Sample records for fraser valley system

  1. Providing an Authentic Research Experience for University of the Fraser Valley Undergraduate Students by Investigating and Documenting Seasonal and Longterm Changes in Fraser Valley Stream Water Chemistry.

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Groeneweg, A.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Undergraduate students in the Geography and Biology Departments at the University of the Fraser Valley (UFV) have been provided the opportunity to participate in the time series sampling of the Fraser River at Fort Langley and Fraser Valley tributaries as part of the Global Rivers Observatory (GRO, www.globalrivers.org) which is coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. Student research has focussed on Clayburn, Willband and Stoney Creeks that flow from Sumas Mountain northwards to the Fraser River. These watercourses are increasingly being impacted by anthropogenic activity including residential developments, industrial activity, and agricultural landuse. Students are instructed in field sampling protocols and the collection of water chemistry data and the care and maintenance of the field equipment. Students develop their own research projects and work in support of each other as teams in the field to collect the data and water samples. Students present their findings as research posters at local academic conferences and at UFV's Student Research Day. Through their involvement in our field research our students have become more aware of the state of our local streams, the methods used to monitor water chemistry and how water chemistry varies seasonally.

  2. Preliminary Results from VOC measurements in the Lower Fraser Valley in July/Aug 2012

    NASA Astrophysics Data System (ADS)

    Schiller, C. L.; Jones, K.; Vingarzan, R.; Leaitch, R.; Macdonald, A.; Osthoff, H. D.; Reid, K.

    2012-12-01

    In July/August 2012, a pilot study looking at the effect of ClNO2 production on the ozone concentrations in the lower Fraser valley near Abbotsford, BC was conducted. The lower Fraser valley in British Columbia Canada has some of the highest ozone concentrations and visibility issues in Canada. Abbotsford is located approximately 80 kms east of Vancouver, BC and approximately 30 kms from the ocean. The site was located in a largely agricultural area with fruit farms (raspberries and blueberries) and poultry barns predominating. During the study biogenic and anthropogenic VOCs were measured in situ using a GCMS/FID with hourly samples. Particle composition was measured using an ACSM and size distribution using an SMPS. Preliminary results from the study will be discussed.

  3. The Adoption and Rejection of Innovations by Strawberry Growers in the Lower Fraser Valley.

    ERIC Educational Resources Information Center

    Alleyne, E. Patrick; Verner, Coolie

    The study investigated the adoption behavior of 100 strawberry growers (including 32 Mennonites and 23 Japanese) in the lower Fraser Valley of British Columbia. Adoption of six selected practices was examined in relation to socioeconomic characteristics and ethnicity. Findings included the following: (1) ethnic groups differed significantly on…

  4. THE ADOPTION OR REJECTION OF INNOVATIONS BY DAIRY FARM OPERATORS IN THE LOWER FRASER VALLEY.

    ERIC Educational Resources Information Center

    GUBBELS, PETER M.; VERNER, COOLIE

    SOCIOECONOMIC CHARACTERISTICS, RESPONSES TO INNOVATIONS, AND USE OF INFORMATION SOURCES WERE CORRELATED FOR 100 RANDOMLY CHOSEN DAIRY FARMERS IN THE LOWER FRASER VALLEY OF BRITISH COLUMBIA. TEN DAIRYING INNOVATIONS WERE DIVIDED INTO TWO GROUPS ACCORDING TO COMPLEXITY. ADOPTION SCORES WERE USED TO CLASSIFY THE FARMERS AND STAGES OF ADOPTION…

  5. Presence of Microplastics in the Fraser River, British Columbia

    NASA Astrophysics Data System (ADS)

    Bourdages, M.; Ehrenbrink, B. P. E.; Marsh, S. J.; Gillies, S. L.; Paine, J. K.; Bogaerts, P.; Strangway, A.; Robertson, K.; Groeneweg, A.

    2017-12-01

    Microplastics are a source of anthropogenic contamination in watercourses and water bodies around the world. The extent of the implications associated with microplastics, however, is not fully known. These plastic particles, less than 5mm in diameter by definition, threaten a wide range of aquatic and land-based organisms, as the ingestion of microplastics by aquatic organisms can form blockages in digestive tracts, and can provide pathways for other contaminants to enter their bodies (Ziajahromi et al. 2017). Land-based organisms can then ingest the contaminated organisms, potentially impacting their health. Microplastics can be introduced into the aquatic environment through aquatic or land-based sources (Ziajahromi et al. 2017). A river system that is at a particular threat from microplastic contamination is the Fraser River. The Fraser River is a major salmon bearing river system in British Columbia and drains an area of over 220,000 km2. Potential sources of microplastic contamination include pulp and lumber mills near Prince George and Quesnel, the agriculturally dominated Fraser Valley, and the highly urbanized and industrialized stretch of the Lower Mainland east of Vancouver. Preliminary tests in the summer of 2016 on 200 liters of Fraser River water, processed through a 45 µm sieve, revealed the presence of microplastics, including the detection of blue dye polyethylene by Raman spectroscopy. Since then additional water samples were taken monthly at the Fraser River Observatory in Fort Langley from October 2016 to March 2017, and then bi-weekly commencing in April 2017. These samples are to be analysed at Woods Hole Oceanographic Institution (WHOI) in the Fall of 2017. This ongoing project aims at identifying the presence, amount, and type of microplastics being transported by the Fraser River to the coastal ocean. Ziajahromi, S.,et al., 2017. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater

  6. Ozone personal exposures and health effects for selected groups residing in the Fraser Valley

    NASA Astrophysics Data System (ADS)

    Brauer, Michael; Brook, Jeffrey R.

    Due to concern regarding poor ambient air quality in the Fraser Valley, a series of exposure and health effects assessments were performed to evaluate the impact of summer photochemical air pollution. In 1992 and 1993, three groups of individuals were selected for personal monitoring of ozone exposure, based on prior expectations of their activity patterns. The first group spent a majority of the work day indoors or commuting, the second group spent more time outdoors and the third group spent the entire personal monitoring period outdoors. Time-activity data were collected for the first two groups and differences in personal ozone exposures were found to be associated with the fraction of time a person spent outdoors. Similarly, differences among groups in the mean ozone exposure were associated with time spent outdoors. These results and other exposure information were used to design a study of the health impacts of summer ambient air pollution that was conducted during the time period of the Pacific'93 field campaign. Aerosol acidity levels in the Fraser Valley were observed to be very low in 1992 so the health study focused on the effects of ozone exposure. The subjects were adult farm workers (26 male, 32 female; mean age 44.4, range 10-69) who spent the entire working day outdoors (a subset of group 3 above). Lung function measurements were made twice daily on each subject, once before and once after their work shift, from 23 June-26 August 1993. Ambient O 3 concentrations were measured continuously at several nearby locations. In a regression model including individual lung function level, date, temperature and daily maximum O 3, a statistically significant ( p < 0.001) negative association was observed between ozone and lung function. This association between ozone and reduced lung function was still apparent the following day, suggesting a persistent ozone effect. These results indicate that exposure to ambient O 3 concentrations below either the U

  7. Measurement of biogenic hydrocarbon emissions from vegetation in the Lower Fraser Valley, British Columbia

    NASA Astrophysics Data System (ADS)

    Drewitt, G. B.; Curren, K.; Steyn, D. G.; Gillespie, T. J.; Niki, H.

    Biogenic volatile organic compounds (VOCs) participate in many chemical reactions in the atmosphere and in some cases, adversely affect air quality through increased production of photochemical ozone near urban sources of nitrogen oxides. In order to implement an effective control strategy, the relative role of these biogenic hydrocarbon emissions in producing ground-level ozone must be known. During the summers of 1995 and 1996, a field study was undertaken to determine fluxes of biogenic VOCs from both natural and agricultural surfaces in the Lower Fraser Valley located in southwestern British Columbia. Emissions from agricultural surfaces were measured using a flux gradient approach while emissions from the dominant tree species in the region were measured with a branch enclosure system. Results show very little biogenic VOC production from many agricultural crops such as pasture, Potatoes or Blueberries. Cranberries showed very high emissions during the summer of 1994 but failed to show similar results during the summer of 1995. Emissions of isoprene and monoterpenes from native tree species such as Western Red Cedar, Douglas Fir and Coastal Hemlock were quite low. Cottonwood trees on the other hand had fairly low emissions of monoterpenes but extremely high emissions of isoprene. Measurements provided here will be useful for improving our database of hydrocarbon emissions rates from vegetation for future emission inventories and model testing.

  8. Geologic map of the Fraser 7.5-minute quadrangle, Grand County, Colorado

    USGS Publications Warehouse

    Shroba, Ralph R.; Bryant, Bruce; Kellogg, Karl S.; Theobald, Paul K.; Brandt, Theodore R.

    2010-01-01

    The geologic map of the Fraser quadrangle, Grand County, Colo., portrays the geology along the western boundary of the Front Range and the eastern part of the Fraser basin near the towns of Fraser and Winter Park. The oldest rocks in the quadrangle include gneiss, schist, and plutonic rocks of Paleoproterozoic age that are intruded by younger plutonic rocks of Mesoproterozoic age. These basement rocks are exposed along the southern, eastern, and northern margins of the quadrangle. Fluvial claystone, mudstone, and sandstone of the Upper Jurassic Morrison Formation, and fluvial sandstone and conglomeratic sandstone of the Lower Cretaceous Dakota Group, overlie Proterozoic rocks in a small area near the southwest corner of the quadrangle. Oligocene rhyolite tuff is preserved in deep paleovalleys cut into Proterozoic rocks near the southeast corner of the quadrangle. Generally, weakly consolidated siltstone and minor unconsolidated sediments of the upper Oligocene to upper Miocene Troublesome Formation are preserved in the post-Laramide Fraser basin. Massive bedding and abundant silt suggest that loess or loess-rich alluvium is a major component of the siltstone in the Troublesome Formation. A small unnamed fault about one kilometer northeast of the town of Winter Park has the youngest known displacement in the quadrangle, displacing beds of the Troublesome Formation. Surficial deposits of Pleistocene and Holocene age are widespread in the Fraser quadrangle, particularly in major valleys and on slopes underlain by the Troublesome Formation. Deposits include glacial outwash and alluvium of non-glacial origin; mass-movement deposits transported by creep, debris flow, landsliding, and rockfall; pediment deposits; tills deposited during the Pinedale and Bull Lake glaciations; and sparse diamictons that may be pre-Bull Lake till or debris-flow deposits. Some of the oldest surficial deposits may be as old as Pliocene.

  9. Effects of agricultural runoff on native amphibians in the Lower Fraser River Valley, British Columbia, Canada.

    PubMed

    de, SollaShaneR; Pettit, Karen E; Bishop, Christine A; Cheng, Kimberly M; Elliott, John E

    2002-02-01

    Hatching success, deformity rates, and survivorship of northern red-legged frogs (Rana aurora) and northwestern salamanders (Ambystoma gracile) were assessed at three agricultural and three reference sites in the Sumas Prairie, British Columbia, Canada. In 1997 and 1998, eggs of both species and eggs of R. aurora, respectively, were placed in Nytex mesh cages (Irwindale, CA, USA) in roadside ditches at each site. Concurrently in 1997, eggs of R. aurora were reared in the laboratory but were exposed to water samples from each of the study sites. Hatching success was significantly lower at all agricultural sites compared to the reference sites for both species. However, no differences were observed in hatching success among sites for eggs of R. aurora reared in the laboratory. Water chemistry differed among all sites, but the largest differences were between reference and agricultural sites. Ammonia (maximum of 1.27 mg/L), total phosphate (maximum of 8.14 mg/L), and biological oxygen demand (maximum of 79.00 mg/L) were high at some of the agricultural sites during the development period. Results suggest that agricultural runoff may contribute to lower reproductive success and ultimately to reduced population viability of amphibian populations in the Lower Fraser Valley (BC, Canada).

  10. Simon Fraser University's New Interactive Learning System to Teach French as a Second Language.

    ERIC Educational Resources Information Center

    Kirchner, Glenn

    1988-01-01

    Provides an overview of the design, production, and preliminary testing of a microcomputer-controlled interactive learning workstation developed at Simon Fraser University to teach French as a Second Language. Criteria and guidelines are discussed; the authoring system is explained; and field testing with grades four through seven is described.…

  11. 77 FR 60631 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ...-XC222 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  12. 75 FR 78929 - Fraser River Sockeye Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-17

    ...-XZ20 Fraser River Sockeye Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries Service...; inseason orders; request for comments. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate salmon fisheries in U.S. waters. The orders were issued by the Fraser River Panel (Panel) of the...

  13. Flora of the Fraser Experimental Forest, Colorado

    Treesearch

    Steve J. Popovich; Wayne D. Shepperd; Donald W. Reichert; Michael A. Cone

    1993-01-01

    This report lists 441 vascular plant taxa in 228 genera and 63 families encountered on the 9,300-ha Fraser Experimental Forest in central Colorado. Synonyms appearing in previous publications and other works pertaining to the Fraser Experimental Forest, as well as appropriate Colorado floras and less-technical field guides, are included. Plant communities and habitats...

  14. Development of visibility forecasting modeling framework for the Lower Fraser Valley of British Columbia using Canada's Regional Air Quality Deterministic Prediction System.

    PubMed

    So, Rita; Teakles, Andrew; Baik, Jonathan; Vingarzan, Roxanne; Jones, Keith

    2018-05-01

    Visibility degradation, one of the most noticeable indicators of poor air quality, can occur despite relatively low levels of particulate matter when the risk to human health is low. The availability of timely and reliable visibility forecasts can provide a more comprehensive understanding of the anticipated air quality conditions to better inform local jurisdictions and the public. This paper describes the development of a visibility forecasting modeling framework, which leverages the existing air quality and meteorological forecasts from Canada's operational Regional Air Quality Deterministic Prediction System (RAQDPS) for the Lower Fraser Valley of British Columbia. A baseline model (GM-IMPROVE) was constructed using the revised IMPROVE algorithm based on unprocessed forecasts from the RAQDPS. Three additional prototypes (UMOS-HYB, GM-MLR, GM-RF) were also developed and assessed for forecast performance of up to 48 hr lead time during various air quality and meteorological conditions. Forecast performance was assessed by examining their ability to provide both numerical and categorical forecasts in the form of 1-hr total extinction and Visual Air Quality Ratings (VAQR), respectively. While GM-IMPROVE generally overestimated extinction more than twofold, it had skill in forecasting the relative species contribution to visibility impairment, including ammonium sulfate and ammonium nitrate. Both statistical prototypes, GM-MLR and GM-RF, performed well in forecasting 1-hr extinction during daylight hours, with correlation coefficients (R) ranging from 0.59 to 0.77. UMOS-HYB, a prototype based on postprocessed air quality forecasts without additional statistical modeling, provided reasonable forecasts during most daylight hours. In terms of categorical forecasts, the best prototype was approximately 75 to 87% correct, when forecasting for a condensed three-category VAQR. A case study, focusing on a poor visual air quality yet low Air Quality Health Index episode

  15. Schooling and Social Justice through the Lenses of Nancy Fraser

    ERIC Educational Resources Information Center

    Keddie, Amanda

    2012-01-01

    This review essay draws on Nancy Fraser's work as featured in "Adding insult to injury: Nancy Fraser debates her critics" to explore issues of schooling and social justice. The review focuses on the applicability and usefulness of Fraser's three-dimensional model for understanding matters of justice in education. It begins with an overview of the…

  16. Fused pulmonary lobes is a rat model of human Fraser syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyozumi, Daiji; Nakano, Itsuko; Takahashi, Ken L.

    Highlights: {yields} Fused pulmonary lobes (fpl) mutant rats exhibit similar phenotypes to Fraser syndrome. {yields} The fpl gene harbors a nonsense mutation in Fraser syndrome-associated gene Frem2. {yields} Fpl mutant is defined as a first model of human Fraser syndrome in rats. -- Abstract: Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigatedmore » whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.« less

  17. 76 FR 70062 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ...-XA803 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  18. 78 FR 69002 - Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ...-XC965 Fraser River Sockeye and Pink Salmon Fisheries; Inseason Orders AGENCY: National Marine Fisheries...; inseason orders. SUMMARY: NMFS publishes Fraser River salmon inseason orders to regulate treaty and non-treaty (all citizen) commercial salmon fisheries in U.S. waters. The orders were issued by the Fraser...

  19. A nitrogen inventory for the Nooksack-Fraser Transboundary Watershed

    EPA Science Inventory

    The Nooksack-Fraser transboundary area is home to communities with a strong base in farming, fisheries and outdoor recreation. A goal of the Nooksack-Fraser Transboundary Nitrogen (NFT-N) project is to determine the sources and fates of N in the watershed using data on energy us...

  20. The Fraser illusion: complex figures.

    PubMed

    Stuart, G W; Day, R H

    1991-05-01

    The cause of the Fraser illusion, which occurs when a line made up of tilted segments itself appears tilted, is examined further. In this series of experiments, we used figures that resembled the original Fraser illusion; they were more complex than those reported on in our previous paper (Stuart & Day, 1988). The figures were used to explore two theories of the Fraser illusion further: that it is the result of interactions between orientation selective units, and that it is a consequence of the local, distributed processing of orientation. The presence of background elements like those used in the original illusion led to an increase in the strength of the illusion, but the shape of these elements had no differential effect on illusion strength. There was a differential effect of the background on the assimilative and contrast illusions, owing respectively to small and large tilts of the inducing elements. The illusion was markedly reduced at small visual angles when the background was absent, but it was only slightly affected when the background was present. All these findings are difficult to explain in terms of interactions between single units, either at the same or at different scales in the image. The effects of luminance contrast and isoluminance on the illusion were not consistent with either theory, but they indicated that researchers need to consider the role of figure-ground organization in this illusion.

  1. Impact of the Fraser River Geometry on Tides and the River Plumes in a Model of the Fraser River Plume

    NASA Astrophysics Data System (ADS)

    Liu, J.; Allen, S. E.; Soontiens, N. K.

    2016-02-01

    Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.

  2. Fraser, Colorado

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This sequence of three images in northern Colorado was taken by NASA's Airborne Synthetic Aperture Radar (AirSar) for the joint NASA-National Oceanic and Atmospheric Administration Cold Land Processes Experiment. The images were produced from data acquired on February 19, 21 and 23, 2002 (top to bottom), and demonstrate the effects of snow on the radar backscatter at different frequencies. The images are centered at 40 degrees north latitude and 106 degrees west longitude, 12 kilometers (7.5 miles) west of the town of Fraser. The colors red, green and blue indicate the relative total power of the radar backscatter at P-, L-, and C-bands, respectively.

    The top image was acquired before snowfall; the middle image was acquired the morning after the snow. When the snow melted, the most prominent changes were visible and can be seen in the bottom image. In this image, melting snow allows less of the radar signal to backscatter and some features appear darker.

    The Cold Land Processes Experiment is a multi-year experiment to study how snow processes work and how snow-covered areas affect weather and climate. Fraser, Colo., is one of three study areas in northern Colorado and southern Wyoming providing ideal natural laboratories for snow research.

    AirSar flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. Built, operated and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., AirSar is part of NASA's Earth Science Enterprise program. JPL is a division of the California Institute of Technology in Pasadena.

  3. Fraser fir stand structure in the Black Mountains of North Carolina

    Treesearch

    Rachael H. McManamay; Lynn M. Resle; James B. Campbell

    2010-01-01

    Over the past several decades, naturally occurring populations of Fraser fir (Abies fraseri [Pursh.] Poir) have experienced devastating mortality rates due to attack by the exotic insect, balsam woolly adelgid (BWA) (Adelges piceae Ratz.). The decline in Fraser fir is particularly concerning because its natural geographic...

  4. The Fraser Experimental Forest, Colorado

    Treesearch

    Robert R. Alexander; Ross K. Watkins

    1977-01-01

    This report provides a general overview of work done on the Fraser Experimental Forest. It replaces Station Paper No.8, published in 1952 and revised by L. D. Love in 1960. Included are descriptions of physical features and resource values, and highlights of past and current research programs.

  5. High density ozone monitoring using gas sensitive semi-conductor sensors in the Lower Fraser Valley, British Columbia.

    PubMed

    Bart, Mark; Williams, David E; Ainslie, Bruce; McKendry, Ian; Salmond, Jennifer; Grange, Stuart K; Alavi-Shoshtari, Maryam; Steyn, Douw; Henshaw, Geoff S

    2014-04-01

    A cost-efficient technology for accurate surface ozone monitoring using gas-sensitive semiconducting oxide (GSS) technology, solar power, and automated cell-phone communications was deployed and validated in a 50 sensor test-bed in the Lower Fraser Valley of British Columbia, over 3 months from May-September 2012. Before field deployment, the entire set of instruments was colocated with reference instruments for at least 48 h, comparing hourly averaged data. The standard error of estimate over a typical range 0-50 ppb for the set was 3 ± 2 ppb. Long-term accuracy was assessed over several months by colocation of a subset of ten instruments each at a different reference site. The differences (GSS-reference) of hourly average ozone concentration were normally distributed with mean -1 ppb and standard deviation 6 ppb (6000 measurement pairs). Instrument failures in the field were detected using network correlations and consistency checks on the raw sensor resistance data. Comparisons with modeled spatial O3 fields demonstrate the enhanced monitoring capability of a network that was a hybrid of low-cost and reference instruments, in which GSS sensors are used both to increase station density within a network as well as to extend monitoring into remote areas. This ambitious deployment exposed a number of challenges and lessons, including the logistical effort required to deploy and maintain sites over a summer period, and deficiencies in cell phone communications and battery life. Instrument failures at remote sites suggested that redundancy should be built into the network (especially at critical sites) as well as the possible addition of a "sleep-mode" for GSS monitors. At the network design phase, a more objective approach to optimize interstation distances, and the "information" content of the network is recommended. This study has demonstrated the utility and affordability of the GSS technology for a variety of applications, and the effectiveness of this

  6. Paleomagnetism of the 1210 Ma Gnowangerup-Fraser dyke swarm, Western Australia

    NASA Astrophysics Data System (ADS)

    Pisarevsky, S. A.; Li, Z. X.; Wingate, M. T. D.; Tohver, E.

    2012-04-01

    The Gnowangerup-Fraser mafic dyke swarm is part of the Marnda Moorn LIP and subparallel to the southern and southeastern margins of the Yilgarn Craton. Some dykes become progressively recrystallized towards the craton margin and others are strongly deformed within the orogen, implying that at least some dykes were emplaced prior to the youngest deformation in the Albany-Fraser Orogen. Five dykes have previously yielded U-Pb ages between 1203 and 1218 Ma, and the primary nature of the magnetic directions in a 1212 Ma Fraser dyke is supported by a positive baked-contact test. We collected paleomagnetism samples from 19 dykes, along the Phillips and Fitzgerald Rivers, and near Ravensthorpe. AF demagnetisation revealed a stable bipolar remanence in 13 dykes. The mean paleomagnetic pole is almost identical to the VGP of the 1212 Ma Fraser dyke. The combined robust paleopole places the West Australian Craton in a near-polar position at 1210 Ma. Comparison with coeval Laurentian paleopoles indicates that Laurentia and Australia were widely separated at that time.

  7. The Fraser Gyre: A cyclonic eddy off the coast of eastern Australia

    NASA Astrophysics Data System (ADS)

    Azis Ismail, Mochamad Furqon; Ribbe, Joachim; Karstensen, Johannes; Lemckert, Charles; Lee, Serena; Gustafson, Johann

    2017-06-01

    This paper examines the on-shelf circulation of the eastern Australian continental shelf for a region off southeast Queensland. We identify a characteristic seasonally reoccurring wind-driven cyclonic flow. It influences the cross-shelf exchange with the East Australian Current (EAC), which is the western boundary current of the South Pacific Ocean. We refer to this cyclonic circulation as the Fraser Gyre. It is located south of Fraser Island between about 25 °S and 27 °S. The region is adjacent to the intensification zone of the EAC where the current accelerates and establishes a swift, albeit seasonally variable southward boundary flow. Through the analysis of several data sets including remotely sensed sea surface temperature and sea surface height anomaly, satellite tracked surface drifters, ocean and atmospheric reanalysis data as well as geostrophic currents from altimetry, we find that the on-shelf Fraser Gyre develops during the southern hemisphere autumn and winter months. The gyre is associated with a longshore near-coast northward flow. Maximum northward on-shelf depth averaged velocities are estimated with about 0.15-0.26 ms-1. The flow turns eastward just to the south of Fraser Island and joins the persistent southward EAC flow along the shelf break. The annual mean net cross-shelf outward and inward flow associated with the gyre is about -1.17 ± 0.23 Sv in the north and 0.23 ± 0.13 Sv (1 Sv = 106 m3s-1) in the south. Mean seasonal water renewal time scales of the continental shelf are longest during austral winter with an average of about 3.3 days due to the Fraser Gyre retaining water over the shelf, however, monthly estimates range from 2 to 8 days with the longer timescale during the austral autumn and winter. The southerly wind during austral autumn and winter is identified as controlling the on shelf circulation and is the principal driver of the seasonally appearing Fraser Gyre. The conceptual model of the Fraser Gyre is consistent with

  8. Fish vs. power: Remaking salmon, science and society on the Fraser River, 1900--1960

    NASA Astrophysics Data System (ADS)

    Evenden, Matthew Dominic

    Overlapping resource demands made the Fraser River a contested site of development politics in twentieth century British Columbia. Since the turn of the century, power interests surveyed the river's flow, sited dams and promoted development schemes. Fisheries interests, on the other hand, sought to maintain the river as salmon spawning habitat. They questioned the necessity of dams, supported fisheries research and rehabilitation and organized anti-development coalitions. Before the mid-1950s a number of dam projects proceeded on Fraser tributaries and major landslides at Hells Gate modeled the dangers of main stem development. Because of the concerted political lobbying of fisheries groups, the skeptical appraisal of fisheries scientists to development proposals and the legal and political authority of the federal Department of Fisheries and the International Pacific Salmon Fisheries Commission, major dam projects were defeated on the Fraser in the late 1950s. Delayed development on the Fraser helped to spur hydroelectric projects on other rivers in the province; the fish-power problem on the Fraser altered the province's spatial economy of power. Once development began on the Columbia and Peace Rivers, the Fraser was protected by implication. The study combines approaches from environmental history, the history of science and political economy to demonstrate the intersections and interactions between nature, knowledge and society. Research was conducted at eleven archives in Canada and the United States in the papers of organizations, corporations, government departments, politicians, scientists and individuals.

  9. Evaluating the Fraser Health Balanced Scorecard--a formative evaluation.

    PubMed

    Barnardo, Catherine; Jivanni, Amin

    2009-01-01

    Fraser Health (FH), a large, Canadian, integrated health care network, adopted the Balanced Scorecard (BSC) approach to monitor organizational performance in 2006. This paper reports on the results of a formative evaluation, conducted in April, 2008, to assess the usefulness of the BSC as a performance-reporting system and a performance management tool. Results indicated that the BSC has proven to be useful for reporting performance but is not currently used for performance management in a substantial way.

  10. Stability of nuclear DNA content among divergent and isolated populations of Fraser fir

    Treesearch

    L.D. Auckland; J.S. Johnston; H.J. Price; F.E. Bridgwater

    2001-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic species consisting of six major disjunct populations in the Appalachian Mountains, U.S.A. Nuclear DNA content was measured with laser flow cytometry to determine if genome size differences could be detected among the disjunct populations of Fraser fir and its close relatives, balsam fir

  11. Water-quality characteristics and ground water quantity of the Fraser River Watershed, Grand County, Colorado, 1998-2001

    USGS Publications Warehouse

    Bauch, Nancy J.; Bails, Jeffrey B.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the Grand County Board of County Commissioners, conducted a 4-year study to assess ground- and surface-water-quality conditions and ground-water quantity in the 302-square-mile Fraser River watershed in north-central Colorado. The Fraser River flows north about 28 miles from the headwaters near the Continental Divide, through the towns of Winter Park, Fraser, Tabernash, and Granby, and is one of the major tributaries to the Upper Colorado River. Increasing urban development, as well as the seasonal influx of tourists, is placing more demands on the water resources in the Fraser River watershed. A ground-water sampling network of 11 wells was established to represent different aquifer systems (alluvial, Troublesome Formation, Precambrian granite), land uses (urban, nonurban), and areas with or without individual septic disposal system use. The well network was sampled for ground-water quality on a semiannual basis from August 1998 through September 2001. The sampling included field properties and the collection of water samples for analysis of major ions, trace elements, nutrients, dissolved organic carbon, bacteria, methylene blue active substances, and radon-222. One surface-water site, on the Fraser River just downstream from the town of Tabernash, Colorado, was sampled bimonthly from August 1998 through September 2001 to assess the cumulative effects of natural and human processes on water quality in the upper part of the Fraser River watershed. Surface-water-quality sampling included field properties and the collection of water-quality samples for analysis of major ions, trace elements, nutrients, organic carbon, and bacteria. Ground water was a calcium-bicarbonate type water and is suitable as a drinking-water, domestic, municipal, industrial, and irrigation source. In general, no widespread ground-water-quality problems were indicated. All pH values and concentrations of dissolved solids, chloride, fluoride

  12. Secure Wireless Networking at Simon Fraser University.

    ERIC Educational Resources Information Center

    Johnson, Worth

    2003-01-01

    Describes the wireless local area network (WLAN) at Simon Fraser University, British Columbia, Canada. Originally conceived to address computing capacity and reduce university computer space demands, the WLAN has provided a seamless computing environment for students and solved a number of other campus problems as well. (SLD)

  13. Soil Survey: Fraser Alpine Area, Colorado

    Treesearch

    J. L. Retzer

    1962-01-01

    The Fraser Alpine Area is a rough, mountainous area that lies approximately 50 miles west of Denver, Colo., and covers approximately 134 square miles. About seven-eighths of it is above timberline, and all is within the boundaries of Arapaho National Forest, U.S. Forest Service. The land in the Area is not suitable for cultivation and has never been farmed.

  14. A century of hydrological variability and trends in the Fraser River Basin

    NASA Astrophysics Data System (ADS)

    Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.

    2012-06-01

    This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in

  15. Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia

    NASA Astrophysics Data System (ADS)

    Osthoff, Hans D.; Odame-Ankrah, Charles A.; Taha, Youssef M.; Tokarek, Travis W.; Schiller, Corinne L.; Haga, Donna; Jones, Keith; Vingarzan, Roxanne

    2018-05-01

    The nocturnal nitrogen oxides, which include the nitrate radical (NO3), dinitrogen pentoxide (N2O5), and its uptake product on chloride containing aerosol, nitryl chloride (ClNO2), can have profound impacts on the lifetime of NOx ( = NO + NO2), radical budgets, and next-day photochemical ozone (O3) production, yet their abundances and chemistry are only sparsely constrained by ambient air measurements. Here, we present a measurement data set collected at a routine monitoring site near the Abbotsford International Airport (YXX) located approximately 30 km from the Pacific Ocean in the Lower Fraser Valley (LFV) on the west coast of British Columbia. Measurements were made from 20 July to 4 August 2012 and included mixing ratios of ClNO2, N2O5, NO, NO2, total odd nitrogen (NOy), O3, photolysis frequencies, and size distribution and composition of non-refractory submicron aerosol (PM1). At night, O3 was rapidly and often completely removed by dry deposition and by titration with NO of anthropogenic origin and unsaturated biogenic hydrocarbons in a shallow nocturnal inversion surface layer. The low nocturnal O3 mixing ratios and presence of strong chemical sinks for NO3 limited the extent of nocturnal nitrogen oxide chemistry at ground level. Consequently, mixing ratios of N2O5 and ClNO2 were low ( < 30 and < 100 parts-per-trillion by volume (pptv) and median nocturnal peak values of 7.8 and 7.9 pptv, respectively). Mixing ratios of ClNO2 frequently peaked 1-2 h after sunrise rationalized by more efficient formation of ClNO2 in the nocturnal residual layer aloft than at the surface and the breakup of the nocturnal boundary layer structure in the morning. When quantifiable, production of ClNO2 from N2O5 was efficient and likely occurred predominantly on unquantified supermicron-sized or refractory sea-salt-derived aerosol. After sunrise, production of Cl radicals from photolysis of ClNO2 was negligible compared to production of OH from the reaction of O(1D) + H2O except

  16. Flora of the Fraser Experimental Forest, Colorado. Forest Service general technical report (Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovich, S.J.; Shepperd, W.D.; Reichert, D.W.

    1993-08-01

    The report lists 441 vascular plant taxa in 228 genera and 63 families encountered on the 9,300-ha Fraser Experimental Forest in central Colorado. Synonyms appearing in previous publications and other works pertaining to the Fraser Experimental Forest, as well as appropriate Colorado floras and less-technical field guides, are included. Plant communities and habitats are discussed, and a list of 54 lichens is also presented. A glossary of related terms is included.

  17. Modeling changes in summer temperature of the Fraser River during the next century

    NASA Astrophysics Data System (ADS)

    Ferrari, Michael R.; Miller, James R.; Russell, Gary L.

    2007-09-01

    SummaryThe Fraser River basin in British Columbia has significant environmental, economic and cultural importance. Healthy river conditions through sufficient flows and optimal temperatures are of paramount importance for the survival of Pacific salmon, which migrate upriver toward the headwaters to spawn near the end of their lives. Trends have been detected which indicate that the annual flow and summer temperature have been increasing since the middle of the last century. In this study we examine the observed trend in summer temperature of the Fraser River and compare it with temperatures calculated as part of a global climate model (GCM) simulation in which atmospheric greenhouse gases are increasing. We then use the GCM to consider how these trends might continue through the present century. Both the observations and model indicate that during the last half of the 20th century, the summer temperature near the river mouth has been increasing at a rate of approximately 0.12 °C per decade in August. In this study we use an online method in which river temperatures are calculated directly as part of a GCM simulation and project how summer temperature near the mouth of the Fraser River might change by the end of the present century. The results indicate that between 2000 and 2100 river temperatures will increase in all summer months with a maximum increase of 0.14 °C per decade in August. This result is consistent with an offline modeling study by [Morrison, J., Quick, M.C., Goreman, M.G.G. 2002. Climate change in the Fraser River watershed: flow and temperature projections. Journal of Hydrology, 263, 230-244] in which they used output from two GCMS to drive a hydrologic model and predict future changes in river temperature and supports their contention that the timing and magnitude of the increase could be crucial for salmon migration. Future work can extend this analysis to other river systems in an effort to project the potential effects of climate change on

  18. The Fraser Experimental Forest ... its work and aims

    Treesearch

    L. D. Love

    1960-01-01

    In 1937 the Fraser Experimental Forest was established in the heart of the Central Rocky Mountains near the Continental Divide 65 miles north and west of Denver. This 36-square-mile outdoor research laboratory is well suited for the study of pressing problems related to water yield from high-elevation forests and alpine areas. (Originally published in 1952; revised in...

  19. Grizzly Valley fault system, Sierra Valley, CA

    USGS Publications Warehouse

    Gold, Ryan; Stephenson, William; Odum, Jack; Briggs, Rich; Crone, Anthony; Angster, Steve

    2012-01-01

    The Grizzly Valley fault system (GVFS) strikes northwestward across Sierra Valley, California and is part of a network of active, dextral strike-slip faults in the northern Walker Lane (Figure 1). To investigate Quaternary motion across the GVFS, we analyzed high-resolution (0.25 m) airborne LiDAR data (Figure 2) in combination with six, high-resolution, P-wave, seismic-reflection profiles [Gold and others, 2012]. The 0.5- to 2.0-km-long seismic-reflection profiles were sited orthogonal to suspected tectonic lineaments identified from previous mapping and our analysis of airborne LiDAR data. To image the upper 400–700 m of subsurface stratigraphy of Sierra Valley (Figure 3), we used a 230-kg accelerated weight drop source. Geophone spacing ranged from 2 to 5 m and shots were co-located with the geophones. The profiles reveal a highly reflective, deformed basal marker that we interpret to be the top of Tertiary volcanic rocks, overlain by a 120- to 300-m-thick suite of subhorizontal reflectors we interpret as Plio-Pleistocene lacustrine deposits. Three profiles image the principle active trace of the GVFS, which is a steeply dipping fault zone that offsets the volcanic rocks and the basin fill (Figures 4 & 5).

  20. Ending the Reign of the Fraser Institute's School Rankings

    ERIC Educational Resources Information Center

    Raptis, Helen

    2012-01-01

    The Fraser Institute "Report Card" of school rankings has won the hearts of parents and the press. For over a decade, the rankings have been particularly burdensome for low-ranking (usually low socio-economic status, high-poverty) schools when parents of high-achieving children move them to higher-ranking schools. In February 2010, after…

  1. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado

    Treesearch

    Sandra E. Ryan; Erica L. Bishop; J. Michael Daniels

    2014-01-01

    Large fallen wood can have a significant impact on channel form and process in forested mountain streams. In this study, four small channels on the Fraser Experimental Forest near Fraser, Colorado, USA, were surveyed for channel geometries and large wood loading, including the size, source, and characteristics of individual pieces. The study is part of a larger effort...

  2. Doubling sockeye salmon production in the Fraser River—Is this sustainable development?

    NASA Astrophysics Data System (ADS)

    Henderson, Michael A.; Healey, Michael C.

    1993-11-01

    We evaluate a proposal to double sockeye salmon production from the Fraser River and conclude that significant changes will be required to current management processes, particularly the way available catch is allocated, if the plan is to be consistent with five major principles embodied in the concept of sustainable development. Doubling sockeye salmon production will not, in itself, increase economic equity either regionally or globally. Developing nations may actually be hindered in their attempts to institute other, nonsalmon fisheries in the North Pacific Ocean as a result of the possible interception of salmon. Further, other users of the Fraser River basin will have to forgo opportunities so that salmon habitat can be conserved. If doubling sockeye salmon production is to meet the goal of doing more with less, it will be necessary to develop more efficient technologies to harvest the fish. If increasing salmon production is to reflect the integration of environmental and economic decision making at the highest level, then a serious attempt must be made to incorporate environmental assets into national economic accounting. Finally, to promote biodiversity and cultural self-sufficiency within the Fraser River basin, it will be important to safeguard the small, less-productive salmon stocks as well as the large ones and to allocate a substantial portion of the increased production to the Native Indian community.

  3. Geophysical setting of the Wabash Valley fault system

    USGS Publications Warehouse

    Hildenbrand, T.G.; Ravat, D.

    1997-01-01

    Interpretation of existing regional magnetic and gravity data and new local high-resolution aeromagnetic data provides new insights on the tectonic history and structural development of the Wabash Valley Fault System in Illinois and Indiana. Enhancement of short-wavelength magnetic anomalies reveal numerous NW- to NNE-trending ultramafic dikes and six intrusive complexes (including those at Hicks Dome and Omaha Dome). Inversion models indicate that the interpreted dikes are narrow (???3 m), lie at shallow depths (500 km long and generally >50 km wide) and with deep basins (locally >3 km thick), the ancestral Wabash Valley faults express, in comparison, minor tectonic structures and probably do not represent a failed rift arm. There is a lack of any obvious relation between the Wabash Valley Fault System and the epicenters of historic and prehistoric earthquakes. Five prehistoric earthquakes lie conspicuously near structures associated with the Commerce geophysical lineament, a NE-trending magnetic and gravity lineament lying oblique to the Wabash Valley Fault System and possibly extending over 600 km from NE Arkansas to central Indiana.

  4. Numerical Simulation of Nocturnal Drainage Flows in Idealized Valley-Tributary Systems.

    NASA Astrophysics Data System (ADS)

    O'Steen, Lance B.

    2000-11-01

    Numerical simulations of nocturnal drainage flow and transport in idealized valley-tributary systems are compared with the Atmospheric Science in Complex Terrain (ASCOT) meteorological field data and tracer studies from the Brush Creek valley of western Colorado. Much of the general valley-tributary flow behavior deduced from observations is qualitatively reproduced in the numerical results. The spatially complex, unsteady nature of the tributary flow found in the field data is also seen in the simulations. Oscillations in the simulated tributary flow are similar to some field observations. However, observed oscillations in the valley flow at the mouth of the tributary could not be reproduced in the numerical results. Thus, hypotheses of strongly coupled valley-tributary flow oscillations, based on field data, cannot be supported by these simulations. Along-valley mass flux calculations based on model results for the valley-tributary system indicate an increase of 5%-10% over a valley without a tributary. Enhanced valley mass fluxes were found from 8 km above the tributary to almost the valley mouth. However, the valley mass fluxes for topography with and without a tributary were nearly equal at the valley outflow. ASCOT field data suggested a tributary mass flow contribution of 5%-15% for a Brush Creek tributary of similar drainage area to the model tributary employed here. Numerical simulations of transport in the nocturnal valley-tributary flow strongly support ASCOT tracer studies in the Pack Canyon tributary of Brush Creek. These results suggest that the valley-tributary interaction can significantly increase plume dispersion under stable conditions. Overall, the simulation results presented here indicate that simple terrain geometries are able to capture many of the salient features of drainage flow in real valley-tributary systems.

  5. Population structure of sea-type and lake-type sockeye salmon and kokanee in the Fraser River and Columbia River drainages

    PubMed Central

    Withler, Ruth E.

    2017-01-01

    Population structure of three ecotypes of Oncorhynchus nerka (sea-type Sockeye Salmon, lake-type Sockeye Salmon, and Kokanee) in the Fraser River and Columbia River drainages was examined with microsatellite variation, with the main focus as to whether Kokanee population structure within the Fraser River drainage suggested either a monophyletic or polyphyletic origin of the ecotype within the drainage. Variation at 14 microsatellite loci was surveyed for sea-type and lake-type Sockeye Salmon and Kokanee sampled from 121 populations in the two river drainages. An index of genetic differentiation, FST, over all populations and loci was 0.087, with individual locus values ranging from 0.031 to 0.172. Standardized to an ecotype sample size of 275 individuals, the least genetically diverse ecotype was sea-type Sockeye Salmon with 203 alleles, whereas Kokanee displayed the greatest number of alleles (260 alleles), with lake-type Sockeye Salmon intermediate (241 alleles). Kokanee populations from the Columbia River drainage (Okanagan Lake, Kootenay Lake), the South Thompson River (a major Fraser River tributary) drainage populations, and the mid-Fraser River populations all clustered together in a neighbor-joining analysis, indicative of a monophyletic origin of the Kokanee ecotype in these regions, likely reflecting the origin of salmon radiating from a refuge after the last glaciation period. However, upstream of the mid-Fraser River populations, there were closer relationships between the lake-type Sockeye Salmon ecotype and the Kokanee ecotype, indicative of the Kokanee ecotype evolving independently from the lake-type Sockeye Salmon ecotype in parallel radiation. Kokanee population structure within the entire Fraser River drainage suggested a polyphyletic origin of the ecotype within the drainage. Studies employing geographically restricted population sampling may not outline accurately the phylogenetic history of salmonid ecotypes. PMID:28886033

  6. Isolation and characterization of microsatellite markers in Fraser fir (Abies fraseri)

    Treesearch

    S.A. Josserand; K.M. Potter; G. Johnson; J.A. Bowen; J. Frampton; C.D. Nelson

    2006-01-01

    We describe the isolation and characterization of 14 microsatellite loci from Fraser fir (Abies fraseri). These markers originated from cloned inserts enriched for DNA sequences containing tandem di- and tri-nucleotide repeats. In total, 36 clones were selected, sequenced and evaluated. Polymerase chain reaction (PCR) primers for 14 of these...

  7. Fraser and the Cheerleader: Values and the Boundaries of Student Speech

    ERIC Educational Resources Information Center

    Ehrensal, Patricia A. L.

    2012-01-01

    Student speech has and continues to be a contested issue in schools. The Supreme Court ruled in "Tinker" that students do not shed their rights at the schoolhouse gate; in the "Kuhlmeier" and "Fraser" decisions, however, the Court gave school officials greater latitude in regulating student speech, especially when it…

  8. Fraser River sockeye salmon productivity and climate: A re-analysis that avoids an undesirable property of Ricker’s curve

    NASA Astrophysics Data System (ADS)

    McKinnell, Skip

    2008-05-01

    In descending order of importance, artificial spawning channels, density-dependent mortality, carryover mortality, and climate have significant influences on the average productivity of Fraser River sockeye salmon ( Oncorhynchus nerka). When factors that are known or have been hypothesized to affect Fraser River sockeye salmon productivity are included in a single analytical framework, no significant change in average productivity occurred in 1976/1977, however, beginning in 1989 average productivity was significantly lower. In the one lake (Chilko) in the Fraser River basin where pre-smolt survival can be distinguished from post-smolt survival, this decline arose from freshwater causes. After accounting for other factors that have a greater influence, Fraser River sockeye salmon productivity tends to be slightly lower in years when the intensity of the Aleutian low pressure region is stormier in winter, although the effect is not strongly expressed in any particular population. A footnote to the study was the realization that estimates of Ricker’s density-dependent mortality parameter, β, are influenced by both the numerical properties of the equation and by population biology; density-dependent and density-independent influences on the estimates of the parameter are confounded.

  9. The frailty in elderly patients receiving cardiac interventional procedures (FRASER) program: rational and design of a multicenter prospective study.

    PubMed

    Campo, Gianluca; Pavasini, Rita; Maietti, Elisa; Tonet, Elisabetta; Cimaglia, Paolo; Scillitani, Giulia; Bugani, Giulia; Serenelli, Matteo; Zaraket, Fatima; Balla, Cristina; Trevisan, Filippo; Biscaglia, Simone; Sassone, Biagio; Galvani, Marcello; Ferrari, Roberto; Volpato, Stefano

    2017-10-01

    Frailty has become a high-priority issue in cardiovascular medicine because of the aging of cardiovascular patients. Simple and reproducible tools to assess frailty in elderly patients are clearly on demand. Their application may help physicians in the selection of invasive and medical treatments and in the timing and modality of the follow-up. The frailty in elderly patients receiving cardiac interventional procedures (FRASER) program is designed with the aim to validate the use of the short physical performance battery (SPPB) as prognostic tools in patients admitted to hospital for acute coronary syndrome (ACS). The FRASER program is a multicenter prospective study involving 4 Italian cardiology units. The FRASER program enrolls only patients aged ≥70 years. The core of the FRASER program includes patients admitted to hospital for ACS. The aims are (1) to describe SPPB distribution before hospital discharge and (2) to investigate the prognostic role of SPPB score. The primary outcome is a composite of 1-year all-cause mortality and hospital readmission for any cause. Ancillary analyses will be focused on different study populations (patients hospitalized for arrhythmias or acute heart failure or symptomatic severe aortic stenosis) and on different tools to assess frailty (multidimensional prognostic index, clinical frailty score, grip strength). The FRASER program will fill critical gaps in the knowledge regarding the link between frailty, cardiovascular disease, interventional procedures and outcome and will help physicians in the generation of a more personalized risk assessment and in the identification of potential targets for interventions.

  10. In vitro propagation of fraser photinia using Azospirillum-mediated root development.

    PubMed

    Llorente, Berta E; Larraburu, Ezequiel E

    2013-01-01

    Fraser photinia (Photinia × fraseri Dress.) is a woody plant of high ornamental value. The traditional propagation system for photinia is by rooting apical cuttings using highly concentrated auxin treatments. However, photinia micropropagation is an effective alternative to traditional in vivo propagation which is affected by the seasonal supply of cuttings, the long time required to obtain new plants, and the difficulties in rooting some clones.A protocol for in vitro propagation of fraser photinia using the plant growth-promoting ability of some rhizobacteria is described here. Bacterial inoculation is a new tool in micropropagation protocols that improves plant development in in vitro culture. Shoots culture on a medium containing MS macro- and microelements, Gamborg's vitamins (BM), N (6)-benzyladenine (BA, 11.1 μM), and gibberellic acid (1.3 μM) produce well-established explants. Proliferation on BM medium supplemented with 4.4 μM BA results in four times the number of shoots per initial shoot that develops monthly. Consequently, there is a continuous supply of plant material since shoot production is independent of season. Azospirillum brasilense inoculation, after 49.2 μM indole-3-butyric acid pulse treatment, stimulates early rooting of photinia shoots and produces significant increase in root fresh and dry weights, root surface area, and shoot fresh and dry weights in comparison with controls. Furthermore, inoculated in vitro photinia plants show anatomical and morphological changes that might lead to better adaptation in ex vitro conditions after transplanting, compared with the control plants.

  11. Acoustic valley edge states in a graphene-like resonator system

    NASA Astrophysics Data System (ADS)

    Yang, Yahui; Yang, Zhaoju; Zhang, Baile

    2018-03-01

    The concept of valley physics, as inspired by the recent development in valleytronic materials, has been extended to acoustic crystals for manipulation of air-borne sound. Many valleytronic materials follow the model of a gapped graphene. Yet the previously demonstrated valley acoustic crystal adopted a mirror-symmetry-breaking mechanism, lacking a direct counterpart in condensed matter systems. In this paper, we investigate a two-dimensional (2D) periodic acoustic resonator system with inversion symmetry breaking, as an analogue of a gapped graphene monolayer. It demonstrates the quantum valley Hall topological phase for sound waves. Similar to a gapped graphene, gapless topological valley edge states can be found at a zigzag domain wall separating different domains with opposite valley Chern numbers, while an armchair domain wall hosts no gapless edge states. Our study offers a route to simulate novel valley phenomena predicted in gapped graphene and other 2D materials with classical acoustic waves.

  12. Goldstone-Apple Valley Radio Telescope System Theory of Operation

    NASA Technical Reports Server (NTRS)

    Stephan, George R.

    1997-01-01

    The purpose of this learning module is to enable learners to describe how the Goldstone-Apple Valley Radio Telescope (GAVRT) system functions in support of Apple Valley Science and Technology Center's (AVSTC) client schools' radio astronomy activities.

  13. Insects for breakfast and whales for dinner: the diet and body condition of dingoes on Fraser Island (K’gari)

    PubMed Central

    Behrendorff, Linda; Leung, Luke K.-P.; McKinnon, Allan; Hanger, Jon; Belonje, Grant; Tapply, Jenna; Jones, Darryl; Allen, Benjamin L.

    2016-01-01

    Top-predators play stabilising roles in island food webs, including Fraser Island, Australia. Subsidising generalist predators with human-sourced food could disrupt this balance, but has been proposed to improve the overall health of the island’s dingo (Canis lupus dingo) population, which is allegedly ‘starving’ or in ‘poor condition’. We assess this hypothesis by describing the diet and health of dingoes on Fraser Island from datasets collected between 2001 and 2015. Medium-sized mammals (such as bandicoots) and fish were the most common food items detected in dingo scat records. Stomach contents records revealed additional information on diet, such as the occurrence of human-sourced foods. Trail camera records highlighted dingo utilisation of stranded marine fauna, particularly turtles and whales. Mean adult body weights were higher than the national average, body condition scores and abundant-excessive fat reserves indicated a generally ideal-heavy physical condition, and parasite loads were low and comparable to other dingo populations. These data do not support hypotheses that Fraser Island dingoes have restricted diets or are in poor physical condition. Rather, they indicate that dingoes on Fraser Island are capable of exploiting a diverse array of food sources which contributes to the vast majority of dingoes being of good-excellent physical condition. PMID:27009879

  14. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein.

    PubMed

    McGregor, Lesley; Makela, Ville; Darling, Susan M; Vrontou, Sofia; Chalepakis, Georges; Roberts, Catherine; Smart, Nicola; Rutland, Paul; Prescott, Natalie; Hopkins, Jason; Bentley, Elizabeth; Shaw, Alison; Roberts, Emma; Mueller, Robert; Jadeja, Shalini; Philip, Nicole; Nelson, John; Francannet, Christine; Perez-Aytes, Antonio; Megarbane, Andre; Kerr, Bronwyn; Wainwright, Brandon; Woolf, Adrian S; Winter, Robin M; Scambler, Peter J

    2003-06-01

    Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.

  15. The Fraser Experimental Forest, Colorado: Research program and published research 1937-1985

    Treesearch

    Robert R. Alexander; Charles A. Troendle; Merrill R. Kaufmann; Wayne D. Shepperd; Glenn L. Crouch; Ross K. Watkins

    1985-01-01

    This report provides an overview of the research done on the Fraser Experimental Forest. It replaces GTR's no. 40 and 40A by Robert R. Alexander and Ross K. Watkins in 1977. Included are descriptions of physical features and resources, highlights of past and current research, and the publications derived from that research.

  16. Structural superposition in fault systems bounding Santa Clara Valley, California

    USGS Publications Warehouse

    Graymer, Russell W.; Stanley, Richard G.; Ponce, David A.; Jachens, Robert C.; Simpson, Robert W.; Wentworth, Carl M.

    2015-01-01

    Santa Clara Valley is bounded on the southwest and northeast by active strike-slip and reverse-oblique faults of the San Andreas fault system. On both sides of the valley, these faults are superposed on older normal and/or right-lateral normal oblique faults. The older faults comprised early components of the San Andreas fault system as it formed in the wake of the northward passage of the Mendocino Triple Junction. On the east side of the valley, the great majority of fault displacement was accommodated by the older faults, which were almost entirely abandoned when the presently active faults became active after ca. 2.5 Ma. On the west side of the valley, the older faults were abandoned earlier, before ca. 8 Ma and probably accumulated only a small amount, if any, of the total right-lateral offset accommodated by the fault zone as a whole. Apparent contradictions in observations of fault offset and the relation of the gravity field to the distribution of dense rocks at the surface are explained by recognition of superposed structures in the Santa Clara Valley region.

  17. Lipid reserve dynamics and magnification of persistent organic pollutants in spawning sockeye salmon (Oncorhynchus nerka) from the Fraser River, British Columbia.

    PubMed

    Kelly, Barry C; Gray, Samantha L; Ikonomou, Michael G; Macdonald, J Steve; Bandiera, Stelvio M; Hrycay, Eugene G

    2007-05-01

    Pacific sockeye salmon (Oncorhynchus nerka) can travel several hundred kilometers to reach native spawning grounds and fulfill semelparous reproduction. The dramatic changes in lipid reserves during upstream migration can greatly affect internal toxicokinetics of persistent organic pollutants (POPs) such as PCBs, PCDDs, and PCDFs. We measured lipid content changes and contaminant concentrations in tissues (liver, muscle, roe/gonads) and biomarker responses (ethoxyresorufin O-deethylase or EROD activity and CYP1A levels) in two Pacific sockeye salmon stocks sampled at several locations along their spawning migration in the Fraser River, British Columbia. Muscle lipid contents declined significantly with increasing upstream migration distance and corresponded to elevated lipid normalized concentrations of PCBs and PCDD/Fs in spawning sockeye. Post-migration magnification factors (MFs) in spawning sockeye ranged between 3 and 12 and were comparable to model-predicted MFs. sigmaPCBs(150-500 ng x g(-1) lipid), sigmaPCDD/Fs (1-1000 pg x g(-1) lipid) and 2,3,7,8-TCDD toxic equivalent or TEQ levels (0.1-15 pg x g(-1) lipid) in spawning sockeye were relatively low and did not affect hepatic EROD activity/CYP1A induction. Despite a 3-fold magnification, TEQ levels in eggs of spawning Fraser River sockeye did not exceed 0.3 pg x g(-1) wet wt, a threshold level associated with 30% egg mortality in salmonids. PCBs in Fraser River sockeye are comparable to previous levels in Pacific sockeye. In contrast to Pacific sockeye from more remote coastal locations, PCDDs and PCDFs in Fraser River sockeye were generally minor components (<25%) of TEQ levels, compared to dioxin like PCB contributions (>75%). The data suggest that (i) the Fraser River is not a major contamination source of PCBs or PCDD/Fs and (ii) marine contaminant distribution, food-chain dynamics, and ocean-migration pathway are likely important factors controlling levels and patterns of POPs in returning Pacific

  18. Hydrogeologic framework of the Wood River Valley aquifer system, south-central Idaho

    USGS Publications Warehouse

    Bartolino, James R.; Adkins, Candice B.

    2012-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Hailey, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system, which consists primarily of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on groundwater for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the groundwater resource. As part of an ongoing U.S. Geological Survey effort to characterize the groundwater resources of the Wood River Valley, this report describes the hydrogeologic framework of the Wood River Valley aquifer system. Although most of the Wood River Valley aquifer system is composed of Quaternary-age sediments and basalts of the Wood River Valley and its tributaries, older igneous, sedimentary, or metamorphic rocks that underlie these Quaternary deposits also are used for water supply. It is unclear to what extent these rocks are hydraulically connected to the main part of Wood River Valley aquifer system and thus whether they constitute separate aquifers. Paleozoic sedimentary rocks in and near the study area that produce water to wells and springs are the Phi Kappa and Trail Creek Formations (Ordovician and Silurian), the Milligen Formation (Devonian), and the Sun Valley Group including the Wood River Formation (Pennsylvanian-Permian) and the Dollarhide Formation (Permian). These sedimentary rocks are intruded by granitic rocks of the Late Cretaceous Idaho batholith. Eocene Challis Volcanic Group rocks overlie all of the older rocks (except where removed by erosion). Miocene Idavada Volcanics are found in the southern part of the study area. Most of these rocks have been folded, faulted, and

  19. Chlorine-bearing amphiboles from the Fraser mine, Sudbury, Ontario, Canada: Description and crystal chemistry

    USGS Publications Warehouse

    McCormick, K.A.; McDonald, A.M.

    1999-01-01

    Three chemically distinct populations of Cl-bearing amphibole have been recognized in association with contact Ni-Cu ore deposits in Footwall Breccia at the Fraser mine, Sudbury, Ontario. The first population, defined as halogen-poor (700 ppm) and F (2500 ppm). These rocks thus may have been a significant contributor to the fluids.

  20. Persistence and retention of active ingredients in four granular cholinesterase-inhibiting insecticides in agricultural soils of the lower Fraser River valley, British Columbia, Canada, with implications for wildlife poisoning.

    PubMed

    Wilson, Laurie K; Elliott, John E; Vernon, Robert S; Smith, Barry D; Szeto, Sunny Y

    2002-02-01

    The persistence and retention of active ingredients in granules of Thimet 15G (phorate 15% by weight), Dyfonate 10G (fonofos 10% by weight), Counter 15G (terbufos 15% by weight), and Furadan 10G (carbofuran 10% by weight) were determined in silt loam and organic muck agricultural soils typical of the lower Fraser River valley (BC, Canada). In June 1995, treatment bags made of polyester cloth (7.5 x 7.5 cm) containing granules of a single insecticide, either alone or with soil, were placed during spring planting in the bottom of the furrow and retrieved periodically until April 1996. The parent component of each insecticide declined monotonically except for carbofuran (logistic decline). In the silt loam (organic muck) soil, the average June-to-October first-order rate constants and half-lives were 0.009 (0.010)/d and 80 (71) d for fonofos, 0.012 (0.009)/d and 58 (82) d for phorate, and 0.032 (0.015)/d and 21 (47) d for terbufos; the half-life of carbofuran was 129 (97) d. By December, the average amounts of fonofos and phorate in silt loam (organic muck) were 26% (range: 17-40%; 14% [range: 3.4-21%]) and 21% (range: 15-30%; 10% [range: 5.0-24%]) of the initial amounts of active ingredients measured at time zero, respectively. By April, the percentages dropped to 16% (range: 7.8-24%; 2.3% [range: 0-7.7%]) and 7.3% (range: 1.9-25%; 0.6% [range: 0-1.9%]). During this period, about 95% of the active ingredients were granule bound, the rest remaining in the bag. Only low levels of terbufos and carbofuran persisted in both soils from December to April of the following year. Results indicate an enhanced probability for poisoning of waterfowl and raptors because of the high levels of active ingredients retained on granules of all four insecticides in both soils in the fall. The risk of acute poisoning by phorate and fonofos continued though the winter.

  1. Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings

    NASA Astrophysics Data System (ADS)

    Sippl, C.; Kennett, B. L. N.; Tkalčić, H.; Gessner, K.; Spaggiari, C. V.

    2017-09-01

    Group and phase velocity maps in the period range 2-20 s for the Proterozoic east Albany-Fraser Orogen, Western Australia, are extracted from ambient seismic noise recorded with the 70-station ALFREX array. This 2 yr temporary installation provided detailed coverage across the orogen and the edge of the Neoarchean Yilgarn Craton, a region where no passive seismic studies of this scale have occurred to date. The surface wave velocities are rather high overall (>3 km s-1 nearly everywhere), as expected for exposed Proterozoic basement rocks. No clear signature of the transition between Yilgarn Craton and Albany-Fraser Orogen is observed, but several strong anomalies corresponding to more local geological features were obtained. A prominent, NE-elongated high-velocity anomaly in the northern part of the array is coincident with a Bouguer gravity high caused by the upper crustal metamorphic rocks of the Fraser Zone. This feature disappears towards longer periods, which hints at an exclusively upper crustal origin for this anomaly. Further east, the limestones of the Cenozoic Eucla Basin are clearly imaged as a pronounced low-velocity zone at short periods, but the prevalence of low velocities to periods of ≥5 s implies that the uppermost basement in this area is likewise slow. At longer periods, slightly above-average surface wave velocities are imaged below the Eucla Basin.

  2. Mountain pine beetle emergence from lodgepole pine at different elevations near Fraser, CO

    Treesearch

    J Tishmack; S.A. Mata; J.M. Schmid

    2005-01-01

    Mountain pine beetle emergence was studied at 8760 ft, 9200 ft, and 9900 ft near Fraser, CO. Beetles began emerging at 8760 ft between July 9 and July 14 while no beetles emerged at 9200 ft and only one beetle emerged at 9900 ft during the same period. Beetle emergence continued at relatively low but fluctuating rates for the next two to three weeks. Peak emergence...

  3. Roberts Bank: Ecological crucible of the Fraser River estuary

    NASA Astrophysics Data System (ADS)

    Sutherland, Terri F.; Elner, Robert W.; O'Neill, Jennifer D.

    2013-08-01

    Roberts Bank, part of the Fraser River delta system on Canada's Pacific coast, is a dynamic estuarine environment supporting important fisheries as well as internationally significant populations of migratory shorebirds. The 8000 ha bank environment comprises a complex of riparian boundaries, intertidal marshes, mud and sand flats, eelgrass meadows, macroalgae and biofilms. Anthropogenic developments (a ferry causeway in 1961 and a port causeway in 1969) have been responsible for changes in tidal flow patterns, tidal elevation, sediment transport and the net expansion of eelgrass beds. The goals of the present study were to (1) directly compare geotechnical properties spanning each side of the coalport causeway, and (2) enhance our understanding of the intercauseway ecosystem under a high-resolution sampling design. Sediment properties (grain size, porosity, organic content, and chlorophyll) and biological communities (eelgrass, macrofauna (0.5-1.0 mm) and meiofauna (0.063-0.5 mm)) were surveyed in 1997 at three stations outside the intercauseway area and three lateral transects spanning the intercauseway tidal flat at tidal heights representing three different habitats: biofilm, Zostera japonica, and Zostera marina. A fine-silt organic-rich porous deposit was observed on the shoreward north side of the coalport causeway relative to the south counterpart, suggesting that consolidation and erosion processes could likely not keep pace with the deposition of Fraser River silt. High chlorophyll levels were found in the protected shoreward northern border of the ferry causeway where fine sands dominate and higher water transparency exists, owing to the redirection of the silt-laden river plume by the coalport causeway. Principle Components Analysis revealed a positive relationship between these porous, organic-rich sediments and cumacean abundance in all regions where eelgrass was absent, including the north side of the coalport causeway. Further, a positive

  4. Biodiveristy and Stability of Aboriginal Salmon Fisheries in the Fraser River Watershed

    NASA Astrophysics Data System (ADS)

    Nesbitt, H. K.; Moore, J.

    2015-12-01

    Natural watersheds are hierarchical networks that may confer stability to ecosystem functions through integration of upstream biodiversity, whereby upstream asset diversification stabilizes the aggregate downstream through the portfolio effect. Here we show that riverine structure and its associated diversity confer stability of salmon catch and lengthened fishing seasons for Aboriginal fisheries on the Fraser River (1370km) in BC, Canada, the second longest dam-free salmon migration route in North America. In Canada, Aboriginal people have rights to fish for food, social, and ceremonial (FSC) purposes. FSC fisheries are located throughout the Fraser watershed and have access to varying levels of salmon diversity based on their location. For instance, fisheries at the mouth of the river have access to all of the salmon that spawn throughout the entire watershed, thus integrating across the complete diversity profile of the entire river. In contrast, fisheries in the headwaters have access to fewer salmon species and populations and thus fish from a much less diverse portfolio. These spatial gradients of diversity within watersheds provide a natural contrast for quantifying the effects of different types of diversity on interannual resource stability and seasonal availability. We acquired weekly and yearly catch totals from 1983 to 2012 (30 years) for Chinook, chum, coho, pink, and sockeye salmon for 21 FSC fishing sites throughout the Fraser River watershed from Fisheries and Oceans Canada. We examined how both population- and species-level diversity affects catch stability and season length at each site by quantifying year-to-year variability and within-year season length respectively. Salmon species diversity made fisheries up to 28% more stable in their catch than predicted with 3.7 more weeks to fish on average. Fisheries with access to high population diversity had up to 3.8 times more stable catch and 3 times longer seasons than less diverse fisheries. We

  5. Hydrogeologic Framework and Ground Water in Basin-Fill Deposits of the Diamond Valley Flow System, Central Nevada

    USGS Publications Warehouse

    Tumbusch, Mary L.; Plume, Russell W.

    2006-01-01

    The Diamond Valley flow system, an area of about 3,120 square miles in central Nevada, consists of five hydrographic areas: Monitor, Antelope, Kobeh, and Diamond Valleys and Stevens Basin. Although these five areas are in a remote part of Nevada, local government officials and citizens are concerned that the water resources of the flow system eventually could be further developed for irrigation or mining purposes or potentially for municipal use outside the study area. In order to better understand the flow system, the U.S. Geological Survey in cooperation with Eureka, Lander, and Nye Counties and the Nevada Division of Water Resources, is conducting a multi-phase study of the flow system. The principal aquifers of the Diamond Valley flow system are in basin-fill deposits that occupy structural basins comprised of carbonate rocks, siliciclastic sedimentary rocks, igneous intrusive rocks, and volcanic rocks. Carbonate rocks also function as aquifers, but their extent and interconnections with basin-fill aquifers are poorly understood. Ground-water flow in southern Monitor Valley is from the valley margins toward the valley axis and then northward to a large area of discharge by evapotranspiration (ET) that is formed south of a group of unnamed hills near the center of the valley. Ground-water flow from northern Monitor Valley, Antelope Valley, and northern and western parts of Kobeh Valley converges to an area of ground-water discharge by ET in central and eastern Kobeh Valley. Prior to irrigation development in the 1960s, ground-water flow in Diamond Valley was from valley margins toward the valley axis and then northward to a large discharge area at the north end of the valley. Stevens Basin is a small upland basin with internal drainage and is not connected with other parts of the flow system. After 40 years of irrigation pumping, a large area of ground-water decline has developed in southern Diamond Valley around the irrigated area. In this part of Diamond

  6. Data network, collection, and analysis in the Diamond Valley flow system, central Nevada

    USGS Publications Warehouse

    Knochenmus, Lari A.; Berger, David L.; Moreo, Michael T.; Smith, J. LaRue

    2011-01-01

    Future groundwater development and its effect on future municipal, irrigation, and alternative energy uses in the Diamond Valley flow system are of concern for officials in Eureka County, Nevada. To provide a better understanding of the groundwater resources, the U.S. Geological Survey, in cooperation with Eureka County, commenced a multi-phase study of the Diamond Valley flow system in 2005. Groundwater development primarily in southern Diamond Valley has resulted in water-level declines since the 1960s ranging from less than 5 to 100 feet. Groundwater resources in the Diamond Valley flow system outside of southern Diamond Valley have been relatively undeveloped. Data collected during phase 2 of the study (2006-09) included micrometeorological data at 4 evapotranspiration stations, 3 located in natural vegetation and 1 located in an agricultural field; groundwater levels in 95 wells; water-quality constituents in aquifers and springs at 21 locations; lithologic information from 7 recently drilled wells; and geophysical logs from 3 well sites. This report describes what was accomplished during phase 2 of the study, provides the data collected, and presents the approaches to strengthen relations between evapotranspiration rates measured at micrometeorological stations and spatially distributed groundwater discharge. This report also presents the approach to improve delineation of areas of groundwater discharge and describes the current methodology used to improve the accuracy of spatially distributed groundwater discharge rates in the Diamond Valley flow system.

  7. Late Quaternary faulting along the Death Valley-Furnace Creek fault system, California and Nevada

    USGS Publications Warehouse

    Brogan, George E.; Kellogg, Karl; Slemmons, D. Burton; Terhune, Christina L.

    1991-01-01

    The Death Valley-Furnace Creek fault system, in California and Nevada, has a variety of impressive late Quaternary neotectonic features that record a long history of recurrent earthquake-induced faulting. Although no neotectonic features of unequivocal historical age are known, paleoseismic features from multiple late Quaternary events of surface faulting are well developed throughout the length of the system. Comparison of scarp heights to amount of horizontal offset of stream channels and the relationships of both scarps and channels to the ages of different geomorphic surfaces demonstrate that Quaternary faulting along the northwest-trending Furnace Creek fault zone is predominantly right lateral, whereas that along the north-trending Death Valley fault zone is predominantly normal. These observations are compatible with tectonic models of Death Valley as a northwest-trending pull-apart basin. The largest late Quaternary scarps along the Furnace Creek fault zone, with vertical separation of late Pleistocene surfaces of as much as 64 m (meters), are in Fish Lake Valley. Despite the predominance of normal faulting along the Death Valley fault zone, vertical offset of late Pleistocene surfaces along the Death Valley fault zone apparently does not exceed about 15 m. Evidence for four to six separate late Holocene faulting events along the Furnace Creek fault zone and three or more late Holocene events along the Death Valley fault zone are indicated by rupturing of Q1B (about 200-2,000 years old) geomorphic surfaces. Probably the youngest neotectonic feature observed along the Death Valley-Furnace Creek fault system, possibly historic in age, is vegetation lineaments in southernmost Fish Lake Valley. Near-historic faulting in Death Valley, within several kilometers south of Furnace Creek Ranch, is represented by (1) a 2,000-year-old lake shoreline that is cut by sinuous scarps, and (2) a system of young scarps with free-faceted faces (representing several faulting

  8. Problems with the Fraser report Chapter 1: Pitfalls in BMI time trend analysis.

    PubMed

    Lo, Ernest

    2014-11-05

    The first chapter of the Fraser report "Obesity in Canada: Overstated Problems, Misguided Policy Solutions" presents a flawed and misleading analysis of BMI time trends. The objective of this commentary is to provide a tutorial on BMI time trend analysis through the examination of these flaws. Three issues are discussed: 1. Spotting regions of confidence interval overlap is a statistically flawed method of assessing trend; regression methods which measure the behaviour of the data as a whole are preferred. 2. Temporal stability in overweight (25≤BMI<30) prevalence must be interpreted in the context of the underlying population BMI distribution. 3. BMI is considered reliable for tracking population-level weight trends due to its high correlation with body fat percentage. BMI-defined obesity prevalence represents a conservative underestimate of the population at risk. The findings of the Fraser report Chapter 1 are either refuted or substantially mitigated once the above issues are accounted for, and we do not find that the 'Canadian situation largely lacks a disconcerting or negative trend', as claimed. It is hoped that this commentary will help guide public health professionals who need to interpret, or wish to perform their own, time trend analyses of BMI.

  9. Peering into the deep: Illuminating the crustal evolution of the Eucla basement and its relationship to the Albany-Fraser Orogen of southwest Australia.

    NASA Astrophysics Data System (ADS)

    Hartnady, Michael; Kirkland, Chris; Clark, Chris; Spaggiari, Catherine; Smithies, Hugh

    2017-04-01

    The Albany-Fraser Orogen is a 1200 km long east to northeasterly trending Palaeoproterozoic to Mesoproterozoic orogenic belt that defines the southern to southeastern margin of the West Australian Craton (WAC). The belt records a long and complex geological history spanning the break-up of Nuna between 2000 and 1700 Ma and amalgamation of Rodinia between 1300 and 1000 Ma. Recent geochronological, geochemical and isotopic work has shown that the Albany-Fraser Orogen formed through a protracted period of reworking of the margin of the Archean Yilgarn Craton (part of the WAC) with various additions of mantle-derived material. The Cretaceous Bight and Cenozoic Eucla Basins partially overlie the northeastern part of the Albany-Fraser Orogen and completely cover 1000 km of crystalline basement (the Eucla basement) that separates the belt from the South Australian Craton. This basement constitutes the glue between the major building blocks of Proterozoic Australia, yet, its geological history is poorly understood. New drill cores penetrating the basement have intersected interlayered granitic and gabbroic rocks that yield U-Pb zircon dates that are dissimilar to any magmatic ages from units within the adjoining Albany-Fraser Orogen, with the exception of the youngest, 1190-1125 Ma magmatic suite. In addition, mantle-like hafnium and neodymium isotopic signatures indicate that the rocks of the Eucla basement are dominated by new juvenile addition, and may represent an allochthonous terrane of oceanic heritage. New ɛHf contour maps for the Albany-Fraser Orogen and Eucla basement highlight this difference. Time-slicing the isotopic dataset reveals a pattern of Palaeoproterozoic juvenile magmatism sub-perpendicular to the present day structural grain in the belt. If this marks the presence of an older lithospheric structure then it demonstrates the power that time-constrained isotopic mapping provides for illuminating lithospheric architecture through time. This may be

  10. Preliminary evaluation of the hydrogeologic system in Owens Valley, California

    USGS Publications Warehouse

    Danskin, W.R.

    1988-01-01

    A preliminary, two-layer, steady-state, groundwater flow model was used to evaluate present data and hydrologic concepts of Owens Valley, California. Simulations of the groundwater system indicate that areas where water levels are most affected by changes in recharge and discharge are near toes of alluvial fans and along the edge of permeable volcanic deposits. Sensitivity analysis for each model parameter shows that steady state simulations are most sensitive to uncertainties in evapotranspiration rates. Tungsten Hills, Poverty Hills, and Alabama Hills were found to act as virtually impermeable barriers to groundwater flow. Accurate simulation of the groundwater system between Bishop and Lone Pine appears to be possible without simulating the groundwater system in Round Valley, near Owens Lake, or in aquifer materials more than 1,000 ft below land surface. Although vast amounts of geologic and hydrologic data have been collected for Owens Valley, many parts of the hydrogeologic system have not been defined with sufficient detail to answer present water management questions. Location and extent of geologic materials that impede the vertical movement of water are poorly documented. The likely range of aquifer characteristics, except vertical hydraulic conductivity, is well known, but spatial distribution of these characteristics is not well documented. A set of consistent water budgets is needed, including one for surface water, groundwater, and the entire valley. The largest component of previous water budgets (evapotranspiration) is largely unverified. More definitive estimates of local gains and losses for Owens River are needed. Although groundwater pumpage from each well is measured, the quantity of withdrawal from different zones of permeable material has not been defined. (USGS)

  11. Variation in Ground Shaking on the Fraser River Delta (Greater Vancouver, Canada)

    NASA Astrophysics Data System (ADS)

    Cassidy, J. F.; Rogers, G. R.

    2003-04-01

    The thick, soft soils of the Fraser River delta, just south of Vancouver, Canada, are home to critical infrastructure such as one of North America's busiest port facilities, Canada's second busiest airport, and key transportation and power-transmission facilities for 2-3 million people. This area is also one of the most seismically active regions in Canada. We have utilised recent three-component, digital records of recent moderate (1996 M=5.1 at 200 km distance, 1997 M=4.3 at 40 km distance) and large (2001 M=6.8 at 300 km distance) earthquakes to examine the response to seismic shaking in the greater Vancouver, region, with an emphasis on the site response of the Fraser River delta. These suites of accelerograms have relatively low amplitudes (maximums of 0.015g for the 1996 records, 0.024g for the 1997 records, and 0.035g for the 2001 records). The 1997 data set is significant as it contains the first three-component recordings made on bedrock in greater Vancouver, and the 2001 data set is significant as it contains long-period signal (1-10 second energy). Using the method of spectral ratios, we estimate the site response for each of the strong motion instrument soil sites. Our results show frequency-dependent amplification, with factors of up to 12 times (relative to competent bedrock) near the edge of the delta. Here, the amplification is observed over a relatively narrow frequency range of 1.5-4 Hz (0.25-0.67 s period). Near the centre of the delta(where the soft soils are thickest) peak amplification of 4-10 times(relative to competent bedrock) is measured. Relative to firm soil, the peak amplification ranges from 2-5 for the thick soil delta centre sites, and 2-6 for the delta edge sites. At higher frequencies, little or no amplification, and in many cases slight attenuation is observed. The more distant earthquakes (200-300 km) present a simpler and more predictable picture of ground motion variation than that of the 1997 earthquake (40 km distant). The

  12. Genetic variation and population structure in Fraser fir (Abies fraseri): a microsatellite assessment of young trees

    Treesearch

    Kevin M. Potter; John Frampton; Sedley A. Josserand; Dana C. Nelson

    2008-01-01

    The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...

  13. Genetic variation and population structure in fraser fir (Abies fraseri): a microsatellite assessment of young trees

    Treesearch

    Kevin M. Potter; John Framton; Sedley A. Josserand; C. Dana Nelson

    2008-01-01

    The island-like populations of Fraser fir (Abies fraseri (Pursh) Poir.) have been isolated since the end of the late-Wisconsinian glaciation on the highest peaks of the Southern Appalachian Mountains and therefore offer an opportunity to investigate the genetic dynamics of a long-fragmented forest tree species. An analysis of eight microsatellite...

  14. Evaluation of the hydrologic system and selected water-management alternatives in the Owens Valley, California

    USGS Publications Warehouse

    Danskin, Wesley R.

    1998-01-01

    The Owens Valley, a long, narrow valley along the east side of the Sierra Nevada in eastcentral California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River?Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river? aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local residents have expressed concerns that the increased pumping may have a detrimental effect on the environment and the native vegetation (indigenous alkaline scrub and meadow plant communities) in the valley. Native vegetation on the valley floor depends on soil moisture derived from precipitation and from the unconfined part of a multilayered ground-water system. This report, which describes the evaluation of the hydrologic system and selected water-management alternatives, is one in a series designed to identify the effects that ground-water pumping has on native vegetation and evaluate alternative strategies to mitigate any adverse effects caused by pumping. The hydrologic system of the Owens Valley can be conceptualized as having three parts: (1) an unsaturated zone affected by precipitation and evapotranspiration; (2) a surface-water system composed of the Owens River, the Los Angeles Aqueduct, tributary streams, canals, ditches, and ponds; and (3) a saturated ground-water system contained in the valley fill. Analysis of the hydrologic system was aided by development of a ground-water flow model of the ?aquifer system,? which is defined as the most active part of the ground-water system and which includes nearly all of the Owens Valley except for the area surrounding the Owens Lake. The model was calibrated and verified for water years 1963?88 and

  15. Unusual folding and rolling of Glacio-Lacustrine sediments, Upper Fraser Canyon, British Columbia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, S.

    1987-05-01

    Folding and rolling of graded but unconsolidated sediments by at least 720/sup 0/ produced a structure resembling a large Swiss roll about 6 ft wide and 4 ft high. The sediments were initially horizontal and well sorted, grading from coarse sands to fine silts. About 50 ft away, at the same level, the sediments include irregular layers of poorly sorted, ice-rafted pebbles and boulders. The sequence is unconformably overlain by till. The axis of folding appears to be parallel to the eastern wall of the Fraser Canyon. The outcrop is in the Stevens Pit (sand and gravel) immediately east ofmore » the Trans-Canada Highway, 2 mi south of Lytton, B.C., at an elevation of 1000 ft, approximately 600 ft above the present level of the Fraser River. The sands and silts accumulated in a lake adjacent to the east margin of a stagnant and relatively small glacier occupying the upper part of the Frazer Canyon. Partial or complete melting of small icebergs caused deposition of coarser material. A subsequent cooling trend led to an advance of the glacier, an advance which at this location caused some of the adjacent and by now frozen sediments to be rolled up like an old carpet. Further advance of the glacier caused it to override and thus preserve the deformed sequence.« less

  16. Structural evolution of the east Sierra Valley system (Owens Valley and vicinity), California: a geologic and geophysical synthesis

    USGS Publications Warehouse

    Stevens, Calvin H.; Stone, Paul; Blakely, Richard J.

    2013-01-01

    The tectonically active East Sierra Valley System (ESVS), which comprises the westernmost part of the Walker Lane-Eastern California Shear Zone, marks the boundary between the highly extended Basin and Range Province and the largely coherent Sierra Nevada-Great Valley microplate (SN-GVm), which is moving relatively NW. The recent history of the ESVS is characterized by oblique extension partitioned between NNW-striking normal and strike-slip faults oriented at an angle to the more northwesterly relative motion of the SN-GVm. Spatially variable extension and right-lateral shear have resulted in a longitudinally segmented valley system composed of diverse geomorphic and structural elements, including a discontinuous series of deep basins detected through analysis of isostatic gravity anomalies. Extension in the ESVS probably began in the middle Miocene in response to initial westward movement of the SN-GVm relative to the Colorado Plateau. At ca. 3-3.5 Ma, the SN-GVm became structurally separated from blocks directly to the east, resulting in significant basin-forming deformation in the ESVS. We propose a structural model that links high-angle normal faulting in the ESVS with coeval low-angle detachment faulting in adjacent areas to the east.

  17. Influence of system controls on the Late Quaternary geomorphic evolution of a rapidly-infilled incised-valley system: The lower Manawatu valley, North Island New Zealand

    NASA Astrophysics Data System (ADS)

    Clement, Alastair J. H.; Fuller, Ian C.

    2018-02-01

    The Manawatu incised-valley estuary was rapidly infilled between 12,000-4700 cal. yr BP. A combination of empirical measurements of sedimentation rates, a reconstruction of relative sea-level (RSL) change, and digital elevation models of key surfaces within the Holocene sedimentary fill of the valley were integrated to produce a numerical model to investigate the influence of the system controls of sea-level change, sediment flux, and accommodation space on the rapid infilling history of the palaeo-estuary. The numerical model indicates that sediment flux into the palaeo-estuary was greatest during the Holocene marine transgression between 12,000-8000 years BP. The average rate of sediment deposition in the estuary during this period was 1.0 M m3 yr- 1. This rapid rate of sedimentation was controlled by the rate of accommodation space creation, as regulated by the rate of sea-level rise and the antecedent configuration of the valley. By the time sea levels stabilised c. 7500 cal. yr BP, the palaeo-estuary had been substantively infilled. Limited accommodation space resulted in rapid infilling of the central basin, though sediment flux into the estuary between 7100 and 4500 cal. yr BP was at a lower rate of 234,000 m3 yr- 1. The limited accommodation space also influenced hydrodynamic conditions in the estuarine central basin, driving export of fine-grained sediment from the estuary. Once the accommodation space of the estuarine basin was infilled sediment bypassed the system, with a consequent reduction in the sedimentation rate in the valley. More accurate partitioning of the sources of sediment driving the infilling is necessary to quantify sediment bypassing. Post-depositional lowering of RSL index points from the valley is driven by neotectonics and sediment compaction.

  18. Resistivity structure and geochemistry of the Jigokudani Valley hydrothermal system, Mt. Tateyama, Japan

    NASA Astrophysics Data System (ADS)

    Seki, Kaori; Kanda, Wataru; Tanbo, Toshiya; Ohba, Takeshi; Ogawa, Yasuo; Takakura, Shinichi; Nogami, Kenji; Ushioda, Masashi; Suzuki, Atsushi; Saito, Zenshiro; Matsunaga, Yasuo

    2016-10-01

    This study clarifies the hydrothermal system of Jigokudani Valley near Mt. Tateyama volcano in Japan by using a combination of audio-frequency magnetotelluric (AMT) survey and hot-spring water analysis in order to assess the potential of future phreatic eruptions in the area. Repeated phreatic eruptions in the area about 40,000 years ago produced the current valley morphology, which is now an active solfatara field dotted with hot springs and fumaroles indicative of a well-developed hydrothermal system. The three-dimensional (3D) resistivity structure of the hydrothermal system was modeled by using the results of an AMT survey conducted at 25 locations across the valley in 2013-2014. The model suggests the presence of a near-surface highly conductive layer of < 50 m in thickness across the entire valley, which is interpreted as a cap rock layer. Immediately below the cap rock is a relatively resistive body interpreted as a gas reservoir. Field measurements of temperature, pH, and electrical conductivity (EC) were taken at various hot springs across the valley, and 12 samples of hot-spring waters were analyzed for major ion chemistry and H2O isotopic ratios. All hot-spring waters had low pH and could be categorized into three types on the basis of the Cl-/SO 42 - concentration ratio, with all falling largely on a mixing line between magmatic fluids and local meteoric water (LMW). The geochemical analysis suggests that the hydrothermal system includes a two-phase zone of vapor-liquid. A comparison of the resistivity structure and the geochemically inferred structure suggests that a hydrothermal reservoir is present at a depth of approximately 500 m, from which hot-spring water differentiates into the three observed types. The two-phase zone appears to be located immediately beneath the cap rock structure. These findings suggest that the hydrothermal system of Jigokudani Valley exhibits a number of factors that could trigger a future phreatic eruption.

  19. On the changing contribution of snow to the hydrology of the Fraser River Basin, Canada

    NASA Astrophysics Data System (ADS)

    Dery, S. J.; Kang, D.; Shi, X.; Gao, H.

    2013-12-01

    This talk will present an application of the Variable Infiltration Capacity (VIC) model to the Fraser River Basin (FRB) of British Columbia (BC), Canada over the latter half of the 20th century. The Fraser River is the longest waterway in BC and supports the world's most abundant Pacific Ocean salmon populations. Previous modeling and observational studies have demonstrated that the FRB is a snow-dominated system but with climate change it may evolve to a pluvial regime. Thus the goal of this study is to evaluate the changing contribution of snow to the hydrology of the watershed over the latter half of the 20th century. To this end, a 0.25° atmospheric forcing dataset is used to drive the VIC model from 1948 to 2006 at a daily time step over a domain covering the entire FRB. A model evaluation is first conducted over 11 major sub-watersheds of the FRB to quantitatively assess the spatial variations of snow water equivalent (SWE) and runoff. The ratio of the spatially averaged maximum SWE to runoff (RSR) is used to quantify the contribution of snow to the runoff in the 11 sub-watersheds of interest. From 1948 to 2006, RSR exhibits a significant decreasing trend in 9 of the 11 sub-watersheds (at a 0.05 of p-value according to the Mann-Kendall Test statistics). Changes in snow accumulation and melt lead to significant advances of the spring freshet throughout the basin. As the climate continues to warm, ecological processes and human usage of natural resources in the FRB may be substantially affected by its transition from a snow to a hybrid (nival/pluvial) and even a rain-dominated watershed.

  20. Morphology of large valleys on Hawaii - Evidence for groundwater sapping and comparisons with Martian valleys

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig; Piper, Jonathan F.

    1986-01-01

    Morphometric data on the runoff and sapping valleys on the slopes of Hawaii and Molokai in Hawaii are analyzed. The analysis reveals a clear distinction between the runoff valleys and sapping valleys. The Hawaiian sapping valleys are characterized by: (1) steep valley walls and flat floors, (2) amphitheater heads, (3) low drainage density, (4) paucity of downstream tributaries, (5) low frequency of up-dip tributaries, and (6) structural and stratigraphic control on valley patterns. The characteristics of the Hawaiian sapping valleys are compared to Martian valleys and experimental systems, and good correlation between the data is detected. Flume experiments were also conducted to study the evolution of sapping valleys in response to variable structure and stratigraphy.

  1. Age-class differences in shoot photosynthesis and water relations of Fraser fir (Abies fraseri), southern Appalachian Mountains, USA

    Treesearch

    Keith Reinhardt; Daniel M. Johnson; William K. Smith

    2009-01-01

    Fraser fir (Abies fraseri (Pursh) Poir.) is an endemic tree species found only in refugial mountain-top forests in the southern Appalachian Mountains, USA. Very few studies have investigated the ecophysiology of this species in its natural environment. We measured and compared photosynthetic gas exchange and water relations of understory germinant...

  2. Potential for a significant deep basin geothermal system in Tintic Valley, Utah

    NASA Astrophysics Data System (ADS)

    Hardwick, C.; Kirby, S.

    2014-12-01

    The combination of regionally high heat flow, deep basins, and permeable reservoir rocks in the eastern Great Basin may yield substantial new geothermal resources. We explore a deep sedimentary basin geothermal prospect beneath Tintic Valley in central Utah using new 2D and 3D models coupled with existing estimates of heat flow, geothermometry, and shallow hydrologic data. Tintic Valley is a sediment-filled basin bounded to the east and west by bedrock mountain ranges where heat-flow values vary from 85 to over 240 mW/m2. Based on modeling of new and existing gravity data, a prominent 30 mGal low indicates basin fill thickness may exceed 2 km. The insulating effect of relatively low thermal conductivity basin fill in Tintic Valley, combined with typical Great Basin heat flow, predict temperatures greater than 150 °C at 3 km depth. The potential reservoir beneath the basin fill is comprised of Paleozoic carbonate and clastic rocks. The hydrology of the Tintic Valley is characterized by a shallow, cool groundwater system that recharges along the upper reaches of the basin and discharges along the valley axis and to a series of wells. The east mountain block is warm and dry, with groundwater levels just above the basin floor and temperatures >50 °C at depth. The west mountain block contains a shallow, cool meteoric groundwater system. Fluid temperatures over 50 °C are sufficient for direct-use applications, such as greenhouses and aquaculture, while temperatures exceeding 140°C are suitable for binary geothermal power plants. The geologic setting and regionally high heat flow in Tintic Valley suggest a geothermal resource capable of supporting direct-use geothermal applications and binary power production could be present.

  3. The hydrothermal system of Long Valley Caldera, California

    USGS Publications Warehouse

    Sorey, M.L.; Lewis, Robert Edward; Olmsted, F.H.

    1978-01-01

    Long Valley caldera, an elliptical depression covering 450 km 2 on the eastern front of the Sierra Nevada in east-central California, contains a hot-water convection system with numerous hot springs and measured and estimated aquifer temperatures at depths of 180?C to 280?C. In this study we have synthesized the results of previous geologic, geophysical, geochemical, and hydrologic investigations of the Long Valley area to develop a generalized conceptual and mathematical model which describes the gross features of heat and fluid flow in the hydrothermal system. Cenozoic volcanism in the Long Valley region began about 3.2 m.y. (million years) ago and has continued intermittently until the present time. The major event that resulted in the formation of the Long Valley caldera took place about 0.7 m.y. ago with the eruption of 600 km 3 or more of Bishop Tuff of Pleistocene age, a rhyolitic ash flow, and subsequent collapse of the roof of the magma chamber along one or more steeply inclined ring fractures. Subsequent intracaldera volcanism and uplift of the west-central part of the caldera floor formed a subcircular resurgent dome about 10 km in diameter surrounded by a moat containing rhyolitic, rhyodacitic, and basaltic rocks ranging in age from 0.5 to 0.05 m.y. On the basis of gravity and seismic studies, we estimate an aver- age thickness of fill of 2.4 km above the precaldera granitic and metamorphic basement rocks. A continuous layer of densely welded Bishop Tuff overlies the basement rocks, with an average thickness of 1.4 km; the fill above the welded Bishop Tuff consists of intercalated volcanic flows and tuffs and fluvial and lacustrine deposits. Assuming the average grain density of the fill is between 2.45 and 2.65 g/cm 3 , we calculate the average bulk porosity of the total fill as from 0.11 to 0.21. Comparison of published values of porosity of the welded Bishop Tuff exposed southeast of the caldera with calculated values indicates average bulk porosity

  4. Geohydrology and Water Quality of the Valley-Fill Aquifer System in the Upper Sixmile Creek and West Branch Owego Creek Valleys in the Town of Caroline, Tompkins County, New York

    USGS Publications Warehouse

    Miller, Todd S.

    2009-01-01

    In 2002, the U.S. Geological Survey, in cooperation with the Town of Caroline and Tompkins County Planning Department, began a study of the valley-fill aquifer system in upper Sixmile Creek and headwaters of West Branch Owego Creek valleys in the Town of Caroline, NY. The purpose of the study is to provide geohydrologic data to county and town planners as they develop a strategy to manage and protect their water resources. The first aquifer reach investigated in this series is in the Town of Caroline and includes the upper Sixmile Creek valley and part of West Branch Owego Creek valley. The portions of the valley-fill aquifer system that are comprised of saturated coarse-grained sediments including medium to coarse sand and sandy gravel form the major aquifers. Confined sand and gravel units form the major aquifers in the western and central portions of the upper Sixmile Creek valley, and an unconfined sand and gravel unit forms the major aquifer in the eastern portion of the upper Sixmile Creek valley and in the headwaters of the West Branch Owego Creek valley. The valley-fill deposits are thinnest near the edges of the valley where they pinch out along the till-mantled bedrock valley walls. The thickness of the valley fill in the deepest part of the valley, at the western end of the study area, is about 100 feet (ft); the thickness is greater than 165 ft on top of the Valley Heads Moraine in the central part of the valley. An estimated 750 people live over and rely on groundwater from the valley-fill aquifers in upper Sixmile Creek and West Branch Owego Creek valleys. Most groundwater withdrawn from the valley-fill aquifers is pumped from wells with open-ended 6-inch diameter casings; the remaining withdrawals are from shallow dug wells or cisterns that collect groundwater that discharges to springs (especially in the Brooktondale area). The valley-fill aquifers are the sources of water for about 200 households, several apartment complexes, two mobile home parks

  5. Alternative models of climatic effects on sockeye salmon (Oncorhynchus nerka) productivity in Bristol Bay, Alaska, and the Fraser River, British Columbia

    USGS Publications Warehouse

    Adkison, M.; Peterman, R.; Lapointe, M.; Gillis, D.; Korman, J.

    1996-01-01

    We compare alternative models of sockeye salmon (Oncorhynchus nerka) productivity (returns per spawner) using more than 30 years of catch and escapement data for Bristol Bay, Alaska, and the Fraser River, British Columbia. The models examined include several alternative forms of models that incorporate climatic influences as well as models not based on climate. For most stocks, a stationary stock-recruitment relationship explains very little of the interannual variation in productivity. In Bristol Bay, productivity co-varies among stocks and appears to be strongly related to fluctuations in climate. The best model for Bristol Bay sockeye involved a change in the 1970s in the parameters of the Ricker stock-recruitment curve; the stocks generally became more productive. In contrast, none of the models of Fraser River stocks that we examined explained much of the variability in their productivity.

  6. Chuckwalla Valley multiple-well monitoring site, Chuckwalla Valley, Riverside County

    USGS Publications Warehouse

    Everett, Rhett

    2013-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, is evaluating the geohydrology and water availability of the Chuckwalla Valley, California. As part of this evaluation, the USGS installed the Chuckwalla Valley multiple-well monitoring site (CWV1) in the southeastern portion of the Chuckwalla Basin. Data collected at this site provide information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus enhancing the understanding of the geohydrologic framework of the Chuckwalla Valley. This report presents construction information for the CWV1 multiple-well monitoring site and initial geohydrologic data collected from the site.

  7. Principal facts for gravity stations in the Antelope Valley-Bedell Flat area, west-central Nevada

    USGS Publications Warehouse

    Jewel, Eleanore B.; Ponce, David A.; Morin, Robert L.

    2000-01-01

    In April 2000 the U.S. Geological Survey (USGS) established 211 gravity stations in the Antelope Valley and Bedell Flat area of west-central Nevada (see figure 1). The stations were located about 15 miles north of Reno, Nevada, southwest of Dogskin Mountain, and east of Petersen Mountain, concentrated in Antelope Valley and Bedell Flat (figure 2). The ranges in this area primarily consist of normal-faulted Cretaceous granitic rocks, with some volcanic and metavolcanic rocks. The purpose of the survey was to characterize the hydrogeologic framework of Antelope Valley and Bedell Flat in support of future hydrologic investigations. The information developed during this study can be used in groundwater models. Gravity data were collected between latitude 39°37.5' and 40°00' N and longitude 119°37.5' and 120°00' W. The stations were located on the Seven Lakes Mountain, Dogskin Mountain, Granite Peak, Bedell Flat, Fraser Flat, and Reno NE 7.5 minute quadrangles. All data were tied to secondary base station RENO-A located on the campus of the University of Nevada at Reno (UNR) in Reno, Nevada (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.69 mGal). The value for observed gravity was calculated by multiple ties to the base station RENO (latitude 39°32.30' N, longitude 119°48.70' W, observed gravity value 979674.65 mGal), also on the UNR campus. The isostatic gravity map (figure 3) includes additional data sets from the following sources: 202 stations from a Geological Survey digital data set (Ponce, 1997), and 126 stations from Thomas C. Carpenter (written commun., 1998).

  8. Seasonal Variation in Water Chemistry Parameters in the Clayburn - Willband Watershed, Abbotsford, British Columbia.

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Janmaat, A.; Bourdages, M.; Paulson, D.; Bogaerts, P.; Robertson, K.; Clemence, E.; Smith, S.; Yakemchuk, A.; Faber, A.

    2017-12-01

    Faculty and students from the University of the Fraser Valley (UFV) have conducted time series sampling of the Fraser River at Fort Langley and six Fraser Valley tributaries as a member of the Global Rivers Observatory (GRO, www.globalrivers.org) coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Clayburn - Willband - Stoney watershed has become a focus of the sampling being conducted by faculty and students from the Geography and Biology Departments at UFV. Water chemistry data (water temperature, dissolved oxygen, conductivity, pH and turbidity) and samples (nutrients, major ions and bacteria) have been collected weekly from sites on these creeks. These watersheds are threatened by increasing urban development, increasing idustrial activity, and expansion of agricultural landuse within the watershed. Documenting the seasonal changes in the water chemistry as measured during the onset of the heavy fall and winter precipitation events, the wet and cool winters and springs, and the hot and dry summers will assist in attempts to protect these important salmon spawning streams from anthropogenic activity.

  9. Impacts of cloud immersion on microclimate, photosynthesis and water relations of fraser fir in a temperate mountain cloud forest

    Treesearch

    Keith Reinhardt; William K. Smith

    2010-01-01

    The red spruce-Fraser fir ecosystem (Picea rubens Sarg.-Abies fraseri [Pursh] Poir.) of the southern Appalachian mountains is a temperate zone cloud forest immersed in clouds for 30 to 40 percent of a typical summer day, and experiencing immersion on about 65 percent of all days annually. We compared the microclimate,...

  10. Evaluation of reduction of Fraser incubation by 24h in the EN ISO 11290-1 standard on detection and diversity of Listeria species.

    PubMed

    Gnanou Besse, Nathalie; Favret, Sandra; Desreumaux, Jennifer; Decourseulles Brasseur, Emilie; Kalmokoff, Martin

    2016-05-02

    The EN ISO 11290-1 method for the isolation of Listeria monocytogenes from food is carried out using a double enrichment in Fraser broths. While the method is effective it is also quite long requiring 4-7 days to process a contaminated food, and may be adversely affected by inter-strain and/or inter-species competition in samples containing mixed Listeria populations. Currently, we have little information on the impact of competition on food testing under routine conditions. Food samples (n=130) were analyzed using the standard method and the evolution of Listeria populations in 89 naturally contaminated samples followed over the entire enrichment process. In most instances, maximum increase in L. monocytogenes population occurred over the first 24h following sub-culture in Full Fraser broth and strain recovery was similar at both 24 and 48 h, indicating that the second enrichment step can be reduced by 24h without impacting the recovery of L. monocytogenes or affecting the sensitivity of the method. In approximately 6% of naturally contaminated samples the presence of competing Listeria species adversely impacted L. monocytogenes population levels. Moreover, these effects were more pronounced during the latter 24h of the Fraser enrichment, and potentially could affect or complicate the isolation of these strains. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Shallow Sub-Permafrost Groundwater Systems In A Buried Fjord: Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.

    2014-12-01

    The McMurdo Dry Valleys (MDV), Antarctica, represent a unique geologic setting where permanent lakes, ephemeral streams, and subglacial waters influence surface hydrology in a cold polar desert. Past research suggested that the MDV are underlain by several hundreds of meters of permafrost. Here, we present data collected from an Airborne EM (AEM) resistivity sensor flown over the MDV during the 2011-12 austral summer. A focus of our survey was over the Taylor Glacier where saline, iron-rich subglacial fluid releases at the glacier snout at a feature known as Blood Falls, and over Taylor Valley, where a series of isolated lakes lie between Taylor Glacier and the Ross Sea. Our data show that in Taylor Valley there are extensive areas of low resistivity, interpreted as hypersaline brines, beneath a relatively thin layer of high resistivity material, interpreted as dry- or ice-cemented permafrost. These hypersaline brines remain liquid at temperatures well below 0°C due to their salinity. They appear to be contained within the sedimentary fill deposited in Taylor Valley when it was still a fjord. This brine system continues up valley and has a subglacial extension beneath Taylor Glacier, where it may provide the source that feeds Blood Falls. By categorizing the resistivity measurements according to surficial land cover, we are able to distinguish between ice, permafrost, lake water, and seawater based on characteristic resistivity distributions. Furthermore, this technique shows that areas of surface permafrost become increasingly conductive (brine-filled) with depth, whereas the large lakes exhibit taliks that extend through the entire thickness of the permafrost. The subsurface brines represent a large, unstudied and potentially connected hydrogeologic system, in which subsurface flows may help transfer water and nutrients between lakes in the MDV and into the Ross Sea. Such a system is a potential habitat for extremophile life, similar to that already detected in

  12. Instructional Television Transmission System for the Genesee Valley Area.

    ERIC Educational Resources Information Center

    Brown Associates, Rochester, NY.

    In the entire Genessee Valley area of New York, only two channels are available to educators. Therefore, a study was made of the feasibility of constructing a multi-channel system for the transmission of television and data signals to schools in the area. Field strength measurements were taken of the local educational broadcast signal WXXI-TV to…

  13. Basic Education in the Lower Rio Grande Valley: Human Capital Development or a Colonial System?

    ERIC Educational Resources Information Center

    Lynch, Patrick D.

    This report describes economic, social, and political characteristics of the lower Rio Grande Valley with implications for the educational system, and presents preliminary findings on how south Texas schools are integrating new immigrant Mexican students. The lower Rio Grande Valley comprises four Texas counties and northern Tamaulipas, Mexico.…

  14. Geology and water resources of Owens Valley, California

    USGS Publications Warehouse

    Hollett, Kenneth J.; Danskin, Wesley R.; McCaffrey, William F.; Walti, Caryl L.

    1991-01-01

    Owens Valley, a long, narrow valley located along the east flank of the Sierra Nevada in east-central California, is the main source of water for the city of Los Angeles. The city diverts most of the surface water in the valley into the Owens River-Los Angeles Aqueduct system, which transports the water more than 200 miles south to areas of distribution and use. Additionally, ground water is pumped or flows from wells to supplement the surface-water diversions to the river-aqueduct system. Pumpage from wells needed to supplement water export has increased since 1970, when a second aqueduct was put into service, and local concerns have been expressed that the increased pumpage may have had a detrimental effect on the environment and the indigenous alkaline scrub and meadow plant communities in the valley. The scrub and meadow communities depend on soil moisture derived from precipitation and the unconfined part of a multilayered aquifer system. This report, which describes the hydrogeology of the aquifer system and the water resources of the valley, is one in a series designed to (1) evaluate the effects that groundwater pumping has on scrub and meadow communities and (2) appraise alternative strategies to mitigate any adverse effects caused by, pumping. Two principal topographic features are the surface expression of the geologic framework--the high, prominent mountains on the east and west sides of the valley and the long, narrow intermountain valley floor. The mountains are composed of sedimentary, granitic, and metamorphic rocks, mantled in part by volcanic rocks as well as by glacial, talus, and fluvial deposits. The valley floor is underlain by valley fill that consists of unconsolidated to moderately consolidated alluvial fan, transition-zone, glacial and talus, and fluvial and lacustrine deposits. The valley fill also includes interlayered recent volcanic flows and pyroclastic rocks. The bedrock surface beneath the valley fill is a narrow, steep-sided graben

  15. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  16. Response of power systems to the San Fernando Valley earthquake of 9 February 1971. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiff, A.J.; Yao, J.T.P.

    1972-01-01

    The impact of the San Fernando Valley earthquake on electric power systems is discussed. Particular attention focused on the following three areas; (1) the effects of an earthquake on the power network in the Western States, (2) the failure of subsystems and components of the power system, and (3) the loss of power to hospitals. The report includes sections on the description and functions of major components of a power network, existing procedures to protect the network, safety devices within the system which influence the network, a summary of the effects of the San Fernando Valley earthquake on the Westernmore » States Power Network, and present efforts to reduce the network vulnerability to faults. Also included in the report are a review of design procedures and practices prior to the San Fernando Valley earthquake and descriptions of types of damage to electrical equipment, dynamic analysis of equipment failures, equipment surviving the San Fernando Valley earthquake and new seismic design specifications. In addition, some observations and insights gained during the study, which are not directly related to power systems are discussed.« less

  17. Long-term growth trends of red spruce and fraser fir at Mt. Rogers, Virginia and Mt. Mitchell, North Carolina

    Treesearch

    J.C.G. Goelz; Thomas E. Burk; Shepard M. Zedaker

    1999-01-01

    Cross-sectional area growth and height growth of Fraser fir and red spruce trees growing in Virginia and North Carolina were analyzed to identify possible long-term growth trends. Cross-sectional area growth provided no evidence of growth decline. The individual discs were classified according to parameter estimates of the growth trend equation. The predominant pattern...

  18. Global positioning system surveying to monitor land subsidence in Sacramento Valley, California, USA

    USGS Publications Warehouse

    Ikehara, M.E.

    1994-01-01

    A subsidence research program began in 1985 to document the extent and magnitude of land subsidence in Sacramento Valley, California, an area of about 15 600 km2m, using Global Positioning System (GPS) surveying. In addition to periodic conventional spirit levelling, an examination was made of the changes in GPS-derived ellipsoidal height differences (summary differences) between pairs of adjacent bench marks in central Sacramento Valley from 1986 to 1989. The average rates of land subsidence in the southern Sacramento Valley for the past several decades were determined by comparing GPS-derived orthometric heights with historic published elevations. A maximum average rate of 0.053 m year-1 (0.90 m in 17 years) of subsidence has been measured. -Author

  19. Knickpoints and Hanging Valleys of Licus Vallis, Mars

    NASA Astrophysics Data System (ADS)

    Goudge, T. A.; Fassett, C.

    2016-12-01

    Licus Vallis is a 350 km long valley system located along the dichotomy boundary on Mars. The main trunk of the valley is incised 200-700 m into the surrounding terrain. The valley heads at an outlet breach of a shallow, 30 km diameter impact crater, and is also fed by a system of tributaries incised into the plateau surrounding Licus Vallis. Many of the tributary valleys, as well as the main stem of the valley fed by the paleolake outlet, have profiles that are not smoothly graded, but rather have distinct reaches with concave downward topography. These sections are either knickpoints or hanging valleys that develop in response to changes in the effective local base level, changes in climate conditions during incision of the valley, or lithologic boundaries in the substrate. Here we present remote sensing observations from images and topography to test these competing hypotheses and further characterize the evolution of this large valley system. Slope-watershed area relationships for the tributaries and main trunk valley are used to distinguish between knickpoints and hanging valleys. Analysis of orbital images does not reveal any distinct layer above which knickpoints develop, and the elevation of knickpoints show no systematic trends that might be expected of a regional lithologic unit(s). Our preliminary results suggest that the distance of knickpoint retreat is correlated with the position of the tributary valley and not the watershed area. Downstream valleys have retreated the most, suggesting they have had the most time to adjust to lowering of the local base level associated with incision of the main valley. These results are most consistent with a wave of incision sweeping up the valley system as it adjusts to a low base level in the northern plains. This conclusion is also consistent with observations of the incision depth of Licus Vallis, which increases approximately linearly downstream. Understanding this signature of base level control on the incision

  20. Severity of a mountain pine beetle outbreak across a range of stand conditions in Fraser Experimental Forest, Colorado, United States

    Treesearch

    Anthony G. Vorster; Paul H. Evangelista; Thomas J. Stohlgren; Sunil Kumar; Charles C. Rhoades; Robert M. Hubbard; Antony S. Cheng; Kelly Elder

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks had unprecedented effects on lodgepole pine (Pinus contorta var. latifolia) in western North America. We used data from 165 forest inventory plots to analyze stand conditions that regulate lodgepole pine mortality across a wide range of stand structure and species composition at the Fraser...

  1. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  2. Valley polarization in bismuth

    NASA Astrophysics Data System (ADS)

    Fauque, Benoit

    2013-03-01

    The electronic structure of certain crystal lattices can contain multiple degenerate valleys for their charge carriers to occupy. The principal challenge in the development of valleytronics is to lift the valley degeneracy of charge carriers in a controlled way. In bulk semi-metallic bismuth, the Fermi surface includes three cigar-shaped electron valleys lying almost perpendicular to the high symmetry axis known as the trigonal axis. The in-plane mass anisotropy of each valley exceeds 200 as a consequence of Dirac dispersion, which drastically reduces the effective mass along two out of the three orientations. According to our recent study of angle-dependent magnetoresistance in bismuth, a flow of Dirac electrons along the trigonal axis is extremely sensitive to the orientation of in-plane magnetic field. Thus, a rotatable magnetic field can be used as a valley valve to tune the contribution of each valley to the total conductivity. As a consequence of a unique combination of high mobility and extreme mass anisotropy in bismuth, the effect is visible even at room temperature in a magnetic field of 1 T. Thus, a modest magnetic field can be used as a valley valve in bismuth. The results of our recent investigation of angle-dependent magnetoresistance in other semi-metals and doped semiconductors suggest that a rotating magnetic field can behave as a valley valve in a multi-valley system with sizeable mass anisotropy.

  3. Hydrogeologic implications of increased septic-tank-soil-absorption system density, Ogden Valley, Weber County, Utah

    USGS Publications Warehouse

    Lowe, Mike; Miner, Michael L.; ,

    1990-01-01

    Ground water in Ogden Valley occurs in perched, confined, and unconfined aquifers in the valley fill to depths of 600 feet and more. The confined aquifer, which underlies only the western portion of the valley, is overlain by cleyey silt lacustrine sediments probably deposited during the Bonneville Basin's Little Valley lake cycle sometime between 90,000 and 150,000 years ago. The top of this cleyey silt confining layer is generally 25 to 60 feet below the ground surface. Unconfined conditions occur above and beyond the outer margin of the confining layer. The sediments overlying the confining layer are primarily Lake Bonneville deposits. Water samples from springs, streams, and wells around Pineview Reservoir, and from the reservoir itself, were collected and analyzed. These samples indicate that water quality in Ogden Valley is presently good. Average nitrate concentrations in the shallow unconfined aquifer increase toward the center of Ogden Valley. This trend was not observed in the confined aquifer. There is no evidence, however, of significant water-quality deterioration, even in the vicinity of Huntsville, a town that has been densely developed using septic-tank-soil-absorption systems for much of the time since it was founded in 1860.

  4. Groundwater quality in the Santa Clara River Valley, California

    USGS Publications Warehouse

    Burton, Carmen A.; Landon, Matthew K.; Belitz, Kenneth

    2011-01-01

    The Santa Clara River Valley (SCRV) study unit is located in Los Angeles and Ventura Counties, California, and is bounded by the Santa Monica, San Gabriel, Topatopa, and Santa Ynez Mountains, and the Pacific Ocean. The 460-square-mile study unit includes eight groundwater basins: Ojai Valley, Upper Ojai Valley, Ventura River Valley, Santa Clara River Valley, Pleasant Valley, Arroyo Santa Rosa Valley, Las Posas Valley, and Simi Valley (California Department of Water Resources, 2003; Montrella and Belitz, 2009). The SCRV study unit has hot, dry summers and cool, moist winters. Average annual rainfall ranges from 12 to 28 inches. The study unit is drained by the Ventura and Santa Clara Rivers, and Calleguas Creek. The primary aquifer system in the Ventura River Valley, Ojai Valley, Upper Ojai Valley, and Simi Valley basins is largely unconfined alluvium. The primary aquifer system in the remaining groundwater basins mainly consists of unconfined sands and gravels in the upper portion and partially confined marine and nonmarine deposits in the lower portion. The primary aquifer system in the SCRV study unit is defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database. Public-supply wells typically are completed in the primary aquifer system to depths of 200 to 1,100 feet below land surface (bls). The wells contain solid casing reaching from the land surface to a depth of about 60-700 feet, and are perforated below the solid casing to allow water into the well. Water quality in the primary aquifer system may differ from the water in the shallower and deeper parts of the aquifer. Land use in the study unit is approximately 40 percent (%) natural (primarily shrubs, grassland, and wetlands), 37% agricultural, and 23% urban. The primary crops are citrus, avocados, alfalfa, pasture, strawberries, and dry beans. The largest urban areas in the study unit are the cities of

  5. A new species of mole cricket (Orthoptera: Gryllotalpidae: Gryllotalpinae) from Bukit Fraser, Malay Peninsula, with taxa notes on another similar mole cricket.

    PubMed

    Tan, Ming Kai; Kamaruddin, Khairul Nizam

    2013-01-01

    One new species of Gryllotalpa from Bukit Fraser, Pahang of Malay Peninsula is described: Gryllotalpafraser sp. n. Pho tographs of Gryllotalpa hirsuta Burmeister, 1838 were examined and some remarks are made here, including a compari son with Gryllotalpafraser sp. n. and Gyllotalpa nymphicus Tan, 2012.

  6. Modelling a real-world buried valley system with vertical non-stationarity using multiple-point statistics

    NASA Astrophysics Data System (ADS)

    He, Xiulan; Sonnenborg, Torben O.; Jørgensen, Flemming; Jensen, Karsten H.

    2017-03-01

    Stationarity has traditionally been a requirement of geostatistical simulations. A common way to deal with non-stationarity is to divide the system into stationary sub-regions and subsequently merge the realizations for each region. Recently, the so-called partition approach that has the flexibility to model non-stationary systems directly was developed for multiple-point statistics simulation (MPS). The objective of this study is to apply the MPS partition method with conventional borehole logs and high-resolution airborne electromagnetic (AEM) data, for simulation of a real-world non-stationary geological system characterized by a network of connected buried valleys that incise deeply into layered Miocene sediments (case study in Denmark). The results show that, based on fragmented information of the formation boundaries, the MPS partition method is able to simulate a non-stationary system including valley structures embedded in a layered Miocene sequence in a single run. Besides, statistical information retrieved from the AEM data improved the simulation of the geology significantly, especially for the deep-seated buried valley sediments where borehole information is sparse.

  7. Fy00 Treasure Valley ITS Deployment Project : advanced traffic management system (ATMS) software procurement and implementation process

    DOT National Transportation Integrated Search

    2006-08-02

    In 2000, the Treasure Valley area of the State of Idaho received a federal earmark of $390,000 to develop an Advanced Transportation Management System (ATMS) for the Treasure Valley region of Idaho. The Ada County Highway District (ACHD), located in ...

  8. Ground-Water Budgets for the Wood River Valley Aquifer System, South-Central Idaho, 1995-2004

    USGS Publications Warehouse

    Bartolino, James R.

    2009-01-01

    The Wood River Valley contains most of the population of Blaine County and the cities of Sun Valley, Ketchum, Haley, and Bellevue. This mountain valley is underlain by the alluvial Wood River Valley aquifer system which consists of a single unconfined aquifer that underlies the entire valley, an underlying confined aquifer that is present only in the southernmost valley, and the confining unit that separates them. The entire population of the area depends on ground water for domestic supply, either from domestic or municipal-supply wells, and rapid population growth since the 1970s has caused concern about the long-term sustainability of the ground-water resource. To help address these concerns this report describes a ground-water budget developed for the Wood River Valley aquifer system for three selected time periods: average conditions for the 10-year period 1995-2004, and the single years of 1995 and 2001. The 10-year period 1995-2004 represents a range of conditions in the recent past for which measured data exist. Water years 1995 and 2001 represent the wettest and driest years, respectively, within the 10-year period based on precipitation at the Ketchum Ranger Station. Recharge or inflow to the Wood River Valley aquifer system occurs through seven main sources (from largest to smallest): infiltration from tributary canyons, streamflow loss from the Big Wood River, areal recharge from precipitation and applied irrigation water, seepage from canals and recharge pits, leakage from municipal pipes, percolation from septic systems, and subsurface inflow beneath the Big Wood River in the northern end of the valley. Total estimated mean annual inflow or recharge to the aquifer system for 1995-2004 is 270,000 acre-ft/yr (370 ft3/s). Total recharge for the wet year 1995 and the dry year 2001 is estimated to be 270,000 acre-ft/yr (370 ft3/s) and 220,000 acre-ft/yr (300 ft3/s), respectively. Discharge or outflow from the Wood River Valley aquifer system occurs through

  9. Topological Valley Currents in Gapped Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lensky, Yuri D.; Song, Justin C. W.; Samutpraphoot, Polnop; Levitov, Leonid S.

    2015-06-01

    Gapped 2D Dirac materials, in which inversion symmetry is broken by a gap-opening perturbation, feature a unique valley transport regime. Topological valley currents in such materials are dominated by bulk currents produced by electronic states just beneath the gap rather than by edge modes. The system ground state hosts dissipationless persistent valley currents existing even when topologically protected edge modes are absent. Valley currents induced by an external bias are characterized by a quantized half-integer valley Hall conductivity. The undergap currents dominate magnetization and the charge Hall effect in a light-induced valley-polarized state.

  10. Groundwater availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The

  11. Extraction of Maltol from Fraser Fir: A Comparison of Microwave-Assisted Extraction and Conventional Heating Protocols for the Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Koch, Andrew S.; Chimento, Clio A.; Berg, Allison N.; Mughal, Farah D.; Spencer, Jean-Paul; Hovland, Douglas E.; Mbadugha, Bessie; Hovland, Allan K.; Eller, Leah R.

    2015-01-01

    Two methods for the extraction of maltol from Fraser fir needles are performed and compared in this two-week experiment. A traditional benchtop extraction using dichloromethane is compared to a microwave-assisted extraction using aqueous ethanol. Students perform both procedures and weigh the merits of each technique. In doing so, students see a…

  12. Tracing river chemistry in space and time: Dissolved inorganic constituents of the Fraser River, Canada

    NASA Astrophysics Data System (ADS)

    Voss, Britta M.; Peucker-Ehrenbrink, Bernhard; Eglinton, Timothy I.; Fiske, Gregory; Wang, Zhaohui Aleck; Hoering, Katherine A.; Montluçon, Daniel B.; LeCroy, Chase; Pal, Sharmila; Marsh, Steven; Gillies, Sharon L.; Janmaat, Alida; Bennett, Michelle; Downey, Bryce; Fanslau, Jenna; Fraser, Helena; Macklam-Harron, Garrett; Martinec, Michelle; Wiebe, Brayden

    2014-01-01

    The Fraser River basin in southwestern Canada bears unique geologic and climatic features which make it an ideal setting for investigating the origins, transformations and delivery to the coast of dissolved riverine loads under relatively pristine conditions. We present results from sampling campaigns over three years which demonstrate the lithologic and hydrologic controls on fluxes and isotope compositions of major dissolved inorganic runoff constituents (dissolved nutrients, major and trace elements, 87Sr/86Sr, δD). A time series record near the Fraser mouth allows us to generate new estimates of discharge-weighted concentrations and fluxes, and an overall chemical weathering rate of 32 t km-2 y-1. The seasonal variations in dissolved inorganic species are driven by changes in hydrology, which vary in timing across the basin. The time series record of dissolved 87Sr/86Sr is of particular interest, as a consistent shift between higher (“more radiogenic”) values during spring and summer and less radiogenic values in fall and winter demonstrates the seasonal variability in source contributions throughout the basin. This seasonal shift is also quite large (0.709-0.714), with a discharge-weighted annual average of 0.7120 (2 s.d. = 0.0003). We present a mixing model which predicts the seasonal evolution of dissolved 87Sr/86Sr based on tributary compositions and water discharge. This model highlights the importance of chemical weathering fluxes from the old sedimentary bedrock of headwater drainage regions, despite their relatively small contribution to the total water flux.

  13. National highway system connectors to freight facilities in the Delaware Valley region

    DOT National Transportation Integrated Search

    2001-10-01

    DVRPC conducted a study of important roadway connections between the National Highway System and 12 key intermodal freight terminals (or clusters of freight facilities) to assist the planning needs of the Delaware Valley Goods Movement Task Force.

  14. Town of Chino Valley Municipal Water System Improvement Project FONSI and EA

    EPA Pesticide Factsheets

    EPA Region 9 has prepared an Environmental Assessment (EA) describing the potential environmental impacts associated with, and the alternatives to, the proposed Water System Improvement Project in the town of China Valley, Arizona. This Finding of No Signi

  15. Hydrogeology of, and simulation of ground-water flow in a mantled carbonate-rock system, Cumberland Valley, Pennsylvania

    USGS Publications Warehouse

    Chichester, D.C.

    1996-01-01

    The U.S. Geological Survey conducted a study in a highly productive and complex regolith-mantled carbonate valley in the northeastern part of the Cumberland Valley, Pa., as part of its Appalachian Valleys and Piedmont Regional Aquifer-system Analysis program. The study was designed to quantify the hydrogeologic characteristics and understand the ground-water flow system of a highly productive and complex thickly mantled carbonate valley. The Cumberland Valley is characterized by complexly folded and faulted carbonate bedrock in the valley bottom, by shale and graywacke to the north, and by red-sedimentary and diabase rocks in the east-southeast. Near the southern valley hillslope, the carbonate rock is overlain by wedge-shaped deposit of regolith, up to 450 feet thick, that is composed of residual material, alluvium, and colluvium. Locally, saturated regolith is greater than 200 feet thick. Seepage-run data indicate that stream reaches, near valley walls, are losing water from the stream, through the regolith, to the ground-water system. Results of hydrograph-separation analyses indicate that base flow in stream basins dominated by regolith-mantled carbonate rock, carbonate rock, and carbonate rock and shale are 81.6, 93.0, and 67.7 percent of total streamflow, respectively. The relative high percentage for the regolith-mantled carbonate-rock basin indicates that the regolith stores precipitation and slowly, steadily releases this water to the carbonate-rock aquifer and to streams as base flow. Anomalies in water-table gradients and configuration are a result of topography and differences in the character and distribution of overburden material, permeability, rock type, and geologic structure. Most ground-water flow is local, and ground water discharges to nearby springs and streams. Regional flow is northeastward to the Susquehanna River. Average-annual water budgets were calculated for the period of record from two continuous streamflow-gaging stations. Average

  16. Ground-water conditions in southern Utah Valley and Goshen Valley, Utah

    USGS Publications Warehouse

    Cordova, R.M.

    1970-01-01

    The investigation of ground-water conditions in southern Utah Valley and Goshen Valley, Utah, was made by the U. S. Geological Survey as part of a cooperative program with the Utah Department of Natural Resources, Division of Water Rights, to investigate the water resources of the State. The purposes of the investigation were to (1) determine the occurrence, recharge, discharge, movement, storage, chemical quality, and availability of ground water; (2) appraise the effects of increased withdrawal of water from wells; and (3) evaluate the effect of the Central Utah Project on the ground-water reservoir and the water supply of Utah Lake.This report presents a description of the aquifer system in the two valleys, a detailed description of the ground-water resources, and conclusions about potential development and its effect on the hydrologic conditions in the valleys. Two supplementary reports are products of the investigation. A basic-data release (Cordova, 1969) contains most of the basic data collected for the investigation, including well characteristics, drillers' logs, water levels, pumpage from wells, chemical analyses of ground and surface waters, and discharge of selected springs, drains, and streams. An interpretive report (Cordova and Mower, 1967) contains the results of a large-scale aquifer test in southern Utah Valley.

  17. Valley spin polarization of Tl/Si(111)

    NASA Astrophysics Data System (ADS)

    Stolwijk, Sebastian D.; Schmidt, Anke B.; Sakamoto, Kazuyuki; Krüger, Peter; Donath, Markus

    2017-11-01

    The metal/semiconductor hybrid system Tl/Si(111)-(1 ×1 ) exhibits a unique Tl-derived surface state with remarkable properties. It lies within the silicon band gap and forms spin-momentum-locked valleys close to the Fermi energy at the K ¯ and K¯' points. These valleys are completely spin polarized with opposite spin orientation at K ¯ and K¯' and show a giant spin splitting of more than 0.5 eV. We present a detailed preparation study of the surface system and demonstrate that the electronic valleys are extremely robust, surviving exposure to 100 L hydrogen and 500 L oxygen. We investigate the influence of additional Tl atoms on the spin-polarized valleys. By combining photoemission and inverse photoemission, we prove the existence of fully spin-polarized valleys crossing the Fermi level. Moreover, these metallic valleys carry opposite Berry curvature at K ¯ and K¯', very similar to WSe2, promising a large spin Hall effect. Thus, Tl/Si(111)-(1 ×1 ) possesses all necessary key properties for spintronic applications.

  18. 19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. PIPELINE INTERSECTION AT THE MOUTH OF WAIKOLU VALLEY ON THE BEACH. VALVE AT RIGHT (WITH WRENCH NEARBY) OPENS TO FLUSH VALLEY SYSTEM OUT. VALVE AT LEFT CLOSES TO KEEP WATER FROM ENTERING SYSTEM ALONG THE PALI DURING REPAIRS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  19. Twenty-Five year (1982-2007) history of lodgepole pine dwarf mistletoe animal vectors and ethephon control on the Fraser Experimental Forest in Colorado

    Treesearch

    Thomas Nicholls

    2009-01-01

    This is a summary of the 25-year history of studies of mammal and bird vectors of lodgepole pine dwarf mistletoe (Arceuthobium americanum), ethephon control of dwarf mistletoe, and the ecology of the most important dwarf mistletoe vector, the gray jay (Persisoreus canadensis), on the USDA Forest Service, Fraser Experimental Forest...

  20. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and

  1. Irrigation in the Rio Grande Valley, New Mexico: A study and annotated bibliography of the development of irrigation systems

    Treesearch

    Frank E. Wozniak

    1998-01-01

    This publication reviews both published and unpublished sources on Puebloan, Hispanic, and AngloAmerican irrigation systems in the Rio Grande Valley. Settlement patterns and Spanish and Mexican land grants in the valley are also discussed. The volume includes an annotated bibliography.

  2. Hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction, San Joaquin Valley, California

    USGS Publications Warehouse

    Sneed, Michelle

    2001-01-01

    This report summarizes hydraulic and mechanical properties affecting ground-water flow and aquifer-system compaction in the San Joaquin Valley, a broad alluviated intermontane structural trough that constitutes the southern two-thirds of the Central Valley of California. These values will be used to constrain a coupled ground-water flow and aquifer-system compaction model of the western San Joaquin Valley called WESTSIM. A main objective of the WESTSIM model is to evaluate potential future land subsidence that might occur under conditions in which deliveries of imported surface water for agricultural use are reduced and ground-water pumping is increased. Storage values generally are components of the total aquifer-system storage and include inelastic and elastic skeletal storage values of the aquifers and the aquitards that primarily govern the potential amount of land subsidence. Vertical hydraulic conductivity values generally are for discrete thicknesses of sediments, usually aquitards, that primarily govern the rate of land subsidence. The data were compiled from published sources and include results of aquifer tests, stress-strain analyses of borehole extensometer observations, laboratory consolidation tests, and calibrated models of aquifer-system compaction.

  3. Valley photonic crystals for control of spin and topology

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  4. 36 CFR 7.26 - Death Valley National Monument.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Death Valley National... INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.26 Death Valley National Monument. (a) Mining. Mining in Death Valley National Monument is subject to the following regulations, which are...

  5. Topological Valley Transport in Two-dimensional Honeycomb Photonic Crystals.

    PubMed

    Yang, Yuting; Jiang, Hua; Hang, Zhi Hong

    2018-01-25

    Two-dimensional photonic crystals, in analogy to AB/BA stacking bilayer graphene in electronic system, are studied. Inequivalent valleys in the momentum space for photons can be manipulated by simply engineering diameters of cylinders in a honeycomb lattice. The inequivalent valleys in photonic crystal are selectively excited by a designed optical chiral source and bulk valley polarizations are visualized. Unidirectional valley interface states are proved to exist on a domain wall connecting two photonic crystals with different valley Chern numbers. With the similar optical vortex index, interface states can couple with bulk valley polarizations and thus valley filter and valley coupler can be designed. Our simple dielectric PC scheme can help to exploit the valley degree of freedom for future optical devices.

  6. Evolutionary history and population genetics of fraser fir and intermediate fir, southern Appalachian endemic conifers imperiled by an exotic pest and climate change

    Treesearch

    Kevin M. Potter; John Frampton; Sedley Josserand; C. Dana. Nelson

    2010-01-01

    Two Abies (true fir) taxa are endemic to high elevations of the Appalachian Mountains, where both are restricted to small populations and are imperiled by the same exotic insect. Fraser fir (Abies fraseri) exists in a handful of island-like populations on mountain ridges in the southern Appalachians of North Carolina, Tennessee and...

  7. Simulation of an urban ground-water-flow system in the Menomonee Valley, Milwaukee, Wisconsin using analytic element modeling

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.

    2004-01-01

    A single-layer, steady-state analytic element model was constructed to simulate shallow ground-water flow in the Menomonee Valley, an old industrial center southwest of downtown Milwaukee, Wisconsin. Project objectives were to develop an understanding of the shallow ground-water flow system and identify primary receptors of recharge to the valley. The analytic element model simulates flow in a 18.3 m (60 ft) thick layer of estuarine and alluvial sediments and man-made fill that comprises the shallow aquifer across the valley. The thin, laterally extensive nature of the shallow aquifer suggests horizontal-flow predominates, thus the system can appropriately be modeled with the Dupuit-Forchheimer approximation in an analytic element model. The model was calibrated to the measured baseflow increase between two USGS gages on the Menomonee River, 90 head measurements taken in and around the valley during December 1999, and vertical gradients measured at five locations under the river and estuary in the valley. Recent construction of the Milwaukee Metropolitan Sewer District Inline Storage System (ISS) in the Silurian dolomite under the Menomonee Valley has locally lowered heads in the dolomite appreciably, below levels caused by historic pumping. The ISS is a regional hydraulic sink which removes water from the bedrock even during dry weather. The potential effect on flow directions in the shallow aquifer of dry-weather infiltration to the ISS was evaluated by adjusting the resistance of the line-sink strings representing the ISS in the model to allow infiltration from 0 to 100% of the reported 9,500 m3/d. The best fit to calibration targets was found between 60% (5,700 m3/d) and 80% (7,600 m3/d) of the reported dry-weather infiltration. At 60% infiltration, 65% of the recharge falling on the valley terminates at the ISS and 35% at the Menomonee River and estuary. At 80% infiltration, 73% of the recharge terminates at the ISS, and 27% at the river and estuary. Model

  8. Morning Transition Tracer Experiments in a Deep Narrow Valley.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David

    1989-07-01

    Three sulfur hexafluoride atmospheric tracer experiments were conducted during the post-sunrise temperature inversion breakup period in the deep, narrow Brush Creek Valley of Colorado. Experiments were conducted under clear, undisturbed weather conditions.A continuous elevated tracer plume was produced along the axis of the valley before sunrise and the behavior of the plume during the inversion breakup period was detected down-valley from the release point using an array of radio-controlled sequential bag samplers, a vertical SF6 profiling system carried on a tethered balloon, two portable gas chromatographs operated on a sidewall of the valley, and a continuous real-time SF6 monitor operated from a research aircraft. Supporting meteorological data came primarily from tethered balloon profilers. The nocturnal elevated plume was carried and diffused in down-valley flows. After sunrise, convective boundary layers grew upward from the sunlit valley surfaces, fumigating the elevated plume onto the valley floor and sidewalls. Upslope flow developed in the growing convective boundary layers, carrying fumigated SF6 up the sidewalls and causing a compensating subsidence over the valley center. High post-sunrise SF6 concentrations were experienced on the northeast-facing sidewall of the northwest-southeast oriented valley as a result of cross-valley flow, which developed due to differential solar heating of the sidewalls. Reversal of the down-valley wind system brought air with lower SF6 concentrations into the lower valley.

  9. Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system

    USGS Publications Warehouse

    Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.; Dalrymple, Robert W.; Boyd, Ron; Zaitlin, Brian A.

    1994-01-01

    The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.

  10. Canada's Fraser River Basin transitioning from a nival to a hybrid system in the late 20th century

    NASA Astrophysics Data System (ADS)

    Kang, D. H.; Gao, H.; Shi, X.; Dery, S. J.

    2014-12-01

    The Fraser River Basin (FRB) is the largest river draining to the Pacific Ocean in British Columbia (BC), Canada, and it provides the world's most abundant salmon populations. With recent climate change, the shifting hydrologic regime of the FRB is evaluated using hydrological modeling results over the period 1949 to 2006. To quantify the contribution of snowmelt to runoff generation, the ratio RSR, defined as the division of the sum of the snowmelt across the watershed by the integrated runoff over the water year, is employed. Modeled results for RSR at Hope, BC — the furthest downstream hydrometric station of the FRB — show a significant decrease (from 0.80 to 0.65) in the latter part of the 20th century. RSR is found to be mainly suppressed by a decrease of the snowmelt across the FRB with a decline with 107 mm by 26 % along the simulation period. There is also a prominent shift in the timing of streamflow, with the spring freshet at Hope, BC advancing 30 days followed by reduced summer flows for over two months. The timing of the peak spring freshet becomes even earlier when moving upstream of the FRB owing to short periods of time after melting from the snow source to the rivers.

  11. Origin of the Valley Networks On Mars: A Hydrological Perspective

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.

    2000-01-01

    The geomorphology of the Martian valley networks is examined from a hydrological perspective for their compatibility with an origin by rainfall, globally higher heat flow, and localized hydrothermal systems. Comparison of morphology and spatial distribution of valleys on geologic surfaces with terrestrial fluvial valleys suggests that most Martian valleys are probably not indicative of a rainfall origin, nor are they indicative of formation by an early global uniformly higher heat flow. In general, valleys are not uniformly distributed within geologic surface units as are terrestrial fluvial valleys. Valleys tend to form either as isolated systems or in clusters on a geologic surface unit leaving large expanses of the unit virtually untouched by erosion. With the exception of fluvial valleys on some volcanoes, most Martian valleys exhibit a sapping morphology and do not appear to have formed along with those that exhibit a runoff morphology. In contrast, terrestrial sapping valleys form from and along with runoff valleys. The isolated or clustered distribution of valleys suggests localized water sources were important in drainage development. Persistent ground-water outflow driven by localized, but vigorous hydrothermal circulation associated with magmatism, volcanism, impacts, or tectonism is, however, consistent with valley morphology and distribution. Snowfall from sublimating ice-covered lakes or seas may have provided an atmospheric water source for the formation of some valleys in regions where the surface is easily eroded and where localized geothermal/hydrothermal activity is sufficient to melt accumulated snowpacks.

  12. Nitrogen input inventory in the Nooksack-Abbotsford-Sumas Transboundary Region: Key component of an international nitrogen management study.

    EPA Science Inventory

    Background/Question/Methods: Nitrogen (N) is an essential biological element, so optimizing N use for food production while minimizing the release of N and co-pollutants to the environment is an important challenge. The Nooksack-lower Fraser Valley, spanning a portion of the w...

  13. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  14. Intelligent transportation systems deployment project for the Ada County Highway District FY99 Treasure Valley ITS : final self evaluation report

    DOT National Transportation Integrated Search

    2004-11-01

    In 1999, the Treasure Valley area of the State of Idaho received a federal earmark of $441,470 to develop an Incident Management Plan for the Treasure Valley and to design/deploy Intelligent Transportation Systems (ITS) devices for Interstates 84 and...

  15. Transgressive systems tract development and incised-valley fills within a quaternary estuary-shelf system: Virginia inner shelf, USA

    USGS Publications Warehouse

    Foyle, A.M.; Oertel, G.F.

    1997-01-01

    High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries

  16. Infection of gill and kidney of Fraser River sockeye salmon, Oncorhynchus nerka (Walbaum), by Parvicapsula minibicornis and its effect on host physiology.

    PubMed

    Bradford, M J; Lovy, J; Patterson, D A

    2010-09-01

    Adult sockeye salmon, Oncorhynchus nerka (Walbaum), migrating upstream in the Fraser River, British Columbia, are exposed to the myxozoan parasite Parvicapsula minibicornis when they enter the river from the ocean. Infections are initially localized in the kidney but have recently been associated with branchitis in one population. Adult fish from five locations in the watershed were sampled to determine whether branchitis was widespread. P. minibicornis infections in kidney glomeruli were prevalent in all samples except for a sample of fish that had just entered the Fraser River from the ocean. For fish captured in spawning streams, parasites were observed in the renal tubules and gill, and branchitis was observed in 70% of fish. Plasma osmolality was negatively correlated with the number of parasites in the kidney tubules, which we hypothesize to be caused by the breach of glomerular membranes as the parasite leaves the fish. Plasma lactate values increased with increasing levels of pathology in gills. These findings support the hypothesis that P. minibicornis impacts the physiology of migrating fish, which may in turn affect the likelihood that adults will be able to migrate and spawn successfully.

  17. Hydrologic effects of stress-relief fracturing in an Appalachian Valley

    USGS Publications Warehouse

    Wyrick, Granville G.; Borchers, James W.

    1981-01-01

    A hydrologic study at Twin Falls State Park, Wyoming County, West Virginia, was made to determine how fracture systems affect the occurrence and movement of ground water in a typical valley of the Appalachian Plateaus Physiographic Province. Twin Falls was selected because it is generally unaffected by factors that would complicate an analysis of the data. The study area was the Black Fork Valley at Twin Falls. The valley is about 3 miles long and 400 to 600 feet wide and is cut into massive sandstone units interbedded with thin coal and shale beds. The study was made to determine how aquifer characteristics were related to fracture systems in this valley, so that the relation could be applied to studies of other valleys. Two sites were selected for test drilling, pumping tests, and geophysical studies. One site is in the upper part of the valley, and the second is near the lower central part. At both sites, ground water occurs mainly in horizontal bedding-plane fractures under the valley floor and in nearly vertical and horizontal slump fractures along the valley wall. The aquifer is under confined conditions under the valley floor and unconfined conditions along the valley wall. The fractures pinch out under the valley walls, which form impermeable barriers. Tests of wells near the valley center indicated a change in storage coefficient as the cone of depression caused by pumping reached the confined-unconfined boundaries; the tests also indicated barrier-image effects when the cone reached the impermeable boundaries. Drawdown from pumping near the center of the valley affected water levels at both sites, indicating a hydraulic connection from the upper to the lower end of the valley. Stream gain-and-loss studies show that ground water discharges to the stream from horizontal fractures beneath Black Fork Falls, near the mouth of Black Fork. The fracture systems that constitute most of the transmissive part of the aquifer at Twin Falls are like those described as

  18. Valley photonic crystals for control of spin and topology.

    PubMed

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu; Wang, Yuan; Zhang, Xiang

    2017-03-01

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley-spin locking behaviour results in selective net spin flow inside bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.

  19. Valley-dependent band structure and valley polarization in periodically modulated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao

    2016-08-01

    The valley-dependent energy band and transport property of graphene under a periodic magnetic-strained field are studied, where the time-reversal symmetry is broken and the valley degeneracy is lifted. The considered superlattice is composed of two different barriers, providing more degrees of freedom for engineering the electronic structure. The electrons near the K and K' valleys are dominated by different effective superlattices. It is found that the energy bands for both valleys are symmetric with respect to ky=-(AM+ξ AS) /4 under the symmetric superlattices. More finite-energy Dirac points, more prominent collimation behavior, and new crossing points are found for K' valley. The degenerate miniband near the K valley splits into two subminibands and produces a new band gap under the asymmetric superlattices. The velocity for the K' valley is greatly renormalized compared with the K valley, and so we can achieve a finite velocity for the K valley while the velocity for the K' valley is zero. Especially, the miniband and band gap could be manipulated independently, leading to an increase of the conductance. The characteristics of the band structure are reflected in the transmission spectra. The Dirac points and the crossing points appear as pronounced peaks in transmission. A remarkable valley polarization is obtained which is robust to the disorder and can be controlled by the strain, the period, and the voltage.

  20. A plan to study the aquifer system of the Central Valley of California

    USGS Publications Warehouse

    Bertoldi, Gilbert L.

    1979-01-01

    Unconsolidated Quaternary alluvial deposits comprise a large complex aquifer system in the Central Valley of California. Millions of acre-feet of water is pumped from the system annually to support a large and expanding agribusiness industry. Since the 1950's, water levels have been steadily declining in many areas of the valley and concern has been expressed about the ability of the entire ground-water system to support agribusiness at current levels, not to mention its ability to function at projected expansion levels. At current levels of ground-water use, an estimated 1.5 to 2 million acre-feet is withdrawn from storage each year; that is, 1.5 to 2 million acre-feet of water is pumped annually in excess of annual replenishment. The U.S. Geological Survey has initiated a 4-year study to develop geologic, hydrologic, and hydraulic information and to establish a valleywide ground-water data base that will be used to build computer models of the ground-water flow system. Subsequently, these models may be used to evaluate the system response to various ground-water management alternatives. This report describes current problems, objectives of the study, and outlines the general work to be accomplished in the study area. A bibliography of about 600 references is included. (Kosco-USGS)

  1. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined withmore » geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells

  2. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico.

    PubMed

    McCullough, Ellen B; Matson, Pamela A

    2016-04-26

    Knowledge systems-networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action-have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research-decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives.

  3. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California.

    PubMed

    Knight, Rosemary; Smith, Ryan; Asch, Ted; Abraham, Jared; Cannia, Jim; Viezzoli, Andrea; Fogg, Graham

    2018-03-09

    The passage of the Sustainable Groundwater Management Act in California has highlighted a need for cost-effective ways to acquire the data used in building conceptual models of the aquifer systems in the Central Valley of California. One approach would be the regional implementation of the airborne electromagnetic (AEM) method. We acquired 104 line-kilometers of data in the Tulare Irrigation District, in the Central Valley, to determine the depth of investigation (DOI) of the AEM method, given the abundance of electrically conductive clays, and to assess the usefulness of the method for mapping the hydrostratigraphy. The data were high quality providing, through inversion of the data, models displaying the variation in electrical resistivity to a depth of approximately 500 m. In order to transform the resistivity models to interpreted sections displaying lithology, we established the relationship between resistivity and lithology using collocated lithology logs (from drillers' logs) and AEM data. We modeled the AEM response and employed a bootstrapping approach to solve for the range of values in the resistivity model corresponding to sand and gravel, mixed coarse and fine, and clay in the unsaturated and saturated regions. The comparison between the resulting interpretation and an existing cross section demonstrates that AEM can be an effective method for mapping the large-scale hydrostratigraphy of aquifer systems in the Central Valley. The methods employed and developed in this study have widespread application in the use of the AEM method for groundwater management in similar geologic settings. © 2018 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  4. Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

    USGS Publications Warehouse

    Stamos, Christina L.; Christensen, Allen H.; Langenheim, Victoria

    2017-07-19

    structures that could affect groundwater flow between the groundwater basins in the study area, gravity data were collected using more closely spaced measurements in September 2014. Groundwater-level data was gathered and collected from March 2014 through March 2015 to determine depth to water and direction of groundwater flow. The gravity and groundwater-level data showed that the saturated thickness of the alluvium was about 2,000 feet thick to the east and about 130 feet thick above the northward-trending basement ridge near Llano, California. Although it was uncertain whether the basement ridge affects the groundwater system, a potential barrier to groundwater flow could be created if the water table fell below the altitude of the basement ridge, effectively causing the area to the west of the basement ridge to become hydraulically isolated from the area to the east. In addition, the direction of regional-groundwater flow likely will be influenced by future changes in the number and distribution of pumping wells and the thickness of the saturated alluvium from which water is withdrawn. Three-dimensional animations were created to help visualize the relation between the basins’ basement topography and the groundwater system in the area. Further studies that could help to more accurately define the basins and evaluate the groundwater-flow system include exploratory drilling of multi-depth monitoring wells; collection of depth-dependent water-quality samples; and linking together existing, but separate, groundwater-flow models from the Antelope Valley and El Mirage Valley groundwater basins into a single, calibrated groundwater-flow model.

  5. Chemical and isotopic prediction of aquifer temperatures in the geothermal system at Long Valley, California

    USGS Publications Warehouse

    Fournier, R.O.; Sorey, M.L.; Mariner, R.H.; Truesdell, A.H.

    1979-01-01

    Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220??C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ?? 10??C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to ??? 220??C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282??C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 ?? 107 cal/s. ?? 1979.

  6. East African Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This rare, cloud free view of the East African Rift Valley, Kenya (1.5N, 35.5E) shows a clear view of the Turkwell River Valley, an offshoot of the African REift System. The East African Rift is part of a vast plate fracture which extends from southern Turkey, through the Red Sea, East Africa and into Mozambique. Dark green patches of forests are seen along the rift margin and tea plantations occupy the cooler higher ground.

  7. Electrical control of the anomalous valley Hall effect in antiferrovalley bilayers

    NASA Astrophysics Data System (ADS)

    Tong, Wen-Yi; Duan, Chun-Gang

    2017-08-01

    In analogy to all-electric spintronics, all-electric valleytronics, i.e., valley manipulation via electric means, becomes an exciting new frontier as it may bring revolutions in the field of data storage with ultra-high speed and ultra-low power consumption. The existence of the anomalous valley Hall effect in ferrovalley materials demonstrates the possibility of electrical detection for valley polarization. However, in previously proposed valley-polarized monolayers, the anomalous valley Hall effect is controlled by external magnetic fields. Here, through elaborate structural design, we propose the antiferrovally bilayer as an ideal candidate for realizing all-electric valleytronic devices. Using the minimal k.p model, we show that the energy degeneracy between valley indexes in such system can be lifted by electric approaches. Subsequently, the anomalous valley Hall effect strongly depends on the electric field as well. Taking the bilayer VSe2 as an example, all-electric tuning and detecting of anomalous valley Hall effect is confirmed by density-functional theory calculations, indicating that the valley information in such antiferrovalley bilayer can be reversed by an electric field perpendicular to the plane of the system and easily probed through the sign of the Hall voltage.

  8. Electrical valley filtering in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Hsieh, Tzu-Chi; Chou, Mei-Yin; Wu, Yu-Shu

    2018-03-01

    This work investigates the feasibility of electrical valley filtering for holes in transition metal dichalcogenides. We look specifically into the scheme that utilizes a potential barrier to produce valley-dependent tunneling rates, and perform the study with both a k .p -based analytic method and a recursive Green's function-based numerical method. The study yields the transmission coefficient as a function of incident energy and transverse wave vector, for holes going through lateral quantum barriers oriented in either armchair or zigzag directions, in both homogeneous and heterogeneous systems. The main findings are the following: (1) The tunneling current valley polarization increases with increasing barrier width or height; (2) both the valley-orbit interaction and band structure warping contribute to valley-dependent tunneling, with the former contribution being manifest in structures with asymmetric potential barriers, and the latter being orientation dependent and reaching maximum for transmission in the armchair direction; and (3) for transmission ˜0.1 , a tunneling current valley polarization of the order of 10 % can be achieved.

  9. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Analysis of ERTS-1 imagery of the Northern California Coast Ranges has disclosed a potential relation between a heretofore unrecognized fracture system and known deposits of mercury and geothermally active areas in the Coast Range and between oil and gas fields in the Sacramento Valley. Three potentially important systems of linear elements within the Coast Ranges, detected on ERTS-1 imagery, may represent fault systems or zones of shearing because topographic offset and stratigraph disruption can be seen along one or two of the lineations. One of the systems in subparallel to the San Andreas fault and is confined to the Pacific Coastal Belt. Another set is confined to the central core of the Coast Ranges. The third set of linear features (Valley System) has not heretofore been recognized. Some of the known mercury deposits and geothermally active areas near Clear Lake, in the Coast Ranges, are along the Valley System or at the intersection of the Central and Valley Systems. The plotted locations of some of the oil and gas fields in the Sacramento Valley are associated with the Valley and/or Central Systems. If these relations prove reliable, the ERTS-1 imagery may prove to be an extremely useful exploration tool.

  10. Evolution of the knowledge system for agricultural development in the Yaqui Valley, Sonora, Mexico

    PubMed Central

    McCullough, Ellen B.; Matson, Pamela A.

    2016-01-01

    Knowledge systems—networks of linked actors, organizations, and objects that perform a number of knowledge-related functions that link knowledge and know how with action—have played a key role in fostering agricultural development over the last 50 years. We examine the evolution of the knowledge system of the Yaqui Valley, Mexico, a region often described as the home of the green revolution for wheat, tracing changes in the functions of critical knowledge system participants, information flows, and research priorities. Most of the knowledge system's key players have been in place for many decades, although their roles have changed in response to exogenous and endogenous shocks and trends (e.g., drought, policy shifts, and price trends). The system has been agile and able to respond to challenges, in part because of the diversity of players (evolving roles of actors spanning research–decision maker boundaries) and also because of the strong and consistent role of innovative farmers. Although the agricultural research agenda in the Valley is primarily controlled from within the agricultural sector, outside voices have become an important influence in broadening development- and production-oriented perspectives to sustainability perspectives. PMID:21606365

  11. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  12. Personal Contacts and the Adoption of Innovations.

    ERIC Educational Resources Information Center

    Alleyne, E. Patrick; Verner, Coolie

    A study undertaken among commercial strawberry growers in the Fraser Valley of British Columbia, Canada, sought to define the network of personal contacts as used by the farmers in obtaining information relevant to growing practices. Growers were divided into four adopter categories: laggards, late majority, early majority, and innovator-early…

  13. Scaling the Morphology of Sapping and Pressurized Groundwater Experiments to Martian Valleys

    NASA Astrophysics Data System (ADS)

    Marra, W. A.; Kleinhans, M. G.

    2013-12-01

    Various valleys exist on Mars, which shows the former existence of fluvial activity and thus liquid water at the surface. Although these valleys show similarities with some valleys on Earth, many morphological features are unique for Mars or are very rare on Earth. Therefore, we lack knowledge about the formative processes of these enigmatic valleys. In this study, we explored possible groundwater scenarios for the formation of these valleys using flume experiments, as there are no pure Earth analogues for these systems. We aim to infer their formative processes from morphological properties. A series of flume experiments were carried out in a 4x6x1 m experimental setup, where we observed the valley formation as result from seeping groundwater by both local and distal groundwater sources and by pressurized groundwater release. Time-lapse imagery and DEMs of the experiments show the morphological development, associated processes, and landscape evolution. Indicators of the processes where we particularly looked at were changes in valley slope, cross-sectional shape, the relations between valley dimensions, and regional landscape properties as drainage density and valley size distributions. Hydrological modelling assists in scaling the observed experimental features to real-world systems. Additionally, we looked at valleys on Earth in the Atacama Desert, at Box canyon in Idaho, valleys around Kohala on Hawaii and Apalachicola bluffs in Florida to test the applicability of our methods to real-world systems. In the seeping groundwater valleys, valleys develop due to a combination of mass-wasting failures, mudflows and fluvial flow. The latter two processes are expressed in the final morphology by a break in slope. The mass wasting processes result in U-shaped valleys, which are more pronounced in distal groundwater cases. However, in real-world cases of similar shaped valleys, the cross-sectional shape seems strongly influenced by the strength of the material as well

  14. The Central Valley Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Faunt, C.; Belitz, K.; Hanson, R. T.

    2009-12-01

    Historically, California’s Central Valley has been one of the most productive agricultural regions in the world. The Central Valley also is rapidly becoming an important area for California’s expanding urban population. In response to this competition for water, a number of water-related issues have gained prominence: conjunctive use, artificial recharge, hydrologic implications of land-use change, subsidence, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS made a detailed assessment of the Central Valley aquifer system that includes the present status of water resources and how these resources have changed over time. The principal product of this assessment is a tool, referred to as the Central Valley Hydrologic Model (CVHM), that simulates surface-water flows, groundwater flows, and land subsidence in response to stresses from human uses and from climate variability throughout the entire Central Valley. The CVHM utilizes MODFLOW combined with a new tool called “Farm Process” to simulate groundwater and surface-water flow, irrigated agriculture, land subsidence, and other key processes in the Central Valley on a monthly basis. This model was discretized horizontally into 20,000 1-mi2 cells and vertically into 10 layers ranging in thickness from 50 feet at the land surface to 750 feet at depth. A texture model constructed by using data from more than 8,500 drillers’ logs was used to estimate hydraulic properties. Unmetered pumpage and surface-water deliveries for 21 water-balance regions were simulated with the Farm Process. Model results indicate that human activities, predominately surface-water deliveries and groundwater pumping for irrigated agriculture, have dramatically influenced the hydrology of the Central Valley. These human activities have increased flow though the aquifer system by about a factor of six compared to pre-development conditions. The simulated hydrology reflects spatial

  15. Valley photonic crystals for control of spin and topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Jian-Wen; Chen, Xiao-Dong; Zhu, Hanyu

    2016-11-28

    Photonic crystals offer unprecedented opportunity for light manipulation and applications in optical communication and sensing1,2,3,4. Exploration of topology in photonic crystals and metamaterials with non-zero gauge field has inspired a number of intriguing optical phenomena such as one-way transport and Weyl points5,6,7,8,9,10. Recently, a new degree of freedom, valley, has been demonstrated in two-dimensional materials11,12,13,14,15. Here, we propose a concept of valley photonic crystals with electromagnetic duality symmetry but broken inversion symmetry. We observe photonic valley Hall effect originating from valley-dependent spin-split bulk bands, even in topologically trivial photonic crystals. Valley–spin locking behaviour results in selective net spin flow insidemore » bulk valley photonic crystals. We also show the independent control of valley and topology in a single system that has been long pursued in electronic systems, resulting in topologically-protected flat edge states. Valley photonic crystals not only offer a route towards the observation of non-trivial states, but also open the way for device applications in integrated photonics and information processing using spin-dependent transportation.« less

  16. Lunar and Planetary Science XXXV: Mars: Hydrology, Drainage, and Valley Systems

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Analysis of Orientation Dependence of Martian Gullies; 2) A Preliminary Relationship between the Depth of Martian Gullies and the Abundance of Hydrogen on Near-Surface Mars; 3) Water Indicators in Sirenum Terra and around the Argyre Impact Basin, Mars; 4) The Distribution of Gullies and Tounge-shaped Ridges and Their Role in the Degradation of Martian Craters; 5) A Critical Evaluation of Crater Lake Systems in Memnonia Quadrangle, Mars; 6) Impact-generated Hydrothermal Activity at Gusev Crater: Implications for the Spirit Mission; 7) Characterization of the Distributary Fan in Holden NE Crater using Stereo Analysis; 8) Computational Analysis of Drainage Basins on Mars: Appraising the Drainage Density; 9) Hypsometric Analyses of Martian Basins: A Comparison to Terrestrial, Lunar, and Venusian Hypsometry; 10) Morphologic Development of Harmakhis Vallis, Mars; 11) Mangala Valles, Mars: Investigations of the source of Flood Water and Early Stages of Flooding; 12) The Formation of Aromatum Chaos and the Water Discharge Rate at Ravi Vallis; 13) Inferring Hydraulics from Geomorphology for Athabasca Valles, Mars; 14) The Origin and Evolution of Dao Vallis: Formation and Modification of Martian Channels by Structural Collapse and Glaciation; 15) Snowmelt and the Formation of Valley Networks on Martian Volcanoes; 16) Extent of Floating Ice in an Ancient Echus Chasma/Kasei Valley System, Mars.

  17. Valley Hall effect and Nernst effect in strain engineered graphene

    NASA Astrophysics Data System (ADS)

    Niu, Zhi Ping; Yao, Jian-ming

    2018-04-01

    We theoretically predict the existence of tunneling valley Hall effect and Nernst effect in the normal/strain/normal graphene junctions, where a strained graphene is sandwiched by two normal graphene electrodes. By applying an electric bias a pure transverse valley Hall current with longitudinal charge current is generated. If the system is driven by a temperature bias, a valley Nernst effect is observed, where a pure transverse valley current without charge current propagates. Furthermore, the transverse valley current can be modulated by the Fermi energy and crystallographic orientation. When the magnetic field is further considered, we obtain a fully valley-polarized current. It is expected these features may be helpful in the design of the controllable valleytronic devices.

  18. Scaling relations for large Martian valleys

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.; Montgomery, David R.; Greenberg, Harvey M.

    2009-02-01

    The dendritic morphology of Martian valley networks, particularly in the Noachian highlands, has long been argued to imply a warmer, wetter early Martian climate, but the character and extent of this period remains controversial. We analyzed scaling relations for the 10 large valley systems incised in terrain of various ages, resolvable using the Mars Orbiter Laser Altimeter (MOLA) and the Thermal Emission Imaging System (THEMIS). Four of the valleys originate in point sources with negligible contributions from tributaries, three are very poorly dissected with a few large tributaries separated by long uninterrupted trunks, and three exhibit the dendritic, branching morphology typical of terrestrial channel networks. We generated width-area and slope-area relationships for each because these relations are identified as either theoretically predicted or robust terrestrial empiricisms for graded precipitation-fed, perennial channels. We also generated distance-area relationships (Hack's law) because they similarly represent robust characteristics of terrestrial channels (whether perennial or ephemeral). We find that the studied Martian valleys, even the dendritic ones, do not satisfy those empiricisms. On Mars, the width-area scaling exponent b of -0.7-4.7 contrasts with values of 0.3-0.6 typical of terrestrial channels; the slope-area scaling exponent $\\theta$ ranges from -25.6-5.5, whereas values of 0.3-0.5 are typical on Earth; the length-area, or Hack's exponent n ranges from 0.47 to 19.2, while values of 0.5-0.6 are found on Earth. None of the valleys analyzed satisfy all three relations typical of terrestrial perennial channels. As such, our analysis supports the hypotheses that ephemeral and/or immature channel morphologies provide the closest terrestrial analogs to the dendritic networks on Mars, and point source discharges provide terrestrial analogs best suited to describe the other large Martian valleys.

  19. Extraction of Martian valley networks from digital topography

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Collier, M. L.

    2004-01-01

    We have developed a novel method for delineating valley networks on Mars. The valleys are inferred from digital topography by an autonomous computer algorithm as drainage networks, instead of being manually mapped from images. Individual drainage basins are precisely defined and reconstructed to restore flow continuity disrupted by craters. Drainage networks are extracted from their underlying basins using the contributing area threshold method. We demonstrate that such drainage networks coincide with mapped valley networks verifying that valley networks are indeed drainage systems. Our procedure is capable of delineating and analyzing valley networks with unparalleled speed and consistency. We have applied this method to 28 Noachian locations on Mars exhibiting prominent valley networks. All extracted networks have a planar morphology similar to that of terrestrial river networks. They are characterized by a drainage density of approx.0.1/km, low in comparison to the drainage density of terrestrial river networks. Slopes of "streams" in Martian valley networks decrease downstream at a slower rate than slopes of streams in terrestrial river networks. This analysis, based on a sizable data set of valley networks, reveals that although valley networks have some features pointing to their origin by precipitation-fed runoff erosion, their quantitative characteristics suggest that precipitation intensity and/or longevity of past pluvial climate were inadequate to develop mature drainage basins on Mars.

  20. 77 FR 33237 - Saline Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Valley Warm Springs Management Plan/Environmental Impact Statement, Death Valley National Park, Inyo... an Environmental Impact Statement for the Saline Valley Warm Springs Management Plan, Death Valley... analysis process for the Saline Valley Warm Springs Management Plan for Death Valley [[Page 33238...

  1. The T-REX valley wind intercomparison project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidli, J; Billings, B J; Burton, R

    2008-08-07

    An accurate simulation of the evolution of the atmospheric boundary layer is very important, as the evolution of the boundary layer sets the stage for many weather phenomena, such as deep convection. Over mountain areas the evolution of the boundary layer is particularly complex, due to the nonlinear interaction between boundary layer turbulence and thermally-induced mesoscale wind systems, such as the slope and valley winds. As the horizontal resolution of operational forecasts progresses to finer and finer resolution, more and more of the thermally-induced mesoscale wind systems can be explicitly resolved, and it is very timely to document the currentmore » state-of-the-art of mesoscale models at simulating the coupled evolution of the mountain boundary layer and the valley wind system. In this paper we present an intercomparison of valley wind simulations for an idealized valley-plain configuration using eight state-of-the-art mesoscale models with a grid spacing of 1 km. Different sets of three-dimensional simulations are used to explore the effects of varying model dynamical cores and physical parameterizations. This intercomparison project was conducted as part of the Terrain-induced Rotor Experiment (T-REX; Grubisic et al., 2008).« less

  2. Implementing information technology to improve workplace health: a web-based information needs assessment of managers in Fraser Health, British Columbia.

    PubMed

    Sandhu, Jag S; Anderson, Keith; Keen, Dave; Yassi, Annalee

    2005-01-01

    A web-based questionnaire-survey was administered primarily to determine what information is useful to managers in Fraser Health, of British Columbia to support decision-making for workplace health and safety. The results indicated that managers prefer electronic quarterly reports, with targets, goals, and historical trends rated as "very important." Over 85.7% "agree" that if information was readily available in the "most beneficial" format, they would be able to improve workplace health. Recommendations include that managers be presented with clear and concise workplace health reports that facilitate analysis for decision-making.

  3. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  4. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  5. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  6. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  7. 27 CFR 9.57 - Green Valley of Russian River Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Green Valley of Russian River Valley. 9.57 Section 9.57 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.57 Green Valley of Russian River...

  8. Resonant tunneling spectroscopy of valley eigenstates on a donor-quantum dot coupled system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: t.kobayashi@unsw.edu.au; Heijden, J. van der; House, M. G.

    We report on electronic transport measurements through a silicon double quantum dot consisting of a donor and a quantum dot. Transport spectra show resonant tunneling peaks involving different valley states, which illustrate the valley splitting in a quantum dot on a Si/SiO{sub 2} interface. The detailed gate bias dependence of double dot transport allows a first direct observation of the valley splitting in the quantum dot, which is controllable between 160 and 240 μeV with an electric field dependence 1.2 ± 0.2 meV/(MV/m). A large valley splitting is an essential requirement for implementing a physical electron spin qubit in a silicon quantum dot.

  9. DoD-GEIS Rift Valley Fever Monitoring and Prediction System as a Tool for Defense and US Diplomacy

    NASA Technical Reports Server (NTRS)

    Anyamba, Assaf; Tucker, Compton J.; Linthicum, Kenneth J.; Witt, Clara J.; Gaydos, Joel C.; Russell, Kevin L.

    2011-01-01

    Over the last 10 years the Armed Forces Health Surveillance Center's Global Emerging Infections Surveillance and Response System (GEIS) partnering with NASA'S Goddard Space Flight Center and USDA's USDA-Center for Medical, Agricultural & Veterinary Entomology established and have operated the Rift Valley fever Monitoring and Prediction System to monitor, predict and assess the risk of Rift Valley fever outbreaks and other vector-borne diseases over Africa and the Middle East. This system is built on legacy DoD basic research conducted by Walter Reed Army Institute of Research overseas laboratory (US Army Medical Research Unit-Kenya) and the operational satellite environmental monitoring by NASA GSFC. Over the last 10 years of operation the system has predicted outbreaks of Rift Valley fever in the Horn of Africa, Sudan, South Africa and Mauritania. The ability to predict an outbreak several months before it occurs provides early warning to protect deployed forces, enhance public health in concerned countries and is a valuable tool use.d by the State Department in US Diplomacy. At the international level the system has been used by the Food and Agricultural Organization (FAD) and the World Health Organization (WHO) to support their monitoring, surveillance and response programs in the livestock sector and human health. This project is a successful testament of leveraging resources of different federal agencies to achieve objectives of force health protection, health and diplomacy.

  10. Regional Aquifer-System Analysis— Appalachian Valley and Piedmont

    USGS Publications Warehouse

    ,

    2004-01-01

    The Regional Aquifer-System Analysis Program, RASA, represents a systematic effort to study a number of the Nation’s most important aquifer systems, which, in aggregate, underlie much of the country and which represent an important component of the Nation’s total water supply. In general, the boundaries of these studies are identified by the hydrologic extent of each system and, accordingly, transcend the political subdivisions to which investigations have often arbitrarily been limited in the past. The broad objective for each study is to assemble geologic, hydrologic, and geochemical information, to analyze and develop an understanding of the system, and to develop predictive capabilities that will contribute to the effective management of the system. The use of computer simulation is an important element of the RASA studies to develop an understanding of the natural, undisturbed hydrologic system and the changes brought about in it by human activities and to provide a means of predicting the regional effects of future pumping or other stresses.The final interpretive results of the RASA Program are presented in a series of U.S. Geological Survey Professional Papers that describe the geology, hydrology, and geochemistry of each regional aquifer system. Each study within the RASA Program is assigned a single Professional Paper number beginning with Professional Paper 1400.This paper, Professional Paper 1422, represents the Regional Aquifer-System Analysis— Appalachian Valley and Piedmont. It is published as several individual volumes over several years.

  11. Water resources of Parowan Valley, Iron County, Utah

    USGS Publications Warehouse

    Marston, Thomas M.

    2017-08-29

    Parowan Valley, in Iron County, Utah, covers about 160 square miles west of the Red Cliffs and includes the towns of Parowan, Paragonah, and Summit. The valley is a structural depression formed by northwest-trending faults and is, essentially, a closed surface-water basin although a small part of the valley at the southwestern end drains into the adjacent Cedar Valley. Groundwater occurs in and has been developed mainly from the unconsolidated basin-fill aquifer. Long-term downward trends in groundwater levels have been documented by the U.S. Geological Survey (USGS) since the mid-1950s. The water resources of Parowan Valley were assessed during 2012 to 2014 with an emphasis on refining the understanding of the groundwater and surface-water systems and updating the groundwater budget.Surface-water discharge of five perennial mountain streams that enter Parowan Valley was measured from 2013 to 2014. The total annual surface-water discharge of the five streams during 2013 to 2014 was about 18,000 acre-feet (acre-ft) compared to the average annual streamflow of about 22,000 acre-ft from USGS streamgages operated on the three largest of these streams from the 1940s to the 1980s. The largest stream, Parowan Creek, contributes more than 50 percent of the annual surface-water discharge to the valley, with smaller amounts contributed by Red, Summit, Little, and Cottonwood Creeks.Average annual recharge to the Parowan Valley groundwater system was estimated to be about 25,000 acre-ft from 1994 to 2013. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall on the Markagunt Plateau east of the valley. Smaller amounts of recharge occur as infiltration of streamflow and unconsumed irrigation water near the east side of the valley on alluvial fans associated with mountain streams at the foot of the Red Cliffs. Subsurface flow from the mountain block to the east of the valley is a significant source of groundwater recharge to the basin-fill aquifer

  12. Geological setting of chemosynthetic communities in the Monterey Fan Valley system

    USGS Publications Warehouse

    Embley, R.W.; Eittreim, S.L.; McHugh, C.H.; Normark, W.R.; Rau, G.H.; Hecker, Barbara; DeBevoise, A.E.; Greene, H. Gary; Ryan, William B. F.; Harrold, C.; Baxter, C.

    1990-01-01

    Alvin dives and camera tows within the "meander area" of the Monterey and Ascension Fan Valleys have located nine chemosynthetic communities over depths ranging from 3000 to 3600 m over a distance of 55 km. Most of the observed communities consist largely of Calyptogena phaseoliformis, but Solemya (species unknown) and a pogonophoran (genus Polybrachia), have also been identified. The ??13C values (-35.0 to -33.6 per mil) and the presence of APS reductase and ATP sulfurylase in the C. phaseoliformis tissue is consistent with sulfur chemoautotrophy. Two reduced organic matter sources for the H2S are proposed: (1) older beds exposed by the deep erosion (up to 400 m) of the fan valleys and (2) concentrations of anaerobically decomposd organic matter buried in the valley floor. ?? 1990.

  13. Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen

    2018-05-01

    Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.

  14. A College-Sponsored Laboratory Skills Contest for High-School Students: A Ten-Year Retrospective

    ERIC Educational Resources Information Center

    Last, Arthur M.; Ablog, Aileen; Millar, Shawn; von Hollen, Gordon; Webb, Jane; Dyck, Shawna

    2007-01-01

    Over the past ten years, the Department of Chemistry at the University College of the Fraser Valley has sponsored an annual laboratory skills contest for local Grade 12 high-school students as part of its Chemistry Week celebrations. The organizational details of the contest, its objectives, successes, and short-comings are discussed. (Contains 1…

  15. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  16. Orbital and Rover-based Exploration of Perseverance Valley, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Morgan, A. M.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Gadal, C.; Blois, G.; Palucis, M. C.; Goudge, T. A.; Morgan, A. M.; Day, M.; Sullivan, R. J., Jr.; Umurhan, O. M.; Pähtz, T.; Birch, S.; Morgan, A. M.; Goudge, T. A.; Palucis, M. C.; Arvidson, R. E.; Duran Vinent, O.; Craddock, R. A.; Holo, S.; Blois, G.; Gadal, C.; Morgan, A. M.; Sullivan, R. J., Jr.; Day, M.; Arvidson, R. E.

    2017-12-01

    Perseverance Valley, based on orbital observations from the Mars Reconnaisance Orbiter HiRISE image data, is a 180 m long, 20 m wide anastomosing shallow channel system superimposed on the Cape Byron rim segment of the 22 km diameter Noachian-age Endeavour Crater on Mars. Several impact craters are superimposed on the valley system, indicating antiquity, although the valley's high degree of preservation indicates that it formed after significant regional-scale fluvial erosion and diffusive smoothing of Endeavour and its rim segments. The valley cuts into the inner, eastern rim on a 10˚ to 15˚ slope, and starts at a local low area on the rim crest. A set of shallow channels, some lined with perimeter rocks, extends from the west to meet the entrance to the valley. The western rim tilts to the west 0.8˚ and thus the channels tilt away from the valley entrance. The Mars Rover Opportunity has explored the western shallow channels leading up to the entrance to the valley. As of this writing Opportunity is located on the southern side of the valley entrance, with the Athena Science Team waiting until after solar conjunction to command the rover to descend into the valley to search for geomorphic and sedimentologic evidence related to valley formation. Wind erosion along radial fractures extending into and down Cape Byron is a possibility. Debris flows are also under consideration, perhaps enabled by melting ice at the rim crest. Dry avalanches are unlikely due to the low slopes. A fluvial origin is a strong contender based on models that show it is possible to have had a western catchment present when the Burns formation hydrated sulfates were being emplaced, followed by self-compaction of these sediments that tilted the western plains away from the rim crest. The key to testing among the various hypotheses for formation of the valley and shallow channels leading into the entrance will be the detailed stereo and multispectral imaging observations Opportunity will make

  17. Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: Several contiguous but discrete systems

    USGS Publications Warehouse

    Hildreth, W.

    2004-01-01

    The volcanic history of the Long Valley region is examined within a framework of six successive (spatially discrete) foci of silicic magmatism, each driven by locally concentrated basaltic intrusion of the deep crust in response to extensional unloading and decompression melting of the upper mantle. A precaldera dacite field (3.5-2.5 Ma) northwest of the later site of Long Valley and the Glass Mountain locus of >60 high-silica rhyolite vents (2.2-0.79 Ma) northeast of it were spatially and temporally independent magmatic foci, both cold in postcaldera time. Shortly before the 760-ka caldera-forming eruption, the mantle-driven focus of crustal melting shifted ???20 km westward, abandoning its long-stable position under Glass Mountain and energizing instead the central Long Valley system that released 600 km3 of compositionally zoned rhyolitic Bishop Tuff (760 ka), followed by ???100 km3 of crystal-poor Early Rhyolite (760-650 ka) on the resurgent dome and later by three separate 5-unit clusters of varied Moat Rhyolites of small volume (527-101 ka). West of the caldera ring-fault zone, a fourth focus started up ???160 ka, producing a 10??20-km array of at least 35 mafic vents that surround the trachydacite/alkalic rhyodacite Mammoth Mountain dome complex at its core. This young 70-vent system lies west of the structural caldera and (though it may have locally re-energized the western margin of the mushy moribund Long Valley reservoir) represents a thermally and compositionally independent focus. A fifth major discrete focus started up by ???50 ka, 25-30 km north of Mammoth Mountain, beneath the center of what has become the Mono Craters chain. In the Holocene, this system advanced both north and south, producing ???30 dike-fed domes of crystal-poor high-silica rhyolite, some as young as 650 years. The nearby chain of mid-to-late Holocene Inyo domes is a fault-influenced zone of mixing where magmas of at least four kinds are confluent. The sixth and youngest focus is

  18. Hydrological responses to channelization and the formation of valley plugs and shoals

    USGS Publications Warehouse

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  19. New York State Department of Transportation, Lower Hudson Valley, Region 8 : intelligent transportation systems early deployment planning study

    DOT National Transportation Integrated Search

    1998-11-01

    The purpose of this study is to provide the framework for future implementation of Intelligent Transportation Systems (ITS) in the Lower Hudson Valley area. The focus of the planning study is the regional freeway system, major arterial routes and the...

  20. Valley Physics in Non-Hermitian Artificial Acoustic Boron Nitride

    NASA Astrophysics Data System (ADS)

    Wang, Mudi; Ye, Liping; Christensen, J.; Liu, Zhengyou

    2018-06-01

    The valley can serve as a new degree of freedom in the manipulation of particles or waves in condensed matter physics, whereas systems containing combinations of gain and loss elements constitute rich building units that can mimic non-Hermitian properties. By introducing gain and loss in artificial acoustic boron nitride, we show that the acoustic valley states and the valley-projected edge states display exotic behaviors in that they sustain either attenuated or amplified wave propagation. Our findings show how non-Hermiticity introduces a mechanism in tuning topological protected valley transports, which may have significance in advanced wave control for sensing and communication applications.

  1. Subglacial tunnel valleys dissecting the Alpine landscape - an example from Bern, Switzerland

    NASA Astrophysics Data System (ADS)

    Dürst Stucki, Mirjam; Reber, Regina; Schlunegger, Fritz

    2010-05-01

    The morphology of the Alpine and adjacent landscapes is directly related to glacial erosion and associated sediment transport. Here we report the effects of glacio-hydrologic erosion on bedrock topography in the Swiss Mittelland. Specifically, we identify the presence of subsurface valleys beneath the city of Bern in Switzerland and discuss their genesis. Detailed stratigraphic investigations of more than 4000 borehole data within a 430 km2-large area reveal the presence of a network of >200 m-deep and 1000 m-wide valleys. They are flat floored with steep sided walls and are filled by Quaternary fluvio-glacial deposits. The main valley beneath Bern is straight and oriented towards the NNW, with valley flanks more than 20° steep. The valley bottom has an irregular undulating profile along the thalweg, with differences between sills and hollows higher than 50-100 m over a reach of 4 kilometers length. Approximately 200 m high bedrock uplands flank the valley network. The uplands are dissected by up to 80 m-deep and 500 m-broad hanging valleys that currently drain away from the axis of the main valley. We interpret the valleys beneath the city of Bern to be a tunnel valley network which originated from subglacial erosion by melt water. The upland valleys are hanging with respect to the trunk system, indicating that these incipient upland systems as well as the main gorge beneath Bern formed by glacial melt water under hydrostatic pressure. This explains the ascending flow of glacial water from the base towards the higher elevation hanging valleys where high water discharge resulted in the formation of broad valley geometries. Similarly, we relate efficient erosion, excavation of bedrock and the formation of the tunnel valley network with >20° steep shoulders to confined flow under pressure, caused by the overlying ice.

  2. Scaling relationships and concavity of small valley networks on Mars

    NASA Astrophysics Data System (ADS)

    Penido, Julita C.; Fassett, Caleb I.; Som, Sanjoy M.

    2013-01-01

    Valley networks are widely interpreted as the preserved erosional record of water flowing across the martian surface. The manner in which valley morphometric properties scale with drainage area has been widely examined on Earth. Earlier studies assessing these properties on Mars have suggested that martian valleys are morphometrically distinct from those on Earth. However, these earlier measurements were generally made on large valley systems because of the limited topographic data available. In this study, we determine the scaling properties of valley networks at smaller scales than have been previously assessed, using digital elevation models from the High Resolution Stereo Camera (HRSC). We find a Hack's law exponent of 0.74, larger than on Earth, and our measurements also reveal that individual small valleys have concave up, concave down, and quasi-linear longitudinal profiles, consistent with earlier studies of dissected terrain on Mars. However, for many valleys, widths are observed to increase downstream similarly to how they scale in terrestrial channels. The similarities and differences between valley networks on Mars and Earth are consistent with the idea that valleys on Mars are comparatively immature, and precipitation was a likely mechanism for delivering water to these networks.

  3. Hydrogeology of the Susquehanna River valley-fill aquifer system and adjacent areas in eastern Broome and southeastern Chenango Counties, New York

    USGS Publications Warehouse

    Heisig, Paul M.

    2012-01-01

    The hydrogeology of the valley-fill aquifer system along a 32-mile reach of the Susquehanna River valley and adjacent areas was evaluated in eastern Broome and southeastern Chenango Counties, New York. The surficial geology, inferred ice-marginal positions, and distribution of stratified-drift aquifers were mapped from existing data. Ice-marginal positions, which represent pauses in the retreat of glacial ice from the region, favored the accumulation of coarse-grained deposits whereas more steady or rapid ice retreat between these positions favored deposition of fine-grained lacustrine deposits with limited coarse-grained deposits at depth. Unconfined aquifers with thick saturated coarse-grained deposits are the most favorable settings for water-resource development, and three several-mile-long sections of valley were identified (mostly in Broome County) as potentially favorable: (1) the southernmost valley section, which extends from the New York–Pennsylvania border to about 1 mile north of South Windsor, (2) the valley section that rounds the west side of the umlaufberg (an isolated bedrock hill within a valley) north of Windsor, and (3) the east–west valley section at the Broome County–Chenango County border from Nineveh to East of Bettsburg (including the lower reach of the Cornell Brook valley). Fine-grained lacustrine deposits form extensive confining units between the unconfined areas, and the water-resource potential of confined aquifers is largely untested. Recharge, or replenishment, of these aquifers is dependent not only on infiltration of precipitation directly on unconfined aquifers, but perhaps more so from precipitation that falls in adjacent upland areas. Surface runoff and shallow groundwater from the valley walls flow downslope and recharge valley aquifers. Tributary streams that drain upland areas lose flow as they enter main valleys on permeable alluvial fans. This infiltrating water also recharges valley aquifers. Current (2012) use of

  4. Airborne Dust Models in Valley Fever Research

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.; Galgiani, J. N.; Vujadinovic, M.; Pejanovic, G.; Vukovic, A. J.; Prasad, A. K.; Djurdjevic, V.; Nickovic, S.

    2011-12-01

    Dust storms (haboobs) struck Phoenix, Arizona, in 2011 on July 5th and again on July 18th. One potential consequence: an estimated 3,600 new cases of Valley Fever in Maricopa County from the first storm alone. The fungi, Coccidioides immitis, the cause of the respiratory infection, Valley Fever, lives in the dry desert soils of the American southwest and southward through Mexico, Central America and South America. The fungi become part of the dust storm and, a few weeks after inhalation, symptoms of Valley Fever may appear, including pneumonia-like illness, rashes, and severe fatigue. Some fatalities occur. Our airborne dust forecast system predicted the timing and extent of the storm, as it has done with other, often different, dust events. Atmosphere/land surface models can be part of public health services to reduce risk of Valley Fever and exacerbation of other respiratory and cardiovascular illness.

  5. Valley Fever (Coccidioidomycosis) Statistics

    MedlinePlus

    ... Valley fever may be under-recognized. 2 , 3 Public health surveillance for Valley fever Valley fever is reportable ... MMWR) . Check with your local, state, or territorial public health department for more information about disease reporting requirements ...

  6. Fitness-valley crossing with generalized parent-offspring transmission.

    PubMed

    Osmond, Matthew M; Otto, Sarah P

    2015-11-01

    Simple and ubiquitous gene interactions create rugged fitness landscapes composed of coadapted gene complexes separated by "valleys" of low fitness. Crossing such fitness valleys allows a population to escape suboptimal local fitness peaks to become better adapted. This is the premise of Sewall Wright's shifting balance process. Here we generalize the theory of fitness-valley crossing in the two-locus, bi-allelic case by allowing bias in parent-offspring transmission. This generalization extends the existing mathematical framework to genetic systems with segregation distortion and uniparental inheritance. Our results are also flexible enough to provide insight into shifts between alternate stable states in cultural systems with "transmission valleys". Using a semi-deterministic analysis and a stochastic diffusion approximation, we focus on the limiting step in valley crossing: the first appearance of the genotype on the new fitness peak whose lineage will eventually fix. We then apply our results to specific cases of segregation distortion, uniparental inheritance, and cultural transmission. Segregation distortion favouring mutant alleles facilitates crossing most when recombination and mutation are rare, i.e., scenarios where crossing is otherwise unlikely. Interactions with more mutable genes (e.g., uniparental inherited cytoplasmic elements) substantially reduce crossing times. Despite component traits being passed on poorly in the previous cultural background, small advantages in the transmission of a new combination of cultural traits can greatly facilitate a cultural transition. While peak shifts are unlikely under many of the common assumptions of population genetic theory, relaxing some of these assumptions can promote fitness-valley crossing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Transtensional deformation and structural control of contiguous but independent magmatic systems: Mono-Inyo Craters, Mammoth Mountain, and Long Valley Caldera, California

    USGS Publications Warehouse

    Riley, P.; Tikoff, B.; Hildreth, Wes

    2012-01-01

    The Long Valley region of eastern California (United States) is the site of abundant late Tertiary–present magmatism, including three geochemically distinct stages of magmatism since ca. 3 Ma: Mammoth Mountain, the Mono-Inyo volcanic chain, and Long Valley Caldera. We propose two tectonic models, one explaining the Mammoth Mountain–Mono-Inyo magmatism and the other explaining the presence of Long Valley Caldera. First, the ongoing Mammoth Mountain–Mono-Inyo volcanic chain magmatism is explained by a ridge-transform-ridge system, with the Mono-Inyo volcanic chain acting as one ridge segment and the South Moat fault acting as a transform fault. Implicit in this first model is that this region of eastern California is beginning to act as an incipient plate boundary. Second, the older Long Valley Caldera system is hypothesized to occur in a region of enhanced extension resulting from regional fault block rotation, specifically involving activation of the sinistral faults of the Mina deflection. The tectonic models are consistent with observed spatial and temporal differences in the geochemistry of the regional magmas, and the westward progression of magmatism since ca. 12 Ma.

  8. Catastrophic flooding origin of shelf valley systems in the English Channel.

    PubMed

    Gupta, Sanjeev; Collier, Jenny S; Palmer-Felgate, Andy; Potter, Graeme

    2007-07-19

    Megaflood events involving sudden discharges of exceptionally large volumes of water are rare, but can significantly affect landscape evolution, continental-scale drainage patterns and climate change. It has been proposed that a significant flood event eroded a network of large ancient valleys on the floor of the English Channel-the narrow seaway between England and France. This hypothesis has remained untested through lack of direct evidence, and alternative non-catastrophist ideas have been entertained for valley formation. Here we analyse a new regional bathymetric map of part of the English Channel derived from high-resolution sonar data, which shows the morphology of the valley in unprecedented detail. We observe a large bedrock-floored valley that contains a distinct assemblage of landforms, including streamlined islands and longitudinal erosional grooves, which are indicative of large-scale subaerial erosion by high-magnitude water discharges. Our observations support the megaflood model, in which breaching of a rock dam at the Dover Strait instigated catastrophic drainage of a large pro-glacial lake in the southern North Sea basin. We suggest that megaflooding provides an explanation for the permanent isolation of Britain from mainland Europe during interglacial high-sea-level stands, and consequently for patterns of early human colonisation of Britain together with the large-scale reorganization of palaeodrainage in northwest Europe.

  9. Long Valley Caldera-Mammoth Mountain unrest: The knowns and unknowns

    USGS Publications Warehouse

    Hill, David P.

    2017-01-01

    This perspective is based largely on my study of the Long Valley Caldera (California, USA) over the past 40 years. Here, I’ll examine the “knowns” and the “known unknowns” of the complex tectonic–magmatic system of the Long Valley Caldera volcanic complex. I will also offer a few brief thoughts on the “unknown unknowns” of this system.

  10. Providing Undergraduate Research Opportunities Through the World Rivers Observatory Collaborative Network

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Marsh, S. J.; Janmaat, A.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.

    2013-12-01

    Successful research collaboration exists between the University of the Fraser Valley (UFV), a primarily undergraduate-serving university located on the Fraser River in British Columbia, and the World Rivers Observatory that is coordinated through the Woods Hole Oceanographic Institution (WHOI) and the Woods Hole Research Center (WHRC). The World Rivers Observatory coordinates time-series sampling of 15 large rivers, with particular focus on the large Arctic rivers, the Ganges-Brahmaputra, Congo, Fraser, Yangtze (Changjiang), Amazon, and Mackenzie River systems. The success of this international observatory critically depends on the participation of local collaborators, such as UFV, that are necessary in order to collect temporally resolved data from these rivers. Several faculty members and undergraduate students from the Biology and Geography Departments of UFV received on-site training from the lead-PIs of the Global Rivers Observatory. To share information and ensure good quality control of sampling methods, WHOI and WHRC hosted two international workshops at Woods Hole for collaborators. For the past four years, faculty and students from UFV have been collecting a variety of bi-monthly water samples from the Fraser River for the World Rivers Observatory. UFV undergraduate students who become involved learn proper sampling techniques and are given the opportunity to design and conduct their own research. Students have collected, analyzed and presented data from this project at regional, national, and international scientific meetings. UFV undergraduate students have also been hosted by WHOI and WHRC as guest students to work on independent research projects. While at WHOI and WHRC, students are able to conduct research using state-of-the-art specialized research facilities not available at UFV.

  11. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    USGS Publications Warehouse

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  12. Optical manipulation of valley pseudospin

    DOE PAGES

    Ye, Ziliang; Sun, Dezheng; Heinz, Tony F.

    2016-09-19

    The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically and electrically. In addition, the existence of coherence in the valley pseudospin has been identified experimentally. The manipulation of such valley coherence has, however,more » remained out of reach. In this paper, we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe 2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. Finally, this study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.« less

  13. Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation

    NASA Astrophysics Data System (ADS)

    Chen, Xiao-Dong; Zhao, Fu-Li; Chen, Min; Dong, Jian-Wen

    2017-07-01

    The valley has been exploited as a binary degree of freedom to realize valley-selective Hall transport and circular dichroism in two-dimensional layered materials, in which valley-contrasting physics is indispensable in making the valley index an information carrier. In this Rapid Communication, we reveal valley-contrasting physics in all-dielectric valley photonic crystals. The link between the angular momentum of light and the valley state is discussed, and unidirectional excitation of the valley chiral bulk state is realized by sources carrying orbital angular momentum with proper chirality. Characterized by the nonzero valley Chern number, valley-dependent edge states and the resultant broadband robust transport is found in such an all-dielectric system. Our work has potential in the orbital angular momentum assisted light manipulation and the discovery of valley-protected topological states in nanophotonics and on-chip integration.

  14. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  15. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The Final Scientific Report (FSR) is submitted in two parts (I and II). FSR part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by terra-gen power, llc, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method

  16. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    USGS Publications Warehouse

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  17. The Influence of Inherited Topography and/or Tectonics on Paleo-channel Systems and Incised Valleys Offshore of South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2016-12-01

    The Quaternary paleo-channel and incised valley systems of the Southeastern United States have been well documented onshore; however, few studies have focused on the positions and fill histories of these systems on the continental shelf. The effects of inherited topography can be studied through the integration of seismo-acoustic and core data. Existing offshore datasets have been used to document underlying structural and stratigraphic fabrics deeper than the Quaternary in the sedimentary record. By integrating these results with the published tectonic setting and onshore interpretations, some of the controls on paleo-channel/incised valley positions can be inferred. Preliminary results suggest the stress caused by the uplift along the Cape Fear Arch has been accommodated by shallow folding and reactivation of deeper structures in the South Carolina offshore province. The resultant topography may have dictated both the position and geometry of the fluvial incisions across the shelf. This in turn influences the accommodation space available to be filled in as sea level fluctuates. The depositional facies within the paleo-channel and incised valley range from single, uninterrupted fill to complex and repeated scour and fill with at least four different episodes of erosion and deposition. The observations and interpretations proposed here are the first steps in unraveling the complex interplay between sea level, climate, and tectonic changes on the morphology and stratigraphy of incised valleys and paleo-channels observed offshore of South Carolina.

  18. Cataloging Before and After OCLC. Illinois Valley Library System OCLC Experimental Project. Report No. 3.

    ERIC Educational Resources Information Center

    Bills, Linda G.

    A project was conducted from 1980 to 1982 to determine the costs and benefits of OCLC use in 29 small and medium-sized member libraries of the Illinois Valley Library System (IVLS). Academic, school, public, and special libraries participated by recording the time and staffing levels used for and the cost of OCLC and pre-OCLC cataloging (by…

  19. Weak and strong publics: drawing on Nancy Fraser to explore parental participation in neonatal networks.

    PubMed

    Gibson, Andrew J; Lewando-Hundt, Gillian; Blaxter, Loraine

    2014-02-01

    We draw on the work of Nancy Fraser, and in particular her concepts of weak and strong publics, to analyze the process of parental involvement in managed neonatal network boards. Public involvement has moved beyond the individual level to include greater involvement of both patients and the public in governance. However, there is relatively little literature that explores the nature and outcomes of long-term patient involvement initiatives or has attempted to theorize, particularly at the level of corporate decision making, the process of patient and public involvement. A repeated survey of all neonatal network managers in England was carried out in 2006-07 to capture developments and changes in parental representation over this time period. This elicited information about the current status of parent representation on neonatal network boards. Four networks were also selected as case studies. This involved interviews with key members of each network board, interviews with parent representatives, observation of meetings and access to board minutes. Data collected show that a wide range of approaches to involving parents has been adopted. These range from decisions not to involve parents at this level to relatively well-developed systems designed to link parent representatives on network boards to parents in neonatal units. Despite these variations, we suggest that parental participation within neonatal services remains an example of a weak public because the parent representatives had limited participation with little influence on decision making. © 2011 John Wiley & Sons Ltd.

  20. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be

  1. The Valley Networks on Mars

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.

    2002-12-01

    Despite three decades of exploration, the valley networks on Mars still seem to raise more questions than they answer. Valley systems have formed in the southern highlands, along some regions of the dichotomy boundary and the south rim of Valles Marineris, around the rim of some impact craters, and on the flanks of some volcanoes. They are found on some of the oldest and youngest terrains as well as on intermediate aged surfaces. There is surprisingly little consensus as to the formation and the paleoclimatic implications of the valley networks. Did the valleys require a persistent solar-driven atmospheric hydrological cycle involving precipitation, surface runoff, infiltration and groundwater outflow as they typically do on Earth? Or are they the result of magmatic or impact-driven thermal cycling of ground water involving persistent outflow and subsequent runoff? Are they the result of some other process(es)? Ground-water sapping, surface-water runoff, debris flows, wind erosion, and formation mechanisms involving other fluids have been proposed. Until such basic questions as these are definitively answered, their significance for understanding paleoclimatic change on Mars remains cloudy. I will review what is known about valley networks using data from both past and current missions. I will discuss what we have learned about their morphology, environments in which they formed, their spatial and temporal associations, possible formation mechanisms, relation to outflow channel and gully formation, as well as the possible implications for past climate change on Mars. Finally I will discuss how future, meter to submeter scale imaging and other remote sensing observations may shed new light on the debate over the origin of these enigmatic features.

  2. Hydrogeologic framework of the Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.

    2015-01-01

    The hydrologic framework of the Santa Clara Valley in northern California was redefined on the basis of new data and a new hydrologic model. The regional groundwater flow systems can be subdivided into upper-aquifer and lower-aquifer systems that form a convergent flow system within a basin bounded by mountains and hills on three sides and discharge to pumping wells and the southern San Francisco Bay. Faults also control the flow of groundwater within the Santa Clara Valley and subdivide the aquifer system into three subregions.After decades of development and groundwater depletion that resulted in substantial land subsidence, Santa Clara Valley Water District (SCVWD) and the local water purveyors have refilled the basin through conservation and importation of water for direct use and artificial recharge. The natural flow system has been altered by extensive development with flow paths toward major well fields. Climate has not only affected the cycles of sedimentation during the glacial periods over the past million years, but interannual to interdecadal climate cycles also have affected the supply and demand components of the natural and anthropogenic inflows and outflows of water in the valley. Streamflow has been affected by development of the aquifer system and regulated flow from reservoirs, as well as conjunctive use of groundwater and surface water. Interaquifer flow through water-supply wells screened across multiple aquifers is an important component to the flow of groundwater and recapture of artificial recharge in the Santa Clara Valley. Wellbore flow and depth-dependent chemical and isotopic data indicate that flow into wells from multiple aquifers, as well as capture of artificial recharge by pumping of water-supply wells, predominantly is occurring in the upper 500 ft (152 m) of the aquifer system. Artificial recharge represents about one-half of the inflow of water into the valley for the period 1970–1999. Most subsidence is occurring below 250 ft

  3. Distribution of 137Cs in surface soil of Fraser's Hill, Pahang, Malaysia

    NASA Astrophysics Data System (ADS)

    Bakar, Ahmad Sanadi Abu; Hamzah, Zaini; Saat, Ahmad

    2017-01-01

    Caesium-137 (137Cs) in an anthropogenic radionuclide originated from the fission of fissile materials. Nuclear weapons testing during the 1960s and the Chernobyl disaster introduced substantial amount of 137Cs into the atmosphere that are then eventually deposited back to earth's surface. Caesium-137 can be used as tracer to study soil movements since it adsorbs to soil particles. This paper aims to describe the distribution of 137Cs in surface soil of Fraser's Hill, Pahang, determine the levels of 137Cs here compared to other areas, and to check correlation of 137Cs levels to physical data. A series of sampling were carried out between February 2014 and August 2015. Soil samples were taken from 31 locations using soil scraper. The samples were then taken to the laboratory to be dried, homogenized, grinded and sieved. The activity concentration of 137Cs in the samples was determined using gamma spectroscopy. The activity concentration was found to be between 0.26 Bq/kg and 5.14 Bq/kg. Although this paper only studies surface soil, 137Cs is expected to be present within the soil body. Further study of 137Cs in the soil body can be used to predictive model for soil erosion.

  4. Stratigraphic architecture of back-filled incised-valley systems: Pennsylvanian-Permian lower Cutler beds, Utah, USA

    NASA Astrophysics Data System (ADS)

    Wakefield, Oliver J. W.; Mountney, Nigel P.

    2013-12-01

    The Pennsylvanian to Permian lower Cutler beds collectively form the lowermost stratigraphic unit of the Cutler Group in the Paradox Basin, southeast Utah. The lower Cutler beds represent a tripartite succession comprising lithofacies assemblages of aeolian, fluvial and shallow-marine origin, in near equal proportion. The succession results from a series of transgressive-regressive cycles, driven by repeated episodes of climatic variation and linked changes in relative sea-level. Relative sea-level changes created a number of incised-valleys, each forming through fluvial incision during lowered base-level. Aeolian dominance during periods of relative sea-level lowstand aids incised-valley identification as the erosive bounding surface juxtaposes incised-valley infill against stacked aeolian faces. Relative sea-level rises resulted in back-flooding of the incised-valleys and their infill via shallow-marine and estuarine processes. Back-flooded valleys generated marine embayments within which additional local accommodation was exploited. Back-filling is characterised by a distinctive suite of lithofacies arranged into a lowermost, basal fill of fluvial channel and floodplain architectural elements, passing upwards into barform elements with indicators of tidal influence, including inclined heterolithic strata and reactivation surfaces. The incised-valley fills are capped by laterally extensive and continuous marine limestone elements that record the drowning of the valleys and, ultimately, flooding and accumulation across surrounding interfluves (transgressive surface). Limestone elements are characterised by an open-marine fauna and represent the preserved expression of maximum transgression.

  5. Detection and Measurement of Land Subsidence Using Global Positioning System and Interferometric Synthetic Aperture Radar, Coachella Valley, California, 1998-2000

    USGS Publications Warehouse

    Sneed, Michelle; Stork, Sylvia V.; Ikehara, Marti E.

    2002-01-01

    Land subsidence associated with ground-water-level declines has been recognized as a potential problem in Coachella Valley, California. Since the early 1920s, ground water has been a major source of agricultural, municipal, and domestic supply in the valley. Pumping of ground water resulted in water-level declines as large as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the lower Coachella Valley began, resulting in a reduction in ground-water pumping and a recovery of water levels during the 1950s through the 1970s. Since the late 1970s, demand for water in the valley has exceeded deliveries of imported surface water, resulting in increased pumping and associated ground-water-level declines and, consequently, an increase in the potential for land subsidence caused by aquifer-system compaction. The location, extent, and magnitude of the vertical land-surface changes in Coachella Valley between 1998 and 2000 were determined using Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) methods. GPS measurements made at 15 geodetic monuments in the lower Coachella Valley indicate that -34 to +60 millimeters ? 45 millimeters (-0.11 to +0.20 foot ? 0.15 foot) of vertical change in the land surface occurred during the 2-year period. Changes at three of the monuments exceeded the maximum uncertainty of ? 45 millimeters (? 0.15 foot) at the 95-percent confidence level, which indicates that small amounts of uplift occurred at these monuments between October 1998 and August 2000. Water-level measurements made at wells near the three uplifted monuments during this 2-year period indicate that the water levels fluctuate seasonally; water-level measurements made at these wells in September 1998 and September 2000 indicate that the water levels rose slightly near two monuments and declined slightly near the third. The relation between the seasonally fluctuating, but fairly stable, water levels between

  6. Groundwater quality in the Antelope Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Antelope Valley is one of the study areas being evaluated. The Antelope study area is approximately 1,600 square miles (4,144 square kilometers) and includes the Antelope Valley groundwater basin (California Department of Water Resources, 2003). Antelope Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lakebeds in the lower parts of the valley. Land use in the study area is approximately 68 percent (%) natural (mostly shrubland and grassland), 24% agricultural, and 8% urban. The primary crops are pasture and hay. The largest urban areas are the cities of Palmdale and Lancaster (2010 populations of 152,000 and 156,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Antelope Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Antelope Valley are completed to depths between 360 and 700 feet (110 to 213 meters), consist of solid casing from the land surface to a depth of 180 to 350 feet (55 to 107 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation and sewer and septic

  7. Dead fish swimming: a review of research on the early migration and high premature mortality in adult Fraser River sockeye salmon Oncorhynchus nerka.

    PubMed

    Hinch, S G; Cooke, S J; Farrell, A P; Miller, K M; Lapointe, M; Patterson, D A

    2012-07-01

    Adult sockeye salmon Oncorhynchus nerka destined for the Fraser River, British Columbia are some of the most economically important populations but changes in the timing of their homeward migration have led to management challenges and conservation concerns. After a directed migration from the open ocean to the coast, this group historically would mill just off shore for 3-6 weeks prior to migrating up the Fraser River. This milling behaviour changed abruptly in 1995 and thereafter, decreasing to only a few days in some years (termed early migration), with dramatic consequences that have necessitated risk-averse management strategies. Early migrating fish consistently suffer extremely high mortality (exceeding 90% in some years) during freshwater migration and on spawning grounds prior to spawning. This synthesis examines multidisciplinary, collaborative research aimed at understanding what triggers early migration, why it results in high mortality, and how fisheries managers can utilize these scientific results. Tissue analyses from thousands of O. nerka captured along their migration trajectory from ocean to spawning grounds, including hundreds that were tracked with biotelemetry, have revealed that early migrants are more reproductively advanced and ill-prepared for osmoregulatory transition upon their entry into fresh water. Gene array profiles indicate that many early migrants are also immunocompromised and stressed, carrying a genomic profile consistent with a viral infection. The causes of these physiological changes are still under investigation. Early migration brings O. nerka into the river when it is 3-6° C warmer than historical norms, which for some late-run populations approaches or exceeds their critical maxima leading to the collapse of metabolic and cardiac scope, and mortality. As peak spawning dates have not changed, the surviving early migrants tend to mill in warm lakes near to spawning areas. These results in the accumulation of many more

  8. Monitoring the hydrothermal system in Long Valley caldera, California

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.

    1985-01-01

    An ongoing program to monitor the hydrothermal system in Long Valley for changes caused by volcanic or tectonic processes has produced considerable data on the water chemistry and discharge of springs and fluid temperatures and pressures in wells. Chemical and isotopic data collected under this program have greatly expanded the knowledge of chemical variability both in space and time. Although no chemical or isotopic changes in hot spring waters can be attributed directly to volcanic or tectonic processes, changes in hot spring chemistry that have been recorded probably relate to interactions between and variations in the quantity of liquid and gas discharged. Stable carbon isotope data are consistent with a carbon source either perform the mantle or from metamorphosed carbonate rocks. Continuous and periodic measurements of hot spring discharge at several sites show significant co seismic and a seismic changes since 1980.

  9. Sacramento Valley, CA, USA

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects.

  10. Fretted Terrain Valley in Coloe Fossae Region

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1 Click on image for larger version

    The image in figure 1 shows lineated valley fill in one of a series of enclosed, intersecting troughs known as Coloe (Choloe) Fossae. Lineated valley fill consists of rows of material in valley centers that are parallel to the valley walls. It is probably made of ice-rich material and boulders that are left behind when the ice-rich material sublimates. Very distinct rows can be seen near the south (bottom) wall of the valley. Lineated valley fill is thought to result from mass wasting (downslope movement) of ice-rich material from valley walls towards their centers. It is commonly found in valleys near the crustal dichotomy that separates the two hemispheres of Mars. The valley shown here joins four other valleys with lineated fill near the top left corner of this image. Their juncture is a topographic low, suggesting that the lineated valley fill from the different valleys may be flowing or creeping towards the low area (movement towards the upper left of the image). The valley walls appear smooth at first glance but are seen to be speckled with small craters several meters in diameter at HiRISE resolution (see contrast-enhanced subimage). This indicates that at least some of the wall material has been stable to mass wasting for some period of time. Also seen on the valley wall are elongated features shaped like teardrops. These are most likely slightly older craters that have been degraded due to potentially recent downhill creep. It is unknown whether the valley walls are shedding material today. The subimage is approximately 140 x 400 m (450 x 1280 ft).

    Image PSP_001372_2160 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 11, 2006. The complete image is centered at 35.5 degrees latitude, 56.8 degrees East longitude. The range to the target site was 290.3 km (181

  11. Valley-chiral quantum Hall state in graphene superlattice structure

    NASA Astrophysics Data System (ADS)

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  12. My River My Home: Both Art and Science

    NASA Astrophysics Data System (ADS)

    Gillies, S. L.; Janmaat, A.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.; King, S.; Bertrand, K.

    2014-12-01

    The University of the Fraser Valley has been researching the water chemistry of the Fraser River since 2009 as a member of the Global Rivers Observatory coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Global Rivers Observatory is advancing our understanding of how climate change, deforestation, and other disturbances are impacting river chemistry and land-ocean linkages. This knowledge is vital for tracking the health of Earth's watersheds and predicting how Earth's water and chemical cycles will change in the future. The Global Rivers Observatory also promotes the communication of science to the general public. In September 2013, the My River My Home art and science exhibit opened at the Fraser River Discovery Centre, New Westminster, BC. The exhibit is a global exchange of artwork created by children living along the rivers being studied by the Global Rivers Observatory scientists. The exhibit is intended to inspire young students to develop an awareness of the environment and the importance of rivers. Scientists from UFV, WHOI, and WHRC worked together with the Fraser River Discovery Centre on the science communication aspects of the display and to develop hands-on science activities looking at different aspects of river water quality. The exhibition has led to the creation of My River My Home, An Activity Kit for Educators about the sustainability of the Fraser River. The kit is being offered through the Fraser River Discovery Centre and deals with issues such as the importance of water, water quality, and encouraging a global perspective. The resource kit was classroom tested by several teachers, and four UBC teacher candidates worked on incorporating teacher suggestions into the kit. The resource kit will be available on-line at the end of September 2014 and contains inquiry based activities suitable for a variety of educational levels.

  13. Evaluating uncertainties in modelling the snow hydrology of the Fraser River Basin, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Islam, Siraj Ul; Déry, Stephen J.

    2017-03-01

    This study evaluates predictive uncertainties in the snow hydrology of the Fraser River Basin (FRB) of British Columbia (BC), Canada, using the Variable Infiltration Capacity (VIC) model forced with several high-resolution gridded climate datasets. These datasets include the Canadian Precipitation Analysis and the thin-plate smoothing splines (ANUSPLIN), North American Regional Reanalysis (NARR), University of Washington (UW) and Pacific Climate Impacts Consortium (PCIC) gridded products. Uncertainties are evaluated at different stages of the VIC implementation, starting with the driving datasets, optimization of model parameters, and model calibration during cool and warm phases of the Pacific Decadal Oscillation (PDO). The inter-comparison of the forcing datasets (precipitation and air temperature) and their VIC simulations (snow water equivalent - SWE - and runoff) reveals widespread differences over the FRB, especially in mountainous regions. The ANUSPLIN precipitation shows a considerable dry bias in the Rocky Mountains, whereas the NARR winter air temperature is 2 °C warmer than the other datasets over most of the FRB. In the VIC simulations, the elevation-dependent changes in the maximum SWE (maxSWE) are more prominent at higher elevations of the Rocky Mountains, where the PCIC-VIC simulation accumulates too much SWE and ANUSPLIN-VIC yields an underestimation. Additionally, at each elevation range, the day of maxSWE varies from 10 to 20 days between the VIC simulations. The snow melting season begins early in the NARR-VIC simulation, whereas the PCIC-VIC simulation delays the melting, indicating seasonal uncertainty in SWE simulations. When compared with the observed runoff for the Fraser River main stem at Hope, BC, the ANUSPLIN-VIC simulation shows considerable underestimation of runoff throughout the water year owing to reduced precipitation in the ANUSPLIN forcing dataset. The NARR-VIC simulation yields more winter and spring runoff and earlier decline

  14. Echoes of Spring Valley.

    ERIC Educational Resources Information Center

    Boyken, J. Clarine J.

    Designed to preserve the rich heritage of the rural school system which passed from the education scene in the 1930's and 1940's, this narrative, part history and part nostalgia, describes the author's own elementary education and the secure community life centered in the one room Spring Valley School in Hamilton County, Iowa, in the early decades…

  15. Hydrogeology of, and ground-water flow in, a valley-fill and carbonate-rock aquifer system near Long Valley in the New Jersey Highlands

    USGS Publications Warehouse

    Nicholson, R.S.; McAuley, S.D.; Barringer, J.L.; Gordon, A.D.

    1996-01-01

    The hydrogeology of and ground-water flow in a valley-fill and carbonate-rock aquifer system were evaluated by using numerical-modeling techniques and geochemical interpretations to address concerns about the adequacy of the aquifer system to meet increasing demand for water. The study was conducted during 1987-90 by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection and Energy. The effects of recent and anticipated ground-water withdrawals on water levels, stream base flows, and water budgets were estimated. Simulation results indicate that recent withdrawals of 4.7 million gallons per day have resulted in water-level declines of up to 35 feet. Under conditions of increases in withdrawals of 121 percent, water levels would decline up to an additional 28 feet. The magnitude of predicted average base-flow depletion, when compared with historic low flows, indicates that projected increases in withdrawals may substantially deplete seasonal low flow of Drakes Brook and South Branch Raritan River. Results of a water-budget analysis indicate that the sources of water to additional supply wells would include leakage from the overlying valley-fill aquifer and induced leakage of surface water into the aquifer system. Results of water-quality analyses indicate that human activities are affecting the quality of the ground water. With the exception of an elevated iron concentration in water from one well, concentrations of inorganic constituents in water from 75 wells did not exceed New Jersey primary or secondary drinking-water regulations. Volatile organic compounds were detected in water from several wells; in two samples, concentrations of specific compounds exceeded drinking-water regulations.

  16. Sacramento Valley, CA, USA

    NASA Image and Video Library

    1973-06-22

    SL2-04-179 (22 June 1973) --- The Sacramento Valley (40.5N, 121.5W) of California is the northern extension of the Central Valley, main agriculture region of the state. Hundreds of truck farms, vineyards and orchards can be seen throughout the length and breadth of the valley which was reclaimed from the desert by means of intensive and extensive irrigation projects. Photo credit: NASA

  17. Siphateles (Gila) sp. and Catostomus sp. from the Pleistocene OIS-6 Lake Gale, Panamint Valley, Owens River system, California

    NASA Astrophysics Data System (ADS)

    Jayko, A. S.; Forester, R. M.; Smith, G. R.

    2014-12-01

    Panamint Valley lies within the Owens River system which linked southeastern Sierra Nevada basins between Mono Lake and Death Valley during glacial-pluvial times. Previous work indicates that late Pleistocene glacial-pluvial Lake Gale, Panamint Valley was an open system during OIS-6, a closed ground water supported shallow lake during OIS-4, and the terminal lake basin for the Owens River system during OIS-2. We here report the first occurrence of fossil fish from the Plio-Pleistocene Panamint basin. Fish remains are present in late Pleistocene OIS-6 nearshore deposits associated with a highstand that was spillway limited at Wingate Wash. The deposits contain small minnow-sized remains from both Siphateles or Gila sp. (chubs) and Catostomus sp. (suckers) from at least four locations widely dispersed in the basin. Siphateles or Gila sp. and Catostomus are indigenous to the Pleistocene and modern Owens River system, in particular to the historic Owens Lake area. Cyprinodon (pupfish) and Rhinichthys (dace) are known from the modern Amargosa River and from Plio-Pleistocene deposits in Death Valley to the east. The late Pleistocene OIS-6 to OIS-2 lacustrine and paleohydrologic record in Panamint basin is interpreted from ostracod assemblages, relative abundance of Artemia sp. pellets, shallow water indicators including tufa fragments, ruppia sp. fragments and the relative abundance of charophyte gyrogonites obtained from archived core, as well as faunal assemblages from paleoshoreline and nearshore deposits. The OIS-4 groundwater supported shallow saline lake had sufficiently low ratios of alkalinity to calcium (alk/Ca) to support the occurrence of exotic Elphidium sp. (?) foraminfera which are not observed in either OIS-2 or OIS-6 lacustrine deposits. The arrival of Owens River surface water into Panamint Basin during OIS-2 is recorded by the first appearance of the ostracod Limnocythere sappaensis at ~27 m depth in an ~100 m archived core (Smith and Pratt, 1957) which

  18. A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux.

    PubMed

    van der Ven, Amelie T; Kobbe, Birgit; Kohl, Stefan; Shril, Shirlee; Pogoda, Hans-Martin; Imhof, Thomas; Ityel, Hadas; Vivante, Asaf; Chen, Jing; Hwang, Daw-Yang; Connaughton, Dervla M; Mann, Nina; Widmeier, Eugen; Taglienti, Mary; Schmidt, Johanna Magdalena; Nakayama, Makiko; Senguttuvan, Prabha; Kumar, Selvin; Tasic, Velibor; Kehinde, Elijah O; Mane, Shrikant M; Lifton, Richard P; Soliman, Neveen; Lu, Weining; Bauer, Stuart B; Hammerschmidt, Matthias; Wagener, Raimund; Hildebrandt, Friedhelm

    2018-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.

  19. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  20. A guide for using the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Blainey, Joan B.; Faunt, Claudia C.; Hill, Mary C.

    2006-01-01

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  1. Dry Valleys, Antarctica

    NASA Image and Video Library

    2009-11-02

    The McMurdo Dry Valleys are a row of valleys west of McMurdo Sound, Antarctica. They are so named because of their extremely low humidity and lack of snow and ice cover. This image was acquired December 8, 2002 by NASA Terra spacecraft.

  2. Intelligent electric vehicle charging: Rethinking the valley-fill

    NASA Astrophysics Data System (ADS)

    Valentine, Keenan; Temple, William G.; Zhang, K. Max

    This study proposes an intelligent PEV charging scheme that significantly reduces power system cost while maintaining reliability compared to the widely discussed valley-fill method of aggregated charging in the early morning. This study considers optimal PEV integration into the New York Independent System Operator's (NYISO) day-ahead and real-time wholesale energy markets for 21 days in June, July, and August of 2006, a record-setting summer for peak load. NYISO market and load data is used to develop a statistical Locational Marginal Price (LMP) and wholesale energy cost model. This model considers the high cost of ramping generators at peak-load and the traditional cost of steady-state operation, resulting in a framework with two competing cost objectives. Results show that intelligent charging assigns roughly 80% of PEV load to valley hours to take advantage of low steady-state cost, while placing the remaining 20% equally at shoulder and peak hours to reduce ramping cost. Compared to unregulated PEV charging, intelligent charging reduces system cost by 5-16%; a 4-9% improvement over the flat valley-fill approach. Moreover, a Charge Flexibility Constraint (CFC), independent of market modeling, is constructed from a vehicle-at-home profile and the mixture of Level 1 and Level 2 charging infrastructure. The CFC is found to severely restrict the ability to charge vehicles during the morning load valley. This study further shows that adding more Level 2 chargers without regulating PEV charging will significantly increase wholesale energy cost. Utilizing the proposed intelligent PEV charging method, there is a noticeable reduction in system cost if the penetration of Level 2 chargers is increased from 70/30 to 50/50 (Level 1/Level 2). However, the system benefit is drastically diminished for higher penetrations of Level 2 chargers.

  3. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  4. Geomorphic response to tectonically-induced ground deformation in the Wabash Valley

    USGS Publications Warehouse

    Fraser, G.S.; Thompson, T.A.; Olyphant, G.A.; Furer, L.; Bennett, S.W.

    1997-01-01

    Numerous low- to moderate-intensity earthquakes have been recorded in a zone of diffuse modern seismicity in southwest Indiana, southeast Illinois, and northernmost Kentucky. Structural elements within the zone include the Wabash Valley Fault System, the LaSalle Anticlinal Belt in western Illinois, and the Rough Creek-Shawneetown Fault System in northern Kentucky. The presence of seismically-induced liquefaction features in the near-surface alluvial sediments in the region indicates that strong ground motion has occurred in the recent geological past, but because the glacial and alluvial sediments in the Wabash Valley appear to be otherwise undisturbed, post-Paleozoic ground deformation resulting from movement on these structural elements has not yet been documented. Morphometric analysis of the land surface, detailed mapping of geomorphic elements in the valley, reconnaissance drilling of the Holocene and Pleistocene alluvium, and structural analysis of the bedrock underlying the valley were used to determine whether the geomorphology of the valley and the patterns of alluviation of the Wabash River were affected by surface deformation associated with the seismic zone during the late Pleistocene and Holocene. Among the observed features in the valley that can be attributed to deformation are: (1) tilting of the modern land surface to the west, (2) preferred channel migration toward the west side of the valley, with concomitant impact on patterns of soil development and sedimentation rate, (3) a convex longitudinal profile of the Wabash River where it crosses the LaSalle Anticlinal Belt, and (4) increased incision of the river into its floodplain downstream from the anticlinal belt.

  5. 22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. VIEW EAST TOWARDS WAIKOLU VALLEY OF PIPELINE ALONG PALI. EYE BOLTS IN ROCK FACE AT RIGHT WERE USED BRIEFLY IN PLACE OF PIERS TO SUSPEND PIPE BY CHAIN BECAUSE THE CONCRETE PIERS WERE SUSCEPTIBLE TO HEAVY WAVE ACTION IN THIS AREA. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  6. Interaction of various flow systems in small alpine catchments: conceptual model of the upper Gurk Valley aquifer, Carinthia, Austria

    NASA Astrophysics Data System (ADS)

    Hilberg, Sylke; Riepler, Franz

    2016-08-01

    Small alpine valleys usually show a heterogeneous hydraulic situation. Recurring landslides create temporal barriers for the surface runoff. As a result of these postglacial processes, temporal lakes form, and thus lacustrine fine-grained sedimentation intercalates with alluvial coarse-grained layers. A sequence of alluvial sediments (confined and thus well protected aquifers) and lacustrine sediments (aquitards) is characteristic for such an environment. The hydrogeological situation of fractured hard-rock aquifers in the framing mountain ranges is characterized by superficially high hydraulic conductivities as the result of tectonic processes, deglaciation and postglacial weathering. Fracture permeability and high hydraulic gradients in small-scaled alpine catchments result in the interaction of various flow systems in various kinds of aquifers. Spatial restrictions and conflicts between the current land use and the requirements of drinking-water protection represent a special challenge for water resource management in usually densely populated small alpine valleys. The presented case study describes hydrogeological investigations within the small alpine valley of the upper Gurktal (Upper Carinthia, Austria) and the adjacent Höllenberg Massif (1,772 m above sea level). Hydrogeological mapping, drilling, and hydrochemical and stable isotope analyses of springs and groundwater were conducted to identify a sustainable drinking-water supply for approximately 1,500 inhabitants. The results contribute to a conceptual hydrogeological model with three interacting flow systems. The local and the intermediate flow systems are assigned to the catchment of the Höllenberg Massif, whereas the regional flow system refers to the bordering Gurktal Alps to the north and provides an appropriate drinking water reservoir.

  7. Analysis of Mining-induced Valley Closure Movements

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Mitra, R.; Oh, J.; Hebblewhite, B.

    2016-05-01

    Valley closure movements have been observed for decades in Australia and overseas when underground mining occurred beneath or in close proximity to valleys and other forms of irregular topographies. Valley closure is defined as the inward movements of the valley sides towards the valley centreline. Due to the complexity of the local geology and the interplay between several geological, topographical and mining factors, the underlying mechanisms that actually cause this behaviour are not completely understood. A comprehensive programme of numerical modelling investigations has been carried out to further evaluate and quantify the influence of a number of these mining and geological factors and their inter-relationships. The factors investigated in this paper include longwall positional factors, horizontal stress, panel width, depth of cover and geological structures around the valley. It is found that mining in a series passing beneath the valley dramatically increases valley closure, and mining parallel to valley induces much more closure than other mining orientations. The redistribution of horizontal stress and influence of mining activity have also been recognised as important factors promoting valley closure, and the effect of geological structure around the valley is found to be relatively small. This paper provides further insight into both the valley closure mechanisms and how these mechanisms should be considered in valley closure prediction models.

  8. The Inter-Valley Soil Comparative Survey: the ecology of Dry Valley edaphic microbial communities

    PubMed Central

    Lee, Charles K; Barbier, Béatrice A; Bottos, Eric M; McDonald, Ian R; Cary, Stephen Craig

    2012-01-01

    Recent applications of molecular genetics to edaphic microbial communities of the McMurdo Dry Valleys and elsewhere have rejected a long-held belief that Antarctic soils contain extremely limited microbial diversity. The Inter-Valley Soil Comparative Survey aims to elucidate the factors shaping these unique microbial communities and their biogeography by integrating molecular genetic approaches with biogeochemical analyses. Although the microbial communities of Dry Valley soils may be complex, there is little doubt that the ecosystem's food web is relatively simple, and evidence suggests that physicochemical conditions may have the dominant role in shaping microbial communities. To examine this hypothesis, bacterial communities from representative soil samples collected in four geographically disparate Dry Valleys were analyzed using molecular genetic tools, including pyrosequencing of 16S rRNA gene PCR amplicons. Results show that the four communities are structurally and phylogenetically distinct, and possess significantly different levels of diversity. Strikingly, only 2 of 214 phylotypes were found in all four valleys, challenging a widespread assumption that the microbiota of the Dry Valleys is composed of a few cosmopolitan species. Analysis of soil geochemical properties indicated that salt content, alongside altitude and Cu2+, was significantly correlated with differences in microbial communities. Our results indicate that the microbial ecology of Dry Valley soils is highly localized and that physicochemical factors potentially have major roles in shaping the microbiology of ice-free areas of Antarctica. These findings hint at links between Dry Valley glacial geomorphology and microbial ecology, and raise previously unrecognized issues related to environmental management of this unique ecosystem. PMID:22170424

  9. 27 CFR 9.132 - Rogue Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Rogue Valley. 9.132... Rogue Valley. (a) Name. The name of the viticultural area described in this section is “Rouge Valley.” (b) Approved map. The appropriate map for determining the boundaries of the Rogue Valley viticultural...

  10. View From Within 'Perseverance Valley' on Mars

    NASA Image and Video Library

    2017-12-06

    This view from within "Perseverance Valley," on the inner slope of the western rim of Endurance Crater on Mars, includes wheel tracks from the Opportunity rover's descent of the valley. The Panoramic Camera (Pancam) on Opportunity's mast took the component images of the scene during the period Sept. 4 through Oct. 6, 2017, corresponding to sols (Martian days) 4840 through 4871 of the rover's work on Mars. Perseverance Valley is a system of shallow troughs descending eastward about the length of two football fields from the crest of the crater rim to the floor of the crater. This panorama spans from northeast on the left to northwest on the right, including portions of the crater floor (eastward) in the left half and of the rim (westward) in the right half. Opportunity began descending Perseverance Valley in mid-2017 (see map) as part of an investigation into how the valley formed. Rover wheel tracks are darker brown, between two patches of bright bedrock, receding toward the horizon in the right half of the scene. This view combines multiple images taken through three different Pancam filters. The selected filters admit light centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The three color bands are combined here to show approximately true color. A map and high-resolution TIFF file is available at https://photojournal.jpl.nasa.gov/catalog/PIA22074

  11. Magmatic Intrusions and a Hydrothermal Origin for Fluvial Valleys on Mars

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C

    1998-01-01

    Numerical models of Martian hydrothermal systems demonstrate that systems associated with magmatic intrusions greater than several hundred cubic kilometers can provide sufficient groundwater outflow to form the observed fluvial valleys, if subsurface permeability exceeds about 1.0 darcy. Groundwater outflow increases with increasing intrusion volume and subsurface permeability and is relatively insensitive to intrusion depth and subsurface porosity within the range considered here. Hydrothermally-derived fluids can melt through 1 to 2 km thick ice-rich permafrost layers in several thousand years. Hydrothermal systems thus provide a viable alternative to rainfall for providing surface water for valley formation. This mechanism can form fluvial valleys not only during the postulated early warm, wet climatic epoch, but also during more recent epochs when atmospheric conditions did not favor atmospheric cycling of water. The clustered distribution of the valley networks on a given geologic surface or terrain unit of Mars may also be more compatible with localized, hydrothermally-driven groundwater outflow than regional rainfall. Hydrothermal centers on Mars may have provided appropriate environments for the initiation of life or final oases for the long-term persistence of life.

  12. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S.

    2015-12-01

    The field of `Valleytronics’ has recently been attracting growing interest as a promising concept for the next generation electronics, because non-dissipative pure valley currents with no accompanying net charge flow can be manipulated for computational use, akin to pure spin currents. Valley is a quantum number defined in an electronic system whose energy bands contain energetically degenerate but non-equivalent local minima (conduction band) or maxima (valence band) due to a certain crystal structure. Specifically, spatial inversion symmetry broken two-dimensional honeycomb lattice systems exhibiting Berry curvature is a subset of possible systems that enable optical, magnetic and electrical control of the valley degree of freedom. Here we use dual-gated bilayer graphene to electrically induce and control broken inversion symmetry (or Berry curvature) as well as the carrier density for generating and detecting the pure valley current. In the insulating regime, at zero-magnetic field, we observe a large nonlocal resistance that scales cubically with the local resistivity, which is evidence of pure valley current.

  13. Modeling the Death Valley regional ground-water flow system

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Hill, M.C.

    2004-01-01

    The development of a regional ground-water flow model of the Death Valley region in the southwestern United States is discussed in the context of the fourteen guidelines of Hill. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and to direct further model development and data collection.

  14. Groundwater quality in Coachella Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Coachella Valley is one of the study areas being evaluated. The Coachella study area is approximately 820 square miles (2,124 square kilometers) and includes the Coachella Valley groundwater basin (California Department of Water Resources, 2003). Coachella Valley has an arid climate, with average annual rainfall of about 6 inches (15 centimeters). The runoff from the surrounding mountains drains to rivers that flow east and south out of the study area to the Salton Sea. Land use in the study area is approximately 67 percent (%) natural, 21% agricultural, and 12% urban. The primary natural land cover is shrubland. The largest urban areas are the cities of Indio and Palm Springs (2010 populations of 76,000 and 44,000, respectively). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. The primary aquifers in Coachella Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in Coachella Valley are completed to depths between 490 and 900 feet (149 to 274 meters), consist of solid casing from the land surface to a depth of 260 to 510 feet (79 to 155 meters), and are screened or perforated below the solid casing. Recharge to the groundwater system is primarily runoff from the surrounding mountains, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to

  15. Budgets and chemical characterization of groundwater for the Diamond Valley flow system, central Nevada, 2011–12

    USGS Publications Warehouse

    Berger, David L.; Mayers, C. Justin; Garcia, C. Amanda; Buto, Susan G.; Huntington, Jena M.

    2016-07-29

    The pre-development, steady state, groundwater budget for the Diamond Valley flow system was estimated at about 70,000 acre-ft/yr of inflow and outflow. During years 2011–12, inflow components of groundwater recharge from precipitation and subsurface inflow from adjacent basins totaled 70,000 acre-ft/yr for the DVFS, whereas outflow components included 64,000 acre-ft/yr of groundwater evapotranspiration and 69,000 acre-ft/yr of net groundwater withdrawals, or net pumpage. Spring discharge in northern Diamond Valley declined about 6,000 acre-ft/yr between pre-development time and years 2011–12. Assuming net groundwater withdrawals minus spring flow decline is equivalent to the storage change, the 2011–12 summation of inflow and storage change was balanced with outflow at about 133,000 acre-ft/yr.

  16. Ventilation potential during the emissions survey in Toluca Valley, Mexico

    NASA Astrophysics Data System (ADS)

    Ruiz Angulo, A.; Peralta, O.; Jurado, O. E.; Ortinez, A.; Grutter de la Mora, M.; Rivera, C.; Gutierrez, W.; Gonzalez, E.

    2017-12-01

    During the late-spring early-summer measurements of emissions and pollutants were carried out during a survey campaign at four different locations within the Toluca Valley. The current emissions inventory typically estimates the generation of pollutants based on pre-estimated values representing an entire sector function of their activities. However, those factors are not always based direct measurements. The emissions from the Toluca Valley are rather large and they could affect the air quality of Mexico City Valley. The air masses interchange between those two valleys is not very well understood; however, based on the measurements obtained during the 3 months campaign we looked carefully at the daily variability of the wind finding a clear signal for mountain-valley breeze. The ventilation coefficient is estimated and the correlations with the concentrations at the 4 locations and in a far away station in Mexico City are addressed in this work. Finally, we discuss the implication of the ventilation capacity in air quality for the system of Valleys that include Mexico City.

  17. Hydrogeologic framework and estimates of groundwater storage for the Hualapai Valley, Detrital Valley, and Sacramento Valley basins, Mohave County, Arizona

    USGS Publications Warehouse

    Truini, Margot; Beard, L. Sue; Kennedy, Jeffrey; Anning, Dave W.

    2013-01-01

    We have investigated the hydrogeology of the Hualapai Valley, Detrital Valley, and Sacramento Valley basins of Mohave County in northwestern Arizona to develop a better understanding of groundwater storage within the basin fill aquifers. In our investigation we used geologic maps, well-log data, and geophysical surveys to delineate the sedimentary textures and lithology of the basin fill. We used gravity data to construct a basin geometry model that defines smaller subbasins within the larger basins, and airborne transient-electromagnetic modeled results along with well-log lithology data to infer the subsurface distribution of basin fill within the subbasins. Hydrogeologic units (HGUs) are delineated within the subbasins on the basis of the inferred lithology of saturated basin fill. We used the extent and size of HGUs to estimate groundwater storage to depths of 400 meters (m) below land surface (bls). The basin geometry model for the Hualapai Valley basin consists of three subbasins: the Kingman, Hualapai, and southern Gregg subbasins. In the Kingman subbasin, which is estimated to be 1,200 m deep, saturated basin fill consists of a mixture of fine- to coarse-grained sedimentary deposits. The Hualapai subbasin, which is the largest of the subbasins, contains a thick halite body from about 400 m to about 4,300 m bls. Saturated basin fill overlying the salt body consists predominately of fine-grained older playa deposits. In the southern Gregg subbasin, which is estimated to be 1,400 m deep, saturated basin fill is interpreted to consist primarily of fine- to coarse-grained sedimentary deposits. Groundwater storage to 400 m bls in the Hualapai Valley basin is estimated to be 14.1 cubic kilometers (km3). The basin geometry model for the Detrital Valley basin consists of three subbasins: northern Detrital, central Detrital, and southern Detrital subbasins. The northern and central Detrital subbasins are characterized by a predominance of playa evaporite and fine

  18. Fretted Terrain Valleys

    NASA Technical Reports Server (NTRS)

    2004-01-01

    30 October 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows shallow tributary valleys in the Ismenius Lacus fretted terrain region of northern Arabia Terra. These valleys exhibit a variety of typical fretted terrain valley wall and floor textures, including a lineated, pitted material somewhat reminiscent of the surface of a brain. Origins for these features are still being debated within the Mars science community; there are no clear analogs to these landforms on Earth. This image is located near 39.9oN, 332.1oW. The picture covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  19. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    NASA Astrophysics Data System (ADS)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  20. Maja Valley and the Chryse outflow complex sites

    NASA Technical Reports Server (NTRS)

    Rice, Jim W.

    1994-01-01

    This candidate landing site is located at 19 deg N, 53.5 deg W near the mouth of a major outflow channel. Maja Valles, and two 'valley network' channel systems, Maumee and Vedra Valles. The following objectives are to be analyzed in this region: (1) origin and paleohydrology of outflow and valley network channels; (2) fan delta complex composition (the deposit located in this area is one of the few identified at the mouth s of any channels on the planet); and (3) analysis of any paleolake sediments (carbonates, evaporites). The primary objectives of the Chryse Outflow Complex region (Ares, Tiu, Mawrth, Simud, and Shalbatana Valles) would be outflow channel dynamics (paleohydrology) of five different channel systems.

  1. Estimated Ground-Water Withdrawals from the Death Valley Regional Flow System, Nevada and California, 1913-98

    USGS Publications Warehouse

    Moreo, Michael T.; Halford, Keith J.; La Camera, Richard J.; Laczniak, Randell J.

    2003-01-01

    Ground-water withdrawals from 1913 through 1998 from the Death Valley regional flow system have been compiled to support a regional, three-dimensional, transient ground-water flow model. Withdrawal locations and depths of production intervals were estimated and associated errors were reported for 9,300 wells. Withdrawals were grouped into three categories: mining, public-supply, and commercial water use; domestic water use; and irrigation water use. In this report, groupings were based on the method used to estimate pumpage. Cumulative ground-water withdrawals from 1913 through 1998 totaled 3 million acre-feet, most of which was used to irrigate alfalfa. Annual withdrawal for irrigation ranged from 80 to almost 100 percent of the total pumpage. About 75,000 acre-feet was withdrawn for irrigation in 1998. Annual irrigation withdrawals generally were estimated as the product of irrigated acreage and application rate. About 320 fields totaling 11,000 acres were identified in six hydrographic areas. Annual application rates for high water-use crops ranged from 5 feet in Penoyer Valley to 9 feet in Pahrump Valley. The uncertainty in the estimates of ground-water withdrawals was attributed primarily to the uncertainty of application rate estimates. Annual ground-water withdrawal was estimated at about 90,000 acre-feet in 1998 with an assigned uncertainty bounded by 60,000 to 130,000 acre-feet.

  2. Valley Fever: Earth Observations for Risk Reduction

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2012-12-01

    Advances in satellite Earth observation systems, numerical weather prediction, and dust storm modeling yield new tools for public health warnings, advisories and epidemiology of illnesses associated with airborne desert dust. Valley Fever, endemic from California through the US/Mexico border region into Central and South America, is triggered by inhalation of soil-dwelling fungal spores. The path from fungal growth to airborne threat depends on environmental conditions observable from satellite. And space-based sensors provide initial conditions for dust storm forecasts and baselines for the epidemiology of Valley Fever and other dust-borne aggravation of respiratory and cardiovascular disease. A new Pan-American Center for the World Meteorological Organization Sand and Dust Storm Warning Advisory and Assessment System creates an opportunity to advance Earth science applications in public health.

  3. Structure and regional significance of the Late Permian(?) Sierra Nevada - Death Valley thrust system, east-central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2005-01-01

    An imbricate system of north-trending, east-directed thrust faults of late Early Permian to middle Early Triassic (most likely Late Permian) age forms a belt in east-central California extending from the Mount Morrison roof pendant in the eastern Sierra Nevada to Death Valley. Six major thrust faults typically with a spacing of 15-20 km, original dips probably of 25-35??, and stratigraphic throws of 2-5 km compose this structural belt, which we call the Sierra Nevada-Death Valley thrust system. These thrusts presumably merge into a de??collement at depth, perhaps at the contact with crystalline basement, the position of which is unknown. We interpret the deformation that produced these thrusts to have been related to the initiation of convergent plate motion along a southeast-trending continental margin segment probably formed by Pennsylvanian transform truncation. This deformation apparently represents a period of tectonic transition to full-scale convergence and arc magmatism along the continental margin beginning in the Late Triassic in central California. ?? 2005 Elsevier B.V. All rights reserved.

  4. Geologic history of the Yosemite Valley

    USGS Publications Warehouse

    Matthes, Francois E.

    1930-01-01

    Projection of the longitudinal profiles of these hanging valleys forward to the axis of the Merced Canyon shows that they are closely accordant in height. Their profiles indicate a series of points on a former profile of the Merced with respect to which the side streams had graded their courses prior to the last uplift. This old profile can be extended upward into the glaciated part of the Merced Canyon above El Portal and even into the profoundly glaciated Yosemite Valley, accordant points being furnished by a number of hanging side valleys (due allowance being made for glacial erosion suffered by those valleys). However, not all the hanging valleys of the Yosemite region are accordant with this set. Several of them, including the upland valley of Yosemite Creek, constitute a separate set indicating another old profile of the Merced at a level 600 to 1,000 feet higher than the first. Others, including the hanging gulch of lower Bridalveil Creek, point to an old profile of the Merced about 1,200 feet lower than the first. There are thus three distinct sets of hanging valleys produced in three cycles of stream erosion. The valleys of the upper set, like those of the middle set, were left hanging as a result of rapid trenching by the Merced induced by an uplift of the range, there having been two such uplifts. Only the valleys of the lower set hang because of glacial deepening and widening of the Yosemite Valley, the cycle in which they were cut having been interrupted by the advent of the Pleistocene glaciers. They consequently indicate the preglacial depth of the Yosemite Valley. That depth, measured from the brow of El Capitan, was about 2,400 feet; measured from the rim at Glacier Point it was about 2,000 feet.

  5. Solar Energy within the Central Valley, CA: Current Practices and Potential

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2015-12-01

    Utility-scale solar energy (USSE, ≥ 1 megawatt [MW]) systems are rapidly being deployed in the Central Valley of California, generating clean electricity and new job opportunities. Utility-scale solar energy systems require substantial quantities of land or space, often prompting an evaluation of environmental impacts and trade-offs when selecting their placement. Utilizing salt-contaminated agricultural land (as the sodium absorption and electrical conductivity values are unsuitably high), unsuitable for food production, and lands within the built environment (developed), can serve as a co-benefit opportunity when reclamation of these lands for USSE development is prioritized. In this study, we quantify the theoretical and generation-based solar energy potential for the Central Valley according to land-cover type, crop type, and for salt-contaminated lands. Further, we utilize the Carnegie Energy and Environmental Compatibility (CEEC) model to identify and prioritize solar energy, integrating environmental resource opportunities and constraints most relevant to the Central Valley. We use the CEEC model to generate a value-based environmental compatibility output for the Central Valley. The Central Valley extends across nearly 60,000 km2 of California with the potential of generating 21,800 - 30,300 TWh y-1 and 41,600 TWh y-1 of solar energy for photovoltaic (PV) and concentrating solar power (CSP), respectively. Pasture, hay, and cultivated crops comprise over half of the Central Valley, much of which is considered prime agriculture or of statewide or local importance for farming (28,200 km2). Together, approximately one-third of this region is salt-contaminated (16%) or developed (11%). This confers a generation-based potential of 5713 - 7891 TWh y-1 and 2770 TWh y-1 for PV and CSP, respectively. As energy, food, and land are inextricably linked, our study shows how land favorable for renewable energy systems can be used more effectively in places where land is

  6. 76 FR 22746 - Conecuh Valley Railway, LLC-Acquisition and Operation Exemption-Conecuh Valley Railroad Co., Inc.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-22

    ... Railway, LLC--Acquisition and Operation Exemption--Conecuh Valley Railroad Co., Inc. Conecuh Valley Railway, LLC (CVR), a noncarrier, has filed a verified notice of exemption under 49 CFR 1150.31 to acquire from Conecuh Valley Railroad Co., Inc. (COEH), and to operate [[Page 22747

  7. Provenance, Offset Equivalent and Palinspastic Reconstruction of the Miocene Cajon Valley Formation, Southern California

    NASA Astrophysics Data System (ADS)

    Stang, Dallon Michael

    Petrographic, conglomerate and detrital-zircon analyses of formations in southern California can determine consanguineous petrofacies and lithofacies that help constrain paleotectonic and paleogeographic reconstructions of the southwestern United States. Arkosic sandstone of the lower Middle Miocene Cajon Valley formation is exposed on the southwest edge of the Mojave block and juxtaposed against Mesozoic and Paleozoic rocks by the San Andreas fault (SAf). Early work in Cajon Valley referred to the formation as Punchbowl, due to its similar appearance to the Punchbowl Formation at Devil's Punchbowl (northwest along the SAf). However, paleontological work placed Cajon Valley strata in the Hemingfordian-Barstovian (18-14 Ma), as opposed to the Clarendonian-Hemphillian (13-9 Ma) Punchbowl Formation. Since the Cajon Valley formation was deposited prior to being truncated by the San Andreas fault, the 2400m-thick, laterally extensive subaerial deposits likely were deposited across what is now the fault trace. Restoring 310 km of dextral slip on the SAf system should indicate the location of offset equivalent sandstone. Restoration of slip on the SAf system places Cajon Valley adjacent to the Caliente and La Panza Ranges, east of San Luis Obispo. Although analysis of detrital zircon from Cenozoic sandstone throughout southern California has been crucial in establishing paleodrainage areas, detrital zircon from the Cajon Valley and equivalent formations had not been analyzed prior to this study. Paleocurrents measured throughout the Cajon Valley formation indicate a source to the NE, in the Mojave Desert. Sandstone samples analyzed in thin section using the Gazzi-Dickinson method of point-counting are homogeneously arkosic, with slight compositional variability, making differentiation of the Cajon Valley formation and potential offset equivalents problematic. However, Branch Canyon Sandstone and Santa Margarita Formation samples are compositionally the best match for the

  8. Mode Choice between Private and Public Transport in Klang Valley, Malaysia

    PubMed Central

    Karim, Mohamed Rehan; Yusoff, Sumiani

    2014-01-01

    In 2010, Klang Valley has only 17% trips each day were completed using public transport, with the rest of the 83% trips were made through private transport. The inclination towards private car usage will only get worse if the transport policy continues to be inefficient and ineffective. Under the National Key Economic Area, the priority aimed to stimulate the increase of modal share of public transport in the Klang Valley to 50% by 2020. In the 10th Malaysia Plan, the Klang Valley Mass Rapid Transit was proposed, equipped with 141 km of MRT system, and will integrate with the existing rail networks. Nevertheless, adding kilometers into the rail system will not help, if people do not make the shift from private into public transport. This research would like to assess the possible mode shift of travellers in the Klang Valley towards using public transport, based on the utility function of available transport modes. It intends to identify the criteria that will trigger their willingness to make changes in favour of public transport as targeted by the NKEA. PMID:24701165

  9. 7. Photocopy of map of the Agua Fria Valley and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of map of the Agua Fria Valley and lands to be irrigated by the Agua Fria Water and Land Company. Photographer Mark Durben, 1987 Source: 'Map of the Agua Fria Valley and the Western Portion of the Salt River Valley Showing the System of Reservoirs and Canals of the Agua Fria Water and Land Company and the Land to be Irrigated Thereby 160,000 Acres of New Land to be Reclaimed in the Maricopa County, Arizona Territory,' (Brochure) Union Photo Engraving Company, c. 1895, Salt River Project Research Archives, Tempe, Arizona. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  10. Documentation of the Santa Clara Valley regional ground-water/surface-water flow model, Santa Clara Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Li, Zhen; Faunt, C.C.

    2004-01-01

    The Santa Clara Valley is a long, narrow trough extending about 35 miles southeast from the southern end of San Francisco Bay where the regional alluvial-aquifer system has been a major source of water. Intensive agricultural and urban development throughout the 20th century and related ground-water development resulted in ground-water-level declines of more than 200 feet and land subsidence of as much as 12.7 feet between the early 1900s and the mid-1960s. Since the 1960s, Santa Clara Valley Water District has imported surface water to meet growing demands and reduce dependence on ground-water supplies. This importation of water has resulted in a sustained recovery of the ground-water flow system. To help support effective management of the ground-water resources, a regional ground-water/surface-water flow model was developed. This model simulates the flow of ground water and surface water, changes in ground-water storage, and related effects such as land subsidence. A numerical ground-water/surface-water flow model of the Santa Clara Valley subbasin of the Santa Clara Valley was developed as part of a cooperative investigation with the Santa Clara Valley Water District. The model better defines the geohydrologic framework of the regional flow system and better delineates the supply and demand components that affect the inflows to and outflows from the regional ground-water flow system. Development of the model includes revisions to the previous ground-water flow model that upgraded the temporal and spatial discretization, added source-specific inflows and outflows, simulated additional flow features such as land subsidence and multi-aquifer wellbore flow, and extended the period of simulation through September 1999. The transient-state model was calibrated to historical surface-water and ground-water data for the period 197099 and to historical subsidence for the period 198399. The regional ground-water flow system consists of multiple aquifers that are grouped

  11. A Test of the California Wildlife-Habitat Relationship System for Breeding Birds in Valley-Foothill Riparian Habitat

    Treesearch

    Stephen A. Laymon

    1989-01-01

    The California Wildlife-Habitat Relationship (WHR) system was tested for birds breeding in the Valley-Foothill Riparian habitat along California's Sacramento and South Fork Kern rivers. The model performed poorly with 33 pct and 21 pct correct predictions respectively at the two locations. Changes to the model for 60 species on the Sacramento River and 66 species...

  12. Fluvial valleys in the heavily cratered terrains of Mars: Evidence for paleoclimatic change?

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Baker, V. R.

    1993-01-01

    Whether the formation of the Martian valley networks provides unequivocal evidence for drastically different climatic conditions remains debatable. Recent theoretical climate modeling precludes the existence of a temperate climate early in Mars' geological history. An alternative hypothesis suggests that Mars had a globally higher heat flow early in its geological history, bringing water tables to within 350 m of the surface. While a globally higher heat flow would initiate ground water circulation at depth, the valley networks probably required water tables to be even closer to the surface. Additionally, it was previously reported that the clustered distribution of the valley networks within terrain types, particularly in the heavily cratered highlands, suggests regional hydrological processes were important. The case for localized hydrothermal systems is summarized and estimates of both erosion volumes and of the implied water volumes for several Martian valley systems are presented.

  13. Human effects on the hydrologic system of the Verde Valley, central Arizona, 1910–2005 and 2005–2110, using a regional groundwater flow model

    USGS Publications Warehouse

    Garner, Bradley D.; Pool, D.R.; Tillman, Fred D.; Forbes, Brandon T.

    2013-01-01

    Water budgets were developed for the Verde Valley of central Arizona in order to evaluate the degree to which human stresses have affected the hydrologic system and might affect it in the future. The Verde Valley is a portion of central Arizona wherein concerns have been raised about water availability, particularly perennial base flow of the Verde River. The Northern Arizona Regional Groundwater Flow Model (NARGFM) was used to generate the water budgets and was run in several configurations for the 1910–2005 and 2005–2110 time periods. The resultant water budgets were subtracted from one another in order to quantify the relative changes that were attributable solely to human stresses; human stresses included groundwater withdrawals and incidental and artificial recharge but did not include, for example, human effects on the global climate. Three hypothetical and varied conditions of human stresses were developed and applied to the model for the 2005–2110 period. On the basis of this analysis, human stresses during 1910–2005 were found to have already affected the hydrologic system of the Verde Valley, and human stresses will continue to affect the hydrologic system during 2005–2110. Riparian evapotranspiration decreased and underflow into the Verde Valley increased because of human stresses, and net groundwater discharge to the Verde River in the Verde Valley decreased for the 1910–2005 model runs. The model also showed that base flow at the upstream end of the study area, as of 2005, was about 4,900 acre-feet per year less than it would have been in the absence of human stresses. At the downstream end of the Verde Valley, base flow had been reduced by about 10,000 acre-feet per year by the year 2005 because of human stresses. For the 2005–2110 period, the model showed that base flow at the downstream end of the Verde Valley may decrease by an additional 5,400 to 8,600 acre-feet per year because of past, ongoing, and hypothetical future human

  14. Three-thrust fault system at the plate suture of arc-continent collision in the southernmost Longitudinal Valley, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, J.; Chen, H.; Hsu, Y.; Yu, S.

    2013-12-01

    Active faults developed into a rather complex three-thrust fault system at the southern end of the narrow Longitudinal Valley in eastern Taiwan, a present-day on-land plate suture between the Philippine Sea plate and Eurasia. Based on more than ten years long geodetic data (including GPS and levelling), field geological investigation, seismological data, and regional tomography, this paper aims at elucidating the architecture of this three-thrust system and the associated surface deformation, as well as providing insights on fault kinematics, slip behaviors and implications of regional tectonics. Combining the results of interseismic (secular) horizontal and vertical velocities, we are able to map the surface traces of the three active faults in the Taitung area. The west-verging Longitudinal Valley Fault (LVF), along which the Coastal Range of the northern Luzon arc is thrusting over the Central Range of the Chinese continental margin, braches into two active strands bounding both sides of an uplifted, folded Quaternary fluvial deposits (Peinanshan massif) within the valley: the Lichi fault to the east and the Luyeh fault to the west. Both faults are creeping, to some extent, in the shallow surface level. However, while the Luyeh fault shows nearly pure thrust type, the Lichi fault reveals transpression regime in the north and transtension in the south end of the LVF in the Taitung plain. The results suggest that the deformation in the southern end of the Longitudinal Valley corresponds to a transition zone from present arc-collision to pre-collision zone in the offshore SE Taiwan. Concerning the Central Range, the third major fault in the area, the secular velocities indicate that the fault is mostly locked during the interseismic period and the accumulated strain would be able to produce a moderate earthquake, such as the example of the 2006 M6.1 Peinan earthquake, expressed by an oblique thrust (verging toward east) with significant left-lateral strike slip

  15. Silicon Valley Smart Corridor : draft evaluation strategy

    DOT National Transportation Integrated Search

    2000-06-05

    This document outlines the strategy for evaluating the integrated freeway, arterial, and incident management system known as the Silicon Valley Smart Corridor (SVSC). Centered in San Jose, California, the SVSC is one of approximately 65 deployments o...

  16. Silicon Valley Smart Corridor : final evaluation report

    DOT National Transportation Integrated Search

    2003-08-01

    This document summarizes the findings from the evaluation of the integrated freeway, arterial, and incident management system known as the Silicon Valley Smart Corridor (SVSC). Centered along the Highway 17/Interstate 880 corridor in San Jose, Califo...

  17. Field Surveys, IOC Valleys. Volume III, Part II. Cultural Resources Survey, Pine and Wah Wah Valleys, Utah.

    DTIC Science & Technology

    1981-08-01

    valleys are typical of the Basin and Range Province, characterized by parallel, north-south trending mountain ranges, separated by hydrologically closed... basins . Pine and Wah Wah valleys each have hardpan-playas in their lowest areas. State Highway 21 runs roughly northwest-southeast through both val...have been important for prehis- toric and historic use of the area. Pine Valley: Pine and Wah Wah valleys are closed alluvial basins . The central part

  18. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California

    NASA Astrophysics Data System (ADS)

    Knight, R. J.; Smith, R.; Asch, T. H.; Abraham, J.; Cannia, J.; Fogg, G. E.; Viezzoli, A.

    2016-12-01

    The Central Valley of California is an important agricultural region struggling to meet the need for irrigation water. Recent periods of drought have significantly reduced the delivery of surface water, resulting in extensive pumping of groundwater. This has exacerbated an already serious problem in the Central Valley, where a number of areas have experienced declining water levels for several decades leading to ongoing concerns about depletion of aquifers and impacts on ecosystems, as well as subsidence of the ground surface. The overdraft has been so significant, that there are now approximately140 million acre-feet (MAF) of unused groundwater storage in the Central Valley, storage that could be used to complement the 42 MAF of surface storage. The alluvial sedimentary geology of the Central Valley is typically composed of more than 50 to 70 percent fine-grained deposits dominated by silt and clay beds. These fine grained deposits can block potential recharge, and are associated with the large amount of observed subsidence. Fortunately, the geologic processes that formed the region created networks of sand and gravel which provide both a supply of water and pathways for recharge from the surface to the aquifers. The challenge is to find these sand and gravel deposits and thus identify optimal locations for surface spreading techniques so that recharge could be dramatically increased, and re-pressurization of the confined aquifer networks could be accomplished. We have acquired 100 line kilometers of airborne electromagnetic data over an area in the San Joaquin Valley, imaging the subsurface hydrostratigraphy to a depth of 500 m with spatial resolution on the order of meters to tens of meters. Following inversion of the data to obtain resistivity models along the flight lines, we used lithology logs in the area to transform the models to images displaying the distribution of sand and gravel, clay, and mixed fine and coarse materials. The quality of the data and

  19. Carbon Pool Dynamics in the Lower Fraser Basin from 1827 to 1990

    PubMed

    Boyle; Lavkulich

    1997-05-01

    / To understand the total impact of humans on the carbon cycle, themodeling and quantifying of the transfer of carbon from terrestrial pools tothe atmosphere is becoming more critical. Using previously published data,this research sought to assess the change in carbon pools caused by humans inthe Lower Fraser Basin (LFB) in British Columbia, Canada, since 1827 anddefine the long-term, regional contribution of carbon to the atmosphere. Theresults indicate that there has been a transfer of 270 Mt of carbon frombiomass pools in the LFB to other pools, primarily the atmosphere. The majorlosses of biomass carbon have been from logged forests (42%), wetlands(14%), and soils (43%). Approximately 48% of the forestbiomass, almost 20% of the carbon of the LFB, lies within old-growthforest, which covers only 19% of the study area. Landfills are nowbecoming a major sink of carbon, containing 5% of the biomass carbonin the LFB, while biomass carbon in buildings, urban vegetation, mammals, andagriculture is negligible. Approximately 26% of logged forest biomasswould still be in a terrestrial biomass pool, leaving 238 Mt of carbon thathas been released to the atmosphere. On an area basis, this is 29 times theaverage global emissions of carbon, providing an indication of the pastcontributions of developed countries such as Canada to global warming andpossible contributions from further clearing of rainforest in both tropicaland temperate regions.KEY WORDS: Carbon pools; Global warming; Carbon release to atmosphere;Greenhouse effect

  20. A landscape scale valley confinement algorithm: Delineating unconfined valley bottoms for geomorphic, aquatic, and riparian applications

    Treesearch

    David E. Nagel; John M. Buffington; Sharon L. Parkes; Seth Wenger; Jaime R. Goode

    2014-01-01

    Valley confinement is an important landscape characteristic linked to aquatic habitat, riparian diversity, and geomorphic processes. This report describes a GIS program called the Valley Confinement Algorithm (VCA), which identifies unconfined valleys in montane landscapes. The algorithm uses nationally available digital elevation models (DEMs) at 10-30 m resolution to...

  1. Valley Transit District: specialized transportation services for the elderly, handicapped, and low-income in the Lower Naugatuck Valley, Connecticut. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocur, G.

    1979-02-01

    A multifaceted demonstration with special emphasis on service to the elderly and handicapped has been operating in the Lower Naugatuck Valley of Connecticut since January 1973. The system has included limited fixed-route service, demand responsive door-to-door service, subscription service, and contract bus service for social-service agencies and other groups in the Valley. An automated fare-collection system using credit cards and monthly billings to eliminate the need for cash payment was used from 1973 to 1975. Fare subsidization for handicapped and elderly citizens is facilitated by this computerized system which bills sponsoring agencies according to the use of the transportation servicesmore » by their clients during the previous billing period. The user-side subsidies and monthly billings were continued after 1975 using manual methods. Of the target population of 12,000 individuals, 600 are regular, heavy users of the Valley Transit District (VTD), with few of the others using the system at all. VTD users are primarily low-income, autoless elderly from small households. The system operates 10 vehicles daily to provide its services; the average hourly cost is near $12. The system has earned revenues equal to almost 50% of its costs, although 40% of its revenues have been derived from user-side subsidy funds. Finally, VTD has withstood several challenges in regulatory and institutional areas from private bus operators and has slowly expanded its services throughout the demonstration. It is currently operating in post-demonstration status under ongoing funding.« less

  2. Valley-selective photon-dressed states in transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    LaMountain, Trevor; Chen, Yen-Jung; Stanev, Teodor K.; Stern, Nathaniel P.

    2018-02-01

    When electronic excitations in a semiconductor interact with light, the relevant quasiparticles are hybrid lightmatter dressed states, or exciton-polaritons. In monolayer transition metal dichalcogenides, a class of 2D direct bandgap semiconductors, optical excitations selectively populate distinct momentum valleys with correlated spin projection. The combination of this spin-valley locking with photon dressed states can lead to new optical phenomena in these materials. We present spectroscopic measurements of valley-specific exciton-polaritons in monolayer 2D materials in distinct regimes. When a monolayer is embedded in a dielectric microcavity, strong coupling exciton-polaritons are achieved. Cavity-modified dynamics of the dressed states are inferred from emission. Polarization persists up to room temperature in monolayer MoS2, in contrast with bare material. We also show that distinct regimes of valley-polarized exciton-polaritons can be accessed with microcavity engineering by tuning system parameters such as cavity decay rate and exciton-photon coupling strength. Further, we report results showing that polarization-sensitive ultrafast spectroscopy can enable sensitive measurements of the valley optical Stark shift, a light-induced dressed state energy shift, in monolayer semiconductors such as WSe2 and MoS2. These findings demonstrate distinct approaches to manipulating the picosecond dynamics of valleysensitive dressed states in monolayer semiconductors.

  3. Graphene Nanobubbles as Valley Filters and Beam Splitters

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Power, Stephen R.; Brandbyge, Mads; Jauho, Antti-Pekka

    2016-12-01

    The energy band structure of graphene has two inequivalent valleys at the K and K' points of the Brillouin zone. The possibility to manipulate this valley degree of freedom defines the field of valleytronics, the valley analogue of spintronics. A key requirement for valleytronic devices is the ability to break the valley degeneracy by filtering and spatially splitting valleys to generate valley polarized currents. Here, we suggest a way to obtain valley polarization using strain-induced inhomogeneous pseudomagnetic fields (PMFs) that act oppositely on the two valleys. Notably, the suggested method does not involve external magnetic fields, or magnetic materials, unlike previous proposals. In our proposal the strain is due to experimentally feasible nanobubbles, whose associated PMFs lead to different real space trajectories for K and K' electrons, thus allowing the two valleys to be addressed individually. In this way, graphene nanobubbles can be exploited in both valley filtering and valley splitting devices, and our simulations reveal that a number of different functionalities are possible depending on the deformation field.

  4. Evolution of a short-term study of lodgepole pine dwarf mistletoe vectors that turned into a long-term study of the remarkable gray jay on the Fraser Experimental Forest,Colorado, 1982-2009

    Treesearch

    Thomas H. Nicholls

    2014-01-01

    This is a summary of a 5-year short-term study that evolved into 28 years of long-term research on the US Department of Agriculture, Forest Service's Fraser Experimental Forest in Colorado. The study was begun in 1982 by Forest Service Research Scientists Thomas H. Nicholls and Frank G. Hawksworth to determine the importance of mammal and bird vectors in the long-...

  5. New Insights Into Valley Formation and Preservation: Geophysical Imaging of the Offshore Trinity River Paleovalley

    NASA Astrophysics Data System (ADS)

    Speed, C. M.; Swartz, J. M.; Gulick, S. P. S.; Goff, J.

    2017-12-01

    The Trinity River paleovalley is an offshore stratigraphic structure located on the inner continental shelf of the Gulf of Mexico offshore Galveston, Texas. Its formation is linked to the paleo-Trinity system as it existed across the continental shelf during the last glacial period. Newly acquired high-resolution geophysical data have imaged more complexity to the valley morphology and shelf stratigraphy than was previously captured. Significantly, the paleo-Trinity River valley appears to change in the degree of confinement and relief relative to the surrounding strata. Proximal to the modern shoreline, the interpreted time-transgressive erosive surface formed by the paleo-river system is broad and rugose with no single valley, but just 5 km farther offshore the system appears to become confined to a 10 km wide valley structure before again becoming unconfined once again 30 km offshore. Fluvial stratigraphy in this region has a similar degree of complexity in morphology and preservation. A dense geophysical survey of several hundred km is planned for Fall 2017, which will provide unprecedented imaging of the paleovalley morphology and associated stratigraphy. Our analysis leverages robust chirp processing techniques that allow for imaging of strata on the decimeter scale. We will integrate our geophysical results with a wide array of both newly collected and previously published sediment cores. This approach will allow us to address several key questions regarding incised valley formation and preservation on glacial-interglacial timescales including: to what extent do paleo-rivers remain confined within a single broad valley structure, what is the fluvial systems response to transgression, and what stratigraphy is created and preserved at the transition from fluvial to estuarine environments? Our work illustrates that traditional models of incised valley formation and subsequent infilling potentially fail to capture the full breadth of dynamics of past river

  6. The Long Valley Caldera GIS database

    USGS Publications Warehouse

    Battaglia, Maurizio; Williams, M.J.; Venezky, D.Y.; Hill, D.P.; Langbein, J.O.; Farrar, C.D.; Howle, J.F.; Sneed, M.; Segall, P.

    2003-01-01

    This database provides an overview of the studies being conducted by the Long Valley Observatory in eastern California from 1975 to 2001. The database includes geologic, monitoring, and topographic datasets related to Long Valley caldera. The CD-ROM contains a scan of the original geologic map of the Long Valley region by R. Bailey. Real-time data of the current activity of the caldera (including earthquakes, ground deformation and the release of volcanic gas), information about volcanic hazards and the USGS response plan are available online at the Long Valley observatory web page (http://lvo.wr.usgs.gov). If you have any comments or questions about this database, please contact the Scientist in Charge of the Long Valley observatory.

  7. Erosional valleys in the Thaumasia region of Mars: Hydrothermal and seismic origins

    USGS Publications Warehouse

    Tanaka, K.L.; Dohm, J.M.; Lias, J.H.; Hare, T.M.

    1998-01-01

    Analysis of erosional valleys, geologic materials and features, and topography through time in the Thaumasia region of Mars using co-registered digital spatial data sets reveals significant associations that relate to valley origin. Valleys tend to originate (1) on Noachian to Early Hesperian (stages 1 and 2) large volcanoes, (2) within 50-100 km of stages 1 and 2 rift systems, and (3) within 100 km of Noachian (stage 1) impact craters >50 km in diameter. These geologic preferences explain observations of higher valley-source densities (VSDs) in areas of higher elevations and regional slopes (>1??) because the volcanoes, rifts, and craters form high, steep topography or occur in terrain of high relief. Other stage 1 and stage 2 high, steep terrains, however, do not show high VSDs. The tendency for valleys to concentrate near geologic features and the overall low drainage densities in Thaumasia compared to terrestrial surfaces rule out widespread precipitation as a major factor in valley formation (as is proposed in wann, wet climate scenarios) except perhaps during the Early Noachian, for which much of the geologic record has been obliterated. Instead, volcanoes and rifts may indicate the presence of shallow crustal intrusions that could lead to local hydrothermal circulation, melting of ground ice and snow, and groundwater sapping. However, impact-crater melt would provide a heat source at the surface that might drive away water, forming valleys in the process. Post-stage 1 craters mostly have low nearby VSDs, which, for valleys incised in older rocks, suggests burial by e??jecta and, for . younger valleys, may indicate desiccation of near-surface water and deepening of the cryosphere. Later Hesperian and Amazonian (stages 3 and 4) valleys originate within 100-200 km of three young, large impact craters and near rifts systems at Warrego Valle??s and the southern part of Coprates rise. These valleys likely developed when the cryosphere was a couple kilometers or

  8. Titan's fluvial valleys: Morphology, distribution, and spectral properties

    USGS Publications Warehouse

    Langhans, M.H.; Jaumann, R.; Stephan, K.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Baines, K.H.; Nicholson, P.D.; Lorenz, R.D.; Soderblom, L.A.; Soderblom, J.M.; Sotin, Christophe; Barnes, J.W.; Nelson, R.

    2012-01-01

    Titan's fluvial channels have been investigated based on data obtained by the Synthetic Aperture Radar (SAR) instrument and the Visible and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. In this paper, a database of fluvial features is created based on radar-SAR data aiming to unveil the distribution and the morphologic and spectral characteristics of valleys on Titan on a global scale. It will also study the spatial relations between fluvial valleys and Titan's geologic units and spectral surface units which have become accessible thanks to Cassini-VIMS data. Several distinct morphologic types of fluvial valleys can be discerned by SAR-images. Dendritic valley networks appear to have much in common with terrestrial dendritic systems owing to a hierarchical and tree-shaped arrangement of the tributaries which is indicative of an origin from precipitation. Dry valleys constitute another class of valleys resembling terrestrial wadis, an indication of episodic and strong flow events. Other valley types, such as putative canyons, cannot be correlated with rainfall based on their morphology alone, since it cannot be ruled out that they may have originated from volcanic/tectonic action or groundwater sapping. Highly developed and complex fluvial networks with channel lengths of up to 1200 km and widths of up to 10 km are concentrated only at a few locations whereas single valleys are scattered over all latitudes. Fluvial valleys are frequently found in mountainous areas. Some terrains, such as equatorial dune fields and undifferentiated plains at mid-latitudes, are almost entirely free of valleys. Spectrally, fluvial terrains are often characterized by a high reflectance in each of Titan's atmospheric windows, as most of them are located on Titan's bright 'continents'. Nevertheless, valleys are spatially associated with a surface unit appearing blue due to its higher reflection at 1.3??m in a VIMS false color RGB composite with R: 1.59/1.27??m, G: 2

  9. Hydrology and simulation of ground-water flow in Juab Valley, Juab County, Utah.

    USGS Publications Warehouse

    Thiros, Susan A.; Stolp, Bernard J.; Hadley, Heidi K.; Steiger, Judy I.

    1996-01-01

    Plans to import water to Juab Valley, Utah, primarily for irrigation, are part of the Central Utah Project. A better understanding of the hydrology of the valley is needed to help manage the water resources and to develop conjunctive-use plans.The saturated unconsolidated basin-fill deposits form the ground-water system in Juab Valley. Recharge is by seepage from streams, unconsumed irrigation water, and distribution systems; infiltration of precipitation; and subsurface inflow from consolidated rocks that surround the valley. Discharge is by wells, springs, seeps, evapotranspiration, and subsurface outflow to consolidated rocks. Ground-water pumpage is used to supplement surface water for irrigation in most of the valley and has altered the direction of groundwater flow from that of pre-ground-water development time in areas near and in Nephi and Levan.Greater-than-average precipitation during 1980-87 corresponds with a rise in water levels measured in most wells in the valley and the highest water level measured in some wells. Less-than average precipitation during 1988-91 corresponds with a decline in water levels measured during 1988-93 in most wells. Geochemical analyses indicate that the sources of dissolved ions in water sampled from the southern part of the valley are the Arapien Shale, evaporite deposits that occur in the unconsolidated basin-fill deposits, and possibly residual sea water that has undergone evaporation in unconsolidated basin-fill deposits in selected areas. Water discharging from a spring at Burriston Ponds is a mixture of about 70 percent ground water from a hypothesized flow path that extends downgradient from where Salt Creek enters Juab Valley and 30 percent from a hypothesized flow path from the base of the southern Wasatch Range.The ground-water system of Juab Valley was simulated by using the U.S. Geological Survey modular, three-dimensional, finite-difference, ground-water flow model. The numerical model was calibrated to simulate

  10. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures.

    PubMed

    Nagler, Philipp; Ballottin, Mariana V; Mitioglu, Anatolie A; Mooshammer, Fabian; Paradiso, Nicola; Strunk, Christoph; Huber, Rupert; Chernikov, Alexey; Christianen, Peter C M; Schüller, Christian; Korn, Tobias

    2017-11-16

    Monolayers of semiconducting transition metal dichalcogenides exhibit intriguing fundamental physics of strongly coupled spin and valley degrees of freedom for charge carriers. While the possibility of exploiting these properties for information processing stimulated concerted research activities towards the concept of valleytronics, maintaining control over spin-valley polarization proved challenging in individual monolayers. A promising alternative route explores type II band alignment in artificial van der Waals heterostructures. The resulting formation of interlayer excitons combines the advantages of long carrier lifetimes and spin-valley locking. Here, we demonstrate artificial design of a two-dimensional heterostructure enabling intervalley transitions that are not accessible in monolayer systems. The resulting giant effective g factor of -15 for interlayer excitons induces near-unity valley polarization via valley-selective energetic splitting in high magnetic fields, even after nonselective excitation. Our results highlight the potential to deterministically engineer novel valley properties in van der Waals heterostructures using crystallographic alignment.

  11. Age constraints for the present fault configuration in the Imperial Valley, California: Evidence for northwestward propagation of the Gulf of California rift system

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1990-01-01

    Releveling and other geophysical data for the Imperial Valley of southern California suggest the northern section of the Imperial-Brawley fault system, which includes the Mesquite Basin and Brawley Seismic Zone, is much younger than the 4 to 5 million year age of the valley itself. A minimum age of 3000 years is calculated for the northern segment of the Imperial fault from correlations between surface topography and geodetically observed seismic/interseismic vertical movements. Calculations of a maximum age of 80,000 years is based upon displacements in the crystalline basement along the Imperial fault, inferred from seismic refraction surveys. This young age supports recent interpretations of heat flow measurements, which also suggest that the current patterns of seismicity and faults in the Imperial Valley are not long lived. The current fault geometry and basement morphology suggest northwestward growth of the Imperial fault and migration of the Brawley Seismic Zone. It is suggested that this migration is a manifestation of the propagation of the Gulf of California rift system into the North American continent.

  12. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...

  13. Valley dependent transport in graphene L junction

    NASA Astrophysics Data System (ADS)

    Chan, K. S.

    2018-05-01

    We studied the valley dependent transport in graphene L junctions connecting an armchair lead and a zigzag lead. The junction can be used in valleytronic devices and circuits. Electrons injected from the armchair lead into the junction is not valley polarized, but they can become valley polarized in the zigzag lead. There are Fermi energies, where the current in the zigzag lead is highly valley polarized and the junction is an efficient generator of valley polarized current. The features of the valley polarized current depend sensitively on the widths of the two leads, as well as the number of dimers in the armchair lead, because this number has a sensitive effect on the band structure of the armchair lead. When an external potential is applied to the junction, the energy range with high valley polarization is enlarged enhancing its function as a generator of highly valley polarized current. The scaling behavior found in other graphene devices is also found in L junctions, which means that the results presented here can be extended to junctions with larger dimensions after appropriate scaling of the energy.

  14. Testing a Mars science outpost in the Antarctic dry valleys

    NASA Technical Reports Server (NTRS)

    Andersen, D. T.; Mckay, C. P.; Wharton, R. A.; Rummel, J. D.

    1992-01-01

    Field research conducted in the Antarctic has been providing insights about the nature of Mars in the science disciplines of exobiology and geology. Located in the McMurdo Dry Valleys of southern Victoria Land (160 deg and 164 deg E longitude and 76 deg 30 min and 78 deg 30 min S latitude), research outposts are inhabited by teams of 4-6 scientists. It is proposed that the design of these outposts be expanded to enable meaningful tests of many of the systems that will be needed for the successful conduct of exploration activities on Mars. Although there are some important differences between the environment in the Antarctic dry valleys and on Mars, the many similarities and particularly the field science activities, make the dry valleys a useful terrestrial analog to conditions on Mars. Three areas have been identified for testing at a small science outpost in the dry valleys: (1) studying human factors and physiology in an isolated environment; (2) testing emerging technologies (e.g. innovative power management systems, advanced life support facilities including partial bioregenerative life support systems for water recycling and food growth, telerobotics, etc.); and (3) conducting basic scientific research that will enhance understanding of Mars while contributing to the planning for human exploration. It is suggested that an important early result of a Mars habitat program will be the experience gained by interfacing humans and their supporting technology in a remote and stressful environment.

  15. Groundwater quality in the Indian Wells Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Indian Wells Valley is one of the study areas being evaluated. The Indian Wells study area is approximately 600 square miles (1,554 square kilometers) and includes the Indian Wells Valley groundwater basin (California Department of Water Resources, 2003). Indian Wells Valley has an arid climate and is part of the Mojave Desert. Average annual rainfall is about 6 inches (15 centimeters). The study area has internal drainage, with runoff from the surrounding mountains draining towards dry lake beds in the lower parts of the valley. Land use in the study area is approximately 97.0 percent (%) natural, 0.4% agricultural, and 2.6% urban. The primary natural land cover is shrubland. The largest urban area is the city of Ridgecrest (2010 population of 28,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from the Sierra Nevada to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and to the west and from the other surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada and direct infiltration from irrigation and septic systems. The primary sources of discharge are pumping wells and evapotranspiration near the dry lakebeds. The primary aquifers in the Indian Wells study area are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells in

  16. Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe2

    NASA Astrophysics Data System (ADS)

    Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi

    2015-03-01

    Compared to the weak spin-orbit-interaction (SOI) in graphene, layered transitionmetal chalcogenides MX2 have heavy 4d/5d elements with strong atomic SOI, providing a unique way to extend functionalities of novel spintronics and valleytronics devices. Such a valley polarization achieved via valley-selective circular dichroism has been predicted theoretically and demonstrated with optical experiments in MX2 systems. Despite the exciting progresses, the generation of a valley/spin current by valley polarization in MX2 remains elusive and a great challenge. A spin/valley current in MX2 compounds caused by such a valley polarization has never been observed, nor its electric-field control. In this talk, we demonstrated, within an electric-double-layer transistor based on WSe2, the manipulation of a spin-coupled valley photocurrent whose direction and magnitude depend on the degree of circular polarization of the incident radiation and can be further greatly modulated with an external electric field. Such room temperature generation and electric control of valley/spin photocurrent provides a new property of electrons in MX2 systems, thereby enabling new degrees of control for quantum-confined spintronics devices. (In collaboration with S.C. Zhang, Y.L. Chen, Z.X. Shen, B Lian, H.J. Zhang, G Xu, Y Xu, B Zhou, X.Q. Wang, B Shen X.F. Fang) Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515. Acknowledge the support from DoE, BES, Division of MSE under contract DE-AC02-76SF00515.

  17. Down in the Valley.

    ERIC Educational Resources Information Center

    Salter, Linda Graef

    1999-01-01

    Describes the partnerships formed by West Valley Mission Community College District (California) with its surrounding Silicon Valley business community in an effort to benefit workforce development. Asserts that community colleges are uniquely positioned to provide a lifelong education that will yield a skilled workforce to meet the needs of…

  18. Predicting the valley physics of silicon quantum dots directly from a device layout

    NASA Astrophysics Data System (ADS)

    Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Bacewski, Andrew D.; Nielsen, Erik; Montaño, Inès; Rudolph, Martin; Carroll, Malcolm S.; Muller, Richard P.

    Qubits made from electrostatically-defined quantum dots in Si-based systems are excellent candidates for quantum information processing applications. However, the multi-valley structure of silicon's band structure provides additional challenges for the few-electron physics critical to qubit manipulation. Here, we present a theory for valley physics that is predictive, in that we take as input the real physical device geometry and experimental voltage operation schedule, and with minimal approximation compute the resulting valley physics. We present both effective mass theory and atomistic tight-binding calculations for two distinct metal-oxide-semiconductor (MOS) quantum dot systems, directly comparing them to experimental measurements of the valley splitting. We conclude by assessing these detailed simulations' utility for engineering desired valley physics in future devices. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. The authors gratefully acknowledge support from the Sandia National Laboratories Truman Fellowship Program, which is funded by the Laboratory Directed Research and Development (LDRD) Program.

  19. Testing of the Prototype Mars Drill and Sample Acquisition System in the Mars Analog Site of the Antarctica's Dry Valleys

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.

    2011-12-01

    We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  20. System of gigantic valleys northwest of Tharsis, Mars: Latent catastrophic flooding, northwest watershed, and implications for northern plains ocean

    USGS Publications Warehouse

    Dohm, J.M.; Anderson, R.C.; Baker, V.R.; Ferris, J.C.; Hare, T.M.; Strom, R.G.; Rudd, L.P.; Rice, J. W.; Casavant, R.R.; Scott, D.H.

    2000-01-01

    Mars Orbiter Laser Altimeter (MOLA) reveals a system of gigantic valleys to the northwest of the huge martian shield volcano, Arsia Mons, in the western hemisphere of Mars. These newly identified northwestern slope valleys (NSVs) potentially signify previously undocumented martian catastrophic floods and may corroborate the northern ocean hypotheses. These features, which generally correspond spatially to gravity lows, were previously obscurred in Mariner and Viking Orbiter imagery by veneers of materials, including volcanic lava flows and air fall deposits. Geologic investigations of the Tharsis region suggest that the NSVs were mainly carved prior to the construction of Arsia Mons and its associated Late Hesperian and Amazonian age lava flows, concurrent with the early development of the outflow channels that debouch into Chryse Planitia.

  1. Hazardous Waste Cleanup: West Valley Demonstration Project USDOE in West Valley, New York

    EPA Pesticide Factsheets

    The U.S. Department of Energy's West Valley Demonstration Project is located at 10282 Rock Spring Road in West Valley, New York. This is a 167 acre, Department of Energy (DOE)-operated portion of a 3,300-acre site owned by the New York State Energy

  2. Hydrological variability in the Fraser River Basin during the 20th century: A sensitivity study with the VIC model

    NASA Astrophysics Data System (ADS)

    Kang, D.; Gao, H.; Dery, S. J.

    2012-12-01

    The Variable Infiltration Capacity (VIC) model, a macroscale surface hydrology model, was applied to the Fraser River Basin (FRB) of British Columbia, Canada. Previous modeling studies have demonstrated that the FRB is a snow-dominated system but with climate change may evolve to a pluvial regime. The ultimate goal of this model application is to evaluate the changing contribution of snowmelt to streamflow in the FRB both spatially and temporally. To this end, the National Centers for Environmental Prediction (NCEP) reanalysis data combined with meteorological observations over 1953 to 2006 are used to drive the model at a resolution of 0.25°. Model simulations are first validated with daily discharge observations from the Water Survey of Canada (WSC). In addition, the snow water equivalent (SWE) results from VIC are compared with snow pillow observations from the B.C. Ministry of Environment. Then peak SWE values simulated each winter are compared with the annual runoff data to quantify the changing contribution of snowmelt to the hydrology of the FRB. With perturbed model forcings such as precipitation and air temperature, how streamflow and surface energy-mass balance are changed is evaluated. Finally, interactions between the land surface and ambient atmosphere are evaluated by analyzing VIC results such as evaporation, soil moisture, snowmelt and sensible-latent heat flux with corresponding meteorological forcings, i.e. precipitation and air temperature.

  3. Rift Valley Fever Virus

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV) is a mosquito-transmitted virus or arbovirus that is endemic in sub-Saharan Africa. In the last decade, Rift Valley fever (RVF) outbreaks have resulted in loss of human and animal life, as well as had significant economic impact. The disease in livestock is primarily a...

  4. Detection and measurement of land subsidence using Global Positioning System and interferometric synthetic aperture radar, Coachella Valley, California, 1996-98

    USGS Publications Warehouse

    Sneed, Michelle; Ikehara, Marti E.; Galloway, D.L.; Amelung, Falk

    2001-01-01

    Land subsidence associated with ground-water-level declines has been recognized as a potential problem in Coachella Valley, California. Since the early 1920s, ground water has been a major source of agricultural, municipal, and domestic supply in the valley, resulting in water-level declines as large as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the lower Coachella Valley began, resulting in a reduction in ground-water pumping and a recovery of water levels from the 1950s through the 1970s. Since the late 1970s, the demand for water in the valley has exceeded the deliveries of imported surface water, again resulting in increased pumping and ground-water-level declines. The magnitude and temporal occurrence of land subsidence in the lower Coachella Valley are not well known; data are sparse and accuracy varies. Also, the area is tectonically active and has subsided during the past several million years, which further complicates interpretations of the data. Land-surface-elevation data have been collected by many agencies using various methods and different geographic scales; because of this, the -150 millimeters (-0.5 foot) of subsidence determined for the southern parts of the valley for 1930-96 may have a possible error of plus or minus (?)90 millimeters (?0.3 foot). The location, extent, and magnitude of vertical land-surface changes from 1996 to 1998 were determined using Global Positioning System (GPS) and interferometric synthetic aperture radar (InSAR) methods. GPS measurements for 14 monuments in the lower Coachella Valley indicate that the vertical land-surface changes from 1996 to 1998 ranged from -13 to -67 millimeters ? 40 millimeters (-0.04 to -0.22 foot ?0.13 foot). Changes at seven of the monuments exceeded the measurement error of ?40 millimeters (?0.13 foot), which indicates that small amounts of land subsidence occurred at these monuments between 1996 and 1998. Some of the water levels measured

  5. Kirschenmann Road multi-well monitoring site, Cuyama Valley, Santa Barbara County, California

    USGS Publications Warehouse

    Everett, R.R.; Hanson, R.T.; Sweetkind, D.S.

    2011-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Water Agency Division of the Santa Barbara County Department of Public Works, is evaluating the geohydrology and water availability of the Cuyama Valley, California (fig. 1). As part of this evaluation, the USGS installed the Cuyama Valley Kirschenmann Road multiple-well monitoring site (CVKR) in the South-Main subregion of the Cuyama Valley (fig. 1). The CVKR well site is designed to allow for the collection of depth-specific water-level and water-quality data. Data collected at this site provides information about the geology, hydrology, geophysics, and geochemistry of the local aquifer system, thus, enhancing the understanding of the geohydrologic framework of the Cuyama Valley. This report presents the construction information and initial geohydrologic data collected from the CVKR monitoring site, along with a brief comparison to selected supply and irrigation wells from the major subregions of the Cuyama Valley (fig. 1).

  6. An evaluation of Skylab (EREP) remote sensing techniques applied to investigation of crustal structure. [Death Valley and Greenwater Valley (CA)

    NASA Technical Reports Server (NTRS)

    Bechtold, I. C. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. A study of Greenwater Valley indicates that the valley is bounded on the north and east by faults, on the south by a basement high, and on the west by the dip slope of the black mountains, movement of ground water from the valley is thus Movement of ground water from the valley is thus restricted, indicating the valley is a potential water reservoir.

  7. Guidelines for model calibration and application to flow simulation in the Death Valley regional groundwater system

    USGS Publications Warehouse

    Hill, M.C.; D'Agnese, F. A.; Faunt, C.C.

    2000-01-01

    Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.Fourteen guidelines are described which are intended to produce calibrated groundwater models likely to represent the associated real systems more accurately than typically used methods. The 14 guidelines are discussed in the context of the calibration of a regional groundwater flow model of the Death Valley region in the southwestern United States. This groundwater flow system contains two sites of national significance from which the subsurface transport of contaminants could be or is of concern: Yucca Mountain, which is the potential site of the United States high-level nuclear-waste disposal; and the Nevada Test Site, which contains a number of underground nuclear-testing locations. This application of the guidelines demonstrates how they may be used for model calibration and evaluation, and also to direct further model development and data collection.

  8. Examining controls on peak annual streamflow and floods in the Fraser River Basin of British Columbia

    NASA Astrophysics Data System (ADS)

    Curry, Charles L.; Zwiers, Francis W.

    2018-04-01

    The Fraser River Basin (FRB) of British Columbia is one of the largest and most important watersheds in western North America, and home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in May-July. Nevertheless, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, 1 April snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute nearly 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation - ENSO) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (univariate Spearman correlation with APF of ρ ^ = 0.64; 0.70 (observations; VIC simulation)), the snowmelt rate (ρ

  9. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connectmore » a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.« less

  10. 15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSEUP OF THE SWITCHGEAR, LOOKING SOUTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  11. Controls on valley spacing in landscapes subject to rapid base-level fall

    USGS Publications Warehouse

    McGuire, Luke; Pelletier, John D.

    2015-01-01

    What controls the architecture of drainage networks is a fundamental question in geomorphology. Recent work has elucidated the mechanisms of drainage network development in steadily uplifting landscapes, but the controls on drainage-network morphology in transient landscapes are relatively unknown. In this paper we exploit natural experiments in drainage network development in incised Plio-Quaternary alluvial fan surfaces in order to understand and quantify drainage network development in highly transient landscapes, i.e. initially unincised low-relief surfaces that experience a pulse of rapid base-level drop followed by relative base-level stasis. Parallel drainage networks formed on incised alluvial-fan surfaces tend to have a drainage spacing that is approximately proportional to the magnitude of the base-level drop. Numerical experiments suggest that this observed relationship between the magnitude of base-level drop and mean drainage spacing is the result of feedbacks among the depth of valley incision, mass wasting and nonlinear increases in the rate of colluvial sediment transport with slope gradient on steep valley side slopes that lead to increasingly wide valleys in cases of larger base-level drop. We identify a threshold magnitude of base-level drop above which side slopes lengthen sufficiently to promote increases in contributing area and fluvial incision rates that lead to branching and encourage drainage networks to transition from systems of first-order valleys to systems of higher-order, branching valleys. The headward growth of these branching tributaries prevents the development of adjacent, ephemeral drainages and promotes a higher mean valley spacing relative to cases in which tributaries do not form. Model results offer additional insights into the response of initially unincised landscapes to rapid base-level drop and provide a preliminary basis for understanding how varying amounts of base-level change influence valley network morphology.

  12. High-mobility hydrogen-terminated Si(111) transistors for measurement of six-fold valley degenerate two-dimensional electron systems in fractional quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Hu, Binhui; Yazdanpanah, Mohamad Meqdad; Kane, Bruce E.

    2015-03-01

    The quality of hydrogen-terminated Si(111) (H-Si(111)) transistors has improved significantly. Peak electron mobility of 325,000 cm2/Vs was achieved at 90 mK, and the fractional quantum Hall effect (FQHE) at 1 < ν < 2 was studied extensively. We have further improved the device by solving gate leakage and contact problems with an updated design, in which a Si piece with thermal oxide acts as a gate through a vacuum cavity, and PN junctions are used to define a hexagonal two-dimensional (2D) region on a H-Si(111) piece. The device operates as an ambipolar transistor, in which a 2D electron system (2DES) and a 2D hole system can be induced at the same H-Si(111) surface. Peak electron mobility of more than 200,000 cm2/Vs is routinely achieved at 300 mK. The Si(111) surface has a six-fold valley degeneracy. The hexagonal device is designed to investigate the symmetry of the 2DES. Preliminary data show that the transport anisotropy at ν < 6 can be explained by the valley occupancy. The details of the valley occupancy can be caused by several mechanisms, such as miscut, magnetic field, pseudospin quantum Hall ferromagnetism (QHFM), and nematic valley polarization phases. The FQHE is investigated in magnetic fields up to 35T, and the properties of composite fermions will be discussed.

  13. Cooperative effort in training small- and medium-scale industries in the Lower Rio Grande Valley in environmental management system (EMS) certification

    NASA Astrophysics Data System (ADS)

    Edinbarough, Immanuel A.; Wells, Wayne E.; Lichaa, Pierre M.

    2004-12-01

    The University of Texas at Brownsville and Texas Southmost College (UTB/TSC) partners with The Texas Commission on Environmental Quality (TCEQ) to provide pollution prevention and compliance assistance for U.S. based small to medium sized entities (SME"s) located in the Lower Rio Grande Valley border region of Texas. It is anticipated that this training would evolve into environmental management system certification for these entities. This paper discusses pollution challenges and environmental initiatives between Texas and Mexico to confront these challenges and the ongoing cooperative efforts between UTB and TCEQ to enhance the economic and environmental health of the Lower Rio Grande Valley region.

  14. 27 CFR 9.154 - Chiles Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Chiles Valley. (a) Name. The name of the viticultural area described in this section is “Chiles Valley... viticultural area are four 1:24,000 Scale U.S.G.S. topography maps. They are titled: (1) St. Helena, CA 1960 photorevised 1980; (2) Rutherford, CA 1951 photorevised 1968; (3) Chiles Valley, CA 1958 photorevised 1980; (4...

  15. Meter-Scale Characteristics of Martian Channels and Valleys

    USGS Publications Warehouse

    Carr, M.H.; Malin, M.C.

    2000-01-01

    Mars Global Surveyor images, with resolutions as high as 1.5 m pixel, enable characterization of martian channels and valleys at resolutions one to two orders of magnitude better than was previously possible. A major surprise is the near-absence of valleys a few hundred meters wide and narrower. The almost complete absence of fine-scale valleys could be due to lack of precipitation, destruction of small valleys by erosion, or dominance of infiltration over surface runoff. V-shaped valleys with a central channel, such as Nanedi Vallis, provide compelling evidence for sustained or episodic flow of water across the surface. Larger valleys appear to have formed not by headward erosion as a consequence of groundwater sapping but by erosion from water sources upstream of the observed sections. The freshest appearing valleys have triangular cross sections, with talus from opposing walls meeting at the center of the valley. The relations suggest that the width of the valleys is controlled by the depth of incision and the angle of repose of the walls. The flat floors of less fresh-appearing valleys result primarily from later eolian fill. Several discontinuous valleys and lines of craters suggest massive subsurface solution or erosion. The climatic implications of the new images will remain obscure until the cause for the scarcity of fine-scale dissection is better understood. ?? 2000 Academic Press.

  16. Disaster preparedness in a complex urban system: the case of Kathmandu Valley, Nepal.

    PubMed

    Carpenter, Samuel; Grünewald, François

    2016-07-01

    The city is a growing centre of humanitarian concern. Yet, aid agencies, governments and donors are only beginning to comprehend the scale and, importantly, the complexity of the humanitarian challenge in urban areas. Using the case study of the Kathmandu Valley, Nepal, this paper examines the analytical utility of recent research on complex urban systems in strengthening scholarly understanding of urban disaster risk management, and outlines its operational relevance to disaster preparedness. Drawing on a literature review and 26 interviews with actors from across the Government of Nepal, the International Red Cross and Red Crescent Movement, non-governmental organisations, United Nations agencies, and at-risk communities, the study argues that complexity can be seen as a defining feature of urban systems and the risks that confront them. To manage risk in these systems effectively, preparedness efforts must be based on adaptive and agile approaches, incorporating the use of network analysis, partnerships, and new technologies. © 2016 The Author(s). Disasters © Overseas Development Institute, 2016.

  17. Gene expression profiling and environmental contaminant assessment of migrating Pacific salmon in the Fraser River watershed of British Columbia.

    PubMed

    Veldhoen, Nik; Ikonomou, Michael G; Dubetz, Cory; Macpherson, Nancy; Sampson, Tracy; Kelly, Barry C; Helbing, Caren C

    2010-05-05

    The health and physiological condition of anadromous salmon is of concern as their upriver migration requires navigation of human-impacted waterways and metabolism of stored energy reserves containing anthropogenic contaminants. Such factors may affect reproductive success of fish stocks. This study investigates chemical contaminant burdens and select gene expression profiles in Pacific Sockeye (Oncorhynchus nerka) and Chinook (Oncorhynchus tshawytscha) salmon which traverse the Fraser River watershed during their spawning migration. Chemical analyses of muscle tissue and eggs of salmon collected from the lower Fraser River (pre-migration) and from upstream spawning grounds (post-migration) during the 2007 migration revealed the presence of numerous chemical contaminants, including PCBs, dioxins/furans, pesticides, and heavy metals. However, muscle tissue residue concentrations were well below human health consumption guidelines and 2,3,7,8 TCDD toxic equivalents (SigmaTEQs) in salmon eggs, calculated using WHO toxic equivalency factors (WHO-TEFs) for fish health, did not exceed the 0.3pgg(-1) wet weight toxicological threshold level previously associated with 30% egg mortality in salmon populations. Quantitative real-time PCR probes were generated and used to assess differences in abundance of key mRNA transcripts encoding nine gene products associated with reproduction, stress, metal toxicity, and exposure to environmental contaminants. Gene expression profiles were characterized in liver and muscle tissue of pre- and post-migration Sockeye and Chinook salmon. The results of stock-matched animals indicate that dynamic changes in mRNA levels occur for a number of genes in both species during migration and suggest that Sockeye salmon exhibit a greater level of biological stress compared to the Chinook salmon population. Using a male-specific genotypic marker, we found that out of the 154 animals examined, one Sockeye was genotypically male but phenotypically female

  18. Valley Vortex States in Sonic Crystals

    NASA Astrophysics Data System (ADS)

    Lu, Jiuyang; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2016-03-01

    Valleytronics is quickly emerging as an exciting field in fundamental and applied research. In this Letter, we study the acoustic version of valley states in sonic crystals and reveal a vortex nature of such states. In addition to the selection rules established for exciting valley polarized states, a mimicked valley Hall effect of sound is proposed further. The extraordinary chirality of valley vortex states, detectable in experiments, may open a new possibility in sound manipulations. This is appealing to scalar acoustics that lacks a spin degree of freedom inherently. In addition, the valley selection enables a handy way to create vortex matter in acoustics, in which the vortex chirality can be controlled flexibly. Potential applications can be anticipated with the exotic interaction of acoustic vortices with matter, such as to trigger the rotation of the trapped microparticles without contact.

  19. Detection and Measurement of Land Subsidence Using Global Positioning System Surveying and Interferometric Synthetic Aperture Radar, Coachella Valley, California, 1996-2005

    USGS Publications Warehouse

    Sneed, Michelle; Brandt, Justin T.

    2007-01-01

    Land subsidence associated with ground-water-level declines has been investigated by the U.S. Geological Survey in the Coachella Valley, California, since 1996. Ground water has been a major source of agricultural, municipal, and domestic supply in the valley since the early 1920s. Pumping of ground water resulted in water-level declines as large as 15 meters (50 feet) through the late 1940s. In 1949, the importation of Colorado River water to the southern Coachella Valley began, resulting in a reduction in ground-water pumping and a recovery of water levels during the 1950s through the 1970s. Since the late 1970s, demand for water in the valley has exceeded deliveries of imported surface water, resulting in increased pumping and associated ground-water-level declines and, consequently, an increase in the potential for land subsidence caused by aquifer-system compaction. Global Positioning System (GPS) surveying and interferometric synthetic aperture radar (InSAR) methods were used to determine the location, extent, and magnitude of the vertical land-surface changes in the southern Coachella Valley. GPS measurements made at 13 geodetic monuments in 1996 and in 2005 in the southern Coachella Valley indicate that the elevation of the land surface had a net decline of 333 to 22 millimeters ?58 millimeters (1.1 to 0.07 foot ?0.19 foot) during the 9-year period. Changes at 10 of the 13 monuments exceeded the maximum uncertainty of ?58 millimeters (?0.19 foot) at the 95-percent confidence level, indicating that subsidence occurred at these monuments between June 1996 and August 2005. GPS measurements made at 20 geodetic monuments in 2000 and in 2005 indicate that the elevation of the land surface changed -312 to +25 millimeters ?42 millimeters (-1.0 to +0.08 foot ?0.14 foot) during the 5-year period. Changes at 14 of the 20 monuments exceeded the maximum uncertainty of ?42 millimeters (?0.14 foot) at the 95-percent confidence level, indicating that subsidence occurred at

  20. Metallic iron for water treatment: leaving the valley of confusion

    NASA Astrophysics Data System (ADS)

    Makota, Susanne; Nde-Tchoupe, Arnaud I.; Mwakabona, Hezron T.; Tepong-Tsindé, Raoul; Noubactep, Chicgoua; Nassi, Achille; Njau, Karoli N.

    2017-12-01

    Researchers on metallic iron (Fe0) for environmental remediation and water treatment are walking in a valley of confusion for 25 years. This valley is characterized by the propagation of different beliefs that have resulted from a partial analysis of the Fe0/H2O system as (1) a reductive chemical reaction was considered an electrochemical one and (2) the mass balance of iron has not been really addressed. The partial analysis in turn has been undermining the scientific method while discouraging any real critical argumentation. This communication re-establishes the complex nature of the Fe0/H2O system while recalling that, finally, proper system analysis and chemical thermodynamics are the most confident ways to solve any conflicting situation in Fe0 environmental remediation.

  1. Reconstructing late Pliocene to middle Pleistocene Death Valley lakes and river systems as a test of pupfish (Cyprinodontidae) dispersal hypotheses

    USGS Publications Warehouse

    Knott, J.R.; Machette, M.N.; Klinger, R.E.; Sarna-Wojcicki, A. M.; Liddicoat, J.C.; Tinsley, J. C.; David, B.T.; Ebbs, V.M.

    2008-01-01

    Nevada by such a connection is not supported. Beyond the biologically predicted time frame, however, sparse and disputed data suggest that a fluvial system connected Panamint (Owens River), Death, and Amargosa Valleys, which could account for the dispersal and isolation before 3 Ma. ?? 2008 The Geological Society of America.

  2. Optical tuning of electronic valleys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Gedik, Nuh

    2017-02-01

    Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.

  3. Appraisal of the water resources of Death Valley, California-Nevada

    USGS Publications Warehouse

    Miller, Glenn Allen

    1977-01-01

    The hydrologic system in Death Valley is probably in a steady-state condition--that is, recharge and discharge are equal, and net changes in the quantity of ground water in storage are not occurring. Recharge to ground water in the valley is derived from interbasin underflow and from local precipitation. The two sources may be of the same magnitude. Ground water beneath the valley moves toward the lowest area, a 200-square-mile saltpan, much of which is underlain by rock salt and other saline minerals, probably to depths of hundreds of feet or even more than 1,000 feet. Some water discharges from the saltpan by evaportranspiration. Water beneath the valley floor, excluding the saltpan, typically contains between 3,000 and 5,000 milligrams per liter of dissolved solids. Water from most springs and seeps in the mountains contains a few hundred to several hundred milligrams per liter of dissolved solids. Water from large springs that probably discharge from interbasin flow systems typically contains between 500 and 1,000 milligrams per liter dissolved solids. Present sites of intensive use by man are supplied by springs, with the exception of the Stovepipe Wells Hotel area. Potential sources of supply for this area include (1) Emigrant Spring area, (2) Cottonwood Spring, and (3) northern Mesquite Flat. (Woodard-USGS)

  4. Martian oceans, valleys and climate

    USGS Publications Warehouse

    Carr, M.H.

    2000-01-01

    The new Mars Global Surveyor altimetry shows that the heavily cratered southern hemisphere of Mars is 5 km higher that the sparely cratered plains of the northern hemisphere. Previous suggestions that oceans formerly occupied that northern plains as evidenced by shorelines are partly supported by the new data. A previously identified outer boundary has a wide range of elevations and is unlikely to be a shoreline but an inner contact with a narrow range of elevations is a more likely candidate. No shorelines are visible in the newly acquired, 2.5 metre/pixel imaging. Newly imaged valleys provide strong support for sustained or episodic flow of water across the Martian surface. A major surprise, however, is the near absence of valleys less than 100 m across. Martian valleys seemingly do not divide into ever smaller valleys as terrestrial valleys commonly do. This could be due to lack of precipitation or lack of surface runoff because of high infiltration rates. High erosion rates and supports warm climates and presence of large bodies of water during heavy bombardment. The climate history and fate of the water after heavy bombardment remain cotroversial.

  5. Hydrology of Northern Utah Valley, Utah County, Utah, 1975-2005

    USGS Publications Warehouse

    Cederberg, Jay R.; Gardner, Philip M.; Thiros, Susan A.

    2009-01-01

    The ground-water resources of northern Utah Valley, Utah, were assessed during 2003-05 to describe and quantify components of the hydrologic system, determine a hydrologic budget for the basin-fill aquifer, and evaluate changes to the system relative to previous studies. Northern Utah Valley is a horst and graben structure with ground water occurring in both the mountain-block uplands surrounding the valley and in the unconsolidated basin-fill sediments. The principal aquifer in northern Utah Valley occurs in the unconsolidated basin-fill deposits where a deeper unconfined aquifer occurs near the mountain front and laterally grades into multiple confined aquifers near the center of the valley. Sources of water to the basin-fill aquifers occur predominantly as either infiltration of streamflow at or near the interface of the mountain front and valley or as subsurface inflow from the adjacent mountain blocks. Sources of water to the basin-fill aquifers were estimated to average 153,000 (+/- 31,500) acre-feet annually during 1975-2004 with subsurface inflow and infiltration of streamflow being the predominant sources. Discharge from the basin-fill aquifers occurs in the valley lowlands as flow to waterways, drains, ditches, springs, as diffuse seepage, and as discharge from flowing and pumping wells. Ground-water discharge from the basin-fill aquifers during 1975-2004 was estimated to average 166,700 (+/- 25,900) acre-feet/year where discharge to wells for consumptive use and discharge to waterways, drains, ditches, and springs were the principal sources. Measured water levels in wells in northern Utah Valley declined an average of 22 feet from 1981 to 2004. Water-level declines are consistent with a severe regional drought beginning in 1999 and continuing through 2004. Water samples were collected from 36 wells and springs throughout the study area along expected flowpaths. Water samples collected from 34 wells were analyzed for dissolved major ions, nutrients, and

  6. Planning the Implementation of an Integrated On-line Acquisitions System.

    ERIC Educational Resources Information Center

    Baldwin, Paul E.

    1984-01-01

    Discusses need to consider political context of decision-making process and describes how cost data were presented to obtain management approval for implementation planning for integrated online acquisitions and fund accounting system involving Simon Fraser University, University of British Columbia, and University of Victoria. Cost, budget, and…

  7. Attitudes about OCLC in Small and Medium-Sized Libraries. Illinois Valley Library System OCLC Experimental Project. Report No. 4.

    ERIC Educational Resources Information Center

    Bills, Linda G.; Wilford, Valerie

    A project was conducted from 1980 to 1982 to determine the costs and benefits of OCLC use in 29 small and medium-sized member libraries of the Illinois Valley Library System (IVLS). Academic, school, public, and special libraries participated in the project. Based on written attitude surveys of and interviews with library directors, staff,…

  8. Nondegenerate valleys in the half-metallic ferromagnet Fe/WS 2

    NASA Astrophysics Data System (ADS)

    Messaoudi, Omar; Ibañez-Azpiroz, Julen; Bouzar, Hamid; Lounis, Samir

    2018-01-01

    We present a first-principles investigation of the electronic properties of monolayer WS2 coated with an overlayer of Fe. Our ab initio calculations reveal that the system is a half-metallic ferromagnet with a gap of ˜1 eV for the majority spin channel. Furthermore, the combined effect of time-reversal symmetry breaking due to the magnetic Fe overlayer and the large spin-orbit coupling induced by W gives rise to nondegenerate K and K' valleys. This has a tremendous impact on the excited-state properties induced by externally applied circularly polarized light. Our analysis demonstrates that the latter induces a singular hot-spot structure of the transition probability around the K and K' valleys for right and left circular polarization, respectively. We trace back the emergence of this remarkable effect to the strong momentum dependent spin-noncollinearity of the valence band involved. As a main consequence, a strong valley-selective magnetic circular dichroism is obtained, making this system a prime candidate for spintronics and photonics applications.

  9. Processes regulating watershed chemical export during snowmelt, fraser experimental forest, Colorado

    USGS Publications Warehouse

    Stottlemyer, R.

    2001-01-01

    In the Central Rocky Mountains, snowfall dominates precipitation. Airborne contaminants retained in the snowpack can affect high elevation surface water chemistry during snowmelt. At the Fraser Experimental Forest (FEF), located west of the Continental Divide in Central Colorado, snowmelt dominates the annual hydrograph, and accounts for >95% of annual stream water discharge. During the winters of 1989-1993, we measured precipitation inputs, snowpack water equivalent (SWE) and ion content, and stream water chemistry every 7-10 days along a 3150-3500 m elevation gradient in the subalpine and alpine Lexen Creek watershed. The study objectives were to (1) quantify the distribution of SWE and snowpack chemical content with elevation and aspect, (2) quantify snowmelt rates, temperature of soil, snowpack, and air with elevation and aspect, and (3) use change in upstream-downstream water chemistry during snowmelt to better define alpine and subalpine flowpaths. The SWE increased with elevation (P - 3??C) temperatures throughout winter which resulted in significant snowpack ion loss. By snowpack PWE in mid May, the snowpack had lost almost half the cumulative precipitation H+, NH4+, and SO42- inputs and a third of the NO3- input. Windborne soil particulate inputs late in winter increased snowpack base cation content. Variation in subalpine SWE and snowpack ion content with elevation and aspect, and wind redistribution of snowfall in the alpine resulted in large year-to-year differences in the timing and magnitude of SWE, PWE, and snowpack ion content. The alpine stream water ion concentrations changed little during snowmelt indicating meltwater passed quickly through surface porous soils and was well mixed before entering the stream. Conversely, subalpine stream water chemistry was diluted during snowmelt suggesting much melt water moved to the stream as shallow subsurface lateral flow. Published by Elsevier Science B.V.

  10. Investigation of the heat source(s) of the Surprise Valley Geothermal System, Northern California

    NASA Astrophysics Data System (ADS)

    Tanner, N.; Holt, C. D.; Hawkes, S.; McClain, J. S.; Safford, L.; Mink, L. L.; Rose, C.; Zierenberg, R. A.

    2016-12-01

    Concerns about environmental impacts and energy security have led to an increased interest in sustainable and renewable energy resources, including geothermal systems. It is essential to know the permeability structure and possible heat source(s) of a geothermal area in order to assess the capacity and extent of the potential resource. We have undertaken geophysical surveys at the Surprise Valley Hot Springs in Cedarville, California to characterize essential parameters related to a fault-controlled geothermal system. At present, the heat source(s) for the system are unknown. Igneous bodies in the area are likely too old to have retained enough heat to supply the system, so it is probable that fracture networks provide heat from some deeper or more distributed heat sources. However, the fracture system and permeability structure remain enigmatic. The goal of our research is to identify the pathways for fluid transport within the Surprise Valley geothermal system using a combination of geophysical methods including active seismic surveys and short- and long-period magnetotelluric (MT) surveys. We have collected 14 spreads, consisting of 24 geophones each, of active-source seismic data. We used a "Betsy Gun" source at 8 to 12 locations along each spread and have collected and analyzed about 2800 shot-receiver pairs. Seismic velocities reveal shallow lake sediments, as well as velocities consistent with porous basalts. The latter, with velocities of greater than 3.0 km/s, lie along strike with known hot springs and faulted and tilted basalt outcrops outside our field area. This suggests that basalts may provide a permeable pathway through impermeable lake deposits. We conducted short-period (10Hz-60kHz) MT measurements at 33 stations. Our short-period MT models indicate shallow resistive blocks (>100Ωm) with a thin cover of more conductive sediments ( 10Ωm) at the surface. Hot springs are located in gaps between resistive blocks and are connected to deeper low

  11. Topological induced valley polarization in bilayer graphene/Boron Nitride

    NASA Astrophysics Data System (ADS)

    Basile, Leonardo; Idrobo, Juan C.

    2015-03-01

    Novel electronic devices relay in our ability to control internal quantum degrees of freedom of the electron e.g., its spin. The valley number degree of freedom is a pseudospin that labels degenerate eigenstates at local maximum/minimum on the valence/conduction band. Valley polarization, that is, selective electronic localization in a momentum valley and its manipulation can be achieved by means of circular polarized light (CPL) in a system with strong spin-orbit coupling (SOC). In this talk, we will show theoretically that despite the fact that neither graphene or BN have a strong SOC, a bilayer of graphene on BN oriented at a twist angle has different absorption for right- and left- CPL. This induced polarization occurs due to band folding of the electronic bands, i.e., it has a topological origin. This research was supported EPN multidisciplinary grant and by DOE SUFD MSED.

  12. View From Within 'Perseverance Valley' on Mars (Enhanced Color)

    NASA Image and Video Library

    2017-12-06

    This enhanced-color view from within "Perseverance Valley," on the inner slope of the western rim of Endurance Crater on Mars, includes wheel tracks from the Opportunity rover's descent of the valley. The Panoramic Camera (Pancam) on Opportunity's mast took the component images of the scene during the period Sept. 4 through Oct. 6, 2017, corresponding to sols (Martian days) 4840 through 4871 of the rover's work on Mars. Perseverance Valley is a system of shallow troughs descending eastward about the length of two football fields from the crest of the crater rim to the floor of the crater. This panorama spans from northeast on the left to northwest on the right, including portions of the crater floor (eastward) in the left half and of the rim (westward) in the right half. Opportunity began descending Perseverance Valley in mid-2017 (see map) as part of an investigation into how the valley formed. Rover wheel tracks are darker brown, between two patches of bright bedrock, receding toward the horizon in the right half of the scene. This view combines multiple images taken through three different Pancam filters. The selected filters admit light centered on wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). The three color bands are combined here with enhancement to make differences in surface materials easier to see. A map and full-resolution TIFF file are available at https://photojournal.jpl.nasa.gov/catalog/PIA22073

  13. Magnetic control of valley pseudospin in monolayer WSe 2

    DOE PAGES

    Aivazian, G.; Gong, Zhirui; Jones, Aaron M.; ...

    2015-01-26

    Local energy extrema of the bands in momentum space, or valleys, can endow electrons in solids with pseudo-spin in addition to real spin 1-5. In transition metal dichalcogenides this valley pseudo-spin, like real spin, is associated with a magnetic moment1,6 which underlies the valley-dependent circular dichroism 6 that allows optical generation of valley polarization 7-9, intervalley quantum coherence 10, and the valley Hall effect 11. However, magnetic manipulation of valley pseudospin via this magnetic moment 12-13, analogous to what is possible with real spin, has not been shown before. Here we report observation of the valley Zeeman splitting and magneticmore » tuning of polarization and coherence of the excitonic valley pseudospin, by performing polarization-resolved magneto-photoluminescence on monolayer WSe 2. Our measurements reveal both the atomic orbital and lattice contributions to the valley orbital magnetic moment; demonstrate the deviation of the band edges in the valleys from an exact massive Dirac fermion model; and reveal a striking difference between the magnetic responses of neutral and charged valley excitons which is explained by renormalization of the excitonic spectrum due to strong exchange interactions.« less

  14. Spin and valley filter across line defect in silicene

    NASA Astrophysics Data System (ADS)

    Wang, Sake; Ren, Chongdan; Li, Yunfang; Tian, Hongyu; Lu, Weitao; Sun, Minglei

    2018-05-01

    We propose a new scheme to achieve an effective spin/valley filter in silicene with extended line defect on the basis of spin–valley coupling due to the intrinsic spin-orbit coupling (SOC). The transmission coefficient of the spin/valley states is seriously affected by the SOC. When a perpendicular magnetic field is applied on one side of the line defect, one valley state will experience backscattering, but the other valley will not; this leads to high valley polarization in all transmission directions. Moreover, the spin/valley polarization can be enhanced to 96% with the aid of a perpendicular electric field.

  15. Hydrologic connectivity in the McMurdo Dry Valleys of Antarctica: System function and changes over two decades

    NASA Astrophysics Data System (ADS)

    Wlostowski, A. N.; Gooseff, M. N.; Bernzott, E. D.; McKnight, D. M.; Jaros, C.; Lyons, W.

    2013-12-01

    The McMurdo Dry Valleys of Antarctica is one of the coldest (average annual air temperature of -18°C) and driest (<10cm water equivalent of precip per year) places on earth. Despite the harsh climatic conditions of this landscape, a thriving microbial and invertebrate ecosystem exists, but is limited by the availability of liquid water. So, it is important to quantify temporal and spatial dynamics of hydrologic and ecological connections in the McMurdo Dry Valleys. Intermittent glacial meltwater streams connect glaciers to closed basin lakes and compose the most prominent hydrologic nexus in the valleys. This study uses of 20+ years of stream temperature, electrical conductivity (EC), and discharge data to enhance our quantitative understanding of the temporal dynamics of hydrologic connections along the glacier-stream-lake continuum. Annually, streamflow occurs for a relatively brief 10-12 week period of the austral summer. Longer streams are more prone to intermittent dry periods during the flow season, making for a harsher ecological environment than shorter streams. Diurnal streamflow variation occurs primarily as a result of changing solar postion relative to the source-glacier surfaces. Therfore, different streams predictably experience high flows and low flows at different times of the day. Electrical conductivity also exhibits diel variations, but the nature of EC-discharge relationships differs among streams throughout the valley. Longer streams have higher EC values and lower discharges than shorter streams, suggesting that hyporheic zones act as a significant solute source and hydrologic reservoir along longer streams. Water temperatures are consistently warmer in longer streams, relative to shorter streams, likely due to prolonged exposure to incident radiation with longer surface water residence times. Inter-annually, several shorter streams in the region show significant increases in Q10, Q30, Q50, Q70, Q90, and/or Q100 flows across the 20+ year

  16. Ground water in Dale Valley, New York

    USGS Publications Warehouse

    Randall, Allan D.

    1979-01-01

    Dale Valley is a broad valley segment, enlarged by glacial erosion, at the headwaters of Little Tonawanda Creek near Warsaw , New York. A thin, shallow alluvial aquifer immediately underlies the valley floor but is little used. A deeper gravel aquifer, buried beneath many feet of lake deposits, is tapped by several industrial wells. A finite-difference digital model treated the deep aquifer as two-dimensional with recharge and discharge through a confining layer. It was calibrated by simulating (1) natural conditions, (2) an 18-day aquifer test, and (3) 91 days of well-field operation. Streamflow records and model simulations suggest that in moderately wet years such as 1974, a demand of 750 gallons per minute could be met by withdrawal from the creek and from the aquifer without excessive drawdown at production wells or existing domestic wells. With reasonable but unverified model adjustments to simulate an unusually dry year, the model predicts that a demand of 600 gallons per minute could be met from the same sources. Water high in chloride has migrated from bedrock into parts of the deep aquifer. Industrial pumpage, faults in the bedrock, and the natural flow system may be responsible. (Woodard-USGS)

  17. Groundwater quality in the Owens Valley, California

    USGS Publications Warehouse

    Dawson, Barbara J. Milby; Belitz, Kenneth

    2012-01-01

    Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California created the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. Owens Valley is one of the study areas being evaluated. The Owens study area is approximately 1,030 square miles (2,668 square kilometers) and includes the Owens Valley groundwater basin (California Department of Water Resources, 2003). Owens Valley has a semiarid to arid climate, with average annual rainfall of about 6 inches (15 centimeters). The study area has internal drainage, with runoff primarily from the Sierra Nevada draining east to the Owens River, which flows south to Owens Lake dry lakebed at the southern end of the valley. Beginning in the early 1900s, the City of Los Angeles began diverting the flow of the Owens River to the Los Angeles Aqueduct, resulting in the evaporation of Owens Lake and the formation of the current Owens Lake dry lakebed. Land use in the study area is approximately 94 percent (%) natural, 5% agricultural, and 1% urban. The primary natural land cover is shrubland. The largest urban area is the city of Bishop (2010 population of 4,000). Groundwater in this basin is used for public and domestic water supply and for irrigation. The main water-bearing units are gravel, sand, silt, and clay derived from surrounding mountains. Recharge to the groundwater system is primarily runoff from the Sierra Nevada, and by direct infiltration of irrigation. The primary sources of discharge are pumping wells, evapotranspiration, and underflow to the Owens Lake dry lakebed. The primary aquifers in Owens Valley are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database

  18. Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada

    USGS Publications Warehouse

    Fenelon, Joseph M.; Halford, Keith J.; Moreo, Michael T.

    2016-01-22

    This report delineates the Pahute Mesa–Oasis Valley (PMOV) groundwater basin, where recharge occurs, moves downgradient, and discharges to Oasis Valley, Nevada. About 5,900 acre-feet of water discharges annually from Oasis Valley, an area of springs and seeps near the town of Beatty in southern Nevada. Radionuclides in groundwater beneath Pahute Mesa, an area of historical underground nuclear testing at the Nevada National Security Site, are believed to be migrating toward Oasis Valley. Delineating the boundary of the PMOV groundwater basin is necessary to adequately assess the potential for transport of radionuclides from Pahute Mesa to Oasis Valley.The PMOV contributing area is defined based on regional water-level contours, geologic controls, and knowledge of adjacent flow systems. The viability of this area as the contributing area to Oasis Valley and the absence of significant interbasin flow between the PMOV groundwater basin and adjacent basins are shown regionally and locally. Regional constraints on the location of the contributing area boundary and on the absence of interbasin groundwater flow are shown by balancing groundwater discharges in the PMOV groundwater basin and adjacent basins against available water from precipitation. Internal consistency for the delineated contributing area is shown by matching measured water levels, groundwater discharges, and transmissivities with simulated results from a single-layer, steady-state, groundwater-flow model. An alternative basin boundary extending farther north than the final boundary was rejected based on a poor chloride mass balance and a large imbalance in the northern area between preferred and simulated recharge.

  19. Climate controls on valley fever incidence in Kern County, California

    NASA Astrophysics Data System (ADS)

    Zender, Charles S.; Talamantes, Jorge

    2006-01-01

    Coccidiodomycosis (valley fever) is a systemic infection caused by inhalation of airborne spores from Coccidioides immitis, a soil-dwelling fungus found in the southwestern United States, parts of Mexico, and Central and South America. Dust storms help disperse C. immitis so risk factors for valley fever include conditions favorable for fungal growth (moist, warm soil) and for aeolian soil erosion (dry soil and strong winds). Here, we analyze and inter-compare the seasonal and inter-annual behavior of valley fever incidence and climate risk factors for the period 1980-2002 in Kern County, California, the US county with highest reported incidence. We find weak but statistically significant links between disease incidence and antecedent climate conditions. Precipitation anomalies 8 and 20 months antecedent explain only up to 4% of monthly variability in subsequent valley fever incidence during the 23 year period tested. This is consistent with previous studies suggesting that C. immitis tolerates hot, dry periods better than competing soil organisms and, as a result, thrives during wet periods following droughts. Furthermore, the relatively small correlation with climate suggests that the causes of valley fever in Kern County could be largely anthropogenic. Seasonal climate predictors of valley fever in Kern County are similar to, but much weaker than, those in Arizona, where previous studies find precipitation explains up to 75% of incidence. Causes for this discrepancy are not yet understood. Higher resolution temporal and spatial monitoring of soil conditions could improve our understanding of climatic antecedents of severe epidemics.

  20. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  1. 27 CFR 9.36 - McDowell Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The appropriate map for determining the boundaries of the McDowell Valley... and the ridge line (highest elevation line) between the McDowell Creek Valley and the Dooley Creek Valley. (3) Then southeasterly along the ridge line (highest elevation line) to the intersection of the...

  2. Soils and the soil cover of the Valley of Geysers

    NASA Astrophysics Data System (ADS)

    Kostyuk, D. N.; Gennadiev, A. N.

    2014-06-01

    The results of field studies of the soil cover within the tourist part of the Valley of Geysers in Kamchatka performed in 2010 and 2011 are discussed. The morphology of soils, their genesis, and their dependence on the degree of hydrothermal impact are characterized; the soil cover patterns developing in the valley are analyzed. On the basis of the materials provided by the Kronotskii Biospheric Reserve and original field data, the soil map of the valley has been developed. The maps of vegetation conditions, soil temperature at the depth of 15 cm, and slopes of the surface have been used for this purpose together with satellite imagery and field descriptions of reference soil profiles. The legend to the soil map includes nine soil units and seven units of parent materials and their textures. Soil names are given according to the classification developed by I.L. Goldfarb (2005) for the soils of hydrothermal fields. The designation of soil horizons follows the new Classification and Diagnostic System of Russian Soils (2004). It is suggested that a new horizon—a thermometamorphic horizon TRM—can be introduced into this system by analogy with other metamorphic (transformed in situ) horizons distinguished in this system. This horizon is typical of the soils partly or completely transformed by hydrothermal impacts.

  3. Valley Near Nilus Chaos

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-504, 5 October 2003

    This August 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a valley near Nilus Chaos, around 25.2oN, 80.3oW. The scene has a uniform albedo, indicating that all of the landforms are probably mantled by fine, bright dust. Dark streaks on the valley walls indicate places where recent dust avalanches have occurred. The ripple-like dune features on the valley floor were formed by wind, but today they are inactive and covered with dust. A few craters, created by impacting debris, have formed on the dunes, again attesting to their inactivity in the modern martian environment. The image covers an area 3 km (1.9 mi) wide; it is illuminated by sunlight from the lower left.

  4. Modelling the effect of buried valleys on groundwater flow: case study in Ventspils vicinity, Latvia

    NASA Astrophysics Data System (ADS)

    Delina, Aija; Popovs, Konrads; Bikse, Janis; Retike, Inga; Babre, Alise; Kalvane, Gunta

    2015-04-01

    Buried subglacial valleys are widely distributed in glaciated regions and they can have great influence on groundwater flow and hence on groundwater resources. The aim of this study is to evaluate the effect of the buried valleys on groundwater flow in a confined aquifer (Middle Devonian Eifelian stage Arukila aquifer, D2ar) applying numerical modelling. The study area is located at vicinity of Ventspils Town, near wellfield Ogsils where number of the buried valleys with different depth and filling material are present. Area is located close to the Baltic Sea at Piejūra lowland Rinda plain and regional groundwater flow is towards sea. Territory is covered by thin layer of Quaternary sediments in thicknesses of 10 to 20 meters although Prequaternary sediments are exposed at some places. Buried valleys are characterized as narrow, elongated and deep formations that is be filled with various, mainly Pleistocene glacigene sediments - either till loam of different ages or sand and gravel or interbedding of both above mentioned. The filling material of the valleys influences groundwater flow in the confined aquifers which is intercepted by the valleys. It is supposed that glacial till loam filled valleys serves as a barrier to groundwater flow and as a recharge conduit when filled with sand and gravel deposits. Numerical model was built within MOSYS modelling system (Virbulis et al. 2012) using finite element method in order to investigate buried valley influence on groundwater flow in the study area. Several conceptual models were tested in numerical model depending on buried valley filling material: sand and gravel, till loam or mixture of them. Groundwater flow paths and travel times were studied. Results suggested that valley filled with glacial till is acting as barrier and it causes sharp drop of piezometric head and downward flow. Valley filled with sand and gravel have almost no effect on piezometric head distribution, however it this case buried valleys

  5. 27 CFR 9.194 - San Antonio Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... significance. (b) Approved Maps. The appropriate maps for determining the boundary of the San Antonio Valley...) Hames Valley, California, 1949, photorevised 1978; (2) Tierra Redonda Mountain, California, 1949... southeast corner of section 14, T23S, R9E, on the Hames Valley map; (2) From the beginning point, proceed...

  6. Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Elliott, Peggy E.; Geldon, Arthur L.

    2001-01-01

    The Death Valley regional ground-water flow system encompasses an area of about 43,500 square kilometers in southeastern California and southern Nevada, between latitudes 35? and 38?15' north and longitudes 115? and 117?45' west. The study area is underlain by Quaternary to Tertiary basin-fill sediments and mafic-lava flows; Tertiary volcanic, volcaniclastic, and sedimentary rocks; Tertiary to Jurassic granitic rocks; Triassic to Middle Proterozoic carbonate and clastic sedimentary rocks; and Early Proterozoic igneous and metamorphic rocks. The rock assemblage in the Death Valley region is extensively faulted as a result of several episodes of tectonic activity. This study is comprised of published and unpublished estimates of transmissivity, hydraulic conductivity, storage coefficient, and anisotropy ratios for hydrogeologic units within the Death Valley region study area. Hydrogeologic units previously proposed for the Death Valley regional transient ground-water flow model were recognized for the purpose of studying the distribution of hydraulic properties. Analyses of regression and covariance were used to assess if a relation existed between hydraulic conductivity and depth for most hydrogeologic units. Those analyses showed a weak, quantitatively indeterminate, relation between hydraulic conductivity and depth.

  7. Structural and lithologic study of Northern Coast Range and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Preliminary analysis of the data received has disclosed two potentially important northwest-trending systems of linear features within the Northern California Coast Ranges. A third system, which trends northeast, can be traced with great uncertainty across the alluviated part of the Sacramento Valley and into the foothills of the Sierra Nevada. These linear features may represent fault systems or zones of shearing. Of interest, although not yet verified, is the observation that some of the mercury concentrations and some of the geothermally active areas of California may be located at the intersection of the Central and the Valley Systems. One, perhaps two, stratigraphic unconformities within the Late Mesozoic sedimentary rocks were detected during preliminary examination of the imagery; however, more analysis is necessary in order to verify this preliminary interpretation. A heretofore unrecognized, large circular depression, about 15 km in diameter, was detected within the alluviated part of the Sacramento Valley. The depression is adjacent to a large laccolithic intrusion and may be geologically related to it. Changes in the photogeologic characteristics of this feature will continue to be monitored.

  8. NV PFA - Steptoe Valley

    DOE Data Explorer

    Jim Faulds

    2015-10-29

    All datasets and products specific to the Steptoe Valley model area. Includes a packed ArcMap project (.mpk), individually zipped shapefiles, and a file geodatabase for the northern Steptoe Valley area; a GeoSoft Oasis montaj project containing GM-SYS 2D gravity profiles along the trace of our seismic reflection lines; a 3D model in EarthVision; spreadsheet of links to published maps; and spreadsheets of well data.

  9. 27 CFR 9.27 - Lime Kiln Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Lime Kiln Valley. 9.27... OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.27 Lime Kiln Valley. (a) Name. The name of the viticultural area described in this section is “Lime Kiln Valley...

  10. Geophysical Investigation of Avon Valley, West-Central Montana, using Gravity and Seismic Reflection Profiling

    NASA Astrophysics Data System (ADS)

    Knatterud, L.; Mosolf, J.; Speece, M. A.; Zhou, X.

    2014-12-01

    The Avon Valley and adjacent mountains in west-central Montana lie within the Lewis and Clark Line, a major system of WNW-striking faults and folds that transect the more northerly structural grain of the northern Rockies and represent alternating episodes of transtensional and transpressional deformation. The northwest-trending valley has been previously interpreted as an extensional half graben filled with Tertiary sedimentary and volcanic deposits; however, little-to-no geophysical constraints on basin architecture or the thickness of Tertiary fill have been reported. A major northwest-striking fault with significant normal displacement clearly bounds the valley to the northeast, juxtaposing Tertiary sedimentary deposits against Proterozoic-Mesozoic units deformed by shortening structures and crosscut by Cretaceous granitic intrusions. Tertiary volcanic deposits unconformably overlying faulted and folded Phanerozoic-Proterozoic sequences in the eastern Garnet Range bound the valley to the southwest, but in the past no faults had been mapped along this margin. New mapping by the Montana Bureau of Mines and Geology (MBMG) has identified a system of high-angle, northwest- and northeast-striking, oblique-slip faults along the southwest border of the Avon calling into question if the valley is a half, full, or asymmetrical graben. Geophysical data has recently been acquired by Montana Tech to help define the structural architecture of the Avon Valley and the thickness of its Tertiary fill. Gravity data and a short seismic reflection profile have been collected and a preliminary interpretation of these data indicates a half graben with a series of normal faults bounding the western side of the valley. Ongoing gravity data collection throughout 2014 should refine this interpretation by better defining the bedrock-Tertiary interface at depth.

  11. Evaluation of methods for delineating areas that contribute water to wells completed in valley-fill aquifers in Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Madden, Thomas M.

    1994-01-01

    Valley-fill aquifers in Pennsylvania are the source of drinking water for many wells in the glaciated parts of the State and along major river valleys. These aquifers area subject to contamination because of their shallow water-table depth and highly transmissive sediments. The possibility for contamination of water-supply wells in valley-fill aquifers can be minimized by excluding activities that could contaminate areas that contribute water to supply wells. An area that contributes water to a well is identified in this report as either an area of diversion, time-of-travel area, or contributing area. The area of diversion is a projection to land surface of the valley-fill aquifer volume through which water is diverted to a well and the time-of travel area is that fraction of the area of diversion through which water moves to the well in a specified time. The contributing area, the largest of three areas, includes the area of diversion but also incorporates bedrock uplands and other area that contribute water. Methods for delineating areas of diversion and contributing areas in valley-fill aquifers, described and compared in order of increasing complexity, include fixed radius, uniform flow, analytical, semianalytical, and numerical modeling. Delineated areas are considered approximations because the hydraulic properties and boundary conditions of the real ground-water system are simplified even in the most complex numerical methods. Successful application of any of these methods depends on the investigator's understanding of the hydrologic system in and near the well field, and the limitations of the method. The hydrologic system includes not only the valley-fill aquifer but also the regional surface-water and ground-water flow systems within which the valley is situated. As shown by numerical flow simulations of a well field in the valley-fill aquifer along Marsh Creek Valley near Asaph, Pa., water from upland bedrock sources can provide nearly all the water

  12. Valley Pearl’ table grape

    USDA-ARS?s Scientific Manuscript database

    Valley Pearl’ is an early to mid-season, white seedless table grape (Vitis vinifera L.) suitable for commercial table grape production where V. vinifera can be grown. Significant characteristics of ‘Valley Pearl’ are its high and consistent fruit production on spur pruned vines and large round berr...

  13. Dynamics of Katabatic Winds in Colorado' Brush Creek Valley.

    NASA Astrophysics Data System (ADS)

    Vergeiner, I.; Dreiseitl, E.; Whiteman, C. David

    1987-01-01

    A method is proposed to evaluate the coupled mass, momentum and thermal energy budget equations for a deep valley under two-dimensional, steady-state flow conditions. The method requires the temperature, down- valley wind and valley width fields to be approximated by simple analytical functions. The vertical velocity field is calculated using the mass continuity equation. Advection terms in the momentum and energy equations are then calculated using finite differences computed on a vertical two-dimensional grid that runs down the valley's axis. The pressure gradient term in the momentum equation is calculated from the temperature field by means of the hydrostatic equation. The friction term is then calculated as a residual in the xmomentum equation, and the diabatic cooling term is calculated as a residual in the thermal energy budget equation.The method is applied to data from an 8-km-long segment of Colorado's; Brush Creek Valley on the night of 30-31 July 1982. Pressure decreased with distance down the peak on horizontal surfaces, with peak horizontal pressure gradients of 0.04 hPa km1. The valley mass budget indicated that subsidence was required in the valley to support calculated mean along-valley mass flux divergence. Peak subsidence rates on the order of 0.10 m s1 were calculated. Subsiding motions in the valley produced negative vertical down-valley momentum fluxes in the upper valley atmosphere, but produced positive down-valley momentum fluxes below the level of the jet. Friction, calculated as a residual in the x momentum equation, was negative, as expected on physical grounds. and attained reasonable quantitative values.The strong subsidence field in the stable valley atmosphere produced subsidence warming that was only partly counteracted by down-valley cold air advection. Strong diabatic cooling was therefore required in order to account for the weak net cooling of the valley atmosphere during the nighttime period when tethered balloon observations

  14. Simulation of the ground-water flow system and proposed withdrawals in the northern part of Vekol Valley, Arizona

    USGS Publications Warehouse

    Hollett, K.J.; Marie, J.R.

    1987-01-01

    Pursuant to the Ak-Chin Indian Community Water Rights Settlement Act (Public Law 95-328-enacted on July 28, 1978) a study was undertaken to assess the effect of proposed groundwater withdrawal from Federal lands near the reservation. The first area to be evaluated was the northern part of the Vekol Valley. The evaluation was made using a numerical model based on detailed geohydrologic concepts developed during the study. The numerical model, which was calibrated to steady-state and transient groundwater conditions in the northern part of Vekol Valley, adequately duplicated the conceptual model and was used to estimate the effect of withdrawing approximately 174,000 acre-ft from the system during a 25-yr period. At the end of the 25-yr period, the water level was drawn down an average of about 95 ft, and about 150,5000 acre-ft of water was removed from storage. The 150,500 acre-ft of water represents 43% of the estimated recoverable groundwater in storage. (Author 's abstract)

  15. 22. Top 30/5. Plan of superstructure elevations. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Top 30/5. Plan of superstructure elevations. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  16. 23. Top 30/6. Plan of superstructure sections. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Top 30/6. Plan of superstructure sections. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  17. 24. Top 30/7. Plan of superstructure details. Wyoming Valley ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Top 30/7. Plan of superstructure details. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  18. Victor Valley College Agreement between the Victor Valley Community College District and the Victor Valley College California Teachers Association Chapter 1170. July 1989 - June 1992.

    ERIC Educational Resources Information Center

    Victor Valley Community Coll. District, Victorville, CA.

    The collective bargaining agreement between the Victor Valley College Board of Trustees and the Victor Valley College California Teachers Association/National Education Association is presented. This contract, covering the period from July 1989 through June 1992, deals with the following topics: bargaining agent recognition; district and…

  19. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    USGS Publications Warehouse

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  20. Occurrence of anthropogenic organic compounds in ground water and finished water of community water systems in Eagle and Spanish Springs Valleys, Nevada, 2002-2004

    USGS Publications Warehouse

    Rosen, Michael R.; Shaefer, Donald H.; Toccalino, Patricia A.; Delzer, Gregory C.

    2006-01-01

    As a part of the U.S. Geological Survey's National Water-Quality Assessment Program, an effort to characterize the quality of major rivers and aquifers used as a source of supply to some of the largest community water systems (CWSs) in the United States has been initiated. These studies, termed Source Water-Quality Assessments (SWQAs), consist of two sampling phases. Phase 1 was designed to determine the frequency of detection and concentrations of about 260 volatile organic compounds (VOCs), pesticides and pesticide degradates, and other anthropogenic organic compounds in source water of 15 CWS wells in each study. Phase 2 monitors concentrations in the source water and also the associated finished water of CWSs for compounds most frequently detected during phase 1. One SWQA was completed in the Nevada Basin and Range area in Nevada. Ten CWS wells in Eagle Valley and five CWS wells in Spanish Springs Valley were sampled. For phase 2, two wells were resampled in Eagle Valley. Samples were collected during 2002-2004 for both phases. Water use in Eagle Valley is primarily for domestic purposes and is supplied through CWSs. Ground-water sources provide about 55 percent of the public-water supply, and surface-water sources supply about 45 percent. Lesser amounts of water are provided by domestic wells. Very little water is used for agriculture or manufacturing. Spanish Springs Valley has water-use characteristics similar to those in Eagle Valley, although there is more agricultural water use in Spanish Springs Valley than in Eagle Valley. Maximum contaminant concentrations were compared to two human-health benchmarks, if available, to describe the water-quality data in a human-health context for these findings. Measured concentrations of regulated contaminants were compared to U.S. Environmental Protection Agency and Nevada Maximum Contaminant Level (MCL) values. Measured concentrations of unregulated contaminants were compared to Health-Based Screening Levels, which

  1. Climatic and morphological controls on post-glacial lake and river valley evolution in the Weichselian belt - an example from the Wda valley, Northern Poland

    NASA Astrophysics Data System (ADS)

    Kramkowski, M. A.; Błaszkiewicz, M.; Piotrowski, J. A.; Brauer, A.; Gierszewski, P.; Kordowski, J.; Lamparski, P.; Lorenz, S.; Noryśkiewicz, A. M.; Ott, F.; Slowinski, M. M.; Tyszkowski, S.

    2014-12-01

    The River Wda valley is a classical example of a polygenetic valley, consisting of former lake basins joined by erosive gap sections. In its middle section, which was the subject of our research, a fragment of an abandoned Lateglacial river valley is preserved, which is unique for the Weichselian moraine belt in the Central European Lowlands. The analysis of the relationship between the lacustrine and fluvial sediments and landforms enabled the authors to report many evolutionary connections between the initial period of the river system formation and the emergence of lakes during the Weichselian Lateglacial. The surface drainage essentially determined the progress of melting of dead ice blocks buried in the glacial depressions, which finally led to lake formation there. Most of the lake basins in the study area were formed during the Bølling-Allerød period. However, one section of the subglacial channel was not exposed to the thermokarst conditions and was therefore preserved with dead ice blocks throughout the entire Lateglacial. The dead ice decay at the beginning of the Holocene, as well as the emergence of another lake, created a lower base level of erosion in the close vicinity of the abandoned valley and induced a change of the river's course. Both fluvial and lacustrine deposits and landforms distributed in the central section of the River Wda valley indicate two processes, which proceeded simultaneously: (1) emergence of fluvially joined lake basins within a glacial channel, (2) degradation of the river bed in the gap sections interfering between the lakes. The processes described for the central section of the River Wda channel indicate a very dynamic river valley development during the Weichselian Lateglacial and the early Holocene. The valley formation was tightly interwoven with the morphogenesis of the primary basins within the valley, mainly with the melting of the buried blocks of dead ice and the development of lakes. This study is a contribution

  2. Observation of valley-dependent beams in photonic graphene.

    PubMed

    Deng, Fusheng; Sun, Yong; Wang, Xiao; Xue, Rui; Li, Yuan; Jiang, Haitao; Shi, Yunlong; Chang, Kai; Chen, Hong

    2014-09-22

    Valley-dependent propagation of light in an artificial photonic hexagonal lattice, akin to electrons in graphene, is investigated in microwave regime. Both numerical and experimental results show that the valley degeneracy in the photonic graphene is broken when the frequency is away from the Dirac point. The peculiar anisotropic wave transport property due to distinct valleys is analyzed using the equifrequency contours. More interestingly, the valley-dependent self-collimation and beam splitting phenomena are experimentally demonstrated with the armchair and zigzag interfaces, respectively. Our results confirm that there are two inequivalent Dirac points that lead to two distinct valleys in photonic graphene, which could be used to control the flow of light and might be used to carry information in valley polarized beam splitter, collimator or guiding device.

  3. Death Valley, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of Death Valley, California, centered at 36.629 degrees north latitude, 117.069 degrees west longitude. The image shows Furnace Creek alluvial fan and Furnace Creek Ranch at the far right, and the sand dunes near Stove Pipe Wells at the center. The dark fork-shaped feature between Furnace Creek fan and the dunes is a smooth flood-plain which encloses Cottonball Basin. The bright dots near the center of the image are corner refectors that have been set-up to calibrate the radar as the Shuttle passes overhead with the SIR-C/X-SAR system. The Jet Propulsion Laboratory alternative photo number is P-43883.

  4. Valley-locked thermospin effect in silicene and germanene with asymmetric magnetic field induced by ferromagnetic proximity effect

    NASA Astrophysics Data System (ADS)

    Zhai, Xuechao; Wang, Yun-Tong; Wen, Rui; Wang, Shu-Xuan; Tian, Yue; Zhou, Xingfei; Chen, Wei; Yang, Zhihong

    2018-02-01

    Silicene and germanene, as graphenelike materials with observable spin-orbit couplings and two distinctive valleys, have potential applications in future low-dissipation spintronics and valleytronics. We here propose a magnetic system of silicene or germanene intercalated between two ferromagetic (FM) dielectric layers, and find that the system with a proximity-induced asymmetric magnetic field supports an attractive phenomenon named the valley-locked spin-dependent Seebeck effect (VL-SSE) driven by a thermal gradient. The VL-SSE indicates that the carries from only one valley could be thermally excited, with opposite spin polarization counterpropagating along the thermal gradient direction, while nearly no carrier from the other insulating valley is excited due to the relatively wide band gap. It is also illustrated that the VL-SSE here does not survive in the usual FM or anti-FM systems, and can be destroyed by the overlarge temperature broadening. Moreover, we prove that the signal for VL-SSE can be weakened gradually with the enhancement of the local interlayer electric field, and be strengthened lineally by increasing the source-drain temperature difference in a caloritronic field effect transistor. Further calculations indicate that the VL-SSE is robust against many perturbations, including the global and local Fermi levels as well as the magnetic strength. These findings about the valley-locked thermospin effect provide a nontrivial and convenient dimension to control the quantum numbers of spin and valley and are expected to be applied in future spin-valley logic circuits and energy-saving devices.

  5. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  6. 27 CFR 9.58 - Carmel Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....” (b) Approved maps. The approved maps for determining the boundary of the Carmel Valley viticultural... Ridge, Calif., dated 1956; and (5) Rana Creek, Calif., dated 1956. (c) Boundary. The Carmel Valley...

  7. Bedrock mapping of buried valley networks using seismic reflection and airborne electromagnetic data

    NASA Astrophysics Data System (ADS)

    Oldenborger, G. A.; Logan, C. E.; Hinton, M. J.; Pugin, A. J.-M.; Sapia, V.; Sharpe, D. R.; Russell, H. A. J.

    2016-05-01

    In glaciated terrain, buried valleys often host aquifers that are significant groundwater resources. However, given the range of scales, spatial complexity and depth of burial, buried valleys often remain undetected or insufficiently mapped. Accurate and thorough mapping of bedrock topography is a crucial step in detecting and delineating buried valleys and understanding formative valley processes. We develop a bedrock mapping procedure supported by the combination of seismic reflection data and helicopter time-domain electromagnetic data with water well records for the Spiritwood buried valley aquifer system in Manitoba, Canada. The limited spatial density of water well bedrock observations precludes complete depiction of the buried valley bedrock topography and renders the water well records alone inadequate for accurate hydrogeological model building. Instead, we leverage the complementary strengths of seismic reflection and airborne electromagnetic data for accurate local detection of the sediment-bedrock interface and for spatially extensive coverage, respectively. Seismic reflection data are used to define buried valley morphology in cross-section beneath survey lines distributed over a regional area. A 3D model of electrical conductivity is derived from inversion of the airborne electromagnetic data and used to extrapolate buried valley morphology over the entire survey area. A spatially variable assignment of the electrical conductivity at the bedrock surface is applied to different features of the buried valley morphology identified in the seismic cross-sections. Electrical conductivity is then used to guide construction of buried valley shapes between seismic sections. The 3D locus of points defining each morphological valley feature is constructed using a path optimization routine that utilizes deviation from the assigned electrical conductivities as the cost function. Our resulting map represents a bedrock surface of unprecedented detail with more

  8. Proposed work plan for the study of hydrologic effects of ground-water development in the Wet Mountain Valley, Colorado

    USGS Publications Warehouse

    Robson, S.G.

    1985-01-01

    Large-scale development of groundwater resources in the Wet Mountain Valley, Colorado, could adversely affect other water rights in the valley or in the Arkansas River Basin. Such infringement on senior water rights could severely limit development of additional water supplies in the valley. A work plan is presented for a study that is intended to define the hydrologic system in the valley better, and to determine the extent that the quantity and chemical quality of both surface and groundwater in the valley might be affected by proposed development. (USGS)

  9. Optical manipulation of valley pseduospin in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Ye, Ziliang

    Valley polarization associated with the occupancy in the energy degenerate but quantum mechanically distinct valleys in the momentum space closely resembles spin polarization and has been proposed as a pseudospin carrier for future quantum information technologies. Monolayers of transition metal dichalcogenide (TMDC) crystals, with broken inversion symmetry and large spin-orbital coupling, support robust valley polarization and therefore provide an important platform for studying valley-dependent physics. Besides optical excitation and photoluminescence detection, valley polarization has been electrically measured through the valley Hall effect and created through spin injection from ferromagnetic semiconductor contacts. Moreover, the energy degeneracy of the valley degree of freedom has been lifted by the optical Stark effect. Recently, we have demonstrated optical manipulation of valley coherence, i.e., of the valley pseudospin, by the optical Stark effect in monolayer WSe2. Using below-bandgap circularly polarized light, we rotated the valley pseudospin on the femtosecond time scale. Both the direction and speed of the rotation can be optically controlled by tuning the dynamic phase of excitons in opposite valleys. The pseudospin rotation was identified by changes in the polarization of the photoluminescence. In addition, by varying the time delay between the excitation and control pulses, we directly probed the lifetime of the intervalley coherence. Similar rotation levels have also been observed in static magneto-optic experiments. Our work presents an important step towards the full control of the valley degree of freedom in 2D semiconductors. The work was done in collaboration with Dr. Dezheng Sun and Prof. Tony F. Heinz.

  10. Cooperative geochemical investigation of geothermal resources in the Imperial Valley and Yuma areas. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coplen, T.B.

    1973-10-01

    Preliminary studies indicate that the Imperial Valley has a large geothermal potential. In order to delineate additional geothermal systems a chemical and isotopic investigation of samples from water wells, springs, and geothermal wells in the Imperial Valley and Yuma areas was conducted. Na, K, and Ca concentrations of nearly 200 well water, spring water, hot spring, and geothermal fluid samples from the Imperial Valley area were measured by atomic absorption spectrophotometry. Fournier and Truesdell's function was determined for each water sample. Suspected geothermal areas are identified. Hydrogen and oxygen isotope abundances were determined in order to determine and to identifymore » the source of the water in the Mesa geothermal system. (JGB)« less

  11. Iron and nutrient content of wind-erodible sediment in the ephemeral river valleys of Namibia

    NASA Astrophysics Data System (ADS)

    Dansie, A. P.; Wiggs, G. F. S.; Thomas, D. S. G.

    2017-08-01

    Research concerning the global distribution of aeolian dust sources has principally focussed on salt/clay pan and desiccated lacustrine emission areas. In southern Africa such sources are identified as Etosha Pan in northern Namibia and Makgadikgadi Pans in northern Botswana. Dust emitting from ephemeral river valleys, however, has been largely overlooked. Rivers are known nutrient transport pathways and the flooding regimes of ephemeral river valleys frequently replenish stores of fine sediment which, on drying, can become susceptible to aeolian erosion. Such airborne sediment may be nutrient rich and thus be significant for the fertilisation of marine waters once deposited. This study investigates the dust source sediments from three ephemeral river valleys in Namibia in terms of their particle size distribution and their concentrations of bioavailable N, P and Fe. We compare the nutrient content of these sediments from the ephemeral river valleys to those collected from Etosha and Makgadikgadi Pans and consider their relative ocean fertilising potential. Our results show that the ephemeral river valleys contain fine grained sediment similar in physical character to Etosha and Makgadikgadi Pans yet they have up to 43 times greater concentrations of bioavailable iron and enriched N and P macronutrients that are each important for ocean fertilisation. The known dust-emitting river valleys of Namibia may therefore be contributing a greater fertilisation role in the adjacent marine system than previously considered, and not-yet investigated. Given this finding a re-assessment of the potential role of ephemeral river valleys in providing nutrient-rich sediment into the aeolian and marine systems in other dryland areas is necessary.

  12. A three-dimensional numerical model of predevelopment conditions in the Death Valley regional ground-water flow system, Nevada and California

    USGS Publications Warehouse

    D'Agnese, Frank A.; O'Brien, G. M.; Faunt, C.C.; Belcher, W.R.; San Juan, C.

    2002-01-01

    In the early 1990's, two numerical models of the Death Valley regional ground-water flow system were developed by the U.S. Department of Energy. In general, the two models were based on the same basic hydrogeologic data set. In 1998, the U.S. Department of Energy requested that the U.S. Geological Survey develop and maintain a ground-water flow model of the Death Valley region in support of U.S. Department of Energy programs at the Nevada Test Site. The purpose of developing this 'second-generation' regional model was to enhance the knowledge an understanding of the ground-water flow system as new information and tools are developed. The U.S. Geological Survey also was encouraged by the U.S. Department of Energy to cooperate to the fullest extent with other Federal, State, and local entities in the region to take advantage of the benefits of their knowledge and expertise. The short-term objective of the Death Valley regional ground-water flow system project was to develop a steady-state representation of the predevelopment conditions of the ground-water flow system utilizing the two geologic interpretations used to develop the previous numerical models. The long-term objective of this project was to construct and calibrate a transient model that simulates the ground-water conditions of the study area over the historical record that utilizes a newly interpreted hydrogeologic conceptual model. This report describes the result of the predevelopment steady-state model construction and calibration. The Death Valley regional ground-water flow system is situated within the southern Great Basin, a subprovince of the Basin and Range physiographic province, bounded by latitudes 35 degrees north and 38 degrees 15 minutes north and by longitudes 115 and 118 degrees west. Hydrology in the region is a result of both the arid climatic conditions and the complex geology. Ground-water flow generally can be described as dominated by interbasinal flow and may be conceptualized as

  13. Wind's Marks in "Perseverance Valley" (Enhanced Color)

    NASA Image and Video Library

    2017-12-06

    This patch of rocky Martian ground on the floor of "Perseverance Valley" on the inner slope of the western rim of Endurance Crater slopes steeply downhill from left to right. Some textures seen here, including striations just above and parallel to the edge of a solar panel at far left, may be due to abrasion by wind-driven sand. Researchers interpret them as possible signs of past winds blowing from right to left, up and out of the crater, which currently hosts sand dunes on its central floor. The view spans about 11.5 feet (3.5 meters) from left to right and is presented in enhanced color to make differences in surface materials easier to see. The Panoramic Camera (Pancam) on NASA's Mars Exploration Rover Opportunity took the component images of this scene during the period Oct. 13 through Oct. 20, 2017, corresponding to sols (Martian days) 4878 through 4884 of the rover's work on Mars. Opportunity entered the upper end of Perseverance Valley in July 2017 for several months of investigating how it formed. The valley is a system of shallow troughs extending about the length of two football fields down the crater rim's steep inner slope. Endurance Crater is about 14 miles (22 kilometers) in diameter. Opportunity has been exploring features on its western rim since 2011, after investigating a series of smaller craters beginning with the one it landed in on Jan. 25, 2004, Universal Time (Jan. 24, PST). The origin of Perseverance Valley is unknown, but some observed features suggest that water might have played a role in the past. Opportunity is descending the steep valley, making observations along the way that could help illuminate the origin of this feature. The bedrock target area in this view is called "La Bajada." The image combines exposures taken through three Pancam filters, centered at wavelengths of 753 nanometers (near-infrared), 535 nanometers (green) and 432 nanometers (violet). https://photojournal.jpl.nasa.gov/catalog/PIA22072

  14. EPA Region 1 - Valley Depth in Meters

    EPA Pesticide Factsheets

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  15. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    NASA Astrophysics Data System (ADS)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  16. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators.

    PubMed

    Ni, Xiang; Purtseladze, David; Smirnova, Daria A; Slobozhanyuk, Alexey; Alù, Andrea; Khanikaev, Alexander B

    2018-05-01

    Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be efficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, computing, and storage ( 1 - 3 ). These concepts have been inspiring analogous approaches in photonics, where the manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields acting on light ( 4 - 6 ). The ability to control these degrees of freedom significantly expands the landscape of available optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice, and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like conical dispersion. We show that this effective response has marked implications on photon transport, among which are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multiplexing by selective action on their pseudospin and valley degrees of freedom.

  17. Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2.

    PubMed

    Mai, Cong; Barrette, Andrew; Yu, Yifei; Semenov, Yuriy G; Kim, Ki Wook; Cao, Linyou; Gundogdu, Kenan

    2014-01-08

    Single layer MoS2 is an ideal material for the emerging field of "valleytronics" in which charge carrier momentum can be finely controlled by optical excitation. This system is also known to exhibit strong many-body interactions as observed by tightly bound excitons and trions. Here we report direct measurements of valley relaxation dynamics in single layer MoS2, by using ultrafast transient absorption spectroscopy. Our results show that strong Coulomb interactions significantly impact valley population dynamics. Initial excitation by circularly polarized light creates electron-hole pairs within the K-valley. These excitons coherently couple to dark intervalley excitonic states, which facilitate fast electron valley depolarization. Hole valley relaxation is delayed up to about 10 ps due to nondegeneracy of the valence band spin states. Intervalley biexciton formation reveals the hole valley relaxation dynamics. We observe that biexcitons form with more than an order of magnitude larger binding energy compared to conventional semiconductors. These measurements provide significant insight into valley specific processes in 2D semiconductors. Hence they could be used to suggest routes to design semiconducting materials that enable control of valley polarization.

  18. Systemic Inflammatory Load in Young and Old Ringdoves Is Modulated by Consumption of a Jerte Valley Cherry-Based Product

    PubMed Central

    Delgado, Jonathan; Terrón, María del Pilar; Garrido, María; Barriga, Carmen; Paredes, Sergio Damián; Espino, Javier

    2012-01-01

    Abstract A chronic subclinical inflammatory status that coexists with immune dysfunction is commonly found in the elderly population. Consumption of foods rich in antioxidants (e.g., cherries) is an attractive strategy to reduce risk from chronic diseases. Based on previous studies showing the antioxidant effect of a Jerte Valley cherry derivative product in humans, the objective of this work was to evaluate the effect of the intake of a Jerte Valley cherry-based beverage on inflammatory load in both young and old ringdoves (Streptopelia risoria). To this purpose, circulating levels of pro-inflammatory and anti-inflammatory cytokines as well as serum levels of different acute-phase proteins were measured before and after a 10-day treatment with the Jerte Valley cherry-based beverage. Thus, the 10-day treatment with the cherry-based beverage modulated the balance of pro- and anti-inflammatory cytokines in both young and old ringdoves by down-regulating the levels of pro-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor-α, and interferon-γ) and up-regulating the levels of anti-inflammatory cytokines (IL-4, IL-2, and IL-10). Moreover, the 10-day treatment with the Jerte Valley cherry-based product reduced the levels of several proteins involved in acute-phase responses, such as C-reactive protein, haptoglobin, α2-macroglobulin, and serum amyloid P component. On the other hand, old birds showed imbalanced levels of inflammatory markers toward a pro-inflammatory status, thereby underlining the fact that aging is usually accompanied by systemic inflammation and inflammation-related chronic diseases. To sum up, the data suggest a potential health benefit by consuming the cherry-based beverage, especially in aged populations, through their anti-inflammatory properties. PMID:22846077

  19. Reservoir performance of Late Eocene incised valley fills, Cusiana Field, Llanos Foothills, Eastern Colombia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulham, A.; Edward, W.; App, J.

    1996-12-31

    The Cusiana Field is located in the Llanos Foothills of Eastern Colombia. The principal reservoir is the late Eocene Mirador Formation which comprises >50% of reserves. Currently the Mirador reservoir is providing nearly all of the 150,00bopd of production from the Cusiana Field. The Mirador reservoir comprises a stack of incised valley deposits. The fills of the valleys are dominated by quartz arenite sandstones. The average porosity of the valley sandstones is 8% which reflects abundant quartz cement ({approximately}14%) and significant compaction during deep burial ({approximately}20,000feet). Single valleys are up to 70 feet thick and exhibit a distinctive bipartite fillmore » that reflects changing energy conditions during filling. Bases of valleys have the coarsest grain size and have sedimentological and trace fossil evidence for deposition in highly stressed, brackish water environments. The upper parts of the valleys are typically finer grained and were deposited in more saline settings. Despite the low porosity of the Mirador valleys, drill stem tests and production log data show that they have phenomenal performance characteristics. Rates of {ge}10,000bopd are achieved from single valleys. Bases of the valley fills are the key contributors to flow. Integration of detailed core and pore system analysis with the reservoir performance data shows that the permeability fabric of the Mirador can be explained by original depositional architecture and simple loss of primary porosity. Comparison of Cusiana with other quartz-rich sandstones from around the world suggests that it`s low porosity/high performance is predictable.« less

  20. Effect of canopy removal on snowpack quantity and quality, fraser experimental forest, Colorado

    USGS Publications Warehouse

    Stottlemyer, R.; Troendle, C.A.

    2001-01-01

    Snowpack peak water equivalent (PWE), ion concentration, content, and spatial distribution of ion load data from spring 1987-1996 in a 1 ha clearcut and adjacent forested plots vegetated by mature Picea engelmannii and Abies lasiocarpa in the Fraser experimental forest (FEF), Colorado are presented. Our objectives were: (1) to see if a forest opening might redistribute snowfall, snowpack moisture, and snowpack chemical content, and (2) to examine the importance of canopy interception on snowpack quantity and chemistry. On an average, the canopy intercepted 36% of snowfall. Interception was correlated with snowfall amount, snowpack PWE beneath the canopy, and air temperature. Canopy removal increased snowpack PWE to >90% cumulative snowfall inputs. Snowpack K-, H-, and NH4+ concentrations on the clearcut were lower and NO3- higher than in the snowpack beneath the forested plots. Cu mulative snowfall K+ input was less than in the clearcut snowpack; H+ inputs were greater in snowfall than in the snowpack of any plot; and inorganic N (NO3- and NH4+) inputs from snowfall to the clearcut were greater than to the forested plots. Processes accounting for the differences between snowfall inputs and snowpack ion content were leaching of organic debris in the snowpack, differential elution of the snowpack, and canopy retention. There were significant trends by year in snowpack ion content at PWE without similar trends in snowfall inputs. This finding coupled with snowpack ion elution bring into question the use of snowpack chemistry as an indicator of winter atmospheric inputs in short-term studies. ?? 2001 Elsevier Science B.V.

  1. Ancient Martian valley genesis and paleoclimatic inference: The present as a key to the past

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    I offer here the speculative genetic hypothesis that the flat-floored landforms represent episodically active, sediment-laden valley glaciers formed by localized geothermal melting of abundant interstitial ice (permafrost) in a fine-grained sedimentary terrain. Geothermal melting may also localize spring heads for the narrow deep, high-gradient valleys, or the collapse process itself may result in the generation of decanted, relatively sediment-poor overland water flows (some local evidence of fluid overtopping of the localized depressions exists). Whatever the generic mechanisms for the suite of valley landforms, perhaps the most interesting observation is simply their youth. In aggregate, the morphologies are similar to the ancient valley systems cited as evidence for a previously much denser atmosphere on Mars.

  2. Control of Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers

    NASA Astrophysics Data System (ADS)

    Wang, Gang

    Current research on Transition Metal Dichalcogenide (TMD) Monolayers is stimulated by their strong light-matter interaction and the possibility to use the valley index in addition to spin as an information carrier. The direct gap interband transitions in TMD monolayers are governed by chiral optical selection rules. Determined by laser helicity, optical transitions in either the K+ or K- valley in momentum space are induced. Very recently the optical generation of valley polarization and valley coherence (coherent superposition of valley states) have been reported. In this work we go a step further by discussing the coherent manipulation of valley states. Linearly polarized laser excitation prepares a coherent superposition of valley states. We demonstrate the control of the exciton valley coherence in monolayer WSe2 by tuning the applied magnetic field perpendicular to the monolayer plane. The induced valley Zeeman splitting between K+ and K- results in a change of the oscillation frequency of the superposition of the valley states, which corresponds to a rotation of the exciton valley pseudo-spin. We show rotation of this coherent superposition of valley states by angles as large as 30 degrees in applied fields up to 9T and discuss valley coherence in other TMD monolayer materials. This exciton valley coherence control on ps time scale could be an important step towards complete control of qubits based on the valley degree of freedom. In collaboration with X. Marie, T. Amand, C. Robert, F. Cadiz, P. Renucci, B. Urbaszek (Université de Toulouse, INSA-CNRS-UPS, LPCNO, France), B. L. Liu (Institute of Physics, Chinese Academy of Sciences, China) and we acknowledge ERC Grant No. 306719.

  3. Geohydrology of the Unconsolidated Valley-Fill Aquifer in the Meads Creek Valley, Schuyler and Steuben Counties, New York

    USGS Publications Warehouse

    Miller, Todd S.; Bugliosi, Edward F.; Reddy, James E.

    2008-01-01

    The Meads Creek valley encompasses 70 square miles of predominantly forested uplands in the upper Susquehanna River drainage basin. The valley, which was listed as a Priority Waterbody by the New York State Department of Environmental Conservation in 2004, is prone to periodic flooding, mostly in its downstream end, where development is occurring most rapidly. Hydraulic characteristics of the unconsolidated valley-fill aquifer were evaluated, and seepage rates in losing and gaining tributaries were calculated or estimated, in an effort to delineate the aquifer geometry and identify the factors that contribute to flooding. Results indicated that (1) Meads Creek gained about 61 cubic feet of flow per second (about 6.0 cubic feet per second per mile of stream channel) from ground-water discharge and inflow from tributaries in its 10.2-mile reach between the northernmost and southernmost measurement sites; (2) major tributaries in the northern part of the valley are not significant sources of recharge to the aquifer; and (3) major tributaries in the central and southern part of the valley provide recharge to the aquifer. The ground-water portion of streamflow in Meads Creek (excluding tributary inflow) was 11.3 cubic feet per second (ft3/s) in the central part of the valley and 17.2 ft3/s in the southern part - a total of 28.5 ft3/s. Ground-water levels were measured in 29 wells finished in unconfined deposits for construction of a potentiometric-surface map to depict directions of ground-water flow within the valley. In general, ground water flows from the edges of the valley toward Meads Creek and ultimately discharges to it. The horizontal hydraulic gradient for the entire 12-mile-long aquifer averages about 30 feet per mile, whereas the gradient in the southern fourth of the valley averages about half that - about 17 feet per mile. A water budget for the aquifer indicated that 28 percent of recharge was derived from precipitation that falls on the aquifer, 32

  4. Multilevel Methodology for Simulation of Spatio-Temporal Systems with Heterogeneous Activity; Application to Spread of Valley Fever Fungus

    USGS Publications Warehouse

    Jammalamadaka, Rajanikanth

    2009-01-01

    This report consists of a dissertation submitted to the faculty of the Department of Electrical and Computer Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Graduate College, The University of Arizona, 2008. Spatio-temporal systems with heterogeneity in their structure and behavior have two major problems associated with them. The first one is that such complex real world systems extend over very large spatial and temporal domains and consume so many computational resources to simulate that they are infeasible to study with current computational platforms. The second one is that the data available for understanding such systems is limited because they are spread over space and time making it hard to obtain micro and macro measurements. This also makes it difficult to get the data for validation of their constituent processes while simultaneously considering their global behavior. For example, the valley fever fungus considered in this dissertation is spread over a large spatial grid in the arid Southwest and typically needs to be simulated over several decades of time to obtain useful information. It is also hard to get the temperature and moisture data (which are two critical factors on which the survival of the valley fever fungus depends) at every grid point of the spatial domain over the region of study. In order to address the first problem, we develop a method based on the discrete event system specification which exploits the heterogeneity in the activity of the spatio-temporal system and which has been shown to be effective in solving relatively simple partial differential equation systems. The benefit of addressing the first problem is that it now makes it feasible to address the second problem. We address the second problem by making use of a multilevel methodology based on modeling and simulation and systems theory. This methodology helps us in the construction of models with different resolutions (base and

  5. Observation of valley-selective microwave transport in photonic crystals

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Yang, Yuting; Hong Hang, Zhi; Qiu, Chunyin; Liu, Zhengyou

    2017-12-01

    Recently, the discrete valley degree of freedom has attracted extensive attention in condensed matter physics. Here, we present an experimental observation of the intriguing valley transport for microwaves in photonic crystals, including the bulk valley transport and the valley-projected edge modes along the interface separating different photonic insulating phases. For both cases, valley-selective excitations are realized by a point-like chiral source located at proper locations inside the samples. Our results are promising for exploring unprecedented routes to manipulate microwaves.

  6. Transport of regional pollutants through a remote trans-Himalayan valley in Nepal

    NASA Astrophysics Data System (ADS)

    Dhungel, Shradda; Kathayat, Bhogendra; Mahata, Khadak; Panday, Arnico

    2018-01-01

    Anthropogenic emissions from the combustion of fossil fuels and biomass in Asia have increased in recent years. High concentrations of reactive trace gases and light-absorbing and light-scattering particles from these sources form persistent haze layers, also known as atmospheric brown clouds, over the Indo-Gangetic plains (IGP) from December through early June. Models and satellite imagery suggest that strong wind systems within deep Himalayan valleys are major pathways by which pollutants from the IGP are transported to the higher Himalaya. However, observational evidence of the transport of polluted air masses through Himalayan valleys has been lacking to date. To evaluate this pathway, we measured black carbon (BC), ozone (O3), and associated meteorological conditions within the Kali Gandaki Valley (KGV), Nepal, from January 2013 to July 2015. BC and O3 varied over both diurnal and seasonal cycles. Relative to nighttime, mean BC and O3 concentrations within the valley were higher during daytime when the up-valley flow (average velocity of 17 m s-1) dominated. BC and O3 concentrations also varied seasonally with minima during the monsoon season (July to September). Concentrations of both species subsequently increased post-monsoon and peaked during March to May. Average concentrations for O3 during the seasonally representative months of April, August, and November were 41.7, 24.5, and 29.4 ppbv, respectively, while the corresponding BC concentrations were 1.17, 0.24, and 1.01 µg m-3, respectively. Up-valley fluxes of BC were significantly greater than down-valley fluxes during all seasons. In addition, frequent episodes of BC concentrations 2-3 times higher than average persisted from several days to a week during non-monsoon months. Our observations of increases in BC concentration and fluxes in the valley, particularly during pre-monsoon, provide evidence that trans-Himalayan valleys are important conduits for transport of pollutants from the IGP to the

  7. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  8. Ground-water modeling of the Death Valley Region, Nevada and California

    USGS Publications Warehouse

    Belcher, W.R.; Faunt, C.C.; Sweetkind, D.S.; Blainey, J.B.; San Juan, C. A.; Laczniak, R.J.; Hill, M.C.

    2006-01-01

    The Death Valley regional ground-water flow system (DVRFS) of southern Nevada and eastern California covers an area of about 100,000 square kilometers and contains very complex geology and hydrology. Using a computer model to represent the complex system, the U.S. Geological Survey simulated ground-water flow in the Death Valley region for use with U.S. Department of Energy projects in southern Nevada. The model was created to help address contaminant cleanup activities associated with the underground nuclear testing conducted from 1951 to 1992 at the Nevada Test Site and to support the licensing process for the proposed geologic repository for high-level nuclear waste at Yucca Mountain, Nevada.

  9. Groundwater quality in the Monterey Bay and Salinas Valley groundwater basins, California

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth

    2011-01-01

    The Monterey-Salinas study unit is nearly 1,000 square miles and consists of the Santa Cruz Purisima Formation Highlands, Felton Area, Scotts Valley, Soquel Valley, West Santa Cruz Terrace, Salinas Valley, Pajaro Valley, and Carmel Valley groundwater basins (California Department of Water Resources, 2003; Kulongski and Belitz, 2011). These basins were grouped into four study areas based primarily on geography. Groundwater basins in the north were grouped into the Santa Cruz study area, and those to the south were grouped into the Monterey Bay, the Salinas Valley, and the Paso Robles study areas (Kulongoski and others, 2007). The study unit has warm, dry summers and cool, moist winters. Average annual rainfall ranges from 31 inches in Santa Cruz in the north to 13 inches in Paso Robles in the south. The study areas are drained by several rivers and their principal tributaries: the Salinas, Pajaro, and Carmel Rivers, and San Lorenzo Creek. The Salinas Valley is a large intermontane valley that extends southeastward from Monterey Bay to Paso Robles. It has been filled, up to a thickness of 2,000 feet, with Tertiary and Quaternary marine and terrestrial sediments that overlie granitic basement. The Miocene-age Monterey Formation and Pliocene- to Pleistocene-age Paso Robles Formation, and Pleistocene to Holocene-age alluvium contain freshwater used for supply. The primary aquifers in the study unit are defined as those parts of the aquifers corresponding to the perforated intervals of wells listed in the California Department of Public Health database. Public-supply wells are typically drilled to depths of 200 to 650 feet, consist of solid casing from the land surface to depths of about 175 to 500 feet, and are perforated below the solid casing. Water quality in the primary aquifers may differ from that in the shallower and deeper parts of the aquifer system. Groundwater movement is generally from the southern part of the Salinas Valley north towards the Monterey Bay

  10. Ground-water flow directions and estimation of aquifer hydraulic properties in the lower Great Miami River Buried Valley aquifer system, Hamilton Area, Ohio

    USGS Publications Warehouse

    Sheets, Rodney A.; Bossenbroek, Karen E.

    2005-01-01

    The Great Miami River Buried Valley Aquifer System is one of the most productive sources of potable water in the Midwest, yielding as much as 3,000 gallons per minute to wells. Many water-supply wells tapping this aquifer system are purposely placed near rivers to take advantage of induced infiltration from the rivers. The City of Hamilton's North Well Field consists of 10 wells near the Great Miami River, all completed in the lower Great Miami River Buried Valley Aquifer System. A well-drilling program and a multiple-well aquifer test were done to investigate ground-water flow directions and to estimate aquifer hydraulic properties in the lower part of the Great Miami River Buried Valley Aquifer System. Descriptions of lithology from 10 well borings indicate varying amounts and thickness of clay or till, and therefore, varying levels of potential aquifer confinement. Borings also indicate that the aquifer properties can change dramatically over relatively short distances. Grain-size analyses indicate an average bulk hydraulic conductivity value of aquifer materials of 240 feet per day; the geometric mean of hydraulic conductivity values of aquifer material was 89 feet per day. Median grain sizes of aquifer material and clay units were 1.3 millimeters and 0.1 millimeters, respectively. Water levels in the Hamilton North Well Field are affected by stream stage in the Great Miami River and barometric pressure. Bank storage in response to stream stage is evident. Results from a multiple-well aquifer test at the well field indicate, as do the lithologic descriptions, that the aquifer is semiconfined in some areas and unconfined in others. Transmissivity and storage coefficient of the semiconfined part of the aquifer were 50,000 feet squared per day and 5x10-4, respectively. The average hydraulic conductivity (450 feet per day) based on the aquifer test is reasonable for glacial outwash but is higher than calculated from grain-size analyses, implying a scale effect

  11. Reconstructing a sediment pulse: Modeling the effect of placer mining on Fraser River, Canada

    NASA Astrophysics Data System (ADS)

    Ferguson, R. I.; Church, M.; Rennie, C. D.; Venditti, J. G.

    2015-07-01

    Gold mining along 525 km of the Fraser River between 1858 and 1909 added an estimated 1.1 × 108 t of tailings, half gravel and the rest finer, to the river's natural sediment load. We simulate the response using a 1-D multigrain size morphodynamic model. Since premining conditions are unknown and modern data are insufficient for tuning the process representation, we devised a novel modeling strategy which may be useful in other data-poor applications. We start the model from a smoothed version of the modern longitudinal profile with bed grain size distributions optimized to match alternative assumptions about natural sediment supply and compare runs that include mining with control runs that can be used to quantify the effects of deficiencies in process representation and initialization. Simulations with an appropriate choice of natural supply rate closely match the best available test data, which consist of a detailed 1952-1999 gravel budget for the distal part of the model domain. The simulations suggest that the main response to mining was rapid bed fining, which allowed a major increase in bed load transport rate with only slight (~0.1 m) mean aggradation within the mining region and most of the excess sediment exported well beyond the mountain front within the mining period or soon afterward. We compare this pattern of response by a large, powerful river with previous case studies of river adjustment to sediment supply change.

  12. 27 CFR 9.90 - Willamette Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) “Roseburg,” Location Diagram NL 10-2, 1958 (revised 1970). (c) Boundaries. The Willamette Valley... valleys of Little River, Mosby Creek, Sharps Creek and Lost Creek to the intersection of R1W/R1E and State...

  13. A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness

    PubMed Central

    Kätsyri, Jari; Förger, Klaus; Mäkäräinen, Meeri; Takala, Tapio

    2015-01-01

    The uncanny valley hypothesis, proposed already in the 1970s, suggests that almost but not fully humanlike artificial characters will trigger a profound sense of unease. This hypothesis has become widely acknowledged both in the popular media and scientific research. Surprisingly, empirical evidence for the hypothesis has remained inconsistent. In the present article, we reinterpret the original uncanny valley hypothesis and review empirical evidence for different theoretically motivated uncanny valley hypotheses. The uncanny valley could be understood as the naïve claim that any kind of human-likeness manipulation will lead to experienced negative affinity at close-to-realistic levels. More recent hypotheses have suggested that the uncanny valley would be caused by artificial–human categorization difficulty or by a perceptual mismatch between artificial and human features. Original formulation also suggested that movement would modulate the uncanny valley. The reviewed empirical literature failed to provide consistent support for the naïve uncanny valley hypothesis or the modulatory effects of movement. Results on the categorization difficulty hypothesis were still too scarce to allow drawing firm conclusions. In contrast, good support was found for the perceptual mismatch hypothesis. Taken together, the present review findings suggest that the uncanny valley exists only under specific conditions. More research is still needed to pinpoint the exact conditions under which the uncanny valley phenomenon manifests itself. PMID:25914661

  14. Martian channels and valleys: Their characteristics, distribution, and age

    USGS Publications Warehouse

    Carr, M.H.; Clow, G.D.

    1981-01-01

    All Martian channels and valleys visible at a resolution of 125 to 300 meters between 65??N and 65??S were mapped at a scale of 1:5,000,000 and the maps then digitized. Correlations of valley presence with other surface features show that almost all valleys are in the old cratered terrain. preferentially in areas of low albedo, low violet/red ratios, and high elevation. The networks are open, the individual drainage basins are small relative to Earth, and large distances separate the basins, features which all suggest an immature drainage system. The simplest explanation of the correlations and the restriction of valley networks to old terrain is that the channels themselves are old, and that the climatic conditions necessary for their formation did not prevail for long after the decline in the cratering rate around 3.9 billion years ago. Two types of outflow channel are distinguished: unconfined, in which broad swaths of terrain are scoured, and confined, in which flow is restricted to discrete channels. The outflow channels have a wide range of ages and may form under present climatic conditions. Fretted channels are largely restrited to two latitude belts centered on 40??N and 45??S, where relatively rapid erosion along escarpments results from mass wasting. They probably form by enlargement of preexisting channels by escarpment retreat. ?? 1981.

  15. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  16. Gravity survey of Dixie Valley, west-central Nevada

    USGS Publications Warehouse

    Schaefer, Donald H.

    1983-01-01

    Dixie Valley, a northeast-trending structural trough typical of valleys in the Basin and Range Province, is filled with a maximum of about 10,000 feet of alluvial and lacustrine deposits , as estimated from residual-gravity measurements obtained in this study. On the basis of gravity measurements at 300 stations on nine east-west profiles, the gravity residuals reach a maximum of 30 milligals near the south-central part of the valley. Results from a three-dimensional inversion model indicate that the central depression of the valley is offset to the west of the geographic axis. This offset is probably due to major faulting along the west side of the valley adjacent to the Stillwater Range. Comparison of depths to bedrock obtained during this study and depths obtained from a previous seismic-refraction study indicates a reasonably good correlation. A heterogeneous distribution of densities within the valley-fill deposits would account for differing depths determined by the two methods. (USGS)

  17. Underground water in Sanpete and central Sevier valleys, Utah

    USGS Publications Warehouse

    Richardson, George Burr

    1907-01-01

    Sanpete and central Sevier valleys are situated at the border of the Basin Range and Plateau provinces in south-central Utah. They are bounded on the east by the Wasatch and Sevier plateaus and on the west by the Gunnison Plateau and the Valley and Pavant ranges, and are drained by Sevier River, which empties into Sevier Lake in the Great Basin. (See fig. 1, p. 6.)These valleys rank with the richest parts of the State. They were occupied a few years after the Mormon pioneers founded Salt Lake City, in 1847, when settlements, which soon became thriving farming communities, were established where water for irrigation was most available. A variety of crops, especially wheat, are successfully grown, and the valleys are popularly known as the "granary of Utah." Sheep raising is also an important industry, the adjacent highlands being used for summer pastures. The climate is arid, and there is a striking contrast between those areas which in their natural state are covered with sagebrush and grease wood and the fruitful cultivated tracts. (See PI. I, A and B.) Trees are normally absent in the valleys, but they flourish to a limited extent on the adjacent highlands, where there are thin growths of quaking aspen, scrub oak, and stunted conifers. Irrigation is necessary for the production of crops. Canal systems are maintained by San Pitch Creek and Sevier River, and the mountain streams are tapped by ditches near the mouths of the canyons, but this supply is insufficient and attention is being turned to the subterranean store.This report is a preliminary statement of the general conditions of occurrence of underground water in Sanpete and central Sevier valleys. The field work was carried on in cooperation with Sanpete and Sevier counties through the State engineer, Mr. Caleb Tanner, who detailed Mr. C. S. Jarvis to collect the data embodied in the list of springs and wells on pages 51-60.

  18. Napa Valley Community College District and Napa Valley College Faculty Association/CTA/NEA 1988-89 Agreement.

    ERIC Educational Resources Information Center

    Napa Valley Community Coll. District, Napa, CA.

    The collective bargaining agreement between the Board of Trustees of the Napa Valley Community College District and the Napa Valley College Faculty Association/California Teachers Association/National Education Association is presented. This contract, in effect from June 1988 through July 1989, deals with the following topics: bargaining agent…

  19. Channels and valleys on Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1983-01-01

    Tentative conclusions about the origins of channels and valleys on Mars based on the consensus of investigators who have studied the problem are presented. The morphology of outflow channels is described in detail, and the morphology, distribution, and genesis of Martian valleys are addressed. Secondary modification of channels and valleys by mass-wasting phenomena, eolian processes, cratering, and mantling by lava flows is discussed. The physics of the flows needed to account for the immense volumes of Martian outflow channels is considered in detail, including the possible influence of debris flows and mudflows, glaciers, and ice sheets. It is concluded that Mars once probably possessed an atmosphere with higher temperatures and pressures than at present which played an essential role in an active hydrological cycle.

  20. The geochemistry of groundwater resources in the Jordan Valley: The impact of the Rift Valley brines

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Polak, A.; Shavit, U.

    2007-01-01

    The chemical composition of groundwater in the Jordan Valley, along the section between the Sea of Galilee and the Dead Sea, is investigated in order to evaluate the origin of the groundwater resources and, in particular, to elucidate the role of deep brines on the chemical composition of the regional groundwater resources in the Jordan Valley. Samples were collected from shallow groundwater in research boreholes on two sites in the northern and southern parts of the Jordan Valley, adjacent to the Jordan River. Data is also compiled from previous published studies. Geochemical data (e.g., Br/Cl, Na/Cl and SO4/Cl ratios) and B, O, Sr and S isotopic compositions are used to define groundwater groups, to map their distribution in the Jordan valley, and to evaluate their origin. The combined geochemical tools enabled the delineation of three major sources of solutes that differentially affect the quality of groundwater in the Jordan Valley: (1) flow and mixing with hypersaline brines with high Br/Cl (>2 ?? 10-3) and low Na/Cl (<0.8) ratios; (2) dissolution of highly soluble salts (e.g., halite, gypsum) in the host sediments resulting in typically lower Br/Cl signal (<2 ?? 10-3); and (3) recharge of anthropogenic effluents, primarily derived from evaporated agricultural return flow that has interacted (e.g., base-exchange reactions) with the overlying soil. It is shown that shallow saline groundwaters influenced by brine mixing exhibit a north-south variation in their Br/Cl and Na/Cl ratios. This chemical trend was observed also in hypersaline brines in the Jordan valley, which suggests a local mixing process between the water bodies. ?? 2007 Elsevier Ltd. All rights reserved.

  1. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators

    PubMed Central

    Slobozhanyuk, Alexey

    2018-01-01

    Recent advances in condensed matter physics have shown that the spin degree of freedom of electrons can be efficiently exploited in the emergent field of spintronics, offering unique opportunities for efficient data transfer, computing, and storage (1–3). These concepts have been inspiring analogous approaches in photonics, where the manipulation of an artificially engineered pseudospin degree of freedom can be enabled by synthetic gauge fields acting on light (4–6). The ability to control these degrees of freedom significantly expands the landscape of available optical responses, which may revolutionize optical computing and the basic means of controlling light in photonic devices across the entire electromagnetic spectrum. We demonstrate a new class of photonic systems, described by effective Hamiltonians in which competing synthetic gauge fields, engineered in pseudospin, chirality/sublattice, and valley subspaces, result in bandgap opening at one of the valleys, whereas the other valley exhibits Dirac-like conical dispersion. We show that this effective response has marked implications on photon transport, among which are as follows: (i) a robust pseudospin- and valley-polarized one-way Klein tunneling and (ii) topological edge states that coexist within the Dirac continuum for opposite valley and pseudospin polarizations. These phenomena offer new ways to control light in photonics, in particular, for on-chip optical isolation, filtering, and wave-division multiplexing by selective action on their pseudospin and valley degrees of freedom. PMID:29756032

  2. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  3. Nature of the Lowstand Surface on the Gulf of Cádiz Shelf and the Guadiana Incised-Valley System: Preliminary Results from the LASEA 2013 Cruise

    NASA Astrophysics Data System (ADS)

    Lobo, F.; Lebreiro, S.; Antón, L.; Delivet, S.; Espinosa, S.; Fernández-Puga, M. C.; García, M.; Ibáñez, J.; Luján, M.; Mendes, I.; Reguera, M. I.; Sevillano, P.; Sinde, C.; Van Rooij, D.; Zarandona, P.

    2014-12-01

    The LASEA 2013 cruise was executed in August 2013 in the northern margin of the Gulf of Cádiz, with the main goal of collecting data from the Guadiana River-influenced shelf, in order to: (1) study changes affecting the entire drainage basin; (2) correlate shelf unit sequences with the upper slope sedimentary record, composed dominantly of contourite deposits in specific stretches of the margin. As a first approach, attention is paid to the most obvious sedimentary manifestation of the influence of the river on the shelf domain, represented by the Guadiana incised-valley system. The database comprises both geophysical and sedimentological records. Geophysical data include multibeam bathymetry, TOPAS profiles and single-channel Sparker seismic profiles. Sedimentological data include sediment cores collected with gravity- and vibro-corer devices. The lowstand erosional surface was mapped across the shelf. The lowstand surface exhibits two clearly contrasting patterns. In the outer shelf the surface isrepresented by an erosional truncation that can be planar or irregular. The lowstand surface is much more difficult to follow in the inner shelf, due to the amalgamation of erosional surfaces and the frequent stacking of coarse-grained deposits. Incised valleys are recognized at shallow waters (20-30 m) the most significant of them is at least 1.5 km wide in the most proximal (recognized) section, decreasing seawards in width. The internal architecture of the valley exhibits the intercalation of laterally prograding sediment bodies and high-amplitude, subparallel configurations laterally related to valley margin prograding wedges. The internal facies architecture suggests a transition from relatively high-energy fluvial to proximal estuarine environment to a lower-energy estuarine depositional environment. Thus, the study of the valley extension into the shelf is expected to provide clues for the recent reorganization of the entire fluvial system, during the course of

  4. Valley-polarized quantum transport generated by gauge fields in graphene

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Garcia, Jose H.; Roche, Stephan

    2017-09-01

    We report on the possibility to simultaneously generate in graphene a bulk valley-polarized dissipative transport and a quantum valley Hall effect by combining strain-induced gauge fields and real magnetic fields. Such unique phenomenon results from a ‘resonance/anti-resonance’ effect driven by the superposition/cancellation of superimposed gauge fields which differently affect time reversal symmetry. The onset of a valley-polarized Hall current concomitant to a dissipative valley-polarized current flow in the opposite valley is revealed by a {{e}2}/h Hall conductivity plateau. We employ efficient linear scaling Kubo transport methods combined with a valley projection scheme to access valley-dependent conductivities and show that the results are robust against disorder.

  5. GPS measurements of strain accumulation across the Imperial Valley, California: 1986-1989

    NASA Technical Reports Server (NTRS)

    Larsen, Shawn; Reilinger, Robert

    1989-01-01

    The Global Positioning System (GPS) data collected in southern California from 1986 to 1989 indicate considerable strain accumulation across the Imperial Valley. Displacements are computed at 29 stations in and near the valley from 1986 to 1988, and at 11 sites from 1988 to 1989. The earlier measurements indicate 5.9 +/- 1.0 cm/yr right-lateral differential velocity across the valley, although the data are heavily influenced by the 1987 Superstition Hills earthquake sequence. Some measurements, especially the east-trending displacements, are suspects for large errors. The 1988 to 1989 GPS displacements are best modeled by 5.2 +/- 0.9 cm/yr of valley crossing deformation, but rates calculated from conventional geodetic measurements (3.4 to 4.3 cm/yr) fit the data nearly as well. There is evidence from GPS and Very Long Base Interferometry (VLBI) observations that the present slip rate along the southern San Andreas fault is smaller than the long-term geologic estimate, suggesting a lower earthquake potential than is currently assumed. Correspondingly, a higher earthquake potential is indicated for the San Jacinto fault. The Imperial Valley GPS sites form part of a 183 station network in southern California and northern Baja California, which spans a cross-section of the North American-Pacific plate boundary.

  6. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.

    PubMed

    Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F

    2017-10-16

    The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

  7. Valley-selective optical Stark effect in monolayer WS2

    NASA Astrophysics Data System (ADS)

    Gedik, Nuh

    Monolayer semiconducting transition-metal dichalcogenides (TMDs) have a pair of valleys that, by time-reversal symmetry, are energetically degenerate. Lifting the valley degeneracy in these materials is of great interest because it would allow for valley specific band engineering and offer additional control in valleytronic applications. In this talk, I will show that circularly polarized light, which breaks time-reversal symmetry, can be used to lift the valley degeneracy by means of the optical Stark effect. We demonstrate that this effect is capable of raising the exciton level in monolayer TMD WS2 by as much as 18 meV in a controllable valley-selective manner. The resulting energy shift is extremely large, comparable to the shift that would be obtained using a very high magnetic field (approximately 100 Tesla). These results offer a novel way to control valley degree of freedom, and may provide a means to realize new valley-selective Floquet topological state of matter.

  8. Update to the Ground-Water Withdrawals Database for the Death Valley Regional Ground-Water Flow System, Nevada and California, 1913-2003

    USGS Publications Warehouse

    Moreo, Michael T.; Justet, Leigh

    2008-01-01

    Ground-water withdrawal estimates from 1913 through 2003 for the Death Valley regional ground-water flow system are compiled in an electronic database to support a regional, three-dimensional, transient ground-water flow model. This database updates a previously published database that compiled estimates of ground-water withdrawals for 1913-1998. The same methodology is used to construct each database. Primary differences between the 2 databases are an additional 5 years of ground-water withdrawal data, well locations in the updated database are restricted to Death Valley regional ground-water flow system model boundary, and application rates are from 0 to 1.5 feet per year lower than original estimates. The lower application rates result from revised estimates of crop consumptive use, which are based on updated estimates of potential evapotranspiration. In 2003, about 55,700 acre-feet of ground water was pumped in the DVRFS, of which 69 percent was used for irrigation, 13 percent for domestic, and 18 percent for public supply, commercial, and mining activities.

  9. Groundwater sapping valleys: Experimental studies, geological controls and implications to the interpretation of valley networks on Mars

    NASA Technical Reports Server (NTRS)

    Kochel, R. Craig

    1988-01-01

    An integrated approach using experimental laboratory models, field studies of terrestrial analogs, and remote studies of terrestrial field sites were applied to the goals of understanding the nature and morphology of valley networks formed by groundwater sapping. In spite of problems with scaling, the experimental studies provide valuable insights into concepts relating to the initiation, development, and evolution of valleys by groundwater sapping. These investigations are also aimed at developing geomorphic criteria for distinguishing valleys formed by surface runoff from those formed by groundwater sapping processes. Channels that were field classified as sapping vs. runoff were successfully distinguished using statistical analysis of their respective morphologies; therefore, it may be possible to use similar techniques to interpret channel genesis on Mars. The terrestrial and flume studies provide the ground truth dataset which can be used (and will be during the present year) to help interpret the genesis of valley networks on Mars.

  10. Mid-crustal detachment and ramp faulting in the Markham Valley, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Stevens, C.; McCaffrey, R.; Silver, E. A.; Sombo, Z.; English, P.; van der Kevie, J.

    1998-09-01

    Earthquakes and geodetic evidence reveal the presence of a low-angle, mid-crustal detachment fault beneath the Finisterre Range that connects to a steep ramp surfacing near the Ramu-Markham Valley of Papua New Guinea. Waveforms of three large (Mw 6.3 to 6.9) thrust earthquakes that occurred in October 1993 beneath the Finisterre Range 10 to 30 km north of the valley reveal 15° north-dipping thrusts at about 20 km depth. Global Positioning System measurements show up to 20 cm of coseismic slip occurred across the valley, requiring that the active fault extend to within a few hundred meters of the Earth's surface beneath the Markham Valley. Together, these data imply that a gently north-dipping thrust fault in the middle or lower crust beneath the Finisterre Range steepens and shallows southward, forming a ramp fault beneath the north side of the Markham Valley. Waveforms indicate that both the ramp and detachment fault were active during at least one of the earthquakes. While the seismic potential of mid-crustal detachments elsewhere is debated, in Papua New Guinea the detachment fault shows the capability of producing large earthquakes.

  11. [Genetic composition of Chilean population: rural communities of Elqui, Limari and Choapa valleys].

    PubMed

    Acuña, M; Llop, E; Rothhammer, F

    2000-06-01

    The population that inhabits the semiarid Northern zone of Chile arose from ethnic admixture between aborigines, Spanish conquerors and the influx, during the XVII century, of foreign aboriginal workers and a minority of African slaves. To study the phenotypic frequencies of 15 genetic markers among populations inhabiting valleys in the Northern zone of Chile and to estimate the percentage of indigenous, African and Caucasian admixture in these populations. Throughout five different field works, blood samples were obtained from 120 individuals living in the Elqui valley, 120 individuals living in the Limari valley and 85 living in the Choapa valley. Blood groups, erythrocyte enzymes, plasma proteins and HLA markers were typified. In the populations studied, the contribution of non indigenous genes was low in relation with the time elapsed since the Spanish invasion. The Hardy-Weinberg disequilibrium for MNS system would have microevolutive implications. The admixture percentages in these valleys confirm ethnic and historic information. The variation of the enzyme esterase D is identical to that of other Chilean populations. The phenotypic and genetic frequencies in the three populations studied and different admixture of indigenous genes is inversely proportional to the geographic distance from Santiago, in Central Chile.

  12. Determination of land subsidence related to ground-water-level declines using Global Positioning System and leveling surveys in Antelope Valley, Los Angeles and Kern counties, California, 1992

    USGS Publications Warehouse

    Ikehara, M.E.; Phillips, S.P.

    1994-01-01

    A large-scale, land-subsidence monitoring network for Antelope Valley, California, was established, and positions and elevations for 85 stations were measured using Global Positioning System geodetic surveying in spring 1992. The 95-percent confidence (2@) level of accuracy for the elevations calculated for a multiple-constraint adjustment generally ranged from +0.010 meter (0.032 foot) to +0.024 meter (0.078 foot). The magnitudes and rates of land subsidence as of 1992 were calculated for several periods for 218 bench marks throughout Antelope Valley. The maximum measured magnitude of land subsidence that occurred between 1926 and 1992 was 6.0 feet (1.83 meters) at BM 474 near Avenue I and Sierra Highway. Measured or estimated subsidence of 2-7 feet (.61-2.l3 meters) had occurred in a 210- square-mile (542-square-kilometer) area of Antelope Valley, generally bounded by Avenue K, Avenue A, 90th Street West, and 120th Street East, during the same period. Land subsidence in Antelope Valley is caused by aquifer-system compaction, which is related to ground-water-level declines and the presence of fine-grained, compressible sediments. Comparison of potentiomethric-surface, water-level decline, and subsidence-rate maps for several periods indicated a general correlation between water-level declines and the distribution and rate of subsidence in the Lancaster ground-water subbasin. A conservative estimate of the amount of the reduction in storage capacity of the aquifer system in the Lancaster subbasin is about 50,000 acre-feet in the area that has been affected by more than one foot (.30 meters) of subsidence as of 1992. Information on the history of ground-water levels and the distribution and thickness of fine-grained compressible sediments can be used to mitigate continued land subsidence. Future monitoring of ground-water levels and land-surface elevations in subsidence-sensitive regions of Antelope Valley may be an effective means to manage land subsidence.

  13. Optimization of an artificial-recharge-pumping system for water supply in the Maghaway Valley, Cebu, Philippines

    NASA Astrophysics Data System (ADS)

    Kawo, Nafyad Serre; Zhou, Yangxiao; Magalso, Ronnell; Salvacion, Lasaro

    2018-05-01

    A coupled simulation-optimization approach to optimize an artificial-recharge-pumping system for the water supply in the Maghaway Valley, Cebu, Philippines, is presented. The objective is to maximize the total pumping rate through a system of artificial recharge and pumping while meeting constraints such as groundwater-level drawdown and bounds on pumping rates at each well. The simulation models were coupled with groundwater management optimization to maximize production rates. Under steady-state natural conditions, the significant inflow to the aquifer comes from river leakage, whereas the natural discharge is mainly the subsurface outflow to the downstream area. Results from the steady artificial-recharge-pumping simulation model show that artificial recharge is about 20,587 m3/day and accounts for 77% of total inflow. Under transient artificial-recharge-pumping conditions, artificial recharge varies between 14,000 and 20,000 m3/day depending on the wet and dry seasons, respectively. The steady-state optimisation results show that the total optimal abstraction rate is 37,545 m3/day and artificial recharge is increased to 29,313 m3/day. The transient optimization results show that the average total optimal pumping rate is 36,969 m3/day for the current weir height. The transient optimization results for an increase in weir height by 1 and 2 m show that the average total optimal pumping rates are increased to 38,768 and 40,463 m3/day, respectively. It is concluded that the increase in the height of the weir can significantly increase the artificial recharge rate and production rate in Maghaway Valley.

  14. Optimal pumping strategies for managing shallow, poorquality groundwater, western San Joaquin Valley, California

    USGS Publications Warehouse

    Barlow, P.; Wagner, B.; Belitz, K.

    1995-01-01

    Continued agricultural productivity in the western San Joaquin Valley, California, is threatened by the presence of shallow, poor-quality groundwater that can cause soil salinization. We evaluate the management alternative of using groundwater pumping to control the altitude of the water table and provide irrigation water requirements. A transient, three-dimensional, groundwater flow model was linked with nonlinear optimization to simulate management alternatives for the groundwater flow system. Optimal pumping strategies have been determined that substantially reduce the area subject to a shallow water table and bare-soil evaporation (that is, areas with a water table within 2.1 m of land surface) and the rate of drainflow to on-farm drainage systems. Optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.

  15. Holocene hillslope processes and deposits in two U-shaped mountain valleys in western Norway

    NASA Astrophysics Data System (ADS)

    Laute, K.; Beylich, A. A.

    2012-04-01

    This doctoral research project is integrated in the Norwegian Research Council (NFR) funded SedyMONT-Norway Project within the ESF EUROCORES TOPO-EUROPE SedyMONT (Timescales of sediment dynamics, climate and topographic change in mountain landscapes) Programme. Research is carried out within two steep, U-shaped and glacier-connected tributary valleys (Erdalen and Bødalen) on the western side of the Jostedalsbreen ice cap in western Norway. Contemporary denudative processes in both valley systems include rock and boulder falls, avalanches, slush flows, debris flows, creep processes, wash- and chemical denudation and fluvial transport of solutes, suspended sediments and bedload. The main aims of this research project which are approached within a Holocene to contemporary timescale are: (i) to investigate the spatio-temporal variability of Holocene hillslope development, (ii) to analyse more specificly the morphometric influences and geomorphic consequences of the Little Ice Age (LIA) glacier advance on selected hillslope systems within defined headwater areas in both valleys, (iii) to study morphometric and meteorological controls of contemporary denudative slope processes as well as (iv) to quantify the rates of sediment delivery from headwater areas and its changes over time. A process-based approach is applied using a variety of different methods and techniques. Focus is on different temporal (Holocene to contemporary) and spatial (selected hillslope systems, headwater areas and entire valley system) scales. The applied methods include orthophoto- and topographical map interpretation, GIS and DEM computing, geomorphological fieldmapping and hillslope profile surveying complemented by relative dating techniques (lichenometry and dendrochronology), geophysical investigations and terrestrial laser scanning (LIDAR). For monitoring contemporary rates of slope processes a designed monitoring programme (running since 2009) with a wide spectrum of instrumentation; e

  16. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  17. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  18. California's restless giant: the Long Valley Caldera

    USGS Publications Warehouse

    Hill, David P.; Bailey, Roy A.; Hendley, James W.; Stauffer, Peter H.; Marcaida, Mae

    2014-01-01

    Scientists have monitored geologic unrest in the Long Valley, California, area since 1980. In that year, following a swarm of strong earthquakes, they discovered that the central part of the Long Valley Caldera had begun actively rising. Unrest in the area persists today. The U.S. Geological Survey (USGS) continues to provide the public and civil authorities with current information on the volcanic hazard at Long Valley and is prepared to give timely warnings of any impending eruption.

  19. Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Yang, Shengyuan A.; Zhang, C.; Ma, Zhongshui; Ang, L. K.

    2017-12-01

    Despite much anticipation of valleytronics as a candidate to replace the aging complementary metal-oxide-semiconductor (CMOS) based information processing, its progress is severely hindered by the lack of practical ways to manipulate valley polarization all electrically in an electrostatic setting. Here, we propose a class of all-electric-controlled valley filter, valve, and logic gate based on the valley-contrasting transport in a merging Dirac cones system. The central mechanism of these devices lies on the pseudospin-assisted quantum tunneling which effectively quenches the transport of one valley when its pseudospin configuration mismatches that of a gate-controlled scattering region. The valley polarization can be abruptly switched into different states and remains stable over semi-infinite gate-voltage windows. Colossal tunneling valley-pseudomagnetoresistance ratio of over 10 000 % can be achieved in a valley-valve setup. We further propose a valleytronic-based logic gate capable of covering all 16 types of two-input Boolean logics. Remarkably, the valley degree of freedom can be harnessed to resurrect logical reversibility in two-input universal Boolean gate. The (2 +1 ) polarization states (two distinct valleys plus a null polarization) reestablish one-to-one input-to-output mapping, a crucial requirement for logical reversibility, and significantly reduce the complexity of reversible circuits. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.

  20. Geology of the Greenwater Range, and the dawn of Death Valley, California—Field guide for the Death Valley Natural History Conference, 2013

    USGS Publications Warehouse

    Calzia, J.P.; Rämö, O.T.; Jachens, Robert; Smith, Eugene; Knott, Jeffrey

    2016-05-02

    Much has been written about the age and formation of Death Valley, but that is one—if not the last—chapter in the fascinating geologic history of this area. Igneous and sedimentary rocks in the Greenwater Range, one mountain range east of Death Valley, tell an earlier story that overlaps with the formation of Death Valley proper. This early story has been told by scientists who have studied these rocks for many years and continue to do so. This field guide was prepared for the first Death Valley Natural History Conference and provides an overview of the geology of the Greenwater Range and the early history (10–0 Ma) of Death Valley.

  1. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  2. 27 CFR 9.191 - Ramona Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ramona Valley. 9.191 Section 9.191 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...) Borrego Valley, California, 1982 edition; and (2) El Cajon, California, 1979 edition. (c) Boundary. The...

  3. A Quantitative Analysis of the Fretted Terrain Valleys, Arabia Terra, Mars

    NASA Astrophysics Data System (ADS)

    Mason, Kelsey Anne

    Fretted terrain describes regions on Mars with low-lying, flat valleys separated by steep cliffs that often form polygonal-shaped mesas. The fretted terrain valleys have a morphology distinct from other valleys found on Mars, and their unknown origin may hold insights into critical questions about Mars' tectonic, magmatic, and hydrologic history. Current hypothesis for the formation of the fretted terrain include fracturing as well as hydrological flow processes such as fluvial or glacial erosion. The region for this study is located in eastern Arabia Terra and is the type-location for fretted terrain. By qualitatively and quantitatively documenting the planform, or map-view, valley geometries and orientations throughout the fretted terrain, this study better constrains the origin of the valleys. Valleys were mapped using automated routines in ArcGIS including the D8 flow direction algorithm. Valleys were then grouped geographically into basins and also by Strahler order. The valleys were then segmented every 50 km and the azimuth of each segment was calculated. The resulting valley azimuths were analyzed using rose diagrams to quantitatively describe the planform geometries of the valleys. Qualitatively, the majority of basins were found to have rectangular valley geometries. The downslope direction was calculated for each basin, and it was compared to the corresponding valley azimuths. The basins with rectangular valley geometries had valleys with an azimuth mode nearly parallel to the downslope direction and another azimuth mode perpendicular to the downslope direction. The valley azimuth mode parallel to the downslope direction is attributed to hydrological flow processes while the mode perpendicular to the downslope direction is attributed to fracturing related to the formation or existence of the Mars global dichotomy boundary.

  4. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  5. Dynamics of valley pseudospin in single-layer WSe2. Inter-valley scattering mediated by electron-phonon interaction

    NASA Astrophysics Data System (ADS)

    Molina-Sanchez, Alejandro; Sangalli, Davide; Wirtz, Ludger; Marini, Andrea

    In a time-dependent Kerr experiment a circularly polarized laser field is used to selectively populate the K+/- electronic valleys of single-layer WSe2. This carrier population corresponds to a finite pseudospin polarization that dictates the valleytronic properties of WSe2, but whose decay mechanism still remains largely debated. Time-dependent Kerr experiments provide an accurate way to visualize the pseudospin dynamics by measuring the rotation of a linearly polarized probe pulse applied after a circularly polarized and short pump pulse. We present here a clear, accurate and parameter-free description of the valley pseudospin dynamics in single-layer WSe2. By using an ab-initio approach we solve unambiguously the long standing debate about the dominant mechanism that drives the valley depolarization. Our results are in excellent agreement with recent time-dependent Kerr experiments. The decay dynamics and peculiar temperature dependence is explained in terms of electron phonon mediated processes that induce spin-flip inter-valley transitions.

  6. Chapter 2. Assessment of undiscovered conventional oil and gas resources--Upper Jurassic-Lower Cretaceous Cotton Valley group, Jurassic Smackover interior salt basins total petroleum system, in the East Texas basin and Louisiana-Mississippi salt basins provinces.

    USGS Publications Warehouse

    Dyman, T.S.; Condon, S.M.

    2006-01-01

    The Jurassic Smackover Interior Salt Basins Total Petroleum System is defined for this assessment to include (1) Upper Jurassic Smackover Formation carbonates and calcareous shales and (2) Upper Jurassic and Lower Cretaceous Cotton Valley Group organic-rich shales. The Jurassic Smackover Interior Salt Basins Total Petroleum System includes four conventional Cotton Valley assessment units: Cotton Valley Blanket Sandstone Gas (AU 50490201), Cotton Valley Massive Sandstone Gas (AU 50490202), Cotton Valley Updip Oil and Gas (AU 50490203), and Cotton Valley Hypothetical Updip Oil (AU 50490204). Together, these four assessment units are estimated to contain a mean undiscovered conventional resource of 29.81 million barrels of oil, 605.03 billion cubic feet of gas, and 19.00 million barrels of natural gas liquids. The Cotton Valley Group represents the first major influx of clastic sediment into the ancestral Gulf of Mexico. Major depocenters were located in south-central Mississippi, along the Louisiana-Mississippi border, and in northeast Texas. Reservoir properties and production characteristics were used to identify two Cotton Valley Group sandstone trends across northern Louisiana and east Texas: a high-permeability blanket-sandstone trend and a downdip, low-permeability massive-sandstone trend. Pressure gradients throughout most of both trends are normal, which is characteristic of conventional rather than continuous basin-center gas accumulations. Indications that accumulations in this trend are conventional rather than continuous include (1) gas-water contacts in at least seven fields across the blanket-sandstone trend, (2) relatively high reservoir permeabilities, and (3) high gas-production rates without fracture stimulation. Permeability is sufficiently low in the massive-sandstone trend that gas-water transition zones are vertically extensive and gas-water contacts are poorly defined. The interpreted presence of gas-water contacts within the Cotton Valley

  7. Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: A case study of the late Middle and Late Pleistocene Rhine system in the Netherlands

    NASA Astrophysics Data System (ADS)

    Peeters, J.; Busschers, F. S.; Stouthamer, E.; Bosch, J. H. A.; Van den Berg, M. W.; Wallinga, J.; Versendaal, A. J.; Bunnik, F. P. M.; Middelkoop, H.

    2016-01-01

    This paper describes the sedimentary architecture, chronostratigraphy and palaeogeography of the late Middle and Late Pleistocene (Marine Isotope Stage/MIS 6-2) incised Rhine-valley fill in the central Netherlands based on six geological transects, luminescence dating, biostratigraphical data and a 3D geological model. The incised-valley fill consists of a ca. 50 m thick and 10-20 km wide sand-dominated succession and includes a well-developed sequence dating from the Last Interglacial: known as the Eemian in northwest Europe. The lower part of the valley fill contains coarse-grained fluvio-glacial and fluvial Rhine sediments that were deposited under Late Saalian (MIS 6) cold-climatic periglacial conditions and during the transition into the warm Eemian interglacial (MIS 5e-d). This unit is overlain by fine-grained fresh-water flood-basin deposits, which are transgressed by a fine-grained estuarine unit that formed during marine high-stand. This ca. 10 m thick sequence reflects gradual drowning of the Eemian interglacial fluvial Rhine system and transformation into an estuary due to relative sea-level rise. The chronological data suggests a delay in timing of regional Eemian interglacial transgression and sea-level high-stand of several thousand years, when compared to eustatic sea-level. As a result of this glacio-isostatic controlled delay, formation of the interglacial lower deltaic system took only place for a relative short period of time: progradation was therefore limited. During the cooler Weichselian Early Glacial period (MIS 5d-a) deposition of deltaic sediments continued and extensive westward progradation of the Rhine system occurred. Major parts of the Eemian and Weichselian Early Glacial deposits were eroded and buried as a result of sea-level lowering and climate cooling during the early Middle Weichselian (MIS 4-3). Near complete sedimentary preservation occurred along the margins of the incised valley allowing the detailed reconstruction presented

  8. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  9. 27 CFR 9.100 - Mesilla Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Mesilla Valley. 9.100 Section 9.100 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Mesilla Valley viticultural area is located within Dona Ana County, New Mexico, and El Paso County, Texas...

  10. Miami Valley ITS : early deployment plan : final user service plan

    DOT National Transportation Integrated Search

    1997-07-01

    This User Service Plan is the first major product of the process to develop an Intelligent Transportation System (ITS) Early Deployment Plan (EDP) for the Miami Valley. This User Service Plan documents the travel environment, growth trends and transp...

  11. 27 CFR 9.78 - Ohio River Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley... boundary proceeds in a straight line westerly to the town of Dry Ridge in Grant County, Kentucky...

  12. Ground-water storage depletion in Pahrump Valley, Nevada-California, 1962-75

    USGS Publications Warehouse

    Harrill, James R.

    1982-01-01

    During the 13-year period, February 1962 to February 1975, about 540,000 acre-feet of ground water was pumped from Pahrump Valley. This resulted in significant water-level declines along the base of the Pahrump and Manse fans where pumping was concentrated. Maximum observed net decline was slightly more than 60 feet. Much smaller declines occurred in the central valley, and locally, water levels in some shallow wells rose due to recharge derived from the deep percolation of irrigation water. The pumping resulted in about 219,000 acre-feet of storage depletion. Of this, 155,000 acre-feet was from the draining of unconsolidated material, 46,000 was from compaction of fine-grained sediments, and 18,000 acre-feet was from the elastic response of the aquifer and water. The total storage depletion was equal to about 40 percent of the total pumpage. The remaining pumped water was derived from the capture of natural ground-water discharge and reuse of pumped water that had recirculated back to ground water. Natural recharge to and discharge from the ground-water system is estimated to be 37,000 acre-feet per year. Of this, 18,000 acre-feet per year leaves the area as subsurface outflow through carbonate-rock aquifers which form a multivalley flow system. The extent of this system was not precisely determined by this study. The most probable discharge area for this outflow is along the flood plain of the Amargosa River between the towns of Shoshone and Tecopa. This outflow probably cannot be economically captured by pumping from Pahrump Valley. Consequently, the maximum amount of natural discharge available for capture is 19,000 acre-feet per year. This is larger than the 12,000 acre-feet per year estimated in a previous study; the difference is due to different techniques used in the analysis. As of 1975, pumping was causing an overdraft of 11,000 acre-feet per year on the ground-water system. No new equilibrium is probable in the foreseeable future. Water levels will

  13. Death Valley California as seen from STS-59

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This oblique handheld Hasselblad 70mm photo shows Death Valley, near California's border with Nevada. The valley -- the central feature of Death Valley National Monument -- extends north to south for some 140 miles (225 kilometers). Hemmed in to the east by the Amargosa Range and to the west by the Panamints, its width varies from 5 to 15 miles (8 to 24 kilometers).

  14. Delaware Valley Regional Planning Commission Philadelphia Metropolitan Region : planning for congestion

    DOT National Transportation Integrated Search

    2009-04-01

    The Delaware Valley Regional Planning Commission uses a systematic process for managing traffic congestion and monitoring transportation system performance in the Philadelphia metropolitan region. Guided by an advisory team of stakeholders, the agenc...

  15. An update of the Death Valley regional groundwater flow system transient model, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Sweetkind, Donald S.; Faunt, Claudia C.; Pavelko, Michael T.; Hill, Mary C.

    2017-01-19

    Since the original publication of the Death Valley regional groundwater flow system (DVRFS) numerical model in 2004, more information on the regional groundwater flow system in the form of new data and interpretations has been compiled. Cooperators such as the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, the Department of Energy, and Nye County, Nevada, recognized a need to update the existing regional numerical model to maintain its viability as a groundwater management tool for regional stakeholders. The existing DVRFS numerical flow model was converted to MODFLOW-2005, updated with the latest available data, and recalibrated. Five main data sets were revised: (1) recharge from precipitation varying in time and space, (2) pumping data, (3) water-level observations, (4) an updated regional potentiometric map, and (5) a revision to the digital hydrogeologic framework model.The resulting DVRFS version 2.0 (v. 2.0) numerical flow model simulates groundwater flow conditions for the Death Valley region from 1913 to 2003 to correspond to the time frame for the most recently published (2008) water-use data. The DVRFS v 2.0 model was calibrated by using the Tikhonov regularization functionality in the parameter estimation and predictive uncertainty software PEST. In order to assess the accuracy of the numerical flow model in simulating regional flow, the fit of simulated to target values (consisting of hydraulic heads and flows, including evapotranspiration and spring discharge, flow across the model boundary, and interbasin flow; the regional water budget; values of parameter estimates; and sensitivities) was evaluated. This evaluation showed that DVRFS v. 2.0 simulates conditions similar to DVRFS v. 1.0. Comparisons of the target values with simulated values also indicate that they match reasonably well and in some cases (boundary flows and discharge) significantly better than in DVRFS v. 1.0.

  16. Subsurface valleys and geoarcheology of the Eastern Sahara revealed by shuttle radar

    USGS Publications Warehouse

    McCauley, J.F.; Schaber, G.G.; Breed, C.S.; Grolier, M.J.; Haynes, C.V.; Issawi, B.; Elachi, C.; Blom, R.

    1982-01-01

    The shuttle imaging radar (SIR-A) carried on the space shuttle Columbia in November 1981 penetrated the extremely dry Selima Sand Sheet, dunes, and drift sand of the eastern Sahara, revealing previously unknown buried valleys, geologic structures, and possible Stone Age occupation sites. Radar responses from bedrock and gravel surfaces beneath windblown sand several centimeters to possibly meters thick delineate sand- and alluvium-filled valleys, some nearly as wide as the Nile Valley and perhaps as old as middle Tertiary. The nov-vanished maijor river systems that carved these large valleys probably accomplished most of the erosional stripping of this extraordinarily flat, hyperarid region. Underfit and incised dry wadis, many superimposed on the large valleys, represent erosion by intermittent running water, probably during Quaternary pluvials. Stone Age artifacts associated with soils in the alluvium suggest that areas near the wadis may have been sites of early human occupation. The presence of old drainage networks beneath the sand sheet provides a geologic explanation for the locations of many playas and present-day oases which have been centers of episodic human habitation. Radar penetration of dry sand and soils varies with the wavelength of the incident signals (24 centimeters for the SIR-A system), incidence angle, and the electrical properties of the materials, which are largely determined by moisture content. The calculated depth of radar penetration of dry sand and granules, based on laboratory measurements of the electrical properties of samples from the Selima Sand Sheet, is at least 5 meters. Recent (September 1982) field studies in Egypt verified SIR-A signal penetration depths of at least 1 meter in the Selima Sand Sheet and in drift sand and 2 or more meters in sand dunes. Copyright ?? 1982 AAAS.

  17. Dispersion of Perfluorocarbon Tracers within the Salt Lake Valley during VTMX 2000

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Allwine, K. Jerry; Dietz, Russell N.; Clawson, Kirk L.; Torcolini, Joel C.

    2006-06-01

    Six perfluorocarbon tracer experiments were conducted in Salt Lake City, Utah, during October 2000 as part of the Vertical Transport and Mixing (VTMX) field campaign. Four tracers were released at different sites to obtain information on dispersion during stable conditions within down-valley flow, canyon outflow, and interacting circulations in the downtown area. Some of the extensive tracer data that were collected are presented in the context of the meteorological field campaign measurements. Tracer measurements at building-top sites in the downtown area and along the lower slopes of the Wasatch Front indicated that vertical mixing processes transported material up to at least 180 m above the valley floor, although model simulations suggest that tracers were transported upward to much higher elevations. Tracer data provided evidence of downward mixing of canyon outflow, upward mixing within down-valley flow, horizontal transport above the surface stable layer, and transport within horizontal eddies produced by the interaction of canyon and down-valley flows. Although point meteorological measurements are useful in evaluating the forecasts produced by mesoscale models, the tracer data provide valuable information on how the time-varying three-dimensional mean and turbulent motions over urban and valley spatial scales affect dispersion. Although the mean tracer transport predicted by the modeling system employed in this study was qualitatively similar to the measurements, improvements are needed in the treatment of turbulent vertical mixing.

  18. Cuyahoga Valley National Park : comprehensive rail study

    DOT National Transportation Integrated Search

    2013-07-25

    Cuyahoga Valley Scenic Railroad (CVSR) has been operating in partnership with Cuyahoga Valley National Park (CVNP) since 1989 under a cooperative agreement. The railroad has been successfully developing and expanding services and ridership for the pa...

  19. Trapped mountain wave excitations over the Kathmandu valley, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, Ram P.; Maharjan, Sangeeta

    2015-11-01

    Mid-wintertime spatial and temporal distributions of mountain wave excitation over the Kathmandu valley has been numerically simulated using Weather Research and Forecasting (WRF) modeling system. The study shows that low-level trapped mountain waves may remain very active during the night and early morning in the sky over the southern rim of the surrounding mountains, particularly, over the lee of Mt. Fulchoki. Calculations suggest that mountain wave activities are at minimum level during afternoon. The low-level trapped mountain waves in the sky over southern gateway of Tribhuvan International Airport (TIA) may pose risk for landings and takeoffs of light aircrafts. Detailed numerical and observational studies would be very important to reduce risk of air accidents and discomfort in and around the Kathmandu valley.

  20. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  1. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  2. Noachian Climate of Mars: Insights from Noachian Stratigraphy and Valley Networks System Formation Times

    NASA Astrophysics Data System (ADS)

    Head, J. W., III

    2017-12-01

    Noachian climate models have been proposed in order to account for 1) observed fluvial and lacustrine activity, 2) weathering processes producing phyllosilicates, and 3) an unusual impact record including three major impact basins and unusual degradation processes. We adopt a stratigraphic approach in order place these observations in a temporal context. Formation of the major impact basins Hellas, Isidis and Argyre in earlier Noachian profoundly influenced the uplands geology and appears to have occurred concurrently with major phyllosilicate and related surface occurrences/deposits; the immediate aftermath of these basins appears to have created a temporary hot and wet surface environment with significant effect on surface morphology and alteration processes. Formation of Late Noachian-Early Hesperian valley network systems (VNS) signaled the presence of warm/wet conditions generating several hypotheses for climates permissive of these conditions. We examined estimates for the time required to carve channels/deltas and total duration implied by plausible intermittencies. Synthesis of required timescales show that the total time to carve the VN does not exceed 106 years, < 0.25% of the total Noachian. What climate models can account for the VNS? 1) Warm and wet/semiarid/arid climate: Sustained background MAT >273 K, hydrological system vertically integrated, and rainfall occurs to recharge the aquifer. 2) Cold and Icy climate warmed by greenhouse gases or episodic stochastic events: Climate is sustained cold/icy, but greenhouse gases of unspecified nature/amount/duration elevate MAT by several tens of Kelvins, bringing the annual temperature range into the realm where peak seasonal temperatures (PST) exceed 273 K. In this climate environment, analogous to the Antarctic Dry Valleys, seasonal summer temperatures above 273 K are sufficient to melt snow/ice and form fluvial and lacustrine features, but MAT is well below 273 K (253 K); punctuated warming alternatives

  3. Seismic interpretation of the deep structure of the Wabash Valley Fault System

    USGS Publications Warehouse

    Bear, G.W.; Rupp, J.A.; Rudman, A.J.

    1997-01-01

    Interpretations of newly available seismic reflection profiles near the center of the Illinois Basin indicate that the Wabash Valley Fault System is rooted in a series of basement-penetrating faults. The fault system is composed predominantly of north-northeast-trending high-angle normal faults. The largest faults in the system bound the 22-km wide 40-km long Grayville Graben. Structure contour maps drawn on the base of the Mount Simon Sandstone (Cambrian System) and a deeper pre-Mount Simon horizon show dip-slip displacements totaling at least 600 meters across the New Harmony fault. In contrast to previous interpretations, the N-S extent of significant fault offsets is restricted to a region north of 38?? latitude and south of 38.35?? latitude. This suggests that the graben is not a NE extension of the structural complex composed of the Rough Creek Fault System and the Reelfoot Rift as previously interpreted. Structural complexity on the graben floor also decreases to the south. Structural trends north of 38?? latitude are offset laterally across several large faults, indicating strike-slip motions of 2 to 4 km. Some of the major faults are interpreted to penetrate to depths of 7 km or more. Correlation of these faults with steep potential field gradients suggests that the fault positions are controlled by major lithologic contacts within the basement and that the faults may extend into the depth range where earthquakes are generated, revealing a potential link between specific faults and recently observed low-level seismicity in the area.

  4. Patterns, trends, and toxicological significance of chlorinated hydrocarbon and mercury contaminants in bald eagle eggs from the Pacific coast of Canada, 1990-1994.

    PubMed

    Elliott, J E; Norstrom, R J; Smith, G E

    1996-10-01

    Bald eagle (Haliaeetus leucocephalus) eggs were collected during incubation, 1990-1992, from 16 nests near three bleached-kraft pulp mills, from six nests in the Fraser River estuary and from seven nests at a reference site on the Pacific coast of Canada. Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were present in all eggs in a qualitatively similar pattern among sites. Mean concentrations of 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) were significantly higher in eggs collected from near three kraft pulp mill sites in the Strait of Georgia (44, 45, 84 ng/kg) than from the reference area in Johnstone Strait (15 ng/kg). There were few differences among sites in mean organochlorine pesticide levels, indicating the diffuse distribution of those chemicals and the domination of atmospheric inputs. Mean concentrations of total polychlorinated biphenyls (PCBs) were highest in eggs from the Strait of Georgia (4.86 mg/kg) and the PCB congener pattern was significantly different between that area and both the lower Fraser valley and Johnstone Strait. Mean mercury concentrations, which were mainly methyl-mercury, were significantly higher in eggs collected from the lower Fraser Valley (0.258 mg/kg) and Johnstone Strait (0.294 mg/kg) compared to the Strait of Georgia (0.188 mg/kg). Individual and regional variation in concentrations of organochlorine pesticides, PCBs and mercury in eagle eggs were thought to be influenced mainly by dietary differences. Toxicologically, in 1990, mean TCDD-toxic equivalents (TEQs) in bald eagle eggs were about two-fold greater than a lowest-observed-effect level, suggested elsewhere for this species, of 210 ng/kg TEQs. In the Strait of Georgia, PCCDs and PCDFs made a greater contribution to TEQs than non-ortho and mono-ortho PCBs, whereas the reverse was true for eggs outside the strait. Mean eggshell thickness was less than the pre-1947 value at all sites, although there was no significant relationship

  5. The Role of Source Material in Basin Sedimentation, as Illustrated within Eureka Valley, Death Valley National Park, CA.

    NASA Astrophysics Data System (ADS)

    Lawson, M. J.; Yin, A.; Rhodes, E. J.

    2015-12-01

    Steep landscapes are known to provide sediment to sink regions, but often petrological factors can dominate basin sedimentation. Within Eureka Valley, in northwestern Death Valley National Park, normal faulting has exposed a steep cliff face on the western margin of the Last Chance range with four kilometers of vertical relief from the valley floor and an angle of repose of nearly 38 degrees. The cliff face is composed of Cambrian limestone and dolomite, including the Bonanza King, Carrara and Wood Canyon formations. Interacting with local normal faulting, these units preferentially break off the cliff face in coherent blocks, which result in landslide deposits rather than as finer grained material found within the basin. The valley is well known for a large sand dune, which derives its sediment from distal sources to the north, instead of from the adjacent Last Chance Range cliff face. During the Holocene, sediment is sourced primary from the northerly Willow Wash and Cucomungo canyon, a relatively small drainage (less than 80 km2) within the Sylvan Mountains. Within this drainage, the Jurassic quartz monzonite of Beer Creek is heavily fractured due to motion of the Fish Valley Lake - Death Valley fault zone. Thus, the quartz monzonite is more easily eroded than the well-consolidated limestone and dolomite that forms the Last Change Range cliff face. As well, the resultant eroded material is smaller grained, and thus more easily transported than the limestone. Consequently, this work highlights an excellent example of the strong influence that source material can have on basin sedimentation.

  6. Boulder Valley Schools Teen Parenting Program.

    ERIC Educational Resources Information Center

    Parmerlee-Greiner, Gloria

    To meet the needs of pregnant and parenting adolescents in Boulder Valley (Colorado), the local public school district has developed the Boulder Valley Schools Teen Parenting Program, now in its 12th year. The program was designed to help teen parents to mature to meet the challenges of parenting, enhance the school district's dropout/intervention…

  7. Collective Bargaining Agreement between Antelope Valley Community College and Antelope Valley College Faculty Association, June 13, 1988.

    ERIC Educational Resources Information Center

    Antelope Valley Coll., Lancaster, CA.

    The collective bargaining agreement between Antelope Valley Community College and the Antelope Valley College Faculty Association outlines the terms of employment for all full- and part-time certificated employees of the District, covering the period from June 1988 to June 1990. The articles in the agreement set forth provisions related to: (1)…

  8. Volume of Valley Networks on Mars and Its Hydrologic Implications

    NASA Astrophysics Data System (ADS)

    Luo, W.; Cang, X.; Howard, A. D.; Heo, J.

    2015-12-01

    Valley networks on Mars are river-like features that offer the best evidence for water activities in its geologic past. Previous studies have extracted valley network lines automatically from digital elevation model (DEM) data and manually from remotely sensed images. The volume of material removed by valley networks is an important parameter that could help us infer the amount of water needed to carve the valleys. A progressive black top hat (PBTH) transformation algorithm has been adapted from image processing to extract valley volume and successfully applied to simulated landform and Ma'adim Valles, Mars. However, the volume of valley network excavation on Mars has not been estimated on a global scale. In this study, the PBTH method was applied to the whole Mars to estimate this important parameter. The process was automated with Python in ArcGIS. Polygons delineating the valley associated depressions were generated by using a multi-flow direction growth method, which started with selected high point seeds on a depth grid (essentially an inverted valley) created by PBTH transformation and grew outward following multi-flow direction on the depth grid. Two published versions of valley network lines were integrated to automatically select depression polygons that represent the valleys. Some crater depressions that are connected with valleys and thus selected in the previous step were removed by using information from a crater database. Because of large distortion associated with global dataset in projected maps, the volume of each cell within a valley was calculated using the depth of the cell multiplied by the spherical area of the cell. The volumes of all the valley cells were then summed to produce the estimate of global valley excavation volume. Our initial result of this estimate was ~2.4×1014 m3. Assuming a sediment density of 2900 kg/m3, a porosity of 0.35, and a sediment load of 1.5 kg/m3, the global volume of water needed to carve the valleys was

  9. Valley excitons in two-dimensional semiconductors

    DOE PAGES

    Yu, Hongyi; Cui, Xiaodong; Xu, Xiaodong; ...

    2014-12-30

    Monolayer group-VIB transition metal dichalcogenides have recently emerged as a new class of semiconductors in the two-dimensional limit. The attractive properties include: the visible range direct band gap ideal for exploring optoelectronic applications; the intriguing physics associated with spin and valley pseudospin of carriers which implies potentials for novel electronics based on these internal degrees of freedom; the exceptionally strong Coulomb interaction due to the two-dimensional geometry and the large effective masses. The physics of excitons, the bound states of electrons and holes, has been one of the most actively studied topics on these two-dimensional semiconductors, where the excitons exhibitmore » remarkably new features due to the strong Coulomb binding, the valley degeneracy of the band edges, and the valley dependent optical selection rules for interband transitions. Here we give a brief overview of the experimental and theoretical findings on excitons in two-dimensional transition metal dichalcogenides, with focus on the novel properties associated with their valley degrees of freedom.« less

  10. Geology and ground water in Russian River Valley areas and in Round, Laytonville, and Little Lake Valleys, Sonoma and Mendocino Counties, California

    USGS Publications Warehouse

    Cardwell, G.T.

    1965-01-01

    This report describes the occurrence, availability, and quality of ground water in seven valley areas along the course of the Russian River in Sonoma and Mendocino Counties, Calif., and in three valleys in the upper drainage reach of the Eel River in Mendocino County. Except for the westward-trending lower Russian River valley, the remaining valley areas along the Russian River (Healdsburg, Alexander, Cloverdale, Sanel, Ukiah, and Potter Valleys) lie in northwest-trending structurally controlled depressions formed in marine rocks of Jurassic and Cretaceous age. The principal aquifer in all the valleys is the alluvium of Recent age, which includes highly permeable channel deposits of gravel and sand. Water for domestic, irrigation, industrial, and other uses is developed by (1) direct diversion from the Russian River and its tributaries, (2) withdrawal of ground water and river water from shallow wells near the river, and (3) withdrawals of ground water from wells in alluvial deposits at varying distances from the river. Surface water in the Russian River and most tributaries is of good chemical quality. The water is a calcium magnesium bicarbonate type and contains 75,200 parts per million of dissolved solids. Ground water is also of good chemical quality throughout most of the drainage basin, but the concentration of dissolved solids (100-300 parts per million) is somewhat higher than that in the surface water. Round, Laytonville, and Little Lake Valleys are in central and northern Mendocino County in the drainage basin of the northwestward flowing Eel River. In Round Valley the alluvium of Recent age yields water of good chemical quality in large quantities. Yields are lower and the chemical quality poorer in Laytonville Valley. Ground water in Little Lake Valley is relatively undeveloped. Selected descriptions of wells, drillers' logs, chemical analyses, and hydrographs showing water-level fluctuations are included in the report. Accompanying maps show the

  11. Miami Valley ITS : early deployment plan : final ITS strategic deployment plan

    DOT National Transportation Integrated Search

    1997-09-01

    This report presents the Strategic Deployment Plan for Intelligent Transportation Systems (ITS) in Clark, Greene, Miami and Montgomery Counties, Ohio (the Miami Valley). The report summarizes the steps that were performed in preparing the Strat...

  12. Flow structure and turbulence characteristics of the daytime atmosphere in a steep and narrow Alpine valley

    NASA Astrophysics Data System (ADS)

    Weigel, Andreas P.; Rotach, Mathias W.

    2004-10-01

    Aircraft measurements, radio soundings and sonic data--obtained during the MAP-Riviera field campaign in autumn 1999 in southern Switzerland--are used to investigate the flow structure, temperature profiles and turbulence characteristics of the atmosphere in a steep and narrow Alpine valley under convective conditions. On all predominantly sunny days of the intensive observation periods, a pronounced valley-wind system develops. In the southern half of the valley, the daily up-valley winds have a jet-like structure and are shifted towards the eastern slope. These up-valley winds advect potentially colder air, a process which appears to be balanced by vertical warm air advection from above. The profiles of potential temperature show that, with the onset of up-valley winds, the mixed layer consistently stops growing or--on days with very strong up-valley winds--even stabilizes almost throughout the entire valley atmosphere. This is probably due to a pronounced secondary circulation in the southern part of the valley, which induces advection of warm air from above. The secondary circulation appears to be a consequence of sharp curvature in the along-valley topography. Turbulence variables are calculated from flight legs in the along-valley direction. Turbulent kinetic energy (TKE) scales surprisingly well (i) if a TKE criterion (TKE > 0.5 m2s-2) is employed as a definition of the boundary layer height and (ii) if the 'surface fluxes'--which exhibit a substantial spatial variability--from the slope sites are used rather than those from directly beneath the profile considered. Significant site-to-site differences in incoming solar radiation seem to be the reason for this characteristic behaviour. Profiles of momentum flux--scaled with a surface friction velocity--reveal more scatter than the TKE profiles, but still show a consistent behaviour. A surprisingly strong shear in the cross-valley direction can be observed and is probably a result of the secondary circulation.

  13. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  14. Observation of ultralong valley lifetime in WSe 2/MoS 2 heterostructures

    DOE PAGES

    Kim, Jonghwan; Jin, Chenhao; Chen, Bin; ...

    2017-07-26

    The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcogenides (TMD) is expected to be markedly long due to the unique spin-valley locking behavior, where the intervalley scattering of the electron simultaneously requires a large momentum transfer to the opposite valley and a flip of the electron spin. However, the experimentally observed valley lifetime in 2D TMDs has been limited to tens of nanoseconds thus far. We report efficient generation of microsecond-long-lived valley polarization in WSe 2/MoS 2 heterostructuresmore » by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe 2 layer. These valley-polarized holes exhibit near-unity valley polarization and ultralong valley lifetime: We observe a valley-polarized hole population lifetime of more than 1 μs and a valley depolarization lifetime (that is, intervalley scattering lifetime) of more than 40 μs at 10 K. The near-perfect generation of valley-polarized holes in TMD heterostructures, combined with ultralong valley lifetime, which is orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.« less

  15. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  16. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  17. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  18. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  19. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  20. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  1. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  2. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  3. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  4. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  5. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  6. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  7. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  8. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  9. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  10. 27 CFR 9.23 - Napa Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Napa Valley. 9.23 Section 9.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.23 Napa Valley. (a) Name. The name of the viticultural area...

  11. 27 CFR 9.29 - Sonoma Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Sonoma Valley. 9.29 Section 9.29 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.29 Sonoma Valley. (a) Name. The name of the viticultural...

  12. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  13. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  14. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  15. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  16. 27 CFR 9.76 - Knights Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Knights Valley. 9.76 Section 9.76 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.76 Knights Valley. (a) Name. The name of the viticultura...

  17. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  18. 27 CFR 9.53 - Alexander Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Alexander Valley. 9.53 Section 9.53 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.53 Alexander Valley. (a) Name. The name of the...

  19. 27 CFR 9.142 - Bennett Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bennett Valley. 9.142 Section 9.142 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.142 Bennett Valley. (a) Name. The name of the...

  20. Rift Valley fever in Namibia, 2010.

    PubMed

    Monaco, Federica; Pinoni, Chiara; Cosseddu, Gian Mario; Khaiseb, Siegfried; Calistri, Paolo; Molini, Umberto; Bishi, Alec; Conte, Annamaria; Scacchia, Massimo; Lelli, Rossella

    2013-12-01

    During May-July 2010 in Namibia, outbreaks of Rift Valley fever were reported to the National Veterinary Service. Analysis of animal specimens confirmed virus circulation on 7 farms. Molecular characterization showed that all outbreaks were caused by a strain of Rift Valley fever virus closely related to virus strains responsible for outbreaks in South Africa during 2009-2010.

  1. Hydrogeologic and geochemical characterization of groundwater resources in Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.; Kirby, Stefan

    2011-01-01

    The water resources of Rush Valley were assessed during 2008–2010 with an emphasis on refining the understanding of the groundwater-flow system and updating the groundwater budget. Surface-water resources within Rush Valley are limited and are generally used for agriculture. Groundwater is the principal water source for most other uses including supplementing irrigation. Most groundwater withdrawal in Rush Valley is from the unconsolidated basin-fill aquifer where conditions are generally unconfined near the mountain front and confined at lower altitudes near the valley center. Productive aquifers also occur in fractured bedrock along the valley margins and beneath the basin-fill deposits in some areas.Drillers’ logs and geophysical gravity data were compiled and used to delineate seven hydrogeologic units important to basin-wide groundwater movement. The principal basin-fill aquifer includes the unconsolidated Quaternary-age alluvial and lacustrine deposits of (1) the upper basin-fill aquifer unit (UBFAU) and the consolidated and semiconsolidated Tertiary-age lacustrine and alluvial deposits of (2) the lower basin-fill aquifer unit (LBFAU). Bedrock hydrogeologic units include (3) the Tertiary-age volcanic unit (VU), (4) the Pennsylvanian- to Permian-age upper carbonate aquifer unit (UCAU), (5) the upper Mississippian- to lower Pennsylvanian-age upper siliciclastic confining unit (USCU), (6) the Middle Cambrian- to Mississippian-age lower carbonate aquifer unit (LCAU), and (7) the Precambrian- to Lower Cambrian-age noncarbonate confining unit (NCCU). Most productive bedrock wells in the Rush Valley groundwater basin are in the UCAU.Average annual recharge to the Rush Valley groundwater basin is estimated to be about 39,000 acre-feet. Nearly all recharge occurs as direct infiltration of snowmelt and rainfall within the mountains with smaller amounts occurring as infiltration of streamflow and unconsumed irrigation water at or near the mountain front. Groundwater

  2. Total carbon and nitrogen in mineral soil after 26 years of prescribed fire: Long Valley and Fort Valley Experimental Forests (P-53)

    Treesearch

    Daniel G. Neary; Sally M. Haase; Steven T. Overby

    2008-01-01

    Prescribed fire was introduced to high density ponderosa pine stands at Fort Valley and Long Valley Experimental Forests in 1976. This paper reports on mineral soil total carbon (C) and nitrogen (N) at Long Valley. Total soil C and N levels were highly variable and exhibited an increasing, but inconsistent, concentration trend related to burn interval. Total N ranged...

  3. Planned updates and refinements to the central valley hydrologic model, with an emphasis on improving the simulation of land subsidence in the San Joaquin Valley

    USGS Publications Warehouse

    Faunt, C.C.; Hanson, R.T.; Martin, P.; Schmid, W.

    2011-01-01

    California's Central Valley has been one of the most productive agricultural regions in the world for more than 50 years. To better understand the groundwater availability in the valley, the U.S. Geological Survey (USGS) developed the Central Valley hydrologic model (CVHM). Because of recent water-level declines and renewed subsidence, the CVHM is being updated to better simulate the geohydrologic system. The CVHM updates and refinements can be grouped into two general categories: (1) model code changes and (2) data updates. The CVHM updates and refinements will require that the model be recalibrated. The updated CVHM will provide a detailed transient analysis of changes in groundwater availability and flow paths in relation to climatic variability, urbanization, stream flow, and changes in irrigated agricultural practices and crops. The updated CVHM is particularly focused on more accurately simulating the locations and magnitudes of land subsidence. The intent of the updated CVHM is to help scientists better understand the availability and sustainability of water resources and the interaction of groundwater levels with land subsidence. ?? 2011 ASCE.

  4. Planned updates and refinements to the Central Valley hydrologic model with an emphasis on improving the simulation of land subsidence in the San Joaquin Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Hanson, Randall T.; Martin, Peter; Schmid, Wolfgang

    2011-01-01

    California's Central Valley has been one of the most productive agricultural regions in the world for more than 50 years. To better understand the groundwater availability in the valley, the U.S. Geological Survey (USGS) developed the Central Valley hydrologic model (CVHM). Because of recent water-level declines and renewed subsidence, the CVHM is being updated to better simulate the geohydrologic system. The CVHM updates and refinements can be grouped into two general categories: (1) model code changes and (2) data updates. The CVHM updates and refinements will require that the model be recalibrated. The updated CVHM will provide a detailed transient analysis of changes in groundwater availability and flow paths in relation to climatic variability, urbanization, stream flow, and changes in irrigated agricultural practices and crops. The updated CVHM is particularly focused on more accurately simulating the locations and magnitudes of land subsidence. The intent of the updated CVHM is to help scientists better understand the availability and sustainability of water resources and the interaction of groundwater levels with land subsidence.

  5. Recent landscape change in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Soulard, C. E.; Wilson, T. S.

    2012-12-01

    Long term monitoring of land use and land cover in California's intensively farmed Central Valley reveals several key physical and socioeconomic factors driving landscape change. As part of the USGS Land Cover Trends Project, we analyzed modern land-use/land-cover change for the California Central Valley ecoregion between 2000 and 2010, monitoring annual change between 2005 and 2010, while creating two new change intervals (2000-2005 and 2005-2010) to update the existing 27-year, interval-based analysis. Between 2000 and 2010, agricultural lands fluctuated due to changes in water allocations and emerging drought conditions, or were lost permanently to development (240 square km). Land-use pressure from agriculture and development also led to a decline in grasslands and shrublands across the region (280 square km). Overall, 400 square km of new developed lands were added in the first decade of the 21st century. From 2007 to 2010, development only expanded by 50 square km, coinciding with defaults in the banking system, the onset of historic foreclosure crisis in California and the global economic downturn. Our annual LULC change estimates capture landscape-level change in response to regional policy changes, climate, and fluctuations (e.g., growth or decline) in the national and global economy. The resulting change data provide insights into the drivers of landscape change in the California Central Valley and the combination of two consistent mapping efforts represents the first continuous, 37-year endeavor of its kind.

  6. Channel Response to Low-Elevation Desert Fire: The King Valley Fire of 2005

    USGS Publications Warehouse

    Webb, Robert H.; Griffiths, Peter G.; Wallace, Cynthia S.A.; Boyer, Diane E.

    2007-01-01

    In late September to early October 2005, a fire swept north from the Yuma Proving Grounds and into the Kofa National Wildlife Refuge (NWR), traveling mainly along desert wash systems and low-relief alluvial fans. This fire burned 9,975 ha, moving through xeroriparian systems in washes as well as low-elevation desert ecosystems in King Valley, a major area of designated wilderness in the southern part of the Kofa NWR. Using satellite imagery, we determined that 9,255 ha of the Kofa NWR in King Valley burned. The fine-fuel loading for the fire was mostly a native forb (Plantago insularis), and the desert environment that was burned was mostly low-cover creosote bush (Larrea tridentata) scrub with scattered palo verde (Cercidium microphyllum). The wash environments had significant tree cover, including ironwood (Olneya tesota), blue palo verde (Cercidium floridum), desert willow (Chilopsis linearis), and/or smoke tree (Psorothamnus spinosa). This report presents monitoring data collected in June 2006 and January-February 2007 on the effects of this fire on channel morphology in King Valley.

  7. Infilling and flooding of the Mekong River incised valley during deglacial sea-level rise

    NASA Astrophysics Data System (ADS)

    Tjallingii, Rik; Stattegger, Karl; Wetzel, Andreas; Van Phach, Phung

    2010-06-01

    The abrupt transition from fluvial to marine deposition of incised-valley-fill sediments retrieved from the southeast Vietnamese shelf, accurately records the postglacial transgression after 14 ka before present (BP). Valley-filling sediments consist of fluvial mud, whereas sedimentation after the transgression is characterized by shallow-marine carbonate sands. This change in sediment composition is accurately marked in high-resolution X-ray fluorescence (XRF) core scanning records. Rapid aggradation of fluvial sediments at the river mouth nearly completely filled the Mekong incised valley prior to flooding. However, accumulation rates strongly reduced in the valley after the river-mouth system flooded and stepped back. This also affected the sediment supply to deeper parts of the southeast Vietnamese shelf. Comparison of the Mekong valley-filling with the East Asian sea-level history of sub- and inter-tidal sediment records shows that the transgressive surface preserved in the incised-valley-fill records is a robust sea-level indicator. The valley was nearly completely filled with fluvial sediments between 13.0 and 9.5 ka BP when sea-level rose rather constantly with approximately 10 mm/yr, as indicated by the East Asian sea-level record. At shallower parts of the shelf, significant sediment reworking and the establishment of estuarine conditions at the final stage of infilling complicates accurate dating of the transgressive surface. Nevertheless, incised-valley-fill records and land-based drill sites indicate a vast and rapid flooding of the shelf from the location of the modern Vietnamese coastline to the Cambodian lowlands between 9.5 ka and 8.5 ka BP. Fast flooding of this part of the shelf is related with the low shelf gradient and a strong acceleration of the East Asian sea-level rise from 34 to 9 meter below modern sea level (mbsl) corresponding to the sea-level jump of melt water pulse (MWP) 1C.

  8. The Use of Radar to Improve Rainfall Estimation over the Tennessee and San Joaquin River Valleys

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Gatlin, Patrick N.; Felix, Mariana; Carey, Lawrence D.

    2010-01-01

    This slide presentation provides an overview of the collaborative radar rainfall project between the Tennessee Valley Authority (TVA), the Von Braun Center for Science & Innovation (VCSI), NASA MSFC and UAHuntsville. Two systems were used in this project, Advanced Radar for Meteorological & Operational Research (ARMOR) Rainfall Estimation Processing System (AREPS), a demonstration project of real-time radar rainfall using a research radar and NEXRAD Rainfall Estimation Processing System (NREPS). The objectives, methodology, some results and validation, operational experience and lessons learned are reviewed. The presentation. Another project that is using radar to improve rainfall estimations is in California, specifically the San Joaquin River Valley. This is part of a overall project to develop a integrated tool to assist water management within the San Joaquin River Valley. This involves integrating several components: (1) Radar precipitation estimates, (2) Distributed hydro model, (3) Snowfall measurements and Surface temperature / moisture measurements. NREPS was selected to provide precipitation component.

  9. Valley switch in a graphene superlattice due to pseudo-Andreev reflection

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.; Gnezdilov, N. V.; Dresselhaus, E.; Ostroukh, V. P.; Herasymenko, Y.; Adagideli, I.; Tworzydło, J.

    2018-06-01

    Dirac electrons in graphene have a valley degree of freedom that is being explored as a carrier of information. In that context of "valleytronics" one seeks to coherently manipulate the valley index. Here, we show that reflection from a superlattice potential can provide a valley switch: Electrons approaching a pristine-graphene-superlattice-graphene interface near normal incidence are reflected in the opposite valley. We identify the topological origin of this valley switch, by mapping the problem onto that of Andreev reflection from a topological superconductor, with the electron-hole degree of freedom playing the role of the valley index. The valley switch is ideal at a symmetry point of the superlattice potential, but remains close to 100% in a broad parameter range.

  10. Wilderness, water, and quality of life in the Bitterroot Valley

    Treesearch

    Kari Gunderson; Clint Cook

    2007-01-01

    The Bitterroot Valley is located in western Montana, U.S.A. Most of the Bitterroot Range above the Bitterroot Valley is protected as wilderness, and is a source of much of the water that flows down and through the valley floor. With an annual precipitation of only 12.3 inches, the Bitterroot Valley is classified as a high desert environment. Today the quality of life...

  11. Fracture controls on valley persistence: the Cairngorm Granite pluton, Scotland

    NASA Astrophysics Data System (ADS)

    Hall, A. M.; Gillespie, M. R.

    2017-09-01

    Valleys are remarkably persistent features in many different tectonic settings, but the reasons for this persistence are rarely explored. Here, we examine the structural controls on valleys in the Cairngorms Mountains, Scotland, part of the passive margin of the eastern North Atlantic. We consider valleys at three scales: straths, glens and headwater valleys. The structural controls on valleys in and around the Cairngorm Granite pluton were examined on satellite and aerial photographs and by field survey. Topographic lineaments, including valleys, show no consistent orientation with joint sets or with sheets of microgranite and pegmatitic granite. In this granite landscape, jointing is not a first-order control on valley development. Instead, glens and headwater valleys align closely to quartz veins and linear alteration zones (LAZs). LAZs are zones of weakness in the granite pluton in which late-stage hydrothermal alteration and hydro-fracturing have greatly reduced rock mass strength and increased permeability. LAZs, which can be kilometres long and >700 m deep, are the dominant controls on the orientation of valleys in the Cairngorms. LAZs formed in the roof zone of the granite intrusion. Although the Cairngorm pluton was unroofed soon after emplacement, the presence of Old Red Sandstone (ORS) outliers in the terrain to the north and east indicates that the lower relief of the sub-ORS basement surface has been lowered by <500 m. Hence, the valley patterns in and around the Cairngorms have persisted through >1 km of vertical erosion and for 400 Myr. This valley persistence is a combined product of regionally low rates of basement exhumation and of the existence of LAZs in the Cairngorm pluton and sub-parallel Caledonide fractures in the surrounding terrain with depths that exceed 1 km.

  12. Precipitation depth-duration and frequency characteristics for Antelope Valley, Mojave Desert, California

    USGS Publications Warehouse

    Blodgett, J.C.

    1995-01-01

    Methods to evaluate changes in the volume of storm runoff from drainage basins that are likely to be urbanized are needed by land-use planning agencies to establish criteria for the design of flood-control systems. To document the changes in runoff volume of basins that may be urbanized, nine small basins that are considered representative of varying hydrologic conditions in Antelope Valley, California, were selected for detailed study. Precipitation and stream-gaging stations were established and data were collected for the period 1990-93. The data collected at these U.S. Geological Survey stations were supplemented by data collected at 35 Long-term precipitation stations operated by the National Oceanic and Atmospheric Administration and the Los Angeles County Department of Public Works. These data will be used to calibrate and verify rainfall-runoff models for the nine basins. Results of the model runs will then be used as a guide for estimating basin runoff characteristics throughout Antelope Valley. Annual precipitation in Antelope Valley ranges from more than 20 inches in the mountains to less than 4 inches on the valley floor. Most precipitation in the valley falls during the months of December through March, but cyclonic storms in the fall and convectional storms in the summer sometimes occur. The duration of most storms ranges from 1 to 8 days, but most of the precipitation usually occurs within the first 2 days. Many parts of the valley have been affected by storms with precipitation depths that equal or exceed 0.60 inch per hour. The storms of January 1943 and March 1983 were the most intense storms of record, with recurrence intervals greater than 100 years in some parts of the valley. Depth-duration ratios were calculated by disaggregating daily total precipitation data for intervals of 1, 2, 3, 4, 6, 12, and 18 hours for storms that occurred during 1990-93. The hourly total precipitation data were then disaggregated at 5-minute intervals. A comparison

  13. Origin, Extent, and Thickness of Quaternary Geologic Units in the Willamette Valley, Oregon

    USGS Publications Warehouse

    O'Connor, Jim E.; Sarna-Wojcicki, Andrei M.; Wozniak, Karl C.; Polette, Danial J.; Fleck, Robert J.

    2001-01-01

    Stratigraphic and chronologic information collected for Quaternary deposits in the Willamette Valley, Oregon, provides a revised stratigraphic framework that serves as a basis for a 1:250,000-scale map, as well as for thickness estimates of widespread Quaternary geologic units. We have mapped 11 separate Quaternary units that are differentiated on the basis of stratigraphic, topographic, pedogenic, and hydrogeologic properties. In summation, these units reflect four distinct episodes in the Quaternary geologic development of the Willamette Valley: 1) Fluvial sands and gravels that underlie terraces flanking lowland margins and tributary valleys were probably deposited between 2.5 and 0.5 million years ago. They are the oldest widespread surficial Quaternary deposits in the valley. Their present positions and preservation are undoubtedly due to postdepositional tectonic deformation - either by direct tectonic uplift of valley margins, or by regional tectonic controls on local base level. 2) Tertiary and Quaternary excavation or tectonic lowering of the Willamette Valley accommodated as much as 500 m (meters) of lacustrine and fluvial fill. Beneath the lowland floor, much of the upper 10 to 50 m of fill is Quaternary sand and gravel deposited by braided channel systems in subhorizontal sheets 2 to 10 m thick. These deposits grade to gravel fans 40 to 100 m thick where major Cascade Range rivers enter the valley and are traced farther upstream as much thinner valley trains of coarse gravel. The sand and gravel deposits have ages that range from greater than 420,000 to about 12,000 years old. A widely distributed layer of sand and gravel deposited at about 12 ka (kiloannum, thousands of years before the present) is looser and probably more permeable than older sand and gravel. Stratigraphic exposures and drillers' logs indicate that this late Pleistocene unit is mostly between 5 and 20 m thick where it has not been subsequently eroded by the Willamette River and its

  14. Hydrogeological Characterization of the Middle Magdalena Valley - Colombia

    NASA Astrophysics Data System (ADS)

    Arenas, Maria Cristina; Riva, Monica; Donado, Leonardo David; Guadagnini, Alberto

    2017-04-01

    We provide a detailed hydrogeological characterization of the complex aquifer system of the Middle Magdalena Valley, Colombia. The latter is comprised by 3 sub-basins within which 7 blocks have been identified for active exploration and potential production of oil and gas. As such, there is a critical need to establish modern water resources management practices in the area to accommodate the variety of social, environmental and industrial needs. We do so by starting from a detailed hydrogeological characterization of the system and focus on: (a) a detailed hydrogeological reconnaissance of the area leading to the definition of the main hydrogeological units; (b) the collection, organization and analysis of daily climatic data from 39 stations available in the region; and (c) the assessment of the groundwater flow circulation through the formulation of a conceptual and a mathematical model of the subsurface system. Groundwater flow is simulated in the SAM 1.1 aquifer located in the Middle Magdalena Valley with the objective of showing and evaluating alternative conceptual hydrogeological modeling alternatives. We focus here on modeling results at system equilibrium (i.e., under steady-state conditions) and assess the value of available information in the context of the candidate modeling strategies we consider. Results of our modeling effort are conducive to the characterization of the distributed hydrogeological budget and the assessment of critical areas as a function of the conceptualization of the system functioning and data avilability.

  15. California: Diamond Valley

    Atmospheric Science Data Center

    2014-05-15

    ... article title:  Watching the Creation of Southern California's Largest Reservoir     ... Valley Lake is designed to provide protection against drought and a six-month emergency supply in the event of earthquake damage to a ...

  16. Mzab Valley, Algeria

    NASA Image and Video Library

    2011-03-24

    Located 600 km south of Algiers, Algeria in the heart of the Sahara Desert, the five ksour fortified villages of the MZab Valley form an extraordinarily homogenous ensemble in this image captured by NASA Terra spacecraft.

  17. Spin- and Valley-Dependent Electronic Structure in Silicene Under Periodic Potentials

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Li, Yun-Fang; Tian, Hong-Yu

    2018-03-01

    We study the spin- and valley-dependent energy band and transport property of silicene under a periodic potential, where both spin and valley degeneracies are lifted. It is found that the Dirac point, miniband, band gap, anisotropic velocity, and conductance strongly depend on the spin and valley indices. The extra Dirac points appear as the voltage potential increases, the critical values of which are different for electron with different spins and valleys. Interestingly, the velocity is greatly suppressed due to the electric field and exchange field, other than the gapless graphene. It is possible to achieve an excellent collimation effect for a specific spin near a specific valley. The spin- and valley-dependent band structure can be used to adjust the transport, and perfect transmissions are observed at Dirac points. Therefore, a remarkable spin and valley polarization is achieved which can be switched effectively by the structural parameters. Importantly, the spin and valley polarizations are greatly enhanced by the disorder of the periodic potential.

  18. Early-Morning Flow Transition in a Valley in Low-Mountain Terrain Under Clear-Sky Conditions

    NASA Astrophysics Data System (ADS)

    Brötz, Björn; Eigenmann, Rafael; Dörnbrack, Andreas; Foken, Thomas; Wirth, Volkmar

    2014-07-01

    We investigate the evolution of the early-morning boundary layer in a low-mountain valley in south-western Germany during COPS (convective and orographically induced precipitation study) in summer 2007. The term low-mountain refers to a mountainous region with a relief of gentle slopes and with an absolute altitude that remains under a specified height (usually 1,500 m a.s.l.). A subset of 23 fair weather days from the campaign was selected to study the transition of the boundary-layer flow in the early morning. The typical valley atmosphere in the morning hours was characterized by a stable temperature stratification and a pronounced valley wind system. During the reversal period—called the low wind period—of the valley wind system (duration of 1-2 h), the horizontal flow was very weak and the conditions for free convection were fulfilled close to the ground. Ground-based sodar observations of the vertical wind show enhanced values of upward motion, and the corresponding statistical properties differ from those observed under windless convective conditions over flat terrain. Large-eddy simulations of the boundary-layer transition in the valley were conducted, and statistical properties of the simulated flow agree with the observed quantities. Spatially coherent turbulence structures are present in the temporal as well as in the ensemble mean analysis. Thus, the complex orography induces coherent convective structures at predictable, specific locations during the early-morning low wind situations. These coherent updrafts, found in both the sodar observations and the simulation, lead to a flux counter to the gradient of the stably stratified valley atmosphere and reach up to the heights of the surrounding ridges. Furthermore, the energy balance in the surface layer during the low wind periods is closed. However, it becomes unclosed after the onset of the valley wind. The partition into the sensible and the latent heat fluxes indicates that missing flux

  19. 2012-2013 Delaware Valley Household Travel Survey | Transportation Secure

    Science.gov Websites

    Data Center | NREL 12-2013 Delaware Valley Household Travel Survey 2012-2013 Delaware Valley Household Travel Survey The 2012-2013 Delaware Valley Household Travel Survey collected data for multiple ) sponsored the survey in collaboration with AbtSRBI. Methodology A sampling strategy was designed to recruit

  20. Fluvial valleys on Martian volcanoes

    NASA Technical Reports Server (NTRS)

    Baker, Victor R.; Gulick, Virginia C.

    1987-01-01

    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection.

  1. Origin of collapsed pits and branched valleys surrounding the Ius chasma on Mars

    NASA Astrophysics Data System (ADS)

    Vamshi, G. T.; Martha, T. R.; Vinod Kumar, K.

    2014-11-01

    Chasma is a deep, elongated and steep sided depression on planetary surfaces. Several hypothesis have been proposed regarding the origin of chasma. In this study, we analysed morphological features in north and south of Ius chasma. Collapsed pits and branched valleys alongwith craters are prominent morphological features surrounding Ius Chasma, which forms the western part of the well known Valles Marineris chasma system on Martian surface. Analysis of images from the High Resolution Stereo Camera (HRSC) in ESA's Mars Express (MEX) with a spatial resolution of 10 m shows linear arrangement of pits north of the Ius chasma. These pits were initially developed along existing narrow linear valleys parallel to Valles Merineris and are conical in shape unlike flat floored impact craters found adjacent to them. The width of conical pits ranges 1-10 km and depth ranges 1-2 km. With more subsidence, size of individual pits increased gradually and finally coalesced together to create a large depression forming a prominent linear valley. Arrangement of pits in this particular fashion can be attributed to collapse of the surface due to l arge hollows created in the subsurface because of the withdrawal of either magma or dry ice. Branched valleys which are prominent morphologic features south of the Ius chasma could have been formed due to groundwater sapping mechanism as proposed by previous researchers. Episodic release of groundwater in large quantity to the surface could have resulted in surface runoff creating V-shaped valleys, which were later modified into U-shaped valleys due to mass wasting and lack of continued surface runoff.

  2. Directional interlayer spin-valley transfer in two-dimensional heterostructures

    DOE PAGES

    Schaibley, John R.; Rivera, Pasqual; Yu, Hongyi; ...

    2016-12-14

    Van der Waals heterostructures formed by two different monolayer semiconductors have emerged as a promising platform for new optoelectronic and spin/valleytronic applications. In addition to its atomically thin nature, a two-dimensional semiconductor heterostructure is distinct from its three-dimensional counterparts due to the unique coupled spin-valley physics of its constituent monolayers. In this paper, we report the direct observation that an optically generated spin-valley polarization in one monolayer can be transferred between layers of a two-dimensional MoSe 2–WSe 2 heterostructure. Using non-degenerate optical circular dichroism spectroscopy, we show that charge transfer between two monolayers conserves spin-valley polarization and is only weaklymore » dependent on the twist angle between layers. Finally, our work points to a new spin-valley pumping scheme in nanoscale devices, provides a fundamental understanding of spin-valley transfer across the two-dimensional interface, and shows the potential use of two-dimensional semiconductors as a spin-valley generator in two-dimensional spin/valleytronic devices for storing and processing information.« less

  3. 76 FR 67055 - Amendment of Class E Airspace; Valley City, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ...-0605; Airspace Docket No. 11-AGL-13] Amendment of Class E Airspace; Valley City, ND AGENCY: Federal... Valley City, ND. Decommissioning of the Valley City non-directional beacon (NDB) at Barnes County Municipal Airport, Valley City, ND, has made this action necessary to enhance the safety and management of...

  4. Atomistic analysis of valley-orbit hybrid states and inter-dot tunnel rates in a Si double quantum dot

    NASA Astrophysics Data System (ADS)

    Ferdous, Rifat; Rahman, Rajib; Klimeck, Gerhard

    2014-03-01

    Silicon quantum dots are promising candidates for solid-state quantum computing due to the long spin coherence times in silicon, arising from small spin-orbit interaction and a nearly spin free host lattice. However, the conduction band valley degeneracy adds an additional degree of freedom to the electronic structure, complicating the encoding and operation of qubits. Although the valley and the orbital indices can be uniquely identified in an ideal silicon quantum dot, atomic-scale disorder mixes valley and orbital states in realistic dots. Such valley-orbit hybridization, strongly influences the inter-dot tunnel rates.Using a full-band atomistic tight-binding method, we analyze the effect of atomic-scale interface disorder in a silicon double quantum dot. Fourier transform of the tight-binding wavefunctions helps to analyze the effect of disorder on valley-orbit hybridization. We also calculate and compare inter-dot inter-valley and intra-valley tunneling, in the presence of realistic disorder, such as interface tilt, surface roughness, alloy disorder, and interface charges. The method provides a useful way to compute electronic states in realistically disordered systems without any posteriori fitting parameters.

  5. Upper Neogene stratigraphy and tectonics of Death Valley - A review

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Machette, M.N.; Klinger, R.E.

    2005-01-01

    New tephrochronologic, soil-stratigraphic and radiometric-dating studies over the last 10 years have generated a robust numerical stratigraphy for Upper Neogene sedimentary deposits throughout Death Valley. Critical to this improved stratigraphy are correlated or radiometrically-dated tephra beds and tuffs that range in age from > 3.58 Ma to < 1.1 ka. These tephra beds and tuffs establish relations among the Upper Pliocene to Middle Pleistocene sedimentary deposits at Furnace Creek basin, Nova basin, Ubehebe-Lake Rogers basin, Copper Canyon, Artists Drive, Kit Fox Hills, and Confidence Hills. New geologic formations have been described in the Confidence Hills and at Mormon Point. This new geochronology also establishes maximum and minimum ages for Quaternary alluvial fans and Lake Manly deposits. Facies associated with the tephra beds show that ???3.3 Ma the Furnace Creek basin was a northwest-southeast-trending lake flanked by alluvial fans. This paleolake extended from the Furnace Creek to Ubehebe. Based on the new stratigraphy, the Death Valley fault system can be divided into four main fault zones: the dextral, Quaternary-age Northern Death Valley fault zone; the dextral, pre-Quaternary Furnace Creek fault zone; the oblique-normal Black Mountains fault zone; and the dextral Southern Death Valley fault zone. Post -3.3 Ma geometric, structural, and kinematic changes in the Black Mountains and Towne Pass fault zones led to the break up of Furnace Creek basin and uplift of the Copper Canyon and Nova basins. Internal kinematics of northern Death Valley are interpreted as either rotation of blocks or normal slip along the northeast-southwest-trending Towne Pass and Tin Mountain fault zones within the Eastern California shear zone. ?? 2005 Elsevier B.V. All rights reserved.

  6. Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986-2000

    USGS Publications Warehouse

    Doran, P.T.; McKay, C.P.; Clow, G.D.; Dana, G.L.; Fountain, A.G.; Nylen, T.; Lyons, W.B.

    2002-01-01

    Climate observations from the McMurdo dry valleys, East Antarctica are presented from a network of seven valley floor automatic meteorological stations during the period 1986 to 2000. Mean annual temperatures ranged from -14.8??C to -30.0??C, depending on the site and period of measurement. Mean annual relative humidity is generally highest near the coast. Mean annual wind speed increases with proximity to the polar plateau. Site-to-site variation in mean annual solar flux and PAR is due to exposure of each station and changes over time are likely related to changes in cloudiness. During the nonsummer months, strong katabatic winds are frequent at some sites and infrequent at others, creating large variation in mean annual temperature owing to the warming effect of the winds. Katabatic wind exposure appears to be controlled to a large degree by the presence of colder air in the region that collects at low points and keeps the warm less dense katabatic flow from the ground. The strong influence of katabatic winds makes prediction of relative mean annual temperature based on geographical position (elevation and distance from the coast) alone, not possible. During the summer months, onshore winds dominate and warm as they progress through the valleys creating a strong linear relationship (r2 = 0.992) of increasing potential temperature with distance from the coast (0.09??C km-1). In contrast to mean annual temperature, summer temperature lends itself quite well to model predictions, and is used to construct a statistical model for predicting summer dry valley temperatures at unmonitored sites. Copyright 2002 by the American Geophysical Union.

  7. Sequence stratigraphic controls on reservoir characterization and architecture: case study of the Messinian Abu Madi incised-valley fill, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Mohamed I.; Slatt, Roger M.

    2013-12-01

    Understanding sequence stratigraphy architecture in the incised-valley is a crucial step to understanding the effect of relative sea level changes on reservoir characterization and architecture. This paper presents a sequence stratigraphic framework of the incised-valley strata within the late Messinian Abu Madi Formation based on seismic and borehole data. Analysis of sand-body distribution reveals that fluvial channel sandstones in the Abu Madi Formation in the Baltim Fields, offshore Nile Delta, Egypt, are not randomly distributed but are predictable in their spatial and stratigraphic position. Elucidation of the distribution of sandstones in the Abu Madi incised-valley fill within a sequence stratigraphic framework allows a better understanding of their characterization and architecture during burial. Strata of the Abu Madi Formation are interpreted to comprise two sequences, which are the most complex stratigraphically; their deposits comprise a complex incised valley fill. The lower sequence (SQ1) consists of a thick incised valley-fill of a Lowstand Systems Tract (LST1)) overlain by a Transgressive Systems Tract (TST1) and Highstand Systems Tract (HST1). The upper sequence (SQ2) contains channel-fill and is interpreted as a LST2 which has a thin sandstone channel deposits. Above this, channel-fill sandstone and related strata with tidal influence delineates the base of TST2, which is overlain by a HST2. Gas reservoirs of the Abu Madi Formation (present-day depth ˜3552 m), the Baltim Fields, Egypt, consist of fluvial lowstand systems tract (LST) sandstones deposited in an incised valley. LST sandstones have a wide range of porosity (15 to 28%) and permeability (1 to 5080mD), which reflect both depositional facies and diagenetic controls. This work demonstrates the value of constraining and evaluating the impact of sequence stratigraphic distribution on reservoir characterization and architecture in incised-valley deposits, and thus has an important impact on

  8. Hydrologic reconnaissance of Rush Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Price, Don; Waddell, K.M.

    1969-01-01

    This report is the third in a series by the U. S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data for Rush Valley, to provide an evaluation of the potential water-resources development of the valley, and to identify needed studies that would help provide an understanding of the valley's water supply.

  9. Hydrologic reconnaissance of Skull Valley, Tooele County, Utah

    USGS Publications Warehouse

    Hood, James W.; Waddell, K.M.

    1968-01-01

    This report is the second in a series by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, which describes the water resources of the western basins of Utah. Its purpose is to present available hydrologic data on Skull Valley, to provide an evaluation of the potential water-resource development of the valley, and to identify needed studies that would help provide an understandingof the valley's water supply.

  10. Surface Deformation in Quetta Valley, Balochistan, Pakistan

    NASA Astrophysics Data System (ADS)

    Huang, J.; Shuhab, K.; Wulamu, A.; Crupa, W.; Khan, A. S.; Kakar, D. M.; Kasi, A.

    2015-12-01

    In February 2011, several ground fissures up to ~1.8 km in length appeared in the Quetta Valley, Balochsitan, Pakistan. It is not clear what caused the sudden occurrence of these fissures. The region is tectonically active and bounded to the west by several regional strike-slip faults including the north-south striking left-lateral Chaman fault system that slips at ~10 mm per year. Several large earthquakes have occurred recently in this area, one fatal 6.4 magnitude (Mw) earthquake occurred on October 28th, 2008. Some parts of Quetta Valley are subsiding; GPS data from two stations in Quetta that span mid-2006 - 2009 recorded subsidence rates of ~10 cm per year. Although subsidence in urban areas is generally attributed to groundwater depletion, it is not clear whether ground fissures are caused by water withdrawal or related to tectonics of the region. This study is designed to quantify and assess the source of surface deformation in Quetta Valley using InSAR, GPS, seismic and earthquake centroid moment tensor data. To detect and map the spatial-temporal features of the processes that led to the surface deformation, we used two time series, i.e., 15 European Remote Sensing (ERS-1/2) satellite images from 1992 - 1999 and 27 ENVISAT images spanning 2003 - 2010. A Differential Interferometric Synthetic Aperture Radar (DInSAR) Small Baseline Subset (SBAS) technique was used to investigate surface deformation. Eleven continuous-GPS stations within the InSAR antenna footprint were compared with the InSAR time series for quality control. Preliminary InSAR results revealed that the areas in and around the fissures are subsiding at 5 cm per year. Five seismic lines totaling ~60 km, acquired in 2003, were used to interpret faults beneath Holocene alluvium in the Quetta Valley. One of the blind faults is a north-south striking thrust fault mapped north into the Takatu range. However, a focal mechanism for the 2008 earthquake in this region indicated northwest

  11. Death Valley, California

    NASA Image and Video Library

    2009-06-29

    Death Valley, Calif., has the lowest point in North America, Badwater at 85.5 meters 282 feet below sea level. It is also the driest and hottest location in North America. This image is from NASA Terra spacecraft.

  12. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  13. Geology and sinkhole development of the Hagerstown valley : phase II : [research summary].

    DOT National Transportation Integrated Search

    2014-06-01

    The objective of this study was to map the western half of the Hagerstown Valley to : determine the distribution of karst features relative to bedrock geologic units using a : global positioning system (GPS).

  14. Pilot evaluation of electricity-reliability and power-quality monitoring in California's Silicon Valley with the I-Grid(R) system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eto, Joseph; Divan, Deepak; Brumsickle, William

    2004-02-01

    Power-quality events are of increasing concern for the economy because today's equipment, particularly computers and automated manufacturing devices, is susceptible to these imperceptible voltage changes. A small variation in voltage can cause this equipment to shut down for long periods, resulting in significant business losses. Tiny variations in power quality are difficult to detect except with expensive monitoring equipment used by trained technicians, so many electricity customers are unaware of the role of power-quality events in equipment malfunctioning. This report describes the findings from a pilot study coordinated through the Silicon Valley Manufacturers Group in California to explore the capabilitiesmore » of I-Grid(R), a new power-quality monitoring system. This system is designed to improve the accessibility of power-quality in formation and to increase understanding of the growing importance of electricity reliability and power quality to the economy. The study used data collected by I-Grid sensors at seven Silicon Valley firms to investigate the impacts of power quality on individual study participants as well as to explore the capabilities of the I-Grid system to detect events on the larger electricity grid by means of correlation of data from the sensors at the different sites. In addition, study participants were interviewed about the value they place on power quality, and their efforts to address electricity-reliability and power-quality problems. Issues were identified that should be taken into consideration in developing a larger, potentially nationwide, network of power-quality sensors.« less

  15. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  16. Predictors of High Streamflow Events in the Fraser River Basin of British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Curry, C.

    2016-12-01

    The Fraser River basin (FRB) of British Columbia is one of the largest and most important watersheds in Western North America, and is home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in June-July. However, while annual peak daily streamflow (APDF) during the spring freshet in the FRB is historically well correlated with basin-averaged, annual maximum snow water equivalent (SWEmax), there are numerous occurrences of anomalously large APDF in below- or near-normal SWEmax years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APDFs complicates future projections of streamflow magnitude and frequency. We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by both observations and an ensemble of CMIP3 climate models in an attempt to discover the proximate causes of anomalous APDF events in the FRB. At several hydrometric stations representing a range of elevations, the relative importance of a set of predictors characterizing the magnitude and timing of rainfall, snowfall, and temperature is examined within a regression framework. The results indicate that next to the magnitude of SWEmax, the rate of warming subsequent to the date of SWEmax is the most influential variable for predicting APDF magnitudes in the lower FRB. Finally, the role of large-scale climate modes of variability for APDF magnitude and timing in the basin will be briefly discussed.

  17. Nonlinear optical selection rule based on valley-exciton locking in monolayer ws 2

    DOE PAGES

    Xiao, Jun; Ye, Ziliang; Wang, Ying; ...

    2015-12-18

    Optical selection rules fundamentally determine the optical transitions between energy states in a variety of physical systems, from hydrogen atoms to bulk crystals such as gallium arsenide. These rules are important for optoelectronic applications such as lasers, energy-dispersive X-ray spectroscopy, and quantum computation. Recently, single-layer transition metal dichalcogenides have been found to exhibit valleys in momentum space with nontrivial Berry curvature and excitons with large binding energy. However, there has been little study of how the unique valley degree of freedom combined with the strong excitonic effect influences the nonlinear optical excitation. Here in this paper, we report the discoverymore » of nonlinear optical selection rules in monolayer WS 2, an important candidate for visible 2D optoelectronics because of its high quantum yield and large direct bandgap. We experimentally demonstrated this principle for second-harmonic generation and two-photon luminescence (TPL). Moreover, the circularly polarized TPL and the study of its dynamics evince a sub-ps interexciton relaxation (2p → 1s). The discovery of this new optical selection rule in a valleytronic 2D system not only considerably enhances knowledge in this area but also establishes a foundation for the control of optical transitions that will be crucial for valley optoelectronic device applications such as 2D valley-polarized THz sources with 2p-1s transitions, optical switches, and coherent control for quantum computing.« less

  18. Rift Valley fever outbreak, southern Mauritania, 2012.

    PubMed

    Sow, Abdourahmane; Faye, Ousmane; Ba, Yamar; Ba, Hampathé; Diallo, Diawo; Faye, Oumar; Loucoubar, Cheikh; Boushab, Mohamed; Barry, Yahya; Diallo, Mawlouth; Sall, Amadou Alpha

    2014-02-01

    After a period of heavy rainfall, an outbreak of Rift Valley fever occurred in southern Mauritania during September-November 2012. A total of 41 human cases were confirmed, including 13 deaths, and 12 Rift Valley fever virus strains were isolated. Moudjeria and Temchecket Departments were the most affected areas.

  19. Phylogeography of microbial phototrophs in the dry valleys of the high Himalayas and Antarctica.

    PubMed

    Schmidt, S K; Lynch, R C; King, A J; Karki, D; Robeson, M S; Nagy, L; Williams, M W; Mitter, M S; Freeman, K R

    2011-03-07

    High-elevation valleys in dry areas of the Himalayas are among the most extreme, yet least explored environments on Earth. These barren, rocky valleys are subjected to year-round temperature fluctuations across the freezing point and very low availability of water and nutrients, causing previous workers to hypothesize that no photoautotrophic life (primary producers) exists in these locations. However, there has been no work using modern biogeochemical or culture-independent molecular methods to test the hypothesis that photoautotrophs are absent from high Himalayan soil systems. Here, we show that although microbial biomass levels are as low as those of the Dry Valleys of Antarctica, there are abundant microbial photoautotrophs, displaying unexpected phylogenetic diversity, in barren soils from just below the permanent ice line of the central Himalayas. Furthermore, we discovered that one of the dominant algal clades from the high Himalayas also contains the dominant algae in culture-independent surveys of both soil and ice samples from the Dry Valleys of Antarctica, revealing an unexpected link between these environmentally similar but geographically very distant systems. Phylogenetic and biogeographic analyses demonstrated that although this algal clade is globally distributed to other high-altitude and high-latitude soils, it shows significant genetic isolation by geographical distance patterns, indicating local adaptation and perhaps speciation in each region. Our results are the first to demonstrate the remarkable similarities of microbial life of arid soils of Antarctica and the high Himalayas. Our findings are a starting point for future comparative studies of the dry valleys of the Himalayas and Antarctica that will yield new insights into the cold and dry limits to life on Earth.

  20. 27 CFR 9.37 - California Shenandoah Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false California Shenandoah Valley. 9.37 Section 9.37 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU...) Boundaries. The Shenandoah Valley viticultural Area is located in portions of Amador and El Dorado Counties...