon collision8-12. The fundamental property responsible for excitability13 appears to be the Ca2+ dependency of the Ins(l,4,5)P3 receptor9. Here we report that Ins(l,4,5)P3-induced Ca2+ wave activity is strengthened by oxidizable substrates that energize mitochondria, increasing Ca2+ wave amplitude, velocity and interwave period. The effects of pyruvate/malate are blocked by ruthenium red at the Ca2+ uniporter, by rotenone at complex I, and by antimycin A at complex III, and are subsequently rescued at complex IV by ascorbate tetramethylphenylenediamine (TMPD)14. Our data reveal that potential-driven mitochondrial Ca2+ uptake is a major factor in the regulation of Ins(l,4,5)P3-induced Ca2+ release and clearly demonstrate a physiological role of mitochondria in intracellular Ca2+ signalling.
Lindsay, Daniel P.; Camara, Amadou K. S.; Stowe, David F.; Lubbe, Ryan; Aldakkak, Mohammed
2015-01-01
Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III. PMID:25805998
Chemical fluxes and origin of a manganese carbonate-oxide-silicate deposit in bedded chert
Huebner, J.S.; Flohr, M.J.K.; Grossman, J.N.
1992-01-01
Lens-like rhodochrosite-rich bodies within interbedded chert and shale are associated with basalt and/or graywacke in ophiolitic and orogenic zones. The Buckeye manganese mine in the Franciscan Complex of the California Coast Ranges is associated with metagraywacke. Despite blueschist-facies metamorphism, this deposit preserves the compositions and some textural features of its sedimentary protoliths. For this reason, it is a suitable deposit with which to compare more intensely altered deposits, or deposits originating in different paleoenvironments. Six Mn-rich and three Mn-poor minerals form monomineralic layers and mixtures: rhodochrosite, gageite, Mn-oxides (hausmannite, braunite), divalent Mn-silicates (caryopilite, taneyamalite), chlorite, quartz (metachert) and aegirine-augite. The Mn-rich protoliths have high Mn/Fe combined with relatively low concentrations of Ca, Al, Ti, Co, Ni, Cu, Th and REE. REE patterns of various protoliths are distinct. Rhodochrosite and gageite layers are depleted (seawater ?? 5 ?? 104) and flat, whereas patterns of metachert and the Mn-silicate-rich layers mimic the patterns of metashale and metagraywacke (seawater ?? 106). Hausmannite layers have flat patterns (seawater ?? 7 ?? 104) whereas braunite-rich layers are more enriched (seawater ?? 2 ?? 105) and show a distinct positive Ce anomaly. Factor analysis reveals components and fluxes attributed to sub-seafloor fluids (Ni, As, Zn, Sb, W, Mn), seawater (Mg, Au, V, Mo), detritus and veins (Ca, Ba, Sr). Silica is negatively correlated with the sub-seafloor factor. The observed variances indicate that water from the sediment column mixed with seawater, that deposition occurred near the sediment-seawater interface before mixtures of subsurface fluid and seawater homogenized, and that the system was not entirely closed during metamorphism. The variations in REE enrichment can be related to kinetics of deposition: rhodochrosite and gageite were precipitated most rapidly, and therefore were the protoliths that most effectively diluted the REE-rich background resulting from fine clastic material (derived from distal turbidites). The variation of the Ce anomaly and U/Th among diverse lithologies and the differences in Mn oxidation states are consistent with progressive dilution of reduced subsurface fluids with oxidized seawater. By this scheme, rhodochrosite, gageite and hausmannite were deposited from the most reduced fluids, braunite from intermediate mixtures, and Mn-silicates from the sub-seafloor fluids most diluted with fresh seawater. Comparison of the Buckeye with other lens-like and sheet-like deposits having high Mn/Fe and containing Mn3+ and/or Mn2+ suggests that each had three essential fluxes: a sub-seafloor source of Mn, a local source of very soluble silica and a source of relatively fresh, oxygenated water. Additional fluxes, such as clastics, appear to be more characteristic of the paleoenvironment than the three essential fluxes. ?? 1992.
McPhee, D.K.; Langenheim, V.E.; Watt, J.T.
2011-01-01
This isostatic residual gravity map is part of an effort to map the three-dimensional distribution of rocks in the central California Coast Ranges and will serve as a basis for modeling the shape of basins and for determining the location and geometry of faults within the Paso Robles quadrangle. Local spatial variations in the Earth\\'s gravity field, after accounting for variations caused by elevation, terrain, and deep crustal structure reflect the distribution of densities in the mid- to upper crust. Densities often can be related to rock type, and abrupt spatial changes in density commonly mark lithological or structural boundaries. High-density rocks exposed within the central Coast Ranges include Mesozoic granitic rocks (exposed northwest of Paso Robles), Jurassic to Cretaceous marine strata of the Great Valley Sequence (exposed primarily northeast of the San Andreas fault), and Mesozoic sedimentary and volcanic rocks of the Franciscan Complex [exposed in the Santa Lucia Range and northeast of the San Andreas fault (SAF) near Parkfield, California]. Alluvial sediments and Tertiary sedimentary rocks are characterized by low densities; however, with increasing depth of burial and age, the densities of these rocks may become indistinguishable from those of older basement rocks.
Armstrong, Craig T; Anderson, J L Ross; Denton, Richard M
2014-04-15
The regulation of the 2-oxoglutarate dehydrogenase complex is central to intramitochondrial energy metabolism. In the present study, the active full-length E1 subunit of the human complex has been expressed and shown to be regulated by Ca2+, adenine nucleotides and NADH, with NADH exerting a major influence on the K0.5 value for Ca2+. We investigated two potential Ca2+-binding sites on E1, which we term site 1 (D114ADLD) and site 2 (E139SDLD). Comparison of sequences from vertebrates with those from Ca2+-insensitive non-vertebrate complexes suggest that site 1 may be the more important. Consistent with this view, a mutated form of E1, D114A, shows a 6-fold decrease in sensitivity for Ca2+, whereas variant ∆site1 (in which the sequence of site 1 is replaced by A114AALA) exhibits an almost complete loss of Ca2+ activation. Variant ∆site2 (in which the sequence is replaced with A139SALA) shows no measurable change in Ca2+ sensitivity. We conclude that site 1, but not site 2, forms part of a regulatory Ca2+-binding site, which is distinct from other previously described Ca2+-binding sites.
Los Angeles-Long Beach Harbor Areas Regional Cultural History, Los Angeles County, California,
1978-04-01
which they named islands, such as Mormon Island. The Los ’ Bahia de los Fumos’ on Angeles River, when discovered by the account of the many smokes...value because of its Fermin Francisco de Lasuen, "padre historically valuable fittings of museum quality. presidente" of the Franciscan missions. This...BUREAU OF STANDARDS-1963-k -4 L L LOS ANOELES BEC ABOR AREAS REIONAL GULTAL ISonY 2 Los Angels County, California AD-A144 450 "I~~~ -1lroe its ’ c*1 rpi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gourinath, S., E-mail: sgourinath@mail.jnu.ac.in; Padhan, Narendra; Alam, Neelima
2005-04-01
Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca{sup 2+}-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown usingmore » MPD as a precipitant. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 Å, β = 116.7°. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 Å, β = 92.8°. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 Å, β = 97.9°.« less
Coral reef complexes at an atypical windward platform margin: Late Quaternary, southeast Florida
Lidz, B.H.
2004-01-01
Major coral reef complexes rim many modern and ancient carbonate platforms. Their role in margin evolution is not fully understood, particularly when they border a margin atypical of the classic model. Classic windward margins are steeply inclined. The windward margin of southeast Florida is distinct with a very low-gradient slope and a shelf edge ringed with 30-m-high Quaternary outlier reefs on a shallow upper-slope terrace. A newly developed synthesis of temporally well-constrained geologic events is used with surface and subsurface seismic-reflection contours to construct morphogenetic models of four discontinuous reef-complex sequences. The models show uneven subsurface topography, upward and landward buildups, and a previously unreported, rapid, Holocene progradation. The terms backstepped reef-complex margin, backfilled prograded margin, and coalesced reef-complex margin are proposed for sections exhibiting suitable signatures in the stratigraphic record. The models have significant implications for interpretation of ancient analogues. The Florida record chronicles four kinds of geologic events. (1) Thirteen transgressions high enough for marine deposition occurred between ca. 325 ka and the present. Six gave rise to stratigraphically successive coral reef complexes between ca. 185 and ca. 77.8 ka. The seventh reef ecosystem is Holocene. (2) Two primary coral reef architectures built the outer shelf and margin, producing respective ridge-and-swale and reef-and-trough geometries of very different scales. (3) Massive outlier reefs developed on an upper-slope terrace between ca. 106.5 and ca. 80 ka and are inferred to contain corals that would date to highstands at ca. 140 and 125 ka. (4) Sea level remained below elevation of the shelf between ca. 77.8 and ca. 9.6 ka. ?? 2004 Geological Society of America.
Detection of Labile Low-Molecular-Mass Transition Metal Complexes in Mitochondria
McCormick, Sean P.; Moore, Michael J.; Lindahl, Paul A.
2015-01-01
Liquid chromatography was used with an on-line inductively coupled plasma mass spectrometer to detect low-molecular-mass (LMM) transition metal complexes in mitochondria isolated from fermenting yeast cells, human Jurkat cells, and mouse brain and liver. These complexes constituted 20 – 40% of total mitochondrial Mn, Fe, Zn, and Cu ions. The major LMM Mn complex in yeast mitochondria had a mass of ca. 1100 Da and a concentration of ~ 2 μM. Mammalian mitochondria contained a second Mn species with a mass of ca. 2000 Da at a comparable concentration. The major Fe complex in mitochondria isolated from exponentially growing yeast cells had a mass of ca. 580 Da; the concentration of Fe580 in mitochondria was ca. 100 μM. When mitochondria were isolated from fermenting cells in post-exponential phase, the mass of the dominant LMM Fe complex was ca. 1100 Da. Upon incubation, the intensity of Fe1100 declined and Fe580 increased, suggesting that the two are interrelated. Mammalian mitochondria contained Fe580 and 2 other Fe species (Fe2000 and Fe1100) at concentrations of ca. 50 μM each. The dominant LMM Zn species in mitochondria had a mass of ca. 1200 Da and a concentration of ca. 110 μM. Mammalian mitochondria contained a second major LMM Zn species at 1500 Da. The dominant LMM Cu species in yeast mitochondria had a mass of ca. 5000 Da and a concentration in yeast mitochondria of ca. 16 μM; Cu5000 was not observed in mammalian mitochondria. The dominant Co species in mitochondria, Co1200, had a concentration of 20 nM and was probably a cobalamin. Mammalian but not yeast mitochondria contained a LMM Mo species, Mo730, at ca. 1 μM concentration. Increasing Mn, Fe, Cu, and Zn concentrations 10 fold in the medium increased the concentration of the same element in the corresponding isolated mitochondria. Treatment with metal chelators confirmed that these LMM species were labile. The dominant S species at 1100 Da was not free GSH or GSSG. PMID:26018429
Hunter, J Craig; Machikas, Alexandra M; Korzick, Donna H
2012-06-01
Cardiovascular disease mortality increases rapidly after menopause by poorly defined mechanisms. Because mitochondrial function and Ca(2+) sensitivity are important regulators of cell death after myocardial ischemia, we sought to determine whether aging and/or estrogen deficiency (ovariectomy) increased mitochondrial Ca(2+) sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6 months; n = 26) and aged (24 months; n = 25), intact or ovariectomized female rats using the substrates α-ketoglutarate/malate (complex I); succinate/rotenone (complex II); ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/antimycin (complex IV). State 2 and 3 respiration was initiated by sequential addition of mitochondria and adenosine diphosphate. Ca(2+) sensitivity was assessed by Ca(2+)-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered intraperitoneally 45 minutes before euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. Aging decreased the respiratory control index (RCI; state 3/state 2) for complexes I and II by 12% and 8%, respectively, independent of ovary status (P < 0.05). Of interest, Ca(2+) induced a greater decrease (18%-30%; P < 0.05) in complex I state 3 respiration in aged and ovariectomized animals, and mitochondrial swelling occurred twice as quickly in aged (vs adult) female rats (P < 0.05). Pretreatment with PPT increased RCI by 8% and 7% at complexes I and II, respectively (P < 0.05) but surprisingly increased Ca(2+) sensitivity. Age-dependent decreases in RCI and sensitization to Ca(2+) may explain in part the age-associated reductions in female ischemic tolerance; however, protection afforded by ER agonism involves more complex mechanisms. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.
Hunter, J. Craig; Machikas, Alexandra M.; Korzick, Donna H.
2012-01-01
Cardiovascular disease mortality increases rapidly following menopause by poorly defined mechanisms. Since mitochondrial function and Ca2+ sensitivity are important regulators of cell death following myocardial ischemia, we sought to determine if aging and/or estrogen deficiency (ovx) increased mitochondrial Ca2+ sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6mo; n=26) and aged (24mo; n=25), intact or ovariectomized female rats using the substrates: α-ketoglutarate/malate (Complex I); succinate/rotenone (Complex II); ascorbate/TMPD/Antimycin (Complex IV). State 2 and State 3 respiration was initiated by sequential addition of mitochondria and ADP. Ca2+ sensitivity was assessed by Ca2+-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered i.p. 45 min prior to euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. Aging decreased the respiratory control index (RCI; state 3/state 2) for Complexes I and II by 12% and 8%, respectively, independent of ovary status (p<0.05). Of interest, Ca2+ induced a greater decrease (18–30%; p<0.05) in Complex I state 3 respiration in aged and ovx animals, and mitochondrial swelling occurred twice as quickly in aged (vs. adult) female rats (p<0.05). Pretreatment with PPT increased RCI by 8% and 7% at Complexes I and II, respectively (p<0.05) but surprisingly increased Ca2+ sensitivity. Age-dependent decreases in RCI and sensitization to Ca2+ may explain in part the age-associated reductions in female ischemic tolerance; however protection afforded by ER agonism involves more complex mechanisms. PMID:22555015
NASA Astrophysics Data System (ADS)
Pallagi, A.; Dudás, Cs.; Csendes, Z.; Forgó, P.; Pálinkó, I.; Sipos, P.
2011-05-01
Ca 2+-complexation of D-glucose and D-sorbitol have been investigated with the aid of multinuclear ( 1H, 13C and 43Ca) NMR spectroscopy and ab initio quantum chemical calculations. Formation constants of the forming 1:1 complexes have been estimated from one-dimensional 13C NMR spectra obtained at constant ionic strength (1 M NaCl). Binding sites were identified from 2D 1H- 43Ca NMR spectra. 2D NMR measurements and ab initio calculations indicated that Ca 2+ ions were bound in a tridentate manner via the glycosidic OH, the ethereal oxygen in the ring and the OH on the terminal carbon for the α- and β-anomers of glucose and for sorbitol simultaneous binding of four hydroxide moieties (C1, C2, C4 and C6) was suggested.
NASA Astrophysics Data System (ADS)
Bebout, Gray E.
The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.
Liu, Yanshun; Zheng, Xunhai; Mueller, Geoffrey A.; Sobhany, Mack; DeRose, Eugene F.; Zhang, Yingpei; London, Robert E.; Birnbaumer, Lutz
2012-01-01
Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca2+-depletion sensor STIM1. This is followed by a fast Ca2+·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp76 of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1. PMID:23109337
He, Xi; Bi, Xue-Yuan; Lu, Xing-Zhu; Zhao, Ming; Yu, Xiao-Jiang; Sun, Lei; Xu, Man; Wier, W Gil; Zang, Wei-Jin
2015-07-01
We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R. Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates both intracellular and mitochondrial Ca(2+) overload and protects endothelial cells from H/R injury, presumably by disrupting the ER-mitochondria interaction. © 2015 American Heart Association, Inc.
Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing
2016-01-01
With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-22
... Impact Statement for the Silver Strand Training Complex, San Diego, CA; Correction AGENCY: Department of... Impact Statement for the Silver Strand Training Complex, San Diego, CA. The document contained incorrect.... Kent Randall, SSTC EIS Project Manager, 1220 Pacific Highway, Building 1, 5th Floor, San Diego, CA...
Lawlis, V B; Roche, T E
1981-04-28
Regulation of bovine kidney alpha-ketoglutarate dehydrogenase complex by energy-linked metabolites was investigated. Ca2+, ADP, or inorganic phosphate markedly enhanced the activity of the complex, and ATP or, to a lesser extent, GTP decreased the activity of the complex. Initial velocity studies with alpha-ketoglutarate as the varied substrate demonstrated that these modulators induced large changes in S0.5 for alpha-ketoglutarate (based on analysis in Hill plots) with no change in the maximum velocity (as determined by double-reciprocal plots). For all conditions studied, the Hill coefficients were significantly less than 1.0 with slopes that were linear over wide ranges of alpha-ketoglutarate concentrations, indicating negative cooperativity that probably resulted from multiple site-site interactions. Ca2+ (maintained at 10 muM by a Ca2+ buffer) decreased the S0.5 for alpha-ketoglutarate 63-fold (from 25 to 0.40 mM); even in the presence of a positive effector, ADP or phosphate, Ca2+ decreased the S0.5 for alpha-ketoglutarate 7.8- or 28-fold, respectively. Consistent with a mechanism of action dependent of Ca2+, ADP (1.60 mM) or phosphate (20 mM) reduced the S0.5 for alpha-ketoglutarate in the presence of Ca2+ (i.e., 4.5- or 1.67-fold, respectively); however, these effectors elicited larger decreases in S0.5 in the absence of Ca2+ (i.e., 37- or 3.7-fold, respectively). ATP (1.6 mM) increased the S0.5 for alpha-ketoglutarate, and Ca2+ appreciably reduced the effect, lowering the S0.5 98-fold from 66 to 0.67 mM. Thus the activity of the kidney alpha-ketoglutarate dehydrogenase complex is poised to increase as the energy potential in mitochondria declines, and Ca2+ has a pronounced modulatory effect. Comparative studies on bovine heart alpha-ketoglutarate dehydrogenase complex and the effects of varying the ADP/ATP ratio in the presence or absence of Ca2+ or phosphate are also described.
Slaughter, Brian D.; Bieber Urbauer, Ramona J.; Urbauer, Jeffrey L.; Johnson, Carey K.
2008-01-01
Calmodulin (CaM) binds to a domain near the C-terminus of the plasma-membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide (C28W(1b)) corresponding to the CaM binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or on the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism where an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the lower effectiveness of oxidized CaM in activating the Ca2+ pump. PMID:17343368
Cytotoxicity of Titanate-Calcium Complexes to MC3T3 Osteoblast-Like Cells
Chen, Yen-Wei; Drury, Jeanie L.; Moussi, Joelle; ...
2016-11-30
Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue ® assay was employed tomore » assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.« less
Cytotoxicity of Titanate-Calcium Complexes to MC3T3 Osteoblast-Like Cells
Drury, Jeanie L.; Moussi, Joelle; Taylor-Pashow, Kathryn M. L.
2016-01-01
Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue® assay was employed to assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes. PMID:28044136
Jachens, R.C.; Zoback, M.L.
1999-01-01
Recently acquired high-resolution aeromagnetic data delineate offset and/or truncated magnetic rock bodies of the Franciscan Complex that define the location and structure of, and total offset across, the San Andreas fault in the San Francisco Bay region. Two distinctive magnetic anomalies caused by ultramafic rocks and metabasalts east of, and truncated at, the San Andreas fault have clear counterparts west of the fault that indicate a total right-lateral offset of only 22 km on the Peninsula segment, the active strand that ruptured in 1906. The location of the Peninsula segment is well defined magnetically on the northern peninsula where it goes offshore, and can be traced along strike an additional ~6 km to the northwest. Just offshore from Lake Merced, the inferred fault trace steps right (northeast) 3 km onto a nearly parallel strand that can be traced magnetically northwest more than 20 km as the linear northeast edge of a magnetic block bounded by the San Andreas fault, the Pilarcitos fault, and the San Gregorio-Hosgri fault zone. This right-stepping strand, the Golden Gate segment, joins the eastern mapped trace of the San Andreas fault at Bolinas Lagoon and projects back onshore to the southeast near Lake Merced. Inversion of detailed gravity data on the San Francisco Peninsula reveals a 3 km wide basin situated between the two strands of the San Andreas fault, floored by Franciscan basement and filled with Plio-Quaternary sedimentary deposits of the Merced and Colma formations. The basin, ~1 km deep at the coast, narrows and becomes thinner to the southeast along the fault over a distance of ~12 km. The length, width, and location of the basin between the two strands are consistent with a pull-apart basin formed behind the right step in the right-lateral strike-slip San Andreas fault system and currently moving southeast with the North American plate. Slight nonparallelism of the two strands bounding the basin (implying a small component of convergence with continued strike-slip movement) may explain the progressive narrowing of the basin to the southeast and the puzzling recent uplift of the Merced Formation in a predominantly extensional (pull-apart basin) setting. The 1906 San Francisco earthquake may have nucleated within the step-over region, and the step-over places a strand of the San Andreas fault 3 km closer to downtown San Francisco than previously thought.
Cinar, Süleyman; Al-Ayoubi, Samy; Sternemann, Christian; Peters, Judith; Winter, Roland; Czeslik, Claus
2018-01-31
Calmodulin (CaM) is a Ca 2+ sensor and mediates Ca 2+ signaling through binding of numerous target ligands. The binding of ligands by Ca 2+ -saturated CaM (holo-CaM) is governed by attractive hydrophobic and electrostatic interactions that are weakened under high pressure in aqueous solutions. Moreover, the potential formation of void volumes upon ligand binding creates a further source of pressure sensitivity. Hence, high pressure is a suitable thermodynamic variable to probe protein-ligand interactions. In this study, we compare the binding of two different ligands to holo-CaM as a function of pressure by using X-ray and neutron scattering techniques. The two ligands are the farnesylated hypervariable region (HVR) of the K-Ras4B protein, which is a natural binding partner of holo-CaM, and the antagonist trifluoperazine (TFP), which is known to inhibit holo-CaM activity. From small-angle X-ray scattering experiments performed up to 3000 bar, we observe a pressure-induced partial unfolding of the free holo-CaM in the absence of ligands, where the two lobes of the dumbbell-shaped protein are slightly swelled. In contrast, upon binding TFP, holo-CaM forms a closed globular conformation, which is pressure stable at least up to 3000 bar. The HVR of K-Ras4B shows a different binding behavior, and the data suggest the dissociation of the holo-CaM/HVR complex under high pressure, probably due to a less dense protein contact of the HVR as compared to TFP. The elastic incoherent neutron scattering experiments corroborate these findings. Below 2000 bar, pressure induces enhanced atomic fluctuations in both holo-CaM/ligand complexes, but those of the holo-CaM/HVR complex seem to be larger. Thus, the inhibition of holo-CaM by TFP is supported by a low-volume ligand binding, albeit this is not associated with a rigidification of the complex structure on the sub-ns Å-scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yen-Wei; Drury, Jeanie L.; Moussi, Joelle
Monosodium titanates (MST) are a relatively novel form of particulate titanium dioxide that have been proposed for biological use as metal sorbents or delivery agents, most recently calcium (II). In these roles, the toxicity of the titanate or its metal complex is crucial to its biological utility. The aim of this study was to determine the cytotoxicity of MST and MST-calcium complexes with MC3T3 osteoblast-like cells; MST-Ca(II) complexes could be useful to promote bone formation in various hard tissue applications. MC3T3 cells were exposed to native MST or MST-Ca(II) complexes for 24–72 h. A CellTiter-Blue ® assay was employed tomore » assess the metabolic activity of the cells. The results showed that MST and MST-Ca(II) suppressed MC3T3 metabolic activity significantly in a dose-, time-, and cell-density-dependent fashion. MST-Ca(II) suppressed MC3T3 metabolism in a statistically identical manner as native MST at all concentrations. We concluded that MST and MST-Ca(II) are significantly cytotoxic to MC3T3 cells through a mechanism yet unknown; this is a potential problem to the biological utility of these complexes.« less
Wang, Yu-Lin; Wang, Ying; Yi, Hai-Bo
2016-07-21
In this study, the structural characteristics of high-coordinated Ca-Cl complexes present in mixed CaCl2-LiCl aqueous solution were investigated using density functional theory (DFT) and molecular dynamics (MD) simulations. The DFT results show that [CaClx](2-x) (x = 4-6) clusters are quite unstable in the gas phase, but these clusters become metastable when hydration is considered. The MD simulations show that high-coordinated Ca-chloro complexes are possible transient species that exist for up to nanoseconds in concentrated (11.10 mol·kg(-1)) Cl(-) solution at 273 and 298 K. As the temperature increases to 423 K, these high-coordinated structures tend to disassociate and convert into smaller clusters and single free ions. The presence of high-order Ca-Cl species in concentrated LiCl solution can be attributed to their enhanced hydration shell and the inadequate hydration of ions. The probability of the [CaClx](2-x)aq (x = 4-6) species being present in concentrated LiCl solution decreases greatly with increasing temperature, which also indicates that the formation of the high-coordinated Ca-Cl structure is related to its hydration characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K. A.; Wilker, M. B.; Boehm, M.
2012-03-28
We have developed complexes of CdS nanorods capped with 3-mercaptopropionic acid (MPA) and Clostridium acetobutylicum [FeFe]-hydrogenase I (CaI) that photocatalyze reduction of H{sup +} to H{sub 2} at a CaI turnover frequency of 380-900 s{sup -1} and photon conversion efficiencies of up to 20% under illumination at 405 nm. In this paper, we focus on the compositional and mechanistic aspects of CdS:CaI complexes that control the photochemical conversion of solar energy into H{sub 2}. Self-assembly of CdS with CaI was driven by electrostatics, demonstrated as the inhibition of ferredoxin-mediated H{sub 2} evolution by CaI. Production of H{sub 2} by CdS:CaImore » was observed only under illumination and only in the presence of a sacrificial donor. We explored the effects of the CdS:CaI molar ratio, sacrificial donor concentration, and light intensity on photocatalytic H{sub 2} production, which were interpreted on the basis of contributions to electron transfer, hole transfer, or rate of photon absorption, respectively. Each parameter was found to have pronounced effects on the CdS:CaI photocatalytic activity. Specifically, we found that under 405 nm light at an intensity equivalent to total AM 1.5 solar flux, H{sub 2} production was limited by the rate of photon absorption ({approx}1 ms{sup -1}) and not by the turnover of CaI. Complexes were capable of H{sub 2} production for up to 4 h with a total turnover number of 106 before photocatalytic activity was lost. This loss correlated with inactivation of CaI, resulting from the photo-oxidation of the CdS capping ligand MPA.« less
Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; ...
2014-09-14
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η 2:η 2-O 2)–M n+ (M n+ = Sr 2+, Ca 2+, Zn 2+, Lu 3+, Y 3+ and Sc 3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca 2+ and Sr 2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities ofmore » complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca 2+ or Sr 2+ ions were oxidized by an electron acceptor to release O 2, whereas the release of O 2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca 2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less
Bang, Suhee; Lee, Yong-Min; Hong, Seungwoo; Cho, Kyung-Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo
2014-01-01
Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex. PMID:25242490
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, E.Y.; Rumpf, C.H.; Fujiwara, Y.
2009-05-20
Calcium influx drives two opposing voltage-activated calcium channel (Ca{sub V}) self-modulatory processes: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Specific Ca{sup 2+}/calmodulin (Ca{sup 2+}/CaM) lobes produce CDI and CDF through interactions with the Ca{sub V}{alpha}{sub 1} subunit IQ domain. Curiously, Ca{sup 2+}/CaM lobe modulation polarity appears inverted between Ca{sub V}1s and Ca{sub V}2s. Here, we present crystal structures of Ca{sub V}2.1, Ca{sub V}2.2, and Ca{sub V}2.3 Ca{sup 2+}/CaM-IQ domain complexes. All display binding orientations opposite to Ca{sub V}1.2 with a physical reversal of the CaM lobe positions relative to the IQ {alpha}-helix. Titration calorimetry reveals lobe competition for a high-affinitymore » site common to Ca{sub V}1 and Ca{sub V}2 IQ domains that is occupied by the CDI lobe in the structures. Electrophysiological experiments demonstrate that the N-terminal Ca{sub V}2 Ca{sup 2+}/C-lobe anchors affect CDF. Together, the data unveil the remarkable structural plasticity at the heart of Ca{sub V} feedback modulation and indicate that Ca{sub V}1 and Ca{sub V}2 IQ domains bear a dedicated CDF site that exchanges Ca{sup 2+}/CaM lobe occupants.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, Hana; Katoh, Tsuyoshi; Nakagawa, Ryoko
2016-09-02
Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nMmore » (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation. - Highlights: • NFL was identified as a CaMKP-binding protein in an insoluble fraction of rat brain. • CaMKP bound to NFL in solution with a K{sub d} value of 73 ± 17 nM. • A CaMKP-NFL complex was found in NGF-differentiated PC12 cells. • CaMKP-binding to NFL inhibited its filament association. • CaMKP may regulate network formation of neurofilaments in neurons.« less
Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L.; Sheffield, Val C.; Golan, Hava; Parvari, Ruti
2015-01-01
Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene. PMID:26247364
Haziza, Sitvanit; Magnani, Roberta; Lan, Dima; Keinan, Omer; Saada, Ann; Hershkovitz, Eli; Yanay, Nurit; Cohen, Yoram; Nevo, Yoram; Houtz, Robert L; Sheffield, Val C; Golan, Hava; Parvari, Ruti
2015-08-01
Calmodulin lysine methyl transferase (CaM KMT) is ubiquitously expressed and highly conserved from plants to vertebrates. CaM is frequently trimethylated at Lys-115, however, the role of CaM methylation in vertebrates has not been studied. CaM KMT was found to be homozygously deleted in the 2P21 deletion syndrome that includes 4 genes. These patients present with cystinuria, severe intellectual disabilities, hypotonia, mitochondrial disease and facial dysmorphism. Two siblings with deletion of three of the genes included in the 2P21 deletion syndrome presented with cystinuria, hypotonia, a mild/moderate mental retardation and a respiratory chain complex IV deficiency. To be able to attribute the functional significance of the methylation of CaM in the mouse and the contribution of CaM KMT to the clinical presentation of the 2p21deletion patients, we produced a mouse model lacking only CaM KMT with deletion borders as in the human 2p21deletion syndrome. No compensatory activity for CaM methylation was found. Impairment of complexes I and IV, and less significantly III, of the mitochondrial respiratory chain was more pronounced in the brain than in muscle. CaM KMT is essential for normal body growth and somatosensory development, as well as for the proper functioning of the adult mouse brain. Developmental delay was demonstrated for somatosensory function and for complex behavior, which involved both basal motor function and motivation. The mutant mice also had deficits in motor learning, complex coordination and learning of aversive stimuli. The mouse model contributes to the evaluation of the role of methylated CaM. CaM methylation appears to have a role in growth, muscle strength, somatosensory development and brain function. The current study has clinical implications for human patients. Patients presenting slow growth and muscle weakness that could result from a mitochondrial impairment and mental retardation should be considered for sequence analysis of the CaM KMT gene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen
2009-11-10
Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is anmore » unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.« less
Apo calmodulin binding to the L-type voltage-gated calcium channel Ca{sub v}1.2 IQ peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf
2007-02-16
The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca{sub v}1.2 subunit has been shown to bind both calcium-loaded (Ca{sup 2+}CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction ofmore » apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca{sup 2+}CaM can bind to the intact channel.« less
Alarcon-Segovia, D
1980-01-01
Paracelsus is considered to have been the first to record the viscid quality of the synovial fluid. However, his contemporary Bernardino de Sahagún, a Franciscan friar who came to Mexico shortly after the Spanish conquest, obtained from elderly Aztec Indians who spoke only Nahuatl the descriptions of therapeutic arthrocentesis and of the viscid nature of the synovial fluid. They compared the fluid from the knee joint to the viscid fluid from the leaves of the nopal cactus (Opuntia sp.). We here record their description and confirm the accuracy of their comparison. Images PMID:7416821
Alarcon-Segovia, D
1980-06-01
Paracelsus is considered to have been the first to record the viscid quality of the synovial fluid. However, his contemporary Bernardino de Sahagún, a Franciscan friar who came to Mexico shortly after the Spanish conquest, obtained from elderly Aztec Indians who spoke only Nahuatl the descriptions of therapeutic arthrocentesis and of the viscid nature of the synovial fluid. They compared the fluid from the knee joint to the viscid fluid from the leaves of the nopal cactus (Opuntia sp.). We here record their description and confirm the accuracy of their comparison.
Skrbo, Armin; Masic, Izet
2017-01-01
Introduction: Folk medicine represents part of the folk culture, when we first think about the rural culture with characteristic of the rural population in the pre-industrial period. The difference between official and folk medicine is manifested in the education, knowledge and social status of those practicing folk medicine as well as their patients. The most common ways of treating were the treatment by use of herbs, magic and treatments based on religious beliefs. So, it is of no surprise that folk medicine was the main form of treatment for the inhabitants of Bosnia and Herzegovina (B&H) in the past. In addition to many herbalists, quacks and religious officials who treated the patients with records, there were also spells, i.e. women who, by pronouncing various magic formulas, treated the patients. Each village had at least one person who practiced this type of treatment. Discussion: Numerous, original documents and records have been stored in the archives of the monastery throughout B&H, including very valuable literature in the field of medicine and pharmacy, which testifies of the very important role of Franciscans in the treatment of the population in Bosnia and Herzegovina. The most extensive health service of the Franciscans since their arrival in Bosnia in 1291 was the decadent era of Turkish rule, mostly from the 17th century until the Austro-Hungarian occupation of Bosnia and Herzegovina in 1978. In the sources of national thought, and on the basis of professional medical books, the Franciscans created recipes for the treatment of certain diseases, which they then collected in so-called „Ljekaruse” (Collections of folk recipes), and over time there was a lot of them. Most of the ljekarusa are hand-printed booklets, for some it is known the time and place of creation, and less often the author of the text. Ljekarusa is a very important source of information about our medical past. Some of them were processed and recorded, while a significant part of these manuscripts remained unknown to the general public. They included recipes for various diseases and the names they were called by the people. Professional terms were not used, nor were the illnesses and the recipes ordered in any order or systematic manner. We learn from them that our people were once treated in the absence of doctors and pharmacists. Most commonly mentioned are various herbs, animal parts, mineral substances, and some of these recipes can be even applied today. All medicines continue to be transcribed by the people and valued as good old medical receipts. Conclusion: This review article presents a book (ljekaruse) that was archived in several famous monasteries in Bosnia and Herzegovina. PMID:29109671
Mahling, Ryan; Kilpatrick, Adina M; Shea, Madeline A
2017-10-01
Human voltage-gated sodium channel Na V 1.2 has a single pore-forming α-subunit and two transmembrane β-subunits. Expressed primarily in the brain, Na V 1.2 is critical for initiation and propagation of action potentials. Milliseconds after the pore opens, sodium influx is terminated by inactivation processes mediated by regulatory proteins including calmodulin (CaM). Both calcium-free (apo) CaM and calcium-saturated CaM bind tightly to an IQ motif in the C-terminal tail of the α-subunit. Our thermodynamic studies and solution structure (2KXW) of a C-domain fragment of apo 13 C, 15 N- CaM (CaM C ) bound to an unlabeled peptide with the sequence of rat Na V 1.2 IQ motif showed that apo CaM C (a) was necessary and sufficient for binding, and (b) bound more favorably than calcium-saturated CaM C . However, we could not monitor the Na V 1.2 residues directly, and no structure of full-length CaM (including the N-domain of CaM (CaM N )) was determined. To distinguish contributions of CaM N and CaM C , we used solution NMR spectroscopy to assign the backbone resonances of a complex containing a 13 C, 15 N-labeled peptide with the sequence of human Na V 1.2 IQ motif (Na V 1.2 IQp ) bound to apo 13 C, 15 N-CaM or apo 13 C, 15 N-CaM C . Comparing the assignments of apo CaM in complex with Na V 1.2 IQp to those of free apo CaM showed that residues within CaM C were significantly perturbed, while residues within CaM N were essentially unchanged. The chemical shifts of residues in Na V 1.2 IQp and in the C-domain of CaM were nearly identical regardless of whether CaM N was covalently linked to CaM C . This suggests that CaM N does not influence apo CaM binding to Na V 1.2 IQp .
Aminotroponiminate calcium and strontium complexes.
Datta, Simmi; Gamer, Michael T; Roesky, Peter W
2008-06-07
Heteroleptic aminotroponiminate complexes of calcium and strontium have been prepared. The monomeric calcium complex [((iPr)2ATI)CaI(THF)3] 1 ((iPr)2ATI = N-isopropyl-2-(isopropylamino)troponiminate) and the corresponding dimeric strontium compound [( (iPr)2ATI)SrI(THF)2]2 2 were obtained by reaction of [((iPr)2ATI)K] and MI2. Whereas the mixed ligand compound of composition [((iPr)2ATI)Ca(iPrAT)]2 3 (iPrAT = 2-(isopropylamino)troponate) was not obtained via a salt metathesis but by reaction of [Ca(N(SiMe3)2)2(THF)2] with ( (iPr)2ATI)H and (iPrAT)H, the diphosphanylamido complex [( (iPr)2ATI)Ca((Ph2P)2N)(THF)2] was obtained by reaction of CaI2 with the potassium compounds [( (iPr)2ATI)K] and [K(THF)n][N(PPh2)2]. The single crystal X-ray structures of all compounds were established and the latter compound shows a eta2-coordination mode of the ligand via the nitrogen and one phosphorus atom.
NASA Astrophysics Data System (ADS)
Shukla, Madhulata; Srivastava, Nitin; Saha, Satyen
2012-08-01
The present report deals with the theoretical investigation on ground state structure and charge transfer (CT) transitions in paracetamol (PA)/p-chloranil (CA) complex using Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TD-DFT) method. It is found that Cdbnd O bond length of p-chloranil increases on complexation with paracetamol along with considerable amount of charge transfer from PA to CA. TD-DFT calculations have been performed to analyse the observed UV-visible spectrum of PA-CA charge transferred complex. Interestingly, in addition to expected CT transition, a weak symmetry relieved π-π* transition in the chloranil is also observed.
Otoconial complexes as ion reservoirs in endolymph
NASA Technical Reports Server (NTRS)
Ross, M. D.; Williams, T. J.
1982-01-01
Scintillation spectrometry was employed to examine the Ca-45(2+) uptake and exchange by otoconial complexes in the sensory region endolymph medium, and a comparison was made with bone mineral deposition. CaCl was injected intraperitoneally into 222 rats and blood samples were collected at set intervals during the subsequent 15 min-l mo life durations of the animals. The animals were eventually sacrificed and saccular and utricular otoconial complexes were microdissected while bone chips from the otic bone and femur were gathered by scraping. Ca-45 was present in the saccular otoconial complexes within 15 min of injection, an uptake similar to the bone deposition, while slower rates were observed with the utricular complexes. Utricular uptake, however, accelerated 5-6 hr postinjection, and total otoconial content was always lower than proportional bone absorption.
Ni, Duan; Liu, Dingyu; Zhang, Jian; Lu, Shaoyong
2018-01-04
Calmodulin (CaM) and phosphatidylinositide-3 kinase (PI3Kα) are well known for their multiple roles in a series of intracellular signaling pathways and in the progression of several human cancers. Crosstalk between CaM and PI3Kα has been an area of intensive research. Recent experiments have shown that in adenocarcinoma, K-Ras4B is involved in the CaM-PI3Kα crosstalk. Based on experimental results, we have recently put forward a hypothesis that the coordination of CaM and PI3Kα with K-Ras4B forms a CaM-PI3Kα-K-Ras4B ternary complex, which leads to the formation of pancreatic ductal adenocarcinoma. However, the mechanism for the CaM-PI3Kα crosstalk is unresolved. Based on molecular modeling and molecular dynamics simulations, here we explored the potential interactions between CaM and the c/nSH2 domains of p85α subunit of PI3Kα. We demonstrated that CaM can interact with the c/nSH2 domains and the interaction details were unraveled. Moreover, the possible modes for the CaM-cSH2 and CaM-nSH2 interactions were uncovered and we used them to construct a complete CaM-PI3Kα complex model. The structural model of CaM-PI3Kα interaction not only offers a support for our previous ternary complex hypothesis, but also is useful for drug design targeted at CaM-PI3Kα protein-protein interactions.
Sowers, Tyler D; Adhikari, Dinesh; Wang, Jian; Yang, Yu; Sparks, Donald L
2018-05-25
Organo-mineral associations of organic carbon (OC) with iron (Fe) oxides play a major role in environmental OC sequestration, a process crucial to mitigating climate change. Calcium has been found to have high coassociation with OC in soils containing high Fe content, increase OC sorption extent to poorly crystalline Fe oxides, and has long been suspected to form bridging complexes with Fe and OC. Due to the growing realization that Ca may be an important component of C cycling, we launched a scanning transmission X-ray microscopy (STXM) investigation, paired with near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, in order to spatially resolve Fe, Ca, and OC relationships and probe the effect of Ca on sorbed OC speciation. We performed STXM-NEXAFS analysis on 2-line ferrihydrite reacted with leaf litter-extractable dissolved OC and citric acid in the absence and presence of Ca. Organic carbon was found to highly associate with Ca ( R 2 = 0.91). Carboxylic acid moieties were dominantly sequestered; however, Ca facilitated the additional sequestration of aromatic and phenolic moieties. Also, C NEXAFS revealed polyvalent metal ion complexation. Our results provide evidence for the presence of Fe-Ca-OC ternary complexation, which has the potential to significantly impact how organo-mineral associations are modeled.
The Calcium-Sensing Receptor and Integrins in Cellular Differentiation and Migration
Tharmalingam, Sujeenthar; Hampson, David R.
2016-01-01
The calcium-sensing receptor (CaSR) is a widely expressed homodimeric G-protein coupled receptor structurally related to the metabotropic glutamate receptors and GPRC6A. In addition to its well characterized role in maintaining calcium homeostasis and regulating parathyroid hormone release, evidence has accumulated linking the CaSR with cellular differentiation and migration, brain development, stem cell engraftment, wound healing, and tumor growth and metastasis. Elevated expression of the CaSR in aggressive metastatic tumors has been suggested as a potential novel prognostic marker for predicting metastasis, especially to bone tissue where extracellular calcium concentrations may be sufficiently high to activate the receptor. Recent evidence supports a model whereby CaSR-mediated activation of integrins promotes cellular migration. Integrins are single transmembrane spanning heterodimeric adhesion receptors that mediate cell migration by binding to extracellular matrix proteins. The CaSR has been shown to form signaling complexes with the integrins to facilitate both the movement and differentiation of cells, such as neurons during normal brain development and tumor cells under pathological circumstances. Thus, CaSR/integrin complexes may function as a universal cell migration or homing complex. Manipulation of this complex may be of potential interest for treating metastatic cancers, and for developmental disorders pertaining to aberrant neuronal migration. PMID:27303307
Guidarelli, Andrea; Cerioni, Liana; Fiorani, Mara; Cantoni, Orazio
2017-01-01
Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. PMID:28767071
Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.
Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude
2009-01-01
Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.
Dubis, A; Zamaraeva, M V; Siergiejczyk, L; Charishnikova, O; Shlyonsky, V
2015-10-07
Calcium ionophoretic properties of ferutinin were re-evaluated in solvent-containing bilayer lipid membranes. The slopes of conductance-concentration curves suggest that in the presence of a solvent in the membrane the majority of complexes appear to consist of a single terpenoid molecule bound to one Ca ion. By contrast, the stoichiometry of ferutinin-Ca(2+) complexes in acetone determined using the conductometric method was 2 : 1. While the cation-cation selectivity of ferutinin did not change, the cation-anion selectivity slightly decreased in solvent containing membranes. FT-IR and NMR data together with DFT calculations at the B3LYP/6-31G(d) level of theory indicate that in the absence of Ca ions ferutinin molecules are hydrogen-bonded at the phenol hydroxyl groups. The variations of absorption assigned to -OH and -C-O stretching mode suggest that ferutinin interacts strongly with Ca ions via the hydroxyl group of ferutinol and carboxyl oxygen of the complex ether bond. The coordination through the carbonyl group of ferutinin was demonstrated by theoretical calculations. Taken together, ferutinin molecules form H-bonded dimers, while complexation of Ca(2+) by ferutinin ruptures this hydrogen bond due to spatial re-orientation of the ferutinin molecules from parallel to antiparallel alignment.
Ramírez-Iglesias, José Rubén; Pérez-Gordones, María Carolina; Del Castillo, Jesús Rafael; Mijares, Alfredo; Benaim, Gustavo; Mendoza, Marta
2018-05-09
The plasma membrane Ca 2+ -ATPase (PMCA) from trypanosomatids lacks a classical calmodulin (CaM) binding domain, although CaM stimulated activities have been detected by biochemical assays. Recently we proposed that the Trypanosoma equiperdum CaM-sensitive PMCA (TePMCA) contains a potential 1-18 CaM-binding motif at the C-terminal region of the pump. In the present study, we evaluated the potential CaM-binding motifs using CaM from Trypanosoma cruzi and either the recombinant full length TePMCA C-terminal sequence (P14) or synthetic peptides comprising different regions of the C-terminal domain. We demonstrated that P14 and a synthetic peptide corresponding to residues 1037-1062 (which contains the predicted 1-18 binding motif) competed efficiently for binding to TcCaM, exhibiting similar IC 50 s of 200 nM. A stable complex of this peptide and TcCaM was formed in the presence of Ca 2+ , as determined by native-polyacrylamide gel electrophoresis. A predicted structure obtained by molecular docking showed an interaction of the 1-18 binding motif with the Ca 2+ /CaM complex. Moreover, when the peptide was incubated with CaM and Ca 2+ , a blue shift in the tryptophan fluorescence spectrum (from 350 to 329 nm) was observed. Substitutions at W 1039 and F 1056 , strongly decreased both CaM-peptide interaction and the complex assembly. Our results demonstrated the presence of a functional 1-18 motif at the TePMCA C-terminal domain. Furthermore, on the basis of spectrofluorometric assays and the resulting structure modeled by docking we propose that the L 1042 and W 1060 residues might also participate as anchors to form a 1-4-18-22 motif. Copyright © 2018 Elsevier B.V. All rights reserved.
Maltsev, Alexander V.; Maltsev, Victor A.; Stern, Michael D.
2017-01-01
Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates. PMID:28792496
Comparison of Paleogene paleogeography: Southern Coast Ranges and western Transverse Ranges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schussler, S.A.
1991-02-01
The paleogene stratigraphic sequence exposed in the southwestern San Rafael Mountains at the southern terminus of the Coast Ranges, consists of up to 850 m (2,800 ft) of the marine limestone, sandstone, and mudstone that lies with a unique depositional contact upon Franciscan Complex rocks. Lithofacies identified represent four sedimentary environments: (1) foreslope talus deposits of a neritic algal bank (Sierra Blanca limestone), (2) bathyal basin plain and outer submarine fan deposits (Juncal/Anita Formation and Cozy Dell Shale), (3) suprafan lobe deposits of a bathyal submarine fan (lower Mitilija Sandstone), and (4) sublittoral shelf deposits (upper Matilija Sandstone). Similarities betweenmore » paleogene rocks in the southwest San Rafael mountains and the western Santa Ynez Mountains of the Transverse Ranges, approximately 60 km (40 mi) to the west, suggest deposition in a similar paleogeographic setting. Paleomagnetic data suggests post-Paleogene clockwise rotations of the western Transverse Ranges of 90{degree}+. Counterclockwise rotation of the western Transverse Ranges by this amount aligns the similar depositional sequences of the western Transverse Ranges with the northwest-trending Paleogene forearc basin of the southern Coast Ranges and eliminates the necessity for an east-west-oriented Paleogene basin at the site of the present western Transverse Ranges.« less
Isostatic gravity map of the Point Sur 30 x 60 quadrangle and adjacent areas, California
Watt, J.T.; Morin, R.L.; Langenheim, V.E.
2011-01-01
This isostatic residual gravity map is part of a regional effort to investigate the tectonics and water resources of the central Coast Range. This map serves as a basis for modeling the shape of basins and for determining the location and geometry of faults in the area. Local spatial variations in the Earth's gravity field (after removing variations caused by instrument drift, earth-tides, latitude, elevation, terrain, and deep crustal structure), as expressed by the isostatic anomaly, reflect the distribution of densities in the mid- to upper crust, which in turn can be related to rock type. Steep gradients in the isostatic gravity field often indicate lithologic or structural boundaries. Gravity highs reflect the Mesozoic granitic and Franciscan Complex basement rocks that comprise both the northwest-trending Santa Lucia and Gabilan Ranges, whereas gravity lows in Salinas Valley and the offshore basins reflect the thick accumulations of low-density alluvial and marine sediment. Gravity lows also occur where there are thick deposits of low-density Monterey Formation in the hills southeast of Arroyo Seco (>2 km, Marion, 1986). Within the map area, isostatic residual gravity values range from approximately -60 mGal offshore in the northern part of the Sur basin to approximately 22 mGal in the Santa Lucia Range.
NASA Astrophysics Data System (ADS)
Li, Peng; Thurber, Clifford
2018-06-01
We derive new Rayleigh wave group velocity models and a 3-D shear wave velocity model of the upper crust in the San Francisco Bay region using an adaptive grid ambient noise tomography algorithm and 6 months of continuous seismic data from 174 seismic stations from multiple networks. The resolution of the group velocity models is 0.1°-0.2° for short periods (˜3 s) and 0.3°-0.4° for long periods (˜10 s). The new shear wave velocity model of the upper crust reveals a number of important structures. We find distinct velocity contrasts at the Golden Gate segment of the San Andreas Fault, the West Napa Fault, central part of the Hayward Fault and southern part of the Calaveras Fault. Low shear wave velocities are mainly located in Tertiary and Quaternary basins, for instance, La Honda Basin, Livermore Valley and the western and eastern edges of Santa Clara Valley. Low shear wave velocities are also observed at the Sonoma volcanic field. Areas of high shear wave velocity include the Santa Lucia Range, the Gabilan Range and Ben Lomond Plutons, and the Diablo Range, where Franciscan Complex or Silinian rocks are exposed.
NASA Astrophysics Data System (ADS)
Yang, Run-Qiu; Niu, Chao; Zhang, Cheng-Yong; Kim, Keun-Young
2018-02-01
We compute the time-dependent complexity of the thermofield double states by four different proposals: two holographic proposals based on the "complexity-action" (CA) conjecture and "complexity-volume" (CV) conjecture, and two quantum field theoretic proposals based on the Fubini-Study metric (FS) and Finsler geometry (FG). We find that four different proposals yield both similarities and differences, which will be useful to deepen our understanding on the complexity and sharpen its definition. In particular, at early time the complexity linearly increase in the CV and FG proposals, linearly decreases in the FS proposal, and does not change in the CA proposal. In the late time limit, the CA, CV and FG proposals all show that the growth rate is 2 E/(πℏ) saturating the Lloyd's bound, while the FS proposal shows the growth rate is zero. It seems that the holographic CV conjecture and the field theoretic FG method are more correlated.
On New Spain and Mexican medicinal botany in cardiology.
de Micheli-Serra, Alfredo Alessandro; Izaguirre-Ávila, Raúl
2014-01-01
Towards the middle of the XVI century, the empirical physician Martín de la Cruz, in New Spain, compiled a catalogue of the local medicinal herbs and plants, which was translated into Latin by Juan Badiano, professor at the Franciscan college of Tlatelolco. On his side, Dr. Francisco Hernández, the royal physician (protomédico) from 1571 until 1577, performed a systematic study of the flora and fauna in this period. His notes and designs were not published at that time, but two epitomes of Hernández' works appeared, respectively, in 1615 in Mexico and in 1651 in Rome. During the XVIII century, two Spanish scientific expeditions arrived to these lands. They were led, respectively, by the Spanish naturalist Martín Sessé and the Italian seaman, Alessandro Malaspina di Mulazzo, dependent from the Spanish Government. These expeditions collected and carried rich scientific material to Spain. At the end of that century, the Franciscan friar Juan Navarro depicted and described several Mexican medicinal plants in the fifth volume of his botanic work. In the last years of the colonial period, the fundamental works of Humboldt and Bonpland on the geographic distribution of the American plants were published. In the modern age, the first research about the Mexican medicinal botany was performed in the laboratory of the Instituto Médico Nacional [National Medical Institute] under the leadership of Dr. Fernando Altamirano, who started pharmacological studies in this country. Later, trials of cardiovascular pharmacology were performed in the small laboratories of the cardiological unit at the General Hospital of Mexico City, on Dr. Ignacio Chávez' initiative. The Mexican botanical-pharmacological tradition persists alive and vigorous at the Instituto Nacional de Cardiología and other scientific institutions of the country.
Bennington, Ninfa L.; Zhang, Haijiang; Thurber, Cliff; Bedrosian, Paul A.
2015-01-01
We present jointly inverted models of P-wave velocity (Vp) and electrical resistivity for a two-dimensional profile centered on the San Andreas Fault Observatory at Depth (SAFOD). Significant structural similarity between main features of the separately inverted Vp and resistivity models is exploited by carrying out a joint inversion of the two datasets using the normalized cross-gradient constraint. This constraint favors structurally similar Vp and resistivity images that adequately fit the seismic and magnetotelluric (MT) datasets. The new inversion code, tomoDDMT, merges the seismic inversion code tomoDD and the forward modeling and sensitivity kernel subroutines of the MT inversion code OCCAM2DMT. TomoDDMT is tested on a synthetic dataset and demonstrates the code’s ability to more accurately resolve features of the input synthetic structure relative to the separately inverted resistivity and velocity models. Using tomoDDMT, we are able to resolve a number of key issues raised during drilling at SAFOD. We are able to infer the distribution of several geologic units including the Salinian granitoids, the Great Valley sequence, and the Franciscan Formation. The distribution and transport of fluids at both shallow and great depths is also examined. Low values of velocity/resistivity attributed to a feature known as the Eastern Conductor (EC) can be explained in two ways: the EC is a brine-filled, high porosity region, or this region is composed largely of clay-rich shales of the Franciscan. The Eastern Wall, which lies immediately adjacent to the EC, is unlikely to be a fluid pathway into the San Andreas Fault’s seismogenic zone due to its observed higher resistivity and velocity values.
Svensson, Malin; Fast, Jonas; Mossberg, Ann-Kristin; Düringer, Caroline; Gustafsson, Lotta; Hallgren, Oskar; Brooks, Charles L; Berliner, Lawrence; Linse, Sara; Svanborg, Catharina
2003-12-01
HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a complex of human alpha-lactalbumin and oleic acid (C18:1:9 cis) that kills tumor cells by an apoptosis-like mechanism. Previous studies have shown that a conformational change is required to form HAMLET from alpha-lactalbumin, and that a partially unfolded conformation is maintained in the HAMLET complex. This study examined if unfolding of alpha-lactalbumin is sufficient to induce cell death. We used the bovine alpha-lactalbumin Ca(2+) site mutant D87A, which is unable to bind Ca(2+), and thus remains partially unfolded regardless of solvent conditions. The D87A mutant protein was found to be inactive in the apoptosis assay, but could readily be converted to a HAMLET-like complex in the presence of oleic acid. BAMLET (bovine alpha-lactalbumin made lethal to tumor cells) and D87A-BAMLET complexes were both able to kill tumor cells. This activity was independent of the Ca(2+)site, as HAMLET maintained a high affinity for Ca(2+) but D87A-BAMLET was active with no Ca(2+) bound. We conclude that partial unfolding of alpha-lactalbumin is necessary but not sufficient to trigger cell death, and that the activity of HAMLET is defined both by the protein and the lipid cofactor. Furthermore, a functional Ca(2+)-binding site is not required for conversion of alpha-lactalbumin to the active complex or to cause cell death. This suggests that the lipid cofactor stabilizes the altered fold without interfering with the Ca(2+)site.
Complex Sentence Comprehension and Working Memory in Children With Specific Language Impairment
Montgomery, James W.; Evans, Julia L.
2015-01-01
Purpose This study investigated the association of 2 mechanisms of working memory (phonological short-term memory [PSTM], attentional resource capacity/allocation) with the sentence comprehension of school-age children with specific language impairment (SLI) and 2 groups of control children. Method Twenty-four children with SLI, 18 age-matched (CA) children, and 16 language- and memory-matched (LMM) children completed a nonword repetition task (PSTM), the competing language processing task (CLPT; resource capacity/allocation), and a sentence comprehension task comprising complex and simple sentences. Results (1) The SLI group performed worse than the CA group on each memory task; (2) all 3 groups showed comparable simple sentence comprehension, but for complex sentences, the SLI and LMM groups performed worse than the CA group; (3) for the SLI group, (a) CLPT correlated with complex sentence comprehension, and (b) nonword repetition correlated with simple sentence comprehension; (4) for CA children, neither memory variable correlated with either sentence type; and (5) for LMM children, only CLPT correlated with complex sentences. Conclusions Comprehension of both complex and simple grammar by school-age children with SLI is a mentally demanding activity, requiring significant working memory resources. PMID:18723601
Calcium EXAFS Establishes the Mn-Ca Cluster in the Oxygen-Evolving Complex of Photosystem II†
Cinco, Roehl M.; Holman, Karen L. McFarlane; Robblee, John H.; Yano, Junko; Pizarro, Shelly A.; Bellacchio, Emanuele; Sauer, Kenneth; Yachandra, Vittal K.
2014-01-01
The proximity of Ca to the Mn cluster of the photosynthetic water-oxidation complex is demonstrated by X-ray absorption spectroscopy. We have collected EXAFS data at the Ca K-edge using active PS II membrane samples that contain approximately 2 Ca per 4 Mn. These samples are much less perturbed than previously investigated Sr-substituted samples, which were prepared subsequent to Ca depletion. The new Ca EXAFS clearly shows backscattering from Mn at 3.4 Å, a distance that agrees with that surmised from previously recorded Mn EXAFS. This result is also consistent with earlier related experiments at the Sr K-edge, using samples that contained functional Sr, that show Mn is ~ 3.5 Å distant from Sr. The totality of the evidence clearly advances the notion that the catalytic center of oxygen evolution is a Mn-Ca heteronuclear cluster. PMID:12390018
Moreira, Otacilio C; Rios, Priscila F; Barrabin, Hector
2005-07-15
The bidentate complex of ATP with Cr(3+), CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca(2+)-ATPase and the Na(+),K(+)-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca(2+) and Na(+), respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca(2+)-ATPase. The complex inhibited with similar efficiency the Ca(2+)-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T(1/2)=30 min at 37 degrees C) with a K(i)=28+/-9 microM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg(2+) but unaltered when Ca(2+) was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca(2+) occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La(3+) with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca(2+) at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca(2+) promoted by the plasma membrane Ca(2+)-ATPase goes through an enzymatic phospho-intermediate that maintains Ca(2+) ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.
NASA Astrophysics Data System (ADS)
Marques, F. O.; Hildenbrand, A.; Hübscher, C.
2018-07-01
The S. Jorge Island in the Azores lies on a peculiar setting, the southern shoulder of the Terceira Rift (TR), which raises a series of questions that we address in this study. We first established the main volcanic stratigraphy by recognizing, in the field, the main unconformities/discontinuities and their meaning (major erosion surfaces and faults), then we collected critical samples, and finally dated them by K/Ar to calibrate the stratigraphy and the age of inferred large-scale flank collapses. Based on field, geochronological and marine geophysical data: (1) we found much older rocks in S. Jorge than in previous studies (ca. 1.85 Ma), and established a new volcanic stratigraphy (from bottom to top): Old Volcanic Complex (ca. 1.9-1.2 Ma), cropping out in the eastern third of the island; Intermediate Volcanic Complex (ca. 0.8-0.2 Ma), cropping out in the western two thirds of the island and separated from the underlying complex by a major fault; Young Volcanic Complex (
Evolutionary and functional perspectives on signaling from neuronal surface to nucleus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, Samuel M.; Li, Boxing; Tsien, Richard W., E-mail: richard.tsien@nyumc.org
2015-04-24
Reliance on Ca{sup 2+} signaling has been well-preserved through the course of evolution. While the complexity of Ca{sup 2+} signaling pathways has increased, activation of transcription factors including CREB by Ca{sup 2+}/CaM-dependent kinases (CaMKs) has remained critical for long-term plasticity. In C. elegans, the CaMK family is made up of only three members, and CREB phosphorylation is mediated by CMK-1, the homologue of CaMKI. CMK-1 nuclear translocation directly regulates adaptation of thermotaxis behavior in response to changes in the environment. In mammals, the CaMK family has been expanded from three to ten members, enabling specialization of individual elements of amore » signal transduction pathway and increased reliance on the CaMKII subfamily. This increased complexity enables private line communication between Ca{sup 2+} sources at the cell surface and specific cellular targets. Using both new and previously published data, we review the mechanism of a γCaMKII-CaM nuclear translocation. This intricate pathway depends on a specific role for multiple Ca{sup 2+}/CaM-dependent kinases and phosphatases: α/βCaMKII phosphorylates γCaMKII to trap CaM; CaN dephosphorylates γCaMKII to dispatch it to the nucleus; and PP2A induces CaM release from γCaMKII so that CaMKK and CaMKIV can trigger CREB phosphorylation. Thus, while certain basic elements have been conserved from C. elegans, evolutionary modifications offer opportunities for targeted communication, regulation of key nodes and checkpoints, and greater specificity and flexibility in signaling.« less
Zhang, Rong; Dzhura, Igor; Grueter, Chad E; Thiel, William; Colbran, Roger J; Anderson, Mark E
2005-09-01
L-type Ca2+ channels are macromolecular protein complexes in neurons and myocytes that open in response to cell membrane depolarization to supply Ca2+ for regulating gene transcription and vesicle secretion and triggering cell contraction. L-type Ca2+ channels include a pore-forming alpha and an auxiliary beta subunit, and alpha subunit openings are regulated by cellular Ca2+ through a mechanism involving the Ca2+-sensing protein calmodulin (CaM) and CaM binding motifs in the alpha subunit cytoplasmic C terminus. Here we show that these CaM binding motifs are "auto-agonists" that increase alpha subunit openings by binding the beta subunit. The CaM binding domains are necessary and sufficient for the alpha subunit C terminus to bind the beta subunit in vitro, and excess CaM blocks this interaction. Addition of CaM binding domains to native cardiac L-type Ca2+ channels in excised cell membrane patches increases openings, and this agonist effect is prevented by excess CaM. Recombinant LTCC openings are also increased by exogenous CaM binding domains by a mechanism requiring the beta subunit, and excess CaM blocks this effect. Thus, the bifunctional ability of the alpha subunit CaM binding motifs to competitively associate with the beta subunit or CaM provides a novel paradigm for feedback control of cellular Ca2+ entry.
Li, Yu-jiao; Hu, Peng-jie; Zhao, Jie; Dong, Chang-xun
2015-04-01
Composite washing of cadmium (Cd)- and lead (Pb)-contaminated agricultural soil from Hunan province in China using mixtures of chlorides (FeCl3, CaCl2) and citric acid (CA) was investigated. The concentrations of composite washing agents for metal removal were optimized. Sequential extraction was conducted to study the changes in metal fractions after soil washing. The removal of two metals at optimum concentration was reached. Using FeCl3 mixed with CA, 44% of Cd and 23% of Pb were removed, and 49 and 32% by CaCl2 mixed with CA, respectively. The mechanism of composite washing was postulated. A mixture of chlorides and CA enhanced metal extraction from soil through the formation of metal-chloride and metal-citrate complexes. CA in extract solutions promoted the formation of metal-chloride complexes and reduced the solution pH. Composite washing reduced Cd and Pb in Fe-Mn oxide forms significantly. Chlorides and CA exerted a synergistic effect on metal extraction during composite washing.
Holographic complexity in Vaidya spacetimes. Part I
NASA Astrophysics Data System (ADS)
Chapman, Shira; Marrochio, Hugo; Myers, Robert C.
2018-06-01
We examine holographic complexity in time-dependent Vaidya spacetimes with both the complexity=volume (CV) and complexity=action (CA) proposals. We focus on the evolution of the holographic complexity for a thin shell of null fluid, which collapses into empty AdS space and forms a (one-sided) black hole. In order to apply the CA approach, we introduce an action principle for the null fluid which sources the Vaidya geometries, and we carefully examine the contribution of the null shell to the action. Further, we find that adding a particular counterterm on the null boundaries of the Wheeler-DeWitt patch is essential if the gravitational action is to properly describe the complexity of the boundary state. For both the CV proposal and the CA proposal (with the extra boundary counterterm), the late time limit of the growth rate of the holographic complexity for the one-sided black hole is precisely the same as that found for an eternal black hole.
Static and kinetic studies of calmodulin and melittin complex.
Itakura, M; Iio, T
1992-08-01
Ca2+ binding to calmodulin triggers conformational change of the protein which induces exposure of hydrophobic surfaces. Melittin has been believed to bind to Ca(2+)-bound calmodulin through the exposed hydrophobic surfaces. However, tryptophan fluorescence measurements and gel chromatography experiments with the melittin-calmodulin system revealed that melittin bound to calmodulin at zero salt concentration even in the absence of Ca2+; addition of salt removed melittin from Ca(2+)-free calmodulin. This means not only the hydrophobic interaction but also the electrostatic interaction contributes to the melittin-calmodulin binding. The fluorescence stopped-flow studies of the dissociation reaction of melittin-calmodulin complex revealed that Ca2+ removal from the complex induced a conformational change of calmodulin, resulting in reduction of the hydrophobic interaction between melittin and calmodulin, but the electrostatic interaction kept melittin still bound to calmodulin for a subsecond lag period, after which melittin dissociated from calmodulin. The fluorescence stopped-flow experiments on the dissociation reaction of complex of melittin and tryptic fragment(s) of calmodulin revealed that the lag period of the melittin dissociation reaction was attributable to the interaction between the C-terminal half of calmodulin and the C-terminal region of melittin.
NASA Astrophysics Data System (ADS)
Kustov, A. V.; Smirnova, N. L.; Berezin, B. D.; Trostin, V. N.
2010-04-01
The thermal effects of mixing of aqueous calcium chloride with sodium citrate and ethylenedi-aminetetraacetate in the absence and presence of sodium oxalate have been measured at 25°C. The thermal effects of dilution of aqueous calcium chloride solutions were determined. The thermal effects of calcium oxalate precipitation and formation of calcium complexes with citrate and ethylenediaminetetraacetate ions were calculated. The 1% solution of sodium citrate inhibited the formation of CaC2O4 (s); in a 1% solution of sodium ethylenediaminetetraacetate with [Ca2+][C2O{4/2-}] > 10-5, the endothermal formation of the [CaEdta]2- complex quickly changed to exothermal precipitation. The 3 and 5% solutions of complexons showed a pronounced inhibiting effect on the formation of urinary stones even when the concentration of calcium and oxalate ions in solution exceeded the product of solubility of CaC2O4 by four and more orders of magnitude.
Cheng, Ye; Cai, Huanxin; Yin, Baoru; Yao, Ping
2013-09-15
A series of novel amphiphilic chitosan derivatives, cholic acid modified N-(2-hydroxy)-propyl-3-trimethylammonium chitosan chloride (HTCC-CA) with different quaternization degrees and cholic acid substitutions were synthesized in this study. HTCC-CA is biocompatible and forms particles in aqueous solution. The binding with superoxide dismutase (SOD) at pH 6.8 destroys the original aggregates of HTCC-CA and produces smaller SOD/HTCC-CA complex nanoparticles via electrostatic and hydrophobic interactions. The SOD loading efficiency and loading capacity of HTCC-CA can reach to more than 90% and 45%, respectively. Confocal laser scanning microscopy observation and flow cytometry analysis reveal that SOD/HTCC-CA complex nanoparticles greatly enhance the cellular internalization of the loaded SOD. The SOD activities and malonaldehyde concentrations in the serum and organs of the rats, administrated intravenously with free SOD, free HTCC-CA, and SOD/HTCC-CA nanoparticles, were assayed to evaluate the antioxidant efficiency in vivo. The results demonstrate that free HTCC-CA is effective to scavenge superoxide radicals in the blood circulation and SOD/HTCC-CA nanoparticles have better antioxidant efficiency than free SOD as well as free HTCC-CA. Copyright © 2013 Elsevier B.V. All rights reserved.
Kimura, Yukihiro; Lyu, Shuwen; Okoshi, Akira; Okazaki, Koudai; Nakamura, Natsuki; Ohashi, Akira; Ohno, Takashi; Kobayashi, Manami; Imanishi, Michie; Takaichi, Shinichi; Madigan, Michael T; Wang-Otomo, Zheng-Yu
2017-05-18
The light harvesting-reaction center (LH1-RC) complex from a new thermophilic purple sulfur bacterium Allochromatium (Alc.) tepidum was isolated and characterized by spectroscopic and thermodynamic analyses. The purified Alc. tepidum LH1-RC complex showed a high thermostability comparable to that of another thermophilic purple sulfur bacterium Thermochromatium tepidum, and spectroscopic characteristics similar to those of a mesophilic bacterium Alc. vinosum. Approximately 4-5 Ca 2+ per LH1-RC were detected by inductively coupled plasma atomic emission spectroscopy and isothermal titration calorimetry. Upon removal of Ca 2+ , the denaturing temperature of the Alc. tepidum LH1-RC complex dropped accompanied by a blue-shift of the LH1 Q y absorption band. The effect of Ca 2+ was also observed in the resonance Raman shift of the C3-acetyl νC═O band of bacteriochlorophyll-a, indicating changes in the hydrogen-bonding interactions between the pigment and LH1 polypeptides. Thermodynamic parameters for the Ca 2+ -binding to the Alc. tepidum LH1-RC complex indicated that this reaction is predominantly driven by the largely favorable electrostatic interactions that counteract the unfavorable negative entropy change. Our data support a hypothesis that Alc. tepidum may be a transitional organism between mesophilic and thermophilic purple bacteria and that Ca 2+ is one of the major keys to the thermostability of LH1-RC complexes in purple bacteria.
Neufurth, Meik; Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Diehl-Seifert, Bärbel; Ziebart, Thomas; Steffen, Renate; Wang, Shunfeng; Müller, Werner E G
2014-10-01
Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca(2+)-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca(2+)-complex, the cells proliferate with a generation time of approximately 47-55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence of the polymer. The reduced Young's modulus for the alginate/gelatin hydrogel is approximately 13-14 kPa, and this value drops to approximately 0.5 kPa after incubation of the cell containing scaffolds for 5 d. In the presence of 100 μm polyP·Ca(2+)-complex, the reduced Young's modulus increases to about 22 kPa. The hardness of the polyP·Ca(2+)-complex containing hydrogel remains essentially constant if cells are absent in the matrix, but it drops to 3.2 kPa after a 5 d incubation period in the presence of SaOS-2 cells, indicating that polyP·Ca(2+)-complex becomes metabolized, degraded, by the cells. The alginate/gelatine-agarose system with polyP·Ca(2+)-complex cause a significant increase in the mineralization of the cells. SEM analyses revealed that the morphology of the mineral nodules formed on the surface of the cells embedded in the alginate/gelatin hydrogel do not significantly differ from the nodules on cells growing in monolayer cultures. The newly developed technique, using cells encapsulated into an alginate/gelatin hydrogel and a secondary layer containing the morphogenetically active, growth promoting polymer polyP·Ca(2+)-complex opens new possibilities for the application of 3D bioprinting in bone tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ohlin, Henry N.; McLaughlin, Robert J.; Moring, Barry C.; Sawyer, Thomas L.
2010-01-01
The Lake Pillsbury area lies in the eastern part of the northern California Coast Ranges, along the east side of the transform boundary between the Pacific and North American plates (fig. 1). The Bartlett Springs Fault Zone is a northwest-trending zone of faulting associated with this eastern part of the transform boundary. It is presently active, based on surface creep (Svarc and others, 2008), geomorphic expression, offset of Holocene units (Lienkaemper and Brown, 2009), and microseismicity (Bolt and Oakeshott, 1982; Dehlinger and Bolt, 1984; DePolo and Ohlin, 1984). Faults associated with the Bartlett Springs Fault Zone at Lake Pillsbury are steeply dipping and offset older low to steeply dipping faults separating folded and imbricated Mesozoic terranes of the Franciscan Complex and interleaved rocks of the Coast Range Ophiolite and Great Valley Sequence. Parts of this area were mapped in the late 1970s and 1980s by several investigators who were focused on structural relations in the Franciscan Complex (Lehman, 1978; Jordan, 1975; Layman, 1977; Etter, 1979). In the 1980s the U.S. Geological Survey (USGS) mapped a large part of the area as part of a mineral resource appraisal of two U.S. Forest Service Roadless areas. For evaluating mineral resource potential, the USGS mapping was published at a scale of 1:62,500 as a generalized geologic summary map without a topographic base (Ohlin and others, 1983; Ohlin and Spear, 1984). The previously unpublished mapping with topographic base is presented here at a scale of 1:30,000, compiled with other mapping in the vicinity of Lake Pillsbury. The mapping provides a geologic framework for ongoing investigations to evaluate potential earthquake hazards and structure of the Bartlett Springs Fault Zone. This geologic map includes part of Mendocino National Forest (the Elk Creek Roadless Area) in Mendocino, Glenn, and Lake Counties and is traversed by several U.S. Forest Service Routes, including M1 and M6 (fig. 2). The study area is characterized by northwest-trending ridges separated by steep-sided valleys. Elevations in this part of the Coast Ranges vary from 1,500 ft (457 m) to 6,600 ft (2,012 m), commonly with gradients of 1,000 ft per mile (90 m per km). The steep slopes are covered by brush, grass, oak, and conifer forests. Access to most of the area is by county roads and Forest Service Route M6 from Potter Valley to Lake Pillsbury and by county road and Forest Service Route M6 and M1 from Upper Lake and State Highway 20. From the north, State Highway 261 provides access from Covelo. Forest Service Route M1 trends roughly north from its intersection with Route M6 south of Hull Mountain and through the Elk Creek and Black Butte Roadless areas to State Highway 261. Side roads used for logging and jeep trails provide additional access in parts of the area.
Synthesis, biological evaluation, and docking studies of gigantol analogs as calmodulin inhibitors.
Reyes-Ramírez, Adelfo; Leyte-Lugo, Martha; Figueroa, Mario; Serrano-Alba, Trinidad; González-Andrade, Martín; Mata, Rachel
2011-07-01
Several analogs of gigantol (1) were synthesized to evaluate their effect on the complexes Ca(2+)-calmodulin (CaM) and Ca(2+)-CaM-CaM sensitive phosphodiesterase 1 (PDE1). The compounds belong to four structural groups including, 1,2-diphenylethanes (2-11), diphenylmethanes (13-15), 1,3-diphenylpropenones (16-18), and 1,3-diphenylpropanes (20-22). In vitro enzymatic studies showed that all compounds except 11 inhibited the complex Ca(2+)-CaM-PDE1 with IC(50) values ranging from 9 to 146 μM. On the other hand, all analogs but 11, 12 and 15 quenched the extrinsic fluorescence of the CaM biosensor hCaM-M124C-mBBr to different extent, then revealing different affinities to CaM; their affinity constants (K(m)) values were in the range of 3-80 μM. Molecular modeling studies indicated that all these compounds bound to CaM at the same site that the classical inhibitors trifluoperazine (TFP) and chlorpromazine (CPZ). Some of these analogs could be worthy candidates for developing new anti-tumor, local anesthetics, antidepressants, antipsychotic, or smooth muscle relaxant drugs, with anti-CaM properties due to their good affinity to CaM and the straightforwardness of their synthesis. In addition they could be valuable tools for the study of Ca(2+)-CaM functions. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Pedriali, Gaia; Rimessi, Alessandro; Sbano, Luigi; Giorgi, Carlotta; Wieckowski, Mariusz R; Previati, Maurizio; Pinton, Paolo
2017-01-01
Inter-organelle membrane contact sites are emerging as major sites for the regulation of intracellular Ca 2+ concentration and distribution. Here, extracellular stimuli operate on a wide array of channels, pumps, and ion exchangers to redistribute intracellular Ca 2+ among several compartments. The resulting highly defined spatial and temporal patterns of Ca 2+ movement can be used to elicit specific cellular responses, including cell proliferation, migration, or death. Plasma membrane (PM) also can directly contact mitochondria and endoplasmic reticulum (ER) through caveolae, small invaginations of the PM that ensure inter-organelle contacts, and can contribute to the regulation of numerous cellular functions through scaffolding proteins such as caveolins. PM and ER organize specialized junctions. Here, many components of the receptor-dependent Ca 2+ signals are clustered, including the ORAI1-stromal interaction molecule 1 complex. This complex constitutes a primary mechanism for Ca 2+ entry into non-excitable cells, modulated by intracellular Ca 2+ . Several contact sites between the ER and mitochondria, termed mitochondria-associated membranes, show a very complex and specialized structure and host a wide number of proteins that regulate Ca 2+ transfer. In this review, we summarize current knowledge of the particular action of several oncogenes and tumor suppressors at these specialized check points and analyze anti-cancer therapies that specifically target Ca 2+ flow at the inter-organelle contacts to alter the metabolism and fate of the cancer cell.
Jin, Hui; Gui, Rijun; Gong, Jun; Huang, Wenxue
2017-06-15
In this article, Ag 2 S quantum dots (QDs) were prepared by a facile aqueous synthesis method, using thiourea as a new sulfur precursor. Based on electrostatic interactions, 5-fluorouracil (5-Fu) was combined with the aptamer of CA125 antigen to fabricate aptamer/5-Fu complex. The surface of as-prepared Ag 2 S QDs was modified with polyethylenimine, followed by combination with the aptamer/5-Fu complex to form Ag 2 S QDs/aptamer/5-Fu hybrids. During the combination of Ag 2 S QDs with aptamer/5-Fu complex, near-infrared (NIR) photoluminescence (PL) of QDs (peaked at 850nm) was markedly reduced under excitation at 625nm, attributed to photo-induced electron transfer from QDs to 5-Fu. However, the addition of CA125 induced obvious NIR PL recovery, which was ascribed to the strong binding affinity of CA125 with its aptamer, and the separation of aptamer/5-Fu complex from the surface of QDs. Hence, the Ag 2 S QDs/aptamer/5-Fu hybrids were developed as a novel NIR PL turn-on probe of CA125. In the concentration range of [CA125] from 0.1 to 10 6 ngmL -1 , there were a good linear relationship between NIR PL intensities of Ag 2 S QDs and Log[CA125], and a low limit of detection of 0.07ngmL -1 . Experimental results revealed the highly selective and sensitive NIR PL responses of this probe to CA125, over other potential interferences. In real human body fluids, this probe also exhibited superior analytical performance, together with high detection recoveries. Copyright © 2016 Elsevier B.V. All rights reserved.
Ca2+-Citrate Uptake and Metabolism in Lactobacillus casei ATCC 334
Mortera, Pablo; Pudlik, Agata; Magni, Christian; Alarcón, Sergio
2013-01-01
The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca2+ and not as free citrate or the Mg2+-citrate complex, thereby identifying Ca2+-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca2+ and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca2+-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca2+-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca2+-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca2+-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages. PMID:23709502
Najafpour, Mohammad Mahdi
2011-06-01
In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn(3+) in a distorted octahedral environment and eight-coordinate Ca(2+) centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn₂O₄), pyrolusite (MnO₂) and compared with hollandite (Ba(0.2)Ca(0.15)K(0.3)Mn(6.9)Al(0.2)Si(0.3)O(16)), hausmannite (Mn₃O₄), Mn₂O₃.H₂O, Ca Mn₃O₆.H₂O, CaMn₄O₈.H₂O, CaMn₂O₄.H₂O and synthetic marokite (CaMn₂O₄). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.
Sarazin, Yann; Howard, Ruth H; Hughes, David L; Humphrey, Simon M; Bochmann, Manfred
2006-01-14
The reactions of the bulky amino-bis(phenol) ligand Me(2)NCH(2)CH(2)N[CH(2)-3,5-Bu(t)(2)-C(6)H(2)OH-2](2)(1-H(2)) with Zn[N(SiMe(3))(2)](2)(4), [Mg[N(SiMe(3))(2)](2)](2)(5) and Ca[N(SiMe(3))(2)](2)(THF)(2)(6) yield the complexes 1-Zn, 1-Mg and 1-Ca in good yields. The X-ray structure of 1-Ca showed the complex to be dimeric, with calcium in a distorted octahedral coordination geometry. Five of the positions are occupied by an N(2)O(3) donor set, while the sixth is taken up by an intramolecular close contact to an o-Bu(t) substituent, a rare case of a Ca...H-C agostic interaction (Ca...H distances of 2.37 and 2.41 Angstroms). Another sterically hindered calcium complex, Ca[2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)O](2)(THF)(2).(C(7)H(8))(2/3)(7), was prepared by reaction of 6 with the iminophenol 2-Bu(t)-6-(C(6)F(5)N=CH)C(6)H(3)OH (3-H). According to the crystal structure 7 is monomeric and octahedral, with trans THF ligands. The complex Ti[N[CH(2)-3-Bu(t)-5-Me-C(6)H(2)O-2](2)[CH(2)CH(2)NMe(2)
Abete Fornara, Giorgia; Di Cristofori, Andrea; Bertani, Giulio Andrea; Carrabba, Giorgio; Zarino, Barbara
2018-06-01
Constructional apraxia (CA) is a neuropsychological impairment of either basic perceptual and motor abilities or executive functions, in the absence of any kind of motor or perceptual deficit. Considering patients with focal brain tumors, CA is common in left or right parietal and parieto-occipital lesions. In neuropsychology, the Rey-Osterrieth Complex Figure Test (ROCFT; or parallel forms) is commonly used for the assessment of CA. This study stems from a clinical observation of a difficulty with CA tests for the majority of older neurosurgical patients without occipitoparietal lesions. Patients were tested at 3 points: before surgery, 3 months after surgery, and 12 months after surgery. Thirty patients (15 meningiomas and 15 glioblastomas) were studied retrospectively. Older patients with focal brain lesions, regardless of the nature of the tumor, performed poorly at CA tests. More than 50% of patients obtained pathologic results at all 3 times considered. Our findings suggest that as CA complex tests involve multiple domains, poor results in copy task may reflect a global cognitive deficit of older patients with tumors, without a specific constructional praxis deficit. CA complex tests (such as the ROCFT) do not give significant informations about visuo-constructional abilities. Copyright © 2018 Elsevier Inc. All rights reserved.
Campbell, Ian W
2016-07-01
During the 1640s, the Irish Franciscan theologian John Punch taught his theology students in Rome that war against Protestants was made just by their religion alone. Jesuits like Luis de Molina identified the holy war tradition in which Punch stood as a Scotist one, and insisted that the Scotists had confused the natural and supernatural spheres. Among Irishmen, Punch was unusual. The main Irish Catholic revolutionary tradition employed Jesuit and Thomist theory. They argued that the Stuarts had lost the right to rule Ireland for natural reasons, not supernatural ones; because the Stuarts were tyrants, not because they were Protestants.
Stein, Colleen S; Jadiya, Pooja; Zhang, Xiaoming; McLendon, Jared M; Abouassaly, Gabrielle M; Witmer, Nathan H; Anderson, Ethan J; Elrod, John W; Boudreau, Ryan L
2018-06-26
Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca 2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca 2+ . Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca 2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Lu, Wei; Khatri, Latika; Ziff, Edward B.
2014-01-01
The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca2+ permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca2+ permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca2+ release from internal stores, the activity of Ca2+/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca2+ release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca2+ dynamics and CaMKII activity. PMID:24831007
Trifluoperazine Regulation of Calmodulin Binding to Fas: A Computational Study
Pan, Di; Yan, Qi; Chen, Yabing; McDonald, Jay M; Song, Yuhua
2011-01-01
Death-inducing signaling complex (DISC) formation is a critical step in Fas-mediated signaling for apoptosis. Previous experiments have demonstrated that the calmodulin (CaM) antagonist, trifluoperazine (TFP) regulates CaM-Fas binding and affects Fas-mediated DISC formation. In this study, we investigated the anti-cooperative characteristics of TFP binding to CaM and the effect of TFP on the CaM-Fas interaction from both structural and thermodynamic perspectives using combined molecular dynamics simulations and binding free energy analyses. We studied the interactions of different numbers of TFP molecules with CaM and explored the effects of the resulting conformational changes in CaM on CaM-Fas binding. Results from these analyses showed that the number of TFP molecules bound to CaM directly influenced α-helix formation and hydrogen bond occupancy within the α-helices of CaM, contributing to the conformational and motion changes in CaM. These changes affected CaM binding to Fas, resulting in secondary structural changes in Fas and conformational and motion changes of Fas in CaM-Fas complexes, potentially perturbing the recruitment of Fas-associated death domain (FADD) for DISC formation. The computational results from this study reveal the structural and molecular mechanisms that underlie the role of the CaM antagonist, TFP, in regulation of CaM-Fas binding and Fas-mediated DISC formation in a concentration-dependent manner. PMID:21656570
Calcium-independent metal-ion catalytic mechanism of anthrax edema factor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Yuequan; Zhukovskaya, Natalia L.; Guo, Qing
2009-11-18
Edema factor (EF), a key anthrax exotoxin, has an anthrax protective antigen-binding domain (PABD) and a calmodulin (CaM)-activated adenylyl cyclase domain. Here, we report the crystal structures of CaM-bound EF, revealing the architecture of EF PABD. CaM has N- and C-terminal domains and each domain can bind two calcium ions. Calcium binding induces the conformational change of CaM from closed to open. Structures of the EF-CaM complex show how EF locks the N-terminal domain of CaM into a closed conformation regardless of its calcium-loading state. This represents a mechanism of how CaM effector alters the calcium affinity of CaM andmore » uncouples the conformational change of CaM from calcium loading. Furthermore, structures of EF-CaM complexed with nucleotides show that EF uses two-metal-ion catalysis, a prevalent mechanism in DNA and RNA polymerases. A histidine (H351) further facilitates the catalysis of EF by activating a water to deprotonate 3'OH of ATP. Mammalian adenylyl cyclases share no structural similarity with EF and they also use two-metal-ion catalysis, suggesting the catalytic mechanism-driven convergent evolution of two structurally diverse adenylyl cyclases.« less
Role of Cyclin E as an Early Event in Ovarian Carcinogenesis
2012-04-01
degradation . P27 is a powerful negative regulator of the cell cycle, preventing activation of cyclin E- cdk2 or cyclin D-cdk4 complexes and cell cycle...Ahmed M, Bavi P, et al. Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer. Cancer Res...CA1251CA72·4 CA 125 CA72-4 M-CSF CA 125/CA 72-4/M-CSFICA 15-3 CA125 CA 125/mesothelin CA 125/IL·6JIL·8NEGF;EGF CA 125/IL-6,G-CSFNEGF/EGF Leptin
Processing of simple and complex acoustic signals in a tonotopically organized ear
Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela
2014-01-01
Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727
New insight into the ternary complexes of uranyl carbonate in seawater.
Beccia, M R; Matara-Aho, M; Reeves, B; Roques, J; Solari, P L; Monfort, M; Moulin, C; Den Auwer, C
2017-11-01
Uranium is naturally present in seawater at trace levels and may in some cases be present at higher concentrations, due to anthropogenic nuclear activities. Understanding uranium speciation in seawater is thus essential for predicting and controlling its behavior in this specific environmental compartment and consequently, its possible impact on living organisms. The carbonato calcic complex Ca 2 UO 2 (CO 3 ) 3 was previously identified as the main uranium species in natural seawater, together with CaUO 2 (CO 3 ) 3 2- . In this work, we further investigate the role of the alkaline earth cation in the structure of the ternary uranyl-carbonate complexes. For this purpose, artificial seawater, free of Mg 2+ and Ca 2+ , using Sr 2+ as a spectroscopic probe was prepared. Combining TRLIF and EXAFS spectroscopy, together with DFT and theoretical thermodynamic calculations, evidence for the presence of Sr alkaline earth counter ion in the complex structure can be asserted. Furthermore, data suggest that when Ca 2+ is replaced by Sr 2+ , SrUO 2 (CO 3 ) 3 2- is the main complex in solution and it occurs with the presence of at least one monodentate carbonate in the uranyl coordination sphere. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2017-05-01
The complex relative dielectric function ɛ*(ω)=ɛ'-jɛ″ of the binary mixture of 2-chloroaniline(2-CA) and methanol (MeOH) were measured using precision LCR meter in the frequency range of 10 KHz to 2 MHz The measurements were carried out at eight different temperatures and five different concentrations of 2-CA and MeOH. The loss tangent peaks were observed in the studied frequency range for all the binary mixtures. From the loss tangent peaks electrode polarization relaxation time were evaluated. In the plot of real part of complex permittivity against frequency, at different temperatures for 2-CA (54.54%) + MeOH (45.45%) and 2-CA (27.27%) + MeOH (72.72%)and 100% MeOH systems permittivity inversion effect was observed.
Fromm, Steffanie; Senkler, Jennifer; Eubel, Holger; Peterhänsel, Christoph; Braun, Hans-Peter
2016-01-01
The mitochondrial NADH dehydrogenase complex (complex I) is of particular importance for the respiratory chain in mitochondria. It is the major electron entry site for the mitochondrial electron transport chain (mETC) and therefore of great significance for mitochondrial ATP generation. We recently described an Arabidopsis thaliana double-mutant lacking the genes encoding the carbonic anhydrases CA1 and CA2, which both form part of a plant-specific ‘carbonic anhydrase domain’ of mitochondrial complex I. The mutant lacks complex I completely. Here we report extended analyses for systematically characterizing the proteome of the ca1ca2 mutant. Using various proteomic tools, we show that lack of complex I causes reorganization of the cellular respiration system. Reduced electron entry into the respiratory chain at the first segment of the mETC leads to induction of complexes II and IV as well as alternative oxidase. Increased electron entry at later segments of the mETC requires an increase in oxidation of organic substrates. This is reflected by higher abundance of proteins involved in glycolysis, the tricarboxylic acid cycle and branched-chain amino acid catabolism. Proteins involved in the light reaction of photosynthesis, the Calvin cycle, tetrapyrrole biosynthesis, and photorespiration are clearly reduced, contributing to the significant delay in growth and development of the double-mutant. Finally, enzymes involved in defense against reactive oxygen species and stress symptoms are much induced. These together with previously reported insights into the function of plant complex I, which were obtained by analysing other complex I mutants, are integrated in order to comprehensively describe ‘life without complex I’. PMID:27122571
Pawluski, J L; Valença, A; Santos, A I M; Costa-Nunes, J P; Steinbusch, H W M; Strekalova, T
2012-12-27
Pregnancy is a time of distinct neural, physiological and behavioral plasticity in the female. It is also a time when a growing number of women are vulnerable to stress and experience stress-related diseases, such as depression and anxiety. However, the impact of stress during gestation on the neurobiology of the mother has yet to be determined, particularly with regard to changes in the hippocampus; a brain area that plays an important role in stress-related diseases. Therefore, the aim of the present study was to understand how stress and reproductive state may alter dendritic morphology of CA1 and CA3 pyramidal neurons in the hippocampus. To do this, adult age-matched pregnant and virgin female Wistar rats were divided into two conditions: (1) control and (2) stress. Females in the stress condition were restrained for 1h/day for the last 2 weeks of gestation and at matched time-points in virgin females. Females were sacrificed the day after the last restraint session and brains were processed for Golgi impregnation. Dendritic length and number of branch points were quantified for apical and basal regions of CA1 and CA3 pyramidal neurons. Results show that regardless of reproductive state, stressed females had significantly shorter apical dendrites and fewer apical branch points in CA3 pyramidal cells. In addition, pregnant females, regardless of stress exposure, had less complex CA3 pyramidal neurons, as measured by Sholl analysis. No differences between conditions were seen in morphology of CA1 pyramidal neurons. This work shows that both repeated restraint stress and pregnancy affect dendritic morphology by decreasing complexity of CA3, but not CA1, neurons in the hippocampus. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Noether charge, black hole volume, and complexity
NASA Astrophysics Data System (ADS)
Couch, Josiah; Fischler, Willy; Nguyen, Phuc H.
2017-03-01
In this paper, we study the physical significance of the thermodynamic volumes of AdS black holes using the Noether charge formalism of Iyer and Wald. After applying this formalism to study the extended thermodynamics of a few examples, we discuss how the extended thermodynamics interacts with the recent complexity = action proposal of Brown et al. (CA-duality). We, in particular, discover that their proposal for the late time rate of change of complexity has a nice decomposition in terms of thermodynamic quantities reminiscent of the Smarr relation. This decomposition strongly suggests a geometric, and via CA-duality holographic, interpretation for the thermodynamic volume of an AdS black hole. We go on to discuss the role of thermodynamics in complexity = action for a number of black hole solutions, and then point out the possibility of an alternate proposal, which we dub "complexity = volume 2.0". In this alternate proposal the complexity would be thought of as the spacetime volume of the Wheeler-DeWitt patch. Finally, we provide evidence that, in certain cases, our proposal for complexity is consistent with the Lloyd bound whereas CA-duality is not.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.
2011-05-01
Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.
The complex of xylan and iodine: the induction and detection of nanoscale order
Xiaochun Yu; Rajai H. Atalla
2005-01-01
The complex of xylan and iodine and its formation in a solution of xylan, CaCl2, and I2 + KI was investigated by UV/Vis, second-derivative UV/Vis, and Raman spectroscopy. The complex forms only at very high concentrations of CaCl2, suggesting that when the water available in the solution is not sufficient to fully hydrate the calcium cation the chelation with the...
Diversity and potential impact of Calonectria species in Eucalyptus plantations in Brazil
Alfenas, R.F.; Lombard, L.; Pereira, O.L.; Alfenas, A.C.; Crous, P.W.
2015-01-01
Species in the genus Calonectria (Hypocreales) represent an important group of plant pathogenic fungi that cause serious losses to plant crops in tropical and subtropical climates. Calonectria leaf blight is currently one of the main impediments to Eucalyptus cultivation in Brazil, and various species of Calonectria have been associated with this disease. Since most previous identifications were solely based on morphological characters, much of the published literature needs to be re-evaluated. The aim of this study was thus to identify and determine the phylogenetic relationships among species that occur in the Eucalyptus growing regions of Brazil by using partial sequences of the β-tubulin, calmodulin, translation elongation factor 1-α and histone H3 gene regions. Based on extensive collections from soil and infected eucalypt leaf samples from plantations, phylogenetic inference revealed the Ca. pteridis complex to be the most common species complex present in Eucalyptus plantations in Brazil. By elucidating taxa in the Ca. pteridis, Ca. cylindrospora and Ca. candelabra species complexes, 20 novel Calonectria species were identified, and a new name in Calonectria provided for Cylindrocladium macrosporum as Ca. pseudopteridis. PMID:26955192
Diversity and potential impact of Calonectria species in Eucalyptus plantations in Brazil.
Alfenas, R F; Lombard, L; Pereira, O L; Alfenas, A C; Crous, P W
2015-03-01
Species in the genus Calonectria (Hypocreales) represent an important group of plant pathogenic fungi that cause serious losses to plant crops in tropical and subtropical climates. Calonectria leaf blight is currently one of the main impediments to Eucalyptus cultivation in Brazil, and various species of Calonectria have been associated with this disease. Since most previous identifications were solely based on morphological characters, much of the published literature needs to be re-evaluated. The aim of this study was thus to identify and determine the phylogenetic relationships among species that occur in the Eucalyptus growing regions of Brazil by using partial sequences of the β-tubulin, calmodulin, translation elongation factor 1-α and histone H3 gene regions. Based on extensive collections from soil and infected eucalypt leaf samples from plantations, phylogenetic inference revealed the Ca. pteridis complex to be the most common species complex present in Eucalyptus plantations in Brazil. By elucidating taxa in the Ca. pteridis, Ca. cylindrospora and Ca. candelabra species complexes, 20 novel Calonectria species were identified, and a new name in Calonectria provided for Cylindrocladium macrosporum as Ca. pseudopteridis.
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
James, Declan J; Kowalchyk, Judith; Daily, Neil; Petrie, Matt; Martin, Thomas F J
2009-10-13
Ca(2+)-dependent activator protein for secretion (CAPS) is an essential factor for regulated vesicle exocytosis that functions in priming reactions before Ca(2+)-triggered fusion of vesicles with the plasma membrane. However, the precise events that CAPS regulates to promote vesicle fusion are unclear. In the current work, we reconstituted CAPS function in a SNARE-dependent liposome fusion assay using VAMP2-containing donor and syntaxin-1/SNAP-25-containing acceptor liposomes. The CAPS stimulation of fusion required PI(4,5)P(2) in acceptor liposomes and was independent of Ca(2+), but Ca(2+) dependence was restored by inclusion of synaptotagmin. CAPS stimulated trans-SNARE complex formation concomitant with the stimulation of full membrane fusion at physiological SNARE densities. CAPS bound syntaxin-1, and CAPS truncations that competitively inhibited syntaxin-1 binding also inhibited CAPS-dependent fusion. The results revealed an unexpected activity of a priming protein to accelerate fusion by efficiently promoting trans-SNARE complex formation. CAPS may function in priming by organizing SNARE complexes on the plasma membrane.
Preparation and bioavailability of calcium-chelating peptide complex from tilapia skin hydrolysates.
Chen, Jun; Qiu, Xujian; Hao, Gengxin; Zhang, Meng; Weng, Wuyin
2017-11-01
With the continuous improvement in material life, the generation of fish by-products and the market demand for calcium supplements have been increasing in China. Therefore a calcium-chelating peptide complex (CPC) from tilapia skins was prepared and its effect on calcium (Ca)-deficient mice was investigated. The molecular weight distribution of CPC mainly ranged from 2000 to 180 Da, and its contents of complete amino acids and free amino acids were 85.30 and 8.67% (w/w) respectively. Scanning electron microscopy images and Fourier transform infrared data revealed that Ca crystals were bound with gelatin hydrolysates via interaction between Ca ions and NH/CN groups. When Ca-deficient mice were fed CPC and CaCO 3 respectively for 4 weeks, no significant differences in serum biochemistry or bone mineral density were found. However, the length, weight, Ca content and hydroxyproline content of the femur, Ca absorption and body weight gain of mice fed CPC were significantly higher than those of mice fed CaCO 3 . It is concluded that the prepared CPC could promote bone formation via better bioavailability of Ca and an increase in bone collagen. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Sol-Gel-Synthesis of Nanoscopic Complex Metal Fluorides
Rehmer, Alexander; Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard
2017-01-01
The fluorolytic sol-gel synthesis for binary metal fluorides (AlF3, CaF2, MgF2) has been extended to ternary and quaternary alkaline earth metal fluorides (CaAlF5, Ca2AlF7, LiMgAlF6). The formation and crystallization of nanoscopic ternary CaAlF5 and Ca2AlF7 sols in ethanol were studied by 19F liquid and solid state NMR (nuclear magnetic resonance) spectroscopy, as well as transmission electron microscopy (TEM). The crystalline phases of the annealed CaAlF5, Ca2AlF7, and LiMgAlF6 xerogels between 500 and 700 °C could be determined by X-ray powder diffraction (XRD) and 19F solid state NMR spectroscopy. The thermal behavior of un-annealed nanoscopic ternary and quaternary metal fluoride xerogels was ascertained by thermal analysis (TG/DTA). The obtained crystalline phases of CaAlF5 and Ca2AlF7 derived from non-aqueous sol-gel process were compared to crystalline phases from the literature. The corresponding nanoscopic complex metal fluoride could provide a new approach in ceramic and luminescence applications. PMID:29099086
NASA Astrophysics Data System (ADS)
Takahashi, Kazuki; Tsunogae, Toshiaki; Santosh, M.; Takamura, Yusuke; Tsutsumi, Yukiyasu
2018-05-01
The Lützow-Holm Complex (LHC) of East Antarctica forms a part of the latest Neoproterozoic-Cambrian high-grade metamorphic segment of the East African-Antarctic Orogen. Here we present new petrological, geochemical, and zircon U-Pb geochronological data on meta-igneous rocks from four localities (Austhovde, Telen, Skallevikshalsen, and Skallen) in the LHC, and evaluate the regional Paleoproterozoic (ca. 1.8 Ga) arc magmatism in this terrane for the first time. The geochemical features reveal a volcanic-arc affinity for most of the meta-igneous rocks from Austhovde and Telen, suggesting that the protoliths of these rocks were derived from felsic to mafic arc magmatic rocks. The protoliths of two mafic granulites from Austhovde are inferred as non-volcanic-arc basalt such as E-MORB, suggesting the accretion of remnant oceanic lithosphere together with the volcanic-arc components during the subduction-collision events. The weighted mean 206Pb/238U ages of the dominant population of magmatic zircons in felsic orthogneisses from Austhovde and Telen show 1819 ± 19 Ma and 1830 ± 10 Ma, respectively, corresponding to Paleoproterozoic magmatic event. The magmatic zircons in orthogneisses from other two localities yield upper intercept ages of 1837 ± 54 Ma (Skallevikshalsen), and 1856 ± 37 Ma and 1854 ± 45 Ma (Skallen), which also support Paleoproterozoic magmatism. The earlier thermal events during Neoarchean to Early Paleoproterozoic are also traced by 206Pb/238U ages of xenocrystic zircons in the felsic orthogneisses from Austhovde (2517 ± 17 Ma and 2495 ± 15 Ma) and Telen (2126 ± 16 Ma), suggesting partial reworking of the basement of a 2.5 Ga microcontinent during ca. 1.8 Ga continental-arc magmatism. The timing of peak metamorphism is inferred to be in the range of 645.6 ± 10.4 to 521.4 ± 12.0 Ma based on 206Pb/238U weighted mean ages of metamorphic zircon grains. The results of this study, together with the available magmatic ages as well as geophysical and lithological data from the region, suggest that the LHC can be divided into three units: Neoarchean (ca. 2.5 Ga) unit in the southern LHC (Shirase Orthogneiss or "Shirase microcontinent"), Neoproterozoic (ca. 1.0 Ga) unit in the northern LHC, and supracrustal unit in the central LHC with fragments of Paleoproterozoic (ca. 1.8 Ga) and minor Neoarchean (ca. 2.5 Ga) and Neoproterozoic (ca. 1.0 Ga) magmatic arcs. The 1.8 Ga arc magmatism inferred in this study has also been reported from adjacent Gondwana fragments such as the Highland Complex in Sri Lanka, and the Trivandrum and Nagercoil Blocks in southern India. Although the ca. 1.8 Ga arc-magmatic event is coeval in these regions, the Paleoproterozoic supracrustal unit in the central LHC may not be contiguous with those in the Highland Complex of Sri Lanka because recent studies have shown that the Vijayan Complex in Sri Lanka and the ca. 1.0 Ga northern LHC possibly were part of a single crustal unit (northern Lützow-Holm-Vijayan Complex) within the Kalahari Block. The supracrustal unit possibly marks part of a discrete suture formed by the collision of the ca. 2.5 Ga southern LHC (Shirase microcontinent) and the ca. 1.0 Ga northern Lützow-Holm-Vijayan Complex during the latest Neoproterozoic-Cambrian Gondwana amalgamation, which might be coeval with the collision of the Vijayan and Wanni Complexes and the formation of the Highland Complex in Sri Lanka. Our study provides new insights on crustal growth and terrane assembly in the ancient continental blocks of Gondwana.
Zhu, Xiaojing; He, Jiangtao; Su, Sihui; Zhang, Xiaoliang; Wang, Fei
2016-05-01
To explore the interactions between soil organic matter and minerals, humic acid (HA, as organic matter), kaolin (as a mineral component) and Ca(2+) (as metal ions) were used to prepare HA-kaolin and Ca-HA-kaolin complexes. These complexes were used in trichloroethylene (TCE) sorption experiments and various characterizations. Interactions between HA and kaolin during the formation of their complexes were confirmed by the obvious differences between the Qe (experimental sorbed TCE) and Qe_p (predicted sorbed TCE) values of all detected samples. The partition coefficient kd obtained for the different samples indicated that both the organic content (fom) and Ca(2+) could significantly impact the interactions. Based on experimental results and various characterizations, a concept model was developed. In the absence of Ca(2+), HA molecules first patched onto charged sites of kaolin surfaces, filling the pores. Subsequently, as the HA content increased and the first HA layer reached saturation, an outer layer of HA began to form, compressing the inner HA layer. As HA loading continued, the second layer reached saturation, such that an outer-third layer began to form, compressing the inner layers. In the presence of Ca(2+), which not only can promote kaolin self-aggregation but can also boost HA attachment to kaolin, HA molecules were first surrounded by kaolin. Subsequently, first and second layers formed (with inner layer compression) via the same process as described above in the absence of Ca(2+), except that the second layer continued to load rather than reach saturation, within the investigated conditions, because of enhanced HA aggregation caused by Ca(2+). Copyright © 2016 Elsevier Ltd. All rights reserved.
Glukhov, Alexey V.; Kalyanasundaram, Anuradha; Lou, Qing; Hage, Lori T.; Hansen, Brian J.; Belevych, Andriy E.; Mohler, Peter J.; Knollmann, Björn C.; Periasamy, Muthu; Györke, Sandor; Fedorov, Vadim V.
2015-01-01
Aims Loss-of-function mutations in Calsequestrin 2 (CASQ2) are associated with catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT patients also exhibit bradycardia and atrial arrhythmias for which the underlying mechanism remains unknown. We aimed to study the sinoatrial node (SAN) dysfunction due to loss of CASQ2. Methods and results In vivo electrocardiogram (ECG) monitoring, in vitro high-resolution optical mapping, confocal imaging of intracellular Ca2+ cycling, and 3D atrial immunohistology were performed in wild-type (WT) and Casq2 null (Casq2−/−) mice. Casq2−/− mice exhibited bradycardia, SAN conduction abnormalities, and beat-to-beat heart rate variability due to enhanced atrial ectopic activity both at baseline and with autonomic stimulation. Loss of CASQ2 increased fibrosis within the pacemaker complex, depressed primary SAN activity, and conduction, but enhanced atrial ectopic activity and atrial fibrillation (AF) associated with macro- and micro-reentry during autonomic stimulation. In SAN myocytes, CASQ2 deficiency induced perturbations in intracellular Ca2+ cycling, including abnormal Ca2+ release, periods of significantly elevated diastolic Ca2+ levels leading to pauses and unstable pacemaker rate. Importantly, Ca2+ cycling dysfunction occurred not only at the SAN cellular level but was also globally manifested as an increased delay between action potential (AP) and Ca2+ transient upstrokes throughout the atrial pacemaker complex. Conclusions Loss of CASQ2 causes abnormal sarcoplasmic reticulum Ca2+ release and selective interstitial fibrosis in the atrial pacemaker complex, which disrupt SAN pacemaking but enhance latent pacemaker activity, create conduction abnormalities and increase susceptibility to AF. These functional and extensive structural alterations could contribute to SAN dysfunction as well as AF in CPVT patients. PMID:24216388
Synthesis of Ca(PF6)2, formed via nitrosonium oxidation of calcium.
Keyzer, Evan N; Matthews, Peter D; Liu, Zigeng; Bond, Andrew D; Grey, Clare P; Wright, Dominic S
2017-04-20
The development of rechargeable Ca-ion batteries as an alternative to Li systems has been limited by the availability of suitable electrolyte salts. We present the synthesis of complexes of Ca(PF 6 ) 2 (a key potential Ca battery electrolyte salt) via the treatment of Ca metal with NOPF 6 , and explore their conversion to species containing PO 2 F 2 - under the reaction conditions.
Structural Mapping Along the Central San Andreas Fault-zone Using Airborne Electromagnetics
NASA Astrophysics Data System (ADS)
Zamudio, K. D.; Bedrosian, P.; Ball, L. B.
2017-12-01
Investigations of active fault zones typically focus on either surface expressions or the associated seismogenic zones. However, the largely aseismic upper kilometer can hold significant insight into fault-zone architecture, strain partitioning, and fault-zone permeability. Geophysical imaging of the first kilometer provides a link between surface fault mapping and seismically-defined fault zones and is particularly important in geologically complex regions with limited surface exposure. Additionally, near surface imaging can provide insight into the impact of faulting on the hydrogeology of the critical zone. Airborne electromagnetic (AEM) methods offer a unique opportunity to collect a spatially-large, detailed dataset in a matter of days, and are used to constrain subsurface resistivity to depths of 500 meters or more. We present initial results from an AEM survey flown over a 60 kilometer long segment of the central San Andreas Fault (SAF). The survey is centered near Parkfield, California, the site of the SAFOD drillhole, which marks the transition between a creeping fault segment to the north and a locked zone to the south. Cross sections with a depth of investigation up to approximately 500 meters highlight the complex Tertiary and Mesozoic geology that is dismembered by the SAF system. Numerous fault-parallel structures are imaged across a more than 10 kilometer wide zone centered on the surface trace. Many of these features can be related to faults and folds within Plio-Miocene sedimentary rocks found on both sides of the fault. Northeast of the fault, rocks of the Mesozoic Franciscan and Great Valley complexes are extremely heterogeneous, with highly resistive volcanic rocks within a more conductive background. The upper 300 meters of a prominent fault-zone conductor, previously imaged to 1-3 kilometers depth by magnetotellurics, is restricted to a 20 kilometer long segment of the fault, but is up to 4 kilometers wide in places. Elevated fault-zone conductivity may be related to damage within the fault zone, Miocene marine shales, or some combination of the two.
Structural basis and energy landscape for the Ca2+ gating and calmodulation of the Kv7.2 K+ channel
Villarroel, Álvaro; Millet, Oscar
2018-01-01
The Kv7.2 (KCNQ2) channel is the principal molecular component of the slow voltage-gated, noninactivating K+ M-current, a key controller of neuronal excitability. To investigate the calmodulin (CaM)-mediated Ca2+ gating of the channel, we used NMR spectroscopy to structurally and dynamically describe the association of helices hA and hB of Kv7.2 with CaM, as a function of Ca2+ concentration. The structures of the CaM/Kv7.2-hAB complex at two different calcification states are reported here. In the presence of a basal cytosolic Ca2+ concentration (10–100 nM), only the N-lobe of CaM is Ca2+-loaded and the complex (representative of the open channel) exhibits collective dynamics on the millisecond time scale toward a low-populated excited state (1.5%) that corresponds to the inactive state of the channel. In response to a chemical or electrical signal, intracellular Ca2+ levels rise up to 1–10 μM, triggering Ca2+ association with the C-lobe. The associated conformational rearrangement is the key biological signal that shifts populations to the closed/inactive channel. This reorientation affects the C-lobe of CaM and both helices in Kv7.2, allosterically transducing the information from the Ca2+-binding site to the transmembrane region of the channel. PMID:29463698
Structural basis and energy landscape for the Ca2+ gating and calmodulation of the Kv7.2 K+ channel.
Bernardo-Seisdedos, Ganeko; Nuñez, Eider; Gomis-Perez, Carolina; Malo, Covadonga; Villarroel, Álvaro; Millet, Oscar
2018-03-06
The Kv7.2 (KCNQ2) channel is the principal molecular component of the slow voltage-gated, noninactivating K + M-current, a key controller of neuronal excitability. To investigate the calmodulin (CaM)-mediated Ca 2+ gating of the channel, we used NMR spectroscopy to structurally and dynamically describe the association of helices h A and h B of Kv7.2 with CaM, as a function of Ca 2+ concentration. The structures of the CaM/Kv7.2-hAB complex at two different calcification states are reported here. In the presence of a basal cytosolic Ca 2+ concentration (10-100 nM), only the N-lobe of CaM is Ca 2+ -loaded and the complex (representative of the open channel) exhibits collective dynamics on the millisecond time scale toward a low-populated excited state (1.5%) that corresponds to the inactive state of the channel. In response to a chemical or electrical signal, intracellular Ca 2+ levels rise up to 1-10 μM, triggering Ca 2+ association with the C-lobe. The associated conformational rearrangement is the key biological signal that shifts populations to the closed/inactive channel. This reorientation affects the C-lobe of CaM and both helices in Kv7.2, allosterically transducing the information from the Ca 2+ -binding site to the transmembrane region of the channel. Copyright © 2018 the Author(s). Published by PNAS.
Ca K-Edge XAS as a Probe of Calcium Centers in Complex Systems
Martin-Diaconescu, Vlad; Gennari, Marcello; Gerey, Bertrand; ...
2014-12-10
Calcium K-edge pre-edges coupled with TD-DFT theoretical calculation of spectra provide a powerful approach for the characterization of complex calcium centers in inorganic and bioinorganic chemistry. Herein, Ca K-edge X-ray absorption spectroscopy (XAS) is developed as a means to characterize the local environment of calcium centers. The spectra for six, seven, and eight coordinate inorganic and molecular calcium complexes were analyzed and determined to be primarily influenced by the coordination environment and site symmetry at the calcium center. The experimental results are closely correlated to time-dependent density functional theory (TD-DFT) calculations of the XAS spectra. The applicability of this methodologymore » to complex systems was investigated using structural mimics of the oxygen-evolving complex (OEC) of PSII. It was found that Ca K-edge XAS is a sensitive probe for structural changes occurring in the cubane heterometallic cluster due to Mn oxidation. Future applications to the OEC are discussed.« less
Berns, Veronica M; Fredrickson, Daniel C
2014-10-06
Interfaces between periodic domains play a crucial role in the properties of metallic materials, as is vividly illustrated by the way in which the familiar malleability of many metals arises from the formation and migration of dislocations. In complex intermetallics, such interfaces can occur as an integral part of the ground-state crystal structure, rather than as defects, resulting in such marvels as the NaCd2 structure (whose giant cubic unit cell contains more than 1000 atoms). However, the sources of the periodic interfaces in intermetallics remain mysterious, unlike the dislocations in simple metals, which can be associated with the exertion of physical stresses. In this Article, we propose and explore the concept of structural plasticity, the hypothesis that interfaces in complex intermetallic structures similarly result from stresses, but ones that are inherent in a defect-free parent structure, rather than being externally applied. Using DFT-chemical pressure analysis, we show how the complex structures of Ca2Ag7 (Yb2Ag7 type), Ca14Cd51 (Gd14Ag51 type), and the 1/1 Tsai-type quasicrystal approximant CaCd6 (YCd6 type) can all be traced to large negative pressures around the Ca atoms of a common progenitor structure, the CaCu5 type with its simple hexagonal 6-atom unit cell. Two structural paths are found by which the compounds provide relief to the Ca atoms' negative pressures: a Ca-rich pathway, where lower coordination numbers are achieved through defects eliminating transition metal (TM) atoms from the structure; and a TM-rich path, along which the addition of spacer Cd atoms provides the Ca coordination environments greater independence from each other as they contract. The common origins of these structures in the presence of stresses within a single parent structure highlights the diverse paths by which intermetallics can cope with competing interactions, and the role that structural plasticity may play in navigating this diversity.
Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Sickler, Robert R.; Criley, Coyn J.
2014-01-01
The determination of near‐surface (vadose zone and slightly below) fault locations and geometries is important because assessment of ground rupture, strong shaking, geologic slip rates, and rupture histories occurs at shallow depths. However, seismic imaging of fault zones at shallow depths can be difficult due to near‐surface complexities, such as weathering, groundwater saturation, massive (nonlayered) rocks, and vertically layered strata. Combined P‐ and S‐wave seismic‐refraction tomography data can overcome many of the near‐surface, fault‐zone seismic‐imaging problems because of differences in the responses of elastic (bulk and shear) moduli of P and S waves to shallow‐depth, fault‐zone properties. We show that high‐resolution refraction tomography images of P‐ to S‐wave velocity ratios (VP/VS) can reliably identify near‐surface faults. We demonstrate this method using tomography images of the San Andreas fault (SAF) surface‐rupture zone associated with the 18 April 1906 ∼M 7.9 San Francisco earthquake on the San Francisco peninsula in California. There, the SAF cuts through Franciscan mélange, which consists of an incoherent assemblage of greywacke, chert, greenstone, and serpentinite. A near‐vertical zone (∼75° northeast dip) of high P‐wave velocities (up to 3000 m/s), low S‐wave velocities (∼150–600 m/s), high VP/VS ratios (4–8.8), and high Poisson’s ratios (0.44–0.49) characterizes the main surface‐rupture zone to a depth of about 20 m and is consistent with nearby trench observations. We suggest that the combined VP/VSimaging approach can reliably identify most near‐surface fault zones in locations where many other seismic methods cannot be applied.
Kataev, Anatoly; Zherelova, Olga; Grishchenko, Valery
2016-12-01
Interaction of a HAMLET-like La-OA cytotoxic complex (human α-lactalbumin-oleic acid) and its constituents with the excitable plasmalemma of giant Chara corallina cells was investigated. The voltage-clamp technique was used to study Ca 2+ and Cl - transient currents in the plasmalemma of intact cells. The action of the complex and OA on the target cell membrane has a dose-dependent character. It was found that the La-OA complex has an inhibiting effect on Ca 2+ current across the plasmalemma, while α-lactalbumin alone does not affect the electrophysiological characteristics of the cellular membrane. However, oleic acid blocks Ca 2+ current across the plasmalemma. This is accompanied by the induction of a non-selective conductivity in the cellular membrane, a decrease in the resting potential and plasma membrane resistance of algal cells. We propose that the cytotoxicity of La-OA and other HAMLET-like complexes is determined by oleic acid acting as a blocker of potential-dependent Ca 2+ channels in the plasma membrane of target cells. The presented results show that the study model of green algae C. corallina cells plasmalemma is a convenient tool for the investigation of ion channels in many animal cells.
Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.
Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M
1999-04-01
In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, Tzvia I.; Goebel, Erich; Hariraju, Dinesh
Highlights: • Bordetella pertussis adenylate cyclase toxin modulates bi-lobal structure of CaM. • The structure and stability of the complex rely on intermolecular associations. • A novel mode of CaM-dependent activation of the adenylate cyclase toxin is proposed. - Abstract: Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved throughmore » its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD’s β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD’s β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (R{sub h}) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin’s role in stabilizing interactions between CyaA-ACD and N-CaM.« less
Moshirvaziri, Hana; Ramezan-Arab, Nima; Asgari, Shadnaz
2016-08-01
Cardiac arrest (CA) is the leading cause of death in the United States. Induction of hypothermia has been found to improve the functional recovery of CA patients after resuscitation. However, there is no clear guideline for the clinicians yet to determine the prognosis of the CA when patients are treated with hypothermia. The present work aimed at the development of a prognostic marker for the CA patients undergoing hypothermia. A quantitative measure of the complexity of Electroencephalogram (EEG) signals, called wavelet sub-band entropy, was employed to predict the patients' outcomes. We hypothesized that the EEG signals of the patients who survived would demonstrate more complexity and consequently higher values of wavelet sub-band entropies. A dataset of 16-channel EEG signals collected from CA patients undergoing hypothermia at Long Beach Memorial Medical Center was used to test the hypothesis. Following preprocessing of the signals and implementation of the wavelet transform, the wavelet sub-band entropies were calculated for different frequency bands and EEG channels. Then the values of wavelet sub-band entropies were compared among two groups of patients: survived vs. non-survived. Our results revealed that the brain high frequency oscillations (between 64100 Hz) captured from the inferior frontal lobes are significantly more complex in the CA patients who survived (p-value <; 0.02). Given that the non-invasive measurement of EEG is part of the standard clinical assessment for CA patients, the results of this study can enhance the management of the CA patients treated with hypothermia.
Francis, Ashwanth C; Melikyan, Gregory B
2018-04-11
The HIV-1 core consists of capsid proteins (CA) surrounding viral genomic RNA. After virus-cell fusion, the core enters the cytoplasm and the capsid shell is lost through uncoating. CA loss precedes nuclear import and HIV integration into the host genome, but the timing and location of uncoating remain unclear. By visualizing single HIV-1 infection, we find that CA is required for core docking at the nuclear envelope (NE), whereas early uncoating in the cytoplasm promotes proteasomal degradation of viral complexes. Only docked cores exhibiting accelerated loss of CA at the NE enter the nucleus. Interestingly, a CA mutation (N74D) altering virus engagement of host factors involved in nuclear transport does not alter the uncoating site at the NE but reduces the nuclear penetration depth. Thus, CA protects HIV-1 complexes from degradation, mediates docking at the nuclear pore before uncoating, and determines the depth of nuclear penetration en route to integration. Copyright © 2018 Elsevier Inc. All rights reserved.
Mitochondrial Ca2+ and Regulation of the Permeability Transition Pore
Hurst, Stephen; Hoek, Jan; Sheu, Shey-Shing
2017-01-01
The mitochondrial permeability transition pore was originally described in the 1970’s as a Ca2+ activated pore and has since been attributed to the pathogenesis of many diseases. Here we evaluate how each of the current models of the pore complex fit to what is known about how Ca2+ regulates the pore, and any insight that provides into the molecular identity of the pore complex. We also discuss the central role of Ca2+ in modulating the pore’s open probability by directly regulating processes, such as ATP/ADP balance through the tricarboxylic acid cycle, electron transport chain, and mitochondrial membrane potential. We review how Ca2+ influences second messengers such as reactive oxygen/nitrogen species production and polyphosphate formation. We discuss the evidence for how Ca2+ regulates post-translational modification of cyclophilin D including phosphorylation by glycogen synthase kinase 3 beta, deacetylation by sirtuins, and oxidation/nitrosylation of key residues. Lastly we introduce a novel view into how Ca2+ activated proteolysis through calpains in the mitochondria may be a driver of sustained pore opening during pathologies such as ischemia reperfusion injury. PMID:27497945
Labrude, Pierre
2006-06-01
The Baume du commandeur appears in France in 1694 in the Histoire générale des drogues... written by Pomet. It is a drug for healing wounds which also has numerous internal uses. Still present in formularies and occasionally used, its invention is attributed to Gaspard de Pernes, commander of the Order of Malta in Toul, in France, at this period. However, some observations have induced me to think that the drug originated in the Ottoman Empire at the end of the XVIlth century, and was derived from the Jerusalem Balsam of the Franciscans of St. Savior Monastery's pharmacy, in Jerusalem.
Identification of the Calmodulin-Binding Domains of Fas Death Receptor
Chang, Bliss J.; Samal, Alexandra B.; Vlach, Jiri; Fernandez, Timothy F.; Brooke, Dewey; Prevelige, Peter E.; Saad, Jamil S.
2016-01-01
The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas–mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209–239 (Fas-Pep1) and 251–288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD–CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway. PMID:26735300
Synthetic water soluble di-/tritopic molecular receptors exhibiting Ca2+/Mg2+ exchange.
Lavie-Cambot, Aurélie; Tron, Arnaud; Ducrot, Aurélien; Castet, Frédéric; Kauffmann, Brice; Beauté, Louis; Allouchi, Hassan; Pozzo, Jean-Luc; Bonnet, Célia S; McClenaghan, Nathan D
2017-05-23
Structural integration of two synthetic water soluble receptors for Ca 2+ and Mg 2+ , namely 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) and o-aminophenol-N,N,O-triacetic acid (APTRA), respectively, gave novel di- and tritopic ionophores (1 and 2). As Mg 2+ and Ca 2+ cannot be simultaneously complexed by the receptors, allosteric control of complexation results. Potentiometric measurements established stepwise protonation constants and showed high affinity for Ca 2+ (log K = 6.08 and 8.70 for 1 and 2, respectively) and an excellent selectivity over Mg 2+ (log K = 3.70 and 5.60 for 1 and 2, respectively), which is compatible with magnesium-calcium ion exchange. While ion-exchange of a single Mg 2+ for a single Ca 2+ is possible in both 1 and 2, the simultaneous binding of two Mg 2+ by 2 appears prohibitive for replacement of these two ions by a single Ca 2+ . Ion-binding and exchange was further rationalized by DFT calculations.
Nunes, Natália Moreira; Pacheco, Ana Flávia Coelho; Agudelo, Álvaro Javier Patiño; da Silva, Luis Henrique Mendes; Pinto, Maximiliano Soares; Hespanhol, Maria do Carmo; Pires, Ana Clarissa Dos Santos
2017-12-15
Cinnamic acid (CA) and methyl cinnamate (MC) have attracted interest of researchers because of their broad therapeutic functions. Here, we investigated the interaction of CA and MC with bovine serum albumin (BSA) at pH 3.5, 5.0, and 7.4 using fluorescence spectroscopy, differential scanning nanocalorimetry, and measurements of interfacial tension, size, and zeta potential. BSA formed a complex with the ligands with stoichiometry of approximately 1.0. At pH 7.4, CA-BSA complex formation was entropically driven. The interaction between MC and BSA was more favorable than with CA and was enthalpically driven under the same conditions. The pH played an important role in BSA conformation, which altered the manner in which it interacts with the ligands. Interestingly, both CA and MC had no effect on the surface tension of BSA/air interfaces. These data contribute to the knowledge of CA/MC-BSA interactions and provide important data for application in the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Architecture of the Synaptotagmin-SNARE Machinery for Neuronal Exocytosis
Zhou, Qiangjun; Lai, Ying; Bacaj, Taulant; Zhao, Minglei; Lyubimov, Artem Y.; Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Brewster, Aaron S.; Sauter, Nicholas K.; Cohen, Aina E.; Soltis, S. Michael; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Pfuetzner, Richard A.; Choi, Ucheor B.; Weis, William I.; Diao, Jiajie; Südhof, Thomas C.; Brunger, Axel T.
2015-01-01
Summary Synaptotagmin-1 and neuronal SNARE proteins play key roles in evoked synchronous neurotransmitter release. However, it is unknown how they cooperate to trigger synaptic vesicle fusion. Here we report atomic-resolution crystal structures of Ca2+- and Mg2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many sidechains. The structures revealed several interfaces, including a large, specific, Ca2+-independent, and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca2+-triggered neurotransmitter release in neuronal synapses and for Ca2+-triggered vesicle fusion in a reconstituted system. We propose that this interface forms prior to Ca2+-triggering, and moves en bloc as Ca2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces. PMID:26280336
Architecture of the synaptotagmin–SNARE machinery for neuronal exocytosis
Zhou, Qiangjun; Lai, Ying; Bacaj, Taulant; ...
2015-08-17
Synaptotagmin-1 and neuronal SNARE proteins have central roles in evoked synchronous neurotransmitter release; however, it is unknown how they cooperate to trigger synaptic vesicle fusion. We report atomic-resolution crystal structures of Ca 2+- and Mg 2+-bound complexes between synaptotagmin-1 and the neuronal SNARE complex, one of which was determined with diffraction data from an X-ray free-electron laser, leading to an atomic-resolution structure with accurate rotamer assignments for many side chains. The structures reveal several interfaces, including a large, specific, Ca 2+-independent and conserved interface. Tests of this interface by mutagenesis suggest that it is essential for Ca 2+-triggered neurotransmitter releasemore » in mouse hippocampal neuronal synapses and for Ca 2+-triggered vesicle fusion in a reconstituted system. Lastly, we propose that this interface forms before Ca 2+ triggering, moves en bloc as Ca 2+ influx promotes the interactions between synaptotagmin-1 and the plasma membrane, and consequently remodels the membrane to promote fusion, possibly in conjunction with other interfaces.« less
Decoding Ca2+ signals in plants
NASA Technical Reports Server (NTRS)
Sathyanarayanan, P. V.; Poovaiah, B. W.
2004-01-01
Different input signals create their own characteristic Ca2+ fingerprints. These fingerprints are distinguished by frequency, amplitude, duration, and number of Ca2+ oscillations. Ca(2+)-binding proteins and protein kinases decode these complex Ca2+ fingerprints through conformational coupling and covalent modifications of proteins. This decoding of signals can lead to a physiological response with or without changes in gene expression. In plants, Ca(2+)-dependent protein kinases and Ca2+/calmodulin-dependent protein kinases are involved in decoding Ca2+ signals into phosphorylation signals. This review summarizes the elements of conformational coupling and molecular mechanisms of regulation of the two groups of protein kinases by Ca2+ and Ca2+/calmodulin in plants.
Brocher, T.M.
2008-01-01
This article presents new empirical compressional and shear-wave velocity (Vp and Vs) versus depth relationships for the most common rock types in northern California. Vp versus depth relations were developed from borehole, laboratory, seismic refraction and tomography, and density measurements, and were converted to Vs versus depth relations using new empirical relations between Vp and Vs. The relations proposed here account for increasing overburden pressure but not for variations in other factors that can influence velocity over short distance scales, such as lithology, consolidation, induration, porosity, and stratigraphic age. Standard deviations of the misfits predicted by these relations thus provide a measure of the importance of the variability in Vp and Vs caused by these other factors. Because gabbros, greenstones, basalts, and other mafic rocks have a different Vp and Vs relationship than sedimentary and granitic rocks, the differences in Vs between these rock types at depths below 6 or 7 km are generally small. The new relations were used to derive the 2005 U.S. Geological Survey seismic velocity model for northern California employed in the broadband strong motion simulations of the 1989 Loma Prieta and 1906 San Francisco earthquakes; initial tests of the model indicate that the Vp model generally compares favorably to regional seismic tomography models but that the Vp and Vs values proposed for the Franciscan Complex may be about 5% too high.
NASA Astrophysics Data System (ADS)
Lacroix, B.; Hughes, J.; Lahfid, A.; Delchini, S.
2017-12-01
The thermal history of the Nacimiento block located within the Franciscan Complex (California, USA) has been previously proposed based on both vitrinite reflectance (Rm) and illite cristallinity methods (Underwood et al., 1995). These authors suggest that the Nacimiento block is locally perturbed by a thermal anomaly (up to 300ºC), probably caused by post-metamorphic hydrothermal activity linked to the emplacement of an Au-deposit: the Los Burros Gold deposit. Although both thermal anomaly and deposit seem spatially correlated, their relationship is still poorly constrained. Detailed geological and structural mapping within the Los Burros Mining District (LBMD) coupled with a thermal study was conducted to better understand processes responsible for the anomalous temperatures recorded near the deposit. The regional maximum temperature reached by metasediments from the Nacimiento block have been first investigated using the Raman Spectroscopy of Carbonaceous Materials (RSCM) method. In addition, through careful fluid-inclusion and stable isotopes (O and C) studies on the deposit, the temperature and the potential source of the fluid responsible for the Los Burros Au-deposit emplacement were investigated. RSCM technique confirms the presence of a thermal anomaly in the range 260-320ºC near LBMD. However, our structural and petrographic results suggest that the thermal anomaly is not correlated to a post-metamorphic hydrothermal overprint but rather to a late, transpressive deformation uplifting buried metamorphic rocks.
Ground-water resources in Mendocino County, California
Farrar, C.D.
1986-01-01
Mendocino County includes about 3,500 sq mi of coastal northern California. Groundwater is the main source for municipal and individual domestic water systems and contributes significantly to irrigation. Consolidated rocks of the Franciscan Complex are exposed over most of the county. The consolidated rocks are commonly dry and generally supply < 5 gal/min of water to wells. Unconsolidated fill in the inland valleys consists of gravel, sand, silt, and clay. Low permeability in the fill caused by fine grain size and poor sorting limits well yields to less than 50 gal/min in most areas; where the fill is better sorted, yields of 1,000 gal/min can be obtained. Storage capacity estimates for the three largest basins are Ukiah Valley, 90,000 acre-ft; Little lake Valley, 35,000 acre-ft; and Laytonville Valley, 14,000 acre-ft. Abundant rainfall (35 to 56 in/yr) generally recharges these basins to capacity. Seasonal water level fluctuations since the 1950 's have been nearly constant, except during the 1976-77 drought. Chemical quality of water in basement rocks and valley fill is generally acceptable for most uses. Some areas along fault zones yield water with high boron concentrations ( <2 mg/L). Sodium chloride water with dissolved solids concentrations exceeding 1,000 mg/L is found in deeper parts of Little Lake Valley. (Author 's abstract)
Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis
Miller, Thomas D.; Chong, Trevor T.-J.; Aimola Davies, Anne M.; Ng, Tammy W.C.; Johnson, Michael R.; Irani, Sarosh R.; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A.
2017-01-01
Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. PMID:28369215
Laine, Elodie; Martínez, Leandro; Blondel, Arnaud; Malliavin, Thérèse E
2010-10-06
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Florczyk, Stephen J; Kim, Dae-Joon; Wood, David L; Zhang, Miqin
2011-09-15
Fabrication of porous polymeric scaffolds with controlled structure can be challenging. In this study, we investigated the influence of key experimental parameters on the structures and mechanical properties of resultant porous chitosan-alginate (CA) polyelectrolyte complex (PEC) scaffolds, and on proliferation of MG-63 osteoblast-like cells, targeted at bone tissue engineering. We demonstrated that the porous structure is largely affected by the solution viscosity, which can be regulated by the acetic acid and alginate concentrations. We found that the CA PEC solutions with viscosity below 300 Pa.s yielded scaffolds of uniform pore structure and that more neutral pH promoted more complete complexation of chitosan and alginate, yielding stiffer scaffolds. CA PEC scaffolds produced from solutions with viscosities below 300 Pa.s also showed enhanced cell proliferation compared with other samples. By controlling the key experimental parameters identified in this study, CA PEC scaffolds of different structures can be made to suit various tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.
Zhao, Ming; Jia, Hang-Huan; Liu, Long-Zhu; Bi, Xue-Yuan; Xu, Man; Yu, Xiao-Jiang; He, Xi; Zang, Wei-Jin
2017-06-01
The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca 2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca 2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca 2+ . Protein-protein interactions were assessed by immunoprecipitation. Ca 2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca 2+ and the release of intracellular Ca 2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca 2+ ] cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new inhibitor for suppressing [Ca 2+ ] cyt overload. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
Small molecule inhibitors of Ca 2+-S100B reveal two protein conformations
Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.; ...
2016-01-04
The drug pentamidine inhibits calcium-dependent complex formation with p53 ( CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues ( CaS100B· 5a, CaS100B· 6b) a channel between sites 1 and 2 on S100B was occluded bymore » residue Phe88, but for an asymmetric pentamidine analogue ( CaS100B· 17), this same channel was open. Finally, the CaS100B· 17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.« less
Small molecule inhibitors of Ca 2+-S100B reveal two protein conformations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalier, Michael C.; Ansari, Mohd. Imran; Pierce, Adam D.
The drug pentamidine inhibits calcium-dependent complex formation with p53 ( CaS100B·p53) in malignant melanoma (MM) and restores p53 tumor suppressor activity in vivo. However, off-target effects associated with this drug were problematic in MM patients. Structure–activity relationship (SAR) studies were therefore completed in this study with 23 pentamidine analogues, and X-ray structures of CaS100B·inhibitor complexes revealed that the C-terminus of S100B adopts two different conformations, with location of Phe87 and Phe88 being the distinguishing feature and termed the “FF-gate”. For symmetric pentamidine analogues ( CaS100B· 5a, CaS100B· 6b) a channel between sites 1 and 2 on S100B was occluded bymore » residue Phe88, but for an asymmetric pentamidine analogue ( CaS100B· 17), this same channel was open. Finally, the CaS100B· 17 structure illustrates, for the first time, a pentamidine analog capable of binding the “open” form of the “FF-gate” and provides a means to block all three “hot spots” on CaS100B, which will impact next generation CaS100B·p53 inhibitor design.« less
Who is Mr. HAMLET? Interaction of human alpha-lactalbumin with monomeric oleic acid.
Knyazeva, Ekaterina L; Grishchenko, Valery M; Fadeev, Roman S; Akatov, Vladimir S; Permyakov, Sergei E; Permyakov, Eugene A
2008-12-09
A specific state of the human milk Ca(2+) binding protein alpha-lactalbumin (hLA) complexed with oleic acid (OA) prepared using an OA-pretreated ion-exchange column (HAMLET) triggers several cell death pathways in various tumor cells. The possibility of preparing a hLA-OA complex with structural and cytotoxic properties similar to those of the HAMLET but under solution conditions has been explored. The complex was formed by titration of hLA by OA at pH 8.3 up to OA critical micelle concentration. We have shown that complex formation strongly depends on calcium, ionic strength, and temperature; the optimal conditions were established. The spectrofluorimetrically estimated number of OA molecules irreversibly bound per hLA molecule (after dialysis of the OA-loaded preparation against water followed by lyophilization) depends upon temperature: 2.9 at 17 degrees C (native apo-hLA; resulting complex referred to as LA-OA-17 state) and 9 at 45 degrees C (thermally unfolded apo-hLA; LA-OA-45). Intrinsic tryptophan fluorescence measurements revealed substantially decreased thermal stability of Ca(2+)-free forms of HAMLET, LA-OA-45, and OA-saturated protein. The irreversibly bound OA does not affect the Ca(2+) association constant of the protein. Phase plot analysis of fluorimetric and CD data indicates that the OA binding process involves several hLA intermediates. The effective pseudoequilibrium OA association constants for Ca(2+)-free hLA were estimated. The far-UV CD spectra of Ca(2+)-free hLA show that all OA-bound forms of the protein are characterized by elevated content of alpha-helical structure. The various hLA-OA complexes possess similar cytotoxic activities against human epidermoid larynx carcinoma cells. Overall, the LA-OA-45 complex possesses physicochemical, structural, and cytotoxic properties closely resembling those of HAMLET. The fact that the HAMLET-like complex can be formed in aqueous solution makes the process of its preparation more transparent and controllable, opening up opportunities for formation of active complexes with specific properties.
Lladó, Anna; Timpson, Paul; Vilà de Muga, Sandra; Moretó, Jemina; Pol, Albert; Grewal, Thomas; Daly, Roger J.
2008-01-01
The intracellular trafficking of the epidermal growth factor receptor (EGFR) is regulated by a cross-talk between calmodulin (CaM) and protein kinase Cδ (PKCδ). On inhibition of CaM, PKCδ promotes the formation of enlarged early endosomes and blocks EGFR recycling and degradation. Here, we show that PKCδ impairs EGFR trafficking due to the formation of an F-actin coat surrounding early endosomes. The PKCδ-induced polymerization of actin is orchestrated by the Arp2/3 complex and requires the interaction of cortactin with PKCδ. Accordingly, inhibition of actin polymerization by using cytochalasin D or by overexpression of active cofilin, restored the normal morphology of the organelle and the recycling of EGFR. Similar results were obtained after down-regulation of cortactin and the sequestration of the Arp2/3 complex. Furthermore we demonstrate an interaction of cortactin with CaM and PKCδ, the latter being dependent on CaM inhibition. In summary, this study provides the first evidence that CaM and PKCδ organize actin dynamics in the early endosomal compartment, thereby regulating the intracellular trafficking of EGFR. PMID:17959830
The Winning Number: An Heuristic Approach with the Geogebra's Help
ERIC Educational Resources Information Center
Alves, Francisco Regis Vieira
2016-01-01
Admittedly, the study of Complex Analysis (CA) requires of the student considerable mental effort characterized by the mobilization of a related thought to the complex mathematical concepts. Thus, with the aid of the dynamic system Geogebra, we discuss in this paper a particular concept in CA. In fact, the notion of winding number v[f(gamma),P] =…
18. SOUTH SIDE OF TULE RIVER POWERHOUSE COMPLEX TAKEN FROM ...
18. SOUTH SIDE OF TULE RIVER POWERHOUSE COMPLEX TAKEN FROM ACROSS SEGMENT OF OLD HIGHWAY 190. VEHICLE AT PHOTO CENTER IS IN APPROXIMATELY THE SAME POSITION AS THE MODEL T FORD IN THE HISTORIC VIEW SHOWN IN PHOTO CA-216-19. VIEW TO NORTH. - Tule River Hydroelectric Project, Water Conveyance System, Middle Fork Tule River, Springville, Tulare County, CA
Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts
NASA Astrophysics Data System (ADS)
Shin, Jae Hong; Park, Joo Hyun
2018-02-01
The [S] content in resulfurized steel is controlled in the range of 200 to 800 ppm to ensure good machinability and workability. It is well known that "MgAl2O4(spinel)+CaS" complex inclusions are formed in molten steel during the ladle refining process, and these cause nozzle clogging during continuous casting. Thus, in the present study, the "Refractory-Slag-Metal-Inclusions (ReSMI)" multiphase reaction model was employed in conjunction with experiments to investigate the influence of slag composition and [S] content in the steel on the formation of oxide-sulfide complex inclusions. The critical [S] and [Al] contents necessary for the precipitation of CaS in the CaO-Al2O3-MgO-SiO2 (CAMS) oxide inclusions were predicted from the composition of the liquid inclusions, as observed by scanning electron microscopy-electron dispersive spectrometry (SEM-EDS) and calculated using the ReSMI multiphase reaction model. The critical [S] content increases with increasing content of SiO2 in the slag at a given [Al] content. Formation mechanisms for spinel+CaS and spinel+MnS complex inclusions were also proposed.
Gupta, Navdeep; Kontos, Michael C; Gupta, Aditi; Dai, David; Vetrovec, George W; Roe, Matthew T; Messenger, John
2014-04-01
Outcomes in patients with out-of-hospital cardiac arrest (CA) who undergo percutaneous coronary intervention (PCI) have been limited to small, mostly single-center studies. We compared patients who underwent PCI after CA included in the CathPCI Registry with those without CA. Patients with ST elevation were classified as ST-elevation myocardial infarction (STEMI); all other patients having PCI were classified as without STEMI. Patients with CA in each group were compared with the corresponding non-CA groups for baseline characteristics, angiographic findings, and outcomes. A total of 594,734 patients underwent PCI, of whom 114,768 had STEMI, including 9,375 (8.2%) had CA, and 479,966 had without STEMI, including 2,775 (0.6%) had CA. Patients with CA were similar in age to patients with non-CA, with a lower frequency of coronary disease risk factors and known coronary disease. On angiography, patients with CA were significantly more likely to have more complex lesions with worse baseline thrombolysis in myocardial infarction flow. Patients with CA were significantly more likely to have cardiogenic shock, both for patients with STEMI (51% vs 7.2%, respectively) and for patients without STEMI (38% vs 0.8%, respectively, both p<0.001). In-hospital mortality was substantially worse in patients with CA, for both patients with STEMI (24.9% vs 3.1%, respectively) and patients without STEMI (18.7% vs 0.4%, respectively). In conclusion, patients who underwent PCI after CA had more complex anatomy, more shock, and higher mortality. The substantially increased mortality in patients with CA has important implications for the development and regionalization of centers for CA. Copyright © 2014 Elsevier Inc. All rights reserved.
- Invited Review - Calcium Digestibility and Metabolism in Pigs*
González-Vega, J. C.; Stein, H. H.
2014-01-01
Calcium (Ca) and phosphorus (P) are minerals that have important physiological functions in the body. For formulation of diets for pigs, it is necessary to consider an appropriate Ca:P ratio for an adequate absorption and utilization of both minerals. Although both minerals are important, much more research has been conducted on P digestibility than on Ca digestibility. Therefore, this review focuses on aspects that are important for the digestibility of Ca. Only values for apparent total tract digestibility (ATTD) of Ca have been reported in pigs, whereas values for both ATTD and standardized total tract digestibility (STTD) of P in feed ingredients have been reported. To be able to determine STTD values for Ca it is necessary to determine basal endogenous losses of Ca. Although most Ca is absorbed in the small intestine, there are indications that Ca may also be absorbed in the colon under some circumstances, but more research to verify the extent of Ca absorption in different parts of the intestinal tract is needed. Most P in plant ingredients is usually bound to phytate. Therefore, plant ingredients have low digestibility of P due to a lack of phytase secretion by pigs. During the last 2 decades, inclusion of microbial phytase in swine diets has improved P digestibility. However, it has been reported that a high inclusion of Ca reduces the efficacy of microbial phytase. It is possible that formation of insoluble calcium-phytate complexes, or Ca-P complexes, not only may affect the efficacy of phytase, but also the digestibility of P and Ca. Therefore, Ca, P, phytate, and phytase interactions are aspects that need to be considered in Ca digestibility studies. PMID:25049919
Adams, Ralph; Griffin, Laura; Compson, Joanne E; Jairaj, Mark; Baker, Terry; Ceska, Tom; West, Shauna; Zaccheo, Oliver; Davé, Emma; Lawson, Alastair Dg; Humphreys, David P; Heywood, Sam
2016-10-01
We generated an anti-albumin antibody, CA645, to link its Fv domain to an antigen-binding fragment (Fab), thereby extending the serum half-life of the Fab. CA645 was demonstrated to bind human, cynomolgus, and mouse serum albumin with similar affinity (1-7 nM), and to bind human serum albumin (HSA) when it is in complex with common known ligands. Importantly for half-life extension, CA645 binds HSA with similar affinity within the physiologically relevant range of pH 5.0 - pH 7.4, and does not have a deleterious effect on the binding of HSA to neonatal Fc receptor (FcRn). A crystal structure of humanized CA645 Fab in complex with HSA was solved and showed that CA645 Fab binds to domain II of HSA. Superimposition with the crystal structure of FcRn bound to HSA confirmed that CA645 does not block HSA binding to FcRn. In mice, the serum half-life of humanized CA645 Fab is 84.2 h. This is a significant extension in comparison with < 1 h for a non-HSA binding CA645 Fab variant. The Fab-HSA structure was used to design a series of mutants with reduced affinity to investigate the correlation between the affinity for albumin and serum half-life. Reduction in the affinity for MSA by 144-fold from 2.2 nM to 316 nM had no effect on serum half-life. Strikingly, despite a reduction in affinity to 62 µM, an extension in serum half-life of 26.4 h was still obtained. CA645 Fab and the CA645 Fab-HSA complex have been deposited in the Protein Data Bank (PDB) with accession codes, 5FUZ and 5FUO, respectively.
Perceptual Development on the Rorschach
ERIC Educational Resources Information Center
O'Neill, Patrick; And Others
1976-01-01
The Rorschach was given to 60 school children in two designs: chronological age (CA) and mental age (MA) orthogonal and CA=MA. Responses were scored for Form Accuracy, Complexity, Movement and Friedman's Developmental Level (DL) Scoring System. The results suggest that the DL system does assess MA independently of CA. (Author/DEP)
Structural Basis for Inhibition of Mammalian Adenylyl Cyclase by Calcium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mou, Tung-Chung; Masada, Nanako; Cooper, Dermot M.F.
2009-09-11
Type V and VI mammalian adenylyl cyclases (AC5, AC6) are inhibited by Ca{sup 2+} at both sub- and supramicromolar concentration. This inhibition may provide feedback in situations where cAMP promotes opening of Ca{sup 2+} channels, allowing fine control of cardiac contraction and rhythmicity in cardiac tissue where AC5 and AC6 predominate. Ca{sup 2+} inhibits the soluble AC core composed of the C1 domain of AC5 (VC1) and the C2 domain of AC2 (IIC2). As observed for holo-AC5, inhibition is biphasic, showing 'high-affinity' (K{sub i} = {approx}0.4 {mu}M) and 'low-affinity' (K{sub i} = {approx}100 {mu}M) modes of inhibition. At micromolar concentration,more » Ca{sup 2+} inhibition is nonexclusive with respect to pyrophosphate (PP{sub i}), a noncompetitive inhibitor with respect to ATP, but at >100 {mu}M Ca{sup 2+}, inhibition appears to be exclusive with respect to PP{sub i}. The 3.0 {angstrom} resolution structure of G{alpha}s{center_dot}GTP{gamma}S/forskolin-activated VC1:IIC2 crystals soaked in the presence of ATP{alpha}S and 8 {mu}M free Ca{sup 2+} contains a single, loosely coordinated metal ion. ATP soaked into VC1:IIC2 crystals in the presence of 1.5 mM Ca{sup 2+} is not cyclized, and two calcium ions are observed in the 2.9 {angstrom} resolution structure of the complex. In both of the latter complexes VC1:IIC2 adopts the 'open', catalytically inactive conformation characteristic of the apoenzyme, in contrast to the 'closed', active conformation seen in the presence of ATP analogues and Mg{sup 2+} or Mn{sup 2+}. Structures of the pyrophosphate (PP{sub i}) complex with 10 mM Mg{sup 2+} (2.8 {angstrom}) or 2 mM Ca{sup 2+} (2.7 {angstrom}) also adopt the open conformation, indicating that the closed to open transition occurs after cAMP release. In the latter complexes, Ca{sup 2+} and Mg{sup 2+} bind only to the high-affinity 'B' metal site associated with substrate/product stabilization. Ca{sup 2+} thus stabilizes the inactive conformation in both ATP- and PP{sub i}-bound states.« less
Biochemical principles underlying the stable maintenance of LTP by the CaMKII/NMDAR complex.
Lisman, John; Raghavachari, Sridhar
2015-09-24
Memory involves the storage of information at synapses by an LTP-like process. This information storage is synapse specific and can endure for years despite the turnover of all synaptic proteins. There must, therefore, be special principles that underlie the stability of LTP. Recent experimental results suggest that LTP is maintained by the complex of CaMKII with the NMDAR. Here we consider the specifics of the CaMKII/NMDAR molecular switch, with the goal of understanding the biochemical principles that underlie stable information storage by synapses. Consideration of a variety of experimental results suggests that multiple principles are involved. One switch requirement is to prevent spontaneous transitions from the off to the on state. The highly cooperative nature of CaMKII autophosphorylation by Ca(2+) (Hill coefficient of 8) and the fact that formation of the CaMKII/NMDAR complex requires release of CaMKII from actin are mechanisms that stabilize the off state. The stability of the on state depends critically on intersubunit autophosphorylation, a process that restores any loss of pT286 due to phosphatase activity. Intersubunit autophosphorylation is also important in explaining why on state stability is not compromised by protein turnover. Recent evidence suggests that turnover occurs by subunit exchange. Thus, stability could be achieved if a newly inserted unphosphorylated subunit was autophosphorylated by a neighboring subunit. Based on other recent work, we posit a novel mechanism that enhances the stability of the on state by protection of pT286 from phosphatases. We posit that the binding of the NMNDAR to CaMKII forces pT286 into the catalytic site of a neighboring subunit, thereby protecting pT286 from phosphatases. A final principle concerns the role of structural changes. The binding of CaMKII to the NMDAR may act as a tag to organize the binding of further proteins that produce the synapse enlargement that underlies late LTP. We argue that these structural changes not only enhance transmission, but also enhance the stability of the CaMKII/NMDAR complex. Together, these principles provide a mechanistic framework for understanding how individual synapses produce stable information storage. This article is part of a Special Issue entitled SI: Brain and Memory. Copyright © 2014 Elsevier B.V. All rights reserved.
Lin, Mei-Fang; Moya, Aurelie; Ying, Hua; Chen, Chaolun Allen; Cooke, Ira; Ball, Eldon E; Forêt, Sylvain; Miller, David J
2017-01-01
Corallimorpharians (coral-like anemones) have a close phylogenetic relationship with scleractinians (hard corals) and can potentially provide novel perspectives on the evolution of biomineralization within the anthozoan subclass Hexacorallia. A survey of the transcriptomes of three representative corallimorpharians led to the identification of homologs of some skeletal organic matrix proteins (SOMPs) previously considered to be restricted to corals.Carbonic anhydrases (CAs), which are ubiquitous proteins involved in CO2 trafficking, are involved in both coral calcification and photosynthesis by endosymbiotic Symbiodinium (zooxanthellae). These multiple roles are assumed to place increased demands on the CA repertoire and have presumably driven the elaboration of the complex CA repertoires typical of corals (note that "corals" are defined here as reef-building Scleractinia). Comparison of the CA inventories of corallimorpharians with those of corals reveals that corals have specifically expanded the secreted and membrane-associated type CAs, whereas similar complexity is observed in the two groups with respect to other CA types.Comparison of the CA complement of the nonsymbiotic corallimorph Corynactis australis with that of Ricordea yuma, a corallimorph which normally hosts Symbiodinium, reveals similar numbers and distribution of CA types and suggests that an expansion of the CA repertoire has been necessary to enable calcification but may not be a requirement to enable symbiosis. Consistent with this idea, preliminary analysis suggests that the CA complexity of zooxanthellate and nonzooxanthellate sea anemones is similar.The comparisons above suggest that although there are relatively few new genes in the skeletal organic matrix of corals (which controls the skeleton deposition process), the evolution of calcification required an expanded repertoire of secreted and membrane-associated CAs. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Li, Alison Y.; Stevens, Charles M.; Liang, Bo; Rayani, Kaveh; Little, Sean; Davis, Jonathan; Tibbits, Glen F.
2013-01-01
The Ca2+ binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca2+ binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca2+ affinity by 27% in the steady-state measurement and increased the Ca2+ dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca2+ sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca2+ sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca2+ sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca2+ sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent. PMID:24260207
Guo, C; Gynn, M; Chang, T M S
2015-06-01
We report a novel method to simultaneously extract superoxide dismutase (SOD), catalase (CAT), and carbonic anhydrase (CA) from the same sample of red blood cells (RBCs). This avoids the need to use expensive commercial enzymes, thus enabling a cost-effective process for large-scale production of a nanobiotechnological polyHb-SOD-CAT-CA complex, with enhancement of all three red blood cell functions. An optimal concentration of phosphate buffer for ethanol-chloroform treatment results in good recovery of CAT, SOD, and CA after extraction. Different concentrations of the enzymes can be used to enhance the activity of polyHb-SOD-CAT-CA to 2, 4, or 6 times that of RBC.
Synthesis and Characterization of Magnetic Carriers Based on Immobilized Enzyme
NASA Astrophysics Data System (ADS)
Li, F. H.; Tang, N.; Wang, Y. Q.; Zhang, L.; Du, W.; Xiang, J.; Cheng, P. G.
2018-05-01
Several new types of carriers and technologies have been implemented to improve traditional enzyme immobilization in industrial biotechnology. The magnetic immobilized enzyme is a kind of new method of enzyme immobilization developed in recent years. An external magnetic field can be used to control the motion mode and direction of immobilized enzyme, and to improve the catalytic efficiency of immobilized enzyme. In this paper, Fe3O4-CaCO3-PDA complex and CaCO3/Fe3O4 composite modified by PEI were prepared. The results show that the morphology of Fe3O4-CaCO3-PDA complex formation is irregular, while the morphology of CaCO3/Fe3O4 composite modified by PEI is regular and has a porous structure.
Ali, Osama Y; Randell, Nicholas M; Fridgen, Travis D
2012-04-23
Complexes formed between metal dications, the conjugate base of uracil, and uracil are investigated by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Positive-ion electrospray spectra show that [M(Ura-H)(Ura)](+) (M=Zn, Cu, Ni, Co, Fe, Mn, Cd, Pd, Mg, Ca, Sr, Ba, or Pb) is the most abundant ion even at low concentrations of uracil. SORI-CID experiments show that the main primary decomposition pathway for all [M(Ura-H)(Ura)](+) , except where M=Ca, Sr, Ba, or Pb, is the loss of HNCO. Under the same SORI-CID conditions, when M is Ca, Sr, Ba, or Pb, [M(Ura-H)(Ura)](+) are shown to lose a molecule of uracil. Similar results were observed under infrared multiple-photon dissociation excitation conditions, except that [Ca(Ura-H)(Ura)](+) was found to lose HNCO as the primary fragmentation product. The binding energies between neutral uracil and [M(Ura-H)](+) (M=Zn, Cu, Ni, Fe, Cd, Pd ,Mg, Ca, Sr Ba, or Pb) are calculated by means of electronic-structure calculations. The differences in the uracil binding energies between complexes which lose uracil and those which lose HNCO are consistent with the experimentally observed differences in fragmentation pathways. A size dependence in the binding energies suggests that the interaction between uracil and [M(Ura-H)](+) is ion-dipole complexation and the experimental evidence presented supports this. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Focal CA3 hippocampal subfield atrophy following LGI1 VGKC-complex antibody limbic encephalitis.
Miller, Thomas D; Chong, Trevor T-J; Aimola Davies, Anne M; Ng, Tammy W C; Johnson, Michael R; Irani, Sarosh R; Vincent, Angela; Husain, Masud; Jacob, Saiju; Maddison, Paul; Kennard, Christopher; Gowland, Penny A; Rosenthal, Clive R
2017-05-01
Magnetic resonance imaging has linked chronic voltage-gated potassium channel (VGKC) complex antibody-mediated limbic encephalitis with generalized hippocampal atrophy. However, autoantibodies bind to specific rodent hippocampal subfields. Here, human hippocampal subfield (subiculum, cornu ammonis 1-3, and dentate gyrus) targets of immunomodulation-treated LGI1 VGKC-complex antibody-mediated limbic encephalitis were investigated using in vivo ultra-high resolution (0.39 × 0.39 × 1.0 mm3) 7.0 T magnetic resonance imaging [n = 18 patients, 17 patients (94%) positive for LGI1 antibody and one patient negative for LGI1/CASPR2 but positive for VGKC-complex antibodies, mean age: 64.0 ± 2.55 years, median 4 years post-limbic encephalitis onset; n = 18 controls]. First, hippocampal subfield quantitative morphometry indicated significant volume loss confined to bilateral CA3 [F(1,34) = 16.87, P < 0.0001], despite hyperintense signal evident in 5 of 18 patients on presentation. Second, early and later intervention (<3 versus >3 months from symptom onset) were associated with CA3 atrophy. Third, whole-brain voxel-by-voxel morphometry revealed no significant grey matter loss. Fourth, CA3 subfield atrophy was associated with severe episodic but not semantic amnesia for postmorbid autobiographical events that was predicted by variability in CA3 volume. The results raise important questions about the links with histopathology, the impact of the observed focal atrophy on other CA3-mediated reconstructive and episodic mechanisms, and the role of potential antibody-mediated pathogenicity as part of the pathophysiology cascade in humans. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Manganese-dependent carboanhydrase activity of photosystem II proteins.
Shitov, A V; Pobeguts, O V; Smolova, T N; Allakhverdiev, S I; Klimov, V V
2009-05-01
Four sources of carbonic anhydrase (CA) activity in submembrane preparations of photosystem II (PS II) isolated from pea leaves were examined. Three of them belong to the hydrophilic proteins of the oxygen-evolving complex of PS II with molecular mass 33 kDa (protein PsbO), 24 kDa (protein PsbP), and 18 kDa (protein PsbQ). The fourth source of CA activity is associated with a pigment-protein complex of PS II after removing three hydrophilic proteins by salt treatment. Except for protein PsbQ, the CA activity of all these proteins depends on the presence of Mn2+: the purified protein PsbO did not show CA activity before adding Mn2+ into the medium (concentration of Mn2+ required for 50% effect, EC(50), was 670 microM); CA activity of protein mixture composed of PsbP and PsbQ increased more than 5-fold upon adding Mn2+ (EC(50) was 45 microM). CA activity of purified protein PsbP increased 2-fold in the presence of 200 microM Mn2+. As indicated for the mixture of two proteins (PsbP and PsbQ), Mg2+, Ca2+, and Zn2+, in contrast to Mn2+, suppressed CA activity (both initial and Mn2+-induced activity). Since the found sources of CA activity demonstrated properties different from ones of typical CA (need for Mn2+, insensitivity or low sensitivity to acetazolamide or ethoxyzolamide) and such CA activity was found only among PS II proteins, we cannot exclude that they belong to the type of Mn-dependent CA associated with PS II.
NASA Astrophysics Data System (ADS)
Al-Khodir, Fatima A. I.; Refat, Moamen S.
2016-09-01
Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.
Giron-Gonzalez, M Dolores; Salto-Gonzalez, Rafael; Lopez-Jaramillo, F Javier; Salinas-Castillo, Alfonso; Jodar-Reyes, Ana Belen; Ortega-Muñoz, Mariano; Hernandez-Mateo, Fernando; Santoyo-Gonzalez, Francisco
2016-03-16
Gene transfection mediated by the cationic polymer polyethylenimine (PEI) is considered a standard methodology. However, while highly branched PEIs form smaller polyplexes with DNA that exhibit high transfection efficiencies, they have significant cell toxicity. Conversely, low molecular weight PEIs (LMW-PEIs) with favorable cytotoxicity profiles display minimum transfection activities as a result of inadequate DNA complexation and protection. To solve this paradox, a novel polyelectrolyte complex was prepared by the ionic cross-linking of branched 1.8 kDa PEI with citric acid (CA). This system synergistically exploits the good cytotoxicity profile exhibited by LMW-PEI with the high transfection efficiencies shown by highly branched and high molecular weight PEIs. The polyectrolyte complex (1.8 kDa-PEI@CA) was obtained by a simple synthetic protocol based on the microwave irradiation of a solution of 1.8 kDa PEI and CA. Upon complexation with DNA, intrinsic properties of the resulting particles (size and surface charge) were measured and their ability to form stable polyplexes was determined. Compared with unmodified PEIs the new complexes behave as efficient gene vectors and showed enhanced DNA binding capability associated with facilitated intracellular DNA release and enhanced DNA protection from endonuclease degradation. In addition, while transfection values for LMW-PEIs are almost null, transfection efficiencies of the new reagent range from 2.5- to 3.8-fold to those of Lipofectamine 2000 and 25 kDa PEI in several cell lines in culture such as CHO-k1, FTO2B hepatomas, L6 myoblasts, or NRK cells, simultaneously showing a negligible toxicity. Furthermore, the 1.8 kDa-PEI@CA polyelectrolyte complexes retained the capability to transfect eukaryotic cells in the presence of serum and exhibited the capability to promote in vivo transfection in mouse (as an animal model) with an enhanced efficiency compared to 25 kDa PEI. Results support the polyelectrolyte complex of LMW-PEI and CA as promising generic nonviral gene carriers.
Jami-Alahmadi, Yasaman; Fridgen, Travis D
2016-01-21
M(Pro2-H)(+) complexes were electrosprayed and isolated in an FTICR cell where their unimolecular chemistries and structures were explored using SORI-CID and IRMPD spectroscopy. These experiments were augmented by computational methods such as electronic structure, simulated annealing, and atoms in molecules (AIM) calculations. The unimolecular chemistries of the larger metal cation (Ca(2+), Sr(2+) and Ba(2+)) complexes predominantly involve loss of neutral proline whereas the complexes involving the smaller Mg(2+) and transition metal dications tend to lose small neutral molecules such as water and carbon dioxide. Interestingly, all complexes involving transition metal dications except for Cu(Pro2-H)(+) lose H2 upon collisional or IRMPD activation. IRMPD spectroscopy shows that the intact proline in the transition metal complexes and Cu(Pro2-H)(+) is predominantly canonical (charge solvated) while for the Ca(2+), Sr(2+), and Ba(2+) complexes, proline is in its zwitterionic form. The IRMPD spectra for both Mg(Pro2-H)(+) and Mn(Pro2-H)(+) are concluded to have contributions from both charge-solvated and canonical structures.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.
2011-08-01
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.
Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A
2011-08-01
A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-01-01
A new Gadolinium(III)–coumarin complex, DO3A-Gd-CA, was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F−) in aqueous media and mice. DO3A-Gd-CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid (CA) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd-CA, the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity (r1). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3σ/slope. The desirable features of the proposed DO3A-Gd-CA, such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd-CA could be potentially used in biomedical diagnosis fields. PMID:27999298
Lee, Woong Gi; Kim, Do Hyeong; Jeon, Woo Cheol; Kwak, Sang Kyu; Kang, Seok Ju; Kang, Sang Wook
2017-04-28
We succeed in fabricating nearly straight nanopores in cellulose acetate (CA) polymers for use as battery gel separators by utilizing an inorganic hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) complex and isostatic water pressure treatment. The continuous nanopores are generated when the polymer film is exposed to isostatic water pressure after complexing the nickel(II) nitrate hexahydrate (Ni(NO 3 ) 2 ·6H 2 O) with the CA. These results can be attributed to the manner in which the polymer chains are weakened because of the plasticization effect of the Ni(NO 3 ) 2 ·6H 2 O that is incorporated into the CA. Furthermore, we performed extensive molecular dynamics simulation for confirming the interaction between electrolyte and CA separator. The well controlled CA membrane after water pressure treatment enables fabrication of highly reliable cell by utilizing 2032-type coin cell structure. The resulting cell performance exhibits not only the effect of the physical morphology of CA separator, but also the chemical interaction of electrolyte with CA polymer which facilitates the Li-ion in the cell.
Wang, Yue; Song, Renfeng; Feng, Huan; Guo, Ke; Meng, Qingtao; Chi, Haijun; Zhang, Run; Zhang, Zhiqiang
2016-12-16
A new Gadolinium(III)-coumarin complex, DO3A-Gd- CA , was designed and prepared as a dual-modal probe for simultaneous fluorescence and relaxivity responses to fluoride ions (F - ) in aqueous media and mice. DO3A-Gd- CA was designed by using Gd(III) center as an MRI signal output unit and fluoride binding site, and the 4-(diethylamino)-coumarin-3-carboxylic acid ( CA ) as a fluorescence reporter. Upon the addition of fluoride ions to the solution of DO3A-Gd- CA , the liberation of the coordinated CA ligand led to a 5.7-fold fluorescence enhancement and a 75% increase in the longitudinal relaxivity ( r ₁). The fluorescent detection limit for fluoride ions was determined to be 8 μM based on a 3 σ / slope . The desirable features of the proposed DO3A-Gd- CA , such as high sensitivity and specificity, reliability at physiological pH and low cytotoxicity enable its application in visualization of fluoride ion in mice. The successful in vivo imaging indicates that DO3A-Gd- CA could be potentially used in biomedical diagnosis fields.
Ramesh, S; Shanti, R; Morris, Ezra
2013-01-02
Polymer electrolytes were developed by solution casting technique utilizing the materials of cellulose acetate (CA), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and deep eutectic solvent (DES). The DES is synthesized from the mixture of choline chloride and urea of 1:2 ratios. The increasing DES content well plasticizes the CA:LiTFSI:DES matrix and gradually improves the ionic conductivity and chemical integrity. The highest conducting sample was identified for the composition of CA:LiTFSI:DES (28 wt.%:12 wt.%:60 wt.%), which has the greatest ability to retain the room temperature ionic conductivity over the entire 30 days of storage time. The changes in FTIR cage peaks upon varying the DES content in CA:LiTFSI:DES prove the complexation. This complexation results in the collapse of CA matrix crystallinity, observed from the reduced intensity of XRD diffraction peaks. The DES-plasticized sample is found to be more heat-stable compared to pure CA. Nevertheless, the addition of DES diminishes the CA:LiTFSI matrix's heat-resistivity but at the minimum addition the thermal stability is enhanced. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kimura, Yukihiro; Yura, Yuki; Hayashi, Yusuke; Li, Yong; Onoda, Moe; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; Ohno, Takashi
2016-12-15
The light-harvesting 1 reaction center (LH1-RC) complex from thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits enhanced thermostability and an unusual LH1 Q y transition, both induced by Ca 2+ binding. In this study, metal-binding sites and metal-protein interactions in the LH1-RC complexes from wild-type (B915) and biosynthetically Sr 2+ -substituted (B888) Tch. tepidum were investigated by isothermal titration calorimetry (ITC), atomic absorption (AA), and attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopies. The ITC measurements revealed stoichiometric ratios of approximately 1:1 for binding of Ca 2+ , Sr 2+ , or Ba 2+ to the LH1 αβ-subunit, indicating the presence of 16 binding sites in both B915 and B888. The AA analysis provided direct evidence for Ca 2+ and Sr 2+ binding to B915 and B888, respectively, in their purified states. Metal-binding experiments supported that Ca 2+ and Sr 2+ (or Ba 2+ ) competitively associate with the binding sites in both species. The ATR-FTIR difference spectra upon Ca 2+ depletion and Sr 2+ substitution demonstrated that dissociation and binding of Ca 2+ are predominantly responsible for metal-dependent conformational changes of B915 and B888. The present results are largely compatible with the recent structural evidence that another binding site for Sr 2+ (or Ba 2+ ) exists in the vicinity of the Ca 2+ -binding site, a part of which is shared in both metal-binding sites.
NASA Astrophysics Data System (ADS)
Konrad-Schmolke, Matthias; Klitscher, Nicolai; Halama, Ralf; Wirth, Richard; Morales, Luiz
2017-04-01
At the slab-mantle interface in subdution zones fluids released from the downgoing plate infiltrate into a mechanical mixture of rocks with different chemical compositions, different hydration states and different rheological behaviour resulting in a highly reactive mélange within a steep temperature gradient. Fluid pathways, reaction mechanisms and reaction rates of such fluxes, however, are poorly known, although these parameters are thought to be crucial for several seismic phenomena, such as those commonly referred to as slow earthquakes (e.g., episodic tremor and slip (ETS)). We discovered syn-metamorphic fluid-pathways in the form of interconnected metamorphic porosity in eclogite and blueschist facies mélange rocks from the Franciscan Complex near Jenner, CA. The sampled rocks occur as rigid mafic blocks of different sizes (cm to decametre) in a weak chlorite-serpentine matrix interpreted to be an exhumed slab-mantle interface. Some of these mafic blocks record reactive fluid infiltration that transforms dry eclogite into hydrous blueschist with a sharp reaction front clearly preserved and visible from outcrop- down to µm-scale. We can show that a number of interconnected fluid pathways, such as interconnected metamorphic porosity between reacting omphacite and newly formed sodic amphibole enabled fluid infiltration and interface coupled solution-reprecipitation reactions at blueschist facies conditions. We investigated the different types of fluid pathways with TEM and visualized their interconnectivity with 3D focused ion beam (FIB) sections. The eclogitic parts of the samples preserve porous primary omphacite as a product of amphibole and epidote breakdown during subduction. This primary porosity in omphacite I results from a negative volume change in the solids during amphibole and epidote dehydration. The resulting pores appear as (fluid filled) elongated inclusions the orientations of which are controlled by the omphacite lattice. During decompression of the rocks these inclusions became interconnected by brittle fractures that allowed a first fluid influx and the precipitation of new omphacite (II) within the fracture network and along the rims of the primary omphacite. The (second) metamorphic/metasomatic porosity occurs along the reaction surfaces between omphacite and sodic amphibole as well as within omphacite grains where new omphacite (III) is formed. This interconnected pore network associated with the re-hydration reaction is up to 1µm but mostly between 50 and 200nm wide. Reacting omphacite is preferentially consumed in 00-1 direction and has a rugged, often needle-like surface. In contrast, product surfaces (omphacite III and sodic amphibole) are relatively smooth indicating dissolution of older omphacite (I and II) and re-precipitation of omphacite III as well as the formation of sodic amphibole. Within some of the pores amorphous silica-rich material containing smaller amounts of Al, Ca, Fe and Mg, can be found as worm-like precipitates and as coatings on top of the needle-like omphacite surface. Phase relations, textures as well as overprinting relations clearly show that the porosity is syn-metamorphic under blueschist-facies conditions. Although difficult to constrain in the samples porosity is likely between 1-5 volume%.
Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes
NASA Astrophysics Data System (ADS)
Brouwer, Ineke; Giniatullina, Asiya; Laurens, Niels; van Weering, Jan R. T.; Bald, Dirk; Wuite, Gijs J. L.; Groffen, Alexander J.
2015-09-01
Ca2+-sensor proteins control the secretion of many neuroendocrine substances. Calcium-secretion coupling may involve several mechanisms. First, Ca2+-dependent association of their tandem C2 domains with phosphatidylserine may induce membrane curvature and thereby enhance fusion. Second, their association with SNARE complexes may inhibit membrane fusion in the absence of a Ca2+ trigger. Here we present a method using two optically trapped beads coated with SNARE-free synthetic membranes to elucidate the direct role of the C2AB domain of the soluble Ca2+-sensor Doc2b. Contacting membranes are often coupled by a Doc2b-coated membrane stalk that resists forces up to 600 pN upon bead separation. Stalk formation depends strictly on Ca2+ and phosphatidylserine. Real-time fluorescence imaging shows phospholipid but not content mixing, indicating membrane hemifusion. Thus, Doc2b acts directly on membranes and stabilizes the hemifusion intermediate in this cell-free system. In living cells, this mechanism may co-occur with progressive SNARE complex assembly, together defining Ca2+-secretion coupling.
Tsekova, Petya B; Spasova, Mariya G; Manolova, Nevena E; Markova, Nadya D; Rashkov, Iliya B
2017-04-01
Novel fibrous materials from cellulose acetate (CA) and polyvinylpyrrolidone (PVP) containing curcumin (Curc) with original design were prepared by one-pot electrospinning or dual spinneret electrospinning. The electrospun materials were characterized by scanning electron microscopy (SEM), fluorescence microscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), water contact angle measurements, and microbiological tests. It was found that the incorporation of Curc into the CA and PVP solutions resulted in an increase of the solution viscosity and obtaining fibers with larger diameters (ca. 1.5μm) compared to the neat CA (ca. 800nm) and PVP fibers (ca. 500nm). The incorporation of PVP resulted in increased hydrophilicity of the fibers and in faster Curc release. Curc was found in the amorphous state in the Curc-containing fibers and these mats exhibited antibacterial activity against Staphylococcus aureus (S. aureus). The results suggest that, due to their complex architecture, the obtained new antibacterial materials are suitable for wound dressing applications, which necessitate diverse release behaviors of the bioactive compound. Copyright © 2016 Elsevier B.V. All rights reserved.
The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase.
Salgado, Paula S; Makeyev, Eugene V; Butcher, Sarah J; Bamford, Dennis H; Stuart, David I; Grimes, Jonathan M
2004-02-01
The RNA-dependent RNA polymerase of bacteriophage phi6 transcribes mRNA from the three segments of the dsRNA viral genome. We have cocrystallized RNA oligonucleotides with the polymerase, revealing the mode of binding of RNA templates. This binding is somewhat different from that previously seen for DNA oligomers, leading to additional RNA-protein hydrogen bonds, consistent with a preference for RNA. Activation of the RNA/polymerase complex by the addition of substrate and Mg2+ initiates a single round of reaction within the crystal to form a dead-end complex that partially collapses within the enzyme active site. By replacing Mg2+ with Ca2+, we have been able to capture the inhibited complex which shows distortion that explains the structural basis for the inhibition of such polymerases by Ca2+.
Kim, Jiyoung; Sung, Gi-Ho
2018-03-19
Beauvericin is a mycotoxin which has insecticidal, anti-microbial, anti-viral and anti-cancer activities. Beauvericin biosynthesis is rapidly catalyzed by the beauvericin synthetase (BEAS) in Beauveria bassiana. Ca 2+ plays crucial roles in multiple signaling pathways in eukaryotic cells. These Ca 2+ signals are partially decoded by Ca 2+ sensor calmodulin (CaM). In this report, we describe that B. bassiana BEAS (BbBEAS) can interact with CaM in a Ca 2+ -dependent manner. A synthetic BbBEAS peptide, corresponding to the putative CaM-binding motif, formed a stable complex with CaM in the presence of Ca 2+ . In addition, in vitro CaM-binding assay revealed that the His-tagged BbBEAS (amino acids 2421-2538) binds to CaM in a Ca 2+ -dependent manner. Therefore, this work suggests that BbBEAS is a novel CaM-binding protein in B. bassiana.
Coupling between phosphate and calcium homeostasis: a mathematical model.
Granjon, David; Bonny, Olivier; Edwards, Aurélie
2017-12-01
We developed a mathematical model of calcium (Ca) and phosphate (PO 4 ) homeostasis in the rat to elucidate the hormonal mechanisms that underlie the regulation of Ca and PO 4 balance. The model represents the exchanges of Ca and PO 4 between the intestine, plasma, kidneys, bone, and the intracellular compartment, and the formation of Ca-PO 4 -fetuin-A complexes. It accounts for the regulation of these fluxes by parathyroid hormone (PTH), vitamin D 3 , fibroblast growth factor 23, and Ca 2+ -sensing receptors. Our results suggest that the Ca and PO 4 homeostatic systems are robust enough to handle small perturbations in the production rate of either PTH or vitamin D 3 The model predicts that large perturbations in PTH or vitamin D 3 synthesis have a greater impact on the plasma concentration of Ca 2+ ([Ca 2+ ] p ) than on that of PO 4 ([PO 4 ] p ); due to negative feedback loops, [PO 4 ] p does not consistently increase when the production rate of PTH or vitamin D 3 is decreased. Our results also suggest that, following a large PO 4 infusion, the rapidly exchangeable pool in bone acts as a fast, transient storage PO 4 compartment (on the order of minutes), whereas the intracellular pool is able to store greater amounts of PO 4 over several hours. Moreover, a large PO 4 infusion rapidly lowers [Ca 2+ ] p owing to the formation of CaPO 4 complexes. A large Ca infusion, however, has a small impact on [PO 4 ] p , since a significant fraction of Ca binds to albumin. This mathematical model is the first to include all major regulatory factors of Ca and PO 4 homeostasis. Copyright © 2017 the American Physiological Society.
Lohmiller, Thomas; Shelby, Megan L.; Long, Xi; ...
2015-05-19
We studied Ca 2+ -depleted and Ca 2+ -reconstituted spinach photosystem II using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca 2+ ion in the Mn 4O 5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca 2+ -depleted S 1 (S 1') and S 2 (S 2') states, the S 2'Y Z• state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca 2+ -reconstituted S 1 state. Polarized Mnmore » K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca 2+ -depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca 2+ -containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca 2+ ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca 2+ ion in the OEC is not critical for structural maintenance of the cluster, at least in the S 1 and S 2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca 2+ removal are discussed, attributing to the Ca 2+ ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to Y Z• (D1-Tyr161).« less
Kim, Jong Wan; Ha, Gyoung Yim; Jung, Yong Wook
2014-09-01
N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propinoic acid (AMPA) receptors bound to postsynaptic density-95 (PSD-95) and α isoform of calcium/calmodulin-dependent protein kinase II (αCaMKII) is fundamentally involved in the regulation of working memory. The aim of present study was to investigate the alterations of NMDA and AMPA receptors responsible for hippocampal synaptic dysfunction and selective neuronal cell death after chronic renal failure (CRF) which may be associated with impairment of working memory. Altered interactions between NMDA and AMPA receptors and PSD-95 and αCaMKII were analyzed in the cornu ammonis (CA) 1 and CA3/dentate gyrus (DG) subfields of the uremic rat hippocampi using the immunoblotting and immunoprecipitation methods. Uremia induced by CRF produced necrotic cell death and decreased neuronal nucleoli protein levels in the hippocampal CA1 subfield, but not in the CA3/DG subfields. The CA1 subfields of CRF rats exhibited significant decreases and increases, respectively, in the expressions of PSD-95/NR2B and αCaMKII/NR2A synaptic complex. Moreover, increased phosphorylation of glutamate receptor type 1 (GluR1) AMPA receptor at ser831 was observed in the CA1 subfield after CRF. These hippocampal CA1 neuronal vulnerability may be responsible for memory dysfunction after CRF as mediated by an increase in NR2A-containing NMDA receptors bound to αCaMKII and subsequent activation of GluR1-containing AMPA receptors caused by the phosphorylation of GluR1 at ser831.
Lohmiller, Thomas; Shelby, Megan L; Long, Xi; Yachandra, Vittal K; Yano, Junko
2015-10-29
Ca(2+)-depleted and Ca(2+)-reconstituted spinach photosystem II was studied using polarized X-ray absorption spectroscopy of oriented PS II preparations to investigate the structural and functional role of the Ca(2+) ion in the Mn4O5Ca cluster of the oxygen-evolving complex (OEC). Samples were prepared by low pH/citrate treatment as one-dimensionally ordered membrane layers and poised in the Ca(2+)-depleted S1 (S1') and S2 (S2') states, the S2'YZ(•) state, at which point the catalytic cycle of water oxidation is inhibited, and the Ca(2+)-reconstituted S1 state. Polarized Mn K-edge XANES and EXAFS spectra exhibit pronounced dichroism. Polarized EXAFS data of all states of Ca(2+)-depleted PS II investigated show only minor changes in distances and orientations of the Mn-Mn vectors compared to the Ca(2+)-containing OEC, which may be attributed to some loss of rigidity of the core structure. Thus, removal of the Ca(2+) ion does not lead to fundamental distortion or rearrangement of the tetranuclear Mn cluster, which indicates that the Ca(2+) ion in the OEC is not critical for structural maintenance of the cluster, at least in the S1 and S2 states, but fulfills a crucial catalytic function in the mechanism of the water oxidation reaction. On the basis of this structural information, reasons for the inhibitory effect of Ca(2+) removal are discussed, attributing to the Ca(2+) ion a fundamental role in organizing the surrounding (substrate) water framework and in proton-coupled electron transfer to YZ(•) (D1-Tyr161).
NASA Astrophysics Data System (ADS)
Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke
2016-11-01
The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as xenocrysts from basement entrained in the magma through limited crustal reworking. The younger ages (807-667 Ma) might represent subsequent thermal events. The results of this study suggest that the ca. 850 Ma layered igneous complex in Akarui Point was derived from a magma chamber constructed through arc-related magmatism which included components from ca. 1.0 Ga felsic continental crustal basement. The geochemical characteristics and the timing of protolith emplacement from this complex are broadly identical to those of similar orthogneisses from Kasumi Rock and Tama Point in the LHC and the Kadugannawa Complex in Sri Lanka, which record Early Neoproterozoic (ca. 1.0 Ga) arc magmatism. Although the magmatic event in Akarui Point is slightly younger, the thermal event probably continued from ca. 1.0 Ga to ca. 850 Ma or even to ca. 670 Ma. We therefore correlate the Akarui Point igneous complex with those in the LHC and Kadugannawa Complex formed under similar Early Neoproterozoic arc magmatic events during the convergent margin processes prior to the assembly of the Gondwana supercontinent.
NASA Astrophysics Data System (ADS)
Wu, Hui; Zhou, Xiuquan; Rodriguez, Efrain E.; Zhou, Wei; Udovic, Terrence J.; Yildirim, Taner; Rush, John J.
2016-10-01
We report on a new class of complex hydrides: borohydride guanidinate complexes (MBH4·nCN3H5, M=Li, Mg, and Ca). They can be prepared via facile solid-state synthesis routes. Their crystal structures were successfully determined using a combination of X-ray diffraction, first-principles calculations and neutron vibrational spectroscopy. Among these compounds, Mg(BH4)2·6CN3H5 is composed of large complex Mg[CN3H5]62+ cations and surrounding BH4- ions, while Ca(BH4)2·2CN3H5 possesses layers of corner-sharing Ca[BH4]4(CN3H5)2 octahedra. Our dehydrogenation results show that ≈10 wt% hydrogen can be released from MBH4·nCN3H5 (M=Li, Mg, and Ca) at moderate temperatures with minimal ammonia and diborane contamination thanks to the synergistic effect of C-N bonds from guanidine and hydridic H from borohydrides leading to a weakening of the N-H bonds, thus impeding ammonia gas liberation. Further tuning the dehydrogenation with different cation species indicates that Mg(BH4)2·nCN3H5 can exhibit the optimum properties with nearly thermally neutral dehydrogenation and very high purity hydrogen release.
NASA Astrophysics Data System (ADS)
El-Megharbel, Samy M.; Hamza, Reham Z.; Refat, Moamen S.
2015-01-01
The main task of our present study is the preparation of newly complexes of Mg(II), Ca(II), Sr(II) and Ba(II) with diclofenac which succeeded to great extent in alleviating the side effects of diclofenac alone and ameliorating the kidney function parameters and antioxidant capacities with respect to diclofenac treated group alone. The Mg(II), Ca(II), Sr(II) and Ba(II) with diclofenac have been synthesized and characterized using infrared, electronic and 1H NMR spectral, thermogravimetric and conductivity measurements. The diclofenac ligand has been found to act as bidentate chelating agent. Diclofenac complexes coordinate through the oxygen's of the carboxyl group. The molar ratio chelation is 1:2 (M2+-dic) with general formula [M(dic)2(H2O)2]ṡnH2O. Antibacterial screening of the alkaline earth metal complexes against Escherichia coli (Gram - ve), Bacillus subtilis (Gram + ve) and anti-fungal (Asperagillus oryzae, Asperagillus niger, Asperagillus flavus) were investigated. The kidney functions in male albino rats were ameliorated upon treatment with metal complexes of dic, which are represented by decreasing the levels of urea and uric acid to be located within normal values. The other looks bright spot in this article is the assessment of antioxidant defense system including SOD, CAT and MDA with the help of Sr2+, Mg2+ and Ca2+-dic complexes. The hormones related to kidney functions and stresses have been greatly ameliorated in groups treated with dic complexes in comparable with dic treated group.
NASA Astrophysics Data System (ADS)
Li, Xin; Cao, Lei; Ma, Yifeng
2017-08-01
The Scottish Reformation in the sixteenth century had a profound influence on the layout and function of Greyfriars Kirkyard. Since the Reformation it has been used in various ways such as a public cemetery, a weapon exhibition and military exercises site, and as the Covenanters prison. By exhaustively perusing historical documents, comparing different layouts in Edinburgh antique maps, and analyzing the epitaphs and engraved monuments within the cemetery, I have concluded the reconstructive principles of the sacred space represent three major shifts. The space has moved from sacred to secular from a single faith to multiple denominational and from an oppressive environment to a supportive one.
Pasqualini, Mauro
2016-01-01
The Franciscan friar Agostino Gemelli has been the subject of much research and debate. This is due to his important political profile and, above all, to the role he played in mediating between the Catholic world and fascism in Italy during the inter-war period. Gemelli was also a central figure in Italian psychology, especially during the 1930s and 1940s. This article is structured to focus in particular on the way that his connections with political and ecclesiastic powers allowed him to become increasingly significant within Italian psychology. Using the example of Gemelli's relationship with psychoanalysis, this study highlights the tension between his relatively open-minded stance and his links to authoritarian, dogmatic ideologies and institutions.
5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR ...
5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G
2012-12-01
The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.
Fornander, Louise H; Frykholm, Karolin; Reymer, Anna; Renodon-Cornière, Axelle; Takahashi, Masayuki; Nordén, Bengt
2012-06-01
Human RAD51 protein (HsRad51) catalyses the DNA strand exchange reaction for homologous recombination. To clarify the molecular mechanism of the reaction in vitro being more effective in the presence of Ca(2+) than of Mg(2+), we have investigated the effect of these ions on the structure of HsRad51 filament complexes with single- and double-stranded DNA, the reaction intermediates. Flow linear dichroism spectroscopy shows that the two ionic conditions induce significantly different structures in the HsRad51/single-stranded DNA complex, while the HsRad51/double-stranded DNA complex does not demonstrate this ionic dependence. In the HsRad51/single-stranded DNA filament, the primary intermediate of the strand exchange reaction, ATP/Ca(2+) induces an ordered conformation of DNA, with preferentially perpendicular orientation of nucleobases relative to the filament axis, while the presence of ATP/Mg(2+), ADP/Mg(2+) or ADP/Ca(2+) does not. A high strand exchange activity is observed for the filament formed with ATP/Ca(2+), whereas the other filaments exhibit lower activity. Molecular modelling suggests that the structural variation is caused by the divalent cation interfering with the L2 loop close to the DNA-binding site. It is proposed that the larger Ca(2+) stabilizes the loop conformation and thereby the protein-DNA interaction. A tight binding of DNA, with bases perpendicularly oriented, could facilitate strand exchange.
Using Metadynamics to Understand the Mechanism of Calmodulin/Target Recognition at Atomic Detail
Fiorin, G.; Pastore, A.; Carloni, P.; Parrinello, M.
2006-01-01
The ability of calcium-bound calmodulin (CaM) to recognize most of its target peptides is caused by its binding to two hydrophobic residues (‘anchors’). In most of the CaM complexes, the anchors pack against the hydrophobic pockets of the CaM domains and are surrounded by fully conserved Met side chains. Here, by using metadynamics simulations, we investigate quantitatively the energetics of the final step of this process using the M13 peptide, which has a high affinity and spans the sequence of the skeletal myosin light chain kinase, an important natural CaM target. We established the accuracy of our calculations by a comparison between calculated and NMR-derived structural and dynamical properties. Our calculations provide novel insights into the mechanism of protein/peptide recognition: we show that the process is associated with a free energy gain similar to that experimentally measured for the CaM complex with the homologous smooth muscle MLCK peptide (Ehrhardt et al., 1995, Biochemistry 34, 2731). We suggest that binding is dominated by the entropic effect, in agreement with previous proposals. Furthermore, we explain the role of conserved methionines by showing that the large flexibility of these side chains is a key feature of the binding mechanism. Finally, we provide a rationale for the experimental observation that in all CaM complexes the C-terminal domain seems to be hierarchically more important in establishing the interaction. PMID:16877506
Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles
2013-01-01
Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca2+ concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca2+ indicator dye. Using pharmacological antagonists of receptors and Ca2+ channels, the variations in intracellular Ca2+ concentration were found independent of the activation of voltage-operatedCa2+ channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) or H+-ATPase and antagonists of the store-operated Ca2+ entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca2+. Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca2+ from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca2+ from lysosomes, modifies the steady-state level of reticular Ca2+ stores and finally activates the Store-Operated Calcium Entry complex. PMID:23152983
Jover, Emmanuel; Tawk, Mira Y; Laventie, Benoît-Joseph; Poulain, Bernard; Prévost, Gilles
2013-05-01
Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca(2+) concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca(2+) indicator dye. Using pharmacological antagonists of receptors and Ca(2+) channels, the variations in intracellular Ca(2+) concentration were found independent of the activation of voltage-operated Ca(2+) channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca(2+)-ATPase (SERCA) or H(+)-ATPase and antagonists of the store-operated Ca(2+) entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca(2+). Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca(2+) from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca(2+) from lysosomes, modifies the steady-state level of reticular Ca(2+) stores and finally activates the Store-Operated Calcium Entry complex. © 2012 Blackwell Publishing Ltd.
Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism
NASA Astrophysics Data System (ADS)
Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.
2011-03-01
ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.
Park, Young Jun; Ziller, Joseph W.; Borovik, A. S.
2011-01-01
Rate enhancements for the reduction of dioxygen by a MnII complex were observed in the presence of redox inactive Group 2 metal ions. The rate changes correlated with an increase in the Lewis acidity of the Group 2 metal ions. These studies led to the isolation of heterobimetallic complexes that contain MnIII-(μ-OH)-MII cores (MII = CaII, BaII), in which the hydroxo oxygen atom is derived from O2. This type of core structure has relevance to the oxygen evolving complexes within photosystem II. PMID:21595481
NASA Astrophysics Data System (ADS)
Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile
2014-09-01
In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.
7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA ...
7. VAL CAMERA CAR, DETAIL OF 'FLARE' OR TRAJECTORY CAMERA INSIDE CAMERA CAR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION ...
7. VAL CAMERA STATION, INTERIOR VIEW OF CAMERA MOUNT, COMMUNICATION EQUIPMENT AND STORAGE CABINET. - Variable Angle Launcher Complex, Camera Stations, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
3. VAL CONTROL STATION, VIEW OF CONTROL PANELS SHOWING MAIN ...
3. VAL CONTROL STATION, VIEW OF CONTROL PANELS SHOWING MAIN PRESSURE GAUGES, LOOKING NORTH. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria.
Jang, Sehwan; Javadov, Sabzali
2017-09-15
Although mitochondrial Ca 2+ overload and ROS production play a critical role in mitochondria-mediated cell death, a cause-effect relationship between them remains elusive. This study elucidated the crosstalk between mitochondrial swelling, ROS production, and electron transfer chain (ETC) supercomplexes in rat heart mitochondria in response to Ca 2+ and tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide. Results showed that ROS production induced by TBH was significantly increased in the presence of Ca 2+ in a dose-dependent manner. TBH markedly inhibited the state 3 respiration rate with no effect on the mitochondrial swelling. Ca 2+ exerted a slight effect on mitochondrial respiration that was greatly aggravated by TBH. Analysis of supercomplexes revealed a minor difference in the presence of TBH and/or Ca 2+ . However, incubation of mitochondria in the presence of high Ca 2+ (1 mM) or inhibitors of ETC complexes (rotenone and antimycin A) induced disintegration of the main supercomplex, respirasome. Thus, PTP-dependent swelling of mitochondria solely depends on Ca 2+ but not ROS. TBH has no effect on the respirasome while Ca 2+ induces disintegration of the supercomplex only at a high concentration. Intactness of individual ETC complexes I and III is important for maintenance of the structural integrity of the respirasome. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krogstad, Daniel V.; Wang, Dongbo; Lin-Gibson, Sheng
Polyelectrolytes are known to greatly affect calcium phosphate (CaP) mineralization. The reaction kinetics as well as the CaP phase, morphology and aggregation state depend on the relative concentrations of the polyelectrolyte and the inorganic ions in a complex, nonlinear manner. This study examines the structural evolution and kinetics of polyaspartic acid (pAsp) directed CaP mineralization at high concentrations of polyelectrolytes, calcium, and total phosphate (19–30 mg/mL pAsp, 50–100 mM Ca2+, Ca/P = 2). Using a novel combination of characterization techniques including cryogenic transmission electron microscopy (cryo-TEM), spectrophotometry, X-ray total scattering pair distribution function analysis, and attenuated total reflectance Fourier transformmore » infrared spectroscopy (ATR-FTIR), it was determined that the CaP mineralization occurred over four transition steps. The steps include the formation of aggregates of pAsp stabilized CaP spherical nanoparticles (sNP), crystallization of sNP, oriented attachment of the sNP into nanorods, and further crystallization of the nanorods. The intermediate aggregate sizes and the reaction kinetics were found to be highly polymer concentration dependent while the sizes of the particles were not concentration dependent. This study demonstrates the complex role of pAsp in controlling the mechanism as well as the kinetics of CaP mineralization.« less
hnRNP L binds to CA repeats in the 3'UTR of bcl-2 mRNA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Dong-Hyoung; Lim, Mi-Hyun; Youn, Dong-Ye
We previously reported that the CA-repeat sequence in the 3'-untranslated region (3'UTR) of bcl-2 mRNA is involved in the decay of bcl-2 mRNA. However, the trans-acting factor for the CA element in bcl-2 mRNA remains unidentified. The heterogeneous nuclear ribonucleoprotein L (hnRNP L), an intron splicing factor, has been reported to bind to CA repeats and CA clusters in the 3'UTR of several genes. We reported herein that the CA repeats of bcl-2 mRNA have the potential to form a distinct ribonuclear protein complex in cytoplasmic extracts of MCF-7 cells, as evidenced by RNA electrophoretic mobility shift assays (REMSA). Amore » super-shift assay using the hnRNP L antibody completely shifted the complex. Immunoprecipitation with the hnRNP L antibody and MCF-7 cells followed by RT-PCR revealed that hnRNP L interacts with endogenous bcl-2 mRNA in vivo. Furthermore, the suppression of hnRNP L in MCF-7 cells by the transfection of siRNA for hnRNP L resulted in a delay in the degradation of RNA transcripts including CA repeats of bcl-2 mRNA in vitro, suggesting that the interaction between hnRNPL and CA repeats of bcl-2 mRNA participates in destabilizing bcl-2 mRNA.« less
Biophysical modelling of early and delayed radiation damage at chromosome level
NASA Astrophysics Data System (ADS)
Andreev, S.; Eidelman, Y.
Exposure by ionising radiation increases cancer risk in human population Cancer is thought to originate from an altered expression of certain number of specific genes It is now widely recognised that chromosome aberrations CA are involved in stable change in expression of genes by gain or loss of their functions Thus CA can contribute to initiation or progression of cancer Therefore understanding mechanisms of CA formation in the course of cancer development might be valuable tool for quantification and prognosis of different stages of radiation carcinogenesis Early CA are defined as aberrations induced in first post-irradiation mitotic cycle The present work describes the original biophysical technique for early CA modelling It includes the following simulation steps the ionising particle track structure the structural organisation of all chromosomes in G 0 G 1 cell nucleus spatial distribution of radiation induced DNA double-strand breaks dsb within chromosomes dsb rejoining and misrejoining modelling cell cycle taking into account mitotic delay which results in complex time dependence of aberrant cells in first mitosis The results on prediction of dose-response curves for simple and complex CA measured in cells undergoing first division cycle are presented in comparison with recent experimental data There is increasing evidence that CA are also observed in descendents of irradiated cells many generations after direct DNA damage These delayed CA or chromosome instability CI are thought to be a manifestation of genome
Gawlitta, W; Stockem, W; Wehland, J; Weber, K
1980-01-01
The dynamics of Ca++ during induced pinocytosis were studied in Amoeba proteus using chlorotetracycline (CTC). The fluorescence of the Ca++ - CTC-complex was monitored by an image intensification system, which has certain advantages over standard equipment: (1) Living cells are not subjected to the damaging influence of intensive microscopic illumination, (2) fluorescent probes are not bleached during observation, and (3) the rapid dynamics of the Ca++ -fluxes can be recorded using short exposure times. The results demonstrate the existence of Ca++ bound to intracellular and extracellular sites of the cell membrane complex in normal locomoting and pinocytotic Amoeba proteus. The application of cations inducing pinocytosis causes a rapid decrease in the external CTC-fluorescence probably due to a release of Ca++ from the mucous layer. The degree of fluorescence intensity is correlated with the capacity of pinocytotic channel formation, i.e., the fluorescence decreases as the number of channels increases. During the phase of vesiculation a distinct fluorescence mainly restricted to the basal region of the channels is observed. Intracellular Ca++ was detected in close vicinity to the plasma membrane after both microinjection and external application of CTC. The internal CTC-fluorescence is slightly decreased during the induction phase of pinocytosis. The observations are in good agreement with previous results on the localization of Ca++ -binding sites at the plasma membrane of Amoeba proteus and demonstrate the important role of Ca++ -fluxes for the process of pinocytosis.
Nichols, Matthew; Elustondo, Pia A; Warford, Jordan; Thirumaran, Aruloli; Pavlov, Evgeny V; Robertson, George S
2017-08-01
The effects of global mitochondrial calcium (Ca 2+ ) uniporter (MCU) deficiency on hypoxic-ischemic (HI) brain injury, neuronal Ca 2+ handling, bioenergetics and hypoxic preconditioning (HPC) were examined. Forebrain mitochondria isolated from global MCU nulls displayed markedly reduced Ca 2+ uptake and Ca 2+ -induced opening of the membrane permeability transition pore. Despite evidence that these effects should be neuroprotective, global MCU nulls and wild-type (WT) mice suffered comparable HI brain damage. Energetic stress enhanced glycolysis and depressed Complex I activity in global MCU null, relative to WT, cortical neurons. HI reduced forebrain NADH levels more in global MCU nulls than WT mice suggesting that increased glycolytic consumption of NADH suppressed Complex I activity. Compared to WT neurons, pyruvate dehydrogenase (PDH) was hyper-phosphorylated in MCU nulls at several sites that lower the supply of substrates for the tricarboxylic acid cycle. Elevation of cytosolic Ca 2+ with glutamate or ionomycin decreased PDH phosphorylation in MCU null neurons suggesting the use of alternative mitochondrial Ca 2+ transport. Under basal conditions, global MCU nulls showed similar increases of Ca 2+ handling genes in the hippocampus as WT mice subjected to HPC. We propose that long-term adaptations, common to HPC, in global MCU nulls compromise resistance to HI brain injury and disrupt HPC.
Yachandra, Vittal K.; Yano, Junko
2011-01-01
This review describes the results from X-ray absorption spectroscopy studies that have contributed to an understanding of the role of Ca in the photosynthetic water oxidation reaction. The results include the first Mn, Ca and Sr X-ray spectroscopy studies using Ca or Sr-substituted PS II samples that established the presence of a MnCa heteronuclear structure and its orientation, and the most recent Sr X-ray spectroscopy study using biosynthetically prepared Sr-containing PS II in the various S-states that provide important insights into the requirement for Ca in the mechanism of the Mn4Ca catalytic center. PMID:21524917
NASA Astrophysics Data System (ADS)
Xie, Y. C.; Cheng, Q. R.; Pan, Z. Q.
2018-02-01
New magnesium phosphonates Mg(H2L)31 (H4L = 2,5-dimethylbenzene-1,4 -diylbis(methylene)diphosphonic acid) and Ca(H2L)·2H2O 2 have been hydrothermally synthesized from H4L and the corresponding metal salts. Complex 1 and 2 have been characterized by IR, powder and single-crystal X-ray diffraction methods. Complex 1 crystallizes in trigonal space group R-3c and complex 2 belongs to the triclinic space group. The complexes both form two-dimensional (2D) network structure and show three-dimensional (3D) network through hydrogen bonds. Thermal stability of complex 1 and 2 have also been investigated. CCDC: 1534599 for 1; 1536423 for 2.
NASA Astrophysics Data System (ADS)
Gulab, Hussain; Shah, Zarbad; Mahmood, Mazhar; Shah, Syed Raza; Ali, Sajid; Iqbal, Muhammad; Khan, Muhammad Naeem; Flörke, Ulrich; Khan, Shahid Ali
2018-02-01
A new Ca-complex (Ca (H2 O)4 (C12 H8 N2)2)(C7 H4 N S2)2 has been synthesized by the reaction of calcium chloride, sodium 2-mercaptobenzothiazole and 1,10-phenanthroline. The complex was characterized by using X-ray crystallography and FT-IR spectroscopy. The complex was tested against different bacterial strains i.e. Staphylococcus aureus, Escherichia coli, Acinetobacter baumanni, Providencia stuartii and Pseudomonas aeruginosa. The complex was found to exhibit remarkable anti-bacterial activity against Pseudomonas aeruginosa with an inhibition zone of 25 mm and good anti-bacterial activity against Acinetobacter baumanni with a zone of inhibition of 16 mm comparable to the Levofloxacin standard (zone of inhibition of 25 mm).
NASA Astrophysics Data System (ADS)
Santamaría-López, Ángel; Sanz de Galdeano, Carlos
2018-04-01
U-Pb dating on inherited detrital zircons has been applied to obtain the probable maximum age of deposition of the detrital protolith of the Nevado-Filábride complex (Betic Cordillera, Spain). Five of eight samples correspond to the lower part of the lithologic sequence of this complex, where radiometric dating of metasediments has not been presented till the present. The youngest age populations in the majority of samples are Carboniferous. The estimation of the maximum age of deposition in the lower and upper units is 349.1 ± 1.6 and 334.6 ± 2.9 Ma, respectively. In addition, samples show common age populations at ca. 490-630 and ca. 910-1010 Ma. Observations agree with the Carboniferous to early Permian U-Pb ages previously obtained in orthogneisses levels which are situated in the upper part of the complex. Combination of the minimum age of deposition deducible from the orthogneisses studies and the maximum ages of deposition obtained from the detrital zircons of this work, allow establishing the deposition of de studied lithological succession comprised between ca. 282 and 349 Ma or a shorter period.
Wang, Xiaoya; Liu, Fuguo; Liu, Lei; Wei, Zihao; Yuan, Fang; Gao, Yanxiang
2015-04-15
In this study the impact of covalent complexes of α-lactalbumin (α-La) with (-)-epigallocatechin gallate (EGCG) or chlorogenic acid (CA) was investigated on the physicochemical properties of β-carotene oil-in-water emulsions. EGCG, or CA, was covalently linked to α-La at pH 8.0, as evidenced by increased total phenolic content and declined fluorescence intensity. Compared with those stabilised by α-La alone and α-La-CA or EGCG mixture, the emulsion stabilised by the α-La-EGCG covalent complex exhibited the least changes in particle size and transmission profiles, using a novel centrifugal sedimentation technique, indicating an improvement in the physical stability. The least degradation of β-carotene occurred in the emulsion stabilised with the α-La-EGCG covalent complex when stored at 25 °C. These results implied that protein-polyphenol covalent complexes were able to enhance the physical stability of β-carotene emulsion and inhibit the degradation of β-carotene in oil-in-water emulsion, and the effect was influenced by the types of the phenolic compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.
Springer, Tzvia I; Goebel, Erich; Hariraju, Dinesh; Finley, Natosha L
2014-10-10
Bordetella pertussis, causative agent of whooping cough, produces an adenylate cyclase toxin (CyaA) that is an important virulence factor. In the host cell, the adenylate cyclase domain of CyaA (CyaA-ACD) is activated upon association with calmodulin (CaM), an EF-hand protein comprised of N- and C-lobes (N-CaM and C-CaM, respectively) connected by a flexible tether. Maximal CyaA-ACD activation is achieved through its binding to both lobes of intact CaM, but the structural mechanisms remain unclear. No high-resolution structure of the intact CaM/CyaA-ACD complex is available, but crystal structures of isolated C-CaM bound to CyaA-ACD shed light on the molecular mechanism by which this lobe activates the toxin. Previous studies using molecular modeling, biochemical, and biophysical experiments demonstrate that CyaA-ACD's β-hairpin participates in site-specific interactions with N-CaM. In this study, we utilize nuclear magnetic resonance (NMR) spectroscopy to probe the molecular association between intact CaM and CyaA-ACD. Our results indicate binding of CyaA-ACD to CaM induces large conformational perturbations mapping to C-CaM, while substantially smaller structural changes are localized primarily to helices I, II, and IV, and the metal-binding sites in N-CaM. Site-specific mutations in CyaA-ACD's β-hairpin structurally modulate N-CaM, resulting in conformational perturbations in metal binding sites I and II, while no significant structural modifications are observed in C-CaM. Moreover, dynamic light scattering (DLS) analysis reveals that mutation of the β-hairpin results in a decreased hydrodynamic radius (Rh) and reduced thermal stability in the mutant complex. Taken together, our data provide new structural insights into the β-hairpin's role in stabilizing interactions between CyaA-ACD and N-CaM. Copyright © 2014 Elsevier Inc. All rights reserved.
Luque-Caballero, Germán; Martín-Molina, Alberto; Sánchez-Treviño, Alda Yadira; Rodríguez-Valverde, Miguel A; Cabrerizo-Vílchez, Miguel A; Maldonado-Valderrama, Julia
2014-04-28
Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.
MVP-CA Methodology for the Expert System Advocate's Advisor (ESAA)
DOT National Transportation Integrated Search
1997-11-01
The Multi-Viewpoint Clustering Analysis (MVP-CA) tool is a semi-automated tool to provide a valuable aid for comprehension, verification, validation, maintenance, integration, and evolution of complex knowledge-based software systems. In this report,...
8. VAL CAMERA CAR, CLOSEUP VIEW OF 'FLARE' OR TRAJECTORY ...
8. VAL CAMERA CAR, CLOSE-UP VIEW OF 'FLARE' OR TRAJECTORY CAMERA ON SLIDING MOUNT. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA ...
6. VAL CAMERA CAR, DETAIL OF COMMUNICATION EQUIPMENT INSIDE CAMERA CAR WITH CAMERA MOUNT IN FOREGROUND. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, ...
2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, WINDOWS AND CONTROL PANELS, LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Panov, A; Scarpa, A
1996-01-16
The activity of alpha-ketoglutarate dehydrogenase complex (KGDHC), an important enzyme regulating several metabolic pathways, could be regulated by changes in the environment within the mitochondrial matrix. It has been postulated that the activity of this and other dehydrogenases in vivo could be modulated by changes in the intramitochondrial concentrations of Ca2+ or Mg2+. Using a purified alpha-ketoglutarate dehydrogenase from pig hearts, the effect of Ca2+ and/or Mg2+ on the enzyme activity was investigated. Either Ca2+ or Mg2+ increased enzyme activity, and the effects were additive if the concentrations of free divalent cations were below 0.1 and 1 mM for Ca2+ and Mg2+, respectively. In the presence of 1 mM alpha-ketoglutarate and other cofactors, the KM for Mg2+ was 25 microM and less than 1 microM for Ca2+. The KM for alpha-ketoglutarate was a function of the divalent cation(s) present: 4 +/- 1.1 mM in the absence of Ca2+, with or without Mg2+; 2.2 mM in the presence of 1.8 microM Ca2+ alone; and 0.3 mM in the presence of both Ca2+ and Mg2+. Mg2+ increased KGDHC activity only in the presence of thiamine pyrophosphate (TPP) indicating that KGDHC requires both TPP and Mg2+ for enzyme's maximal activity. The affinity of KGDHC for NAD+ is significantly changed by either Mg2+ or Ca2+. The conclusions are that changes in both Ca2+ and Mg2+, in concentrations possibly occurring within mitochondria, could control KGDHC activity and that thiamine pyrophosphate is required for maximal enzyme activity.
Yokota, Etsuo; Tominaga, Motoki; Mabuchi, Issei; Tsuji, Yasunori; Staiger, Christopher J; Oiwa, Kazuhiro; Shimmen, Teruo
2005-10-01
From germinating pollen of lily, two types of villins, P-115-ABP and P-135-ABP, have been identified biochemically. Ca(2+)-CaM-dependent actin-filament binding and bundling activities have been demonstrated for both villins previously. Here, we examined the effects of lily villins on the polymerization and depolymerization of actin. P-115-ABP and P-135-ABP present in a crude protein extract prepared from germinating pollen bound to a DNase I affinity column in a Ca(2+)-dependent manner. Purified P-135-ABP reduced the lag period that precedes actin filament polymerization from monomers in the presence of either Ca(2+) or Ca(2+)-CaM. These results indicated that P-135-ABP can form a complex with G-actin in the presence of Ca(2+) and this complex acts as a nucleus for polymerization of actin filaments. However, the nucleation activity of P-135-ABP is probably not relevant in vivo because the assembly of G-actin saturated with profilin, a situation that mimics conditions found in pollen, was not accelerated in the presence of P-135-ABP. P-135-ABP also enhanced the depolymerization of actin filaments during dilution-mediated disassembly. Growth from filament barbed ends in the presence of Ca(2+)-CaM was also prevented, consistent with filament capping activity. These results suggested that lily villin is involved not only in the arrangement of actin filaments into bundles in the basal and shank region of the pollen tube, but also in regulating and modulating actin dynamics through its capping and depolymerization (or fragmentation) activities in the apical region of the pollen tube, where there is a relatively high concentration of Ca(2+).
Gaines, Peter; Lamoureux, James; Marisetty, Anantha; Chi, Jeffrey; Berliner, Nancy
2008-01-01
Objective The function of neutrophils as primary mediators of innate immunity depends on the activity of granule proteins and critical components of the NADPH oxidase complex. Expression of their cognate genes is regulated during neutrophil differentiation by a complex network of intracellular signaling pathways. In this study we have investigated the role of two members of the calcium/calmodulin-dependent protein kinase (CaMK) signaling cascade, CaMKI-like kinase (CKLiK) and CaMKKα, in regulating neutrophil differentiation and functional activation. Materials and Methods Mouse myeloid cell lines were used to examine the expression of a CaMK cascade in developing neutrophils and to examine the effects of constitutive activation versus inhibition of CaMKs on neutrophil maturation. Results Expression of CaMKKα was shown to increase during neutrophil differentiation in multiple cell lines, whereas expression of CKLiK increased as multipotent progenitors committed to promyelocytes but then decreased as cells differentiated into mature neutrophils. Expression of constitutively active CKLiKs did not affect morphologic maturation, but caused dramatic decreases in both respiratory burst responses and chemotaxis. This loss of neutrophil function was accompanied by reduced secondary granule and gp91phox gene expression. The CaMK inhibitor KN93 attenuated cytokine-stimulated proliferative responses in promyelocytic cell lines, and inhibited the respiratory burst. Similar data were observed with the CaMKKα inhibitor, STO-609. Conclusions Overactivation of a cascade of CaMKs inhibits neutrophil maturation, suggesting that these kinases play an antagonistic role during neutrophil differentiation, but at least one CaMK is required for myeloid cell expansion and functional activation. PMID:18400360
Effect of metal complex formation on the potential of organic aerosols as cloud condensation nuclei
NASA Astrophysics Data System (ADS)
Furukawa, T.; Takahashi, Y.
2010-12-01
Secondary organic aerosols (SOA) play a key role on the solar radiation balance in troposphere, since SOA can act as cloud condensation nuclei (CCN) due to its high hygroscopic nature. Oxalic acid is one of the most dominant components of SOA, which has cooling effects of the earth by acting as CCN. However, it is uncertain whether the oxalic acid can exist as free oxalic acid or metal-oxalate complexes in aerosols, even if there is a largedifference in their solubilities into water. Consequently, XAFS measurement was conducted to demonstrate the presence of metal-oxalate complexes. Size fractionated aerosol samples were collected in Tsukuba (located at northeast about 60 km from Tokyo) using a low-volume Andersen-type air sampler. The sampler had eight stages and a back-up filter. The sampling was conducted during winter and summer in 2002. Calcium oxalate was observed in finer particles in each period from Ca K-edge XANES, and its fractions among total Ca were approximately 20%. Similarly,, Zn oxalate was also detected in finer particles from Zn K-edge XANES and EXAFS. The [Zn-oxalate] / [Zn]total ratio in each period clearly increased with the decrease in the particle diameter. This result revealed that Zn-oxalate was formed in the aqueous phase at particle surfaces or in cloud processing. In other words, Zn-oxalate was abundant at the particle surface, resulting from the increase in the [surface]/[bulk] ratio with decreasing particle size. Based on (i) total concentrations of oxalate, Ca, and Zn determined by ion-chromatography and ICP-AES analyses and (ii) Ca- and Zn- oxalate fractions obtained by XAFS, we determined the fraction of metal-oxalate complexes among total oxalate in aerosols. In winter, Ca- and Zn- oxalate fractions reached about 60% of total oxalate in the ranges of 1.1-2.1 μm and 0.65-1.1 μm, while the value was about 60-80% in the same particle size range in summer. On the other hand, Ca- and Zn- oxalates are highly insoluble, showing that the complexes cannot act as CCN. Therefore, the ability of oxalic acid as CCN is needed to be reconsidered, because most of oxalic acid in aerosols exists as metal-oxalate complexes as shown by XAFS spectroscopy in this study.
LaMaskin, Todd A.; Vervoort, J.D.; Dorsey, R.J.; Wright, J.E.
2011-01-01
This study assesses early Mesozoic provenance linkages and paleogeographic-tectonic models for the western United States based on new petrographic and detrital zircon data from Triassic and Jurassic sandstones of the "Izee" and Olds Ferry terranes of the Blue Mountains Province, northeastern Oregon. Triassic sediments were likely derived from the Baker terrane offshore accretionary subduction complex and are dominated by Late Archean (ca. 2.7-2.5 Ga), Late Paleoproterozoic (ca. 2.2-1.6 Ga), and Paleozoic (ca. 380-255 Ma) detrital zircon grains. These detrital ages suggest that portions of the Baker terrane have a genetic affinity with other Cordilleran accretionary subduction complexes of the western United States, including those in the Northern Sierra and Eastern Klamath terranes. The abundance of Precambrian grains in detritus derived from an offshore complex highlights the importance of sediment reworking. Jurassic sediments are dominated by Mesozoic detrital ages (ca. 230-160 Ma), contain significant amounts of Paleozoic (ca. 290, 380-350, 480-415 Ma), Neoproterozoic (ca. 675-575 Ma), and Mesoproterozoic grains (ca. 1.4-1.0 Ga), and have lesser quantities of Late Paleoproterozoic grains (ca. 2.1-1.7 Ga). Detrital zircon ages in Jurassic sediments closely resemble well-documented age distributions in transcontinental sands of Ouachita-Appalachian provenance that were transported across the southwestern United States and modified by input from cratonal, miogeoclinal, and Cordilleran-arc sources during Triassic and Jurassic time. Jurassic sediments likely were derived from the Cordilleran arc and an orogenic highland in Nevada that yielded recycled sand from uplifted Triassic backarc basin deposits. Our data suggest that numerous Jurassic Cordilleran basins formed close to the Cordilleran margin and support a model for moderate post-Jurassic translation (~400 km) of the Blue Mountains Province. ?? 2011 Geological Society of America.
McLaughlin, R.J.; Sarna-Wojicki, A. M.; Fleck, R.J.; Wright, W.H.; Levin, V.R.G.; Valin, Z.C.
2004-01-01
The purpose of this geologic map is to provide a context within which to interpret the Neogene evolution of the active strike-slip fault system traversing the Mark West Springs 7.5' quadrangle and adjacent areas. Based on this geologic framework, the timing and total amounts of displacement and the Neogene rates of slip for faults of the right-stepover area between the Healdsburg and Maacama Faults are addressed.The Mark West Springs quadrangle is located in the northern California Coast Ranges north of San Francisco Bay. It is underlain by Mesozoic rocks of the Franciscan Complex, the Coast Range ophiolite, and the Great Valley sequence, considered here to be the pre-Tertiary basement of the northern Coast Ranges. These rocks are overlain by a complexly interstratified and mildly to moderately deformed sequence of Pleistocene to late Miocene marine and nonmarine sedimentary and largely subaerial volcanic rocks. These rocks and unconformably overlying, less-deformed Holocene and Pleistocene strata are cut by the active right-lateral Healdsburg and Maacama Fault Zones.Mapping of the Mark West Springs quadrangle began in 1996 and was completed in October 2002. Most of the mapping presented here is original, although a few other sources of existing geologic mapping were also utilized. Funding for the project was provided by the National Cooperative Geologic Mapping and Earthquake Hazards Reduction programs of the U.S. Geological Survey, in cooperation with geologic hazards mapping investigations of the California Geological Survey.
Hartzell, S.; Carver, D.; Williams, R.A.
2001-01-01
Aftershock records of the 1989 Loma Prieta earthquake are used to calculate site response in the frequency band of 0.5-10 Hz at 24 locations in Los Gatos, California, on the edge of the Santa Clara Valley. Two different methods are used: spectral ratios relative to a reference site on rock and a source/site spectral inversion method. These two methods complement each other and give consistent results. Site amplification factors are compared with surficial geology, thickness of alluvium, shallow shear-wave velocity measurements, and ground deformation and structural damage resulting from the Loma Prieta earthquake. Higher values of site amplification are seen on Quaternary alluvium compared with older Miocene and Cretaceous units of Monterey and Franciscan Formation. However, other more detailed correlations with surficial geology are not evident. A complex pattern of alluvial sediment thickness, caused by crosscutting thrust faults, is interpreted as contributing to the variability in site response and the presence of spectral resonance peaks between 2 and 7 Hz at some sites. Within the range of our field measurements, there is a correlation between lower average shear-wave velocity of the top 30 m and 50% higher values of site amplification. An area of residential homes thrown from their foundations correlates with high site response. This damage may also have been aggravated by local ground deformation. Severe damage to commercial buildings in the business district, however, is attributed to poor masonry construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpern, A.M.; Ruggles, C.J.; Zhang, X.K.
Fluorescence spectra and decay curves of dilute solutions (<3 x 10/sup -4/ M) of triethylamine (TEA), tri-n-propylamine (TPA), and 1,4-diazabicyclo(2.2.2)octane (DABCO) in H/sub 2/O- and D/sub 2/O-saturated n-hexane reveal the presence of a complex formed between the electronically excited amine and water. The decay curves, measured between 273 and 323 K (and at 280 and 360 nm; 300 and 400 nm for DABCO), conform to the standard monomer-excimer photokinetic scheme and are analyzed accordingly. These results indicate that the binding energy of the excited TEA-H/sub 2/O complex (B*) is ca. 7.8 kcal/mol, which is larger than that of the ground-statemore » TEA hydrate. B* for the TPA and DABCO-H/sub 2/O complexes is estimated to be ca. 10 and 8.8 kcal/mol, respectively. Stationary-state measurements are consistent with these assignments. The activation energy for the diffusion of water in n-hexane (assumed to be monomeric) appears to be very small (<1 kcal/mol). The decay constants of the three complexes studied are ca. 3.4 x 10/sup 7/ s/sup -1/ for amine-H/sub 2/O and 2.9 x 10/sup 7/ s/sup -1/ for the amine-D/sub 2/O systems. Intrinsic fluorescence quantum efficiencies of the amine-H/sub 2/O complexes are 0.17, 0.23, and 0.28 for TEA, TPA, and DABCO, respectively, at 303 K. A Foerster cycle analysis of the dry and H/sub 2/O-saturated fluorescence spectra of TEA, when taking the ground-state hydrate into account indicates that the repulsion energy of the post-fluorescence (TEA-H/sub 2/O) complex is ca. 10 kcal/mol.« less
Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy.
Yachandra, Vittal K
2002-01-01
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results. PMID:12437873
Moreno, Renata; Hernández-Arranz, Sofía; La Rosa, Ruggero; Yuste, Luis; Madhushani, Anjana; Shingler, Victoria; Rojo, Fernando
2015-01-01
The Crc protein is a global regulator that has a key role in catabolite repression and optimization of metabolism in Pseudomonads. Crc inhibits gene expression post-transcriptionally, preventing translation of mRNAs bearing an AAnAAnAA motif [the catabolite activity (CA) motif] close to the translation start site. Although Crc was initially believed to bind RNA by itself, this idea was recently challenged by results suggesting that a protein co-purifying with Crc, presumably the Hfq protein, could account for the detected RNA-binding activity. Hfq is an abundant protein that has a central role in post-transcriptional gene regulation. Herein, we show that the Pseudomonas putida Hfq protein can recognize the CA motifs of RNAs through its distal face and that Crc facilitates formation of a more stable complex at these targets. Crc was unable to bind RNA in the absence of Hfq. However, pull-down assays showed that Crc and Hfq can form a co-complex with RNA containing a CA motif in vitro. Inactivation of the hfq or the crc gene impaired catabolite repression to a similar extent. We propose that Crc and Hfq cooperate in catabolite repression, probably through forming a stable co-complex with RNAs containing CA motifs to result in inhibition of translation initiation. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.
Hu, Jun; Tan, Xiaoli; Ren, Xuemei; Wang, Xiangke
2012-09-21
The influence of humic acid (HA) on Ni(II) sorption to Ca-montmorillonite was examined by using a combination of batch sorption experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The sorption of Ni(II) on HA-montmorillonite hybrids is strongly dependent on pH and temperature. At low pH, the sorption of Ni(II) is mainly dominated by Ni-HA-montmorillonite and outer-sphere surface complexation. The EXAFS results indicate that the first coordination shell of Ni(II) consists of ∼6 O atoms at the interatomic distances of ∼2.04 Å in an octahedral structure. At high pH, binary Ni-montmorillonite surface complexation is the dominant sorption mechanism. EXAFS analysis indicates the formation of mononuclear complexes located at the edges of Ca-montmorillonite platelets at pH 7.5, while a Ni-Al layered double hydroxide (LDH) phase at the Ca-montmorillonite surface formed with pH 8.5. At pH 10.0, the dissolved HA-Ni(II) complexation inhibits the precipitation of Ni hydroxide, and Ni-Al LDH phase forms. The rise of temperature increases the sorption capacity of Ni(II), and promotes Ni-Al LDH phase formation and the growth of crystallites. The results are important to evaluate the physicochemical behavior of Ni(II) in the natural environment.
Andrews, Rachel E.; Galileo, Deni S.; Martin-DeLeon, Patricia A.
2015-01-01
Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca2+ efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca2+, and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca2+ ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca2+-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca2+ concentration ([Ca2+]c) in capacitated sperm than at low [Ca2+]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca2+/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at high [Ca2+]c in sperm to down-regulate them, and thus prevent elevated levels of NO, known to induce asthenozoospermia via oxidative stress. Our studies point to the potential underlying cause of infertility in PMCA4's absence, and suggest that inactivating mutations of PMCA4 could lead to asthenozoospermia and human infertility. Screening for these mutations may serve both diagnostic and therapeutic purposes. PMID:26345709
Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium
NASA Astrophysics Data System (ADS)
Christl, Iso; Ruiz, Mercedes; Schmidt, J. R.; Pedersen, Joel A.
2017-04-01
Many organic micropollutants including antibiotics contain positively charged moieties and are present as organic cations or zwitterions at environmentally relevant pH conditions. In this study, we investigated the pH-, ionic strength-, and concentration-dependent binding of the two antibiotics clarithromycin and tetracycline to dissolved humic acid in the absence and presence of Ca2+. The investigated compounds strongly differ in their chemical speciation. Clarithromycin can be present as neutral and cationic species, only. But tetracycline can form cations, zwitterions as well as anions and is able to form various calcium complexes. The pH-dependence of binding to soil humic acid was observed to be strongly linked to the protonation behavior for both antibiotics. The presence of Ca2+ decreased clarithromycin binding to soil humic acid, but increased tetracycline binding with increasing Ca2+ concentration. The experimental observations were well described with the NICA-Donnan model considering the complete aqueous speciation of antibiotics and allowing for binding of cationic and zwitterionic species to soil humic acid. Our results indicate that clarithromycin is subject to competition with Ca2+ for binding to soil humic acid and that the electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid enhances tetracycline binding in presence of Ca2+ rather than the formation of ternary complexes, except at very low tetracycline concentrations. We conclude that for the description of ionizable organic micropollutant binding to dissolved natural organic matter, the complete speciation of both sorbate and sorbent has to be considered.
NASA Astrophysics Data System (ADS)
Crowley, Q. G.; Noble, S. R.; Key, R.
2006-12-01
The Lewisian complex of NW Scotland is dominantly composed of Archaean tonalitic to granodioritic gneisses, ultramafic bodies and minor metasedimentary components. Although the area is internationally well known and has been much studied for over a century, the precise timing of crustal forming events has proven difficult to ascertain. We present data from both in-situ laser ablation (LA) ICP-MS and an adaptation of a new U-Pb chemical abrasion ID-TIMS technique (Mattinson 2006) applied to multi-age component zircons from the Assynt block of this region. The new data reveal a previously unrecognised complexity and provide the first unequivocal proof of an Archean metamorphic event in the area. In a wider context the data also elucidate some of the processes involved in early global crust formation and plate tectonic events. In-situ LA-ICPMS U-Pb dating has indicated a ca 2.8Ga protolith age for a tonalite gneiss with evidence for a ca. 3.6Ga xenocrystic component (the oldest discovered in the UK). Non-conventional U-Pb ID-TIMS utilising a combination of high-temperature annealing followed by multi-step incremental dissolution on single grains has dated zircon growth at ca 2.7Ga (Badcallian) and 2.5Ga (Inverian) with later Pb-loss occurring at ca 1.9Ga and ca 1.7Ga (early and late Laxfordian respectively). This latter method combines a pseudo-spatial resolution normally associated with an in-situ technique but benefits from the high-precision analysis of ID-TIMS. Zircon Hf isotopes indicate that some rocks from the Assynt area are typical of Archaean continental crust (epsilon Hf ca -1. The tonalite gneisses however have strongly negative epsilon Hf values of -7 to -10 indicating a more complex history of derivation through partial melting of ancient crust with residual garnet as a long- lived control on Hf. Archaean events at ca. 3.6Ga, ca 2.8Ga and ca 2.7Ga have also been recorded in west Greenland (e.g. Mojzsis & Harrison 1999, Richards and Appel, 1987, Whitehouse et al 1999). This points towards widespread and important crustal forming events. Locally in Assynt in the Lewisian of NW Scotland these events are recorded with zircon crystallisation from a magma at ca 3.6Ga, partial melting and crustal recycling producing the tonalite gneiss protoliths at ca 2.8Ga, a prolonged lower crustal residence in granulite P-T conditions by ca 2.7Ga, further metamorphism in amphibolite conditions at ca 2.5Ga and later deformation associated with punctuated terrane amalgamation events between ca 1.9Ga and ca 1.7Ga.
Nanoscale modulations in (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Licurse, Mark W., E-mail: mlicurse@seas.upenn.edu; Borisevich, Albina Y., E-mail: albinab@ornl.gov; Davies, Peter K., E-mail: davies@seas.upenn.edu
2012-07-15
Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction (SAED) and high-resolution transmission electron microscopy (HRTEM) show an incommensurate nanocheckerboard modulation with {approx}9.4 Multiplication-Sign 9.4a{sub p} periodicity (a{sub p} Almost-Equal-To 4 A for the cubic perovskite aristotype). For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed with a {approx}16(1 1 0)a{sub p} repeat; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Studies using high temperature x-ray diffraction suggest the formationmore » of the complex modulations is associated with small deviations from the ideal 1:1:1:1 stoichiometry of the (A{sup +}La{sup 3+})(CaW)O{sub 6} phases. Z-contrast images acquired on an aberration-corrected microscope provide evidence for deviations from stoichiometry with a {approx}1:15 periodic arrangement of La{sub 4/3}(CaW)O{sub 6}:(NaLa)(CaW)O{sub 6} nano-phases. - Graphical abstract: Complex nanoscale modulations are identified in two new A-site ordered perovskites, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. In (KLa)(CaW)O{sub 6}, selected-area electron diffraction and high-resolution transmission electron microscopy show a two-dimensional, nanocheckerboard modulation. For (NaLa)(CaW)O{sub 6} a one-dimensional modulation is observed; the Left-Pointing-Angle-Bracket 1 1 0 Right-Pointing-Angle-Bracket orientation of the nanostripes is different from the Left-Pointing-Angle-Bracket 1 0 0 Right-Pointing-Angle-Bracket stripes observed in other mixed A-site systems. Highlights: Black-Right-Pointing-Pointer Two new A-site ordered perovskites were synthesized, (KLa)(CaW)O{sub 6} and (NaLa)(CaW)O{sub 6}. Black-Right-Pointing-Pointer Unusual 1D and 2D nanoscale patterns were observed. Black-Right-Pointing-Pointer Tolerance factor shown to be not enough to predict the observed morphologies. Black-Right-Pointing-Pointer High temperature x-ray diffraction data suggests a loss of stoichiometry is related to the modulations. Black-Right-Pointing-Pointer Z-contrast imaging provides direct evidence for non-stoichiometry and a new model.« less
NASA Astrophysics Data System (ADS)
Mikhalskii, Evgenii; Krylov, Dmitriy; Rodionov, Nikolay
2017-04-01
Western Enderby Land occupies a key position on Gondwanaland reconstructions near India - Sri Lanka - Antarctica junction and eastwards the Lützow-Holm Bay metamorphic complex commonly identified as a Cambrian suture zone. We present U-Pb zircon isotopic age determinations with SHRIMP II obtained on tonalite- to granite-gneiss samples from the Thala Hills and the Polkanova Hills. In the Thala Hills three high-temperature tectonomagmatic episodes may be distinguished at ca 980-970 Ma, ca 780-720 Ma, and ca 545-530 Ma. All of them included sin-kinematic granitic orthogneiss protolith emplacements and high-grade metamorphism. In the Polkanova Hills tonalitic to granodioritic orthogneisses, intercalated with prevailing amphibolites, were emplaced during ca 980-950 Ma episode (or at both of these ages) and subsequently metamorphosed under amphibolite facies accompanied by migmatization at ca 600-530 Ma. The ca 980-950 Ma event corresponds to the Rayner Structural Episode which affected much of East Antarctica, including Sør Rondane Mountains to the west and Kemp Land to the east of study area. The Polkanova Hills area is underlain by basic amphibolites and tonalitic to granodioritic orthogneisses characterized by LILE enrichment and Nb-Ta troughs in a primitive mantle normalized spiderdiagram suggestive of derivation in arc-related convergent palaeotectonic environments. Co-eval orthogneisses in the Thala Hills are characterized by granitic compositions and occur in intercalation with paragneisses, which points out to more in-land palaeotectonic environments. The ca 780-720 Ma episode included two events at ca 780 Ma (high-grade anatexis) and 720 Ma (sin-tectonic granitoid emplacement) and was roughly co-eval with magmatic and/or metamorphic events in Dronning Maud Land of East Antarctica as well as in other Gondwanaland regions, like Madagascar, Sri Lanka and eastern Africa. The ca 780-720 Ma episode (Thala Episode) may be correlated with the East African Orogeny. Our new data provide a correlation of both ca 980-950 Ma and ca 800-700 Ma events between western Enderby Land and (partly) Dronning Maud Land, thus indicating their conjugate positions in the early Neoproterozoic, which in turn argues against a late Neoproterozoic-Cambrian suture running between them (i.e., the Lützow-Holm Bay Complex). We suggest that these terrains were juxtaposed prior to final amalgamation of the Gondwanaland. The Polkanova Hills basic to intermediate protoliths may represent a Rayner-aged active continental margin. The Late Neoproterozoic - Cambrian (ca 600-530 Ma) episode was manifested by high-grade anatexis (under granulite facies in the Thala Hills and amphibolite facies in the Polkanova Hills) co-eval with the Lützow-Holm Bay metamorphic complex. However, the nature of this metamorphism yet seems to have not been understood well and we believe it was of within-plate rather than continent collision origin. This study was supported by the RFBR grant #15-05-02761 to EVM.
NASA Astrophysics Data System (ADS)
Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.
2018-01-01
Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.
NASA Astrophysics Data System (ADS)
Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur
2018-03-01
Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.
Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E
2011-11-01
Spectral-optical-electrical-thermal properties of deposited thin films of nano-sized calcium(II)-8-hydroxy-5,7-dinitroquinolate complex, Ca[((NO(2))(2)-8HQ)(2)], were explored, studied and evaluated in this work. Thin films of Ca[((NO(2))(2)-8HQ)(2)] were assembled by using a direct, simple and efficient layer-by-layer (LBL) chemical deposition technique. The optical properties of thin films were investigated by using spectrophotometric measurements of transmittance and reflectance at normal incidence in the wavelength range 200-2500 nm. The refractive index, n, and the absorption index, k, of Ca[((NO(2))(2)-8HQ)(2)] films were determined from the measured transmittance and reflectance. The real and imaginary dielectric constants were also determined. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with band gaps of 1.1 eV and 2.4 eV for the optical and transport energy gaps, respectively. The current-voltage characteristics of Ca[((NO(2))(2)-8HQ)(2)] showed a trap-charge limited conduction in determining the current at the intermediate and high bias regimes. Graphical representation of the current-voltage characteristics yields three distinct linear parts indicating the existence of three conduction mechanisms. Structural characterization and identification were confirmed by using Fourier transform infrared spectroscopy (FT-IR). Scanning electron microscopy (SEM) was also used to image the surface morphology of the deposited nano-sized metal complex and such study revealed a high homogeneity in surface spherical particle distribution with average particles size in the range 20-40 nm. Thermal gravimetric analysis (TGA) was also studied for [(NO(2))(2)-8HQ] and Ca[((NO(2))(2)-8HQ)(2)] to evaluate and confirm the thermal stability characteristics incorporated into the synthesized nano-sized Ca[((NO(2))(2)-8HQ)(2)] complex. Copyright © 2011 Elsevier B.V. All rights reserved.
Roles of hippocampal subfields in verbal and visual episodic memory.
Zammit, Andrea R; Ezzati, Ali; Zimmerman, Molly E; Lipton, Richard B; Lipton, Michael L; Katz, Mindy J
2017-01-15
Selective hippocampal (HC) subfield atrophy has been reported in older adults with mild cognitive impairment and Alzheimer's disease. The goal of this study was to investigate the associations between the volume of hippocampal subfields and visual and verbal episodic memory in cognitively normal older adults. This study was conducted on a subset of 133 participants from the Einstein Aging Study (EAS), a community-based study of non-demented older adults systematically recruited from the Bronx, N.Y. All participants completed comprehensive EAS neuropsychological assessment. Visual episodic memory was assessed using the Complex Figure Delayed Recall subtest from the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Verbal episodic memory was assessed using Delayed Recall from the Free and Cued Selective Reminding Test (FCSRT). All participants underwent 3T MRI brain scanning with subsequent automatic measurement of the hemispheric hippocampal subfield volumes (CA1, CA2-CA3, CA4-dente gyrus, presubiculum, and subiculum). We used linear regressions to model the association between hippocampal subfield volumes and visual and verbal episodic memory tests while adjusting for age, sex, education, and total intracranial volume. Participants had a mean age of 78.9 (SD=5.1) and 60.2% were female. Total hippocampal volume was associated with Complex Figure Delayed Recall (β=0.31, p=0.001) and FCSRT Delayed Recall (β=0.27, p=0.007); subiculum volume was associated with Complex Figure Delayed Recall (β=0.27, p=0.002) and FCSRT Delayed Recall (β=0.24, p=0.010); CA1 was associated with Complex Figure Delayed Recall (β=0.26, p<0.002) and FCSRT Delayed Recall (β=0.20, p=0.025). Our findings confirm previous research on the specific roles of CA1 and subiculum in episodic memory. Our results suggest that hippocampal subfields have sensitive roles in the process of visual and verbal episodic memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.
Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A
2014-12-15
Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.
Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks.
Niggli, E
1999-01-01
Subcellularly localized Ca2+ signals in cardiac and skeletal muscle have recently been identified as elementary Ca2+ signaling events. The signals, termed Ca2+ sparks and Ca2+ quarks, represent openings of Ca2+ release channels located in the membrane of the sarcoplasmic reticulum (SR). In cardiac muscle, the revolutionary discovery of Ca2+ sparks has allowed the development of a fundamentally different concept for the amplification of Ca2+ signals by Ca(2+)-induced Ca2+ release. In such a system, a graded amplification of the triggering Ca2+ signal entering the myocyte via L-type Ca2+ channels is accomplished by a recruitment process whereby individual SR Ca2+ release units are locally controlled by L-type Ca2+ channels. In skeletal muscle, the initial SR Ca2+ release is governed by voltage-sensors but subsequently activates additional Ca2+ sparks by Ca(2+)-induced Ca2+ release from the SR. Results from studies on elementary Ca2+ release events will improve our knowledge of muscle Ca2+ signaling at all levels of complexity, from the molecule to normal cellular function, and from the regulation of cardiac and skeletal muscle force to the pathophysiology of excitation-contraction coupling.
View of foundation, looking south. Note tennis courts in background ...
View of foundation, looking south. Note tennis courts in background facing south, see HABS no. CA-2716 - Presidio of San Francisco, Officers' Vehicles Garage, 1055 General Kennedy Avenue, Letterman Hospital Complex, San Francisco, San Francisco County, CA
View of foundation, looking southeast. Note tennis courts in background ...
View of foundation, looking southeast. Note tennis courts in background facing southeast, see HABS No. CA-2716 - Presidio of San Francisco, Officers' Vehicles Garage, 1055 General Kennedy Avenue, Letterman Hospital Complex, San Francisco, San Francisco County, CA
64. DETAIL OF CONNECTIONS FOR SIXTEEN CABLES AT THE CARRIAGE ...
64. DETAIL OF CONNECTIONS FOR SIXTEEN CABLES AT THE CARRIAGE SUPPORT STRUCTURE, STRUCTURE. April 20, 1948. 1048. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF ...
5. VAL CAMERA CAR, DETAIL OF HOIST AT SIDE OF BRIDGE AND ENGINE CAR ON TRACKS, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...
3. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH THE VAL TO THE RIGHT, LOOKING NORTHEAST. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
21. VAL, DETAIL OF MUZZLE END OF LAUNCHER BRIDGE SHOWING ...
21. VAL, DETAIL OF MUZZLE END OF LAUNCHER BRIDGE SHOWING BOTH LAUNCHER TUBES TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF ...
18. VAL, DETAIL OF LAUNCHER BRIDGE ALONG THE SIDE OF THE 32' DIAMETER LAUNCHING TUBE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER ...
32. VAL, DETAIL SHOWING LOADING PLATFORM, PROJECTILE LOADING CAR, LAUNCHER SLAB AND UNDERSIDE OF LAUNCHER BRIDGE LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Burgess, Kevin M N; Xu, Yang; Leclerc, Matthew C; Bryce, David L
2014-01-06
A series of calcium and strontium complexes featuring aryl carboxylate ligands has been prepared and characterized by alkaline-earth ((43)Ca and (87)Sr) solid-state NMR experiments in a magnetic field of 21.1 T. In the 11 compounds studied as part of this work, a range of coordination motifs are observed including nitrogen atom binding to Ca(2+) and Sr(2+), a binding mode which has not been investigated previously by (43)Ca or (87)Sr solid-state NMR. (43)Ca isotopic enrichment has enabled the full characterization of the (43)Ca electric field gradient (EFG) and chemical shift tensors of the two calcium sites in calcium p-aminosalicylate (Ca(pams)), where both NMR interactions are affected by the presence of a nitrogen atom in the first coordination sphere of one of the metal sites. The (43)Ca isotropic chemical shift is sensitive to the Ca-N distance as exemplified by the NMR parameters of a second form of Ca(pams) and density functional theory (DFT) calculations. Studies of the strontium analogue, Sr(pams), confirm a similar sensitivity of the (87)Sr EFG tensor to the presence or absence of nitrogen in the first coordination sphere. To our knowledge, this is the first systematic (87)Sr NMR study of strontium complexes featuring organic ligands. The |CQ((87)Sr)| values are found to be sensitive to the coordination number about Sr(2+). In general, this work has also established a larger data set of reliable experimental |CQ((43)Ca)| values which correlate well with those obtained using gauge-including projector-augmented-wave (GIPAW) DFT calculations. It is found that the use of a recently recommended quadrupole moment for (43)Ca, -44.4 mbarn, improves the agreement with experimental values. This contribution lays the groundwork for the interpretation of (43)Ca and (87)Sr NMR spectra of more challenging systems, particularly where nitrogen-alkaline earth metal bonding is occurring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldoveanu, Tudor; Gehring, Kalle; Green, Douglas R.
2009-01-15
Ca{sup 2+}-dependent cysteine proteases, calpains, regulate cell migration, cell death, insulin secretion, synaptic function and muscle homeostasis. Their endogenous inhibitor, calpastatin, consists of four inhibitory repeats, each of which neutralizes an activated calpain with exquisite specificity and potency. Despite the physiological importance of this interaction, the structural basis of calpain inhibition by calpastatin is unknown. Here we report the 3.0 A structure of Ca{sup 2+}-bound m-calpain in complex with the first calpastatin repeat, both from rat, revealing the mechanism of exclusive specificity. The structure highlights the complexity of calpain activation by Ca{sup 2+}, illustrating key residues in a peripheral domainmore » that serve to stabilize the protease core on Ca{sup 2+} binding. Fully activated calpain binds ten Ca{sup 2+} atoms, resulting in several conformational changes allowing recognition by calpastatin. Calpain inhibition is mediated by the intimate contact with three critical regions of calpastatin. Two regions target the penta-EF-hand domains of calpain and the third occupies the substrate-binding cleft, projecting a loop around the active site thiol to evade proteolysis.« less
Mithieux, G; Vega, F V; Riou, J P
1990-11-25
We have recently shown that the Ca.EGTA and Mg.EDTA complexes, but not free Ca2+ or Mg2+, inhibit the liver glucose-6-phosphatase (Mithieux, G., Vega, F. V., Beylot, M., and Riou, J. P. (1990) J. Biol. Chem. 265, 7257-7259). In this work, we report that, when complexed with Mg2+, two endogenous dicarboxylic keto acids (alpha-ketoglutarate (alpha-KG) and oxaloacetate (OAA] inhibit the glucose-6-phosphatase activity at low concentrations of substrate. This phenomenon is specific for complexes of Mg2+ with alpha-KG and OAA since 1) the complexes of Mg2+ with a number of other di- or tricarboxylic acids having high structural analogy with alpha-KG and OAA (oxalate, malate, succinate, citrate, aspartate, and glutamate) do not inhibit the glucose-6-phosphatase activity and 2) the Ca.alpha-KG and Ca.OAA chelates do not inhibit the glucose-6-phosphatase activity. In the presence of Mg.alpha-KG or Mg.OAA chelates, the enzyme displays sigmoid kinetics; the Hanes plots deviate from linearity, indicating the positive cooperative dependence of the velocity upon the substrate concentration. Hill coefficients (equal to 1 in the absence of the chelates) of 1.23 and 1.33 have been determined in the presence of Mg.alpha-KG and Mg.OAA complexes, respectively. The disruption of microsomal integrity by detergents abolishes the effect of Mg.alpha-KG and Mg.OAA, suggesting that the magnesium chelates inhibit the translocase component of the glucose-6-phosphatase system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Yoosoo; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 136-791; Kim, Se-Hyun
Highlights: • Membrane fusion driven by SNARE complex is hindered by several polyphenols. • Distinctive inhibitory effect of each polyphenol on SNARE zippering in neuron was examined. • FRET between fluorescence protein-tagged SNAREs probed well SNARE zippering in PC12 cells. • Delphinidin and cyanidin inhibit N-terminal SNARE nucleation in Ca{sup 2+}-independent manner. • Myricetin inhibits Ca{sup 2+}-dependent transmembrane association of SNARE complex. - Abstract: Fusion of synaptic vesicles with the presynaptic plasma membrane in the neuron is mediated by soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor (SNARE) proteins. SNARE complex formation is a zippering-like process which initiates at the N-terminus andmore » proceeds to the C-terminal membrane-proximal region. Previously, we showed that this zippering-like process is regulated by several polyphenols, leading to the arrest of membrane fusion and the inhibition of neuroexocytosis. In vitro studies using purified SNARE proteins reconstituted in liposomes revealed that each polyphenol uniquely regulates SNARE zippering. However, the unique regulatory effect of each polyphenol in cells has not yet been examined. In the present study, we observed SNARE zippering in neuronal PC12 cells by measuring the fluorescence resonance energy transfer (FRET) changes of a cyan fluorescence protein (CFP) and a yellow fluorescence protein (YFP) fused to the N-termini or C-termini of SNARE proteins. We show that delphinidin and cyanidin inhibit the initial N-terminal nucleation of SNARE complex formation in a Ca{sup 2+}-independent manner, while myricetin inhibits Ca{sup 2+}-dependent transmembrane domain association of the SNARE complex in the cell. This result explains how polyphenols exhibit botulinum neurotoxin-like activity in vivo.« less
Safety of trivalent chromium complexes: no evidence for DNA damage in human HaCaT keratinocytes.
Hininger, Isabelle; Benaraba, Rachida; Osman, Mireille; Faure, Henri; Marie Roussel, Anne; Anderson, Richard A
2007-06-15
Several studies have demonstrated beneficial effects of supplemental trivalent Cr in subjects with reduced insulin sensitivity with no documented signs of toxicity. However, recent studies have questioned the safety of supplemental trivalent Cr complexes. The objective of this study was to evaluate the cytotoxic and genotoxic potential of the Cr(III) complexes (histidinate, picolinate, and chloride) used as nutrient supplements compared with Cr(VI) dichromate. The cytotoxic and genotoxic effects of the Cr complexes were assessed in human HaCaT keratinocytes. The concentrations of Cr required to decrease cell viability were assessed by determining the ability of a keratinocyte cell line (HaCaT) to reduce tetrazolium dye, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. DNA damage using the Comet assay and the production of 8-hydroxy-2'-deoxyguanosine were also determined with and without hydrogen peroxide-induced stress. The LC50 for human cultured HaCaT keratinocytes was 50 microM for hexavalent sodium dichromate and more than 120-fold higher for Cr chloride (6 mM) and Cr histidinate (10 mM). For Cr picolinate at saturating concentration (120 microM) the LC50 was not attained. High Cr(III) concentrations, 250 microM Cr as Cr chloride and Cr histidinate and 120 microM Cr picolinate (highest amount soluble in the system), not only did not result in oxidative DNA damage but exhibited protective antioxidant effects when cells were exposed to hydrogen peroxide-induced oxidative stress. These data further support the low toxicity of trivalent Cr complexes used in nutrient supplements.
Manual asymmetry in older adults on a complex coincidence-anticipation task.
Rodrigues, Paula Cristina Dos Santos; Silva, João Miguel Carvalho da; Barreiros, João Manuel Pardal; Vasconcelos, Maria Olga Fernandes
2018-04-20
Age-related asymmetrical functional decline was tested in a sample of 57 right-handed volunteers between 65 and 85 years of age. Participants performed a complex coincidence-anticipation (CA) task with both preferred and non-preferred hands. Results demonstrated that the proficiency of a complex CA task was similar for the 2 age groups, but different for the 2 hands. The non-preferred hand was more proficient for temporal accuracy but not for response timing, which was similar for both hands. Moreover, the lack of interaction between age and hand both in response timing and response accuracy reveal symmetric performance across ages.
Craciun, Smaranda; Donald, Kelling J
2009-07-06
We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakova, I. N.; Poznyak, A. L.; Sergienko, V. S.
2006-07-15
The synthesis and X-ray diffraction study of three Ca[Co(Nta)X] . nH{sub 2}O complexes [X{sup -} = Cl, n = 2.3 (I); X{sup -} = Br, n = 2 (II); and X{sup -} = NCS, n = 2 (III)] are performed. The main structural units of crystals I-III are the [CoX(Nta)]{sup 2-} anionic complexes and hydrated Ca{sup 2+} cations. The anionic complexes have similar structures. The coordination of the Co{sup 2+} atom in the shape of a trigonal bipyramid is formed by N + 3O atoms of the Nta{sup 3-} ligand and the X{sup -} anion in the trans position withmore » respect to N. In structures I-III, the Co-O and Co-N bond lengths lie in the ranges 1.998-2.032 and 2.186-2.201 A, respectively. The Co-X bond lengths are 2.294 (I), 2.436 and 2.445 (II), and 1.982 A (III). The environments of the Ca{sup 2+} cations include oxygen atoms of one or two water molecules and six or seven O(Nta) atoms with the coordination number of 9 in I or 8 in II and III. The Ca-O(Nta) bonds form a three-dimensional framework in I or layers in II and III. Water molecules are involved in the hydrogen bonds O(w)-H...O(Nta), O(w)-H...X, and O(w)-H...O(w). Structural data for crystals I-III are deposited with the Cambridge Structural Database (CCDC nos. 287 814-287 816)« less
Bessam, H; Mareck, A M; Foucher, B
1989-01-27
A method is proposed for the purification of the Neurospora crassa alpha-ketoglutarate dehydrogenase complex, and the main points for preserving its activity, which seems to be particularly fragile in fungus, are discussed. Resolution of the constitutive enzymes was attempted and permitted the identification of the three protein bands resolved on SDS-polyacrylamide gel electrophoresis as E3, E1 and E2 with respective Mr values of 54,000, 53,000 and 49,000. Catalytic properties of the purified complex were established showing the importance of divalent cations in regulating the activity level. The role of Ca2+ in particular was investigated. It was shown that Ca2+ diminishes the Km value of the N. crassa alpha-ketoglutarate dehydrogenase complex for alpha-ketoglutarate in the physiological concentration range, as previously observed for the mammalian complexes.
NASA Astrophysics Data System (ADS)
Teleb, Said M.; Gaballa, Akmal S.
2005-11-01
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H 2CA) have been studied in CHCl 3 and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH 2)(CA)], respectively. The infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants ( KC) for the complexes were shown to be dependent on the structure of the electron acceptors used.
Teleb, Said M; Gaballa, Akmal S
2005-11-01
Charge-transfer (CT) complexes formed on the reaction of 2,2'-bipyridine with some acceptors such as picric acid (HPA) and chloranilic acid (H(2)CA) have been studied in CHCl(3) and MeOH at room temperature. Based on elemental analysis and IR spectra of the solid CT complexes along with the photometric titration curves for the reactions, the data obtained indicate the formation of 1:1 charge-transfer complexes [(bpyH)(PA)] and [(bpyH(2))(CA)], respectively. The infrared and (1)H NMR spectroscopic data indicate a charge-transfer interaction associated with a proton migration from the acceptor to the donor followed by intramolecular hydrogen bonding. The formation constants (K(C)) for the complexes were shown to be dependent on the structure of the electron acceptors used.
Ca cycling and isotopic fluxes in forested ecosystems in Hawaii
Wiegand, B.A.; Chadwick, O.A.; Vitousek, P.M.; Wooden, J.L.
2005-01-01
Biogeochemical processes fractionate Ca isotopes in plants and soils along a 4 million year developmental sequence in the Hawaiian Islands. We observed that plants preferentially take up 40Ca relative to 44Ca, and that biological fractionation and changes in the relative contributions from volcanic and marine sources produce a significant increase in 44Ca in soil exchangeable pools. Our results imply moderate fluxes enriched in 44Ca from strongly nutrient-depleted old soils, in contrast with high 40Ca fluxes in young and little weathered environments. In addition, biological fractionation controls divergent geochemical pathways of Ca and Sr in the plant-soil system. While Ca depletes progressively with increasing soil age, Sr/Ca ratios increase systematically. Sr isotope ratios provide a valuable tracer for provenance studies of alkaline earth elements in forested ecosystems, but its usefulness is limited when deciphering biogeochemical processes involved in the terrestrial Ca cycle. Ca isotopes in combination with Sr/ Ca ratios reveal more complex processes involved in the biogeochemistry of Ca and Sr. Copyright 2005 by the American Geophysical Union.
Takada, Silvia Honda; Ikebara, Juliane Midori; de Sousa, Erica; Cardoso, Débora Sterzeck; Resende, Rodrigo Ribeiro; Ulrich, Henning; Rückl, Martin; Rüdiger, Sten; Kihara, Alexandre Hiroaki
2017-11-01
It is well known that calcium (Ca 2+ ) is involved in the triggering of neuronal death. Ca 2+ cytosolic levels are regulated by Ca 2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca 2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca 2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca 2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca 2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca 2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.
The calcium-sensing receptor and its interacting proteins
Huang, Chunfa; Miller, R Tyler
2007-01-01
Abstract Seven membrane-spanning, or G protein-coupled receptors were originally thought to act through het-erotrimeric G proteins that in turn activate intracellular enzymes or ion channels, creating relatively simple, linear signalling pathways. Although this basic model remains true in that this family does act via a relatively small number of G proteins, these signalling systems are considerably more complex because the receptors interact with or are located near additional proteins that are often unique to a receptor or subset of receptors. These additional proteins give receptors their unique signalling ‘personalities’. The extracellular Ca-sensing receptor (CaR) signals via Gαi, Gαq and Gα12/13, but its effects in vivo demonstrate that the signalling pathways controlled by these subunits are not sufficient to explain all its biologic effects. Additional structural or signalling proteins that interact with the CaR may explain its behaviour more fully. Although the CaR is less well studied in this respect than other receptors, several CaR-interacting proteins such as filamin, a potential scaffolding protein, receptor activity modifying proteins (RAMPs) and potassium channels may contribute to the unique characteristics of the CaR. The CaR also appears to interact with additional proteins common to other G protein-coupled receptors such as arrestins, G protein receptor kinases, protein kinase C, caveolin and proteins in the ubiquitination pathway. These proteins probably represent a few initial members of CaR-based signalling complex. These and other proteins may not all be associated with the CaR in all tissues, but they form the basis for understanding the complete nature of CaR signalling. PMID:17979874
34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT ...
34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT CAR RAILS ON RIGHT AND PERSONNEL CAR RAILS ON LEFT. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK ...
2. VAL CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING WEST TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH ...
27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH 7 INCH DIAMETER HOLE FOR SUPPORT CARRIAGE LOCKING PIN. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY ...
81. THREE ADDITIONAL BLACK AND WHITE VIDEO MONITORS LOCATED IMMEDIATELY WEST OF THOSE IN CA-133-1-A-80. COMPLEX SAFETY WARNING LIGHTS FOR SLC-3E (PAD 2) AND BLDG. 763 (LOB) LOCATED ABOVE MONITOR 3; GREEN LIGHTS ON BOTTOM OF EACH STACK ILLUMINATED. LEFT TO RIGHT BELOW MONITORS: ACCIDENT REPORTING EMERGENCY NOTIFICATION SYSTEM TELEPHONE, ATLAS H FUEL COUNTER, AND DIGITAL COUNTDOWN CLOCK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
2017-09-01
31 Aug 2017 4. TITLE AND SUBTITLE Targeting the CRMP2-Ca2+ Channel Complex for ofAbortive Treatment of Migraine and Post -Traumatic Headache 5a...CONTRACT NUMBER Abortive Treatment Migraine and Post -Traumatic Head ch 5b. GRANT NUMBER W81XWH-16-1-0533 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...due to toxicity. In this study , we explored the axonal growth/specification collapsin response mediator protein 2 (CRMP2) as a novel “druggable
2017-09-01
31 Aug 2017 4. TITLE AND SUBTITLE Migraine and Post -Traumatic Headache 5a. CONTRACT NUMBER Targeting the CRMP2-Ca2+ Channel Complex for Abortive...this study , we explored the axonal growth/specification collapsin response mediator protein 2 (CRMP2) as a novel “druggable” target for inhibiting...CGRP release and for potential relevance for treatment of migraine pain and post -traumatic headache. CRMP2 has been demonstrated to regulate N-type
Nurse on the Move: Lisa Gorski.
Gorski, Lisa; Gavin, Cara
2016-01-01
After a short hiatus, Nurses On the Move is back and better than ever! I am excited to bring you our next nurse leader, Lisa A. Gorski MS, RN, HHCNS-BC, CRNI, FAAN. With more than 30 years in the field, Gorski is an expert in both home healthcare and infusion nursing. As a clinical nurse specialist at Wheaton Franciscan Home Health & Hospice in Wisconsin, an editorial board member of Home Healthcare Now, an associate consultant for OASIS ANSWERS, Inc., and a published author, her knowledge of the nursing profession is truly impressive.Through our phone interview, I spoke with Gorski about why she decided to enter into home healthcare, her time as president of the Infusion Nurses Society, and what advice she has for a nurse starting their career.
Lowenstern, Jacob B.; Janik, Cathy J.; Fahlquist, Lynne; Johnson, Linda S.
1999-01-01
The Geysers geothermal field in northern California, with about 2000-MW electrical capacity, is the largest geothermal field in the world. Despite its importance as a resource and as an example of a vapor-dominated reservoir, very few complete geochemical analyses of the steam have been published (Allen and Day, 1927; Truesdell and others, 1987). This report presents data from 90 steam, gas, and condensate samples from wells in The Geysers geothermal field in northern California. Samples were collected between 1978 and 1991. Well attributes include sampling date, well name, location, total depth, and the wellhead temperature and pressure at which the sample was collected. Geochemical characteristics include the steam/gas ratio, composition of noncondensable gas (relative proportions of CO2, H2S, He, H2, O2, Ar, N2, CH4, and NH3), and isotopic values for deltaD and delta18O of H2O, delta13C of CO2, and delta34S of H2S. The compilation includes 81 analyses from 74 different production wells, 9 isotopic analyses of steam condensate pumped into injection wells, and 5 complete geochemical analyses on gases from surface fumaroles and bubbling pools. Most samples were collected as saturated steam and plot along the liquid-water/steam boiling curve. Steam-togas ratios are highest in the southeastern part of the geothermal field and lowest in the northwest, consistent with other studies. Wells in the Northwest Geysers are also enriched in N2/Ar, CO2 and CH4, deltaD, and delta18O. Well discharges from the Southeast Geysers are high in steam/gas and have isotopic compositions and N2/Ar ratios consistent with recharge by local meteoric waters. Samples from the Central Geysers show characteristics found in both the Southeast and Northwest Geysers. Gas and steam characteristics of well discharges from the Northwest Geysers are consistent with input of components from a high-temperature reservoir containing carbonrich gases derived from the host Franciscan rocks. Throughout the geothermal field, the carbon-isotopic composition of CO2 is consistent with derivation of carbon from Franciscan metasedimentary rocks. NH3 concentrations are high in most Geysers well fluids, and are 2-3 orders of magnitude greater than would be expected in a the gas phase exhibiting homogeneous equilibrium at normal reservoir temperatures and pressures. Evidently, NH3 is flushed from the Franciscan host rocks at a rate that exceeds the reaction rate for NH3 breakdown. Many wells show clear influence by fluids from reinjection wells where steam condensate has been pumped back into the geothermal reservoir. Six wells were resampled over the time period of this study. One of these six wells was strongly affected by a nearby injection well. Three of the six resampled wells showed some signs of decreasing liquid/ steam within the geothermal reservoir, consistent with 'drying out' of the reservoir due to steam withdrawal. However, two wells exhibited little change. Analyses of gases from five surface manifestations (fumaroles and bubbling pools) are roughly similar to the deeper geothermal samples in both chemical and isotopic composition, but are lower in soluble gases that dissolve in groundwater during transit toward the surface.
Wang, Chaojian; Chung, Ben C.; Yan, Haidun; Wang, Hong-Gang; Lee, Seok-Yong; Pitt, Geoffrey S.
2014-01-01
Ca2+ regulates voltage-gated Na+ (NaV) channels and perturbed Ca2+ regulation of NaV function is associated with epilepsy syndromes, autism, and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca2+ affects NaV channel function. Here, we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor, and Ca2+/calmodulin (Ca2+/CaM). These structures rule out direct binding of Ca2+ to the NaV CTD, and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca2+ could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations. PMID:25232683
NASA Astrophysics Data System (ADS)
Moynier, Frédéric; Fujii, Toshiyuki
2017-03-01
Stable Ca isotopes are fractionated between bones, urine and blood of animals and between soils, roots and leaves of plants by >1000 ppm for the 44Ca/40Ca ratio. These isotopic variations have important implications to understand Ca transport and fluxes in living organisms; however, the mechanisms of isotopic fractionation are unclear. Here we present ab initio calculations for the isotopic fractionation between various aqueous species of Ca and show that this fractionation can be up to 3000 ppm. We show that the Ca isotopic fractionation between soil solutions and plant roots can be explained by the difference of isotopic fractionation between the different first shell hydration degree of Ca2+ and that the isotopic fractionation between roots and leaves is controlled by the precipitation of Ca-oxalates. The isotopic fractionation between blood and urine is due to the complexation of heavy Ca with citrate and oxalates in urine. Calculations are presented for additional Ca species that may be useful to interpret future Ca isotopic measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hui, E-mail: huiwu@nist.gov; Zhou, Xiuquan; Rodriguez, Efrain E.
We report on a new class of complex hydrides: borohydride guanidinate complexes (MBH{sub 4}·nCN{sub 3}H{sub 5}, M=Li, Mg, and Ca). They can be prepared via facile solid-state synthesis routes. Their crystal structures were successfully determined using a combination of X-ray diffraction, first-principles calculations and neutron vibrational spectroscopy. Among these compounds, Mg(BH{sub 4}){sub 2}·6CN{sub 3}H{sub 5} is composed of large complex Mg[CN{sub 3}H{sub 5}]{sub 6}{sup 2+} cations and surrounding BH{sub 4}{sup -} ions, while Ca(BH{sub 4}){sub 2}·2CN{sub 3}H{sub 5} possesses layers of corner-sharing Ca[BH{sub 4}]{sub 4}(CN{sub 3}H{sub 5}){sub 2} octahedra. Our dehydrogenation results show that ≈10 wt% hydrogen can be releasedmore » from MBH{sub 4}·nCN{sub 3}H{sub 5} (M=Li, Mg, and Ca) at moderate temperatures with minimal ammonia and diborane contamination thanks to the synergistic effect of C-N bonds from guanidine and hydridic H from borohydrides leading to a weakening of the N-H bonds, thus impeding ammonia gas liberation. Further tuning the dehydrogenation with different cation species indicates that Mg(BH{sub 4}){sub 2}·nCN{sub 3}H{sub 5} can exhibit the optimum properties with nearly thermally neutral dehydrogenation and very high purity hydrogen release. - Graphical abstract: A new family of complex hydrides: borohydride guanidinates, was developed with diverse crystal structures and remarkable hydrogen storage properties. - Highlights: • A new family of complex hydrides, borohydride guanidinate complexes, are synthesized. • Their diverse crystal structures are determined using combined characterizations. • These compounds can release ~10 wt% pure H{sub 2} at moderate temperatures. • Dehydrogenation thermodynamics and H{sub 2} purity can be tuned by varying cation species.« less
Tétreault, Marie-Philippe; Bourdin, Benoîte; Briot, Julie; Segura, Emilie; Lesage, Sylvie; Fiset, Céline; Parent, Lucie
2016-01-01
Alteration in the L-type current density is one aspect of the electrical remodeling observed in patients suffering from cardiac arrhythmias. Changes in channel function could result from variations in the protein biogenesis, stability, post-translational modification, and/or trafficking in any of the regulatory subunits forming cardiac L-type Ca2+ channel complexes. CaVα2δ1 is potentially the most heavily N-glycosylated subunit in the cardiac L-type CaV1.2 channel complex. Here, we show that enzymatic removal of N-glycans produced a 50-kDa shift in the mobility of cardiac and recombinant CaVα2δ1 proteins. This change was also observed upon simultaneous mutation of the 16 Asn sites. Nonetheless, the mutation of only 6/16 sites was sufficient to significantly 1) reduce the steady-state cell surface fluorescence of CaVα2δ1 as characterized by two-color flow cytometry assays and confocal imaging; 2) decrease protein stability estimated from cycloheximide chase assays; and 3) prevent the CaVα2δ1-mediated increase in the peak current density and voltage-dependent gating of CaV1.2. Reversing the N348Q and N812Q mutations in the non-operational sextuplet Asn mutant protein partially restored CaVα2δ1 function. Single mutation N663Q and double mutations N348Q/N468Q, N348Q/N812Q, and N468Q/N812Q decreased protein stability/synthesis and nearly abolished steady-state cell surface density of CaVα2δ1 as well as the CaVα2δ1-induced up-regulation of L-type currents. These results demonstrate that Asn-663 and to a lesser extent Asn-348, Asn-468, and Asn-812 contribute to protein stability/synthesis of CaVα2δ1, and furthermore that N-glycosylation of CaVα2δ1 is essential to produce functional L-type Ca2+ channels. PMID:26742847
Zeng, Qiufeng; Huang, Xueqin; Luo, Yuheng; Ding, Xuemei; Bai, Shiping; Wang, Jianping; Xuan, Yue; Su, Zhuowei; Liu, Yonggang; Zhang, Keying
2015-01-01
Previous studies with broiler have shown dietary supplementation with multi-enzyme complex containing non-starch polysaccharides (NSP) degrading enzymes and phytase is efficient in releasing phosphorus (P), calcium (Ca), energy and amino acids from corn-soybean meal diets or corn-sorghum diets, hence compensating considerable levels of nutrients in formulation. Notwithstanding, such potentials have not been well defined in duck nutrition. Giving China being the largest duck producing country, we conducted this study to establish adequate specifications of major nutrients along with multi-enzyme complex to meat duck from day-old to slaughter, focusing on performance, utilization of nutrients and bone mineralization. Five dietary treatments were: Positive control (PC,T1 ): the nutrients concentration of diet for 1 to 14 d of age were apparent metabolizable energy(AME) 2,800 kcal/kg, crude protein (CP)19.39%, Ca 0.85%, available phosphorus (avP) 0.42%; for 15 to 35 d of age these parameters were AME 2,900 kcal/kg, CP 16.47%,Ca 0.76%,avP 0.38%; Negative control 1(NC1,T2), the AME and digestible amino acids (DAA) were reduced by 70 kcal/kg and 2.0%, avP and Ca by 1.0 g/kg from PC diet; Negative control 2( NC2,T4), the down-spec from PC diet was AME 100 kcal/kg, DAA 2.5%, avP 1.5 g/kg and Ca 1.2 g/kg; The enzyme complex was added at the same dosage (200 mL/ 1,000 kg) on NC1 (T3) and NC2 (T5) diets. Comparing with the ducks fed on T1, T3 and T5 diets, the birds fed on NC2 diet showed the lowest (P < 0.05) body weight ( d 14 and 35), feed intake (d 35), tibia ash, Ca and P contents (d 14 and 35), and the utilization of nutrients (P < 0.05). The supplementation with the enzyme complex to the NC diets restored growth rate, utilization of nutrients and bone mineralization to the level of the PC diet, and increased AME by 60 kcal/kg and 117 kcal/kg, respectively for the NC1 and NC2 diets. These results suggest that down-spec AME by 100 kcal/kg, DAA by 2.5%, avP by 1.5 g/kg and Ca by 1.2 g/kg caused detrimental effects on duck performance compared with those fed on the PC diet, and these performance losses can be compensated by the addition of the multiple-enzyme complex.
NASA Astrophysics Data System (ADS)
Barreto, Wagner J.; Barreto, Sônia R. G.; Ando, Rômulo A.; Santos, Paulo S.; DiMauro, Eduardo; Jorge, Thiago
2008-12-01
The anionic complexes [Cu(L 1-) 3] 1-, L - = dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the νCC + νCO stretching mode at ca. 1384 cm -1. The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g = 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.
NASA Astrophysics Data System (ADS)
Reynolds, Alan P.; Ross, Simon F.
2018-05-01
We consider the holographic complexity conjectures in the context of the AdS soliton, which is the holographic dual of the ground state of a field theory on a torus with antiperiodic boundary conditions for fermions on one cycle. The complexity is a non-trivial function of the size of the circle with antiperiodic boundary conditions, which sets an IR scale in the dual geometry. We find qualitative differences between the calculations of complexity from spatial volume and action (CV and CA). In the CV calculation, the complexity for antiperiodic boundary conditions is smaller than for periodic, and decreases monotonically with increasing IR scale. In the CA calculation, the complexity for antiperiodic boundary conditions is larger than for periodic, and initially increases with increasing IR scale, eventually decreasing to zero as the IR scale becomes of order the UV cutoff. We compare these results to a simple calculation for free fermions on a lattice, where we find the complexity for antiperiodic boundary conditions is larger than for periodic.
Parameterization of Ca+2-protein interactions for molecular dynamics simulations.
Project, Elad; Nachliel, Esther; Gutman, Menachem
2008-05-01
Molecular dynamics simulations of Ca+2 ions near protein were performed with three force fields: GROMOS96, OPLS-AA, and CHARMM22. The simulations reveal major, force-field dependent, inconsistencies in the interaction between the Ca+2 ions with the protein. The variations are attributed to the nonbonded parameterizations of the Ca+2-carboxylates interactions. The simulations results were compared to experimental data, using the Ca+2-HCOO- equilibrium as a model. The OPLS-AA force field grossly overestimates the binding affinity of the Ca+2 ions to the carboxylate whereas the GROMOS96 and CHARMM22 force fields underestimate the stability of the complex. Optimization of the Lennard-Jones parameters for the Ca+2-carboxylate interactions were carried out, yielding new parameters which reproduce experimental data. Copyright 2007 Wiley Periodicals, Inc.
Configurable Cellular Automata for Pseudorandom Number Generation
NASA Astrophysics Data System (ADS)
Quieta, Marie Therese; Guan, Sheng-Uei
This paper proposes a generalized structure of cellular automata (CA) — the configurable cellular automata (CoCA). With selected properties from programmable CA (PCA) and controllable CA (CCA), a new approach to cellular automata is developed. In CoCA, the cells are dynamically reconfigured at run-time via a control CA. Reconfiguration of a cell simply means varying the properties of that cell with time. Some examples of properties to be reconfigured are rule selection, boundary condition, and radius. While the objective of this paper is to propose CoCA as a new CA method, the main focus is to design a CoCA that can function as a good pseudorandom number generator (PRNG). As a PRNG, CoCA can be a suitable candidate as it can pass 17 out of 18 Diehard tests with 31 cells. CoCA PRNG's performance based on Diehard test is considered superior over other CA PRNG works. Moreover, CoCA opens new rooms for research not only in the field of random number generation, but in modeling complex systems as well.
1. VARIABLEANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND ...
1. VARIABLE-ANGLE LAUNCHER CAMERA CAR, VIEW OF CAMERA CAR AND TRACK WITH CAMERA STATION ABOVE LOOKING NORTH TAKEN FROM RESERVOIR. - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
33. VAL, DETAIL OF PERSONNEL CAR AT THE TOP OF ...
33. VAL, DETAIL OF PERSONNEL CAR AT THE TOP OF THE COUNTERWEIGHT SLAB WITH THE COUNTERWEIGHT CAR IN DISTANCE LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
11. 28'X40' original vellum, VariableAngle Launcher, 'INDEX TO Drawings' drawn ...
11. 28'X40' original vellum, Variable-Angle Launcher, 'INDEX TO Drawings' drawn at no scale (P.W.DWG.No. 1781). - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER ...
4. VAL PARTIAL ELEVATION SHOWING LAUNCHER BRIDGE ON SUPPORTS, LAUNCHER SLAB, SUPPORT CARRIAGE, CONCRETE 'A' FRAME STRUCTURE AND CAMERA TOWER LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST ...
67. DETAIL OF VIDEO CAMERA CONTROL PANEL LOCATED IMMEDIATELY WEST OF ASSISTANT LAUNCH CONDUCTOR PANEL SHOWN IN CA-133-1-A-66 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
70. DETAIL OF OXYGEN TRANSFER PRESSURE GAUGE IN UPPER LEFT ...
70. DETAIL OF OXYGEN TRANSFER PRESSURE GAUGE IN UPPER LEFT CORNER OF SKID ON RIGHT IN CA-133-1-C-69 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
The methodology of multi-viewpoint clustering analysis
NASA Technical Reports Server (NTRS)
Mehrotra, Mala; Wild, Chris
1993-01-01
One of the greatest challenges facing the software engineering community is the ability to produce large and complex computer systems, such as ground support systems for unmanned scientific missions, that are reliable and cost effective. In order to build and maintain these systems, it is important that the knowledge in the system be suitably abstracted, structured, and otherwise clustered in a manner which facilitates its understanding, manipulation, testing, and utilization. Development of complex mission-critical systems will require the ability to abstract overall concepts in the system at various levels of detail and to consider the system from different points of view. Multi-ViewPoint - Clustering Analysis MVP-CA methodology has been developed to provide multiple views of large, complicated systems. MVP-CA provides an ability to discover significant structures by providing an automated mechanism to structure both hierarchically (from detail to abstract) and orthogonally (from different perspectives). We propose to integrate MVP/CA into an overall software engineering life cycle to support the development and evolution of complex mission critical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, Xi-Shi, E-mail: taixs@wfu.edu.cn; Wang, Xin
2017-03-15
A new Ca(II) coordination polymer, ([CaL(H{sub 2}O){sub 4}] · (H{sub 2}O){sub 4}){sub n} (L = 4-formyl-1,3-benzenedisulfonate-2-furoic acid hydrazide) has been prepared by one-pot synthesis method. And it was characterized by elemental analysis, IR and thermal analysis. The result of X-ray single-crystal diffraction analysis shows that the Ca(II) complex molecules form one-dimensional chain structure by the bridging oxygen atoms. The anti-tumor activity of L ligand and the Ca(II) coordination polymer has also been studied.
Alkali-activated complex binders from class C fly ash and Ca-containing admixtures.
Guo, Xiaolu; Shi, Huisheng; Chen, Liming; Dick, Warren A
2010-01-15
Processes that maximize utilization of industrial solid wastes are greatly needed. Sodium hydroxide and sodium silicate solution were used to create alkali-activated complex binders (AACBs) from class C fly ash (CFA) and other Ca-containing admixtures including Portland cement (PC), flue gas desulfurization gypsum (FGDG), and water treatment residual (WTR). Specimens made only from CFA (CFA100), or the same fly ash mixed with 40 wt% PC (CFA60-PC40), with 10 wt% FGDG (CFA90-FGDG10), or with 10 wt% WTR (CFA90-WTR10) had better mechanical performance compared to binders using other mix ratios. The maximum compressive strength of specimens reached 80.0 MPa. Geopolymeric gel, sodium polysilicate zeolite, and hydrated products coexist when AACB reactions occur. Ca from CFA, PC, and WTR precipitated as Ca(OH)(2), bonded in geopolymers to obtain charge balance, or reacted with dissolved silicate and aluminate species to form calcium silicate hydrate (C-S-H) gel. However, Ca from FGDG probably reacted with dissolved silicate and aluminate species to form ettringite. Utilization of CFA and Ca-containing admixtures in AACB is feasible. These binders may be widely utilized in various applications such as in building materials and for solidification/stabilization of other wastes, thus making the wastes more environmentally benign.
Structural, optoelectronic, and thermoelectric properties of AZn13 (A=Na, K, Ca, Sr, Ba) compounds
NASA Astrophysics Data System (ADS)
Basit, Abdul; Murtaza, G.; Mahmood, Asif; Yar, Abdullah; Muhammad, S.
2016-08-01
We report the structural, electronic, optical, and thermoelectric properties of the five cubic alkali-earth transition-metals AZn13 (A-Na, K, Ca, Sr, Ba) using density functional theory. Structural properties, electronic structures and optical behaviors are calculated explicitly via highly accurate contemporary full potential-linearized augmented plane wave (FP-LAPW) method. The investigated ground state data of these materials is quite close to the experimental information. The modified Becke-Johnson (mBJ) predicts the intermetallic nature of AZn13 (A-Na, K, Ca, Sr, Ba) materials. The complex dielectric function of these intermetallic compounds has been calculated and the observed noticeable peaks are examined through mBJ. With the help of complex dielectric function, the other important optical parameters like reflectivities, conductivities and refractive indices of AZn13 (A-Na, K, Ca, Sr, Ba) have been calculated as a function of energy. The optical response suggests that AZn13 (A-Na, K, Ca, Sr, Ba) compounds can be used for the optoelectronic devices. Further, the thermoelectric properties have been calculated through BoltzTraP program, the calculated values for different thermoelectric parameters recommend that these AZn13 (A-Na, K, Ca, Sr, Ba) materials are the suitable candidates for thermoelectric applications.
Clarithromycin and Tetracycline Binding to Soil Humic Acid in the Absence and Presence of Calcium.
Christl, Iso; Ruiz, Mercedes; Schmidt, J R; Pedersen, Joel A
2016-09-20
Numerous ionizable organic micropollutants contain positively charged moieties at pH values typical of environmental systems. Describing organic cation and zwitterion interaction with dissolved natural organic matter requires explicit consideration of the pH-dependent speciation of both sorbate and sorbent. We studied the pH-, ionic strength-, and concentration-dependent binding of relatively large, organic cations and zwitterions (viz., the antibiotics clarithromycin and tetracycline) to dissolved humic acid in the absence and presence of Ca(2+) and evaluated the ability of the NICA-Donnan model to describe the data. Clarithromycin interaction with dissolved humic acid was well described by the model including the competitive effect of Ca(2+) on clarithromycin binding over a wide range of solution conditions by considering only the binding of the cationic species to low proton-affinity sites in humic acid. Tetracycline possesses multiple ionizable moieties and forms complexes with Ca(2+). An excellent fit to experimental data was achieved by considering tetracycline cation interaction with both low and high proton-affinity sites of humic acid and zwitterion interaction with high proton-affinity sites. In contrast to clarithromycin, tetracycline binding to humic acid increased in the presence of Ca(2+), especially under alkaline conditions. Model calculations indicate that this increase is due to electrostatic interaction of positively charged tetracycline-Ca complexes with humic acid rather than due to the formation of ternary complexes, except at very low TC concentrations.
NASA Astrophysics Data System (ADS)
Refat, M. S.; Sharshara, T.
2015-11-01
The [Pb(Pin)2] · 3H2O, [M(Pin)(H2O)2(Cl)] · nH2O (M = SrII, CaII or BaII; n = 0-1), and [Fe(Pin)2(Cl)(H2O)] · H2O penicillin G potassium (Pin) complexes were synthesized and characterized using elemental analyses, molar conductivity, thermal analysis and electronic spectroscopy techniques. The positron annihilation lifetime (PAL) and Doppler broadening (DB) techniques have been employed to probe the defects and structural changes of Pin ligand and its complexes. The PAL and DB line-shape parameters were discussed in terms of the structure, molecular weight, ligand-metal molar ratio, and other properties of the Pin complexes.
Pidko, Evgeny A; Xu, Jiang; Mojet, Barbara L; Lefferts, Leon; Subbotina, Irina R; Kazansky, Vladimir B; van Santen, Rutger A
2006-11-16
A FT-IR spectroscopic study of methane, ethane, and propane adsorption on magnesium and calcium forms of zeolite Y reveals different vibrational properties of the adsorbed molecules depending on the exchanged cation. This is attributed to different adsorption conformations of the hydrocarbons. Two-fold eta(2) coordination of light alkanes is realized for MgY, whereas in case of CaY zeolite quite different adsorption modes are found, involving more C-H bonds in the interaction with the cation. The topological analysis of the electron density distribution function of the adsorption complexes shows that when a hydrocarbon coordinates to the exchanged Mg(2+) ions, van der Waals bonds between H atoms of the alkane and basic zeolitic oxygens significantly contribute to the overall adsorption energy, whereas in case of CaY zeolite such interactions play only an indirect role. It is found that, due to the much smaller ionic radius of the Mg(2+) ion as compared to that of Ca(2+), the former ions are significantly shielded with the surrounding oxygens of the zeolitic cation site. This results in a small electrostatic contribution to the stabilization of the adsorbed molecules. In contrast, for CaY zeolite the stabilization of alkanes in the electrostatic field of the partially shielded Ca(2+) cation significantly contributes to the adsorption energy. This is in agreement with the experimentally observed lower overall absorption of C-H stretching vibrations of alkanes loaded to MgY as compared to those for CaY zeolite. The preferred conformation of the adsorbed alkanes is controlled by the bonding within the adsorption complexes that, in turn, strongly depends on the size and location of the cations in the zeolite cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
López-Victorio, Carlos J.; Velez-delValle, Cristina; Beltrán-Langarica, Alicia
Highlights: ► EDF-1 participates early adipogenesis in 3T3F442A cells induced with Staurosporine/Dexamethasone. ► EDF-1 associates with CaM and Cn, most likely inactivating Cn. ► EDF-1/CaM complex seems to prevent NFATc1 activation by Cn. ► EDF-1 regulates the Cn/CaM/NFATc1 pathway during adipogenesis. ► EDF-1 may regulate the activation of Cn through a complex formation with CaM. - Abstract: The endothelial differentiation factor-1 (EDF-1) is a calmodulin binding protein that regulates calmodulin-dependent enzymes. In endothelial cells, this factor can form a protein complex with calmodulin. We analyzed the relationship between this factor and the members of calmodulin/calcineurin/nuclear factor of activated T-cells (NFAT)more » signaling pathway during adipogenesis of 3T3-F442A cells. We found that the expression of edf1 is upregulated during early adipogenesis, whereas that of calcineurin gene is lowered, suggesting that this pathway should be downregulated to allow for adipogenesis to occur. We also found that EDF-1 associates with calmodulin and calcineurin, most likely inactivating calcineurin. Our results showed that EDF-1 inactivates the calmodulin/calcineurin/NFAT pathway via sequestration of calmodulin, during early adipogenesis, and we propose a mechanism that negatively regulates the activation of calcineurin through a complex formation between EDF-1 and calmodulin. This finding raises the possibility that modulating this pathway might offer some alternatives to regulate adipose biology.« less
Furuya, Yusui; Denda, Miwako; Sakane, Kyohei; Ogusu, Tomoko; Takahashi, Sumio; Magari, Masaki; Kanayama, Naoki; Morishita, Ryo; Tokumitsu, Hiroshi
2016-07-01
To search for novel target(s) of the Ca(2+)-signaling transducer, calmodulin (CaM), we performed a newly developed genome-wide CaM interaction screening of 19,676 GST-fused proteins expressed in human. We identified striated muscle activator of Rho signaling (STARS) as a novel CaM target and characterized its CaM binding ability and found that the Ca(2+)/CaM complex interacted stoichiometrically with the N-terminal region (Ala13-Gln35) of STARS in vitro as well as in living cells. Mutagenesis studies identified Ile20 and Trp33 as the essential hydrophobic residues in CaM anchoring. Furthermore, the CaM binding deficient mutant (Ile20Ala, Trp33Ala) of STARS further enhanced its stimulatory effect on SRF-dependent transcriptional activation. These results suggest a connection between Ca(2+)-signaling via excitation-contraction coupling and the regulation of STARS-mediated gene expression in muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, D.M.; Johnson, S.B.; Catalano, J.G.
Calcium oxalate monohydrate (CaC{sub 2}O{sub 4}{center_dot}H{sub 2}O -- abbreviated as CaOx) is produced by two-thirds of all plant families, comprising up to 80 wt.% of the plant tissue and found in many surface environments. It is unclear, however, how CaOx in plants and soils interacts with metal ions and possibly sequesters them. This study examines the speciation of Sr(II){sub aq} following its reaction with CaOx. Batch uptake experiments were conducted over the pH range 4--10, with initial Sr solution concentrations, [Sr]{sub aq}, ranging from 1 x 10{sup -4} to 1 x 10{sup -3} M and ionic strengths ranging of 0.001--0.1more » M, using NaCl as the background electrolyte. Experimental results indicate that Sr uptake is independent of pH and ionic strength over these ranges. After exposure of CaOx to Sr{sub aq} for two days, the solution Ca concentration, [Ca]{sup aq}, increased for all samples relative to the control CaOx suspension (with no Sr added). The amount of Sr{sub aq} removed from solution was nearly equal to the total [Ca]{sup aq} after exposure of CaOx to Sr. These results suggest that nearly 90% of the Sr is removed from solution to a solid phase as Ca is released into solution. We suggest that the other 10% is sequestered through surface adsorption on a solid phase, although we have no direct evidence for this. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to determine the molecular-level speciation of Sr in the reaction products. Deconvolutions of the Sr K-edge EXAFS spectra were performed to identify multi-electron excitation (MEE) features. MEE effects were found to give rise to low-frequency peaks in the Fourier transform before the first shell of oxygen atoms and do not affect EXAFS fitting results. Because of potential problems caused by asymmetric distributions of Sr-O distances when fitting Sr K-edge EXAFS data using the standard harmonic model, we also employed a cumulant expansion model and an asymmetric analytical model to account for anharmonic effects in the EXAFS data. For Sr-bearing phases with low to moderate first-shell (Sr-O pair correlation) anharmonicity, the cumulant expansion model is sufficient for EXAFS fitting; however, for higher degrees of anharmonicity, an analytical model is required. Based on batch uptake results and EXAFS analyses of reaction products, we conclude that Sr is dominantly sequestered by a solid phase at the CaOx surface, likely the result of a dissolution-reprecipitation mechanism, to form SrC{sub 2}O{sub 4} of mixed hydration state (i.e. SrO{sub x}{center_dot}nH{sub 2}O, where n = 0, 1, or 2). Surprisingly, no spectroscopic or XRD evidence was found for a (Sr,Ca)Ox solid solution or for a separate SrCO3 phase. In addition, we found no evidence for Sr(II) inner-sphere sorption complexes on CaOx surfaces based on lack of Sr-Ca second-neighbor pair correlations in the EXAFS spectra, although some type of Sr(II) surface complex (perhaps a type B Sr-oxalate ternary complex or an outer-sphere Sr(II) complex) or some as yet undetected Sr-bearing solid phases are needed to account for approximately 10% of Sr uptake by CaOx. The formation of a hydrated SrOx phase in environments under conditions similar to those of our experiments should retard Sr mobility and could be a significant factor in the biogeochemical cycling of Sr in soils and sediments or in plants and plant litter where CaOx is present.« less
Ca2+ signalling, voltage-gated Ca2+ channels and praziquantel in flatworm neuromusculature.
Greenberg, R M
2005-01-01
Transient changes in calcium (Ca2+) levels regulate a wide variety of cellular processes, and cells employ both intracellular and extracellular sources of Ca2+ for signalling. Praziquantel, the drug of choice against schistosomiasis, disrupts Ca2+ homeostasis in adult worms. This review will focus on voltage-gated Ca2+ channels, which regulate levels of intracellular Ca2+ by coupling membrane depolarization to entry of extracellular Ca2+. Ca2+ channels are members of the ion channel superfamily and represent essential components of neurons, muscles and other excitable cells. Ca2+ channels are membrane protein complexes in which the pore-forming alpha1 subunit is modulated by auxiliary subunits such as beta and alpha2delta. Schistosomes express two Ca2+ channel beta subunit subtypes: a conventional subtype similar to beta subunits found in other vertebrates and invertebrates and a novel variant subtype with unusual structural and functional properties. The variant schistosome beta subunit confers praziquantel sensitivity to an otherwise praziquantel-insensitive mammalian Ca2+ channel, implicating it as a mediator of praziquantel action.
A distinct entorhinal cortex to hippocampal CA1 direct circuit for olfactory associative learning.
Li, Yiding; Xu, Jiamin; Liu, Yafeng; Zhu, Jia; Liu, Nan; Zeng, Wenbo; Huang, Ning; Rasch, Malte J; Jiang, Haifei; Gu, Xiang; Li, Xiang; Luo, Minhua; Li, Chengyu; Teng, Junlin; Chen, Jianguo; Zeng, Shaoqun; Lin, Longnian; Zhang, Xiaohui
2017-04-01
Lateral and medial parts of entorhinal cortex (EC) convey nonspatial 'what' and spatial 'where' information, respectively, into hippocampal CA1, via both the indirect EC layer 2→ hippocampal dentate gyrus→CA3→CA1 and the direct EC layer 3→CA1 paths. However, it remains elusive how the direct path transfers distinct information and contributes to hippocampal learning functions. Here we report that lateral EC projection neurons selectively form direct excitatory synapses onto a subpopulation of morphologically complex, calbindin-expressing pyramidal cells (PCs) in the dorsal CA1 (dCA1), while medial EC neurons uniformly innervate all dCA1 PCs. Optogenetically inactivating the distinct lateral EC-dCA1 connections or the postsynaptic dCA1 calbindin-expressing PC activity slows olfactory associative learning. Moreover, optetrode recordings reveal that dCA1 calbindin-expressing PCs develop more selective spiking responses to odor cues during learning. Thus, our results identify a direct lateral EC→dCA1 circuit that is required for olfactory associative learning.
Andrews, Rachel E; Galileo, Deni S; Martin-DeLeon, Patricia A
2015-11-01
Deletion of the gene encoding the widely conserved plasma membrane calcium ATPase 4 (PMCA4), a major Ca(2+) efflux pump, leads to loss of sperm motility and male infertility in mice. PMCA4's partners in sperm and how its absence exerts its effect on fertility are unknown. We hypothesize that in sperm PMCA4 interacts with endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) which are rapidly activated by Ca(2+), and that these fertility-modulating proteins are present in prostasomes, which deliver them to sperm. We show that in human sperm PMCA4 is present on the acrosome, inner acrosomal membrane, posterior head, neck, midpiece and the proximal principal piece. PMCA4 localization showed inter- and intra-individual variation and was most abundant at the posterior head/neck junction, co-localizing with NOSs. Co-immunoprecipitations (Co-IP) revealed a close association of PMCA4 and the NOSs in Ca(2+) ionophore-treated sperm but much less so in uncapacitated untreated sperm. Fluorescence resonance energy transfer (FRET) showed a similar Ca(2+)-related association: PMCA4 and the NOSs are within 10 nm apart, and preferentially so in capacitated, compared with uncapacitated, sperm. FRET efficiencies varied, being significantly (P < 0.001) higher at high cytosolic Ca(2+) concentration ([Ca(2+)]c) in capacitated sperm than at low [Ca(2+)]c in uncapacitated sperm for the PMCA4-eNOS complex. These dynamic interactions were not seen for PMCA4-nNOS complexes, which had the highest FRET efficiencies. Further, along with Ca(2+)/CaM-dependent serine kinase (CASK), PMCA4 and the NOSs are present in the seminal plasma, specifically in prostasomes where Co-IP showed complexes similar to those in sperm. Finally, flow cytometry demonstrated that following co-incubation of sperm and seminal plasma, PMCA4 and the NOSs can be delivered in vitro to sperm via prostasomes. Our findings indicate that PMCA4 interacts simultaneously with the NOSs preferentially at high [Ca(2+)]c in sperm to down-regulate them, and thus prevent elevated levels of NO, known to induce asthenozoospermia via oxidative stress. Our studies point to the potential underlying cause of infertility in PMCA4's absence, and suggest that inactivating mutations of PMCA4 could lead to asthenozoospermia and human infertility. Screening for these mutations may serve both diagnostic and therapeutic purposes. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Yadav, Vishal R.; Song, Tengyao; Joseph, Leroy; Mei, Lin; Zheng, Yun-Min
2013-01-01
An increase in intracellular calcium concentration ([Ca2+]i) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca2+]i in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca2+]i. Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP3) production, which is blocked by U73122. The IP3 receptor (IP3R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca2+]i. PLC-γ1 knockdown or U73122 reduces H2O2-induced increase in [Ca2+]i in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP3 production, IP3R opening, and Ca2+ release, playing an important role in hypoxic Ca2+ and contractile responses in PASMCs. PMID:23204067
Piirainen, Henni; Taura, Jaume; Kursula, Petri; Ciruela, Francisco; Jaakola, Veli-Pekka
2017-04-01
Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A 2A receptor (A 2A R), has an exceptionally long intracellular C terminus (A 2A R-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A 2A R and the role of Ca 2+ in this process. First, we studied the A 2A R-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A 2A R-ct through its distal calmodulin-like domain in a Ca 2+ -independent manner with a dissociation constant of 5-12μM, thus showing an ~100 times lower affinity compared to the A 2A R-calmodulin/Ca 2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A 2A R-ct in a Ca 2+ -dependent fashion, disrupting the A 2A R-α-actinin 1 complex. Finally, we assessed the impact of Ca 2+ on A 2A R internalization in living cells, a function operated by the A 2A R-α-actinin 1 complex. Interestingly, while Ca 2+ influx did not affect constitutive A 2A R endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A 2A R/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A 2A R with calmodulin and α-actinin 1 is fine-tuned by Ca 2+ , a fact that might power agonist-mediated receptor internalization and function. Copyright © 2017 Elsevier B.V. All rights reserved.
Singer, David M; Chatman, Shawn M; Ilton, Eugene S; Rosso, Kevin M; Banfield, Jillian F; Waychunas, Glenn A
2012-04-03
Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO(3)-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO(3); and with or without 0.5 mM CO(3) and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO(3)](T), denoted here as CO(3)) and calcium (Ca), or in the presence of CO(3) only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO(3), only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO(2) forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO(3) and Ca, U(VI)-CO(3)-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO(3)-Ca complexes inhibit U reduction.
79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER ...
79. VIEW OF VAL FIRING RANGE LOOKING SOUTHWEST SHOWING LAUNCHER BRIDGE, BARGES, SONAR BUOY RANGE AND MORRIS DAM IN BACKGROUND, June 10, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
76. FIRST TEST SHOT OF THE VAL AT THE DEDICATION ...
76. FIRST TEST SHOT OF THE VAL AT THE DEDICATION CEREMONIES AS SEEN FROM THE OBSERVATION DECK ABOVE THE CONTROL STATION, May 7, 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Insights into the early evolution of animal calcium signaling machinery: A unicellular point of view
Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E.
2014-01-01
The basic principles of Ca2+ regulation emerged early in prokaryotes. Ca2+ signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca2+ concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca2+ signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca2+ exchangers and four-domain voltage-gated Ca2+ channels. Newly identified evolutionary evidence suggests that the distinct Ca2+ signaling machineries in animals, plants and fungi likely originated from an ancient Ca2+ signaling machinery prior to early eukaryotic radiation. PMID:25498309
Calcium signaling and cell proliferation.
Pinto, Mauro Cunha Xavier; Kihara, Alexandre Hiroaki; Goulart, Vânia A M; Tonelli, Fernanda M P; Gomes, Katia N; Ulrich, Henning; Resende, Rodrigo R
2015-11-01
Cell proliferation is orchestrated through diverse proteins related to calcium (Ca(2+)) signaling inside the cell. Cellular Ca(2+) influx that occurs first by various mechanisms at the plasma membrane, is then followed by absorption of Ca(2+) ions by mitochondria and endoplasmic reticulum, and, finally, there is a connection of calcium stores to the nucleus. Experimental evidence indicates that the fluctuation of Ca(2+) from the endoplasmic reticulum provides a pivotal and physiological role for cell proliferation. Ca(2+) depletion in the endoplasmatic reticulum triggers Ca(2+) influx across the plasma membrane in an phenomenon called store-operated calcium entries (SOCEs). SOCE is activated through a complex interplay between a Ca(2+) sensor, denominated STIM, localized in the endoplasmic reticulum and a Ca(2+) channel at the cell membrane, denominated Orai. The interplay between STIM and Orai proteins with cell membrane receptors and their role in cell proliferation is discussed in this review. Copyright © 2015 Elsevier Inc. All rights reserved.
Cai, Xinjiang; Wang, Xiangbing; Patel, Sandip; Clapham, David E
2015-03-01
The basic principles of Ca(2+) regulation emerged early in prokaryotes. Ca(2+) signaling acquired more extensive and varied functions when life evolved into multicellular eukaryotes with intracellular organelles. Animals, fungi and plants display differences in the mechanisms that control cytosolic Ca(2+) concentrations. The aim of this review is to examine recent findings from comparative genomics of Ca(2+) signaling molecules in close unicellular relatives of animals and in common unicellular ancestors of animals and fungi. Also discussed are the evolution and origins of the sperm-specific CatSper channel complex, cation/Ca(2+) exchangers and four-domain voltage-gated Ca(2+) channels. Newly identified evolutionary evidence suggests that the distinct Ca(2+) signaling machineries in animals, plants and fungi likely originated from an ancient Ca(2+) signaling machinery prior to early eukaryotic radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Windt, Laurent, E-mail: laurent.dewindt@mines-paristech.fr; Bertron, Alexandra; Larreur-Cayol, Steeves
2015-03-15
Interactions of short-chain organic acids with hydrated cement phases affect structure durability in the agro-food and nuclear waste industries but can also be used to modify cement properties. Most previous studies have been experimental, performed at fixed concentrations and pH, without quantitatively discriminating among polyacidity effects, or complexation and salt precipitation processes. This paper addresses such issues by thermodynamic equilibrium calculations for acetic, citric, oxalic, succinic acids and a simplified hydrated CEM-I. The thermodynamic constants collected from the literature allow the speciation to be modeled over a wide range of pH and concentrations. Citric and oxalic had a stronger chelatingmore » effect than acetic acid, while succinic acid was intermediate. Similarly, Ca-citrate and Ca-oxalate salts were more insoluble than Ca-acetate and Ca-succinate salts. Regarding aluminium complexation, hydroxyls, sulfates, and acid competition was highlighted. The exploration of acid mixtures showed the preponderant effect of oxalate and citrate over acetate and succinate.« less
Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model
NASA Astrophysics Data System (ADS)
Kassebaum, Paul G.; Iannacchione, Germano S.
The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.
Semin, B. K.; Davletshina, L. N.; Seibert, M.; ...
2017-11-11
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semin, B. K.; Davletshina, L. N.; Seibert, M.
Extraction of Mn cations from the oxygen-evolving complex (OEC) of Ca-depleted PSII membranes (PSII[-Ca,4Mn]) by reductants like hydroquinone (H 2Q) occurs with lower efficiency at acidic pH (2Mn/reaction center [RC] are extracted at pH 5.7) than at neutral pH (3Mn/RC are extracted at pH 6.5) [Semin et al. Photosynth. Res. 125 (2015) 95]. Fe(II) also extracts Mn cations from PSII(-Ca,4Mn), but only 2Mn/RC at pH 6.5, forming a heteronuclear 2Mn/2Fe cluster [Semin and Seibert, J. Bioenerg. Biomembr. 48 (2016) 227]. Here we investigated the efficiency of Mn extraction by Fe(II) at acidic pH and found that Fe(II) cations can extractmore » only 1Mn/RC from PSII(-Ca,4Mn) membranes at pH 5.7, forming a 3Mn/1Fe cluster.« less
De Simone, Giuseppina; Langella, Emma; Esposito, Davide; Supuran, Claudiu T; Monti, Simona Maria; Winum, Jean-Yves; Alterio, Vincenzo
2017-12-01
Sulphamate and sulphamide derivatives have been largely investigated as carbonic anhydrase inhibitors (CAIs) by means of different experimental techniques. However, the structural determinants responsible for their different binding mode to the enzyme active site were not clearly defined so far. In this paper, we report the X-ray crystal structure of hCA II in complex with a sulphamate inhibitor incorporating a nitroimidazole moiety. The comparison with the structure of hCA II in complex with its sulphamide analogue revealed that the two inhibitors adopt a completely different binding mode within the hCA II active site. Starting from these results, we performed a theoretical study on sulphamate and sulphamide derivatives, demonstrating that electrostatic interactions with residues within the enzyme active site play a key role in determining their binding conformation. These findings open new perspectives in the design of effective CAIs using the sulphamate and sulphamide zinc binding groups as lead compounds.
Tirler, Andreas O; Hofer, Thomas S
2015-07-09
Structure and dynamics of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution have been investigated via quantum mechanical/molecular mechanical (QM/MM) simulations. While for the first a 6-fold octahedral complex has been observed, the presence of an additional coordinating water ligand has been observed in the latter case. Because of rapidly exchanging water molecules, this 7-fold coordination complex was found to form pentagonal bipyramidal as well as capped trigonal prismatic configurations along the simulation interchanging on the picosecond time scale. Also in the case of [MgEDTA](2-) a trigonal prismatic configuration has been observed for a very short time period of approximately 1 ps. This work reports for the first time the presence of trigonal prismatic structures observed in the coordination sphere of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution. In addition to the detailed characterization of structure and dynamics of the systems, the prediction of the associated infrared spectra indicates that the ion-water vibrational mode found at approximately 250 cm(-1) provides a distinctive measure to experimentally detect the presence of the coordinating water molecule via low-frequency IR setups.
An ostracode based paleolimnologic and paleohydrologic history of Death Valley: 200 to 0 ka
Forester, R.M.; Lowenstein, T.K.; Spencer, R.J.
2005-01-01
Death Valley, a complex tectonic and hydrologic basin, was cored from its lowest surface elevation to a depth of 186 m. The sediments range from bedded primary halite to black muds. Continental ostracodes found in the black muds indicate that those sediments were deposited in a variety of hydrologic settings ranging from deep, relatively fresh water to shallow saline lakes to spring discharge supported wetlands. The alkaline-enriched, calcium-depleted paleolake waters indicate extrabasinal streamflow and basin-margin spring discharge. The alkaline-depleted, calcium-enriched paleowetland waters indicate intrabasinal spring discharge. During Marine Isotope Stage 6 (MIS 6, ca. 180-140 ka) the hydrologic settings were highly variable, implying that complex relations existed between climate and basin hydrology. Termination II (MIS 6 to MIS 5E) was a complex multicyclic sequence of paleoenvironments, implying that climates oscillated between high and low effective moisture. MIS 4 (ca. 73-61 ka) was a spring discharge supported wetland complex. During MIS 2 (ca. 20-12 ka) the hydrologic settings were variable, although they are not fully understood because some black muds deposited during that time were lost during coring. ?? 2005 Geological Society of America.
Ga(+) Basicity and Affinity Scales Based on High-Level Ab Initio Calculations.
Brea, Oriana; Mó, Otilia; Yáñez, Manuel
2015-10-26
The structure, relative stability and bonding of complexes formed by the interaction between Ga(+) and a large set of compounds, including hydrocarbons, aromatic systems, and oxygen-, nitrogen-, fluorine and sulfur-containing Lewis bases have been investigated through the use of the high-level composite ab initio Gaussian-4 theory. This allowed us to establish rather accurate Ga(+) cation affinity (GaCA) and Ga(+) cation basicity (GaCB) scales. The bonding analysis of the complexes under scrutiny shows that, even though one of the main ingredients of the Ga(+) -base interaction is electrostatic, it exhibits a non-negligible covalent character triggered by the presence of the low-lying empty 4p orbital of Ga(+) , which favors a charge donation from occupied orbitals of the base to the metal ion. This partial covalent character, also observed in AlCA scales, is behind the dissimilarities observed when GaCA are compared with Li(+) cation affinities, where these covalent contributions are practically nonexistent. Quite unexpectedly, there are some dissimilarities between several Ga(+) -complexes and the corresponding Al(+) -analogues, mainly affecting the relative stability of π-complexes involving aromatic compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A microscopic insight from conformational thermodynamics to functional ligand binding in proteins.
Sikdar, Samapan; Chakrabarti, J; Ghosh, Mahua
2014-12-01
We show that the thermodynamics of metal ion-induced conformational changes aid to understand the functions of protein complexes. This is illustrated in the case of a metalloprotein, alpha-lactalbumin (aLA), a divalent metal ion binding protein. We use the histograms of dihedral angles of the protein, generated from all-atom molecular dynamics simulations, to calculate conformational thermodynamics. The thermodynamically destabilized and disordered residues in different conformational states of a protein are proposed to serve as binding sites for ligands. This is tested for β-1,4-galactosyltransferase (β4GalT) binding to the Ca(2+)-aLA complex, in which the binding residues are known. Among the binding residues, the C-terminal residues like aspartate (D) 116, glutamine (Q) 117, tryptophan (W) 118 and leucine (L) 119 are destabilized and disordered and can dock β4GalT onto Ca(2+)-aLA. No such thermodynamically favourable binding residues can be identified in the case of the Mg(2+)-aLA complex. We apply similar analysis to oleic acid binding and predict that the Ca(2+)-aLA complex can bind to oleic acid through the basic histidine (H) 32 of the A2 helix and the hydrophobic residues, namely, isoleucine (I) 59, W60 and I95, of the interfacial cleft. However, the number of destabilized and disordered residues in Mg(2+)-aLA are few, and hence, the oleic acid binding to Mg(2+)-bound aLA is less stable than that to the Ca(2+)-aLA complex. Our analysis can be generalized to understand the functionality of other ligand bound proteins.
Interaction of divalent metal ions with human translocase of inner membrane of mitochondria Tim23.
Feng, Wei; Zhang, Yongqiang; Deng, Honghua; Li, Shu Jie
2016-06-17
The preprotein translocase of the inner membrane of mitochondria (TIM23 complex) is the main entry gate for proteins of the matrix and the inner membrane. Tim23p, the core component of TIM23 complex, forms the import pore across the inner membrane and exerts a key function in the protein import. However, the interaction of divalent metal ions with Tim23p and the contribution in the interaction of presequence peptide with Tim23p are still unknown. Herein, we investigated the interaction of divalent metal ions with the intermembrane space domain of Tim23p (Tim23IMS) and the interaction of presequence peptides with Tim23IMS in presence of Ca(2+) ion by fluorescence spectroscopy in vitro. The static fluorescence quenching indicates the existence of strong binding between divalent metal ions and Tim23IMS. The order of the binding strength is Ca(2+), Mg(2+), Cu(2+), Mn(2+), and Co(2+) (from strong to weak). Moreover, the interaction of presequence peptides with Tim23IMS is weakened in presence of Ca(2+) ion, which implicates that Ca(2+) ion may play an important role in the protein import by TIM23 complex. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prywer, Jolanta, E-mail: jolanta.prywer@p.lodz.pl; Olszynski, Marcin; Mielniczek-Brzóska, Ewa
2015-11-15
Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation ofmore » carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.« less
Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle*
De La Fuente, Sergio; Fernandez-Sanz, Celia; Vail, Caitlin; Agra, Elorm J.; Holmstrom, Kira; Sun, Junhui; Mishra, Jyotsna; Williams, Dewight; Finkel, Toren; Murphy, Elizabeth; Joseph, Suresh K.; Sheu, Shey-Shing; Csordás, György
2016-01-01
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU “hot spots” can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling. PMID:27637331
NASA Astrophysics Data System (ADS)
Henriques, S. B. A.; Neiva, A. M. R.; Tajčmanová, L.; Dunning, G. R.
2017-01-01
A well preserved Cadomian basement is exposed in the Iberian Massif, Central Portugal, at the Ossa Morena/Central Iberian zone boundary, which allows the determination of reliable geochemical data. A sequence of Cadomian and Variscan magmatic and tectonometamorphic events has been already described for this area and are documented in other areas of the Avalonian-Cadomian orogen. However, the geochemical information concerning the Cadomian basement for this area is still limited. We present whole rock geochemical and oxygen isotopic information to characterize the igneous protoliths of the Sardoal Complex, located within the Tomar-Badajoz-Córdoba Shear Zone, and identify their tectonic setting. We use detailed petrography, mineral chemistry and P-T data to characterize the final Cadomian tectonometamorphic event. The Sardoal Complex contains orthogneiss and amphibolite units. The protoliths of the orthogneiss are calc-alkaline magmas of acid composition and peraluminous character that were generated in an active continental margin in three different stages (ca. 692 Ma, ca. 569 Ma and ca. 548 Ma). The most significant processes in their petrogenesis are the partial melting of old metasedimentary and meta-igneous crust at different crustal levels and the crystal fractionation of plagioclase, alkali feldspars, apatite, zircon and Fe-Ti oxides. The protoliths of the amphibolite, older than ca. 540 Ma, are tholeiitic and calc-alkaline magmas of basic composition that display N-, T- and E-MORB affinities. They were generated in an active continental margin. Crustal contamination and fractional crystallization of hornblende and diopside were involved in their petrogenesis. However, the fractional crystallization was not significant. The magmatic activity recorded in the Sardoal Complex indicates the existence of a long-lived continental arc (ca. 692-540 Ma) with coeval felsic and mafic magmatism. The final stage of the Cadomian metamorphism is usually represented in other areas of the Cadomian basement as a LP-HT metamorphic event. However, the P-T data obtained by thermodynamic modelling indicates medium pressure/high temperature conditions at ca. 540 Ma. These data suggest that the Sardoal Complex represents a deeper level of the exhumed Cadomian basement where the final stage of the Cadomian metamorphism was recorded.
Leitermann, Randy J; Sajdyk, Tammy J; Urban, Janice H
2012-10-01
Neuropeptide Y (NPY) produces potent anxiolytic effects via activation of NPY Y1 receptors (Y1r) within the basolateral amygdaloid complex (BLA). The role of NPY in the BLA was recently expanded to include the ability to produce stress resilience and long-lasting reductions in anxiety-like behavior. These persistent behavioral effects are dependent upon activity of the protein phosphatase, calcineurin (CaN), which has long been associated with shaping long-term synaptic signaling. Furthermore, NPY-induced reductions in anxiety-like behavior persist months after intra-BLA delivery, which together indicate a form of neuronal plasticity had likely occurred. To define a site of action for NPY-induced CaN signaling within the BLA, we employed multi-label immunohistochemistry to determine which cell types express CaN and if CaN colocalizes with the Y1r. We have previously reported that both major neuronal cell populations in the BLA, pyramidal projection neurons and GABAergic interneurons, express the Y1r. Therefore, this current study evaluated CaN immunoreactivity in these cell types, along with Y1r immunoreactivity. Antibodies against calcium-calmodulin kinase II (CaMKII) and GABA were used to identify pyramidal neurons and GABAergic interneurons, respectively. A large population of CaN immunoreactive cells displayed Y1r immunoreactivity (90%). Nearly all (98%) pyramidal neurons displayed CaN immunoreactivity, while only a small percentage of interneurons (10%) contained CaN immunoreactivity. Overall, these anatomical findings provide a model whereby NPY could directly regulate CaN activity in the BLA via activation of the Y1r on CaN-expressing, pyramidal neurons. Importantly, they support BLA pyramidal neurons as prime targets for neuronal plasticity associated with the long-term reductions in anxiety-like behavior produced by NPY injections into the BLA. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Furukawa, T.; Takahashi, Y.
2011-05-01
Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA) play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN) and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca) and zinc (Zn) in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10-60% and 20-100% of the total Ca and Zn in the finer particles (<2.1 μm) were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the information on metal oxalate complexes and metal complexes with other dicarboxylic acids in aerosols.
1981-09-01
247-1 Moffett Field, CA 94035li W. Kordulla "NASA-Ames Research Center Mail Stop 202A-1 "Moffett Field, CA 94035 -. E. Krause Aerodynamiaches Inatitut...University Stanford, CA 94305 Wolfgang Rodi SFB 80 Universitat Karlsruhe Kaiserstrasse 12 D-75 Karlsruhe 1, W. Germany Robert Rogallo NASA-Ames Research Cntr
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Qisheng; Zhu, Ran; Miller, Gordon J.
Cluster chemistry of intermetallics with valence electron counts (VECs) in the range of 2.0–3.0 is intriguing. Lithiation of polar intermetallics in this VEC region is found to be an effective chemical route to produce new complex structures with different stability mechanisms. In this work, two new complex intermetallic structures have been discovered in the Ca–Li–Zn system: Ca 12Li xZn 59–x and Ca 15Li xZn 75–x. Ca 12Li xZn 59–x, x ≈ 5.65(3)–14.95(3), forms in the trigonal space group R3m, with a = 9.074(1)–9.1699(2) Å, c = 53.353(1)–53.602(1) Å, and Z = 3. In comparison, Ca 15Li xZn 75–x, x ≈more » 19.07(2), crystallizes in the space group P6 3/ mmc, with a ≈ 9.183(1) Å, c ≈ 45.191(5) Å), and Z = 2. Both structures are members of a large intergrowth family featuring slabs of dimers (D) and trimers (T) stacking along [001], with the sequences DTDDTDDTD for Ca 12Li xZn 59–x and TDDDTDDD for Ca 15Li xZn 75–x. Each dimer consists of two face-sharing Zn-centered hypho-icosahedra, and each trimer comprises a Li-centered icosahedron sandwiched by two hypho-icosahedra. Furthermore, this intergrowth family includes several known intermetallic structure types involving very electropositive metals, e.g., SrMg 5.2, Ba 2Li 4.21Al 4.79, and Sr 9Li 17.5Al 25.5. Because of cluster defects and condensation, both Ca 12Li xZn 59–x and Ca 15Li xZn 75–x are electronically akin to close-packed metals, and their structural stabilities can be interpreted by a Hume-Rothery mechanism rather than the Zintl–Klemm concept.« less
Lin, Qisheng; Zhu, Ran; Miller, Gordon J.
2016-04-26
Cluster chemistry of intermetallics with valence electron counts (VECs) in the range of 2.0–3.0 is intriguing. Lithiation of polar intermetallics in this VEC region is found to be an effective chemical route to produce new complex structures with different stability mechanisms. In this work, two new complex intermetallic structures have been discovered in the Ca–Li–Zn system: Ca 12Li xZn 59–x and Ca 15Li xZn 75–x. Ca 12Li xZn 59–x, x ≈ 5.65(3)–14.95(3), forms in the trigonal space group R3m, with a = 9.074(1)–9.1699(2) Å, c = 53.353(1)–53.602(1) Å, and Z = 3. In comparison, Ca 15Li xZn 75–x, x ≈more » 19.07(2), crystallizes in the space group P6 3/ mmc, with a ≈ 9.183(1) Å, c ≈ 45.191(5) Å), and Z = 2. Both structures are members of a large intergrowth family featuring slabs of dimers (D) and trimers (T) stacking along [001], with the sequences DTDDTDDTD for Ca 12Li xZn 59–x and TDDDTDDD for Ca 15Li xZn 75–x. Each dimer consists of two face-sharing Zn-centered hypho-icosahedra, and each trimer comprises a Li-centered icosahedron sandwiched by two hypho-icosahedra. Furthermore, this intergrowth family includes several known intermetallic structure types involving very electropositive metals, e.g., SrMg 5.2, Ba 2Li 4.21Al 4.79, and Sr 9Li 17.5Al 25.5. Because of cluster defects and condensation, both Ca 12Li xZn 59–x and Ca 15Li xZn 75–x are electronically akin to close-packed metals, and their structural stabilities can be interpreted by a Hume-Rothery mechanism rather than the Zintl–Klemm concept.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moldoveanu, T.; Gehring, K; Green, D
2008-01-01
The Ca{sup 2+}-dependent cysteine proteases, calpains, regulate cell migration, cell death, insulin secretion, synaptic function and muscle homeostasis. Their endogenous inhibitor, calpastatin, consists of four inhibitory repeats, each of which neutralizes an activated calpain with exquisite specificity and potency. Despite the physiological importance of this interaction, the structural basis of calpain inhibition by calpastatin is unknown. Here we report the 3.0{angstrom} structure of Ca{sup 2+}-bound m-calpain in complex with the first calpastatin repeat, both from rat, revealing the mechanism of exclusive specificity. The structure highlights the complexity of calpain activation by Ca{sup 2+}, illustrating key residues in a peripheral domainmore » that serve to stabilize the protease core on Ca{sup 2+} binding. Fully activated calpain binds ten Ca{sup 2+} atoms, resulting in several conformational changes allowing recognition by calpastatin. Calpain inhibition is mediated by the intimate contact with three critical regions of calpastatin. Two regions target the penta-EF-hand domains of calpain and the third occupies the substrate-binding cleft, projecting a loop around the active site thiol to evade proteolysis.« less
9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE ...
9. COMPLETED ROLLING CAMERA CAR ON RAILROAD TRACK AND BRIDGE LOOKING WEST, APRIL 26, 1948. (ORIGINAL PHOTOGRAPH IN POSSESSION OF DAVE WILLIS, SAN DIEGO, CALIFORNIA.) - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
73. DETAIL OF LIQUID OXYGEN STORAGE PRESSURE GAUGE IN UPPER ...
73. DETAIL OF LIQUID OXYGEN STORAGE PRESSURE GAUGE IN UPPER LEFT CORNER OF WEST SIDE OF CENTER SKID IN CA-133-1-C-69 - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE ...
30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE PROJECTILE LOADING CAR AND LOADING PLATFORM ADJACENT TO THE PROJECTILE LOADING DECK AND LAUNCHER BRIDGE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST ...
74. DETAIL VIEW OF INSIDE THE LAUNCHING BRIDGE LOOKING SOUTHWEST SHOWING ADJUSTABLE STAIRS ON THE LEFT AND LAUNCHING TUBE ON THE RIGHT, Date unknown, circa 1948. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Qualitative and quantitative assessment of Unresolved Complex Mixture in PM2.5 of Bakersfield, CA.
The 2010 CalNex (California Nexus) field experiment offered an opportunity for detailed characterization of atmospheric particulate carbon composition and sources in Bakersfield, CA. In the current study, the authors describe and employ a new protocol for reporting unresolved com...
NASA Astrophysics Data System (ADS)
Shi, Min; Niu, Zhong-Ming; Liang, Haozhao
2018-06-01
We have combined the complex momentum representation method with the Green's function method in the relativistic mean-field framework to establish the RMF-CMR-GF approach. This new approach is applied to study the halo structure of 74Ca. All the continuum level density of concerned resonant states are calculated accurately without introducing any unphysical parameters, and they are independent of the choice of integral contour. The important single-particle wave functions and densities for the halo phenomenon in 74Ca are discussed in detail.
NASA Astrophysics Data System (ADS)
Salvi, Stefano; Williams-Jones, Anthony E.
1996-06-01
The middle-Proterozoic peralkaline pluton at Strange Lake, Quebec/Labrador, comprises hypersolvus to subsolvus phases which are unusually enriched in Zr, Y, REEs, Nb, Be, and F, as exotic alkali and alkaline-earth silicate minerals. The highest concentrations of these elements are in subsolvus granite, which underwent intense low temperature (≤200°C) hydrothermal alteration involving hematization and the replacement of alkali high-field strength element (HFSE) minerals by calcic equivalents. This alteration is interpreted to have been caused by meteoric or formational waters. High temperature (≥ 350°C) alteration, attributed to orthomagmatic fluids, is evident in other parts of the subsolvus granite by the replacement of arfvedsonite by aegirine. Comparisons of the chemical compositions of fresh and altered rocks indicate that rocks subjected to high temperature alteration were chemically unaffected, except for depletion in Zr, Y, and HREEs. These elements were appreciably enriched in rocks that underwent low temperature alteration. Other elements affected by low temperature alteration include Ca and Mg, which were added and Na, which was removed. Available data on HFSE speciation in aqueous fluids and the chemistry of the pluton, suggest that the HFSEs were transported as fluoride complexes. If this was the case, the low temperature fluid could not have been responsible for HFSE transport, because the high concentration of Ca and low solubility of fluorite would have buffered F - activity to levels too low to permit significant complexation. We propose that HFSE mineralization and accompanying alteration were the result of mixing, in the apical parts of the pluton, of a F-rich, essentially Ca-free orthomagmatic fluid containing significant concentrations of HFSEs, with an externally derived meteoric-dominated fluid, enriched in Ca as a result of interaction with calc-silicate gneisses and gabbros. According to this interpretation, the latter fluid was responsible for the exchange of Ca for alkalis, mainly Na, in HFSE-rich minerals and, by sharply reducing F - activity in the mixed fluid through fluorite precipitation and/or increasing pH, destabilised the HFSE-fluoride complexes, causing deposition of HFSE-bearing minerals. An important implication of this study is that major HFSE enrichment may be restricted to those rare cases where F-rich, Ca-free, metal leaching environments and Ca-rich depositional environments are juxtaposed.
The Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation
Félix, Romain; Crottès, David; Delalande, Anthony; Fauconnier, Jérémy; Lebranchu, Yvon; Le Guennec, Jean-Yves; Velge-Roussel, Florence
2013-01-01
Ca2+ signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca2+ signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca2+ stores that results in a store-operated Ca2+ entry (SOCE). This Ca2+ influx was inhibited by 2-APB and exhibited a Ca2+permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca2+ entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins. PMID:23700407
Yokom, Adam L; Morishima, Yoshihiro; Lau, Miranda; Su, Min; Glukhova, Alisa; Osawa, Yoichi; Southworth, Daniel R
2014-06-13
Nitric-oxide synthase (NOS) is required in mammals to generate NO for regulating blood pressure, synaptic response, and immune defense. NOS is a large homodimer with well characterized reductase and oxygenase domains that coordinate a multistep, interdomain electron transfer mechanism to oxidize l-arginine and generate NO. Ca(2+)-calmodulin (CaM) binds between the reductase and oxygenase domains to activate NO synthesis. Although NOS has long been proposed to adopt distinct conformations that alternate between interflavin and FMN-heme electron transfer steps, structures of the holoenzyme have remained elusive and the CaM-bound arrangement is unknown. Here we have applied single particle electron microscopy (EM) methods to characterize the full-length of the neuronal isoform (nNOS) complex and determine the structural mechanism of CaM activation. We have identified that nNOS adopts an ensemble of open and closed conformational states and that CaM binding induces a dramatic rearrangement of the reductase domain. Our three-dimensional reconstruction of the intact nNOS-CaM complex reveals a closed conformation and a cross-monomer arrangement with the FMN domain rotated away from the NADPH-FAD center, toward the oxygenase dimer. This work captures, for the first time, the reductase-oxygenase structural arrangement and the CaM-dependent release of the FMN domain that coordinates to drive electron transfer across the domains during catalysis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression.
Zhao, Yiwei; Zhu, Lin; Yu, Shaojun; Zhu, Jing; Wang, Chong
2016-09-28
The effects of Ca/calmodulin-dependent protein kinase II (CaMKII) on neuronal apoptosis are complex and contradictory, and the underlying mechanisms remain unclear. Bcl-2-interacting mediator of cell death (Bim) is an important proapoptotic protein under many physiological and pathophysiological conditions. However, there is no evidence that CaMKII and Bim are mechanistically linked in neuronal apoptosis. In this study, we showed that CaMKII inhibition by the inhibitors KN-62 and myristoylated autocamtide-2-related inhibitory peptide promoted apoptosis in cerebellar granule neurons in a dose-dependent manner. CaMKII inhibition increased Bim protein and messenger RNA levels. The expression of early growth response factor-1, a transcription factor of Bim, was also induced by CaMKII inhibitors. These data suggested that CaMKII repressed the transcriptional expression of Bim. Moreover, knockdown of Bim using small interfering RNAs attenuated the proapoptotic effects of CaMKII inhibition. Taken together, this is the first report to show that CaMKII inhibition transcriptionally upregulates Bim expression to promote neuronal apoptosis, providing new insights into the proapoptotic mechanism of CaMKII inhibition.
Chen, Li-Ting; Liang, Wen-Xue; Chen, Shuo; Li, Ren-Ke; Tan, Jue-Ling; Xu, Peng-Fei; Luo, Liu-Fei; Wang, Lei; Yu, Shan-He; Meng, Guoyu; Li, Keqin Kathy; Liu, Ting-Xi; Chen, Zhu; Chen, Sai-Juan
2014-05-02
We previously reported a fusion protein NUP98-IQCG in an acute leukaemia, which functions as an aberrant regulator of transcriptional expression, yet the structure and function of IQCG have not been characterized. Here we use zebrafish to investigate the role of iqcg in haematopoietic development, and find that the numbers of haematopoietic stem cells and multilineage-differentiated cells are reduced in iqcg-deficient embryos. Mechanistically, IQCG binds to calmodulin (CaM) and acts as a molecule upstream of CaM-dependent kinase IV (CaMKIV). Crystal structures of complexes between CaM and IQ domain of IQCG reveal dual CaM-binding footprints in this motif, and provide a structural basis for a higher CaM-IQCG affinity when deprived of calcium. The results collectively allow us to understand IQCG-mediated calcium signalling in haematopoiesis, and propose a model in which IQCG stores CaM at low cytoplasmic calcium concentrations, and releases CaM to activate CaMKIV when calcium level rises.
Andrade-Talavera, Yuniesky; Duque-Feria, Paloma; Negrete-Díaz, José Vicente; Sihra, Talvinder S; Flores, Gonzalo; Rodríguez-Moreno, Antonio
2012-09-01
Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
NASA Astrophysics Data System (ADS)
Ma, C.; Foster, D. A.; Hames, W. E.; Mueller, P. A.
2017-12-01
Orogenic collapse commonly occurs following the collisional phase of an orogeny and often leads to exhumation of deep crustal metamorphic rocks. The Alleghanian orogeny in the southern Appalachian orogen (SAO) occurred during final assembly of Pangea. 40Ar/39Ar data of hornblende, muscovite, and biotite from Alleghanian granitic plutons in Georgia, Alabama, and Florida of the SAO give cooling ages that progressively young toward the south-southeast prior to ca. 280 Ma and young locally toward the north-northwest after ca. 280 Ma. These cooling-age gradients, along with geometry of the Suwannee suture zone and timing/structures of the South Georgia basin, suggest that metamorphic rocks north of the Suwannee suture in the study area formed the lower plate of a metamorphic core complex. The faults of the Suwannee suture zone were reactivated to form a master extensional detachment fault with the Suwannee terrane comprising the upper plate. Thermochronologic data show that rapid extension of the metamorphic core complex footwall started at ca. 300-295 Ma and the extension continued to at least ca. 240 Ma. The maximum average extension rate is estimated to be 10.3 km/m.y. during ca. 300-280 Ma along the master detachment fault and 2.4 km/m.y. during ca. 280-240 Ma along a secondary detachment fault, reflecting differential extension over time. Main cooling rates of 10‒85˚C/m.y. and exhumation rates of 0.3‒2.8 km/m.y. are calculated for the Alleghanian granitic plutons studied. This work shows that, in the southernmost Appalachians, orogenic collapse resulted in metamorphic core complex-style extension between about 300 and 240 Ma. The horst-and-graben systems of the South Georgia basin formed within the upper plate in this tectonic setting. Metamorphic core complex-style extension, therefore, played a critical role in initial rifting that led to the eventual breakup of Pangea and formation of the Atlantic Ocean and the Gulf of Mexico.
NASA Astrophysics Data System (ADS)
Morzyk-Ociepa, Barbara; Szmigiel, Ksenia; Dysz, Karolina; Turowska-Tyrk, Ilona; Michalska, Danuta
2016-11-01
Two new complexes of Cd(II) with an O-deprotonated anion of 5-methoxyindole-2-carboxylic acid (5-MeOI2CA), of the formulas [Cd(5-MeOI2CA)2(H2O)2]n (1) and [Cd3(5-MeOI2CA)6(H2O)4(DMSO)4]ṡ2DMSO (2) were synthesized. In the polymeric complex 1, the 5-MeOI2CA anion acts as a bidentate bridging ligand and the coordination environment around the Cd(II) ion can be described as a distorted octahedron. Single crystal X-ray diffraction analysis of 2 has revealed that this complex is a trimer and it crystallizes in the monoclinic system (space group P21/c with a = 20.3403(4), b = 14.3079(2), c = 15.0603(3) Å, β = 92.4341(17)°, V = 4379.00(14) Å3 and Z = 2). In 2, the 5-MeOI2CA anions act as bidentate bridging and bidentate chelating ligands. The asymmetric unit of 2 contains two crystallographically independent Cd(II) cations. One of the cations is coordinated to six oxygen atoms and shows an octahedral geometry with a rhombic deformation. The other Cd(II) cation adopts a distorted seven-coordinate pentagonal-bipyramidal geometry involving seven oxygen atoms. In 2, the DMSO solvent molecules play a key role in the formation of metal-organic frameworks by filling voids, which are created by the bridging and chelating 5-MeOI2CA anions, the cadmium cations and the other DMSO molecules coordinated to cadmium. Comprehensive theoretical calculations (including the optimized structural parameters, harmonic frequencies and vibrational intensities) were performed for 2 using the B3LYP method with the 6-311++G(d,p)/LanL2DZ basis sets. The infrared and Ramana spectra were measured and a detailed assignment of the experimental spectra of 2 was performed. All cadmium-oxygen stretching vibrations occur in the range below 400 cm-1.
Booker, Sam A; Campbell, Graham R; Mysiak, Karolina S; Brophy, Peter J; Kind, Peter C; Mahad, Don J; Wyllie, David J A
2017-03-15
Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses with CA3 pyramidal cells via large mossy-fibre boutons, but rather to all synapses formed by dentate granule cells. Therefore, presynaptic mitochondrial function is critical for the short-term dynamics of synapse function, which may contribute to the cognitive deficits observed in pathological mitochondrial dysfunction. © 2017 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Geochemistry and geobiology of a present-day serpentinization site in California: The Cedars
NASA Astrophysics Data System (ADS)
Morrill, Penny L.; Kuenen, J. Gijs; Johnson, Orion J.; Suzuki, Shino; Rietze, Amanda; Sessions, Alex L.; Fogel, Marilyn L.; Nealson, Kenneth H.
2013-05-01
Ultra-basic (pH 11-12) reducing (-656 to -585 mV) groundwater springs discharging from serpentinized peridotite of The Cedars, CA, were investigated for their geochemistry and geobiology. The spring waters investigated were of meteoric origin; however, geochemical modeling suggests that there were two sources of groundwater, a shallow source with sufficient contact with The Cedars' peridotite body to be altered geochemically by serpentinization, and a deeper groundwater source that not only flows through the peridotite body but was also in contact with the marine sediments of the Franciscan Subduction Complex (FSC) below the peridotite body. We propose that the groundwater discharging from lower elevations (GPS1 and CS1) reflect the geochemistry of the deeper groundwater in contact with FSC, while groundwaters discharging from springs at higher elevations (NS1 and BSC) were a mixture of the shallow peridotite-only groundwater and the deeper groundwater that has been in contact with the FSC. Cell densities of suspended microbes within these waters were extremely low. In the NS1 and BSC spring fluids, cell densities ranged from 102 to 103 cells/ml, while suspended cells at GPS were lower than 10 cells/mL. However, glass slides incubated in the BSC and GPS1 springs for 2-3 weeks were colonized by cells with densities ranging from 106 to 107 cells/cm2 attached to their surfaces. All of the springs were very low (⩽1 μM) in several essential elements and electron acceptors (e.g. nitrate/ammonium, sulfate, and phosphate) required for (microbial) growth, which is not uncommon at sites of continental serpentinization. Gases rich in N2, H2, and CH4 were exsolving from the springs. The stable carbon isotope value (δ13CCH4 = -68 ± 0.6‰) and the CH4/C2+ (>103) of methane and other gaseous hydrocarbons exsolving from NS1 were typical of microbially sourced methane, whereas the isotope values and the CH4/C2+ of BSC and CS1 springs were more enriched in 13C and had CH4/C2+ < 103, suggesting a mixture of microbial and non-microbial methane. The concentrations of aromatic compounds, and ethane, propane, iso- and n-butane were well described by simple physical mixing between the aromatic- and alkane-poor, shallow groundwater and the relatively aromatic, and alkane-rich groundwater that flows through both the peridotite and the FSC suggesting that these aromatic and alkane compounds originated in the deeper FSC groundwater and are not produced in the shallow peridotite-only groundwater. The aromatic compounds most probably originated from the diagenesis/degradation of organic matter in the marine sediments below the peridotite body, while the gaseous alkanes may have multiple sources including thermal degradation of the organic matter in the marine sediments below the peridotite body and possibly by abiogenic reactions occurring within the peridotite body. This geochemical study demonstrates the complexity of The Cedars, and the possible sources of hydrocarbons at continental sites of serpentinization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, Jose Z.; Vargas, Rubicelia; Garza, Jorge
This paper presents a systematic study of the performance of the relativistic effective core potentials (RECPs) proposed by Stoll-Preuss, Christiansen-Ermler and Hay-Wadt for Ca2+, Hg2+ and Pb2+. The RECPs performance is studied when these cations are combined with ethylene glycol, 2-aminoethanol and ethylenediamine to form bidentate complexes. First, the description of the bidentate ligands is analyzed with the Kohn-Sham method by using SVWN, BLYP and B3LYP exchange-correlation functionals and they are compared with the Moeller-Plesset perturbation theory (MP2), for all these methods the TZVP basis set was used. We found that the BLYP exchange-correlation functional gives similar results that thosemore » obtained by the B3LYP and MP2 methods. Thus, the bidentate metal complexes were studied with the BLYP method combined with the RECPs. In order to compare RECPs performance, all the systems considered in this work were studied with the relativistic all-electron Douglas-Kroll (DK3) method. We observed that the Christiansen-Ermler RECPs give the best energetic and geometrical description for Ca and Hg complexes when compared with the all-electron method. For Pb complexes the spin-orbit interaction and Basis Set Superposition error must be taken into account in the RECP. In general, the trend showed in the complexation energies with the all-electron method is followed by the complexation energies computed with all the pseudopotential tested in this work. Battelle operates PNNL for the USDOE.« less
2010-01-01
Background Decision support in health systems is a highly difficult task, due to the inherent complexity of the process and structures involved. Method This paper introduces a new hybrid methodology Expert-based Cooperative Analysis (EbCA), which incorporates explicit prior expert knowledge in data analysis methods, and elicits implicit or tacit expert knowledge (IK) to improve decision support in healthcare systems. EbCA has been applied to two different case studies, showing its usability and versatility: 1) Bench-marking of small mental health areas based on technical efficiency estimated by EbCA-Data Envelopment Analysis (EbCA-DEA), and 2) Case-mix of schizophrenia based on functional dependency using Clustering Based on Rules (ClBR). In both cases comparisons towards classical procedures using qualitative explicit prior knowledge were made. Bayesian predictive validity measures were used for comparison with expert panels results. Overall agreement was tested by Intraclass Correlation Coefficient in case "1" and kappa in both cases. Results EbCA is a new methodology composed by 6 steps:. 1) Data collection and data preparation; 2) acquisition of "Prior Expert Knowledge" (PEK) and design of the "Prior Knowledge Base" (PKB); 3) PKB-guided analysis; 4) support-interpretation tools to evaluate results and detect inconsistencies (here Implicit Knowledg -IK- might be elicited); 5) incorporation of elicited IK in PKB and repeat till a satisfactory solution; 6) post-processing results for decision support. EbCA has been useful for incorporating PEK in two different analysis methods (DEA and Clustering), applied respectively to assess technical efficiency of small mental health areas and for case-mix of schizophrenia based on functional dependency. Differences in results obtained with classical approaches were mainly related to the IK which could be elicited by using EbCA and had major implications for the decision making in both cases. Discussion This paper presents EbCA and shows the convenience of completing classical data analysis with PEK as a mean to extract relevant knowledge in complex health domains. One of the major benefits of EbCA is iterative elicitation of IK.. Both explicit and tacit or implicit expert knowledge are critical to guide the scientific analysis of very complex decisional problems as those found in health system research. PMID:20920289
Gibert, Karina; García-Alonso, Carlos; Salvador-Carulla, Luis
2010-09-30
Decision support in health systems is a highly difficult task, due to the inherent complexity of the process and structures involved. This paper introduces a new hybrid methodology Expert-based Cooperative Analysis (EbCA), which incorporates explicit prior expert knowledge in data analysis methods, and elicits implicit or tacit expert knowledge (IK) to improve decision support in healthcare systems. EbCA has been applied to two different case studies, showing its usability and versatility: 1) Bench-marking of small mental health areas based on technical efficiency estimated by EbCA-Data Envelopment Analysis (EbCA-DEA), and 2) Case-mix of schizophrenia based on functional dependency using Clustering Based on Rules (ClBR). In both cases comparisons towards classical procedures using qualitative explicit prior knowledge were made. Bayesian predictive validity measures were used for comparison with expert panels results. Overall agreement was tested by Intraclass Correlation Coefficient in case "1" and kappa in both cases. EbCA is a new methodology composed by 6 steps:. 1) Data collection and data preparation; 2) acquisition of "Prior Expert Knowledge" (PEK) and design of the "Prior Knowledge Base" (PKB); 3) PKB-guided analysis; 4) support-interpretation tools to evaluate results and detect inconsistencies (here Implicit Knowledg -IK- might be elicited); 5) incorporation of elicited IK in PKB and repeat till a satisfactory solution; 6) post-processing results for decision support. EbCA has been useful for incorporating PEK in two different analysis methods (DEA and Clustering), applied respectively to assess technical efficiency of small mental health areas and for case-mix of schizophrenia based on functional dependency. Differences in results obtained with classical approaches were mainly related to the IK which could be elicited by using EbCA and had major implications for the decision making in both cases. This paper presents EbCA and shows the convenience of completing classical data analysis with PEK as a mean to extract relevant knowledge in complex health domains. One of the major benefits of EbCA is iterative elicitation of IK.. Both explicit and tacit or implicit expert knowledge are critical to guide the scientific analysis of very complex decisional problems as those found in health system research.
7. VARIABLEANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), ...
7. VARIABLE-ANGLE LAUNCHER DEDICATION PLAQUE SHOWING JAMES H. JENNISON (LEFT), AND W.H. SAYLOR (RIGHT), AT THE DEDICATION CEREMONY, May 7, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ...
54. VAL COUNTERWEIGHT CAR DURING CONSTRUCTION SHOWING CAR FRAME, WHEEL ASSEMBLIES AND METAL REINFORCING, December 19, 1947. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
13. 22'X34' original vellum, VariableAngle Launcher, 'SIDEVIEW CAMERA CAR TRACK ...
13. 22'X34' original vellum, Variable-Angle Launcher, 'SIDEVIEW CAMERA CAR TRACK DETAILS' drawn at 1/4'=1'-0' (BUORD Sketch # 208078, PAPW 908). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
10. 22'X34' original blueprint, VariableAngle Launcher, 'SIDE VIEW CAMERA CARSTEEL ...
10. 22'X34' original blueprint, Variable-Angle Launcher, 'SIDE VIEW CAMERA CAR-STEEL FRAME AND AXLES' drawn at 1/2'=1'-0'. (BOURD Sketch # 209124). - Variable Angle Launcher Complex, Camera Car & Track, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD ...
22. VAL, VIEW OF PROJECTILE LOADING DECK LOOKING NORTHEAST TOWARD TOP OF CONCRETE 'A' FRAME STRUCTURE SHOWING DRIVE CABLES, DRIVE GEAR, BOTTOM OF CAMERA TOWER AND 'CROWS NEST' CONTROL ROOM. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
89. 22'X34' original vellum, VariableAngle Launcher 'ELEVATION OF LAUNCHER BRIDGE ...
89. 22'X34' original vellum, Variable-Angle Launcher 'ELEVATION OF LAUNCHER BRIDGE ON TEMPORARY SUPPORT' drawn at 1'=20'. (BUORD Sketch # 209786, PAPW 1932). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
90. 22'X34' original blueprint, VariableAngle Launcher, 'FRONT ELEVATION OF LAUNCHER ...
90. 22'X34' original blueprint, Variable-Angle Launcher, 'FRONT ELEVATION OF LAUNCHER BRIDGE, CONNECTING BRIDGE AND BARGES' drawn at 1/4'=1'0'. (BUROD Sketch # 208247). - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
Šimurda, Jiří; Orchard, Clive H.
2014-01-01
We have used a previously published computer model of the rat cardiac ventricular myocyte to investigate the effect of changing the distribution of Ca2+ efflux pathways (SERCA, Na+/Ca2+ exchange, and sarcolemmal Ca2+ ATPase) between the dyad and bulk cytoplasm and the effect of adding exogenous Ca2+ buffers (BAPTA or EGTA), which are used experimentally to differentially buffer Ca2+ in the dyad and bulk cytoplasm, on cellular Ca2+ cycling. Increasing the dyadic fraction of a particular Ca2+ efflux pathway increases the amount of Ca2+ removed by that pathway, with corresponding changes in Ca2+ efflux from the bulk cytoplasm. The magnitude of these effects varies with the proportion of the total Ca2+ removed from the cytoplasm by that pathway. Differences in the response to EGTA and BAPTA, including changes in Ca2+-dependent inactivation of the L-type Ca2+ current, resulted from the buffers acting as slow and fast “shuttles,” respectively, removing Ca2+ from the dyadic space. The data suggest that complex changes in dyadic Ca2+ and cellular Ca2+ cycling occur as a result of changes in the location of Ca2+ removal pathways or the presence of exogenous Ca2+ buffers, although changing the distribution of Ca2+ efflux pathways has relatively small effects on the systolic Ca2+ transient. PMID:24971358
Calmodulin overexpression does not alter Cav1.2 function or oligomerization state.
Findeisen, Felix; Tolia, Alexandra; Arant, Ryan; Kim, Eun Young; Isacoff, Ehud; Minor, Daniel L
2011-01-01
Interactions between calmodulin (CaM) and voltage-gated calcium channels (Ca(v)s) are crucial for Ca(v) activity-dependent feedback modulation. We recently reported an X-ray structure that shows two Ca(2+)/CaM molecules bound to the Ca(v)1.2 C terminal tail, one at the PreIQ region and one at the IQ domain. Surprisingly, the asymmetric unit of the crystal showed a dimer in which Ca(2+)/CaM bridged two PreIQ helixes to form a 4:2 Ca(2+)/CaM:Ca(v) C-terminal tail assembly. Contrary to previous proposals based on a similar crystallographic dimer, extensive biochemical analysis together with subunit counting experiments of full-length channels in live cell membranes failed to find evidence for multimers that would be compatible with the 4:2 crossbridged complex. Here, we examine this possibility further. We find that CaM over-expression has no functional effect on Ca(v)1.2 inactivation or on the stoichiometry of full-length Ca(v)1.2. These data provide further support for the monomeric Ca(v)1.2 stoichiometry. Analysis of the electrostatic surfaces of the 2:1 Ca(2+)/CaM:Ca(V) C-terminal tail assembly reveals notable patches of electronegativity. These could influence various forms of channel modulation by interacting with positively charged elements from other intracellular channel domains.
Bradbury, E J; Wilkinson, S J; Cronin, G M; Thomson, P C; Bedford, M R; Cowieson, A J
2014-07-01
The interaction between calcium (Ca) and non-phytate phosphorus (nPP) in broiler nutrition and skeletal health is highly complex with many factors influencing their digestion, absorption and utilisation. The use of an investigative model such as the geometric framework allows a graphical approach to explore these complex interactions. A total of 600 Ross 308-day-old male broiler chicks were allocated to one of 15 dietary treatments with five replicates and eight birds per replicate. Dietary treatments were formulated to one of three total densities of total Ca+nPP; high (15 g/kg), medium (13.5 g/kg) and low (12 g/kg) and at each density there were five different ratios of Ca : nPP (4, 2.75, 2.1, 1.5 and 1.14 : 1). Weekly performance data was collected and at the end of the experiment birds were individually weighed and the right leg removed for tibia ash analysis. Skeletal health was assessed using the latency to lie (LTL) at day 27. At low Ca and high nPP as well as high Ca and low nPP diets, birds had reduced feed intake, BW gain, poorer feed efficiency and lower tibia ash, resulting in a significant interaction between dietary Ca and nPP (P<0.05). LTL times were negatively influenced by diets having either a broad ratio (high Ca, low nPP) or too narrow a ratio (low Ca, high nPP) indicating that shorter LTL times may be influenced by the ratio of Ca : nPP rather than absolute concentrations of either mineral. The calculated intake arrays show that broilers more closely regulate Ca intake than nPP intake. Broilers are willing to over consume nPP to defend a Ca intake target more so than they are willing to over consume Ca to defend an nPP target. Overall dietary nPP was more influential on performance metrics, however, from the data it may appear that birds prioritise Ca intake over nPP and broadly ate to meet this requirement. As broilers are more willing to eat to a Ca intake target rather than an nPP intake target, this emphasises the importance of formulating diets to a accurately balanced density of Ca : nPP considering the biological importance of both minerals.
Stoffer, Philip W.; Messina, Paula
2002-01-01
This field trip is an introduction to the geology of the southeastern foothills of the Santa Cruz Mountains in southern Santa Clara County. Seven stops include four short hikes to access rock exposures and views of the foothills east of Loma Prieta Peak between Gilroy and San José. Field-trip destinations highlight the dominant rock types of the "Franciscan assemblage" including outcrops of serpentinite, basalt, limestone, ribbon chert, graywacke sandstone, and shale. General discussions include how the rocks formed, and how tectonism and stream erosion have changed the landscape through time. All field trip stops are on public land; most are near reservoir dams of the Santa Clara Valley Water District. In addition, stops include examination of an Ohlone Indian heritage site and the New Almaden Mining Museum.
Effect of hydrogen on Ca and Mg acceptors in GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.W.; Pearton, S.J.; Zolper, J.C.
The influence of minority carrier injection on the reactivation of hydrogen passivated Mg in GaN at 175 C has been investigated in p-n junction diodes. The dissociation of the neutral MgH complexes is greatly enhanced in the presence of minority carrier and the reactivation process follows second order kinetics. Conventional annealing under zero-bias conditions does not produce Mg-H dissociation until temperatures {ge} 450 C. These results provide an explanation for the e-beam induced reactivation of Mg acceptors in hydrogenated GaN. Exposure to a hydrogen plasma at 250 C of p-type GaN (Ca) prepared by either Ca{sup +} or Ca{sup +}more » plus P{sup +} coimplantation leads to a reduction in sheet carrier density of approximately an order of magnitude (1.6 {times} 10{sup 12} cm{sup {minus}2} to 1.8 {times} 10{sup 11} cm{sup {minus}2}), and an accompanying increase in hole mobility (6 cm{sup 2}/Vs to 18 cm{sup 2}/Vs). The passivation process can be reversed by post-hydrogenation annealing at 400--500 C under a N{sub 2} ambient. This reactivation of the acceptors is characteristic of the formation of neutral (Ca-H) complexes in the GaN. The thermal stability of the passivation is similar to that of Mg-H complexes in material prepared in the same manner (implantation) with similar initial doping levels. Hydrogen passivation of acceptor dopants in GaN appears to be a ubiquitous phenomenon, as it is in other p-type semiconductors.« less
Citric Acid Enhanced Copper Removal by a Novel Multi-amines Decorated Resin
Ling, Chen; Liu, Fuqiang; Pei, Zhiguo; Zhang, Xiaopeng; Wei, Mengmeng; Zhang, Yanhong; Zheng, Lirong; Zhang, Jing; Li, Aimin; Xing, Baoshan
2015-01-01
Cu removal by a novel multi-amines decorated resin (PAMD) from wastewater in the absence or presence of citric acid (CA) was examined. Adsorption capacity of Cu onto PAMD markedly increased by 186% to 5.07 mmol/g in the presence of CA, up to 7 times of that onto four commercial resins under the same conditions. Preloaded and kinetic studies demonstrated adsorption of [Cu-CA] complex instead of CA site-bridging and variations of adsorbate species were qualitatively illustrated. The interaction configuration was further studied with ESI-MS, FTIR, XPS and XANES characterizations. The large enhancement of Cu adsorption in Cu-CA bi-solutes systems was attributed to mechanism change from single-site to dual-sites interaction in which cationic or neutral Cu species (Cu2+ and CuHL0) coordinated with neutral amine sites and anionic complex species (CuL− and Cu2L22−) directly interacted with protonated amine sites via electrostatic attraction, and the ratio of the two interactions was approximately 0.5 for the equimolar bi-solutes system. Moreover, commonly coexisting ions in wastewaters had no obvious effect on the superior performance of PAMD. Also, Cu and CA could be recovered completely with HCl. Therefore, PAMD has a great potential to efficiently remove heavy metal ions from wastewaters in the presence of organic acids. PMID:25962970
Ca2+-Induced Rigidity Change of the Myosin VIIa IQ Motif-Single α Helix Lever Arm Extension.
Li, Jianchao; Chen, Yiyun; Deng, Yisong; Unarta, Ilona Christy; Lu, Qing; Huang, Xuhui; Zhang, Mingjie
2017-04-04
Several unconventional myosins contain a highly charged single α helix (SAH) immediately following the calmodulin (CaM) binding IQ motifs, functioning to extend lever arms of these myosins. How such SAH is connected to the IQ motifs and whether the conformation of the IQ motifs-SAH segments are regulated by Ca 2+ fluctuations are not known. Here, we demonstrate by solving its crystal structure that the predicted SAH of myosin VIIa (Myo7a) forms a stable SAH. The structure of Myo7a IQ5-SAH segment in complex with apo-CaM reveals that the SAH sequence can extend the length of the Myo7a lever arm. Although Ca 2+ -CaM remains bound to IQ5-SAH, the Ca 2+ -induced CaM binding mode change softens the conformation of the IQ5-SAH junction, revealing a Ca 2+ -induced lever arm flexibility change for Myo7a. We further demonstrate that the last IQ motif of several other myosins also binds to both apo- and Ca 2+ -CaM, suggesting a common Ca 2+ -induced conformational regulation mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chelation in root canal therapy reconsidered.
Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas
2005-11-01
The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.
Moore, Diane E.; Lockner, David A.; Ponce, David A.
2010-01-01
Serpentinized ophiolitic rocks are juxtaposed against quartzofeldspathic rocks at depth across considerable portions of the Hayward and Calaveras Faults. The marked compositional contrast between these rock types may contribute to fault creep that has been observed along these faults. To investigate this possibility, we are conducting hydrothermal shearing experiments to look for changes in frictional properties resulting from the shear of ultramafic rock juxtaposed against quartzose rock units. In this paper we report the first results in this effort: shear of bare-rock surfaces of serpentinite and granite, and shear of antigorite-serpentinite gouge between forcing blocks of granitic rock. All experiments were conducted at 250°C. Serpentinite sheared against granite at 50 MPa pore-fluid pressure is weaker than either rock type separately, and the weakening is significantly more pronounced at lower shearing rates. In contrast, serpentinite gouge sheared dry between granite blocks is as strong as the bare granite surface. We propose that the weakening is the result of a solution-transfer process involving the dissolution of serpentine minerals at grain-to-grain contacts. Dissolution of serpentine is enhanced by modifications to pore-fluid chemistry caused by interaction of the fluid with the quartz-bearing rocks. The compositional differences between serpentinized ultramafic rocks of the Coast Range Ophiolite and quartzofeldspathic rock units such as those of the Franciscan Complex may provide the mechanism for aseismic slip (creep) in the shallow crust along the Hayward, Calaveras, and other creeping faults in central and northern California.
Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang
2013-01-01
Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks. Copyright © 2012 Elsevier Ltd. All rights reserved.
Early Paleozoic development of the Maine-Quebec boundary Mountains region
Gerbi, C.C.; Johnson, S.E.; Aleinikoff, J.N.; Bedard, J.H.; Dunning, G.R.; Fanning, C.M.
2006-01-01
Pre-Silurian bedrock units played key roles in the early Paleozoic history of the Maine-Quebec Appalachians. These units represent peri-Laurentian material whose collision with the craton deformed the Neoproteozoic passive margin and initiated the Appalachian mountain-building cycle. We present new field, petrological, geochronological, and geochemical data to support the following interpretations related to these units. (1) The Boil Mountain Complex and Jim Pond Formation do not represent part of a coherent ophiolite. (2) Gabbro and tonalite of the Boil Mountain Complex intruded the Chain Lakes massif at ca. 477 Ma. (3) The Skinner pluton, an arc-related granodiorite, intruded the Chain Lakes massif at ca. 472 Ma. (4) The Attean pluton, with a reconfirmed age of ca. 443 Ma, is unrelated to Early Ordovician orogenesis. (5) The most likely timing for the juxtaposition of the Jim Pond Formation and the Boil Mountain Complex was during regional Devonian deformation. These interpretations suggest that the Boundary Mountains were once part of a series of arcs extending at least from central New England through Newfoundland. ?? 2006 NRC Canada.
Baladi, S; Tsvetkov, P O; Petrova, T V; Takagi, T; Sakamoto, H; Lobachov, V M; Makarov, A A; Cox, J A
2001-04-01
Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44 degrees C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 microM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+) forms melt in the 111 degrees -123 degrees C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction.
Baladi, Sibyl; Tsvetkov, Philipp O.; Petrova, Tatiana V.; Takagi, Takashi; Sakamoto, Hiroshi; Lobachov, Vladimir M.; Makarov, Alexander A.; Cox, Jos A.
2001-01-01
Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44°C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 μM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+ forms melt in the 111°–123°C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction. PMID:11274468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aggarwal, Mayank; Kovalevsky, Andrey Y.; Velazquez, Hector
Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO 2 and HCO 3 –, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Å with an R cryst of ~16.0%. Presented in this article, along with onlymore » the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity ( K i) for both of the drugs against hCA II is similar (~10 n M). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. Furthermore, this study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.« less
PAA-PAMPS copolymers as an efficient tool to control CaCO3 scale formation.
Dietzsch, Michael; Barz, Matthias; Schüler, Timo; Klassen, Stefanie; Schreiber, Martin; Susewind, Moritz; Loges, Niklas; Lang, Michael; Hellmann, Nadja; Fritz, Monika; Fischer, Karl; Theato, Patrick; Kühnle, Angelika; Schmidt, Manfred; Zentel, Rudolf; Tremel, Wolfgang
2013-03-05
Scale formation, the deposition of certain minerals such as CaCO3, MgCO3, and CaSO4·2H2O in industrial facilities and household devices, leads to reduced efficiency or severe damage. Therefore, incrustation is a major problem in everyday life. In recent years, double hydrophilic block copolymers (DHBCs) have been the focus of interest in academia with regard to their antiscaling potential. In this work, we synthesized well-defined blocklike PAA-PAMPS copolymers consisting of acrylic acid (AA) and 2-acrylamido-2-methyl-propane sulfonate (AMPS) units in a one-step reaction by RAFT polymerization. The derived copolymers had dispersities of 1.3 and below. The copolymers have then been investigated in detail regarding their impact on the different stages of the crystallization process of CaCO3. Ca(2+) complexation, the first step of a precipitation process, and polyelectrolyte stability in aqueous solution have been investigated by potentiometric measurements, isothermal titration calorimetry (ITC), and dynamic light scattering (DLS). A weak Ca(2+) induced copolymer aggregation without concomitant precipitation was observed. Nucleation, early particle growth, and colloidal stability have been monitored in situ with DLS. The copolymers retard or even completely suppress nucleation, most probably by complexation of solution aggregates. In addition, they stabilize existing CaCO3 particles in the nanometer regime. In situ AFM was used as a tool to verify the coordination of the copolymer to the calcite (104) crystal surface and to estimate its potential as a growth inhibitor in a supersaturated CaCO3 environment. All investigated copolymers instantly stopped further crystal growth. The carboxylate richest copolymer as the most promising antiscaling candidate proved its enormous potential in scale inhibition as well in an industrial-filming test (Fresenius standard method).
Aggarwal, Mayank; Kovalevsky, Andrey Y.; Velazquez, Hector; ...
2016-07-22
Carbonic anhydrases (CAs; EC 4.2.1.1) catalyze the interconversion of CO 2 and HCO 3 –, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM) and methazolamide (MZM, a methyl derivative of AZM) are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II) has been determined to a resolution of 2.2 Å with an R cryst of ~16.0%. Presented in this article, along with onlymore » the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity ( K i) for both of the drugs against hCA II is similar (~10 n M). The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. Furthermore, this study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.« less
Controlling Emergent Ferromagnetism at Complex Oxide Interfaces
NASA Astrophysics Data System (ADS)
Grutter, Alexander
The emergence of complex magnetic ground states at ABO3 perovskite heterostructure interfaces is among the most promising routes towards highly tunable nanoscale materials for spintronic device applications. Despite recent progress, isolating and controlling the underlying mechanisms behind these emergent properties remains a highly challenging materials physics problems. In particular, generating and tuning ferromagnetism localized at the interface of two non-ferromagnetic materials is of fundamental and technological interest. An ideal model system in which to study such effects is the CaRuO3/CaMnO3 interface, where the constituent materials are paramagnetic and antiferromagnetic in the bulk, respectively. Due to small fractional charge transfer to the CaMnO3 (0.07 e-/Mn) from the CaRuO3, the interfacial Mn ions are in a canted antiferromagnetic state. The delicate balance between antiferromagnetic superexchange and ferromagnetic double exchange results in a magnetic ground state which is extremely sensitive to perturbations. We exploit this sensitivity to achieve control of the magnetic interface, tipping the balance between ferromagnetic and antiferromagnetic interactions through octahedral connectivity modification. Such connectivity effects are typically tightly confined to interfaces, but by targeting a purely interfacial emergent magnetic system, we achieve drastic alterations to the magnetic ground state. These results demonstrate the extreme sensitivity of the magnetic state to the magnitude of the charge transfer, suggesting the potential for direct electric field control. We achieve such electric field control through direct back gating of a CaRuO3/CaMnO3 bilayer. Thus, the CaRuO3/CaMnO3 system provides new insight into how charge transfer, interfacial symmetry, and electric fields may be used to control ferromagnetism at the atomic scale.
Ferreirós-Martínez, Raquel; Esteban-Gómez, David; Tóth, Éva; de Blas, Andrés; Platas-Iglesias, Carlos; Rodríguez-Blas, Teresa
2011-04-18
Herein we report a detailed investigation of the complexation properties of the macrocyclic decadentate receptor N,N'-Bis[(6-carboxy-2-pyridil)methyl]-4,13-diaza-18-crown-6 (H(2)bp18c6) toward different divalent metal ions [Zn(II), Cd(II), Pb(II), Sr(II), and Ca(II)] in aqueous solution. We have found that this ligand is especially suited for the complexation of large metal ions such as Sr(II) and Pb(II), which results in very high Pb(II)/Ca(II) and Pb(II)/Zn(II) selectivities (in fact, higher than those found for ligands widely used for the treatment of lead poisoning such as ethylenediaminetetraacetic acid (edta)), as well as in the highest Sr(II)/Ca(II) selectivity reported so far. These results have been rationalized on the basis of the structure of the complexes. X-ray crystal diffraction, (1)H and (13)C NMR spectroscopy, as well as theoretical calculations at the density functional theory (B3LYP) level have been performed. Our results indicate that for large metal ions such as Pb(II) and Sr(II) the most stable conformation is Δ(δλδ)(δλδ), while for Ca(II) our calculations predict the Δ(λδλ)(λδλ) form being the most stable one. The selectivity that bp18c6(2-) shows for Sr(II) over Ca(II) can be attributed to a better fit between the large Sr(II) ions and the relatively large crown fragment of the ligand. The X-ray crystal structure of the Pb(II) complex shows that the Δ(δλδ)(δλδ) conformation observed in solution is also maintained in the solid state. The Pb(II) ion is endocyclically coordinated, being directly bound to the 10 donor atoms of the ligand. The bond distances to the donor atoms of the pendant arms (2.55-2.60 Å) are substantially shorter than those between the metal ion and the donor atoms of the crown moiety (2.92-3.04 Å). This is a typical situation observed for the so-called hemidirected compounds, in which the Pb(II) lone pair is stereochemically active. The X-ray structures of the Zn(II) and Cd(II) complexes show that these metal ions are exocyclically coordinated by the ligand, which explains the high Pb(II)/Cd(II) and Pb(II)/Zn(II) selectivities. Our receptor bp18c6(2-) shows promise for application in chelation treatment of metal intoxication by Pb(II) and (90)Sr(II).
NASA Astrophysics Data System (ADS)
AlKhatib, Mahmoud; Eisenhauer, Anton
2017-07-01
In order to study Strontium (Sr) partitioning and isotope fractionation of Sr and Calcium (Ca) in calcite we performed precipitation (T) experiments decoupling temperature and precipitation rate (R∗). Calcite was precipitated at 12.5, 25.0 and 37.5 °C by diffusing NH3 and CO2 gases into aqueous solutions closely following the experimental setup of Lemarchand et al. (2004). The precipitation rate (R∗) for every sample was determined applying the initial rate method and from the specific surface area of almost all samples for each reaction. The order of reaction with respect to Ca2+ ions was determined to be one and independent of T. However, the order of reaction with respect to HCO3- changed from three to one as temperature increases from 12.5, 25 °C and 37.5 °C. Strontium incorporated into calcite (expressed as DSr = [Sr/Ca]calcite/[Sr/Ca]solution) was found to be R∗ and T dependent. As a function of increasing R∗ the Δ88/86Sr-values become more negative and as temperature increases the Δ88/86Sr values also increase at constant R∗. The DSr and Δ88/86Sr-values are correlated to a high degree and depend only on R∗ being independent of temperature, complexation and varying initial ratios. Latter observation may have important implications for the study of diagenesis, the paleo-sciences and the reconstruction of past environmental conditions. Calcium isotope fractionation (Δ44/40Ca) was also found to be R∗ and T dependent. For 12.5 and 25.0 °C we observe a general increase of the Δ44/40Ca values as a function of R∗ (Lemarchand et al. type behavior, Lemarchand et al. (2004)). Whereas at 37.5 °C a significant decreasing Δ44/40Ca is observed relative to increasing R∗ (Tang et al. type behavior, Tang et al. (2008)). In order to reconcile the discrepant observations we suggest that the temperature triggered change from a Ca2+-NH3-aquacomplex covalent controlled bonding to a Ca2+-H2O-aquacomplex van-der-Waals controlled bonding caused the change in sign of the R∗ - Δ44/40Ca slope due to the switch of an equilibrium type of isotope fractionation related to the covalent bonding during lower temperatures to a kinetic type of isotope fractionation at higher temperatures. This is supported by the observation that the Δ44/40Ca ratios tend to depend on the [Ca]:[DIC] ratio at 12.5 and 25 °C but is highly independent at 37.5 °C. Our observations imply the chemical fluid composition and temperature dependent complexation controls the amount and direction of Ca isotope fractionation in contrast to the Sr isotopes which do not show any change of its fractionation behavior as a function of complexation in the liquid phase.
Macabuag, Natsuko
2015-01-01
N-type voltage-gated calcium (CaV2.2) channels are expressed in neurons and targeted to the plasma membrane of presynaptic terminals, facilitating neurotransmitter release. Here, we find that the adaptor protein complex-1 (AP-1) mediates trafficking of CaV2.2 from the trans-Golgi network to the cell surface. Examination of splice variants of CaV2.2, containing either exon 37a (selectively expressed in nociceptors) or 37b in the proximal C terminus, reveal that canonical AP-1 binding motifs, YxxΦ and [DE]xxxL[LI], present only in exon 37a, enhance intracellular trafficking of exon 37a-containing CaV2.2 to the axons and plasma membrane of rat DRG neurons. Finally, we identify differential effects of dopamine-2 receptor (D2R) and its agonist-induced activation on trafficking of CaV2.2 isoforms. D2R slowed the endocytosis of CaV2.2 containing exon 37b, but not exon 37a, and activation by the agonist quinpirole reversed the effect of the D2R. Our work thus reveals key mechanisms involved in the trafficking of N-type calcium channels. SIGNIFICANCE STATEMENT CaV2.2 channels are important for neurotransmitter release, but how they are trafficked is still poorly understood. Here, we describe a novel mechanism for trafficking of CaV2.2 from the trans-Golgi network to the cell surface which is mediated by the adaptor protein AP-1. Alternative splicing of exon 37 produces CaV2.2-exon 37a, selectively expressed in nociceptors, or CaV2.2-exon 37b, which is the major splice isoform. Our study reveals that canonical AP-1 binding motifs (YxxΦ and [DE]xxxL[LI]), present in exon 37a, but not 37b, enhance intracellular trafficking of exon 37a-containing CaV2.2 to axons and plasma membrane of DRG neurons. Interaction of APs with CaV2.2 channels may also be key underlying mechanisms for differential effects of the dopamine D2 receptor on trafficking of CaV2.2 splice variants. PMID:26511252
Dual functions of a small regulatory subunit in the mitochondrial calcium uniporter complex.
Tsai, Ming-Feng; Phillips, Charles B; Ranaghan, Matthew; Tsai, Chen-Wei; Wu, Yujiao; Willliams, Carole; Miller, Christopher
2016-04-21
Mitochondrial Ca(2+) uptake, a process crucial for bioenergetics and Ca(2+) signaling, is catalyzed by the mitochondrial calcium uniporter. The uniporter is a multi-subunit Ca(2+)-activated Ca(2+) channel, with the Ca(2+) pore formed by the MCU protein and Ca(2+)-dependent activation mediated by MICU subunits. Recently, a mitochondrial inner membrane protein EMRE was identified as a uniporter subunit absolutely required for Ca(2+) permeation. However, the molecular mechanism and regulatory purpose of EMRE remain largely unexplored. Here, we determine the transmembrane orientation of EMRE, and show that its known MCU-activating function is mediated by the interaction of transmembrane helices from both proteins. We also reveal a second function of EMRE: to maintain tight MICU regulation of the MCU pore, a role that requires EMRE to bind MICU1 using its conserved C-terminal polyaspartate tail. This dual functionality of EMRE ensures that all transport-competent uniporters are tightly regulated, responding appropriately to a dynamic intracellular Ca(2+) landscape.
Kniss-James, Ariel S; Rivet, Catherine A; Chingozha, Loice; Lu, Hang; Kemp, Melissa L
2017-03-01
Adaptive immune cells, such as T cells, integrate information from their extracellular environment through complex signaling networks with exquisite sensitivity in order to direct decisions on proliferation, apoptosis, and cytokine production. These signaling networks are reliant on the interplay between finely tuned secondary messengers, such as Ca 2+ and H 2 O 2 . Frequency response analysis, originally developed in control engineering, is a tool used for discerning complex networks. This analytical technique has been shown to be useful for understanding biological systems and facilitates identification of the dominant behaviour of the system. We probed intracellular Ca 2+ dynamics in the frequency domain to investigate the complex relationship between two second messenger signaling molecules, H 2 O 2 and Ca 2+ , during T cell activation with single cell resolution. Single-cell analysis provides a unique platform for interrogating and monitoring cellular processes of interest. We utilized a previously developed microfluidic device to monitor individual T cells through time while applying a dynamic input to reveal a natural frequency of the system at approximately 2.78 mHz stimulation. Although our network was much larger with more unknown connections than previous applications, we are able to derive features from our data, observe forced oscillations associated with specific amplitudes and frequencies of stimuli, and arrive at conclusions about potential transfer function fits as well as the underlying population dynamics.
Sperry, Justin B.; Ryan, Zachary C.; Kumar, Rajiv; Gross, Michael L.
2012-01-01
Xeroderma pigmentosum (XP) is a genetic disease affecting 1 in 10,000-100,000 and predisposes people to early-age skin cancer, a disease that is increasing. Those with XP have decreased ability to repair UV-induced DNA damage, leading to increased susceptibility of cancerous non-melanomas and melanomas. A vital, heterotrimeric protein complex is linked to the nucleotide excision repair pathway for the damaged DNA. The complex consists of XPC protein, human centrin 2, and RAD23B. One of the members, human centrin 2, is a ubiquitous, acidic, Ca2+-binding protein belonging to the calmodulin superfamily. The XPC protein contains a sequence motif specific for binding to human centrin 2. We report here the Ca2+-binding properties of human centrin 2 and its interaction with the XPC peptide motif. We utilized a region-specific H/D exchange protocol to localize the interaction of the XPC peptide with the C-terminal domain of centrin, the binding of which is different than that of calmodulin complexes. The binding dynamics of human centrin 2 to the XPC peptide in the absence and presence of Ca2+ are revealed by the observation of EX1 H/D exchange regime, indicating that a locally unfolded population exists in solution and undergoes fast H/D exchange. PMID:23439742
Very early Archean crustal-accretion complexes preserved in the North Atlantic craton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutman, A.P.; Collerson, K.D.
1991-08-01
The North Atlantic craton contains very early Archean supracrustal rocks, orthogneisses, and massive ultramafic rocks. Most units of supracrustal rocks are dominated by mafic volcanic rocks, layered gabbros, and banded iron formations, bust some also contain abundant felsic volcanic-sedimentary rocks, quartzites, and marbles. Some quartzites contain detrital zircons derived from rocks identical in age to felsic volcanic-sedimentary rocks in these sequences (ca. 3800 Ma) and also from older (ca. 3850 Ma) sources. The presence of the ca. 3850 Ma detrital zircons suggests that the supracrustal units containing them were deposited on, or close to, ca. 3850 Ma sialic crust. Themore » massive ultramafic rocks have chemical affinities to upper mantle rocks. The voluminous suites of tonalitic gneisses are dominated by 3700-3730 Ma bodies that intrude the supracrustal sequences, but they also locally contain components with ages between 3820 and 3920 Ma. The diverse supracrustal units, upper mantle rocks, and {ge} 3820 Ma components in the gneisses were tectonically interleaved in very early Archean convergent plate boundaries, giving rise to accretion complexes. In the period 3700-3730 Ma, voluminous tonalitic magmas produced by partial melting of predominantly mafic rocks in the base of the accretion complexes were emplaced at higher levels, forming juvenile continental crust and leaving behind a refractory lower crustal to upper mantle substrate.« less
Cinco, Roehl M.; Robblee, John H.; Messinger, Johannes; Fernandez, Carmen; Holman, Karen L. McFarlane; Sauer, Kenneth; Yachandra, Vittal K.
2014-01-01
The oxygen-evolving complex of photosystem II (PS II) in green plants and algae contains a cluster of four Mn atoms in the active site, which catalyzes the photoinduced oxidation of water to dioxygen. Along with Mn, calcium and chloride ions are necessary cofactors for proper functioning of the complex. The current study using polarized Sr EXAFS on oriented Sr-reactivated samples shows that Fourier peak II, which fits best to Mn at 3.5 Å rather than lighter atoms (C, N, O, or Cl), is dichroic, with a larger magnitude at 10° (angle between the PS II membrane normal and the X-ray electric field vector) and a smaller magnitude at 80°. Analysis of the dichroism of the Sr EXAFS yields a lower and upper limit of 0° and 23° for the average angle between the Sr–Mn vectors and the membrane normal and an isotropic coordination number (number of Mn neighbors to Sr) of 1 or 2 for these layered PS II samples. The results confirm the contention that Ca (Sr) is proximal to the Mn cluster and lead to refined working models of the heteronuclear Mn4Ca cluster of the oxygen-evolving complex in PS II. PMID:15491134