Science.gov

Sample records for free-boundary stellarator magnetohydrodynamic

  1. Free-boundary magnetohydrodynamic equilibria with flow

    NASA Astrophysics Data System (ADS)

    Schmitt, R. F.; Guazzotto, L.; Strauss, H.; Park, G. Y.; Chang, C.-S.

    2011-02-01

    The finite-element M3D code [W. Park et al., Phys. Plasmas 6, 1796 (1999)] has been modified to include a free-boundary equilibrium solver with arbitrary toroidal and poloidal flows. With this modification, the M3D code now has the capability to self-consistently model two essential ingredients necessary for equilibrium calculations in the edge region, namely, free-boundary and arbitrary flow. As a free-boundary code, M3D includes the separatrix and scrape-off layer regions in the equilibrium calculation. Poloidal flows in the subsonic, supersonic, and transonic regimes can be calculated with the new version of the M3D code. Calculation results show that the presence of equilibrium flows, in particular those next to the plasma boundary, can considerably influence the position of the X-point and magnetic separatrix shape/location and hence the position of the strike point on the divertor plates. Moreover, it is shown that poloidal flow is not a rigid-body rotation, with the fastest flows occurring on the inboard side of the plasma. A numerical confirmation of the "de Laval nozzle" model of Betti and Freidberg [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)] for free-boundary equilibrium calculations is obtained, with the formation of the predicted discontinuities between regions of subsonic and supersonic flows (with respect to the poloidal sound speed). Finally, a detailed comparison between isentropic and isothermal equilibria is presented, showing qualitative analogies and quantitative differences.

  2. A Priori Estimates for Free Boundary Problem of Incompressible Inviscid Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Hao, Chengchun; Luo, Tao

    2014-06-01

    In the present paper, we prove the a priori estimates of Sobolev norms for a free boundary problem of the incompressible inviscid magnetohydrodynamics equations in all physical spatial dimensions n = 2 and 3 by adopting a geometrical point of view used in Christodoulou and Lindblad (Commun Pure Appl Math 53:1536-1602, 2000), and estimating quantities such as the second fundamental form and the velocity of the free surface. We identify the well-posedness condition that the outer normal derivative of the total pressure including the fluid and magnetic pressures is negative on the free boundary, which is similar to the physical condition (Taylor sign condition) for the incompressible Euler equations of fluids.

  3. Dislocations in magnetohydrodynamic waves in a stellar atmosphere.

    PubMed

    López Ariste, A; Collados, M; Khomenko, E

    2013-08-23

    We describe the presence of wave front dislocations in magnetohydrodynamic waves in stratified stellar atmospheres. Scalar dislocations such as edges and vortices can appear in Alfvén waves, as well as in general magnetoacoustic waves. We detect those dislocations in observations of magnetohydrodynamic waves in sunspots in the solar chromosphere. Through the measured charge of all the dislocations observed, we can give for the first time estimates of the modal contribution in the waves propagating along magnetic fields in solar sunspots.

  4. Hughes, Rosner, Weiss: Stellar MHD: Magnetohydrodynamics of stellar interiors

    NASA Astrophysics Data System (ADS)

    Hughes, David; Rosner, Robert; Weiss, Nigel

    2005-08-01

    David Hughes, Robert Rosner and Nigel Weiss describe what was achieved during a programme on stellar magnetic fields at the Isaac Newton Institute in Cambridge. Over a four-month period more than 90 participants visited the Institute for a mixture of structured workshops and informal collaboration.

  5. Free-boundary ideal MHD stability of W7-X divertor equilibria

    NASA Astrophysics Data System (ADS)

    Nührenberg, C.

    2016-07-01

    Plasma configurations describing the stellarator experiment Wendelstein 7-X (W7-X) are computationally established taking into account the geometry of the test-divertor unit and the high-heat-flux divertor which will be installed in the vacuum chamber of the device (Gasparotto et al 2014 Fusion Eng. Des. 89 2121). These plasma equilibria are computationally studied for their global ideal magnetohydrodynamic (MHD) stability properties. Results from the ideal MHD stability code cas3d (Nührenberg 1996 Phys. Plasmas 3 2401), stability limits, spatial structures and growth rates are presented for free-boundary perturbations. The work focusses on the exploration of MHD unstable regions of the W7-X configuration space, thereby providing information for future experiments in W7-X aiming at an assessment of the role of ideal MHD in stellarator confinement.

  6. Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud

    NASA Astrophysics Data System (ADS)

    Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.

    2017-03-01

    We have used the adaptive-mesh-refinement hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 star and a 40 M⊙ star into a 100 pc-diameter 17 000 M⊙ cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 M⊙ star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 M⊙ star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 and 4.97 Myr, respectively, the massive stars explode as supernovae (SNe). In the 15 M⊙ star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ∼105 yr before the SN remnant escapes the cloud. In the 40 M⊙ star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar H II regions.

  7. Free boundary problems in biology.

    PubMed

    Friedman, Avner

    2015-09-13

    In this paper, I review several free boundary problems that arise in the mathematical modelling of biological processes. The biological topics are quite diverse: cancer, wound healing, biofilms, granulomas and atherosclerosis. For each of these topics, I describe the biological background and the mathematical model, and then proceed to state mathematical results, including existence and uniqueness theorems, stability and asymptotic limits, and the behaviour of the free boundary. I also suggest, for each of the topics, open mathematical problems.

  8. Phase Transitions and Free Boundaries

    DTIC Science & Technology

    1991-10-31

    described. The second approximation technique, finite-volume, will be employed on three, three-dimensional nonisother- mal flows: a sphere in linear shear...function is uo = r2 go( O ) (r and 0 are polar coordinates in the plane). The non-negative function go equals zero outside the interval [-6, 6], where 6 E...21 SEMINAR IN {Free Boundary Problems I Vincent Hall 570 11:15 am Wei-Ming Ni Spike layers in singular perturbation theory University of Minnesota

  9. Free Boundary Problems and Density Perimeter

    NASA Astrophysics Data System (ADS)

    Bucur, Dorin; Zolésio, Jean-Paul

    1996-04-01

    We introduce a new concept "the density perimeter," which substitutes the measure of length of the perimeter of a set in free boundary problems. We deduce some links between the Hausdorff convergence and the char convergence for a family of domains with bounded density perimeter. If this perimeter is considered as a penalty term, we give existence results for the variational problem which appears in computer vision and in a Bernoulli-like free boundary problem. We also make some considerations concerning aΓ-convergence property of the density perimeter

  10. An overview of unconstrained free boundary problems

    PubMed Central

    Figalli, Alessio; Shahgholian, Henrik

    2015-01-01

    In this paper, we present a survey concerning unconstrained free boundary problems of type where B1 is the unit ball, Ω is an unknown open set, F1 and F2 are elliptic operators (admitting regular solutions), and is a functions space to be specified in each case. Our main objective is to discuss a unifying approach to the optimal regularity of solutions to the above matching problems, and list several open problems in this direction. PMID:26261367

  11. Free-boundary toroidal Alfven eigenmodes

    SciTech Connect

    Chen, Eugene Y.; Berk, H. L.; Breizman, B.; Zheng, L. J.

    2011-05-15

    A numerical study is presented for the n = 1 free-boundary toroidal Alfven eigenmodes (TAE) in tokamaks, which shows that there is considerable sensitivity of n = 1 modes to the position of the conducting wall. An additional branch of the TAE is shown to emerge from the upper continuum as the ratio of conducting wall radius to plasma radius increases. Such phenomena arise in plasma equilibria with both circular and shaped cross sections, where the shaped profile studied here is similar to that found in Alcator C-Mod.

  12. Regularity of free boundaries a heuristic retro

    PubMed Central

    Caffarelli, Luis A.; Shahgholian, Henrik

    2015-01-01

    This survey concerns regularity theory of a few free boundary problems that have been developed in the past half a century. Our intention is to bring up different ideas and techniques that constitute the fundamentals of the theory. We shall discuss four different problems, where approaches are somewhat different in each case. Nevertheless, these problems can be divided into two groups: (i) obstacle and thin obstacle problem; (ii) minimal surfaces, and cavitation flow of a perfect fluid. In each case, we shall only discuss the methodology and approaches, giving basic ideas and tools that have been specifically designed and tailored for that particular problem. The survey is kept at a heuristic level with mainly geometric interpretation of the techniques and situations in hand. PMID:26261372

  13. Magnetohydrodynamic Simulations of the Formation of Molecular Clouds toward the Stellar Cluster Westerlund 2: Interaction of a Jet with a Clumpy Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo; Matsumoto, Ryoji

    2017-02-01

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ-ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed by shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.

  14. Nonlinear magnetohydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Betancourt, O.; Garabedian, P.

    1981-01-01

    The computer code developed by Bauer et al. (1978) for the study of the magnetohydrodynamic equilibrium and stability of a plasma in toroidal geometry is extended so that the growth rates of instabilities may be estimated more accurately. The original code, which is based on the variational principle of ideal magnetohydrodynamics, is upgraded by the introduction of a nonlinear formula for the growth rate of an unstable mode which acts as a quantitative measure of instability that is important in estimating numerical errors. The revised code has been applied to the determination of the nonlinear saturation, ballooning modes and beta limits for tokamaks, stellarators and torsatrons.

  15. Free-boundary high-beta tokamaks. I. Free-boundary equilibrium

    SciTech Connect

    Goedbloed, J.P.

    1982-05-01

    The free-boundary problem of a sharp-boundary high-..beta.. tokamak plasma inside a conducting shell is solved. This problem is reduced to solving Laplace's equation on a domain with an unknown inner boundary. Centering this boundary with respect to the center of the shell is effected by means of a Moebius transformation which facilitates the use of the fast Fourier transformation. The method exploits Green's theorem for the linear part of the problem which is the solution of Laplace's equation with given boundaries. The nonlinear part consists of moving the plasma boundary until pressure balance is obtained. Fast convergence to accurate results is obtained through the use of a judiciously chosen damping factor determining the response of the plasma shape to changes in the poloidal field pressure. This allows for a complete scan of the two-dimensional parameter space characterized by the plasma shift ..delta.. and the plasma thickness a. Expressions are derived for the maximum permissible value of the poloidal beta.

  16. Free-boundary simulation of ITER hybrid scenario

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Lister, J. B.; Artaud, J.-F.; Basiuk, V.; Dokouka, V.; Khayrutdinov, R. R.; Lukash, V. E.

    2006-10-01

    A free-boundary plasma evolution code, DINA-CH, and an advanced core transport code, CRONOS, are combined for the simulations of ITER plasma which require both self-consistent magnetic and kinetic computations. DINA-CH calculates the evolution of a free-boundary plasma equilibrium while taking into account the variation of externally induced currents in the full tokamak system. CRONOS directly makes use of it for the computation of heat and particle sources and their transport. Advanced source and physics based transport models in CRONOS have been used for simulations. Diagnostic models are integrated into DINA-CH for increasing the capability of realistic equilibrium and plasma profile control. For the investigation of fast free-boundary features without degrading the computational performance of either code, additional control of the computation time-steps of the source models has been developed. The free-boundary evolution of the ITER hybrid scenario during the flat-top phase is presented as an illustration of this work.

  17. A free boundary approach to shape optimization problems

    PubMed Central

    Bucur, D.; Velichkov, B.

    2015-01-01

    The analysis of shape optimization problems involving the spectrum of the Laplace operator, such as isoperimetric inequalities, has known in recent years a series of interesting developments essentially as a consequence of the infusion of free boundary techniques. The main focus of this paper is to show how the analysis of a general shape optimization problem of spectral type can be reduced to the analysis of particular free boundary problems. In this survey article, we give an overview of some very recent technical tools, the so-called shape sub- and supersolutions, and show how to use them for the minimization of spectral functionals involving the eigenvalues of the Dirichlet Laplacian, under a volume constraint. PMID:26261362

  18. A free boundary approach to shape optimization problems.

    PubMed

    Bucur, D; Velichkov, B

    2015-09-13

    The analysis of shape optimization problems involving the spectrum of the Laplace operator, such as isoperimetric inequalities, has known in recent years a series of interesting developments essentially as a consequence of the infusion of free boundary techniques. The main focus of this paper is to show how the analysis of a general shape optimization problem of spectral type can be reduced to the analysis of particular free boundary problems. In this survey article, we give an overview of some very recent technical tools, the so-called shape sub- and supersolutions, and show how to use them for the minimization of spectral functionals involving the eigenvalues of the Dirichlet Laplacian, under a volume constraint.

  19. Development of a free-boundary version of the SIESTA MHD equilibrium code

    NASA Astrophysics Data System (ADS)

    Peraza-Rodriguez, H.; Sanchez, R.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M. R.

    2016-10-01

    SIESTA is a recently developed MHD stability code that allows for the self-consistent calculation of nonlinear MHD equilibrium solutions for 3D magnetic configurations without the assumption of nested magnetic surfaces. The original version of the code was written as a fixed boundary code that imposed that the normal component of the magnetic field vanished at the prescribed plasma edge. In this contribution, we describe a procedure to extend SIESTA to perform free-boundary equilibrium calculations, thus increasing the range of problems to which the code can be applied. The process requires an automated way to extend the computational domain and mesh all the way to the vacuum vessel and the construction of a reasonable initial guess for the magnetic field, from which SIESTA can iterate towards equilibrium. Examples will be provided for several configurations of the W7-X stellarator.

  20. Free boundary problems in electromagnetic levitation melting and continuous casting

    NASA Astrophysics Data System (ADS)

    Gagnoud, A.; Leclercq, I.

    1988-01-01

    Two applications of the melting in cold crucibles are presented: continuous casting and levitation melting. These processes are typical examples of coupled phenomena. A free boundary problem has to be solved to determine the equilibrium shape of molten metal with respect to the electrical and geometrical parameters of the system. The magnetic field distribution is calculated by using a boundary integral method. The free surface can be deduced from a global analysis, that is based on the minimization of the total energy of the system. The derivation with respect to the domain leads to a rapid convergence toward the solution.

  1. An elliptic hyperbolic free boundary problem modelling cancer therapy

    NASA Astrophysics Data System (ADS)

    Tao, Youshan; Chen, Miaojun

    2006-02-01

    In this paper we study a free boundary problem modelling the growth of an avascular tumour with drug application. The tumour consists of two cell populations: live cells and dead cells. The densities of these cells satisfy a system of nonlinear first order hyperbolic equations. The tumour surface is a moving boundary, which satisfies an integro-differential equation. The nutrient concentration and the drug concentration satisfy nonlinear diffusion equations. The nutrient drives the growth of the tumour, whereas the drug is capable of killing cells with Michaelis-Menten kinetics. We prove that this free boundary problem has a unique global solution. Furthermore, we investigate the combined effects of a drug and a nutrient on an avascular tumour growth. We prove that the tumour shrinks to a necrotic core with radius Rs > 0 and that the global solution converges to a trivial steady-state solution under some natural assumptions on the model parameters. We also prove that an untreated tumour shrinks to a dead core or continually grows to an infinite size, which depends on the different parameter conditions.

  2. Stalactite growth as a free-boundary problem

    NASA Astrophysics Data System (ADS)

    Short, Martin B.; Baygents, James C.; Goldstein, Raymond E.

    2005-08-01

    Stalactites, the most familiar structures found hanging from the ceilings of limestone caves, grow by the precipitation of calcium carbonate from within a thin film of fluid flowing down their surfaces. We have recently shown [M. B. Short, J. C. Baygents, J. W. Beck, D. A. Stone, R. S. Toomey III, and R. E. Goldstein, "Stalactite growth as a free-boundary problem: A geometric law and its Platonic ideal," Phys. Rev. Lett. 94, 018501 (2005)] that the combination of thin-film fluid dynamics, calcium carbonate chemistry, and carbon dioxide diffusion and outgassing leads to a local geometric growth law for the surface evolution which quantitatively explains the shapes of natural stalactites. Here we provide details of this free-boundary calculation, exploiting a strong separation of time scales among that for diffusion within the layer, contact of a fluid parcel with the growing surface, and growth. When the flow rate, the scale of the stalactite, and the chemistry are in the ranges typically found in nature, the local growth rate is proportional to the local thickness of the fluid layer, itself determined by Stokes flow over the surface. Numerical studies of this law establish that a broad class of initial conditions is attracted to an ideal universal shape, whose mathematical form is found analytically. Statistical analysis of stalactite shapes from Kartchner Caverns (Benson, AZ) shows excellent agreement between the average shape of natural stalactites and the ideal shape. Generalizations of these results to nonaxisymmetric speleothems are discussed.

  3. Status and Benchmarking of the Free Boundary Equilibrium Code FREEBIE

    NASA Astrophysics Data System (ADS)

    Urban, Jakub; Artaud, Jean-Francois; Basiuk, Vincent; Besseghir, Karim; Huynh, Philippe; Kim, Sunhee; Lister, Jonathan Bryan; Nardon, Eric

    2013-10-01

    FREEBIE is a recent free boundary equilibrium (FBE) code, which solves the temporal evolution of tokamak equilibrium, described by the Grad-Shafranov equation and circuit equations for active and passive poloidal field components. FREEBIE can be run stand-alone, within the transport code CRONOS or on the ITM (European Integrated Tokamak Modelling) platform. FREEBIE with prescribed plasma profiles has already been successfully benchmarked against DINA simulations and TCV experiments. Here we report on the current status of the code coupling with transport solvers and benchmarking of fully consistent transport-FBE simulations. A benchmarking procedure is developed and applied to several ITER cases using FREEBIE, DINA and CEDRES++. The benchmarks indicate that because of the different methods and the complexity of the problem, results obtained from the different codes are comparable only to a certain extent. Supported by GACR 13-38121P, EURATOM, AS CR AV0Z 20430508, MSMT 7G10072 and MSMT LM2011021.

  4. Neutrino magnetohydrodynamics

    SciTech Connect

    Haas, Fernando; Pascoal, Kellen Alves; Mendonça, José Tito

    2016-01-15

    A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.

  5. A free boundary problem of a diffusive SIRS model with nonlinear incidence

    NASA Astrophysics Data System (ADS)

    Cao, Jia-Feng; Li, Wan-Tong; Wang, Jie; Yang, Fei-Ying

    2017-04-01

    This paper is concerned with the spreading (persistence) and vanishing (extinction) of a disease which is characterized by a diffusive SIRS model with a bilinear incidence rate and free boundary. Through discussing the dynamics of a free boundary problem of an SIRS model, the spreading of a disease is described. We get the sufficient conditions which ensure the disease spreading or vanishing. In addition, the estimate of the expanding speed is also given when the free boundaries extend to the whole R.

  6. Application of the stellarator expansion for plasma-stability studies in stellarators

    SciTech Connect

    Anania, G.; Johnson, J.L.

    1983-04-01

    A numerical code, which utilizes the stellarator expansion, is developed and tested. It is used to investigate the magnetohydrodynamic stability properties of several stellarator configurations, including Heliotron E, Wendelstein VII-A, a modular-coil device, and ATF-1.

  7. THE EFFECT OF LIMITED SPATIAL RESOLUTION OF STELLAR SURFACE MAGNETIC FIELD MAPS ON MAGNETOHYDRODYNAMIC WIND AND CORONAL X-RAY EMISSION MODELS

    SciTech Connect

    Garraffo, C.; Cohen, O.; Drake, J. J.; Downs, C.

    2013-02-10

    We study the influence of the spatial resolution on scales of 5 Degree-Sign and smaller of solar surface magnetic field maps on global magnetohydrodynamic solar wind models, and on a model of coronal heating and X-ray emission. We compare the solutions driven by a low-resolution Wilcox Solar Observatory magnetic map, the same map with spatial resolution artificially increased by a refinement algorithm, and a high-resolution Solar and Heliospheric Observatory Michelson Doppler Imager map. We find that both the wind structure and the X-ray morphology are affected by the fine-scale surface magnetic structure. Moreover, the X-ray morphology is dominated by the closed loop structure between mixed polarities on smaller scales and shows significant changes between high- and low-resolution maps. We conclude that three-dimensional modeling of coronal X-ray emission has greater surface magnetic field spatial resolution requirements than wind modeling, and can be unreliable unless the dominant mixed polarity magnetic flux is properly resolved.

  8. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  9. Magnetohydrodynamic instability

    NASA Technical Reports Server (NTRS)

    Priest, E. R.; Cargill, P.; Forbes, T. G.; Hood, A. W.; Steinolfson, R. S.

    1986-01-01

    There have been major advances in the theory of magnetic reconnection and of magnetic instability, with important implications for the observations, as follows: (1) Fast and slow magnetic shock waves are produced by the magnetohydrodynamics of reconnection and are potential particle accelerators. (2) The impulsive bursty regime of reconnection gives a rapid release of magnetic energy in a series of bursts. (3) The radiative tearing mode creates cool filamentary structures in the reconnection process. (4) The stability analyses imply that an arcade can become unstable when either its height or twist of plasma pressure become too great.

  10. A non-local free boundary problem arising in a theory of financial bubbles

    PubMed Central

    Berestycki, Henri; Monneau, Regis; Scheinkman, José A.

    2014-01-01

    We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815

  11. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  12. Hausdorff Measure Estimates and Lipschitz Regularity in Inhomogeneous Nonlinear Free Boundary Problems

    NASA Astrophysics Data System (ADS)

    Moreira, Diego; Wang, Lihe

    2014-08-01

    In this paper, we prove a Hausdorff measure estimate for the free boundaries of subsolutions of fully nonlinear and quasilinear equations of the type and where and μ is a signed Radon measure with some appropriate growth condition. Gradient estimates for nonnegative harmonic functions with bounded normal derivatives along the boundary obtained by Caffarelli and Salsa (Geometric Approach to Free Boundary Problems, 2005) are extended to the context of inhomogeneous problems involving fully nonlinear and p-Laplace equations. As an application, Lipschitz regularity is obtained for one phase solutions of inhomogeneous nonlinear free boundary problems.

  13. Free boundary value problem to 3D spherically symmetric compressible Navier-Stokes-Poisson equations

    NASA Astrophysics Data System (ADS)

    Kong, Huihui; Li, Hai-Liang

    2017-02-01

    In the paper, we consider the free boundary value problem to 3D spherically symmetric compressible isentropic Navier-Stokes-Poisson equations for self-gravitating gaseous stars with γ -law pressure density function for 6/5 <γ ≤ 4/3. For stress-free boundary condition and zero flow density continuously across the free boundary, the global existence of spherically symmetric weak solutions is shown, and the regularity and long time behavior of global solution are investigated for spherically symmetric initial data with the total mass smaller than a critical mass.

  14. Global strong solutions to radial symmetric compressible Navier-Stokes equations with free boundary

    NASA Astrophysics Data System (ADS)

    Li, Hai-liang; Zhang, Xingwei

    2016-12-01

    In this paper, we consider the two-dimensional barotropic compressible Navier-Stokes equations with stress free boundary condition imposed on the free surface. As the viscosity coefficients satisfies μ (ρ) = 2 μ, λ (ρ) =ρβ, β > 1, we establish the existence of global strong solution for arbitrarily large spherical symmetric initial data even if the density vanishes across the free boundary. In particular, we show that the density is strictly positive and bounded from the above and below in any finite time if the initial density is strictly positive, and the free boundary propagates along the particle path and expand outwards at an algebraic rate.

  15. Spreading and vanishing in the diffusive prey-predator model with a free boundary

    NASA Astrophysics Data System (ADS)

    Wang, Mingxin

    2015-06-01

    This paper deals with the diffusive Lotka-Volterra type prey-predator model with a free boundary over a one dimensional habitat. This problem may be used to describe the interaction between indigenous species and invasive species and the spreading of such two species, with the free boundary representing the expanding front. Our main purpose is to study the spreading and vanishing phenomena and long time behaviors of prey and predator.

  16. Global Solvability of a Free Boundary Three-Dimensional Incompressible Viscoelastic Fluid System with Surface Tension

    NASA Astrophysics Data System (ADS)

    Xu, Li; Zhang, Ping; Zhang, Zhifei

    2013-06-01

    Motivated by Beale (Commun Pure Appl Math 34:359-392, 1981; Arch Ration Mech Anal 84:307-352, 1983/1984), we investigate the global well-posedness of a free boundary problem of a three-dimensional incompressible viscoelastic fluid system in an infinite strip and with surface tension on the upper free boundary, provided that the initial data is sufficiently close to the equilibrium state.

  17. Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Montgomery, David C.

    2004-01-01

    Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.

  18. Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2007-01-01

    The Stellar Imager (SI) is one of NASA's "Vision Missions" - concepts for future, space-based, strategic missions that could enormously increase our capabilities for observing the Cosmos. SI is designed as a UV/Optical Interferometer which will enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI, with a characteristic angular resolution of 0.1 milli-arcseconds at 2000 Angstroms, represents an advance in image detail of several hundred times over that provided by the Hubble Space Telescope. The Stellar Imager will zoom in on what today-with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool as fundamental to astrophysics as the microscope is to the study of life on Earth. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. It's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living With a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. Stellar Imager is included as a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and as a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap (May, 2005) and as such is a candidate mission for the 2025-2030 timeframe. An artist's drawing of the current "baseline" concept for SI is presented.

  19. On some free boundary problems of the prey-predator model

    NASA Astrophysics Data System (ADS)

    Wang, Mingxin

    In this paper we investigate some free boundary problems for the Lotka-Volterra type prey-predator model in one space dimension. The main objective is to understand the asymptotic behavior of the two species (prey and predator) spreading via a free boundary. We prove a spreading-vanishing dichotomy, namely the two species either successfully spread to the entire space as time t goes to infinity and survive in the new environment, or they fail to establish and die out in the long run. The long time behavior of solution and criteria for spreading and vanishing are also obtained. Finally, when spreading successfully, we provide an estimate to show that the spreading speed (if exists) cannot be faster than the minimal speed of traveling wavefront solutions for the prey-predator model on the whole real line without a free boundary.

  20. Reproduction of solutions in the plane problem on motion of a free-boundary fluid

    NASA Astrophysics Data System (ADS)

    Karabut, E. A.; Zhuravleva, E. N.

    2016-07-01

    This study is devoted to finding exact solutions of the plane unsteady problem on the motion of an ideal incompressible free-boundary fluid. A certain procedure of reproduction making it possible to obtain a two-parametrical family of new exact solutions from one known solution is proposed.

  1. Analytic Approximations to the Free Boundary and Multi-dimensional Problems in Financial Derivatives Pricing

    NASA Astrophysics Data System (ADS)

    Lau, Chun Sing

    This thesis studies two types of problems in financial derivatives pricing. The first type is the free boundary problem, which can be formulated as a partial differential equation (PDE) subject to a set of free boundary condition. Although the functional form of the free boundary condition is given explicitly, the location of the free boundary is unknown and can only be determined implicitly by imposing continuity conditions on the solution. Two specific problems are studied in details, namely the valuation of fixed-rate mortgages and CEV American options. The second type is the multi-dimensional problem, which involves multiple correlated stochastic variables and their governing PDE. One typical problem we focus on is the valuation of basket-spread options, whose underlying asset prices are driven by correlated geometric Brownian motions (GBMs). Analytic approximate solutions are derived for each of these three problems. For each of the two free boundary problems, we propose a parametric moving boundary to approximate the unknown free boundary, so that the original problem transforms into a moving boundary problem which can be solved analytically. The governing parameter of the moving boundary is determined by imposing the first derivative continuity condition on the solution. The analytic form of the solution allows the price and the hedging parameters to be computed very efficiently. When compared against the benchmark finite-difference method, the computational time is significantly reduced without compromising the accuracy. The multi-stage scheme further allows the approximate results to systematically converge to the benchmark results as one recasts the moving boundary into a piecewise smooth continuous function. For the multi-dimensional problem, we generalize the Kirk (1995) approximate two-asset spread option formula to the case of multi-asset basket-spread option. Since the final formula is in closed form, all the hedging parameters can also be derived in

  2. On the existence of convex classical solutions to a generalized Prandtl-Batchelor free boundary problem

    NASA Astrophysics Data System (ADS)

    Acker, A.

    Under reasonably general assumptions, we prove the existence of convex classical solutions for the Prandtl-Batchelor free boundary problem in fluid dynamics, in which a flow of constant vorticity density is embedded in a potential flow, with a vortex sheet of constant vorticity density as the flow interface. These results apply to Batchelor flows which are confined to a bounded, convex vessel, and for which the limiting interior flow-speed exceeds the limiting exterior flow-speed along the interface.

  3. Some free boundary problems involving non-local diffusion and aggregation

    PubMed Central

    Carrillo, José Antonio; Vázquez, Juan Luis

    2015-01-01

    We report on recent progress in the study of evolution processes involving degenerate parabolic equations which may exhibit free boundaries. The equations we have selected follow two recent trends in diffusion theory: considering anomalous diffusion with long-range effects, which leads to fractional operators or other operators involving kernels with large tails; and the combination of diffusion and aggregation effects, leading to delicate long-term equilibria whose description is still incipient. PMID:26261360

  4. Modeling and Minimization of Extinction in Volterra-Lotka Type Equations with Free Boundaries

    NASA Astrophysics Data System (ADS)

    Stojanovic, Srdjan

    1997-03-01

    An equation of the distributed Volterra-Lotka type, with free boundary of the obstacle type, with possible applications in ecology, when extinction of the biological species is of particular concern, is introduced and solved. An optimal control problem for such an equation, and in particular the problem of minimization of the area of extinction of the species, is introduced and to some extent solved.

  5. Experiments in Magnetohydrodynamics

    ERIC Educational Resources Information Center

    Rayner, J. P.

    1970-01-01

    Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)

  6. Magnetohydrodynamic cellular automata

    NASA Technical Reports Server (NTRS)

    Montgomery, David; Doolen, Gary D.

    1987-01-01

    A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.

  7. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  8. Gyroscopic analog for magnetohydrodynamics

    SciTech Connect

    Holm, D.D.

    1981-01-01

    The gross features of plasma equilibrium and dynamics in the ideal magnetohydrodynamics (MHD) model can be understood in terms of a dynamical system which closely resembles the equations for a deformable gyroscope.

  9. Magnetohydrodynamic fluidic system

    DOEpatents

    Lee, Abraham P.; Bachman, Mark G.

    2004-08-24

    A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.

  10. Introduction to Modern Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Galtier, Sébastien

    2016-10-01

    Preface; Table of physical quantities; Part I. Foundations: 1. Introduction; 2. Magnetohydrodynamics; 3. Conservation laws; Part II. Fundamental Processes: 4. Magnetohydrodynamic waves; 5. Dynamo; 6. Discontinuities and shocks; 7. Magnetic reconnection; Part III. Instabilities and Magnetic Confinement: 8. Static equilibrium; 9. Linear perturbation theory; 10. Study of MHD instabilities; Part IV. Turbulence: 11. Hydrodynamic turbulence; 12. MHD turbulence; 13. Advanced MHD turbulence; Appendix 1. Solutions to the exercises; Appendix 2. Formulary; References; Index.

  11. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  12. Helical axis stellarator equilibrium model

    SciTech Connect

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.

  13. Bounds and Asymptotic Expansions for Solutions of the Free Boundary Problems Related to Sequential Decision Versions of a Bioequivalence Problem

    DTIC Science & Technology

    1993-11-23

    the Free Boundary Problems Related to Sequential Decision Versions of a Bioequivalence Problem 12. PERSONAL AUTHOR(S) John Bather and Herman Chernoff...sequential version of a form of the bioequivalence problem was presented in a report by Hwang (1991). In that report he referred to our unpublished results...phrases. Bioequivalence , sequential anlaysis, Bayes risk, Brownian motion, free boundary problems, optimal stopping, asymptotic expansions. HARVARD

  14. A free boundary problem for steady small plaques in the artery and their stability

    NASA Astrophysics Data System (ADS)

    Friedman, Avner; Hao, Wenrui; Hu, Bei

    2015-08-01

    Atherosclerosis is a leading cause of death in the United States and worldwide; it originates from a plaque which builds up in the artery. In this paper, we consider a simplified model of plaque growth involving LDL and HDL cholesterols, macrophages and foam cells, which satisfy a coupled system of PDEs with a free boundary, the interface between the plaque and the blood flow. We prove that there exist small radially symmetric stationary plaques and establish a sharp condition that ensures their stability. We also determine necessary and sufficient conditions under which a small initial plaque will shrink and disappear, or persist for all times.

  15. On a free boundary problem for a reaction-diffusion-advection logistic model in heterogeneous environment

    NASA Astrophysics Data System (ADS)

    Monobe, Harunori; Wu, Chang-Hong

    2016-12-01

    In this paper, we investigate a reaction-diffusion-advection equation with a free boundary which models the spreading of an invasive species in one-dimensional heterogeneous environments. We assume that the species has a tendency to move upward along the resource gradient in addition to random dispersal, and the spreading mechanism of species is determined by a Stefan-type condition. Investigating the sign of the principal eigenvalue of the associated linearized eigenvalue problem, under certain conditions we obtain the sharp criteria for spreading and vanishing via system parameters. Also, we establish the long-time behavior of the solution and the asymptotic spreading speed. Finally, some biological implications are discussed.

  16. Particle-particle, particle-scaling function algorithm for electrostatic problems in free boundary conditions.

    PubMed

    Neelov, Alexey; Ghasemi, S Alireza; Goedecker, Stefan

    2007-07-14

    An algorithm for fast calculation of the Coulombic forces and energies of point particles with free boundary conditions is proposed. Its calculation time scales as N log N for N particles. This novel method has lower crossover point with the full O(N(2)) direct summation than the fast multipole method. The forces obtained by our algorithm are analytical derivatives of the energy which guarantees energy conservation during a molecular dynamics simulation. Our algorithm is very simple. A version of the code parallelized with the Message Passing Interface can be downloaded under the GNU General Public License from the website of our group.

  17. The selection for dispersal: a diffusive competition model with a free boundary

    NASA Astrophysics Data System (ADS)

    Wang, Jie

    2015-10-01

    This paper considers the population dynamics of an invasive species and a resident species, using a diffusive competition model in a radially symmetric heterogeneous environment with a free boundary. We assume that the resident species diffuses and expands in {{R}^n} , and the invasive species initially resides in a finite ball, but invades the environment with a spreading front that evolves as the free boundary. Our investigation aims to understand how the model dynamics are affected by the dispersal rate {d_u} , expansion capacity {μ} and initial number u 0 of the invasive species. We show that a spreading-vanishing dichotomy exists and obtain the sharp criteria for spreading and vanishing by varying the parameters d u , {μ} and u 0. For the invasive species, we found an unconditional selection for slow dispersal rate, but a conditional selection for fast dispersal rate, that is, the selection for fast dispersal depends on the expansion capacity and initial number of the invasive species.

  18. Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary.

    PubMed

    Lin, Zhigui; Zhu, Huaiping

    2017-04-04

    In this paper, a reaction-diffusion system is proposed to model the spatial spreading of West Nile virus in vector mosquitoes and host birds in North America. Transmission dynamics are based on a simplified model involving mosquitoes and birds, and the free boundary is introduced to model and explore the expanding front of the infected region. The spatial-temporal risk index [Formula: see text], which involves regional characteristic and time, is defined for the simplified reaction-diffusion model with the free boundary to compare with other related threshold values, including the usual basic reproduction number [Formula: see text]. Sufficient conditions for the virus to vanish or to spread are given. Our results suggest that the virus will be in a scenario of vanishing if [Formula: see text], and will spread to the whole region if [Formula: see text] for some [Formula: see text], while if [Formula: see text], the spreading or vanishing of the virus depends on the initial number of infected individuals, the area of the infected region, the diffusion rate and other factors. Moreover, some remarks on the basic reproduction numbers and the spreading speeds are presented and compared.

  19. Ising antiferromagnet on a finite triangular lattice with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2015-11-01

    The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.

  20. Variational formulation for weakly nonlinear perturbations of ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hirota, M.

    2011-10-01

    A new equation of motion that governs weakly nonlinear phenomena in ideal magnetohydrodynamics (MHDs) is derived as a natural extension of the well-known linearized equation of motion for the displacement field. This derivation is made possible by expanding the MHD Lagrangian explicitly up to third order with respect to the displacement of plasma, which necessitates an efficient use of the Lie series expansion. The resultant equation of motion (i.e. the Euler-Lagrange equation) includes a new quadratic force term which is responsible for various mode-mode coupling due to the MHD nonlinearity. The third-order potential energy serves to quantify the coupling coefficient among resonant three modes and its cubic symmetry proves the Manley-Rowe relations. In contrast to earlier works, the coupling coefficient is expressed only by the displacement vector field, which is already familiar in the linear MHD theory, and both the fixed and free boundary cases are treated systematically.

  1. Marangoni Convection In A Relatively Hotter Or Cooler Liquid Layer With Free Boundaries

    NASA Astrophysics Data System (ADS)

    Gupta, A. K.; Shandil, R. G.

    2013-06-01

    In this paper, we study the onset of cellular convection in a horizontal fluid layer heated from below, with a free-slip boundary condition at the bottom when the driving mechanism is surface tension at the upper free surface, in the light of the modified analysis of Banerjee et al. (Jour. Math. & Phys. Sci., 1983, 17, 603). This leads to a formulation of the problem which depends upon whether the liquid layer is relatively hotter or cooler. It is found that the phenomenon of surface tension driven instability problems should not only depend upon the Marangoni number which is proportional to the maintained temperature differences across the layer but also upon another parameter that arises due to variation in the specific heat at constant volume on account of the variations in temperature. Numerical results are obtained for the problem wherein the lower free boundary is perfectly thermally conducting.

  2. Free boundary problems in shock reflection/diffraction and related transonic flow problems

    PubMed Central

    Chen, Gui-Qiang; Feldman, Mikhail

    2015-01-01

    Shock waves are steep wavefronts that are fundamental in nature, especially in high-speed fluid flows. When a shock hits an obstacle, or a flying body meets a shock, shock reflection/diffraction phenomena occur. In this paper, we show how several long-standing shock reflection/diffraction problems can be formulated as free boundary problems, discuss some recent progress in developing mathematical ideas, approaches and techniques for solving these problems, and present some further open problems in this direction. In particular, these shock problems include von Neumann's problem for shock reflection–diffraction by two-dimensional wedges with concave corner, Lighthill's problem for shock diffraction by two-dimensional wedges with convex corner, and Prandtl-Meyer's problem for supersonic flow impinging onto solid wedges, which are also fundamental in the mathematical theory of multidimensional conservation laws. PMID:26261363

  3. Development of a free-boundary tokamak equilibrium solver for advanced study of tokamak equilibria

    NASA Astrophysics Data System (ADS)

    Jeon, Young Mu

    2015-09-01

    A free-boundary Tokamak equilibrium solver (TES), developed for advanced study of tokamak equilibra, is described with two distinctive features. One is a generalized method to resolve the intrinsic axisymmetric instability, which is encountered in all equilibrium calculations with a freeboundary condition. The other is an extension to deal with a new divertor geometry such as snowflake or X divertors. For validations, the uniqueness of a solution is confirmed by the independence of variations in the computational domain, the mathematical correctness and accuracy of equilibrium profiles are checked by using a direct comparison with an analytic equilibrium known as a generalized Solov'ev equilibrium, and the governing force balance relation is tested by examining the intrinsic axisymmetric instabilities. As an application of an advanced equilibrium study, a snow-flake divertor configuration that requires a second-order zero of the poloidal magnetic flux is discussed in the circumstance of the Korea superconducting tokamak advanced research (KSTAR) coil system.

  4. Exact solution of two phase spherical Stefan problem with two free boundaries

    NASA Astrophysics Data System (ADS)

    Kavokin, Alexey A.; Nauryz, Targyn; Bizhigitova, Nazerke T.

    2016-08-01

    Solution of the heat equation in a spherical domain with two free boundaries (two-phase Stefan problem) when one of the subdomains degenerates at the initial time is considered. The use of conventional finite-difference methods in these cases is not expedient because of the degenerate domain. The solution is found in the form of combination of Integral Error functions series, [M. Sarsengeldin, and S. Kharin, Filomat, (2016), (in Press)] and then recurrent solvability of nonlinear algebraic equations for determining the coefficients of the series is proved. Such problems are of practical interest for the simulation of laser material processing as well for the modeling of thermal effects of electric arc that ignites during the opening of electric contacts [S. N. Kharin, and M. Sarsengeldin, Influence of contact materials on phenomena in a short electrical arc, in Key Engineering Materials, Trans tech publications, Islamabad, Pakistan, 2012, pp. 321-329].

  5. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  6. Thermoacoustic magnetohydrodynamic electrical generator

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  7. AC magnetohydrodynamic microfluidic switch

    SciTech Connect

    Lemoff, A V; Lee, A P

    2000-03-02

    A microfluidic switch has been demonstrated using an AC Magnetohydrodynamic (MHD) pumping mechanism in which the Lorentz force is used to pump an electrolytic solution. By integrating two AC MHD pumps into different arms of a Y-shaped fluidic circuit, flow can be switched between the two arms. This type of switch can be used to produce complex fluidic routing, which may have multiple applications in {micro}TAS.

  8. Interactions between magnetohydrodynamical discontinuities

    SciTech Connect

    Dai, W.; Woodward, P.R. )

    1994-11-01

    Interactions between magnetohydrodynamical (MHD) discontinuities are studied through numerical simulations for the set of one-dimensional MHD equations. The interactions include the impact of a shock on a contact discontinuity, the collision of two shocks, and the catchup of a shock over another shock. The shocks involved in the interactions may be very strong. Each shock in an interaction may be either a fast or a slow shock.

  9. The time-periodic diffusive competition models with a free boundary and sign-changing growth rates

    NASA Astrophysics Data System (ADS)

    Wang, Mingxin; Zhang, Yang

    2016-10-01

    To understand the spreading of invasive and native species, in this paper we consider the diffusive competition models with a free boundary in the heterogeneous time-periodic environments, in which the variable intrinsic growth rates of these two species change signs and may be very negative in some large regions. We study the spreading-vanishing dichotomy, long-time dynamical behavior of solution, sharp criteria for spreading and vanishing, and estimates of the asymptotic spreading speed of the free boundary. Moreover, we establish the existence of positive solutions to a T-periodic boundary value problem of the diffusive competition system with sign-changing growth rates in the half line.

  10. Future of Magnetohydrodynamic Ship Propulsion,

    DTIC Science & Technology

    1983-08-16

    83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P

  11. Some free boundary problems in potential flow regime usinga based level set method

    SciTech Connect

    Garzon, M.; Bobillo-Ares, N.; Sethian, J.A.

    2008-12-09

    Recent advances in the field of fluid mechanics with moving fronts are linked to the use of Level Set Methods, a versatile mathematical technique to follow free boundaries which undergo topological changes. A challenging class of problems in this context are those related to the solution of a partial differential equation posed on a moving domain, in which the boundary condition for the PDE solver has to be obtained from a partial differential equation defined on the front. This is the case of potential flow models with moving boundaries. Moreover the fluid front will possibly be carrying some material substance which will diffuse in the front and be advected by the front velocity, as for example the use of surfactants to lower surface tension. We present a Level Set based methodology to embed this partial differential equations defined on the front in a complete Eulerian framework, fully avoiding the tracking of fluid particles and its known limitations. To show the advantages of this approach in the field of Fluid Mechanics we present in this work one particular application: the numerical approximation of a potential flow model to simulate the evolution and breaking of a solitary wave propagating over a slopping bottom and compare the level set based algorithm with previous front tracking models.

  12. Magnetohydrodynamics of fractal media

    SciTech Connect

    Tarasov, Vasily E.

    2006-05-15

    The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over the fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal media are derived from the fractional generalization of integral Maxwell equations and integral hydrodynamics (balance) equations. Possible equilibrium states for these equations are considered.

  13. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  14. Collisional Drift Waves in Stellarator Plasmas

    SciTech Connect

    J.L.V. Lewandowski

    2003-10-07

    A computational study of resistive drift waves in the edge plasma of a stellarator with an helical magnetic axis is presented. Three coupled field equations, describing the collisional drift wave dynamics in the linear approximation, are solved as an initial-value problem along the magnetic field line. The magnetohydrodynamic equilibrium is obtained from a three-dimensional local equilibrium model. The use of a local magnetohydrodynamic equilibrium model allows for a computationally efficient systematic study of the impact of the magnetic field structure on drift wave stability.

  15. A Kernel-free Boundary Integral Method for Elliptic Boundary Value Problems ⋆

    PubMed Central

    Ying, Wenjun; Henriquez, Craig S.

    2013-01-01

    This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green's functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green's functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GM-RES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong. PMID:23519600

  16. Multiple spreading phenomena for a free boundary problem of a reaction-diffusion equation with a certain class of bistable nonlinearity

    NASA Astrophysics Data System (ADS)

    Kawai, Yusuke; Yamada, Yoshio

    2016-07-01

    This paper deals with a free boundary problem for diffusion equation with a certain class of bistable nonlinearity which allows two positive stable equilibrium states as an ODE model. This problem models the invasion of a biological species and the free boundary represents the spreading front of its habitat. Our main interest is to study large-time behaviors of solutions for the free boundary problem. We will completely classify asymptotic behaviors of solutions and, in particular, observe two different types of spreading phenomena corresponding to two positive stable equilibrium states. Moreover, it will be proved that, if the free boundary expands to infinity, an asymptotic speed of the moving free boundary for large time can be uniquely determined from the related semi-wave problem.

  17. Focused ultrasonic beam behavior at a stress-free boundary and applicability for measuring nonlinear parameter in a reflection mode

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo; Zhang, Shuzeng; Li, Xiongbing

    2017-02-01

    In this work, we employ a focused beam theory to modify the phase reversal at the stress-free boundary, and consequently enhance the second harmonic generation during its back-propagation toward the initial source position. We first confirmed this concept through experiment by using a spherically focused beam at the water-air interface, and measuring the reflected second harmonic and comparing with a planar wave reflected from the same stress-free or a rigid boundary. In order to test the feasibility of this idea for measuring the nonlinearity parameter of solids in a reflection mode, a focused nonlinear ultrasonic beam is modeled for focusing at and reflection from a stress-free boundary. A nonlinearity parameter expression is then defined together with diffraction and attenuation corrections.

  18. Conservation of circulation in magnetohydrodynamics

    PubMed

    Bekenstein; Oron

    2000-10-01

    We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.

  19. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.

    PubMed

    Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  20. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mohseni, F.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2015-08-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1 / 2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.

  1. Influence of a coronal envelope as a free boundary to global convective dynamo simulations

    NASA Astrophysics Data System (ADS)

    Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.

    2016-12-01

    Aims: We explore the effects of an outer stably stratified coronal envelope on rotating turbulent convection, differential rotation, and large-scale dynamo action in spherical wedge models of the Sun. Methods: We solve the compressible magnetohydrodynamic equations in a two-layer model with unstable stratification below the surface, representing the convection zone, and a stably stratified coronal envelope above. The interface represents a free surface. We compare our model to models that have no coronal envelope. Results: The presence of a coronal envelope is found to modify the Reynolds stress and the Λ effect resulting in a weaker and non-cylindrical differential rotation. This is related to the reduced latitudinal temperature variations that are caused by and dependent on the angular velocity. Some simulations develop a near-surface shear layer that we can relate to a sign change in the meridional Reynolds stress term in the thermal wind balance equation. Furthermore, the presence of a free surface changes the magnetic field evolution since the toroidal field is concentrated closer to the surface. In all simulations, however, the migration direction of the mean magnetic field can be explained by the Parker-Yoshimura rule, which is consistent with earlier findings. Conclusions: A realistic treatment of the upper boundary in spherical dynamo simulations is crucial for the dynamics of the flow and magnetic field evolution.

  2. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)

    2002-01-01

    A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate

  3. Multi-symplectic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; McKenzie, J. F.; Zank, G. P.; Zank

    2014-10-01

    A multi-symplectic formulation of ideal magnetohydrodynamics (MHD) is developed based on the Clebsch variable variational principle in which the Lagrangian consists of the kinetic minus the potential energy of the MHD fluid modified by constraints using Lagrange multipliers that ensure mass conservation, entropy advection with the flow, the Lin constraint, and Faraday's equation (i.e. the magnetic flux is Lie dragged with the flow). The analysis is also carried out using the magnetic vector potential à where α=Ã. d x is Lie dragged with the flow, and B=∇×Ã. The multi-symplectic conservation laws give rise to the Eulerian momentum and energy conservation laws. The symplecticity or structural conservation laws for the multi-symplectic system corresponds to the conservation of phase space. It corresponds to taking derivatives of the momentum and energy conservation laws and combining them to produce n(n-1)/2 extra conservation laws, where n is the number of independent variables. Noether's theorem for the multi-symplectic MHD system is derived, including the case of non-Cartesian space coordinates, where the metric plays a role in the equations.

  4. Filamentary magnetohydrodynamic plasmas

    SciTech Connect

    Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.

    1993-05-01

    A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected.

  5. Magnetohydrodynamics in Materials Processing

    NASA Astrophysics Data System (ADS)

    Davidson, P. A.

    1999-01-01

    Magnetic fields can be used to melt, pump, stir, and stabilize liquid metals. This provides a nonintrusive means of controlling the flow of metal in commercial casting and refining operations. The quest for greater efficiency and more control in the production of steel, aluminum, and high-performance superalloys has led to a revolution in the application of magnetohydrodynamics (MHD) to process metallurgy. Three typical applications are described here, chosen partially on the basis of their general interest to fluid dynamicists, and partially because of their considerable industrial importance. We look first at magnetic stirring, where a rotating magnetic field is used to agitate and homogenize the liquid zone of a partially-solidified ingot. This is a study in Ekman pumping. Next, we consider magnetic damping, where an intense, static magnetic field is used to suppress fluid motion. In particular, we look at the damping of jets, vortices, and turbulence. We conclude with a discussion of the magnetic destabilization of liquid-liquid interfaces. This is of particular importance in aluminum production.

  6. Global classical solutions to the 1-D vacuum free boundary problem for full compressible Navier-Stokes equations with large data

    NASA Astrophysics Data System (ADS)

    Ou, Yaobin

    2017-01-01

    The vacuum free boundary problem of one-dimensional non-isentropic compressible Navier-Stokes equations with large initial data is investigated in this paper. The fluid is initially assumed to occupy a finite interval and connect to the vacuum continuously at the free boundary, which is often considered in the gas-vacuum interface problem. Using the method of Lagrangian particle path, we derive some point-wise estimates and weighted spatial and time energy estimates for the classical solutions. Then the global existence and uniqueness of classical solutions are shown, and the expanding speed for the free boundary is proved to be finite. The main difficulty of this problem is the degeneracy of the system near the free boundary. Previous results are only for the solutions with low regularity (cf. [G. Q. Chen and M. Kratka, Commun. Partial Differ. Equations. 27 907-943 (2002)]).

  7. Compressible magnetohydrodynamic sawtooth crash

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda E.

    2014-02-01

    In a toroidal magnetically confined plasma at low resistivity, compressible magnetohydrodynamic (MHD) predicts that an m = 1/n = 1 sawtooth has a fast, explosive crash phase with abrupt onset, rate nearly independent of resistivity, and localized temperature redistribution similar to experimental observations. Large scale numerical simulations show that the 1/1 MHD internal kink grows exponentially at a resistive rate until a critical amplitude, when the plasma motion accelerates rapidly, culminating in fast loss of the temperature and magnetic structure inside q < 1, with somewhat slower density redistribution. Nonlinearly, for small effective growth rate the perpendicular momentum rate of change remains small compared to its individual terms ∇p and J × B until the fast crash, so that the compressible growth rate is determined by higher order terms in a large aspect ratio expansion, as in the linear eigenmode. Reduced MHD fails completely to describe the toroidal mode; no Sweet-Parker-like reconnection layer develops. Important differences result from toroidal mode coupling effects. A set of large aspect ratio compressible MHD equations shows that the large aspect ratio expansion also breaks down in typical tokamaks with rq =1/Ro≃1/10 and a /Ro≃1/3. In the large aspect ratio limit, failure extends down to much smaller inverse aspect ratio, at growth rate scalings γ =O(ɛ2). Higher order aspect ratio terms, including B˜ϕ, become important. Nonlinearly, higher toroidal harmonics develop faster and to a greater degree than for large aspect ratio and help to accelerate the fast crash. The perpendicular momentum property applies to other transverse MHD instabilities, including m ≥ 2 magnetic islands and the plasma edge.

  8. Solar Flares: Magnetohydrodynamic Processes

    NASA Astrophysics Data System (ADS)

    Shibata, Kazunari; Magara, Tetsuya

    2011-12-01

    This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 1032 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence), local enhancement of electric current in the corona (formation of a current sheet), and rapid dissipation of electric current (magnetic reconnection) that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely), while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.

  9. GRIM: General Relativistic Implicit Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-02-01

    GRIM (General Relativistic Implicit Magnetohydrodynamics) evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. GRIM, which runs on CPUs as well as on GPUs, combines time evolution and primitive variable inversion needed for conservative schemes into a single step using only the residuals of the governing equations as inputs. This enables the code to be physics agnostic as well as flexible regarding time-stepping schemes.

  10. Stellarator Coil Design and Plasma Sensitivity

    SciTech Connect

    Long-Poe Ku and Allen H. Boozer

    2010-11-03

    The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

  11. Monte Carlo Estimation of the Electric Field in Stellarators

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Betancourt, O.; Garabedian, P.; Ng, K. C.

    1986-10-01

    The BETA computer codes have been developed to study ideal magnetohydrodynamic equilibrium and stability of stellarators and to calculate neoclassical transport for electrons as well as ions by the Monte Carlo method. In this paper a numerical procedure is presented to select resonant terms in the electric potential so that the distribution functions and confinement times of the ions and electrons become indistinguishable.

  12. [Nonlinear magnetohydrodynamics]. Final report

    SciTech Connect

    Montgomery, D.C.

    1998-11-01

    This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant`s lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the

  13. Bubble contraction in free-boundary Hele-Shaw flow with surface tension and kinetic undercooling regularisation

    NASA Astrophysics Data System (ADS)

    Dallaston, Michael; McCue, Scott

    2012-11-01

    When an inviscid bubble expands into a viscous fluid in a Hele-Shaw cell, the bubble boundary is unstable, in general forming long fingers (the Saffman-Taylor instability). In order to make the problem well-posed, a regularising boundary effect must be included. The most widely studied of these are surface tension, which penalises high curvatures, and kinetic undercooling, which penalises high velocities. Both these effects act as a stabilising influence on the free boundary. Less attention has been paid to the case of contracting bubbles, which shrink to a single point (or points) in finite time. In this case, the two effects are in competition, as surface tension stabilises the boundary, while kinetic undercooling destabilises it. This leads to bifurcation behaviour in the asymptotic (near-extinction) shape of the bubble as the relative strengths of the two effects are varied. In particular, there is a critical range of parameter values for which both circular and slit-type bubbles are stable, with a third (unstable) oval-type shape also present. We discuss some numerical and analytic techniques for solving the full free boundary problem and for exploring this interesting extinction behaviour.

  14. Teaching an Old Dog an Old Trick: FREE-FIX and Free-Boundary Axisymmetric MHD Equilibrium

    NASA Astrophysics Data System (ADS)

    Guazzotto, Luca

    2015-11-01

    A common task in plasma physics research is the calculation of an axisymmetric equilibrium for tokamak modeling. The main unknown of the problem is the magnetic poloidal flux ψ. The easiest approach is to assign the shape of the plasma and only solve the equilibrium problem in the plasma / closed-field-lines region (the ``fixed-boundary approach''). Often, one may also need the vacuum fields, i.e. the equilibrium in the open-field-lines region, requiring either coil currents or ψ on some closed curve outside the plasma to be assigned (the ``free-boundary approach''). Going from one approach to the other is a textbook problem, involving the calculation of Green's functions and surface integrals in the plasma. However, no tools are readily available to perform this task. Here we present a code (FREE-FIX) to compute a boundary condition for a free-boundary equilibrium given only the corresponding fixed-boundary equilibrium. An improvement to the standard solution method, allowing for much faster calculations, is presented. Applications are discussed. PPPL fund 245139 and DOE grant G00009102.

  15. Action Principle for Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, Philip; Pegoraro, Francesco

    2015-11-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al., which uses a noncanonical bracket to implement constrained variations of an action functional. Various implications and extensions of this action principle are also discussed.

  16. Stellar chromospheres

    NASA Technical Reports Server (NTRS)

    Linsky, J. L.

    1980-01-01

    Developments in the understanding and use of chromospheric diagnostics are discussed with emphasis on the following aspects: (1) trends emerging from semiempirical models of single stars; (2) the validity of claims that theoretical models of chromospheres are becoming realistic; (3) the correlation between the widths of Ca 2 H and K line emission cores and stellar absolute luminosity extending over 15 magnitudes (Wilson-Bappu relation); and (4) the existence of systematic flow patterns in stellar chromospheres.

  17. The Existence of Current-Vortex Sheets in Ideal Compressible Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Trakhinin, Yuri

    2009-02-01

    We prove the local-in-time existence of solutions with a surface of current-vortex sheet (tangential discontinuity) of the equations of ideal compressible magnetohydrodynamics in three space dimensions provided that a stability condition is satisfied at each point of the initial discontinuity. This paper is a natural completion of our previous analysis ( Trakhinin in Arch Ration Mech Anal 177:331-366, 2005) where a sufficient condition for the weak stability of planar current-vortex sheets was found and a basic a priori estimate was proved for the linearized variable coefficients problem for nonplanar discontinuities. The original nonlinear problem is a free boundary hyperbolic problem. Since the free boundary is characteristic, the functional setting is provided by the anisotropic weighted Sobolev spaces {H^m_*} . The fact that the Kreiss-Lopatinski condition is satisfied only in a weak sense yields losses of derivatives in a priori estimates. Therefore, we prove our existence theorem by a suitable Nash-Moser-type iteration scheme.

  18. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    SciTech Connect

    Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.; Matsakos, T.; Lima, J. J. G.

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  19. Review of recent stellarator results in the USA, the USSR, and Japan

    SciTech Connect

    Lyon, J.F.

    1990-12-01

    Stellarators with significant magnetic shear in the United States, the Soviet Union, and Japan are described, and recent results are discussed in terms of their contributions to the physics understanding relevant for stellarator optimization and to toroidal confinement understanding in general. The areas discussed are the properties of stellarators with significant shear, magnetic surfaces, trapped-particle losses, magnetohydrodynamic (MHD) stability, global confinement scaling, local transport, fluctuations, and particle and impurity control. 58 refs., 23 figs.

  20. Research into the process of impingement of two plane jets of an ideal fluid with free boundaries

    NASA Astrophysics Data System (ADS)

    Baskakov, V. D.; Karnaukhov, K. A.

    2016-07-01

    The problem of finding parameters stationary jets, outgoing from a place of impact of two incoming flat ideal jets with free boundaries and possessing the identical speed, but various width, has no decision. Various models are widely used for a conclusion of the missing equation now, but they lead to contradictory results. The new model is offered. Adequacy to the offered model was checked by comparison results with data of the numerical calculations in ANSYS AUTODYN. The dependence approximating results of numerical calculations is developed to increase accuracy in calculations of angular provision of the internal outgoing jet.First of all, the executed researches are interesting to experts, who works on behavior low- value technological errors in shaped charges.

  1. Advanced stellarators

    NASA Astrophysics Data System (ADS)

    Schlüter, Arnulf

    1983-03-01

    Toroidal confinement of a plasma by an external magnetic field is not compatible with axisymmetry, in contrast to confinement by the pinch effect of induced electric currents as in a tokomak or by the reversed field pinch configuration. The existence of magnetic surfaces throughout the region in which grad p ≠ 0 is therefore not guaranteed in such configurations, though it is necessary for MHD-equilibrium when the lines of force possess a finite twist (or "rotational transform"). These twisted equilibria are called stellarators. The other type of external confinement requires all lines of force to be closed upon themselves and p to be function of the well defined quantity Q = φ d l/ B only. The resulting "bumpy" tori are sometimes also referred to as being M + S like. By discussing specific examples it is shown that stellarator configurations exist which retain as much as possible the properties of M + S like configurations, combine these with the magnetic well, and with an approximation to the isodynamic requirement of D. Palumbo. These so-called Advanced Stellarators shown an improvement in predicted particle confinement and beta-limit compared to the classical stellarators. They can also be viewed as forming a system of linked stabilized mirrors of small mirror ratio. These fields can be produced by modular coils. A prototype of such a configuration is being designed by the stellarator division of IPP under the name of Wendelstein VII-AS. Expected physical data and technical details of W VII-AS are given.

  2. Dynamic multiscaling in magnetohydrodynamic turbulence.

    PubMed

    Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul

    2016-11-01

    We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.

  3. Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stan

    A "stellar wind" is the continuous, supersonic outflow of matter from the surface layers of a star. Our sun has a solar wind, driven by the gas-pressure expansion of the hot (T > 106 K) solar corona. It can be studied through direct in situ measurement by interplanetary spacecraft; but analogous coronal winds in more distant solar-type stars are so tenuous and transparent that that they are difficult to detect directly. Many more luminous stars have winds that are dense enough to be opaque at certain wavelengths of the star's radiation, making it possible to study their wind outflows remotely through careful interpretation of the observed stellar spectra. Red giant stars show slow, dense winds that may be driven by the pressure from magnetohydrodyanmic waves. As stars with initial mass up to 8 M ⊙ evolve toward the Asymptotic Giant Branch (AGB), a combination of stellar pulsations and radiative scattering off dust can culminate in "superwinds" that strip away the entire stellar envelope, leaving behind a hot white dwarf stellar core with less than the Chandrasekhar mass of ˜ ​​ 1. 4M ⊙. The winds of hot, luminous, massive stars are driven by line-scattering of stellar radiation, but such massive stars can also exhibit superwind episodes, either as Red Supergiants or Luminous Blue Variable stars. The combined wind and superwind mass loss can strip the star's hydrogen envelope, leaving behind a Wolf-Rayet star composed of the products of earlier nuclear burning via the CNO cycle. In addition to such direct effects on a star's own evolution, stellar winds can be a substantial source of mass, momentum, and energy to the interstellar medium, blowing open large cavities or "bubbles" in this ISM, seeding it with nuclear processed material, and even helping trigger the formation of new stars, and influencing their eventual fate as white dwarves or core-collapse supernovae. This chapter reviews the properties of such stellar winds, with an emphasis on the various

  4. SI: The Stellar Imager

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2006-01-01

    The ultra-sharp images of the Stellar Imager (SI) will revolutionize our view of many dynamic astrophysical processes: The 0.1 milliarcsec resolution of this deep-space telescope will transform point sources into extended sources, and simple snapshots into spellbinding evolving views. SI s science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI s prime goal is to enable long-term forecasting of solar activity and the space weather that it drives in support of the Living With a Star program in the Exploration Era by imaging a sample of magnetically active stars with enough resolution to map their evolving dynamo patterns and their internal flows. By exploring the Universe at ultra-high resolution, SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled structures and processes in the Universe.

  5. Coil optimization for a high-β stellarator-tokamak hybrid

    NASA Astrophysics Data System (ADS)

    Schlomann, B.; Ware, A. S.; Spong, D. A.

    2012-10-01

    Magnetic coil configurations are developed for a drift-optimized, tokamak-stellarator hybrid that is stable to both pressure- and current-driven modes for high values of β. Previous work on this configuration [A. S. Ware, et al., Phys. Rev. Lett, 89, 125003 (2002)] was carried out using a fixed-boundary equilibrium (i.e., with no set of external coils). Here, we present initial work to produce a realizable coil set for such a configuration. This work is done using the COILOPT code to develop an initial coil set and the STELLOPT code to enhance the quality of the resulting free-boundary equilibria. Since this is a hybrid device, the initial modular coil sets have the advantage of being simpler than modular coils from recent stellarator design efforts (such as QPS and NCSX). The stability and confinement properties of the resultant optimized free-boundary configuration will be tested.

  6. JET FORMATION FROM MASSIVE YOUNG STARS: MAGNETOHYDRODYNAMICS VERSUS RADIATION PRESSURE

    SciTech Connect

    Vaidya, Bhargav; Porth, Oliver; Fendt, Christian; Beuther, Henrik E-mail: fendt@mpia.de

    2011-11-20

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impact the outflow dynamics, i.e., its acceleration and collimation. We perform axisymmetric magnetohydrodynamic (MHD) simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magnetocentrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation-assuming a 30 M{sub Sun} star-we find substantial de-collimation of 35% due to radiation forces. The opening angle increases from 20 Degree-Sign to 32 Degree-Sign for stellar masses from 20 M{sub Sun} to 60 M{sub Sun }. A small change in the line-force parameter {alpha} from 0.60 to 0.55 changes the opening angle by {approx}8 Degree-Sign . We find that it is mainly the stellar radiation that affects the jet dynamics. Unless the disk extends very close to the star, its force is too small to have much impact. Essentially, our parameter runs with different stellar masses can be understood as a proxy for the time evolution of the star-outflow system. Thus, we have shown that when the stellar mass (thus luminosity) increases with age, the outflows become less collimated.

  7. Data assimilation for magnetohydrodynamics systems

    NASA Astrophysics Data System (ADS)

    Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.

    2006-05-01

    Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.

  8. Magnetohydrodynamic mechanism for pedestal formation.

    PubMed

    Guazzotto, L; Betti, R

    2011-09-16

    Time-dependent two-dimensional magnetohydrodynamic simulations are carried out for tokamak plasmas with edge poloidal flow. Differently from conventional equilibrium theory, a density pedestal all around the edge is obtained when the poloidal velocity exceeds the poloidal sound speed. The outboard pedestal is induced by the transonic discontinuity, the inboard one by mass redistribution. The density pedestal follows the formation of a highly sheared flow at the transonic surface. These results may be relevant to the L-H transition and pedestal formation in high performance tokamak plasmas.

  9. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, D.H.; Thresh, H.R.

    1980-06-24

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator is described comprising the steps of preparing a billet having a core of a first metal, a tubular sleeve of a second metal, and an outer sheath of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MHD channel frame. The method forms a bond between the first metal of the core and the second metal of the sleeve strong enough to withstand a hot and corrosive environment.

  10. Action principle for relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Morrison, P. J.; Pegoraro, F.

    2015-04-01

    A covariant action principle for ideal relativistic magnetohydrodynamics in terms of natural Eulerian field variables is given. This is done by generalizing the covariant Poisson bracket theory of Marsden et al. [Ann. Phys. 169, 29 (1986)], which uses a noncanonical bracket to effect constrained variations of an action functional. Various implications and extensions of this action principle are also discussed. Two significant byproducts of this formalism are the introduction of a new divergence-free 4-vector variable for the magnetic field, and a new Lie-dragged form for the theory.

  11. Magneto-Hydrodynamics Based Microfluidics

    PubMed Central

    Qian, Shizhi; Bau, Haim H.

    2009-01-01

    In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890

  12. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

    NASA Astrophysics Data System (ADS)

    Heumann, Holger; Rapetti, Francesca

    2017-04-01

    Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

  13. On the existence of convex classical solutions to a generalized Prandtl-Batchelor free-boundary problem-II

    NASA Astrophysics Data System (ADS)

    Acker, A.

    We give an analytical proof of the existence of convex classical solutions for the (convex) Prandtl-Batchelor free boundary problem in fluid dynamics. In this problem, a convex vortex core of constant vorticity μ >0 is embedded in a closed irrotational flow inside a closed, convex vessel in ℜ 2. The unknown boundary of the vortex core is a closed curve Γ along which (v+)^2-(v^-)^2=Λ , where v+ and v- denote, respectively, the exterior and interior flow-speeds along Γ and Λ is a given constant. Our existence results all apply to the natural multidimensional mathematical generalization of the above problem. The present existence theorems are the only ones available for the Prandtl-Batchelor problem for Λ >0, because (a) the author's prior existence treatment was restricted to the case where Λ <0, and because (b) there is no analytical existence theory available for this problem in the non-convex case, regardless of the sign of Λ .

  14. MHD stability of the MHH2 stellarator

    SciTech Connect

    Garabedian, P.R.

    1998-12-31

    The NSTAB code provides a computer implementation of the variational principle of magnetohydrodynamics. Excellent resolution is obtained by combining a spectral representation in the toroidal and poloidal angles with a low order, but exceptionally accurate, finite difference scheme in the radial direction. Conservation form of the magnetostatics equations is used to capture islands and current sheets effectively on crude grids. This method enables one to discuss global stability by analyzing bifurcated solutions of the equilibrium problem. The author applies it to investigate the physics of the MHH2 stellarator, whose magnetic structure has a remarkable property of quasi-axial symmetry.

  15. Variational integrators for reduced magnetohydrodynamics

    SciTech Connect

    Kraus, Michael; Tassi, Emanuele; Grasso, Daniela

    2016-09-15

    Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.

  16. Variational integrators for reduced magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Tassi, Emanuele; Grasso, Daniela

    2016-09-01

    Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.

  17. Stellar cannibalism

    NASA Astrophysics Data System (ADS)

    Astronomers have obtained evidence that stars can literally swallow other stars, leading to the ejection of stellar material into space and the formation of extremely close pairs of stars, according to the National Science Foundation (NSF). The discovery supports theoretical predictions of the evolution of double stars.While studying the central stars of planetary nebulae—disk-shaped gas clouds that vaguely resemble planets—Albert D. Grauer of the University of Arkansas at Little Rock and Howard E. Bond of Louisiana State University at Baton Rouge found that several of these central stars are actually very close stellar pairs. Previously, it had been thought that the central star in a planetary nebula was a single star that expelled a gas cloud as it neared the end of its life. Their latest discovery, the central star of planetary nebula Abell 41, consists of a pair of stars that orbit each other in 2 hours and 43 minutes. The researchers also have found three other central star pairs that have orbital periods of between 11 and 16 hours.

  18. Compact stellarators with modular coils.

    PubMed

    Garabedian, P R

    2000-07-18

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan.

  19. Compact stellarators with modular coils

    PubMed Central

    Garabedian, P. R.

    2000-01-01

    Compact stellarator designs with modular coils and only two or three field periods are now available; these designs have both good stability and quasiaxial symmetry providing adequate transport for a magnetic fusion reactor. If the bootstrap current assumes theoretically predicted values a three field period configuration is optimal, but if that net current turns out to be lower, a device with two periods and just 12 modular coils might be better. There are also attractive designs with quasihelical symmetry and four or five periods whose properties depend less on the bootstrap current. Good performance requires that there be a satisfactory magnetic well in the vacuum field, which is a property lacking in a stellarator-tokamak hybrid that has been proposed for a proof of principle experiment. In this paper, we present an analysis of stability for these configurations that is based on a mountain pass theorem asserting that, if two solutions of the problem of magnetohydrodynamic equilibrium can be found, then there has to be an unstable solution. We compare results of our theory of equilibrium, stability, and transport with recently announced measurements from the large LHD experiment in Japan. PMID:10899993

  20. Stellar Ablation of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Moore, Thomas E.; Horwitz, J. L.

    2007-01-01

    We review observations and theories of the solar ablation of planetary atmospheres, focusing on the terrestrial case where a large magnetosphere holds off the solar wind, so that there is little direct atmospheric impact, but also couples the solar wind electromagnetically to the auroral zones. We consider the photothermal escape flows known as the polar wind or refilling flows, the enhanced mass flux escape flows that result from localized solar wind energy dissipation in the auroral zones, and the resultant enhanced neutral atom escape flows. We term these latter two escape flows the "auroral wind." We review observations and theories of the heating and acceleration of auroral winds, including energy inputs from precipitating particles, electromagnetic energy flux at magnetohydrodynamic and plasma wave frequencies, and acceleration by parallel electric fields and by convection pickup processes also known as "centrifugal acceleration." We consider also the global circulation of ionospheric plasmas within the magnetosphere, their participation in magnetospheric disturbances as absorbers of momentum and energy, and their ultimate loss from the magnetosphere into the downstream solar wind, loading reconnection processes that occur at high altitudes near the magnetospheric boundaries. We consider the role of planetary magnetization and the accumulating evidence of stellar ablation of extrasolar planetary atmospheres. Finally, we suggest and discuss future needs for both the theory and observation of the planetary ionospheres and their role in solar wind interactions, to achieve the generality required for a predictive science of the coupling of stellar and planetary atmospheres over the full range of possible conditions.

  1. Numerical Investigations of Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Mueller, W. C.

    2006-12-01

    Incompressible magnetohydrodynamic turbulence studied by large-scale direct numerical simulations has revealed a number of new interesting facets. The Goldreich-Sridhar phenomenology partly breaks down in turbulence subject to a strong mean magnetic field. This leads to a measureable anisotropy of two-point statistics. The nonlinear dynamics of kinetic (E^K) and magnetic energy (E^M) is the result of a dynamical equilibrium of Alfvén effect and a small-sale dynamo leading to a scaling relation between total and residual energy: (E^M-E^K)~ k(E^K+E^M)2. The probability density functions of cascading quantities are found to exhibit mono-scaling.

  2. Magnetohydrodynamic Turbulence and the Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2014-01-01

    The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.

  3. Method for manufacturing magnetohydrodynamic electrodes

    DOEpatents

    Killpatrick, Don H.; Thresh, Henry R.

    1982-01-01

    A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.

  4. Magnetohydrodynamic production of relativistic jets.

    PubMed

    Meier, D L; Koide, S; Uchida, Y

    2001-01-05

    A number of astronomical systems have been discovered that generate collimated flows of plasma with velocities close to the speed of light. In all cases, the central object is probably a neutron star or black hole and is either accreting material from other stars or is in the initial violent stages of formation. Supercomputer simulations of the production of relativistic jets have been based on a magnetohydrodynamic model, in which differential rotation in the system creates a magnetic coil that simultaneously expels and pinches some of the infalling material. The model may explain the basic features of observed jets, including their speed and amount of collimation, and some of the details in the behavior and statistics of different jet-producing sources.

  5. Magnetohydrodynamic turbulence: Observation and experiment

    SciTech Connect

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-15

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  6. Micromachined magnetohydrodynamic actuators and sensors

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  7. ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.

    2014-03-10

    A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.

  8. Relativistic magnetohydrodynamics in one dimension

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  9. Relativistic magnetohydrodynamics in one dimension.

    PubMed

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  10. Magnetohydrodynamic Turbulence and the Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2016-01-01

    Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.

  11. Magnetohydrodynamic turbulence: Observation and experimenta)

    NASA Astrophysics Data System (ADS)

    Brown, M. R.; Schaffner, D. A.; Weck, P. J.

    2015-05-01

    We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations EB(f ) . We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.

  12. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  13. Global ideal magnetohydrodynamic stability analysis for the configurational space of Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Nührenberg, Carolin

    1996-06-01

    A survey of the magnetohydrodynamic (MHD) stability properties of three-dimensional (3-D) MHD configurations representing the Wendelstein 7-X (W7-X) stellarator experiment [ G. Grieger et al., Plasma Physics and Controlled Nuclear Fusion Research, 1990 (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 525] was performed with the Code for the Analysis for the Stability of 3-D Equilibria (CAS3D) [C. Schwab, Phys. Fluids B 5, 3195 (1993)] . This study confirms and elaborates previous indications on the structural characteristics of global MHD modes in stellarators. In particular these characteristics pertain to the compressibility of these modes, the equivalence of the decoupled stability problems for the modes with different parities, and the separability of global from fine-scale perturbations within the same mode family. As to the W7-X stellarator experiment, the envisaged configurational class—providing the intended experimental flexibility—appears to offer scenarios of safely stable operation.

  14. Non-axisymmetric equilibrium reconstruction for stellarators, reversed field pinches and tokamaks

    SciTech Connect

    Hanson, James D.; Anderson, D.T.; Cianciosa, M.; Franz, P.; Hartwell, G. H.; Hirshman, Steven Paul; Knowlton, Stephen F.; Lao, Lang L.; Lazarus, Edward Alan; Marrelli, L.; Maurer, D. A.; Schmitt, J. C.; Sontag, A. C.; Stevenson, B. A.; Terranova, D.

    2013-01-01

    Axisymmetric equilibrium reconstruction using magnetohydrodynamic equilibrium solutions to the Grad Shafranov equation has long been an important tool for interpreting tokamak experiments. This paper describes recent results in non-axisymmetric (three-dimensional) equilibrium reconstruction of nominally axisymmetric plasmas (tokamaks and reversed field pinches (RFPs)), and fully non-axisymmetric plasmas (stellarators). Results from applying the V3FIT code to CTH and HSX stellarator plasmas, RFX-mod RFP plasmas and the DIII-D tokamak are presented.

  15. STELLARATOR INJECTOR

    DOEpatents

    Post, R.F.

    1962-09-01

    A method and means are described for injecting energetic neutral atoms or molecular ions into dense magnetically collimated plasma columns of stellarators and the like in such a manner that the atoms or ions are able to significantly penetrate the column before being ionized by collision with the plasma constituent particles. Penetration of the plasma column by the neutral atoms or molecular ions is facilitated by superposition of two closely spaced magnetic mirrors on the plasma confinement field. The mirrors are moved apart to magnetically sweep plasma from a region between the mirrors and establish a relatively low plasma density therein. By virture of the low density, neutral atoms or molecular ions injected into the region significantly penetrate the plasma column before being ionized. Thereafter, the mirrors are diminished to permit the injected material to admix with the plasma in the remainder of the column. (AEC)

  16. Existence and Stability of Compressible Current-Vortex Sheets in Three-Dimensional Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang; Wang, Ya-Guang

    2008-03-01

    Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy

  17. Computational Methods for Ideal Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kercher, Andrew D.

    Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency

  18. Stellar Dynamos

    NASA Astrophysics Data System (ADS)

    Charbonneau, Paul

    This chapter steps finally away from the sun and towards the stars, the idea being to apply the physical insight gained so far to see how much of stellar magnetism can be understood in terms of dynamo action. Dynamo action in the convective core of massive main-sequence stars is first considered and shown viable. For intermediate-mass main-sequence stars the fossil field hypothesis will carry the day, although possible dynamo alternatives are also briefly discussed. The extension of the solar dynamo models investigated in Chap. 3 (10.1007/978-3-642-32093-4_3) to other solar-type stars will first take us through an important detour in first having to understand rotational evolution in response to angular momentum loss in a magnetized wind. Dynamo action in fully convective stars comes next, and the chapter closes with an overview of the situation for pre- and post-main-sequence stars and compact objects, leading finally to the magnetic fields of galaxies and beyond.

  19. Magnetohydrodynamic Propulsion for the Classroom

    NASA Astrophysics Data System (ADS)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  20. Magnetohydrodynamic (MHD) driven droplet mixer

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.

    2004-05-11

    A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.

  1. Shell models of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Plunian, Franck; Stepanov, Rodion; Frick, Peter

    2013-02-01

    Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.

  2. Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, W.-T.

    2013-04-01

    Magnetic fields are pervasive in barred galaxies, especially in gaseous substructures such as dust lanes and nuclear rings. To explore the effects of magnetic fields on the formation of the substructures as well as on the mass inflow rates to the galaxy center, we run two-dimensional, ideal magnetohydrodynamic simulations. We use a modified version of the Athena code whose numerical magnetic diffusivity is shown to be of third order in space. In the bar regions, magnetic fields are compressed and abruptly bent around the dust-lane shocks. The associated magnetic stress not only reduces the peak density of the dust-lane shocks but also removes angular momentum further from the gas that is moving radially in. Nuclear rings that form at the location of centrifugal barrier rather than resonance with the bar are smaller and more radially distributed, and the mass flow rate to the galaxy center is correspondingly larger in models with stronger magnetic fields. Outside the bar regions, the bar potential and strong shear conspire to amplify the field strength near the corotation resonance. The amplified fields transport angular momentum outward, producing trailing magnetic arms with strong fields and low density. The base of the magnetic arms are found to be unstable to a tearing-mode instability of magnetic reconnection. This produces numerous magnetic islands that eventually make the outer regions highly chaotic.

  3. From the Einstein-Szilard Patent to Modern Magnetohydrodynamics.

    ERIC Educational Resources Information Center

    Povh, I. L.; Barinberg, A. D.

    1979-01-01

    Examines present-day and future prospects of the applications of modern magnetohydrodynamics in a number of countries. Explains how the electromagnetic pump, which was invented by Einstein and Leo Szilard, led to the development of applied magnetohydrodynamics. (HM)

  4. Accurate, meshless methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Raives, Matthias J.

    2016-01-01

    Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.

  5. Electron magnetohydrodynamics: Dynamics and turbulence

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2013-11-01

    We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k1=k2 do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade ∝k-2. The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated.

  6. Stellar Metamorphosis:

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  7. Stellar Metamorphosis:

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [TOP LEFT AND RIGHT] The Hubble Space Telescope's Wide Field and Planetary Camera 2 has captured images of the birth of two planetary nebulae as they emerge from wrappings of gas and dust, like butterflies breaking out of their cocoons. These images highlight a fleeting phase in the stellar burnout process, occurring just before dying stars are transformed into planetary nebulae. The left-hand image is the Cotton Candy nebula, IRAS 17150-3224; the right-hand image, the Silkworm nebula, IRAS 17441-2411. Called proto-planetary nebulae, these dying stars have been caught in a transition phase between a red giant and a planetary nebula. This phase is only about 1,000 years long, very short in comparison to the 1 billion-year lifetime of a star. These images provide the earliest snapshots of the transition process. Studying images of proto-planetary nebulae is important to understanding the process of star death. A star begins to die when it has exhausted its thermonuclear fuel - hydrogen and helium. The star then becomes bright and cool (red giant phase) and swells to several tens of times its normal size. It begins puffing thin shells of gas off into space. These shells become the star's cocoon. In the Hubble images, the shells are the concentric rings seen around each nebula. But the images also reveal the nebulae breaking out from those shells. The butterfly-like wings of gas and dust are a common shape of planetary nebulae. Such butterfly shapes are created by the 'interacting winds' process, in which a more recent 'fast wind' - material propelled by radiation from the hot central star - punches a hole in the cocoon, allowing the nebula to emerge. (This 'interacting wind' theory was first proposed by Dr. Sun Kwok to explain the origin of planetary nebulae, and has been subsequently proven successful in explaining their shapes.) The nebulae are being illuminated by light from the invisible central star, which is then reflected toward us. We are viewing the nebulae

  8. Variational Integrators for Ideal and Reduced Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Maj, Omar; Tassi, Emanuele; Grasso, Daniela

    2016-10-01

    Ideal and reduced magnetohydrodynamics are simplified sets of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. Discrete exterior calculus is used for the discretisation of the field variables in order to preserve their geometrical character. The resulting integrators preserve important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As these integrators are free of numerical resistivity, the magnetic field line topology is preserved and spurious reconnection is absent in the ideal case. Only when effects of finite electron mass are added, magnetic reconnection takes place. The excellent conservation properties of the methods are exemplified with numerical examples in 2D. We conclude with an outlook towards the treatment of general geometries in 3D and full magnetohydrodynamics.

  9. New approach to nonrelativistic ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Kumar, Kuldeep

    2016-07-01

    We provide a novel action principle for nonrelativistic ideal magnetohydrodynamics in the Eulerian scheme exploiting a Clebsch-type parametrisation. Both Lagrangian and Hamiltonian formulations have been considered. Within the Hamiltonian framework, two complementary approaches have been discussed using Dirac's constraint analysis. In one case the Hamiltonian is canonical involving only physical variables but the brackets have a noncanonical structure, while the other retains the canonical structure of brackets by enlarging the phase space. The special case of incompressible magnetohydrodynamics is also considered where, again, both the approaches are discussed in the Hamiltonian framework. The conservation of the stress tensor reveals interesting aspects of the theory.

  10. Self-consistent simulation of plasma scenarios for ITER using a combination of 1.5D transport codes and free-boundary equilibrium codes

    NASA Astrophysics Data System (ADS)

    Parail, V.; Albanese, R.; Ambrosino, R.; Artaud, J.-F.; Besseghir, K.; Cavinato, M.; Corrigan, G.; Garcia, J.; Garzotti, L.; Gribov, Y.; Imbeaux, F.; Koechl, F.; Labate, C. V.; Lister, J.; Litaudon, X.; Loarte, A.; Maget, P.; Mattei, M.; McDonald, D.; Nardon, E.; Saibene, G.; Sartori, R.; Urban, J.

    2013-11-01

    Self-consistent transport simulation of ITER scenarios is a very important tool for the exploration of the operational space and for scenario optimization. It also provides an assessment of the compatibility of developed scenarios (which include fast transient events) with machine constraints, in particular with the poloidal field coil system, heating and current drive, fuelling and particle and energy exhaust systems. This paper discusses results of predictive modelling of all reference ITER scenarios and variants using two suites of linked transport and equilibrium codes. The first suite consisting of the 1.5D core/2D SOL code JINTRAC (Wiesen S. et al 2008 JINTRAC-JET modelling suite JET ITC-Report) and the free-boundary equilibrium evolution code CREATE-NL (Albanese R. et al 2003 ISEM 2003 (Versailles, France); Albanese R. et al 2004 Nucl. Fusion 44 999), was mainly used to simulate the inductive D-T reference Scenario-2 with fusion gain Q = 10 and its variants in H, D and He (including ITER scenarios with reduced current and toroidal field). The second suite of codes was used mainly for the modelling of hybrid and steady-state ITER scenarios. It combines the 1.5D core transport code CRONOS (Artaud J.F. et al 2010 Nucl. Fusion 50 043001) and the free-boundary equilibrium evolution code DINA-CH (Kim S.H. et al 2009 Plasma Phys. Control. Fusion 51 105007).

  11. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Christensen-Dalsgaard, Jørgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita; Si Team

    2011-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is a "Landmark/Discovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  12. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team

    2009-09-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.

  13. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Christensen-Dalsgaard, Jorgen; Carpenter, Kenneth G.; Schrijver, Carolus J.; Karovska, Margarita

    2012-01-01

    The Stellar Imager (SI) is a space-based, UV/Optical Interferometer (UVOI) designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and of the Universe in general. It will also probe via asteroseismology flows and structures in stellar interiors. SI will enable the development and testing of a predictive dynamo model for the Sun, by observing patterns of surface activity and imaging of the structure and differential rotation of stellar interiors in a population study of Sun-like stars to determine the dependence of dynamo action on mass, internal structure and flows, and time. SI's science focuses on the role of magnetism in the Universe and will revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magnetohydrodynamically controlled processes in the Universe. SI is a "LandmarklDiscovery Mission" in the 2005 Heliophysics Roadmap, an implementation of the UVOI in the 2006 Astrophysics Strategic Plan, and a NASA Vision Mission ("NASA Space Science Vision Missions" (2008), ed. M. Allen). We present here the science goals of the SI Mission, a mission architecture that could meet those goals, and the technology development needed to enable this mission

  14. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.

  15. Advanced stellarator power plants

    SciTech Connect

    Miller, R.L.

    1994-07-01

    The stellarator is a class of helical/toroidal magnetic fusion devices. Recent international progress in stellarator power plant conceptual design is reviewed and comparisons in the areas of physics, engineering, and economics are made with recent tokamak design studies.

  16. On energy conservation in extended magnetohydrodynamics

    SciTech Connect

    Kimura, Keiji; Morrison, P. J.

    2014-08-15

    A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.

  17. Solar-driven liquid metal magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F.

    1981-01-01

    A solar oven heated by concentrated solar radiation as the heat source of a liquid metal magnetohydrodynamic (LMMHD) power generation system is proposed. The design allows the production of electric power in space, as well as on Earth, at high rates of efficiency. Two types of the solar oven suitable for the system are discussed.

  18. Potential vorticity formulation of compressible magnetohydrodynamics.

    PubMed

    Arter, Wayne

    2013-01-04

    Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed.

  19. Physical consistency in modeling interplanetary magnetohydrodynamic fluctuations

    NASA Technical Reports Server (NTRS)

    Zhou, Y.; Matthaeus, W. H.; Roberts, D. A.; Goldstein, M. L.

    1990-01-01

    The validity of the Velli, Grappin and Mangeney (1989) model is evaluated. It is argued that the model is incorrect because it mixes different dynamical models, assumes weak nonlinearities, makes predictions that vary with observations, and violates causality. It is proposed that self-similar behavior in the coronal source region of the magnetohydrodynamic fluctuations cause the Kolmogorov-like spectra.

  20. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    2001-01-01

    This report describes the progress made in the investigation of the solar corona using magnetohydrodynamic (MHD) simulations. Coronal mass ejections (CME) are believed to be the primary cause of nonrecurrent geomagnetic storms and these have been investigated through the use of three-dimensional computer simulation.

  1. Stellarator status, 1989

    SciTech Connect

    Lyon, J.F. ); Grieger, G.; Rau, F. ); Iiyoshi, A. ); Navarro, A.P. ); Kovrizhnykh, L.M. . Inst. Obshchey Fiziki); Pavlichenko, O.S. (AN Ukrain

    1990-07-01

    The present status of stellarator experiments and recent progress in stellarator research (both experimental and theoretical) are reported by groups in the United States, the USSR, Japan, Australia, and the European Community (the Federal Republic of Germany and Spain). Experiments under construction and studies of large, next-generation stellarators are also described. 73 refs., 11 figs., 4 tabs.

  2. Saturation of Stellar Winds from Young Suns

    NASA Astrophysics Data System (ADS)

    Suzuki, Takeru K.; Imada, Shinsuke; Kataoka, Ryuho; Kato, Yoshiaki; Matsumoto, Takuma; Miyahara, Hiroko; Tsuneta, Saku

    2013-10-01

    We investigated mass losses via stellar winds from Sun-like main-sequence stars with a wide range of activity levels. We performed forward-type magnetohydrodynamical numerical experiments for Alfvén wave-driven stellar winds with a wide range of input Poynting flux from the photosphere. Increasing the magnetic field strength and the turbulent velocity at the stellar photosphere from the current solar level, the mass-loss rate rapidly at first increases, owing to suppression of the reflection of the Alfvén waves. The surface materials are lifted up by the magnetic pressure associated with the Alfvén waves, and the cool dense chromosphere is intermittently extended to 10%#8211;20% of the stellar radius. The dense atmospheres enhance the radiative losses, and eventually most of the input Poynting energy from the stellar surface escapes by radiation. As a result, there is no more sufficient energy remaining for the kinetic energy of the wind; the stellar wind saturates in very active stars, as observed in Wood et al. (2002, ApJ, 574, 412; 2005, ApJ, 628, L143). The saturation level is positively correlated with Br,0 f0, where Br,0 and f0 are the magnetic field strength and the filling factor of open flux tubes at the photosphere. If Br,0 f0 is relatively large gtrsim 5 G, the mass-loss rate could be as high as 1000 times. If such a strong mass loss lasts for ˜ 1 billion years, the stellar mass itself would be affected, which could be a solution to the faint young Sun paradox. We derived a Reimers-type scaling relation that estimates the mass-loss rate from an energetics consideration of our simulations. Finally, we derived the evolution of the mass-loss rates, dot;{M} ∝ t-1.23, of our simulations, combining with an observed time evolution of X-ray flux from Sun-like stars, which are shallower than dot;{M} ∝ t-2.33±0.55 in Wood et al. (2005).

  3. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. II - Magnetohydrodynamic energy fluxes for late-type stars

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.

    1988-01-01

    Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.

  4. 3D Equilibrium Reconstruction in Stellarators and Tokamaks with STELLOPT

    NASA Astrophysics Data System (ADS)

    Lazerson, Samuel; Pablant, Novimir; Gates, David; Neilson, Hutch; Nazikian, Raffi; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Ida, Katsumi; Sakakibara, Satoru

    2012-10-01

    The ability to model and predict the behavior of stellarators and tokamaks requires an ability to match simulation parameters with experimental measurements. This process, known as experimental reconstruction, has been used extensively with 2D axisymmetric codes for Tokamaks. These codes, such as EFIT, lack the ability to model the 3D nature of stellarators and the emerging 3D nature of Tokamaks. Phenomena such as, shielding of islands by neoclassical flows and the suppression of edge localized modes through application of 3D fields, highlight the need for such 3D tools. The stellarator optimizer code STELLOPT has been modified to match 3D VMEC equilibria to experimental measurements. This has allowed 3D experimental reconstructions to be preformed on W7-AS, LHD, and DIII-D devices. The free boundary VMEC equilibria are matched to Thomson profiles (ne and Te), charge exchange measurements (Ti), MSE (polarization angle), and magnetic diagnostics (B-probes, flux loops, Rogowski coils). Three dimensional reconstructed equilibria are presented alongside confidence metrics for the reconstruction process.

  5. MHD computations for stellarators

    SciTech Connect

    Johnson, J.L.

    1985-12-01

    Considerable progress has been made in the development of computational techniques for studying the magnetohydrodynamic equilibrium and stability properties of three-dimensional configurations. Several different approaches have evolved to the point where comparison of results determined with different techniques shows good agreement. 55 refs., 7 figs.

  6. Multi-region relaxed magnetohydrodynamics with flow

    SciTech Connect

    Dennis, G. R. Dewar, R. L.; Hole, M. J.; Hudson, S. R.

    2014-04-15

    We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.

  7. Hall-magnetohydrodynamic turbulence with electron inertia

    NASA Astrophysics Data System (ADS)

    Martin, L. N.; Andres, N.; Dmitruk, P.; Gomez, D. O.

    2013-12-01

    The magnetohydrodynamic (one-fluid) model is often regarded as a reasonable description of the dynamics of a plasma. One-fluid models are useful in the context of large scale dynamics, but when a more detailed description is needed (for instance, when the physical context favors the development of small scales) it is most appropriate to consider two-fluid models. Within the framework of two-fluid MHD for a fully ionized hydrogen plasma, we study the effect of the Hall term and electron inertia in MHD turbulence, observing whether these effects change the energy cascade, the characteristic scales of the flow and the dynamics of global magnitudes, with particular interest in the dissipation processes. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics (RHMHD) and 2.5-D Hall-MHD including electron inertia are performed for different values of the ion and electron skin depth (controlling the impact of the Hall term and the electron inertia).

  8. Magnetohydrodynamic equilibria with incompressible flows: Symmetry approach

    SciTech Connect

    Cicogna, G.; Pegoraro, F.

    2015-02-15

    We identify and discuss a family of azimuthally symmetric, incompressible, magnetohydrodynamic plasma equilibria with poloidal and toroidal flows in terms of solutions of the Generalized Grad Shafranov (GGS) equation. These solutions are derived by exploiting the incompressibility assumption, in order to rewrite the GGS equation in terms of a different dependent variable, and the continuous Lie symmetry properties of the resulting equation and, in particular, a special type of “weak” symmetries.

  9. Lattice Boltzmann model for simulation of magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Shiyi; Chen, Hudong; Martinez, Daniel; Matthaeus, William

    1991-01-01

    A numerical method, based on a discrete Boltzmann equation, is presented for solving the equations of magnetohydrodynamics (MHD). The algorithm provides advantages similar to the cellular automaton method in that it is local and easily adapted to parallel computing environments. Because of much lower noise levels and less stringent requirements on lattice size, the method appears to be more competitive with traditional solution methods. Examples show that the model accurately reproduces both linear and nonlinear MHD phenomena.

  10. New cellular automaton model for magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Chen, Hudong; Matthaeus, William H.

    1987-01-01

    A new type of two-dimensional cellular automation method is introduced for computation of magnetohydrodynamic fluid systems. Particle population is described by a 36-component tensor referred to a hexagonal lattice. By appropriate choice of the coefficients that control the modified streaming algorithm and the definition of the macroscopic fields, it is possible to compute both Lorentz-force and magnetic-induction effects. The method is local in the microscopic space and therefore suited to massively parallel computations.

  11. Nuclear Electric Magnetohydrodynamic Propulsion for Submarine

    DTIC Science & Technology

    1989-05-01

    Magnetohydrodynamic Theory 24 2.3 MHD Pump Analysis 29 2.4 Maximum Pump Efficiency and Power 33 2.5 MHD Electrical Generator 40 2.6 MHD Generator Requirements 44 3...propulsion was first demon- strated by Stewart Way who published a very complete and mathematically rigorous analysis of an external duct, DC...in simple analysis and still apply in a complicated cases which require computer or physical modeling. As mentioned before, the MHD generator works on

  12. Geomagnetic main field modeling using magnetohydrodynamic constraints

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1985-01-01

    The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.

  13. Guiding Center Equations for Ideal Magnetohydrodynamic Modes

    SciTech Connect

    Roscoe B. White

    2013-02-21

    Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through δ~B = ∇ X (ξ X B) however perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement ξ are derived which perserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

  14. Guiding center equations for ideal magnetohydrodynamic modes

    SciTech Connect

    White, R. B.

    2013-04-15

    Guiding center simulations are routinely used for the discovery of mode-particle resonances in tokamaks, for both resistive and ideal instabilities and to find modifications of particle distributions caused by a given spectrum of modes, including large scale avalanches during events with a number of large amplitude modes. One of the most fundamental properties of ideal magnetohydrodynamics is the condition that plasma motion cannot change magnetic topology. The conventional representation of ideal magnetohydrodynamic modes by perturbing a toroidal equilibrium field through {delta}B-vector={nabla} Multiplication-Sign ({xi}-vector Multiplication-Sign B-vector), however, perturbs the magnetic topology, introducing extraneous magnetic islands in the field. A proper treatment of an ideal perturbation involves a full Lagrangian displacement of the field due to the perturbation and conserves magnetic topology as it should. In order to examine the effect of ideal magnetohydrodynamic modes on particle trajectories, the guiding center equations should include a correct Lagrangian treatment. Guiding center equations for an ideal displacement {xi}-vector are derived which preserve the magnetic topology and are used to examine mode particle resonances in toroidal confinement devices. These simulations are compared to others which are identical in all respects except that they use the linear representation for the field. Unlike the case for the magnetic field, the use of the linear field perturbation in the guiding center equations does not result in extraneous mode particle resonances.

  15. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  16. An Exploration of the Statistical Signatures of Stellar Feedback

    NASA Astrophysics Data System (ADS)

    Boyden, Ryan D.; Koch, Eric W.; Rosolowsky, Erik W.; Offner, Stella S. R.

    2016-12-01

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic 12CO(1-0) maps assuming that the simulations are at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.

  17. Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number. I - Finite-difference scheme and its application to the deformation of a bubble in a uniaxial straining flow

    NASA Astrophysics Data System (ADS)

    Kang, I. S.; Leal, L. G.

    1987-07-01

    A numerical technique for solving axisymmetric, unsteady free-boundary problems in fluid mechanics is presented. This finite-difference method is a generalization of the steady algorithm reported by Ryskin and Leal (1984). In this scheme, all boundary surfaces of the solution domain at any time coincide exactly with a coordinate line of a numerically generated orthogonal coordinate system. Thus, unreasonable grid deformation during calculation is not a problem. A transient algorithm for applying the orthogonal mapping technique to unsteady free-boundary problems is developed. The unsteady deformation of a bubble in a uniaxial extensional flow for Reynolds numbers between 0.1 and 100 is considered as an example.

  18. Stellar flares and the dark energy of CMEs

    NASA Astrophysics Data System (ADS)

    Drake, Jeremy J.; Cohen, Ofer; Garraffo, Cecilia

    2015-08-01

    Flares we observe on stars in white light, UV or soft X-rays are probably harbingers of coronal mass ejections (CMEs). If we use the Sun as a guide, large stellar flares will dissipate much more particle kinetic energy in CMEs than flare radiative energy. Such monster CMEs pose a quandary for understanding the fraction of the energy budget stars can spend on magnetic activity. They could also be the dominant mechanism of angular momentum loss on active stars, and have the potential to ravage planetary atmospheres. We will discuss flare activity, how it might relate to coronal mass ejections, and efforts to understand stellar spin-down and the impact of CMEs on planetary atmospheres using detailed magnetohydrodynamic modelling.

  19. Stability in straight stellarators

    SciTech Connect

    Kulsrud, R.M.; Yoshikawa, S.

    1981-07-01

    The stability of the straight stellarator against localized interchange modes is investigated employing the Mercier-Greene-Johnson criterion. Critical values of ..beta.. are obtained both numerically and analytically. The conclusion is that for classical helical stellarators the average limiting ..beta..'s are quite low of order three to four percent.

  20. Radiation-magnetohydrodynamic simulations of the photoionization of magnetized globules

    NASA Astrophysics Data System (ADS)

    Henney, William J.; Arthur, S. Jane; de Colle, Fabio; Mellema, Garrelt

    2009-09-01

    We present the first three-dimensional radiation-magnetohydrodynamic simulations of the photoionization of a dense, magnetized molecular globule by an external source of ultraviolet radiation. We find that, for the case of a strong ionizing field, significant deviations from the non-magnetic evolution are seen when the initial magnetic field threading the globule has an associated magnetic pressure that is greater than 100 times the gas pressure. In such a strong-field case, the photoevaporating globule will adopt a flattened or `curled up' shape, depending on the initial field orientation, and magnetic confinement of the ionized photoevaporation flow can lead to recombination and subsequent fragmentation during advanced stages of the globule evolution. We find suggestive evidence that such magnetic effects may be important in the formation of bright, bar-like emission features in HII regions. We include simple but realistic fits to heating and cooling rates in the neutral and molecular gas in the vicinity of a high-mass star cluster, and show that the frequently used isothermal approximation can lead to an overestimate of the importance of gravitational instability in the radiatively imploded globule. For globules within 2 pc of a high-mass star cluster, we find that heating by stellar X-rays prevents the molecular gas from cooling below 50 K. Based in part on numerical simulations carried out using the Kan Balam supercomputer, operated by the Departamento de Supercómputo, Dirección General de Servicios de Cómputo Académico, Universidad Nacional Autónoma de México. E-mail: w.henney@astrosmo.unam.mx

  1. Two-dimensional Magnetohydrodynamic Simulations of Barred Galaxies

    NASA Astrophysics Data System (ADS)

    Kim, Woong-Tae; Stone, James M.

    2012-06-01

    Barred galaxies are known to possess magnetic fields that may affect the properties of bar substructures such as dust lanes and nuclear rings. We use two-dimensional high-resolution magnetohydrodynamic (MHD) simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures, as well as on the mass inflow rates to the galaxy center. The gaseous medium is assumed to be infinitesimally thin, isothermal, non-self-gravitating, and threaded by initially uniform, azimuthal magnetic fields. We find that there exists an outermost x 1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks, temporarily causing the dust lanes to bend into an "L" shape and eventually leading to a smaller and more centrally distributed ring than in unmagnetized models. The mass inflow rates in magnetized models correspondingly become larger, by more than two orders of magnitude when the initial fields have an equipartition value with thermal energy, than in the unmagnetized counterparts. Outside the outermost x 1-orbit, on the other hand, an MHD dynamo due to the combined action of the bar potential and background shear operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms has a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density that propagate along the arms to turn the outer disk into a highly chaotic state.

  2. Broken symmetry in ideal magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1993-01-01

    A numerical study of the long-time evolution of a number of cases of inviscid, isotropic, incompressible, three-dimensional fluid, and magneto-fluid turbulence has been completed. The results confirm that ideal magnetohydrodynamic turbulence is non-ergodic if there is no external magnetic field present. This is due essentially to a canonical symmetry being broken in an arbitrary dynamical representation. The broken symmetry manifests itself as a coherent structure, i.e., a non-zero time-averaged part of the turbulent magnetic field. The coherent structure is observed, in one case, to contain about eighteen percent of the total energy.

  3. Classes of Hydrodynamic and Magnetohydrodynamic Turbulent Decay

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Kahniashvili, Tina

    2017-02-01

    We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence. We classify our time-dependent solutions by their evolutionary tracks in parametric plots between instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories toward points on a line of self-similar solutions. These trajectories are determined by the underlying physics governing individual cases, while the infrared slope of the initial conditions plays only a limited role. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wave number k ), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k4).

  4. Nonlinear magnetohydrodynamics by Galerkin-method computation

    NASA Technical Reports Server (NTRS)

    Shan, Xiaowen; Montgomery, David; Chen, Hudong

    1991-01-01

    A fully spectral numerical code is used to explore the properties of voltage-driven dissipative magnetofluids inside a periodic cylinder with circular cross section. The trial functions are orthonormal eigenfunctions of the curl (Chandrasekhar-Kendall functions). Transitions are observed from axisymmetric resistive equilibria without flow to helically deformed laminar states with flow, and between pairs of helical laminar states with different pairs of poloidal and toroidal m and n numbers. States of minimum energy dissipation rate seem to be preferred. At high values of the pinch ratio, fully developed magnetohydrodynamic turbulence is observed.

  5. Magnetohydrodynamic effects in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Stefani, F.; Galindo, V.; Kasprzyk, C.; Landgraf, S.; Seilmayer, M.; Starace, M.; Weber, N.; Weier, T.

    2016-07-01

    Liquid metal batteries (LMBs) consist of two liquid metal electrodes and a molten salt ionic conductor sandwiched between them. The density ratios allow for a stable stratification of the three layers. LMBs were already considered as part of energy conversion systems in the 1960s and have recently received renewed interest for economical large-scale energy storage. In this paper, we concentrate on the magnetohydrodynamic aspects of this cell type with special focus on electro-vortex flows and possible effects of the Tayler instability.

  6. Double-helix stellarator

    SciTech Connect

    Moroz, P.E.

    1997-09-01

    A new stellarator configuration, the Double-Helix Stellarator (DHS), is introduced. This novel configuration features a double-helix center post as the only helical element of the stellarator coil system. The DHS configuration has many unique characteristics. One of them is the extreme low plasma aspect ratio, A {approx} 1--1.2. Other advantages include a high enclosed volume, appreciable rotational transform, and a possibility of extreme-high-{beta} MHD equilibria. Moreover, the DHS features improved transport characteristics caused by the absence of the magnetic field ripple on the outboard of the torus. Compactness, simplicity and modularity of the coil system add to the DHS advantages for fusion applications.

  7. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  8. Spectroscopy of Stellar Coronae

    NASA Astrophysics Data System (ADS)

    Laming, J. Martin

    I review the important spectroscopic results that have come from observations of stellar coronae, mainly by EUVE and ASCA, but also from HST. The plasma parameters that can be determined from such spectra include the electron density and temperature distributions, and relative element abundances. With high resolution spectra dynamical information can be obtained. Such parameters can then be used to put constraints on models of the heating and structure of stellar coronae. Throughout, I try to emphasise the similarities and differences between stellar coronal spectroscopy and that of the solar corona.

  9. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  10. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  11. Analytical study of magnetohydrodynamic propulsion stability

    NASA Astrophysics Data System (ADS)

    Abdollahzadeh Jamalabadi, M. Y.

    2014-09-01

    In this paper an analytical solution for the stability of the fully developed flow drive in a magneto-hydro-dynamic pump with pulsating transverse Eletro-magnetic fields is presented. To do this, a theoretical model of the flow is developed and the analytical results are obtained for both the cylindrical and Cartesian configurations that are proper to use in the propulsion of marine vessels. The governing parabolic momentum PDEs are transformed into an ordinary differential equation using approximate velocity distribution. The numerical results are obtained and asymptotic analyses are built to discover the mathematical behavior of the solutions. The maximum velocity in a magneto-hydro-dynamic pump versus time for various values of the Stuart number, electro-magnetic interaction number, Reynolds number, aspect ratio, as well as the magnetic and electrical angular frequency and the shift of the phase angle is presented. Results show that for a high Stuart number there is a frequency limit for stability of the fluid flow in a certain direction of the flow. This stability frequency is dependent on the geometric parameters of a channel.

  12. Efficient acceleration of relativistic magnetohydrodynamic jets

    NASA Astrophysics Data System (ADS)

    Toma, Kenji; Takahara, Fumio

    2013-08-01

    Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although the conversion mechanism from the Poynting into the particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating the transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences between the fast magnetosonic point of the MHD flow and the sonic point of the de Laval nozzle.

  13. Magnetohydrodynamic stability of stochastically driven accretion flows.

    PubMed

    Nath, Sujit Kumar; Mukhopadhyay, Banibrata; Chattopadhyay, Amit K

    2013-07-01

    We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

  14. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1997-01-01

    Under this contract, we have continued our investigations of the large scale structure of the solar corona and inner heliosphere using global magnetohydrodynamic (MHD) simulations. These computations have also formed the basis for studies of coronal mass ejections (CMES) using realistic coronal configurations. We have developed a technique for computing realistic magnetohydrodynamic (MHD) computations of the solar corona and inner heliosphere. To perform computations that can be compared with specific observations, it is necessary to incorporate solar observations into the boundary conditions. We have used the Wilcox Solar Observatory synoptic maps (collected during a solar rotation by daily measurements of the line-of-sight magnetic field at central meridian) to specify the radial magnetic field (B,) at the photosphere. For the initial condition, we use a potential magnetic field consistent with the specified distribution of B, at the lower boundary, and a wind solution consistent with the specified plasma density and temperature at the solar surface. Together this initial condition forms a (non-equilibrium) approximation of the state of the solar corona for the time-dependent MHD computation. The MHD equations are then integrated in time to steady state. Here we describe solutions relevant to a recent solar eclipse, as well as Ulysses observations. We have also developed a model configuration of solar minimum, useful for studying CME initiation and propagation.

  15. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  16. Evolving sparse stellar populations

    NASA Astrophysics Data System (ADS)

    Bruzual, Gustavo; Gladis Magris, C.; Hernández-Pérez, Fabiola

    2017-03-01

    We examine the role that stochastic fluctuations in the IMF and in the number of interacting binaries have on the spectro-photometric properties of sparse stellar populations as a function of age and metallicity.

  17. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  18. Simplified variational principles for non-barotropic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Yahalom, Asher

    2016-04-01

    > Variational principles for magnetohydrodynamics were introduced by previous authors both in Lagrangian and Eulerian form. In this paper we introduce simpler Eulerian variational principles from which all the relevant equations of non-barotropic magnetohydrodynamics can be derived for certain field topologies. The variational principle is given in terms of five independent functions for non-stationary barotropic flows. This is less than the eight variables which appear in the standard equations of barotropic magnetohydrodynamics which are the magnetic field the velocity field , the entropy and the density .

  19. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  20. Ideal magnetohydrodynamic stability of the spheromak configuration

    SciTech Connect

    Jardin, S.C.

    1982-01-19

    Results are presented of a parametric study of the ideal magnetohydrodynamic stability properties of the spheromak, or compact torus, configuration. In the absence of a nearby conducting wall, the spheromak is always unstable to at least one current driven mode. With a conducting wall at the surface, the spheromak can be unstable to current driven modes if the current is too peaked, i.e., q/sub o/(R/a) less than or equal to 2/3, or if the shear is too low at the origin. The Mercier criterion sets an upper limit on the pressure gradient everywhere, but configurations that are everywhere Mercier stable can be unstable to pressure driven low-n modes. Stable toroidal configurations exist with a spherical wall separated by half a minor radius, and with ..beta../sub theta/ = 30%.

  1. Hall magneto-hydrodynamics in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Béthune, W.; Lesur, G.; Ferreira, J.

    2016-12-01

    Protoplanetary discs exhibit large-scale, organised structures. Because they are dense and cold, they should be weakly ionized, and hence concerned by non-ideal plasma effects, such as the Hall effect. We perform numerical simulations of non-stratified Keplerian discs, in the non-ideal magnetohydrodynamic framework. We show that the Hall effect causes self-organisation through three distinct stages. A weak Hall effect enhances turbulent transport. At intermediate strength, it produces magnetized vortices. A strong Hall effect generates axisymmetric zonal flows. These structures may trap dust particles, and thus influence planetary formation. The transport of angular momentum is quenched in the organised state, impugning the relevance of magneto-rotational turbulence as a driving mechanism of accretion in Hall dominated regions.

  2. Exploring Astrophysical Magnetohydrodynamics in the Laboratory

    NASA Astrophysics Data System (ADS)

    Manuel, Mario

    2014-10-01

    Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.

  3. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  4. Lagrangian simulation of explosively driven magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Kim, Deok-Kyu; Seo, Min Su; Kim, Inho

    2003-06-01

    A series of time-dependent one-dimensional simulations has been carried out on the hydrodynamic behavior of argon and air plasmas in an explosively driven magnetohydrodynamic power generator. The thermodynamic properties of plasma gases are computed using equation-of-state data obtained from a detailed theoretical model. The plasma conductivities are given by a mixture rule, which comprises the fully and weakly ionized plasma approximations. The effects of the initial pressure and the magnetic field strength on the plasma behavior in the flow channel are examined over a moderate range of operating conditions, and then the computed results are compared with the experimental measurements, showing good agreement for the case of low magnetic Reynolds number.

  5. Rarefaction wave in relativistic steady magnetohydrodynamic flows

    SciTech Connect

    Sapountzis, Konstantinos Vlahakis, Nektarios

    2014-07-15

    We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.

  6. Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement

    SciTech Connect

    Furth, H.P.

    1985-05-01

    The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved.

  7. On the kinetic foundations of Kaluza's magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sandoval-Villalbazo, Alfredo; Sagaceta-Mejía, Alma R.; García-Perciante, Ana L.

    2015-06-01

    Recent work has shown the existence of a relativistic effect present in a single component non-equilibrium fluid, corresponding to a heat flux due to an electric field [J. Non-Equilib. Thermodyn. 38 (2013), 141-151]. The treatment in that work was limited to a four-dimensional Minkowski space-time in which the Boltzmann equation was treated in a special relativistic approach. The more complete framework of general relativity can be introduced to kinetic theory in order to describe transport processes associated to electromagnetic fields. In this context, the original Kaluza's formalism is a promising approach [Sitz. Ber. Preuss. Akad. Wiss. (1921), 966-972; Gen. Rel. Grav. 39 (2007), 1287-1296; Phys. Plasmas 7 (2000), 4823-4830]. The present work contains a kinetic theory basis for Kaluza's magnetohydrodynamics and gives a novel description for the establishment of thermodynamic forces beyond the special relativistic description.

  8. RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION

    SciTech Connect

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-20

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvenic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the 'diamond-chain' structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  9. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Technical Reports Server (NTRS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  10. Action principles for extended magnetohydrodynamic models

    NASA Astrophysics Data System (ADS)

    Keramidas Charidakos, I.; Lingam, M.; Morrison, P. J.; White, R. L.; Wurm, A.

    2014-09-01

    The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid models from the two-fluid equations of motion. To ensure that the reduced models are Hamiltonian, we start with the general two-fluid action functional, and make all the approximations, changes of variables, and expansions directly within the action context. The resulting equations are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map. Using this method, we recover Lüst's general two-fluid model, extended magnetohydrodynamic (MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation allows us to use Noether's theorem to derive conserved quantities for each symmetry of the action.

  11. Remarkable connections between extended magnetohydrodynamics models

    SciTech Connect

    Lingam, M. Morrison, P. J. Miloshevich, G.

    2015-07-15

    Through the use of suitable variable transformations, the commonality of all extended magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all) for each of these models are obtained through these correspondences. The commonality of all the extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely associated with the canonical momenta of the two underlying species. The Lie-dragging of these 2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof ensures the Jacobi identity for the Poisson brackets of all the models.

  12. A photolithographic fabrication technique for magnetohydrodynamic micropumps

    NASA Astrophysics Data System (ADS)

    Kuenstner, Stephen; Baylor, Martha-Elizabeth

    2014-03-01

    Magnetohydrodynamic (MHD) devices use perpendicular electric and magnetic fields to exert a Lorentz body force on a conducting fluid. Miniaturized MHD devices have been used to create pumps, stirrers, heat exchangers, and microfluidic networks. Compared to mechanical micropumps, MHD micropumps are appealing because they require no moving parts, which simplifies fabrication, and because they are amenable to electronic control. This abstract reports the fabrication and testing of a centimeter-scale MHD pump using a thiol-ene/methacrylate-based photopolymer and mask-based photolithographic technique. Pumps like this one could simplify the fabrication of sophisticated optofluidic devices, including liquid-core, liquid cladding (L2) waveguides, which are usually created with PDMS using stamps, or etched into silicon wafers. The photolithographic technique demonstrated here requires only one masking step to create fluid channels with complex geometries.

  13. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-06-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfvénic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  14. Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Komissarov, Serguei S.

    2007-12-01

    The paper describes a new upwind conservative numerical scheme for special relativistic resistive magnetohydrodynamics with scalar resistivity. The magnetic field is kept approximately divergence free and the divergence of the electric field is kept consistent with the electric charge distribution via the method of Generalized Lagrange Multiplier. The hyperbolic fluxes are computed using the Harten-Lax-van Leer (HLL) prescription and the source terms are accounted via the time-splitting technique. The results of test simulations show that the scheme can handle equally well both resistive current sheets and shock waves, and thus can be a useful tool for studying phenomena of relativistic astrophysics that involve both colliding supersonic flows and magnetic reconnection.

  15. Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics

    SciTech Connect

    Klein, R I; Stone, J M

    2007-11-20

    We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.

  16. Ideal magnetohydrodynamic interchanges in low density plasmas

    SciTech Connect

    Huang Yimin; Goel, Deepak; Hassam, A.B.

    2005-03-01

    The ideal magnetohydrodynamic equations are usually derived under the assumption V{sub A}<

  17. MAGNETOHYDRODYNAMICS OF THE WEAKLY IONIZED SOLAR PHOTOSPHERE

    SciTech Connect

    Cheung, Mark C. M.; Cameron, Robert H.

    2012-05-01

    We investigate the importance of ambipolar diffusion and Hall currents for high-resolution comprehensive ({sup r}ealistic{sup )} photospheric simulations. To do so, we extended the radiative magnetohydrodynamics code MURaM to use the generalized Ohm's law under the assumption of local thermodynamic equilibrium. We present test cases comparing analytical solutions with numerical simulations for validation of the code. Furthermore, we carried out a number of numerical experiments to investigate the impact of these neutral-ion effects in the photosphere. We find that, at the spatial resolutions currently used (5-20 km per grid point), the Hall currents and ambipolar diffusion begin to become significant-with flows of 100 m s{sup -1} in sunspot light bridges, and changes of a few percent in the thermodynamic structure of quiet-Sun magnetic features. The magnitude of the effects is expected to increase rapidly as smaller-scale variations are resolved by the simulations.

  18. Numerical models for high beta magnetohydrodynamic flow

    SciTech Connect

    Brackbill, J.U.

    1987-01-01

    The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs.

  19. Acceleration of particles in imbalanced magnetohydrodynamic turbulence.

    PubMed

    Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard

    2014-08-01

    The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.

  20. Structures in magnetohydrodynamic turbulence: Detection and scaling

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Pouquet, A.; Rosenberg, D.; Mininni, P. D.; Donovan, E. F.

    2010-11-01

    We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 15363 points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn’old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.

  1. PREFACE: A Stellar Journey A Stellar Journey

    NASA Astrophysics Data System (ADS)

    Asplund, M.

    2008-10-01

    The conference A Stellar Journey was held in Uppsala, Sweden, 23 27June 2008, in honour of Professor Bengt Gustafsson's 65th birthday. The choice of Uppsala as the location for this event was obvious given Bengt's long-standing association with the city stemming back to his school days. With the exception of a two-year postdoc stint in Copenhagen, five years as professor at Stockholm University and two years as director of the Sigtuna foundation, Bengt has forged his illustrious professional career at Uppsala University. The symposium venue was Museum Gustavianum, once the main building of the oldest university in Scandinavia. The title of the symposium is a paraphrasing of Bengt's popular astronomy book Kosmisk Resa (in English: Cosmic Journey) written in the early eighties. I think this aptly symbolizes his career that has been an astronomical voyage from near to far, from the distant past to the present. The original book title was modified slightly to reflect that most of his work to date has dealt with stars in one way or another. In addition it also gives credit to Bengt's important role as a guiding light for a very large number of students, colleagues and collaborators, indeed for several generations of astronomers. For me personally, the book Kosmisk Resa bears particular significance as it has shaped my life rather profoundly. Although I had already decided to become an astronomer, when I first read the book as a 14-year-old I made up my mind then and there that I would study under Bengt Gustafsson and work on stars. Indeed I have remained true to this somewhat audacious resolution. I suspect that a great number of us have similar stories how Bengt has had a major influence on our lives, whether on the professional or personal level. Perhaps Bengt's most outstanding characteristic is his enthralling enthusiasm. This is equally true whether he is pondering some scientific conundrum, supervising students or performing in front of an audience, be it an

  2. Las Campanas Stellar Library

    NASA Astrophysics Data System (ADS)

    Chilingarian, Igor; Zolotukhin, Ivan; Beletsky, Yuri; Worthey, Guy

    2015-08-01

    Stellar libraries are fundamental tools required to understand stellar populations in star clusters and galaxies as well as properties of individual stars. Comprehensive libraries exist in the optical domain, but the near-infrared (NIR) domain stays a couple of decades behind. Here we present the Las Campanas Stellar Library project aiming at obtaining high signal-to-noise intermediate-resolution (R=8000) NIR spectra (0.83<λ<2.5μm) for a sample of 1200 stars in the Southern sky using the Folded-port InfraRed Echelette spectrograph at the 6.5-m Magellan Baade telescope. We developed a dedicated observing strategy and customized the telescope control software in order to achieve the highest possible level of data homogeniety. As of 2015, we observed about 600 stars of all spectral types and luminosity classes making our library the largest homogeneous collection of stellar spectra covering the entire NIR domain. We also re-calibrated in flux and wavelength the two existing optical stellar libraries, INDO-US and UVES-POP and followed up about 400 non-variable stars in the NIR in order to get complete optical-NIR coverage. Worth mentioning that our current sample includes about 80 AGB stars and a few dozens of bulge/LMC/SMC stars.

  3. Viscosity and Vorticity in Reduced Magneto-Hydrodynamics

    SciTech Connect

    Joseph, Ilon

    2015-08-12

    Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.

  4. Origins of Stellar Halos

    NASA Astrophysics Data System (ADS)

    Johnston, Kathryn V.

    2016-08-01

    This contribution reviews ideas about the origins of stellar halos. It includes discussion of the theoretical understanding of and observational evidence for stellar populations formed ``in situ'' (meaning formed in orbits close to their current ones), ``kicked-out'' (meaning formed in the inner galaxy in orbits unlike their current ones) and ``accreted'' (meaning formed in a dark matter halo other than the one they currently occupy). At this point there is general agreement that a significant fraction of any stellar halo population is likely ``accreted''. There is modest evidence for the presence of a ``kicked-out'' population around both the Milky Way and M31. Our theoretical understanding of and the observational evidence for an ``in situ'' population are less clear.

  5. An AC magnetohydrodynamic micropump: towards a true integrated microfluidic system

    SciTech Connect

    Lee, A P; Lemoff, A V; McConaghy, C F; Miles, R R

    1999-03-01

    An AC Magnetohydrodynamic (MHD) micropump has been demonstrated in which the Lorentz force is used to propel an electrolytic solution along a microchannel etched in silicon. This micropump has no moving parts, produces a continuous (not pulsatile) flow, and is compatible with solutions containing biological specimens. micropump, using the Lorentz force as the pumping mechanism for biological analysis. The AC Magnetohydrodynamic (MHD) micropump investigated produces a continuous flow and allows for complex microchannel design.

  6. Government research and development summaries: Magnetohydrodynamic project briefs. Irregular

    SciTech Connect

    1995-03-01

    Magnetohydrodynamic Project Briefs describe the status of all R and D programs submitted to the Power Information Center by the government sponsors in energy conversion involving the magnetohydrodynamic (MHD) interaction between electromagnetic fields and electrically conducting fields, including fuels, materials, plasma dynamics, and combustion. The document is not to be reproduced, in whole or in part, for dissemination outside your own organization nor may it be reproduced for advertising or sales promotion purposes.

  7. Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)

    DTIC Science & Technology

    2010-09-28

    system will either be over- or under-expanded for the majority of the cycle , with en- ergy being used without maximum gain. Magnetohydrodynamic ( MHD ...to their potentially superior performance over constant pressure cycle engines. Yet due to its unsteady chamber pressure, the PDE system will either...be over- or under-expanded for the majority of the cycle , with energy being used without maximum gain. Magnetohydrodynamic ( MHD ) augmentation offers

  8. Government research and development summaries: Magnetohydrodynamic project briefs. Irregular

    SciTech Connect

    Not Available

    1994-01-01

    Magnetohydrodynamic Project Briefs describe the status of all R and D programs submitted to the Power Information Center by the government sponsors in energy conversion involving the magnetohydrodynamic (MHD) interaction between electromagnetic fields and electrically conducting fields, including fuels, materials, plasma dynamics, and combustion. The document is not to be reproduced, in whole or in part, for dissemination outside your own organization nor may it be reproduced for advertising or sales promotion purposes.

  9. The Galactic stellar disc

    NASA Astrophysics Data System (ADS)

    Feltzing, S.; Bensby, T.

    2008-12-01

    The study of the Milky Way stellar discs in the context of galaxy formation is discussed. In particular, we explore the properties of the Milky Way disc using a new sample of about 550 dwarf stars for which we have recently obtained elemental abundances and ages based on high-resolution spectroscopy. For all the stars we also have full kinematic information as well as information about their stellar orbits. We confirm results from previous studies that the thin and the thick discs have distinct abundance patterns. But we also explore a larger range of orbital parameters than what has been possible in our previous studies. Several new results are presented. We find that stars that reach high above the Galactic plane and have eccentric orbits show remarkably tight abundance trends. This implies that these stars formed out of well-mixed gas that had been homogenized over large volumes. We find some evidence that suggest that the event that most likely caused the heating of this stellar population happened a few billion years ago. Through a simple, kinematic exploration of stars with super-solar [Fe/H], we show that the solar neighbourhood contains metal-rich, high velocity stars that are very likely associated with the thick disc. Additionally, the HR1614 moving group and the Hercules and Arcturus stellar streams are discussed and it is concluded that, probably, a large fraction of the groups and streams so far identified in the disc are the result of evolution and interactions within the stellar disc rather than being dissolved stellar clusters or engulfed dwarf galaxies. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Also based on observations collected at the Nordic Optical Telescope on La Palma, Spain, and at the European Southern Observatories on La Silla and Paranal, Chile, Proposals no. 65.L-0019(B), 67.B-0108(B), 69.B-0277.

  10. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2008-02-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  11. Stellar Astrophysical Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Thompson, Michael J.; Christensen-Dalsgaard, Jørgen

    2003-05-01

    Preface; 1. A selective overview Jørgen Christensen-Dalsgaard and Michael J. Thompson; Part I. Stellar Convection and Oscillations: 2. On the diversity of stellar pulsations Wojciech A. Dziembowski; 3. Acoustic radiation and mode excitation by turbulent convection Günter Houdek; 4. Understanding roAp stars Margarida S. Cunha; 5. Waves in the magnetised solar atmosphere Colin S. Rosenthal; Part II. Stellar Rotation and Magnetic Fields: 6. Stellar rotation: a historical survey Leon Mestel; 7. The oscillations of rapidly rotating stars Michel Rieutord; 8. Solar tachocline dynamics: eddy viscosity, anti-friction, or something in between? Michael E. McIntyre; 9. Dynamics of the solar tachocline Pascale Garaud; 10. Dynamo processes: the interaction of turbulence and magnetic fields Michael Proctor; 11. Dynamos in planets Chris Jones; Part III. Physics and Structure of Stellar Interiors: 12. Solar constraints on the equation of state Werner Däppen; 13. 3He transport and the solar neutrino problem Chris Jordinson; 14. Mixing in stellar radiation zones Jean-Paul Zahn; 15. Element settling and rotation-induced mixing in slowly rotating stars Sylvie Vauclair; Part IV. Helio- and Asteroseismology: 16. Solar structure and the neutrino problem Hiromoto Shibahashi; 17. Helioseismic data analysis Jesper Schou; 18. Seismology of solar rotation Takashi Sekii; 19. Telechronohelioseismology Alexander Kosovichev; Part V. Large-Scale Numerical Experiments: 20. Bridges between helioseismology and models of convection zone dynamics Juri Toomre; 21. Numerical simulations of the solar convection zone Julian R. Elliott; 22. Modelling solar and stellar magnetoconvection Nigel Weiss; 23. Nonlinear magnetoconvection in the presence of a strong oblique field Keith Julien, Edgar Knobloch and Steven M. Tobias; 24. Simulations of astrophysical fluids Marcus Brüggen; Part VI. Dynamics: 25. A magic electromagnetic field Donald Lynden-Bell; 26. Continuum equations for stellar dynamics Edward A

  12. Three-dimensional models of astrophysical magnetohydrodynamical jets

    NASA Astrophysics Data System (ADS)

    Murphy, Gareth C.

    2007-05-01

    In the previous fifty years it has become clear that jets and outflows play a vital role in the formation of stars and compact objects. Jets from young stellar objects typically show Herbig-Haro knots and bow shocks. Additionally, it now appears that (1) most stars form in binaries, and (2) jets from young stars are multiple and episodic outflows. Several groups have carried out large-scale simulations of jets, but often assuming a uniform ambient medium and a single disk and star. In this thesis the problems associated with non-uniform media and binary systems are explored. In order to understand the role of jets in star formation the questions are asked: how do jets from binary stars behave? What is the effect of the prehistory of jets on their collimation, acceleration and morphology? To answer these questions, a parallel adaptive-grid magnetohydrodynamics code, ATLAS, is modified to include optically thin atomic radiative cooling losses. The code is rigorously tested, with particular reference to the shock-capturing and the radiative cooling. The tests used include one-dimensional shock-tube tests, two-dimensional blast waves, double Mach reflection of a strong shock from a wedge, the overstable radiatively cooling shock, and the Orszag-Tang vortex. A comparison of the code with another code, PLUTO, for the type of jet problems solved in this thesis is also performed. Using ATLAS, the propagation of jets in complex environments is studied. The first ever simulations of binary jets are performed. Three aspects of the problem are studied, the effects of source orbiting, the effects of interaction, and the role of the magnetic field. It is shown that jets from binary stars can interact and the signature of the interaction is demonstrated. The negligible effect of source orbiting is demonstrated. A toroidal magnetic field is placed in the ambient environment and further accentuates the interaction. Following on from this work, the evolution of the jet when the

  13. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Sharber, James (Technical Monitor)

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a

  14. Converging cylindrical shocks in ideal magnetohydrodynamics

    SciTech Connect

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-15

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The

  15. Converging cylindrical shocks in ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.

    2014-09-01

    We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field

  16. Opacity of stellar matter

    SciTech Connect

    Rogers, F J

    1998-09-17

    New efforts to calculate opacity have produced significant improvements in the quality of stellar models. The most dramatic effect has been large opacity enhancements for stars subject to large amplitude pulsations. Significant improvement in helioseismic modeling has also been obtained. A description and comparisons of the new opacity efforts are give

  17. Introduction to Stellar Astrophysics

    NASA Astrophysics Data System (ADS)

    Böhm-Vitense, Erika

    1992-01-01

    This book is the final one in a series of three texts which together provide a modern, complete and authoritative account of our present knowledge of the stars. It discusses the internal structure and the evolution of stars, and is completely self-contained. There is an emphasis on the basic physics governing stellar structure and the basic ideas on which our understanding of stellar structure is based. The book also provides a comprehensive discussion of stellar evolution. Careful comparison is made between theory and observation, and the author has thus provided a lucid and balanced introductory text for the student. As for volumes 1 and 2, volume 3 is self-contained and can be used as an independent textbook. The author has not only taught but has also published many original papers in this subject. Her clear and readable style should make this text a first choice for undergraduate and beginning graduate students taking courses in astronomy and particularly in stellar astrophysics.

  18. A Stellar Demonstrator

    ERIC Educational Resources Information Center

    Ros, Rosa M.

    2009-01-01

    The main purpose of the stellar demonstrator is to help explain the movement of stars. In particular, students have difficulties understanding why, if they are living in the Northern Hemisphere, they may observe starts in the Southern Hemisphere, or why circumpolar stars are not the same in different parts of Europe. Using the demonstrator, these…

  19. Stellar Ontogeny: From Dust...

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)

  20. Progress Toward Attractive Stellarators

    SciTech Connect

    Neilson, G H; Brown, T G; Gates, D A; Lu, K P; Zarnstorff, M C; Boozer, A H; Harris, J H; Meneghini, O; Mynick, H E; Pomphrey, N; Reiman, A H; Xanthopoulos, P

    2011-01-05

    The quasi-axisymmetric stellarator (QAS) concept offers a promising path to a more compact stellarator reactor, closer in linear dimensions to tokamak reactors than previous stellarator designs. Concept improvements are needed, however, to make it more maintainable and more compatible with high plant availability. Using the ARIES-CS design as a starting point, compact stellarator designs with improved maintenance characteristics have been developed. While the ARIES-CS features a through-the-port maintenance scheme, we have investigated configuration changes to enable a sector-maintenance approach, as envisioned for example in ARIES AT. Three approaches are reported. The first is to make tradeoffs within the QAS design space, giving greater emphasis to maintainability criteria. The second approach is to improve the optimization tools to more accurately and efficiently target the physics properties of importance. The third is to employ a hybrid coil topology, so that the plasma shaping functions of the main coils are shared more optimally, either with passive conductors made of high-temperature superconductor or with local compensation coils, allowing the main coils to become simpler. Optimization tools are being improved to test these approaches.

  1. Trends of stellar entropy along stellar evolution

    NASA Astrophysics Data System (ADS)

    de Avellar, Guilherme Bronzato, Marcio; Alvares de Souza, Rodrigo; Horvath, Jorge Ernesto

    2016-02-01

    This paper is devoted to discussing the difference in the thermodynamic entropy budget per baryon in each type of stellar object found in the Universe. We track and discuss the actual decrease of the stored baryonic thermodynamic entropy from the most primitive molecular cloud up to the final fate of matter in black holes, passing through evolved states of matter as found in white dwarfs and neutron stars. We then discuss the case of actual stars with different masses throughout their evolution, clarifying the role of the virial equilibrium condition for the decrease in entropy and related issues. Finally, we discuss the role of gravity in driving the composition and the structural changes of stars with different Main Sequence masses during their evolution up to the final product. Particularly, we discuss the entropy of a black hole in this context arguing that the dramatic increase in its entropy, differently from the other cases, is due to the gravitational field itself.

  2. Heating of solar and stellar chromospheres and coronae by MHD waves

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    The two general classes of models that deal with the required heating of stellar chromospheres and coronae assume that outer stellar atmospheres are heated by hydrodynamic or by magnetohydrodynamic (MHD) waves and that these waves are generated by turbulent motions in the stellar convection zones. This paper considers the types of MHD waves and the source of these waves in stars like sun, the efficiency of the generation of MHD waves, and the manner of propagation and energy dissipation of MHD waves. It is shown that the basic criteria for the validity of any theory of MHD wave heating must account for the mean level of heating observed in stellar chromospheres and coronae, and for the range of radiative losses observed for a given spectral type. It is also required that the MHD wave heating theory accounts for the existence of inhomogeneities in stellar atmospheres. The results obtained indicate that magnetic tube waves might supply enough energy for the chromospheric and coronal heating and might also account for the observed range of variations of stellar radiative losses for a given spectral type.

  3. Global magnetohydrodynamic simulations of the magnetosphere

    SciTech Connect

    Walker, R.J.; Ogino, T.

    1989-04-01

    Global magnetohydrodynamic (MHD) simulations of the interaction between the solar wind and a planetary magnetosphere enable us to calculate self-consistently the time-dependent three-dimensional configuration of the magnetosphere. To demonstrate the application of a global MHD model to the magnetosphere, the authors have calculated the dependence of the magnetospheric configuration and polar-cap structure on the north-south component of the interplanetary magnetic field (IMF). First, they modeled the magnetosphere in the absence of an IMF and found a slowly evolving system in which steady convection leads to slow reconnection in the plasma sheet. When a uniform northward IMF was initially imposed throughout the system the plasma sheet thickened in a small region near the noon-midnight meridian and extended into the tail lobes. When viewed from the polar cap, this appears as a narrow finger of closed field lines extending into the polar cap. The plasma sheet thickening is caused by reconnection on the nightside magnetopause. This plasma sheet extension becomes less pronounced when the northward IMF enters the simulation box with the solar wind. For both cases the convection near midnight is toward the sun, and region-1-type field-aligned currents appear on both sides of the plasma sheet extension. For northward IMF the resulting magnetospheric configuration approached a quasi-steady state in which stable magnetospheric convection was maintained. The simulation results indicate that the presence of a northward B in the plasma sheet stabilizes the tail.

  4. Imbalanced relativistic force-free magnetohydrodynamic turbulence

    SciTech Connect

    Cho, Jungyeon; Lazarian, A.

    2014-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b{sub +}{sup 2}/b{sub −}{sup 2}∝(ϵ{sub +}/ϵ{sub −}){sup n} with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.

  5. Large-scale quasi-geostrophic magnetohydrodynamics

    SciTech Connect

    Balk, Alexander M.

    2014-12-01

    We consider the ideal magnetohydrodynamics (MHD) of a shallow fluid layer on a rapidly rotating planet or star. The presence of a background toroidal magnetic field is assumed, and the 'shallow water' beta-plane approximation is used. We derive a single equation for the slow large length scale dynamics. The range of validity of this equation fits the MHD of the lighter fluid at the top of Earth's outer core. The form of this equation is similar to the quasi-geostrophic (Q-G) equation (for usual ocean or atmosphere), but the parameters are essentially different. Our equation also implies the inverse cascade; but contrary to the usual Q-G situation, the energy cascades to smaller length scales, while the enstrophy cascades to the larger scales. We find the Kolmogorov-type spectrum for the inverse cascade. The spectrum indicates the energy accumulation in larger scales. In addition to the energy and enstrophy, the obtained equation possesses an extra (adiabatic-type) invariant. Its presence implies energy accumulation in the 30° sector around zonal direction. With some special energy input, the extra invariant can lead to the accumulation of energy in zonal magnetic field; this happens if the input of the extra invariant is small, while the energy input is considerable.

  6. Global invariants in ideal magnetohydrodynamic turbulence

    SciTech Connect

    Shebalin, John V.

    2013-10-15

    Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.

  7. NIMROD resistive magnetohydrodynamic simulations of spheromak physics

    NASA Astrophysics Data System (ADS)

    Hooper, E. B.; Cohen, B. I.; McLean, H. S.; Wood, R. D.; Romero-Talamás, C. A.; Sovinec, C. R.

    2008-03-01

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magnetohydrodynamic simulations with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the sustained spheromak physics experiment [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results addresses variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.

  8. Modeling eruptive coronal magnetohydrodynamic systems with FLUX

    NASA Astrophysics Data System (ADS)

    Rachmeler, L. A.

    In this dissertation I explore solar coronal energetic eruptions in the context of magnetic reconnection, which is commonly thought to be a required trigger mechanism for solar eruptions. Reconnection is difficult to directly observe in the corona, and current numerical methods cannot model reconnectionless control cases. Thus, it is not possible to determine if reconnection is a necessary component of these eruptions. I have executed multiple controlled simulations to determine the importance of reconnection for initiation and evolution of several eruptive systems using FLUX, a numerical model that uses the comparatively new fluxon technique. I describe two types of eruptions modeled with FLUX: a metastable confined flux rope theory for coronal mass ejection (CME) initiation, and symmetrically twisted coronal jets in a uniform vertical background field. In the former, I identified an ideal magnetohydrodynamic (MHD) instability that allows metastable twisted flux rope systems to suddenly lose stability and erupt even in the absence of reconnection, contradicting previous conjecture. The CME result is in contrast to the azimuthally symmetric coronal jet initiation model, where jet-like behavior does not manifest without reconnection. My work has demonstrated that some of the observed eruptive phenomena may be triggered by non-reconnective means such as ideal MHD instabilities, and that magnetic reconnection is not a required element in all coronal eruptions.

  9. INVERSE CASCADE IN IMBALANCED ELECTRON MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Kim, Hoonkyu; Cho, Jungyeon E-mail: jcho@cnu.ac.kr

    2015-03-10

    Electron magnetohydrodynamics (EMHD) provides a fluid-like description of small-scale magnetized plasmas. Balanced EMHD turbulence has been studied for a long time. However, driven imbalanced EMHD turbulence, in which waves moving in one direction (dominant waves) have higher amplitudes than waves moving in the other direction (sub-dominant waves), has not been well studied. In this paper, we numerically study driven three-dimensional imbalanced weak EMHD turbulence. We find the following results. First, in driven imbalanced EMHD turbulence, we clearly observe inverse cascade of magnetic helicity, as well as magnetic energy. This is because magnetic helicity is a conserved quantity and non-zero magnetic helicity is injected into the system in driven imbalanced EMHD turbulence. Second, the magnetic energy spectrum of the dominant waves on scales larger than the energy injection scale does not show a single power-law spectrum, which indicates that the inverse cascade is not a self-similar process. The peak of the spectrum roughly follows a k {sup –3/2} spectrum, which can be explained by a Kolmogorov-type argument for weak turbulence. Third, a small amount of sub-dominant waves is induced by the dominant waves on large scales and the ratio of helicity densities of the dominant and the sub-dominant waves on large scales seems to converge to a certain value.

  10. Energetic particle effects on global magnetohydrodynamic modes

    NASA Astrophysics Data System (ADS)

    Cheng, C. Z.

    1990-06-01

    The effects of energetic particles on magnetohydrodynamic (MHD) type modes are studied using analytical theories and the nonvariational kinetic-MHD stability code (nova-k) [Workshop on Theory of Fusion Plasmas, (Societa Italiana di Fisica, Bologna, 1987), p. 185]. In particular, the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ``fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfvén eigenmodes (TAE) via transit resonances are addressed. Analytical theories are presented to help explain the nova-k results. For energetic trapped particles generated by neutral beam injection or ion cyclotron resonant heating, a stability window for the n=1 internal kink mode in the hot particle beta space exists even in the absence of core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha-particle pressure.

  11. Magnetohydrodynamic Waves in an Asymmetric Magnetic Slab

    NASA Astrophysics Data System (ADS)

    Allcock, Matthew; Erdélyi, Robert

    2017-02-01

    Analytical models of solar atmospheric magnetic structures have been crucial for our understanding of magnetohydrodynamic (MHD) wave behaviour and in the development of the field of solar magneto-seismology. Here, an analytical approach is used to derive the dispersion relation for MHD waves in a magnetic slab of homogeneous plasma enclosed on its two sides by non-magnetic, semi-infinite plasma with different densities and temperatures. This generalises the classic magnetic slab model, which is symmetric about the slab. The dispersion relation, unlike that governing a symmetric slab, cannot be decoupled into the well-known sausage and kink modes, i.e. the modes have mixed properties. The eigenmodes of an asymmetric magnetic slab are better labelled as quasi-sausage and quasi-kink modes. Given that the solar atmosphere is highly inhomogeneous, this has implications for MHD mode identification in a range of solar structures. A parametric analysis of how the mode properties (in particular the phase speed, eigenfrequencies, and amplitudes) vary in terms of the introduced asymmetry is conducted. In particular, avoided crossings occur between quasi-sausage and quasi-kink surface modes, allowing modes to adopt different properties for different parameters in the external region.

  12. Magnetohydrodynamic Origin of Jets from Accretion Disks

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Romanova, M. M.

    1998-01-01

    A review is made of magnetohydrodynamic (MHD) theory and simulation of outflows from disks for different distributions of magnetic field threading the disk. In one limit of a relatively weak, initially diverging magnetic field, both thermal and magnetic pressure gradients act to drive matter to an outflow, while a toroidal magnetic field develops which strongly collimates the outflow. The collimation greatly reduces the field divergence and the mass outflow rate decreases after an initial peak. In a second limit of a strong magnetic field, the initial field configuration was taken with the field strength on the disk decreasing outwards to small values so that collimation was reduced. As a result, a family of stationary solutions was discovered where matter is driven mainly by the strong magnetic pressure gradient force. The collimation in this case depends on the pressure of an external medium. These flows are qualitatively similar to the analytic solutions for magnetically driven outflows. The problem of the opening of a closed field line configuration linking a magnetized star and an accretion disk is also discussed.

  13. Global invariants in ideal magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    2013-10-01

    Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing.

  14. Energetic particle effects on global magnetohydrodynamic modes

    SciTech Connect

    Cheng, C.Z. )

    1990-06-01

    The effects of energetic particles on magnetohydrodynamic (MHD) type modes are studied using analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K) ({ital Workshop} {ital on} {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, (Societa Italiana di Fisica, Bologna, 1987), p. 185). In particular, the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances are addressed. Analytical theories are presented to help explain the NOVAresults. For energetic trapped particles generated by neutral beam injection or ion cyclotron resonant heating, a stability window for the {ital n}=1 internal kink mode in the hot particle beta space exists even in the absence of core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to resonantly excite instability of the {ital n}=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha-particle pressure.

  15. RADIATION MAGNETOHYDRODYNAMIC SIMULATIONS OF PROTOSTELLAR COLLAPSE: NONIDEAL MAGNETOHYDRODYNAMIC EFFECTS AND EARLY FORMATION OF CIRCUMSTELLAR DISKS

    SciTech Connect

    Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: okuzumi@geo.titech.ac.jp

    2015-03-10

    The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.

  16. Book Review: A Concise History of Solar and Stellar Physics

    NASA Technical Reports Server (NTRS)

    Phillips, Kenneth J. H.

    2005-01-01

    There is no doubt that the awareness of the often long history and its principal players of a scientific specialty is disappearing among present-day researchers. The reason is the inexorable rise of specialization, in which scientists are expected to keep pace with publications in their own field, not to mention the inevitable round of writing grant proposals and teaching and other mundane responsibilities. The authors of this small book had the intention of rectifying this for solar and stellar physics, disciplines which are still broad enough to embrace fields as diverse as nuclear fusion, magnetohydrodynamics, and the dynamic theory of gas spheres. They take the read on a journey from ancient Greek and middle Eastern astronomy to the late 1990s, one which has an emphasis very much on a theoretical point of view. For the authors, it is the ideas that are central, not the observations.

  17. Book Review: A Concise History of Solar and Stellar Physics

    NASA Technical Reports Server (NTRS)

    Phillips, Kenneth J. H.

    2005-01-01

    There is no doubt that the awareness of the often long history and its principal players of a scientific specialty is disappearing among present-day researchers. The reason is the inexorable rise of specialization, in which scientists are expected to keep pace with publications in their own field, not to mention the inevitable round of writing grant proposals and teaching and other mundane responsibilities. The authors of this small book had the intention of rectifying this for solar and stellar physics, disciplines which are still broad enough to embrace fields as diverse as nuclear fusion, magnetohydrodynamics, and the dynamic theory of gas spheres. They take the reader on a journey from ancient Greek and middle Eastern astronomy to the late 1990s, one which has an emphasis very much on a theoretical point of view. For the authors, it is the ideas that are central, not the observations.

  18. DOLPHOT: Stellar photometry

    NASA Astrophysics Data System (ADS)

    Dolphin, Andrew

    2016-08-01

    DOLPHOT is a stellar photometry package that was adapted from HSTphot for general use. It supports two modes; the first is a generic PSF-fitting package, which uses analytic PSF models and can be used for any camera. The second mode uses ACS PSFs and calibrations, and is effectively an ACS adaptation of HSTphot. A number of utility programs are also included with the DOLPHOT distribution, including basic image reduction routines.

  19. Neoclassical transport in stellarators

    SciTech Connect

    Ho, D.D.M.; Kulsrud, R.M.

    1985-09-01

    The stellarator neoclassical transport due to particles trapped in local helical wells is calculated in the low-collisionality regime using a systematic expansion. The behavior of electron transport is found to be the same over a wide range of energies, but the behavior of ion transport for low energy ions is found to be different than that for high energy ions. Furthermore, the electron fluxes do not vary with the change in the radial ambipolar electric field nearly as much as do the ion fluxes. Thus, the particle diffusion is controlled by the electrons. A nonradial ambipolar electric field is induced by ion drift. This electric field enhances the transport by about 15 to 20%. A convenient graphical method that allows one to determine the magnitude of the radial ambipolar field for machines with different parameters is presented. Numerical examples show that electron energy confinement time is comparable to the ion energy confinement time for all the different size stellarators studied. Although the neoclassical losses are large, it is shown that ignition can be achieved in a reasonably sized stellarator reactor. Finally, from the standpoint of reactor economics, the confinement scaling law shows that in order to increase n tau, it is better to increase the aspect ratio than the overall dimensions of the reactor.

  20. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  1. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    PubMed

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has

  2. Global Magnetohydrodynamic Modeling of the Solar Corona

    NASA Technical Reports Server (NTRS)

    Linker, Jon A.

    1998-01-01

    The coronal magnetic field defines the structure of the solar corona, the position of the heliospheric current sheet, the regions of fast and slow solar wind, and the most likely sites of coronal mass ejections. There are few measurements of the magnetic fields in the corona, but the line-of-sight component of the global magnetic fields in the photosphere have been routinely measured for many years (for example, at Stanford's Wilcox Solar Observatory, and at the National Solar Observatory at Kitt Peak). The SOI/MDI instrument is now providing high-resolution full-disk magnetograms several times a day. Understanding the large-scale structure of the solar corona and inner heliosphere requires accurately mapping the measured photospheric magnetic field into the corona and outward. Ideally, a model should not only extrapolate the magnetic field, but should self-consistently reconstruct both the plasma and magnetic fields in the corona and solar wind. Support from our NASA SR&T contract has allowed us to develop three-dimensional magnetohydrodynamic (MHD) computations of the solar corona that incorporate observed photospheric magnetic fields into the boundary conditions. These calculations not only describe the magnetic field in the corona and interplanetary spice, but also predict the plasma properties as well. Our computations thus far have been successful in reproducing many aspects of both coronal and interplanetary data, including the structure of the streamer belt, the location of coronal hole boundaries, and the position and shape of the heliospheric current sheet. The most widely used technique for extrapolating the photospheric magnetic field into the corona and heliosphere are potential field models, such as the potential field source-surface model (PFSS),and the potential field current-sheet (PFCS) model

  3. On stability criteria for kinetic magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramos, J. J.

    2016-12-01

    The existence of a potential energy functional in the zero-Larmor-radius collisionless plasma theory of Kruskal & Oberman (Phys. Fluids, vol. 1, 1958 p. 275), Rosenbluth & Rostoker (Phys. Fluids, vol. 2, 1959, p. 23) allows us to derive easily sufficient conditions for linear stability. However, this kinetic magnetohydrodynamics (KMHD) theory does not have a self-adjointness property, making it difficult to derive necessary conditions. In particular, the standard methods to prove that an instability follows if some trial perturbation makes the incremental potential energy negative, which rely on the self-adjointness of the force operator or on the existence of a complete basis of normal modes, are not applicable to KMHD. This paper investigates KMHD linear stability criteria based on the time evolution of initial-value solutions, without recourse to the classic bounds or comparison theorems of Kruskal-Oberman and Rosenbluth-Rostoker for the KMHD potential energy. The adopted approach does not solve the kinetic equations by integration along characteristics and does not require that the particle orbits be periodic or nearly periodic. Most importantly, the investigation of a necessary condition for stability does not require the self-adjointness of the force operator or the existence of a complete basis of normal modes. It is thereby shown that stability in isothermal ideal-MHD is a sufficient condition for stability in KMHD and that, with a proviso on the long-time behaviour of oscillations about stable equilibria, stability in the double-adiabatic fluid theory, including the variation of the parallel fluid displacement, would be a necessary condition for stability in KMHD.

  4. Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement

    SciTech Connect

    Carl R. Sovinec

    2008-02-15

    The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large

  5. BOOK REVIEW: Stellarator and Heliotron Devices

    NASA Astrophysics Data System (ADS)

    Johnson, John L.

    1999-02-01

    ground for students without detracting from the usefulness of the book for knowledgeable fusion physicists. After a short, somewhat historical, introduction, Chapter 2 contains a good treatment of the basic properties of a toroidal magnetic configuration (the concepts of magnetic surfaces, rotational transform, shear and magnetic wells), averaging techniques which can often be used to simplify the calculations, helically invariant configurations, magnetic islands and line tracing techniques. Derivations and discussions of the basic tools of plasma theory, including the Vlasov equation, magnetohydrodynamic equations and their reduced form for low-β, large aspect ratio systems, properties of MHD waves, the drift kinetic equation and transport equations, are given in Chapter 3. Chapter 4 contains a good treatment of MHD equilibria, including a derivation of the three dimensional Grad-Shafranov equation, a discussion of the calculation of equilibria with a planar magnetic axis with both averaged equations and a variational approach, a comparison of the results of the two techniques, a formulation for stellarators with a helical magnetic axis and a good discussion of the Pfirsch-Schlüter current. The treatment of MHD instabilities in Chapter 5 is also excellent. It starts with a good derivation and discussion of the energy principle, gives a detailed treatment of ballooning modes where the wavelengths of the perturbation perpendicular to the field are short while those along B are long and derives the Mercier criterion from the ballooning mode equation. I personally prefer to obtain this criterion by making the low mode number assumption that dξ/dΨ>>dξ/dθ approx dξ/dζ, since non-ideal effects such as finite gyration radius corrections may provide less stabilization to these modes. A careful treatment of the resistive interchange mode is followed by a discussion of the role of localized stability criteria in the analysis of experiment and design studies, a study of

  6. Magnetohydrodynamics in stationary and axisymmetric spacetimes: A fully covariant approach

    SciTech Connect

    Gourgoulhon, Eric; Markakis, Charalampos; Uryu, Koji; Eriguchi, Yoshiharu

    2011-05-15

    A fully geometrical treatment of general relativistic magnetohydrodynamics is developed under the hypotheses of perfect conductivity, stationarity, and axisymmetry. The spacetime is not assumed to be circular, which allows for greater generality than the Kerr-type spacetimes usually considered in general relativistic magnetohydrodynamics. Expressing the electromagnetic field tensor solely in terms of three scalar fields related to the spacetime symmetries, we generalize previously obtained results in various directions. In particular, we present the first relativistic version of the Soloviev transfield equation, subcases of which lead to fully covariant versions of the Grad-Shafranov equation and of the Stokes equation in the hydrodynamical limit. We have also derived, as another subcase of the relativistic Soloviev equation, the equation governing magnetohydrodynamical equilibria with purely toroidal magnetic fields in stationary and axisymmetric spacetimes.

  7. Magnetohydrodynamic and gasdynamic theories for planetary bow waves

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Stahara, S. S.

    1983-01-01

    A bow wave was previously observed in the solar wind upstream of each of the first six planets. The observed properties of these bow waves and the associated plasma flows are outlined, and those features identified that can be described by a continuum magnetohydrodynamic flow theory. An account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies is provided. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared.

  8. Stellar Vampires Unmasked

    NASA Astrophysics Data System (ADS)

    2006-10-01

    Astronomers have found possible proofs of stellar vampirism in the globular cluster 47 Tucanae. Using ESO's Very Large Telescope, they found that some hot, bright, and apparently young stars in the cluster present less carbon and oxygen than the majority of their sisters. This indicates that these few stars likely formed by taking their material from another star. "This is the first detection of a chemical signature clearly pointing to a specific scenario to form so-called 'Blue straggler stars' in a globular cluster", said Francesco Ferraro, from the Astronomy Department of Bologna University (Italy) and lead-author of the paper presenting the results. Blue stragglers are unexpectedly young-looking stars found in stellar aggregates, such as globular clusters, which are known to be made up of old stars. These enigmatic objects are thought to be created in either direct stellar collisions or through the evolution and coalescence of a binary star system in which one star 'sucks' material off the other, rejuvenating itself. As such, they provide interesting constraints on both binary stellar evolution and star cluster dynamics. To date, the unambiguous signatures of either stellar traffic accidents or stellar vampirism have not been observed, and the formation mechanisms of Blue stragglers are still a mystery. The astronomers used ESO's Very Large Telescope to measure the abundance of chemical elements at the surface of 43 Blue straggler stars in the globular cluster 47 Tucanae [1]. They discovered that six of these Blue straggler stars contain less carbon and oxygen than the majority of these peculiar objects. Such an anomaly indicates that the material at the surface of the blue stragglers comes from the deep interiors of a parent star [2]. Such deep material can reach the surface of the blue straggler only during the mass transfer process occurring between two stars in a binary system. Numerical simulations indeed show that the coalescence of stars should not

  9. NICIL: Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library

    NASA Astrophysics Data System (ADS)

    Wurster, James

    2016-08-01

    NICIL (Non-Ideal magnetohydrodynamics Coefficients and Ionisation Library) calculates the ionization values and the coefficients of the non-ideal magnetohydrodynamics terms of Ohmic resistivity, the Hall effect, and ambipolar diffusion. Written as a standalone Fortran90 module that can be implemented in existing codes, NICIL is fully parameterizable, allowing the user to choose which processes to include and decide the values of the free parameters. The module includes both cosmic ray and thermal ionization; the former includes two ion species and three species of dust grains (positively charged, negatively charged and neutral), and the latter includes five elements which can be doubly ionized.

  10. Using modern stellar observables to constrain stellar parameters and the physics of the stellar interior

    NASA Astrophysics Data System (ADS)

    van Saders, Jennifer L.

    2014-05-01

    The current state and future evolution of a star is, in principle, specified by a only a few physical quantities: the mass, age, hydrogen, helium, and metal abundance. These same fundamental quantities are crucial for reconstructing the history of stellar systems ranging in scale from planetary systems to galaxies. However, the fundamental parameters are rarely directly observable, and we are forced to use proxies that are not always sensitive or unique functions of the stellar parameters we wish to determine. Imprecise or inaccurate determinations of the fundamental parameters often limit our ability to draw inferences about a given system. As new technologies, instruments, and observing techniques become available, the list of viable stellar observables increases, and we can explore new links between the observables and fundamental quantities in an effort to better characterize stellar systems. In the era of missions such as Kepler, time-domain observables such as the stellar rotation period and stellar oscillations are now available for an unprecedented number of stars, and future missions promise to further expand the sample. Furthermore, despite the successes of stellar evolution models, the processes and detailed structure of the deep stellar interior remains uncertain. Even in the case of well-measured, well understood stellar observables, the link to the underlying parameters contains uncertainties due to our imperfect understanding of stellar interiors. Model uncertainties arise from sources such as the treatment of turbulent convection, transport of angular momentum and mixing, and assumptions about the physical conditions of stellar matter. By carefully examining the sensitivity of stellar observables to physical processes operating within the star and model assumptions, we can design observational tests for the theory of stellar interiors. I propose a series of tools based on new or revisited stellar observables that can be used both to constrain

  11. Perturbing macroscopic magnetohydrodynamic stability for toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Comer, Kathryn J.

    We have introduced a new perturbative technique to rapidly explore the dependence of long wavelength ideal magnetohydrodynamic (MHD) instabilities on equilibrium profiles, shaping properties, and wall parameters. Traditionally, these relations are studied with numerical parameter scans using computationally intensive stability codes. Our perturbative technique first finds the equilibrium and stability using traditional methods. Subsequent small changes in the original equilibrium parameters change the stability. We quickly find the new stability with an expansion of the energy principle, rather than with another run of the stability codes. We first semi-analytically apply the technique to the screw pinch after eliminating compressional Alfven wave effects. The screw pinch results validate the approach, but also indicate that allowable perturbations to equilibria with certain features may be restricted. Next, we extend the approach to toroidal geometry using experimental equilibria and a simple constructed equilibrium, with the ideal MHD stability code GATO. Stability properties are successfully predicted from perturbed toroidal equilibria when only the vacuum beyond the plasma is perturbed (through wall parameter variations), rather than the plasma itself. Small plasma equilibrium perturbations to both experimental and simple equilibria result in very large errors to the predicted stability, and valid results are found only over a narrow range of most perturbations. Despite the large errors produced when changing plasma parameters, the wall perturbations revealed two useful applications of this technique. Because the calculations are non-iterative matrix multiplications, the convergence issues that can disrupt a full MHD stability code are absent. Marginal stability, therefore, is much easier to find with the perturbative technique. Also, the perturbed results can be input as the initial guess for the eigenvalue for a full stability code, and improve subsequent

  12. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    NASA Astrophysics Data System (ADS)

    Strait, E. J.

    2015-02-01

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB /B ˜10-3 to 10-4 ) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low

  13. Magnetic control of magnetohydrodynamic instabilities in tokamaks

    SciTech Connect

    Strait, E. J.

    2015-02-15

    Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries (δB/B∼10{sup −3} to 10{sup −4}) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic response of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode—a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas (β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error

  14. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Lyles, Garry M. (Technical Monitor)

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p(sub 2)/p(sub 1) approx. 34 and D approx. 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (=6 S/m) behind the detonation wave front. In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T. and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Ohm. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the MHD interaction exerted a

  15. Integrated Pulse Detonation Propulsion and Magnetohydrodynamic Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2001-01-01

    The prospects for realizing an integrated pulse detonation propulsion and magnetohydrodynamic (MHD) power system are examined. First, energy requirements for direct detonation initiation of various fuel-oxygen and fuel-air mixtures are deduced from available experimental data and theoretical models. Second, the pumping power requirements for effective chamber scavenging are examined through the introduction of a scavenging ratio parameter and a scavenging efficiency parameter. A series of laboratory experiments were carried out to investigate the basic engineering performance characteristics of a pulse detonation-driven MHD electric power generator. In these experiments, stoichiometric oxy-acetylene mixtures seeded with a cesium hydroxide/methanol spray were detonated at atmospheric pressure in a 1-m-long tube having an i.d. of 2.54 cm. Experiments with a plasma diagnostic channel attached to the end of the tube confirmed the attainment of detonation conditions (p2/p1 approximately 34 and D approximately 2,400 m/sec) and enabled the direct measurement of current density and electrical conductivity (approximately = 6 S/m) behind the detonation wave front, In a second set of experiments, a 30-cm-long continuous electrode Faraday channel, having a height of 2.54 cm and a width of 2 cm, was attached to the end of the tube using an area transition duct. The Faraday channel was inserted in applied magnetic fields of 0.6 and 0.95 T, and the electrodes were connected to an active loading circuit to characterize power extraction dependence on load impedance while also simulating higher effective magnetic induction. The experiments indicated peak power extraction at a load impedance between 5 and 10 Omega. The measured power density was in reasonable agreement with a simple electrodynamic model incorporating a correction for near-electrode potential losses. The time-resolved thrust characteristics of the system were also measured, and it was found that the NM interaction

  16. The solar-stellar connection

    NASA Astrophysics Data System (ADS)

    Giampapa, Mark S.

    2016-07-01

    A review of some principal results achieved in the area of stellar astrophysics with its origins in solar physics - the Solar-Stellar Connection - is presented from the perspective of an observational astronomer. The historical origins of the Solar-Stellar Connection are discussed followed by a review of key results from observations of stellar cycles analogous to the solar cycle in terms of parameters relevant to dynamo theory. A review of facets of angular momentum evolution and irradiance variations, each of which is determined by emergent, dynamo-generated magnetic fields, is given. Recent considerations of the impacts of stellar magnetic activity on the ambient radiative and energetic particle environment of the habitable zone of exoplanet systems are summarized. Some anticipated directions of the Solar-Stellar Connection in the new era of astronomy as defined by the advent of transformative facilities are presented.

  17. The Effect of Magnetic Spots on Stellar Winds and Angular Momentum Loss

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Drake, J. J.; Kashyap, V. L.; Gombosi, T. I.

    2009-07-01

    We simulate the effect of latitudinal variations in the location of star spots, as well as their magnetic field strength, on stellar angular momentum loss (AML) to the stellar wind. We use the Michigan solar corona global magnetohydrodynamic model, which incorporates realistic relation between the magnetic field topology and the wind distribution. We find that the spots' location significantly affects the stellar wind structure, and as a result, the total mass loss rate and AML rate. In particular, we find that the AML rate is controlled by the mass flux when spots are located at low latitudes but is controlled by an increased plasma density between the stellar surface and the Alfvén surface when spots are located at high latitudes. Our results suggest that there might be a feedback mechanism between the magnetic field distribution, wind distribution, AML through the wind, and the motions at the convection zone that generate the magnetic field. This feedback might explain the role of coronal magnetic fields in stellar dynamos.

  18. THE EFFECT OF MAGNETIC SPOTS ON STELLAR WINDS AND ANGULAR MOMENTUM LOSS

    SciTech Connect

    Cohen, O.; Drake, J. J.; Kashyap, V. L.; Gombosi, T. I.

    2009-07-10

    We simulate the effect of latitudinal variations in the location of star spots, as well as their magnetic field strength, on stellar angular momentum loss (AML) to the stellar wind. We use the Michigan solar corona global magnetohydrodynamic model, which incorporates realistic relation between the magnetic field topology and the wind distribution. We find that the spots' location significantly affects the stellar wind structure, and as a result, the total mass loss rate and AML rate. In particular, we find that the AML rate is controlled by the mass flux when spots are located at low latitudes but is controlled by an increased plasma density between the stellar surface and the Alfven surface when spots are located at high latitudes. Our results suggest that there might be a feedback mechanism between the magnetic field distribution, wind distribution, AML through the wind, and the motions at the convection zone that generate the magnetic field. This feedback might explain the role of coronal magnetic fields in stellar dynamos.

  19. Advances in stellarator gyrokinetics

    NASA Astrophysics Data System (ADS)

    Helander, P.; Bird, T.; Jenko, F.; Kleiber, R.; Plunk, G. G.; Proll, J. H. E.; Riemann, J.; Xanthopoulos, P.

    2015-05-01

    Recent progress in the gyrokinetic theory of stellarator microinstabilities and turbulence simulations is summarized. The simulations have been carried out using two different gyrokinetic codes, the global particle-in-cell code EUTERPE and the continuum code GENE, which operates in the geometry of a flux tube or a flux surface but is local in the radial direction. Ion-temperature-gradient (ITG) and trapped-electron modes are studied and compared with their counterparts in axisymmetric tokamak geometry. Several interesting differences emerge. Because of the more complicated structure of the magnetic field, the fluctuations are much less evenly distributed over each flux surface in stellarators than in tokamaks. Instead of covering the entire outboard side of the torus, ITG turbulence is localized to narrow bands along the magnetic field in regions of unfavourable curvature, and the resulting transport depends on the normalized gyroradius ρ* even in radially local simulations. Trapped-electron modes can be significantly more stable than in typical tokamaks, because of the spatial separation of regions with trapped particles from those with bad magnetic curvature. Preliminary non-linear simulations in flux-tube geometry suggest differences in the turbulence levels in Wendelstein 7-X and a typical tokamak.

  20. Decay rates of the magnetohydrodynamic model for quantum plasmas

    NASA Astrophysics Data System (ADS)

    Pu, Xueke; Xu, Xiuli

    2017-02-01

    In this paper, we consider the quantum magnetohydrodynamic model for quantum plasmas. We prove the optimal decay rates for the solution to the constant state in the whole space in the Lp-norm with 2≤ p≤ 6 and its first derivatives in L2-norm. The proof is based on the optimal decay of the linearized equation and nonlinear energy estimates.

  1. A stochastic approach to the solution of magnetohydrodynamic equations

    SciTech Connect

    Floriani, E.; Vilela Mendes, R.

    2013-06-01

    The construction of stochastic solutions is a powerful method to obtain localized solutions in configuration or Fourier space and for parallel computation with domain decomposition. Here a stochastic solution is obtained for the magnetohydrodynamics equations. Some details are given concerning the numerical implementation of the solution which is illustrated by an example of generation of long-range magnetic fields by a velocity source.

  2. Instability of the magnetohydrodynamics system at vanishing Reynolds number

    NASA Astrophysics Data System (ADS)

    Bouya, Ismaël

    2013-12-01

    The aim of this note is to study the dynamo properties of the magnetohydrodynamics system at vanishing R m . Improving the analysis in Gérard-Varet (SIAM J Math Anal 37(3):815-840, 2006), we shall establish a generic Lyapunov instability result.

  3. Magnetohydrodynamic simulations of hot jupiter upper atmospheres

    SciTech Connect

    Trammell, George B.; Li, Zhi-Yun; Arras, Phil E-mail: zl4h@virginia.edu

    2014-06-20

    Two-dimensional simulations of hot Jupiter upper atmospheres including the planet's magnetic field are presented. The goal is to explore magnetic effects on the layer of the atmosphere that is ionized and heated by stellar EUV radiation, and the imprint of these effects on the Lyα transmission spectrum. The simulations are axisymmetric, isothermal, and include both rotation and azimuth-averaged stellar tides. Mass density is converted to atomic hydrogen density through the assumption of ionization equilibrium. The three-zone structure—polar dead zone (DZ), mid-latitude wind zone (WZ), and equatorial DZ—found in previous analytic calculations is confirmed. For a magnetic field comparable to that of Jupiter, the equatorial DZ, which is confined by the magnetic field and corotates with the planet, contributes at least half of the transit signal. For even stronger fields, the gas escaping in the mid-latitude WZ is found to have a smaller contribution to the transit depth than the equatorial DZ. Transmission spectra computed from the simulations are compared to Hubble Space Telescope Space Telescope Imaging Spectrograph and Advanced Camera for Surveys data for HD 209458b and HD 189733b, and the range of model parameters consistent with the data is found. The central result of this paper is that the transit depth increases strongly with magnetic field strength when the hydrogen ionization layer is magnetically dominated, for dipole magnetic field B {sub 0} ≳ 10 G. Hence transit depth is sensitive to magnetic field strength, in addition to standard quantities such as the ratio of thermal to gravitational binding energies. Another effect of the magnetic field is that the planet loses angular momentum orders of magnitude faster than in the non-magnetic case, because the magnetic field greatly increases the lever arm for wind braking of the planet's rotation. Spin-down timescales for magnetized models of HD 209458b that agree with the observed transit depth can be as

  4. The missing magnetic morphology term in stellar rotation evolution

    NASA Astrophysics Data System (ADS)

    Garraffo, Cecilia; Drake, Jeremy J.; Cohen, Ofer

    2016-11-01

    Aims: This study examines the relationship between magnetic field complexity and mass and angular momentum losses. Observations of open clusters have revealed a bimodal distribution of the rotation periods of solar-like stars that has proven difficult to explain under the existing rubric of magnetic braking. Recent studies suggest that magnetic complexity can play an important role in controlling stellar spin-down rates. However, magnetic morphology is still neglected in most rotation evolution models due to the difficulty of properly accounting for its effects on wind driving and angular momentum loss. Methods: Using state-of-the-art magnetohydrodynamical magnetized wind simulations we study the effect that different distributions of the magnetic flux at different levels of geometrical complexity have on mass and angular momentum loss rates. Results: Angular momentum loss rates depend strongly on the level of complexity of the field but are independent of the way this complexity is distributed. We deduce the analytical terms representing the magnetic field morphology dependence of mass and angular momentum loss rates. We also define a parameter that best represents complexity for real stars. As a test, we use these analytical methods to estimate mass and angular momentum loss rates for 8 stars with observed magnetograms and compare them to the simulated results. Conclusions: Magnetic field complexity provides a natural physical basis for stellar rotation evolution models requiring a rapid transition between weak and strong spin-down modes.

  5. Ballooning Stability of the Compact Quasiaxially Symmetric Stellarator

    SciTech Connect

    M.H. Redi; J. Canik; R.L. Dewar; J.L. Johnson; S. Klasky; W.A. Cooper; W. Kerbichler

    2001-09-19

    The magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), expected to achieve good stability and particle confinement is examined with a method that can lead to estimates of global stability. Making use of fully 3D, ideal-MHD stability codes, the QAS beta is predicted to be limited above 4% by ballooning and high-n kink modes. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and theta(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, with new types of nonsymmetric, eigenvalue isosurfaces in both the stable and unstable spectrum. The isosurfaces around the most unstable points i n parameter space (well above marginal) are topologically spherical. In such cases, attempts to use ray tracing to construct global ballooning modes lead to a k-space runaway. Introduction of a reflecting cutoff in k(perpendicular) to model numerical truncation or finite Larmor radius (FLR) yields chaotic ray paths ergodically filling the allowed phase space, indicating that the global spectrum must be described using the language of quantum chaos theory. However, the isosurface for marginal stability in the cases studied are found to have a more complex topology, making estimation of FLR stabilization more difficult.

  6. BOOK REVIEW: Magnetohydrodynamics of Plasma Relaxation

    NASA Astrophysics Data System (ADS)

    Connor, J. W.

    1998-06-01

    This monograph on magnetohydrodynamic (MHD) relaxation in plasmas by Ortolani and Schnack occupies a fascinating niche in the plasma physics literature. It is rare in the complex and often technically sophisticated subject of plasma physics to be able to isolate a topic and deal with it comprehensively in a mere 180 pages. Furthermore, it brings a refreshingly original and personal approach to the treatment of plasma relaxation, synthesizing the experiences of the two authors to produce a very readable account of phenomena appearing in such diverse situations as laboratory reversed field pinches (RFPs) and the solar corona. Its novelty lies in that, while it does acknowledge the seminal Taylor theory of relaxation as a general guide, it emphasizes the role of large scale numerical MHD simulations in developing a picture for the relaxation phenomena observed in experiment and nature. Nevertheless, the volume has some minor shortcomings: a tendency to repetitiveness and some omissions that prevent it being entirely self-contained. The monograph is divided into nine chapters, with the first a readable, `chatty', introduction to the physics and phenomena of relaxation discussed in the later chapters. Chapter 2 develops the tools for describing relaxation processes, namely the resistive MHD model, leading to a discussion of resistive instabilities and the stability properties of RFPs. This chapter demonstrates the authors' confessed desire to avoid mathematical detail with a rather simplified discussion of Δ' and magnetic islands; it also sets the stage for their own belief, or thesis, that numerical simulation of the non-linear consequences of the MHD model is the best approach to explaining the physics of relaxation. Nevertheless, in Chapter 3 they provide a reasonably good account and critique of one analytic approach that is available, and which is the commonly accepted picture for relaxation in pinches - the Taylor relaxation theory based on the conservation of

  7. Three-dimensional stellarator codes

    PubMed Central

    Garabedian, P. R.

    2002-01-01

    Three-dimensional computer codes have been used to develop quasisymmetric stellarators with modular coils that are promising candidates for a magnetic fusion reactor. The mathematics of plasma confinement raises serious questions about the numerical calculations. Convergence studies have been performed to assess the best configurations. Comparisons with recent data from large stellarator experiments serve to validate the theory. PMID:12140367

  8. Radioactive elements in stellar atmospheres

    SciTech Connect

    Gopka, Vira; Yushchenko, Alexander; Goriely, Stephane; Shavrina, Angelina; Kang, Young Woon

    2006-07-12

    The identification of lines of radioactive elements (Tc, Pm and elements with 83stellar atmospheres, contamination of stellar atmosphere by recent SN explosion, and spallation reactions.

  9. A catalog of stellar spectrophotometry

    NASA Technical Reports Server (NTRS)

    Adelman, S. J.; Pyper, D. M.; Shore, S. N.; White, R. E.; Warren, W. H., Jr.

    1989-01-01

    A machine-readable catalog of stellar spectrophotometric measurements made with rotating grating scanner is introduced. Consideration is given to the processes by which the stellar data were collected and calibrated with the fluxes of Vega (Hayes and Latham, 1975). A sample page from the spectrophotometric catalog is presented.

  10. Stellar populations in star clusters

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Yuan; de Grijs, Richard; Deng, Li-Cai

    2016-12-01

    Stellar populations contain the most important information about star cluster formation and evolution. Until several decades ago, star clusters were believed to be ideal laboratories for studies of simple stellar populations (SSPs). However, discoveries of multiple stellar populations in Galactic globular clusters have expanded our view on stellar populations in star clusters. They have simultaneously generated a number of controversies, particularly as to whether young star clusters may have the same origin as old globular clusters. In addition, extensive studies have revealed that the SSP scenario does not seem to hold for some intermediate-age and young star clusters either, thus making the origin of multiple stellar populations in star clusters even more complicated. Stellar population anomalies in numerous star clusters are well-documented, implying that the notion of star clusters as true SSPs faces serious challenges. In this review, we focus on stellar populations in massive clusters with different ages. We present the history and progress of research in this active field, as well as some of the most recent improvements, including observational results and scenarios that have been proposed to explain the observations. Although our current ability to determine the origin of multiple stellar populations in star clusters is unsatisfactory, we propose a number of promising projects that may contribute to a significantly improved understanding of this subject.

  11. Chromospheric activity and stellar evolution

    NASA Technical Reports Server (NTRS)

    Kippenhahn, R.

    1973-01-01

    A study of stellar chromospheres based on the internal structure of particular stars is presented. Used are complex flow diagrams of the linkage paths between mass loss, angular momentum loss, magnetic field from the turbulent dynamo and its relations to differential rotations and the convection zone, and stellar evolution.

  12. Nucleosynthesis in stellar explosions

    SciTech Connect

    Woosley, S.E.; Axelrod, T.S.; Weaver, T.A.

    1983-01-01

    The final evolution and explosion of stars from 10 M/sub solar/ to 10/sup 6/ M/sub solar/ are reviewed with emphasis on factors affecting the expected nucleosynthesis. We order our paper in a sequence of decreasing mass. If, as many suspect, the stellar birth function was peaked towards larger masses at earlier times (see e.g., Silk 1977; but also see Palla, Salpeter, and Stahler 1983), this sequence of masses might also be regarded as a temporal sequence. At each stage of Galactic chemical evolution stars form from the ashes of preceding generations which typically had greater mass. A wide variety of Type I supernova models, most based upon accreting white dwarf stars, are also explored using the expected light curves, spectra, and nucleosynthesis as diagnostics. No clearly favored Type I model emerges that is capable of simultaneously satisfying all three constraints.

  13. Resolving stellar surface spots

    NASA Astrophysics Data System (ADS)

    Strassmeier, K. G.; Carroll, T.; Rice, J. B.; Savanov, I. S.

    Doppler imaging of stellar surfaces is a novel technique with similarities to medical brain tomography (instead of a fixed brain and a rotating scanner, astronomers have a fixed spectrograph and a rotating brain, star of course). The number of free (internal) parameters is of the order of the number of surface grid points and only constrained by the number of input data points. This obviously ill-posed situation requires modern inversion algorithms with penalty functions of the form of maximum entropy or Tikhonov etc.. We present a brief status review of our Doppler imaging codes at AIP that span from temperature and spot-filling-factor mapping to full Stokes-based magnetic field mapping.

  14. Early stellar evolution

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1994-01-01

    Research into the formation and early evolution of stars is currently an area of great interest and activity. The theoretical and observational foundations for this development are reviewed in this paper. By now, the basic physics governing cloud collapse is well understood, as is the structure of the resulting protostars. However, the theory predicts protostellar luminosities that are greater than those of most infrared sources. Observationally, it is thought that protostars emit powerful winds that push away remnant cloud gas, but both the origin of these winds and the nature of their interaction with ambient gas are controversial. Finally, the theory of pre-main-sequence stars has been modified to incorporate more realistic initial conditions. This improvement helps to explain the distribution of such stars in the H-R diagram. Many important issues, such as the origin of binary stars and stellar clusters, remain as challenges for future research.

  15. Extragalactic Stellar Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lennon, D. J.; Smartt, S. J.; Dufton, P. L.; Herrero, A.; Kudritzki, R.-P.; Venn, K.; McCarthy, J.

    1999-09-01

    The advent of large 8-10m telescopes heralds a new age in stellar astronomy. It is now possible to carry out detailed spectroscopic observations at high resolution of the brightest stars of galaxies in the Local Group, and it is envisaged that intermediate resolution observations will be extended to stars in the nearest galaxy clusters such as Virgo and Fornax. For some years the authors have been carrying out the groundwork involved in identifying young massive supergiant stars in nearby resolved galaxies, with a view to performing follow-up detailed studies of selected samples. In this article we summarize the contribution that the William Herschel Telescope has made to this project, and further, show that even a 4.2m telescope with a blue sensitive, large format CCD at a good site with dependable sub-arcsecond seeing can make an important contribution to the detailed study of our nearest spiral neighbours M31 and M33.

  16. Alaska Athabascan stellar astronomy

    NASA Astrophysics Data System (ADS)

    Cannon, Christopher M.

    2014-01-01

    Stellar astronomy is a fundamental component of Alaska Athabascan cultures that facilitates time-reckoning, navigation, weather forecasting, and cosmology. Evidence from the linguistic record suggests that a group of stars corresponding to the Big Dipper is the only widely attested constellation across the Northern Athabascan languages. However, instruction from expert Athabascan consultants shows that the correlation of these names with the Big Dipper is only partial. In Alaska Gwich'in, Ahtna, and Upper Tanana languages the Big Dipper is identified as one part of a much larger circumpolar humanoid constellation that spans more than 133 degrees across the sky. The Big Dipper is identified as a tail, while the other remaining asterisms within the humanoid constellation are named using other body part terms. The concept of a whole-sky humanoid constellation provides a single unifying system for mapping the night sky, and the reliance on body-part metaphors renders the system highly mnemonic. By recognizing one part of the constellation the stargazer is immediately able to identify the remaining parts based on an existing mental map of the human body. The circumpolar position of a whole-sky constellation yields a highly functional system that facilitates both navigation and time-reckoning in the subarctic. Northern Athabascan astronomy is not only much richer than previously described; it also provides evidence for a completely novel and previously undocumented way of conceptualizing the sky---one that is unique to the subarctic and uniquely adapted to northern cultures. The concept of a large humanoid constellation may be widespread across the entire subarctic and have great antiquity. In addition, the use of cognate body part terms describing asterisms within humanoid constellations is similarly found in Navajo, suggesting a common ancestor from which Northern and Southern Athabascan stellar naming strategies derived.

  17. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    SciTech Connect

    Seyler, C. E.; Martin, M. R.

    2011-01-15

    It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.

  18. On the fast magnetic rotator regime of stellar winds

    NASA Astrophysics Data System (ADS)

    Johnstone, C. P.

    2017-01-01

    Aims: We study the acceleration of the stellar winds of rapidly rotating low mass stars and the transition between the slow magnetic rotator and fast magnetic rotator regimes. We aim to understand the properties of stellar winds in the fast magnetic rotator regime and the effects of magneto-centrifugal forces on wind speeds and mass loss rates. Methods: We extend a solar wind model to 1D magnetohydrodynamic simulations of the winds of rotating stars. We test two assumptions for how to scale the wind temperature to other stars and assume the mass loss rate scales as dot{M_star ∝ R_star2 Ω_star1.33 M_star-3.36}, in the unsaturated regime, as estimated from observed rotational evolution. Results: For 1.0 M⊙ stars, the winds can be accelerated to several thousand km s-1, and the effects of magneto-centrifugal forces are much weaker for lower mass stars. We find that the different assumptions for how to scale the wind temperature to other stars lead to significantly different mass loss rates for the rapid rotators. If we assume a constant temperature, the mass loss rates of solar mass stars do not saturate at rapid rotation, which we show to be inconsistent with observed rotational evolution. If we assume the wind temperatures scale positively with rotation, the mass loss rates are only influenced significantly at rotation rates above 75 Ω⊙. We suggest that models with increasing wind speed for more rapid rotators are preferable to those that assume a constant wind speed. If this conclusion is confirmed by more sophisticated wind modelling. it might provide an interesting observational constraint on the properties of stellar winds. All of the codes and output data used in this paper can be downloaded from http://https://zenodo.org/record/160052#.V_y6drWkVC1 or obtained by contacting the author.

  19. Stellar Temporal Intensity Interferometry

    NASA Astrophysics Data System (ADS)

    Kian, Tan Peng

    Stellar intensity interferometry was developed by Hanbury-Brown & Twiss [1954, 1956b, 1957, 1958] to bypass the diffraction limit of telescope apertures, with successful measurements including the determination of 32 stellar angular diameters using the Narrabri Stellar Intensity Interferometer [Hanbury-Brown et al., 1974]. This was achieved by measuring the intensity correlations between starlight received by a pair of telescopes separated by varying baselines b which, by invoking the van Cittert-Zernicke theorem [van Cittert, 1934; Zernicke, 1938], are related to the angular intensity distributions of the stellar light sources through a Fourier transformation of the equal-time complex degree of coherence gamma(b) between the two telescopes. This intensity correlation, or the second order correlation function g(2) [Glauber, 1963], can be described in terms of two-photoevent coincidence measurements [Hanbury-Brown, 1974] for our use of photon-counting detectors. The application of intensity interferometry in astrophysics has been largely restricted to the spatial domain but not found widespread adoption due to limitations by its signal-to-noise ratio [Davis et al., 1999; Foellmi, 2009; Jensen et al., 2010; LeBohec et al., 2008, 2010], although there is a growing movement to revive its use [Barbieri et al., 2009; Capraro et al., 2009; Dravins & Lagadec, 2014; Dravins et al., 2015; Dravins & LeBohec, 2007]. In this thesis, stellar intensity interferometry in the temporal domain is investigated instead. We present a narrowband spectral filtering scheme [Tan et al., 2014] that allows direct measurements of the Lorentzian temporal correlations, or photon bunching, from the Sun, with the preliminary Solar g(2)(tau = 0) = 1.3 +/- 0.1, limited mostly by the photon detector response [Ghioni et al., 2008], compared to the theoretical value of g(2)(0) = 2. The measured temporal photon bunching signature of the Sun exceeded the previous records of g(2)(0) = 1.03 [Karmakar et al

  20. Stellar Snowflake Cluster

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 Stellar Snowflake Cluster Combined Image [figure removed for brevity, see original site] Figure 2 Infrared Array CameraFigure 3 Multiband Imaging Photometer

    Newborn stars, hidden behind thick dust, are revealed in this image of a section of the Christmas Tree cluster from NASA's Spitzer Space Telescope, created in joint effort between Spitzer's infrared array camera and multiband imaging photometer instruments.

    The newly revealed infant stars appear as pink and red specks toward the center of the combined image (fig. 1). The stars appear to have formed in regularly spaced intervals along linear structures in a configuration that resembles the spokes of a wheel or the pattern of a snowflake. Hence, astronomers have nicknamed this the 'Snowflake' cluster.

    Star-forming clouds like this one are dynamic and evolving structures. Since the stars trace the straight line pattern of spokes of a wheel, scientists believe that these are newborn stars, or 'protostars.' At a mere 100,000 years old, these infant structures have yet to 'crawl' away from their location of birth. Over time, the natural drifting motions of each star will break this order, and the snowflake design will be no more.

    While most of the visible-light stars that give the Christmas Tree cluster its name and triangular shape do not shine brightly in Spitzer's infrared eyes, all of the stars forming from this dusty cloud are considered part of the cluster.

    Like a dusty cosmic finger pointing up to the newborn clusters, Spitzer also illuminates the optically dark and dense Cone nebula, the tip of which can be seen towards the bottom left corner of each image.

    This combined image shows the presence of organic molecules mixed with dust as wisps of green, which have been illuminated by nearby star formation. The larger yellowish dots neighboring the baby red stars in the Snowflake Cluster are massive stellar infants forming

  1. An improved current potential method for fast computation of stellarator coil shapes

    NASA Astrophysics Data System (ADS)

    Landreman, Matt

    2017-04-01

    Several fast methods for computing stellarator coil shapes are compared, including the classical NESCOIL procedure (Merkel 1987 Nucl. Fusion 27 867), its generalization using truncated singular value decomposition, and a Tikhonov regularization approach we call REGCOIL in which the squared current density is included in the objective function. Considering W7-X and NCSX geometries, and for any desired level of regularization, we find the REGCOIL approach simultaneously achieves lower surface-averaged and maximum values of both current density (on the coil winding surface) and normal magnetic field (on the desired plasma surface). This approach therefore can simultaneously improve the free-boundary reconstruction of the target plasma shape while substantially increasing the minimum distances between coils, preventing collisions between coils while improving access for ports and maintenance. The REGCOIL method also allows finer control over the level of regularization, it preserves convexity to ensure the local optimum found is the global optimum, and it eliminates two pathologies of NESCOIL: the resulting coil shapes become independent of the arbitrary choice of angles used to parameterize the coil surface, and the resulting coil shapes converge rather than diverge as Fourier resolution is increased. We therefore contend that REGCOIL should be used instead of NESCOIL for applications in which a fast and robust method for coil calculation is needed, such as when targeting coil complexity in fixed-boundary plasma optimization, or for scoping new stellarator geometries.

  2. Initial coil sets for a high- β stellarator-tokamak hybrid

    NASA Astrophysics Data System (ADS)

    Schlomann, B.; Ware, A. S.; Spong, D. A.

    2013-10-01

    Magnetic coil configurations have been developed for a drift-optimized, tokamak-stellarator hybrid that is stable to both pressure- and current-driven modes for high values of β. Previous work on this configuration [A. S. Ware, et al., Phys. Rev. Lett. 89, 125003 (2002)] was carried out using a fixed-boundary equilibrium (i.e., with no set of external coils). Here, we present initial work to produce a realizable coil set for such a configuration. This work is done using the COILOPT code to develop an initial coil set and the STELLOPT code to enhance the quality of the resulting free-boundary equilibria. Since this is a hybrid device, the initial modular coil sets have the advantage of being simpler than modular coils from recent stellarator design efforts (such as QPS and NCSX). Ballooning stability is analyzed using the COBRAVMEC code and transport properties are analyzed using the DKES code. Work supported by U.S. Department of Energy under Grant DE-FG02-03ER54699 at the University of Montana.

  3. The Hibernating Stellar Magnet

    NASA Astrophysics Data System (ADS)

    2008-09-01

    First Optically Active Magnetar-Candidate Discovered Astronomers have discovered a most bizarre celestial object that emitted 40 visible-light flashes before disappearing again. It is most likely to be a missing link in the family of neutron stars, the first case of an object with an amazingly powerful magnetic field that showed some brief, strong visible-light activity. Hibernating Stellar Magnet ESO PR Photo 31/08 The Hibernating Stellar Magnet This weird object initially misled its discoverers as it showed up as a gamma-ray burst, suggesting the death of a star in the distant Universe. But soon afterwards, it exhibited some unique behaviour that indicates its origin is much closer to us. After the initial gamma-ray pulse, there was a three-day period of activity during which 40 visible-light flares were observed, followed by a brief near-infrared flaring episode 11 days later, which was recorded by ESO's Very Large Telescope. Then the source became dormant again. "We are dealing with an object that has been hibernating for decades before entering a brief period of activity", explains Alberto J. Castro-Tirado, lead author of a paper in this week's issue of Nature. The most likely candidate for this mystery object is a 'magnetar' located in our own Milky Way galaxy, about 15 000 light-years away towards the constellation of Vulpecula, the Fox. Magnetars are young neutron stars with an ultra-strong magnetic field a billion billion times stronger than that of the Earth. "A magnetar would wipe the information from all credit cards on Earth from a distance halfway to the Moon," says co-author Antonio de Ugarte Postigo. "Magnetars remain quiescent for decades. It is likely that there is a considerable population in the Milky Way, although only about a dozen have been identified." Some scientists have noted that magnetars should be evolving towards a pleasant retirement as their magnetic fields decay, but no suitable source had been identified up to now as evidence for

  4. Anisotropic energy transfers in quasi-static magnetohydrodynamic turbulence

    SciTech Connect

    Reddy, K. Sandeep; Kumar, Raghwendra; Verma, Mahendra K.

    2014-10-15

    We perform direct numerical simulations of quasi-static magnetohydrodynamic turbulence and compute various energy transfers including the ring-to-ring and conical energy transfers, and the energy fluxes of the perpendicular and parallel components of the velocity field. We show that the rings with higher polar angles transfer energy to ones with lower polar angles. For large interaction parameters, the dominant energy transfer takes place near the equator (polar angle θ≈(π)/2 ). The energy transfers are local both in wavenumbers and angles. The energy flux of the perpendicular component is predominantly from higher to lower wavenumbers (inverse cascade of energy), while that of the parallel component is from lower to higher wavenumbers (forward cascade of energy). Our results are consistent with earlier results, which indicate quasi two-dimensionalization of quasi-static magnetohydrodynamic flows at high interaction parameters.

  5. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  6. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  7. Dissipative, forced turbulence in two-dimensional magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.; Joyce, G.

    1976-01-01

    The equations of motion for turbulent two-dimensional magnetohydrodynamic flows are solved in the presence of finite viscosity and resistivity, for the case in which external forces (mechanical and/or magnetic) act on the fluid. The goal is to verify the existence of a magnetohydrodynamic dynamo effect which is represented mathematically by a substantial back-transfer of mean square vector potential to the longest allowed Fourier wavelengths. External forces consisting of a random part plus a fraction of the value at the previous time step are employed, after the manner of Lilly for the Navier-Stokes case. The regime explored is that for which the mechanical and magnetic Reynolds numbers are in the region of 100 to 1000. The conclusions are that mechanical forcing terms alone cannot lead to dynamo action, but that dynamo action can result from either magnetic forcing terms or from both mechanical and magnetic forcing terms simultaneously.

  8. General relativistic magneto-hydrodynamics with the Einstein Toolkit

    NASA Astrophysics Data System (ADS)

    Moesta, Philipp; Mundim, Bruno; Faber, Joshua; Noble, Scott; Bode, Tanja; Haas, Roland; Loeffler, Frank; Ott, Christian; Reisswig, Christian; Schnetter, Erik

    2013-04-01

    The Einstein Toolkit Consortium is developing and supporting open software for relativistic astrophysics. Its aim is to provide the core computational tools that can enable new science, broaden our community, facilitate interdisciplinary research and take advantage of petascale computers and advanced cyberinfrastructure. The Einstein Toolkit currently consists of an open set of over 100 modules for the Cactus framework, primarily for computational relativity along with associated tools for simulation management and visualization. The toolkit includes solvers for vacuum spacetimes as well as relativistic magneto-hydrodynamics. This talk will present the current capabilities of the Einstein Toolkit with a particular focus on recent improvements made to the general relativistic magneto-hydrodynamics modeling and will point to information how to leverage it for future research.

  9. Reconnection events in two-dimensional Hall magnetohydrodynamic turbulence

    SciTech Connect

    Donato, S.; Servidio, S.; Carbone, V.; Dmitruk, P.; Shay, M. A.; Matthaeus, W. H.; Cassak, P. A.

    2012-09-15

    The statistical study of magnetic reconnection events in two-dimensional turbulence has been performed by comparing numerical simulations of magnetohydrodynamics (MHD) and Hall magnetohydrodynamics (HMHD). The analysis reveals that the Hall term plays an important role in turbulence, in which magnetic islands simultaneously reconnect in a complex way. In particular, an increase of the Hall parameter, the ratio of ion skin depth to system size, broadens the distribution of reconnection rates relative to the MHD case. Moreover, in HMHD the local geometry of the reconnection region changes, manifesting bifurcated current sheets and quadrupolar magnetic field structures in analogy to laminar studies, leading locally to faster reconnection processes in this case of reconnection embedded in turbulence. This study supports the idea that the global rate of energy dissipation is controlled by the large scale turbulence, but suggests that the distribution of the reconnection rates within the turbulent system is sensitive to the microphysics at the reconnection sites.

  10. Anisotropic magnetohydrodynamic turbulence in a strong external magnetic field

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1981-01-01

    A strong external dc magnetic field introduces a basic anisotropy into incompressible magnetohydrodynamic turbulence. The modifications that this is likely to produce in the properties of the turbulence are explored for the high Reynolds number case. The conclusion is reached that the turbulent spectrum splits into two parts: an essentially two dimensional spectrum with both the velocity field and magnetic fluctuations perpendicular to the dc magnetic field, and a generally weaker and more nearly isotropic spectrum of Alfven waves. A minimal characterization of the spectral density tensors is given. Similarities to measurements from the Culham-Harwell Zeta pinch device and the UCLA Macrotor Tokamak are remarked upon, as are certain implications for the Belcher and Davis measurements of magnetohydrodynamic turbulence in the solar wind.

  11. Numerical evaluation of high energy particle effects in magnetohydrodynamics

    SciTech Connect

    White, R.B.; Wu, Y.

    1994-03-01

    The interaction of high energy ions with magnetohydrodynamic modes is analyzed. A numerical code is developed which evaluates the contribution of the high energy particles to mode stability using orbit averaging of motion in either analytic or numerically generated equilibria through Hamiltonian guiding center equations. A dispersion relation is then used to evaluate the effect of the particles on the linear mode. Generic behavior of the solutions of the dispersion relation is discussed and dominant contributions of different components of the particle distribution function are identified. Numerical convergence of Monte-Carlo simulations is analyzed. The resulting code ORBIT provides an accurate means of comparing experimental results with the predictions of kinetic magnetohydrodynamics. The method can be extended to include self consistent modification of the particle orbits by the mode, and hence the full nonlinear dynamics of the coupled system.

  12. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks

    SciTech Connect

    Chen, L. )

    1994-05-01

    The resonant excitations of high-[ital n] magnetohydrodynamic instabilities by the energetic ions/alpha particles in tokamaks are theoretically analyzed. Here, [ital n] is the toroidal mode number. The magnetohydrodynamic eigenmodes, typically, consist of two-scale structures; one corresponds to the singular ( inertial'') region and the other the regular (ideal) region. Due to the finite-size orbits, the energetic particle contributions in the singular region are suppressed. Analytical dispersion relations can be derived via the asymptotic matching analysis. The dispersion relations have the generic form of the fishbone'' dispersion relation [Phys. Rev. Lett. [bold 52], 1122 (1984)] and demonstrate, in particular, the existence of two types of modes; that is, the discrete gap mode and the energetic-particle continuum mode. Specific expressions are given for both the kinetic ballooning modes and the toroidal Alfven modes.

  13. Stellar populations of stellar halos: Results from the Illustris simulation

    NASA Astrophysics Data System (ADS)

    Cook, B. A.; Conroy, C.; Pillepich, A.; Hernquist, L.

    2016-08-01

    The influence of both major and minor mergers is expected to significantly affect gradients of stellar ages and metallicities in the outskirts of galaxies. Measurements of observed gradients are beginning to reach large radii in galaxies, but a theoretical framework for connecting the findings to a picture of galactic build-up is still in its infancy. We analyze stellar populations of a statistically representative sample of quiescent galaxies over a wide mass range from the Illustris simulation. We measure metallicity and age profiles in the stellar halos of quiescent Illustris galaxies ranging in stellar mass from 1010 to 1012 M ⊙, accounting for observational projection and luminosity-weighting effects. We find wide variance in stellar population gradients between galaxies of similar mass, with typical gradients agreeing with observed galaxies. We show that, at fixed mass, the fraction of stars born in-situ within galaxies is correlated with the metallicity gradient in the halo, confirming that stellar halos contain unique information about the build-up and merger histories of galaxies.

  14. Magnetic reversals in a simple model of magnetohydrodynamics.

    PubMed

    Benzi, Roberto; Pinton, Jean-François

    2010-07-09

    We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constraints in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range of the velocity field is much wider than that of the magnetic field. Random reversals of the magnetic field are observed and it shown that the magnetic field has a nontrivial evolution--linked to the nature of the hydrodynamics turbulence.

  15. Investigation of a liquid-metal magnetohydrodynamic power system.

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.; Hays, L. G.; Cerini, D. J.; Bogdanoff, D. W.

    1972-01-01

    Liquid-metal magnetohydrodynamic power conversion is being investigated for nuclear-electric propulsion. A liquid-metal MHD converter has no moving mechanical parts and requires a heat source temperature of only 1300 K. Cycle efficiencies of 5% to 8% for single-stage converters and 10% for multistage converters appear attainable. The specific weight of a 240 kWe MHD power plant has been estimated as 30 kg/kWe with shielding for unmanned science missions.

  16. Exact solutions of the incompressible dissipative Hall magnetohydrodynamics

    SciTech Connect

    Xia, Zhenwei; Yang, Weihong

    2015-03-15

    By using analytical method, the exact solutions of the incompressible dissipative Hall magnetohydrodynamics (MHD) equations are derived. It is found that a phase difference may occur between the velocity and magnetic field fluctuations when the kinetic and magnetic Reynolds numbers are both very large. Since velocity and magnetic field fluctuations are both circular polarized, the phase difference makes them no longer parallel or anti-parallel like that in the incompressible ideal Hall MHD.

  17. Analytical and experimental studies of the helical magnetohydrodynamic thruster design

    SciTech Connect

    Gilbert, J.B. II; Lin, T.F.

    1994-12-31

    This paper describes the results of analytical and experimental studies of a helical magnetohydrodynamic (MHD) seawater thruster using a 8-Tesla (T) solenoid magnet. The application of this work is in marine vehicle propulsion. Analytical models are developed to predict the performance of the helical MHD thruster in a closed-loop condition. The analytical results are compared with experimental data and good agreement is obtained.

  18. Magnetohydrodynamic energy conversion by using convexly divergent channel

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2009-12-01

    We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The quality of MHD power-generating plasma and the energy conversion efficiency in the convexly divergent channel are compared with those from previous linearly divergent channel. The divergence enhancement in the channel upstream is effective for suppressing an excessive increase in static pressure, whereby notably high isentropic efficiency is achieved.

  19. HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Gammie, Charles, F.; McKinney, Jonathan C.; Tóth, Gábor

    2012-09-01

    HARM uses a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, & van Leer scheme. A variant of constrained transport, proposed earlier by Tóth, is used to maintain a divergence-free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. On smooth flows HARM converges at second order.

  20. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications

    SciTech Connect

    Brown, Michael R.

    2006-11-16

    Project Title: Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory, and Astrophysical Applications PI: Michael R. Brown, Swarthmore College The purpose of the project was to provide theoretical and modeling support to the Swarthmore Spheromak Experiment (SSX). Accordingly, the theoretical effort was tightly integrated into the SSX experimental effort. During the grant period, Michael Brown and his experimental collaborators at Swarthmore, with assistance from W. Matthaeus as appropriate, made substantial progress in understanding the physics SSX plasmas.

  1. Magnetohydrodynamic energy conversion by using convexly divergent channel

    SciTech Connect

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2009-12-21

    We describe a magnetohydrodynamic (MHD) electrical power generator equipped with a convexly divergent channel, as determined through shock-tunnel-based experiments. The quality of MHD power-generating plasma and the energy conversion efficiency in the convexly divergent channel are compared with those from previous linearly divergent channel. The divergence enhancement in the channel upstream is effective for suppressing an excessive increase in static pressure, whereby notably high isentropic efficiency is achieved.

  2. Helicity Injection by Knotted Antennas into Electron Magnetohydrodynamical Plasmas

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Stenzel, R. L.

    1997-08-01

    A fully three-dimensional computer simulation of an ideal electron magnetohydrodynamical plasma is performed. By introducing various pulsed inductive antenna sources, magnetic helicity ( H = A˙B dV) injection is studied. Confirming experimental results, a simple loop provides no net helicity injection. Linked and knotted antennas, however, do inject helicity and preferentially radiate whistler wave packets parallel or antiparallel to the ambient magnetic field. Relative efficiencies of these antennas are reported as well as their unique directional properties.

  3. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    NASA Astrophysics Data System (ADS)

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.

    2010-03-01

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n =1-20). The results use the compressible MHD model and depend on a precise representation of "ideal-like" and "vacuumlike" or "halo" regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 108 and 103 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 105, which is much larger than experimentally measured values using Te values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

  4. Edge localized linear ideal magnetohydrodynamic instability studies in an extended-magnetohydrodynamic code

    SciTech Connect

    Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.

    2010-03-15

    A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.

  5. Ultraviolet stellar astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Kondo, Y.; Ocallaghan, F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. During all three Skylab missions, prism-on observations were obtained in 188 starfields and prism-off observations in 31 starfields. In general, the fields are concentrated in the Milky Way where the frequency of hot stars is highest. These fields cover an area approximately 3660 degrees and include roughly 24 percent of a band 30 deg wide centered on the plane of the Milky Way. A census of stars in the prism-on fields shows that nearly 6,000 stars have measurable flux data at a wavelength of 2600A, that 1,600 have measurable data at 2000A, and that 400 show useful data at 1500A. Obvious absorption or emission features shortward of 2000A are visible in approximately 120 stars. This represents a bonanza of data useful for statistical studies of stellar classification and of interstellar reddening as well as for studies of various types of peculiar stars.

  6. Devastated Stellar Neighborhood

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Spitzer Space Telescope shows the nasty effects of living near a group of massive stars: radiation and winds from the massive stars (white spot in center) are blasting planet-making material away from stars like our sun. The planetary material can be seen as comet-like tails behind three stars near the center of the picture. The tails are pointing away from the massive stellar furnaces that are blowing them outward.

    The picture is the best example yet of multiple sun-like stars being stripped of their planet-making dust by massive stars.

    The sun-like stars are about two to three million years old, an age when planets are thought to be growing out of surrounding disks of dust and gas. Astronomers say the dust being blown from the stars is from their outer disks. This means that any Earth-like planets forming around the sun-like stars would be safe, while outer planets like Uranus might be nothing more than dust in the wind.

    This image shows a portion of the W5 star-forming region, located 6,500 light-years away in the constellation Cassiopeia. It is a composite of infrared data from Spitzer's infrared array camera and multiband imaging photometer. Light with a wavelength of 3.5 microns is blue, while light from the dust of 24 microns is orange-red.

  7. Stellar duplicity and nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Izzard, Rob

    2014-09-01

    Half or more of all stars more massive than our Sun are orbited by one (or more) companion stars. Many companions are close enough that the evolution of both stars is greatly altered by the transfer of mass and angular momentum from one star to the other. Such mass transfer is highly likely during the late stages of evolution, such as on the giant branches, which are quite coincidentally also when stars undergo interesting nucleosynthesis. Direct mass transfer truncates the (A)GB prematurely compared to single stars and the ensuing stellar envelope is ejected perhaps to form a (chemically peculiar?) planetary nebula. In wider binaries, where one star has captured material from a long-dead companion, we can probe the nucleosynthesis that happened in ancient stars as well as fundamental astrophysical phenomena like wind accretion and circumbinary disc formation. I will focus on recent quantitative work on nucleosynthesis in mass-transfer systems, such as carbon-enhanced metal-poor and barium stars, and highlight some of the key open questions - and opportunities - that will dominate the next decade of duplicitous nucleosynthesis.

  8. Stellar Presentations (Abstract)

    NASA Astrophysics Data System (ADS)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  9. Magnetohydrodynamic and gasdynamic theories for planetary bow waves

    NASA Technical Reports Server (NTRS)

    Spreiter, J. R.; Stahara, S. S.

    1984-01-01

    The observed properties of bow waves and the associated plasma flows are outlined, along with those features identified that can be described by a continuum magnetohydrodynamic flow theory as opposed to a more detailed multicomponent particle and field plasma theory. The primary objectives are to provide an account of the fundamental concepts and current status of the magnetohydrodynamic and gas dynamic theories for solar wind flow past planetary bodies. This includes a critical examination of: (1) the fundamental assumptions of the theories; (2) the various simplifying approximations introduced to obtain tractable mathematical problems; (3) the limitations they impose on the results; and (4) the relationship between the results of the simpler gas dynamic-frozen field theory and the more accurate but less completely worked out magnetohydrodynamic theory. Representative results of the various theories are presented and compared. A number of deficiencies, ambiguities, and suggestions for improvements are discussed, and several significant extensions of the theory required to provide comparable results for all planets, their satellites, and comets are noted.

  10. Optimizing Stellarators for Turbulent Transport

    SciTech Connect

    H.E. Mynick, N.Pomphrey, and P. Xanthopoulos

    2010-05-27

    Up to now, the term "transport-optimized" stellarators has meant optimized to minimize neoclassical transport, while the task of also mitigating turbulent transport, usually the dominant transport channel in such designs, has not been addressed, due to the complexity of plasma turbulence in stellarators. Here, we demonstrate that stellarators can also be designed to mitigate their turbulent transport, by making use of two powerful numerical tools not available until recently, namely gyrokinetic codes valid for 3D nonlinear simulations, and stellarator optimization codes. A first proof-of-principle configuration is obtained, reducing the level of ion temperature gradient turbulent transport from the NCSX baseline design by a factor of about 2.5.

  11. Inferred properties of stellar granulation

    SciTech Connect

    Gray, D.F.; Toner, C.G.

    1985-06-01

    Apparent characteristics of stellar granulation in F and G main-sequence stars are inferred directly from observed spectral-line asymmetries and from comparisons of numerical simulations with the observations: (1) the apparent granulation velocity increases with effective temperature, (2) the dispersion of granule velocities about their mean velocity of rise increases with the apparent granulation velocity, (3) the mean velocity of rise of granules must be less than the total line broadening, (4) the apparent velocity difference between granules and dark lanes corresponds to the granulation velocity deduced from stellar line bisectors, (5) the dark lanes show velocities of fall approximately twice as large as the granule rise velocities, (6) the light contributed to the stellar flux by the granules is four to ten times more than the light from the dark lanes. Stellar rotation is predicted to produce distortions in the line bisectors which may give information on the absolute velocity displacements of the line bisectors. 37 references.

  12. Stellar winds of hot stars

    NASA Astrophysics Data System (ADS)

    Stee, Ph.; Chesneau, O.

    2014-09-01

    In this paper, we summarize the basic properties of radiative stellar winds from the theoretical and observational point of views. We illustrate two examples of a radiative code applied to stellar physics: the SIMECA code successfully used to constrain the physics of the circumstellar environment of the Be star α Arae constrained by VLTI-AMBER spectrally resolved measurements and the CMFGEN code applied to the BA supergiants Deneb and Rigel constrained by CHARA-VEGA measurements.

  13. Solar and stellar coronal plasmas

    NASA Technical Reports Server (NTRS)

    Golub, L.

    1985-01-01

    Progress made in describing and interpreting coronal plasma processes and the relationship between the solar corona and its stellar counterparts is reported. Topics covered include: stellar X-ray emission, HEAO 2 X-ray survey of the Pleiades, closed coronal structures, X-ray survey of main-sequence stars with shallow convection zones, implications of the 1400 MHz flare emission, and magnetic field stochasticity.

  14. Simulating the environment around planet-hosting stars. II. Stellar winds and inner astrospheres

    NASA Astrophysics Data System (ADS)

    Alvarado-Gómez, J. D.; Hussain, G. A. J.; Cohen, O.; Drake, J. J.; Garraffo, C.; Grunhut, J.; Gombosi, T. I.

    2016-10-01

    We present the results of a comprehensive numerical simulation of the environment around three exoplanet-host stars (HD 1237, HD 22049, and HD 147513). Our simulations consider one of the latest models currently used for space weather studies in the Heliosphere, with turbulent Alfvén wave dissipation as the source of coronal heating and stellar wind acceleration. Large-scale magnetic field maps, recovered with two implementations of the tomographic technique of Zeeman-Doppler imaging, serve to drive steady-state solutions in each system. This paper contains the description of the stellar wind and inner astrosphere, while the coronal structure was discussed in a previous paper. The analysis includes the magneto-hydrodynamical properties of the stellar wind, the associated mass and angular momentum loss rates, as well as the topology of the astrospheric current sheet in each system. A systematic comparison among the considered cases is performed, including two reference solar simulations covering activity minimum and maximum. For HD 1237, we investigate the interactions between the structure of the developed stellar wind, and a possible magnetosphere around the Jupiter-mass planet in this system. We find that the process of particle injection into the planetary atmosphere is dominated by the density distribution rather than the velocity profile of the stellar wind. In this context, we predict a maximum exoplanetary radio emission of 12 mJy at 40 MHz in this system, assuming the crossing of a high-density streamer during periastron passage. Furthermore, in combination with the analysis performed in the first paper of this study, we obtain for the first time a fully simulated mass loss-activity relation. This relation is compared and discussed in the context of the previously proposed observational counterpart, derived from astrospheric detections. Finally, we provide a characterisation of the global 3D properties of the stellar wind of these systems, at the inner

  15. Parabolized Navier-Stokes Code for Computing Magneto-Hydrodynamic Flowfields

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Technical Monitor); Tannehill, J. C.

    2003-01-01

    This report consists of two published papers, 'Computation of Magnetohydrodynamic Flows Using an Iterative PNS Algorithm' and 'Numerical Simulation of Turbulent MHD Flows Using an Iterative PNS Algorithm'.

  16. SPECIAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATION OF A TWO-COMPONENT OUTFLOW POWERED BY MAGNETIC EXPLOSION ON COMPACT STARS

    SciTech Connect

    Matsumoto, Jin; Asano, Eiji; Shibata, Kazunari; Masada, Youhei

    2011-05-20

    The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density {rho}(r) {proportional_to} r{sup -}{alpha} and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfven velocity on the stellar surface and follows a simple scaling relation v{sub mag} {proportional_to} v{sub A}{sup 1/2}. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation {Gamma}{sub sh} {proportional_to} r{sub sh}, where {Gamma}{sub sh} is the Lorentz factor of the plasma measured at the shock surface r{sub sh}. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.

  17. Stellar diameters and temperatures. IV. Predicting stellar angular diameters

    SciTech Connect

    Boyajian, Tabetha S.; Van Belle, Gerard; Von Braun, Kaspar

    2014-03-01

    The number of stellar angular diameter measurements has greatly increased over the past few years due to innovations and developments in the field of long baseline optical interferometry. We use a collection of high-precision angular diameter measurements for nearby, main-sequence stars to develop empirical relations that allow the prediction of stellar angular sizes as a function of observed photometric color. These relations are presented for a combination of 48 broadband color indices. We empirically show for the first time a dependence on metallicity of these relations using Johnson (B – V) and Sloan (g – r) colors. Our relations are capable of predicting diameters with a random error of less than 5% and represent the most robust and empirical determinations of stellar angular sizes to date.

  18. Compact Stellarator Path to DEMO

    NASA Astrophysics Data System (ADS)

    Lyon, J. F.

    2007-11-01

    Issues for a DEMO reactor are sustaining an ignited/high-Q plasma in steady state, avoiding disruptions and large variations in power flux to the wall, adequate confinement of thermal plasma and alpha-particles, control of a burning plasma, particle and power handling, etc. Compact stellarators have key advantages -- steady-state high-plasma-density operation without external current drive or disruptions, stability without a close conducting wall or active feedback systems, and low recirculating power -- in addition to moderate plasma aspect ratio, good confinement, and high-beta potential. The ARIES-CS study established that compact stellarators can be competitive with tokamaks as reactors. Many of the issues for a compact stellarator DEMO can be answered using results from large tokamaks, ITER D-T experiments and fusion materials, technology and component development programs, in addition to stellarators in operation, under construction or in development. However, a large next-generation stellarator will be needed to address some physics issues: size scaling and confinement at higher parameters, burning plasma issues, and operation with a strongly radiative divertor. Technology issues include simpler coils, structure, and divertor fabrication, and better cost information.

  19. X-RAY SPECTRA FROM MAGNETOHYDRODYNAMIC SIMULATIONS OF ACCRETING BLACK HOLES

    SciTech Connect

    Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C. E-mail: jhk@pha.jhu.edu

    2013-06-01

    We present the results of a new global radiation transport code coupled to a general relativistic magnetohydrodynamic simulation of an accreting, non-rotating black hole. For the first time, we are able to explain from first principles in a self-consistent way all the components seen in the X-ray spectra of stellar-mass black holes, including a thermal peak and all the features associated with strong hard X-ray emission: a power law extending to high energies, a Compton reflection hump, and a broad iron line. Varying only the mass accretion rate, we are able to reproduce a wide range of X-ray states seen in most galactic black hole sources. The temperature in the corona is T{sub e} {approx} 10 keV in a boundary layer near the disk and rises smoothly to T{sub e} {approx}> 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to Almost-Equal-To 6M as the accretion rate decreases, we find that the shape of the Fe K{alpha} line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.

  20. Diagnostic strategy of the W7-X stellarator

    NASA Astrophysics Data System (ADS)

    Hartfuss, H. J.; Brakel, R.; Endler, M.; Geist, T.; Grigull, P.; Hofmann, J. V.; Junker, J.; Kick, M.; Kühner, G.; Niedermeyer, H.; Ringler, H.; Teubel, A.; Wagner, F.; Weller, A.

    1997-02-01

    The Wendelstein 7-X experiment is a concept test for properties of reactor relevant plasmas in advanced stellarators. Prominent features include a modular superconducting coil assembly, a fivefold toroidal symmetry, and a helical magnetic axis. Due to the optimization process, W7-X is characterized by a vacuum magnetic field configuration with smooth magnetic surfaces, improved equilibrium properties with a weak dependence of rotational transform and shear on the plasma pressure β, good magneto-hydrodynamic stability properties due to magnetic well stabilization, reduced neoclassical transport losses and negligible bootstrap current in the long mean-free-path regime, good collisionless α-particle confinement in an equivalent reactor, and, as a technical aspect, good feasibility of the superconducting modular coils. W7-X will be heated by continuous electron cyclotron resonance heating and pulsed neutral beam injection and ion cyclotron resonance heating. The envisaged parameters are Te⩽10 keV, Ti⩽6 keV central densities ⩽3×1020 m-3 with an averaged <β>⩽5%. Despite the complicated geometrical structure, all basic diagnostics are compatible with W7-X. Generally, diagnostic methods and applications in a stellarator are not different from those in tokamaks. However, special efforts are being made to equip the experiment with those diagnostics necessary to measure the quantities directly related with the optimization of the machine: the verification of the predicted magnetic topology and characterization of the configuration throughout the entire parameter range, the identification of equilibrium and stability, and the determination of the confinement properties. The article describes the strategy developed which assures that the detailed measurement needs of the W7-X experimental program can be met.

  1. Diagnostic strategy of the W7-X stellarator (abstract)

    NASA Astrophysics Data System (ADS)

    Hartfuss, H. J.; Brakel, R.; Endler, M.; Geist, T.; Grigull, P.; Hofmann, J. V.; Junker, J.; Kick, M.; Kühner, G.; Niedermeyer, H.; Ringler, H.; Teubel, A.; Wagner, F.; Weller, A.

    1997-01-01

    The Wendelstein 7-X experiment is a concept test for properties of reactor relevant plasmas in advanced stellarators. Prominent features include a modular superconducting coil assembly, a five-fold toroidal symmetry, and a helical magnetic axis. Due to the optimization process, W7-X is characterized by a vacuum magnetic field configuration with smooth magnetic surfaces, improved magnetic field configuration with smooth magnetic surfaces, improved equilibrium properties with a weak dependence of rotational transform and shear on the plasma pressure β, good magneto-hydrodynamic stability properties due to magnetic well stabilization, reduced neoclassical transport losses and negligible bootstrap current in the long mean-free-path regime, good collisionless α-particle confinement in an equivalent reactor, and, as a technical aspect, good feasibility of the superconducting modular coils. W7-X will be heated by continuous electron cyclotron resonance heating and pulsed neutral beam injection and ion cyclotron resonance heating. The envisaged parameters are Te⩽10 keV, Ti⩽6 keV central densities ⩽3×1020 m-3 with an averaged <β>⩽5%. Despite the complicated geometrical structure, all basic diagnostics are compatible with W7-X. Generally, diagnostic methods and applications in a stellarator are not different from those in tokamaks. However, special efforts are being made to equip the experiment with those diagnostics necessary to measure the quantities directly related with the optimization of the machine: the verification of the predicted magnetic topology and characterization of the configuration throughout the entire parameter range, the identification of equilibrium and stability, and the determination of the confinement properties. The article describes the strategy developed which assures that the detailed measurement needs of the W7-X experimental program can be met.

  2. Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.

    1959-01-01

    An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.

  3. New Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Supratik; Galtier, Sebastien

    2016-04-01

    Hall magnetohydrodynamics is a mono-fluid plasma model appropriate for probing Final{some of the} physical processes (other than pure kinetic effects) at length scales smaller than the scales of standard MHD. In sub-ionic space plasma turbulence (e.g. the solar wind) this fluid model has been proved to be useful. Three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses three inviscid invariants which are the total energy, the magnetic helicity and the generalized helicity. In this presentation, we would like to discuss new exact relations for helicities (magnetic helicities and generalized helicities) which are derived for homogeneous stationary (not necessarily isotropic) Hall MHD turbulence (and also for its inertialess electron MHD limit) in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments and are written simply as ηM = di < δ ( {b} × {j}) \\cdot δ {b} >, with ηM the average magnetic helicity flux rate, {b} the magnetic field, {j} the current and ± ηG = < δ ( {v} × {Ω} ) \\cdot δ {Ω} > , with ηM the average generalized helicity flux rate, {v} the fluid velocity and {Ω} = {b} + dI {ω} being the generalized helicity where ω is simply the fluid vorticity ( = nabla × {v}). It provides, therefore, a direct measurement of the dissipation rates for the corresponding helicities even in case of an anisotropic plasma turbulence. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations. The newly derived relations also show that like energy, a non-zero helicity flux can only be associated to a departure of Beltrami flow state. {Reference} S. Banerjee & S. Galtier, {Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence} (submitted).

  4. The Evolution of Stellar Populations

    NASA Astrophysics Data System (ADS)

    DÍaz, Angeles I.; Hardy, Eduardo

    We summarize the discussion section on `Evolution of Stellar Populations' we led on May 27, 2000 in Granada, Spain, as part of the Euroconference on The Evolution of Galaxies. I- Observational Clues. The discussion was organized around two groups of topics. In the first, Population Synthesis, the accent was partially placed on the use of tools and techniques centered around the question of the unicity of the models, their sensitivity to input and the question of the age-metallicity degeneracy. In the second group, Stellar Systems a stronger accent was placed on astrophysical questions, although we included there the need for `truth tests' that apply spectral synthesis techniques to objects for which there is detailed a priori knowledge of their stellar populations. We also provide a partial comparison between the present knowledge of these topics and that which existed at the time of the Crete Conference of 1995.

  5. Stellar Alignments - Identification and Analysis

    NASA Astrophysics Data System (ADS)

    Ruggles, Clive L. N.

    Fortuitous stellar alignments can be fitted to structural orientations with relative ease by the unwary. Nonetheless, cautious approaches taking into account a broader range of cultural evidence, as well as paying due attention to potential methodological pitfalls, have been successful in identifying credible stellar alignments—and constructing plausible assessments of their cultural significance—in a variety of circumstances. These range from single instances of alignments upon particular asterisms where the corroborating historical or ethnographic evidence is strong to repeated instances of oriented structures with only limited independent cultural information but where systematic, data-driven approaches can be productive. In the majority of cases, the identification and interpretation of putative stellar alignments relates to groups of similar monuments or complex single sites and involves a balance between systematic studies of the alignments themselves, backed up by statistical analysis where appropriate, and the consideration of a range of contextual evidence, either derived from the archaeological record alone or from other relevant sources.

  6. Numerical solutions of the three-dimensional magnetohydrodynamic alpha model.

    PubMed

    Mininni, Pablo D; Montgomery, David C; Pouquet, Annick

    2005-04-01

    We present direct numerical simulations and alpha -model simulations of four familiar three-dimensional magnetohydrodynamic (MHD) turbulence effects: selective decay, dynamic alignment, inverse cascade of magnetic helicity, and the helical dynamo effect. The MHD alpha model is shown to capture the long-wavelength spectra in all these problems, allowing for a significant reduction of computer time and memory at the same kinetic and magnetic Reynolds numbers. In the helical dynamo, not only does the alpha model correctly reproduce the growth rate of magnetic energy during the kinematic regime, it also captures the nonlinear saturation level and the late generation of a large scale magnetic field by the helical turbulence.

  7. Quantitative, comprehensive, analytical model for magnetic reconnection in Hall magnetohydrodynamics.

    PubMed

    Simakov, Andrei N; Chacón, L

    2008-09-05

    Dissipation-independent, or "fast", magnetic reconnection has been observed computationally in Hall magnetohydrodynamics (MHD) and predicted analytically in electron MHD. However, a quantitative analytical theory of reconnection valid for arbitrary ion inertial lengths, d{i}, has been lacking and is proposed here for the first time. The theory describes a two-dimensional reconnection diffusion region, provides expressions for reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and d{i}. It also confirms the electron MHD prediction that both open and elongated diffusion regions allow fast reconnection, and reveals strong dependence of the reconnection rates on d{i}.

  8. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  9. Two-dimensional magnetohydrodynamic turbulence - Cylindrical, non-dissipative model

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Vahala, G.

    1979-01-01

    Incompressible magnetohydrodynamic turbulence is treated in the presence of cylindrical boundaries which are perfectly conducting and rigidly smooth. The model treated is non-dissipative and two-dimensional, the variation of all quantities in the axial direction being ignored. Equilibrium Gibbs ensemble predictions are explored assuming the constraint of constant axial current (appropriate to tokamak operation). No small-amplitude approximations are made. The expectation value of the turbulent kinetic energy is found to approach zero for the state of maximum mean-square vector potential to energy ratio. These are the only states for which large velocity fluctuations are not expected.

  10. Hall current effects in the Lewis magnetohydrodynamic generator

    NASA Technical Reports Server (NTRS)

    Nichols, L. D.; Sovie, R. J.

    1972-01-01

    Data obtained in a magnetohydrodynamic generator are compared with theoretical values calculated by using the Dzung theory. The generator was operated with cesium-seeded argon as the working fluid. The gas temperature varied from 1800 to 2100 K, the gas pressure from 19 to 22 N/sq cm, the Mach number from 0.3 to 0.5, and the magnetic field strength from 0.2 to 1.6 T. The analysis indicates that there is incomplete seed vaporization and that Hall current shorting paths (through the working fluid to ground at both the entrance and exit of the channel) limit generator performance.

  11. Magnetohydrodynamic turbulence: Generalized formulation and extension to compressible cases

    SciTech Connect

    Shivamoggi, Bhimsen K.

    2008-06-15

    A general framework that incorporates the Iroshnikov-Kraichnan (IK) and Goldreich-Sridhar (GS) phenomenalogies of magnetohydrodynamic (MHD) turbulence is developed. This affords a clarification of the regimes of validity of the IK and GS models and hence help resolve some controversies on this aspect. This general formulation appears to have a certain robustness as revealed here by its form invariance with respect to inclusion of compressible effects. Generalizations of the IK and GS spectra to compressible MHD turbulence are given. These two branches are shown to merge with the MHD shockwave spectrum, as to be expected, in the infinite compressibility limit.

  12. Energy decay laws in strongly anisotropic magnetohydrodynamic turbulence.

    PubMed

    Bigot, Barbara; Galtier, Sébastien; Politano, Hélène

    2008-02-22

    We investigate the influence of a uniform magnetic field B(0)=B(0)e( parallel) on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B(0) is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B(0), with distinct power laws for energy decay of shear- and pseudo-Alfvén waves. Numerical results from the kinetic equations of Alfvén wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes.

  13. The Analysis of a Vortex Type Magnetohydrodynamic Induction Generator

    NASA Technical Reports Server (NTRS)

    Lengyel, L. L.

    1962-01-01

    Consideration it is given to the performance to the characteristics of an AC magnetohydrodynamic power generator, A rotating magnetic field is imposed on the vortex flow of an electrically conducting fluid, which is injected tangentially into an annulus formed by two nonconducting concentric cylinders and two nonconducting end plates. A perturbation technique is used to determine the two dimensional velocity and three dimensional electromagnetic field and current distributions. Finally, the generated power, the ohmic losses, the effective power and the electrical efficiency of the converter system are calculated.

  14. Stability of certain families of ideal magnetohydrodynamic equilibria.

    PubMed

    Núñez, Manuel

    2003-01-01

    The equations of ideal magnetohydrodynamic equilibria posses a number of symmetries that may be used to generate a family of hitherto unknown equilibria if there exists a foliation of the original one by magnetic surfaces. In addition to the possibility of producing analytic equilibria from old ones, this family is studied to find among its members those with minimal energy, those lasting longer under slightly resistive conditions, and those linearly stable. It is shown that in general none of these properties implies any other, thus clarifying the difference among these concepts.

  15. Plasma relaxation and topological aspects in Hall magnetohydrodynamics

    SciTech Connect

    Shivamoggi, B. K.

    2012-07-15

    Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient {alpha} in the Hall MHD Beltrami condition turns out now to be proportional to the potential vorticity. The Hall MHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics if the Hall MHD Lagrange multiplier {beta} is taken to be proportional to the potential vorticity as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as potential vorticity lines in 2D hydrodynamics.

  16. Classical and semirelativistic magnetohydrodynamics with anisotropic ion pressure

    NASA Astrophysics Data System (ADS)

    Meng, Xing; Tóth, Gábor; Sokolov, Igor V.; Gombosi, Tamas I.

    2012-05-01

    We study the magnetohydrodynamics (MHD) equations with anisotropic ion pressure and isotropic electron pressure under both the classical and semirelativistic approximations in order to develop a numerical model. The dispersion relation as well as the characteristic wave speeds are derived. In addition to the exact wave speed solutions, we also provide efficient approximate formulas for the semirelativistic magnetosonic speeds. The equations are discretized with the Rusanov and Harten-Lax-van Leer numerical schemes and implemented into the BATS-R-US MHD code. We perform a set of verification tests.

  17. Magnetohydrodynamic waves and coronal seismology: an overview of recent results.

    PubMed

    De Moortel, Ineke; Nakariakov, Valery M

    2012-07-13

    Recent observations have revealed that magnetohydrodynamic (MHD) waves and oscillations are ubiquitous in the solar atmosphere, with a wide range of periods. We give a brief review of some aspects of MHD waves and coronal seismology that have recently been the focus of intense debate or are newly emerging. In particular, we focus on four topics: (i) the current controversy surrounding propagating intensity perturbations along coronal loops, (ii) the interpretation of propagating transverse loop oscillations, (iii) the ongoing search for coronal (torsional) Alfvén waves, and (iv) the rapidly developing topic of quasi-periodic pulsations in solar flares.

  18. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    PubMed

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance.

  19. Microwave imaging of magnetohydrodynamic instabilities in fusion plasma

    NASA Astrophysics Data System (ADS)

    Sabot, Roland; Elbèze, Didier; Lee, Woochang; Nam, Yoonbum; Park, Hyeon; Shen, Junsong; Yun, Gunsu; Choi, Minjun; Giacalone, Jean-Claude; Nicolas, Timothée; Bottereau, Christine; Clairet, Frédéric; Lotte, Philippe; Molina, Diego

    2016-11-01

    Microwave imaging diagnostics are extremely useful for observing magnetohydrodynamic (MHD) instabilities in magnetic fusion plasmas. Two imaging diagnostics will be available on the WEST tokamak. A method was developed to reconstruct electron density maps from electron density profiles measured by ultrafast reflectometry, a technique based on FM-CW radar principle. It relies on plasma rotation to perform 2D reconstruction. An Electron Cyclotron Emission Imaging (ECEI) diagnostic will image directly the temperature fluctuations. It will be equivalent to 24 stacked vertically radiometers, each probing a spot of few centimetres. These two complementary techniques will contribute to the validation of MHD models.

  20. Helicity Injection by Knotted Antennas into Electron Magnetohydrodynamical Plasmas

    SciTech Connect

    Rousculp, C.L.; Stenzel, R.L.

    1997-08-01

    A fully three-dimensional computer simulation of an ideal electron magnetohydrodynamical plasma is performed. By introducing various pulsed inductive antenna sources, magnetic helicity (H={bold A}{center_dot}{bold B}dV) injection is studied. Confirming experimental results, a simple loop provides no net helicity injection. Linked and knotted antennas, however, do inject helicity and preferentially radiate whistler wave packets parallel or antiparallel to the ambient magnetic field. Relative efficiencies of these antennas are reported as well as their unique directional properties. {copyright} {ital 1997} {ital The American Physical Society}

  1. Spectral method for obtaining three-dimensional magnetohydrodynamic equilibria

    SciTech Connect

    Hirshman, S.P.; Lee, D.K.

    1985-07-01

    A description is given of a new code, MOMCON (spectral moments with constraints), that obtains three-dimensional ideal magnetohydrodynamic (MHD) equilibria in a fixed toroidal domain using a Fourier expansion for the inverse coordinates (R,Z) representing nested magnetic surfaces. A set of nonlinear coupled ordinary differential equations for the spectral coefficients of (R,Z) is solved using an accelerated steepest descent method. A stream function lambda is introduced to improve the mode convergence properties of the Fourier series for R and Z. Constraint equations relating the m greater than or equal to 2 moments of R and Z are solved to define a unique poloidal angle.

  2. Harmonic analysis tools for stochastic magnetohydrodynamics equations in Besov spaces

    NASA Astrophysics Data System (ADS)

    Sango, Mamadou; Tegegn, Tesfalem Abate

    2016-08-01

    We establish a regularity result for stochastic heat equations in probabilistic evolution spaces of Besov type and we use it to prove a global in time existence and uniqueness of solution to a stochastic magnetohydrodynamics equation. The existence result holds with a positive probability which can be made arbitrarily close to one. The work is carried out by blending harmonic analysis tools such as Littlewood-Paley decomposition, Jean-Micheal Bony paradifferential calculus and stochastic calculus. The law of large numbers is a key tool in our investigation. Our global existence result is new in three-dimensional spaces.

  3. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Jose, Jordi

    2016-01-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  4. Stellar Explosions: Hydrodynamics and Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    José, Jordi

    2015-12-01

    Stars are the main factories of element production in the universe through a suite of complex and intertwined physical processes. Such stellar alchemy is driven by multiple nuclear interactions that through eons have transformed the pristine, metal-poor ashes leftover by the Big Bang into a cosmos with 100 distinct chemical species. The products of stellar nucleosynthesis frequently get mixed inside stars by convective transport or through hydrodynamic instabilities, and a fraction of them is eventually ejected into the interstellar medium, thus polluting the cosmos with gas and dust. The study of the physics of the stars and their role as nucleosynthesis factories owes much to cross-fertilization of different, somehow disconnected fields, ranging from observational astronomy, computational astrophysics, and cosmochemistry to experimental and theoretical nuclear physics. Few books have simultaneously addressed the multidisciplinary nature of this field in an engaging way suitable for students and young scientists. Providing the required multidisciplinary background in a coherent way has been the driving force for Stellar Explosions: Hydrodynamics and Nucleosynthesis. Written by a specialist in stellar astrophysics, this book presents a rigorous but accessible treatment of the physics of stellar explosions from a multidisciplinary perspective at the crossroads of computational astrophysics, observational astronomy, cosmochemistry, and nuclear physics. Basic concepts from all these different fields are applied to the study of classical and recurrent novae, type I and II supernovae, X-ray bursts and superbursts, and stellar mergers. The book shows how a multidisciplinary approach has been instrumental in our understanding of nucleosynthesis in stars, particularly during explosive events.

  5. GRAVITATIONAL WAVES FROM STELLAR COLLAPSE

    SciTech Connect

    C. L. FRYER

    2001-01-01

    Stellar core-collapse plays an important role in nearly all facets of astronomy: cosmology (as standard candles), formation of compact objects, nucleosynthesis and energy deposition in galaxies. In addition, they release energy in powerful explosions of light over a range of energies, neutrinos, and the subject of this meeting, gravitational waves. Because of this broad range of importance, astronomers have discovered a number of constraints which can be used to help them understand the importance of stellar core-collapse as gravitational wave sources.

  6. Transonic canards and stellar wind

    NASA Astrophysics Data System (ADS)

    Carter, Paul; Knobloch, Edgar; Wechselberger, Martin

    2017-03-01

    Parker’s classical stellar wind solution [20] describing steady spherically symmetric outflow from the surface of a star is revisited. Viscous dissipation is retained. The resulting system of equations has slow-fast structure and is amenable to analysis using geometric singular perturbation theory. This technique leads to a reinterpretation of the sonic point as a folded saddle and the identification of shock solutions as canard trajectories in space [22]. The results shed light on the location of the shock and its sensitivity to the system parameters. The related spherically symmetric stellar accretion solution of Bondi [4] is described by the same theory.

  7. Deriving stellar inclination of slow rotators using stellar activity

    SciTech Connect

    Dumusque, X.

    2014-12-01

    Stellar inclination is an important parameter for many astrophysical studies. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than ∼2-2.5 km s{sup –1}. By using the new activity simulation SOAP 2.0 which can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit observations of solar-type stars and derive their inclination. For HD 189733, we estimate the stellar inclination to be i=84{sub −20}{sup +6} deg, which implies a star-planet obliquity of ψ=4{sub −4}{sup +18} considering previous measurements of the spin-orbit angle. For α Cen B, we derive an inclination of i=45{sub −19}{sup +9}, which implies that the rotational spin of the star is not aligned with the orbital spin of the α Cen binary system. In addition, assuming that α Cen Bb is aligned with its host star, no transit would occur. The inclination of α Cen B can be measured using 40 radial-velocity measurements, which is remarkable given that the projected rotational velocity of the star is smaller than 1.15 km s{sup –1}.

  8. The Rossiter-McLaughlin effect reloaded: Probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems

    NASA Astrophysics Data System (ADS)

    Cegla, H. M.; Lovis, C.; Bourrier, V.; Beeck, B.; Watson, C. A.; Pepe, F.

    2016-04-01

    When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system's dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the in- from the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ -0.4 ± 0.2°) and true 3D obliquity (ψ ≈ 7+12-4°). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

  9. Magnetohydrodynamic Power Generation in the Laboratory Simulated Martian Entry Plasma

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Popovic, S.; Drake, J.; Moses, R. W.

    2005-01-01

    This paper addresses the magnetohydrodynamic (MHD) conversion of the energy released during the planetary entry phase of an interplanetary vehicle trajectory. The effect of MHD conversion is multi-fold. It reduces and redirects heat transferred to the vehicle, and regenerates the dissipated energy in reusable and transportable form. A vehicle on an interplanetary mission carries about 10,000 kWh of kinetic energy per ton of its mass. This energy is dissipated into heat during the planetary atmospheric entry phase. For instance, the kinetic energy of Mars Pathfinder was about 4220 kWh. Based on the loss in velocity, Mars Pathfinder lost about 92.5% of that energy during the plasma-sustaining entry phase that is approximately 3900 kWh. An ideal MHD generator, distributed over the probe surface of Mars Pathfinder could convert more than 2000 kWh of this energy loss into electrical energy, which correspond to more than 50% of the kinetic energy loss. That means that the heat transferred to the probe surface can be reduced by at least 50% if the converted energy is adequately stored, or re-radiated, or directly used. Therefore, MHD conversion could act not only as the power generating, but also as the cooling process. In this paper we describe results of preliminary experiments with light and microwave emitters powered by model magnetohydrodynamic generators and discuss method for direct use of converted energy.

  10. The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Wheatley, V.; Samtaney, R.; Pullin, D. I.; Gehre, R. M.

    2014-01-01

    The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.

  11. A hybrid numerical fluid dynamics code for resistive magnetohydrodynamics

    SciTech Connect

    Johnson, Jeffrey

    2006-04-01

    Spasmos is a computational fluid dynamics code that uses two numerical methods to solve the equations of resistive magnetohydrodynamic (MHD) flows in compressible, inviscid, conducting media[1]. The code is implemented as a set of libraries for the Python programming language[2]. It represents conducting and non-conducting gases and materials with uncomplicated (analytic) equations of state. It supports calculations in 1D, 2D, and 3D geometry, though only the 1D configuation has received significant testing to date. Because it uses the Python interpreter as a front end, users can easily write test programs to model systems with a variety of different numerical and physical parameters. Currently, the code includes 1D test programs for hydrodynamics (linear acoustic waves, the Sod weak shock[3], the Noh strong shock[4], the Sedov explosion[5], magnetic diffusion (decay of a magnetic pulse[6], a driven oscillatory "wine-cellar" problem[7], magnetic equilibrium), and magnetohydrodynamics (an advected magnetic pulse[8], linear MHD waves, a magnetized shock tube[9]). Spasmos current runs only in a serial configuration. In the future, it will use MPI for parallel computation.

  12. Nuclear-electric magnetohydrodynamic propulsion for submarine. Master's thesis

    SciTech Connect

    Bednarczyk, A.A.

    1989-05-01

    The thesis analyzes the superconducting technology for a shipboard magnetohydrodynamic propulsion system. Based on the the principles of magnetohydrodynamics (MHD), the concept of open-water efficiency was used to optimize the preliminary design of the MHD thruster. After the baseline submarine hull modeled after the Los Angeles class submarine was selected, propulsive efficiency and the top speed for four variant MHD submarines were evaluated. The design criteria were set at a 100-MWt nuclear reactor power upper limit and a requirement of 30 knots for the top speed. This required advanced reactor plants and advanced energy conversion systems. The selection of High Temperature Gas Reactor (HTGR) and Liquid-Metal Fast Breeder Reactor (LMFBR) was based on the combined merits of safety, environmental impact, high source temperature and maximum-volume power density (KW/L). With the reactor outlet temperatures of 2000 K, direct-cycle energy conversion-systems gave the best results in terms of thermal efficiency and propulsion plant power density. Two energy conversion systems selected were closed-cycle gas turbine geared to a superconducting generator, and closed-cycle liquid-metal MHD generator. Based on submarine reliability and safety, the option of using an intermediate heat exchanger was also considered. Finally, non-nuclear support systems affected by the advanced power plant and MHD propulsion, stressing submarine safety, are proposed.

  13. The Supernova - A Stellar Spectacle.

    ERIC Educational Resources Information Center

    Straka, W. C.

    This booklet is part of an American Astronomical Society curriculum project designed to provide teaching materials to teachers of secondary school chemistry, physics, and earth science. The following topics concerning supernovae are included: the outburst as observed and according to theory, the stellar remnant, the nebular remnant, and a summary…

  14. TEM turbulence optimisation in stellarators

    NASA Astrophysics Data System (ADS)

    Proll, J. H. E.; Mynick, H. E.; Xanthopoulos, P.; Lazerson, S. A.; Faber, B. J.

    2016-01-01

    With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is addressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X (Beidler et al 1990 Fusion Technol. 17 148) and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT (Spong et al 2001 Nucl. Fusion 41 711) code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stellarator experiment HSX (Anderson et al 1995 Fusion Technol. 27 273) is presented for which a reduction of the linear growth rates is achieved over a broad range of the operational parameter space. As an important consequence of this property, the turbulent heat flux levels are reduced compared with the initial configuration.

  15. Synthetic stellar libraries for Gaia

    NASA Astrophysics Data System (ADS)

    Sordo, R.

    A large database of synthetic stellar libraries has been collected for the Gaia mission. I will present the libraries in the context of their usage in APSIS, the system of algorithms developed to deal with the automated classification and parameter determination of the observed sources.

  16. Integrated Circuit Stellar Magnitude Simulator

    ERIC Educational Resources Information Center

    Blackburn, James A.

    1978-01-01

    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)

  17. Chandrasekhar and modern stellar dynamics

    NASA Astrophysics Data System (ADS)

    Evans, N. W.

    2011-03-01

    Stellar dynamics occupied Chandrasekhar's interest for a brief interlude between his more prolonged studies of stellar structure and radiative transfer. This paper traces the history of one of his ideas -- namely, that the shape of the galactic potential controls the orientation of the stellar velocity dispersion tensor. It has its roots in papers by Eddington (1915) and Chandrasekhar (1939), and provoked a fascinating dispute between these two great scientists -- less well-known than their famous controversy over the white dwarf stars. In modern language, Eddington claimed that the integral curves of the eigenvectors of the velocity dispersion tensor provide a one-dimensional foliation into mutually orthogonal surfaces. Chandrasekhar challenged this, and explicitly constructed a counter-example. In fact, the work of neither of these great scientists was without flaws, though further developments in stellar dynamics were to ultimately draw more on Eddington's insight than Chandrasekhar's. We conclude with a description of modern attempts to measure the orientation of the velocity dispersion tensor for populations in the Milky Way Galaxy, a subject that is coming into its own with the dawning of the age of precision astrometry.

  18. Chandrasekhar and modern stellar dynamics

    NASA Astrophysics Data System (ADS)

    Evans, N. W.

    2011-12-01

    Stellar dynamics occupied Chandrasekhar's interest for a brief interlude between his more prolonged studies of stellar structure and radiative transfer. This paper traces the history of one of his ideas - namely, that the shape of the galactic potential controls the orientation of the stellar velocity dispersion tensor. It has its roots in papers by Eddington (1915) and Chandrasekhar (1939), and provoked a fascinating dispute between these two great scientists - less well-known than their famous controversy over the white dwarf stars. In modern language, Eddington claimed that the integral curves of the eigenvectors of the velocity dispersion tensor provide a one-dimensional foliation into mutually orthogonal surfaces. Chandrasekhar challenged this, and explicitly constructed a counter-example. In fact, the work of neither of these great scientists was without flaws, though further developments in stellar dynamics were to ultimately draw more on Eddington's insight than Chandrasekhar's. We conclude with a description of modern attempts to measure the orientation of the velocity dispersion tensor for populations in the Milky Way Galaxy, a subject that is coming into its own with the dawning of the age of precision astrometry.

  19. Summary of the Stellar Chromospheres Conference

    NASA Technical Reports Server (NTRS)

    Wilson, O. C.

    1973-01-01

    Studies on solar-type stellar chromospheres include diagnostic techniques, observations on different kinds of apparently existing chromospheres, enhancement dynamics of chromospheric activity, and interpretation of stellar spectroscopy with theoretical explanations for chromospheric lines.

  20. On magnetohydrodynamic thermal instabilities in magnetic flux tubes. [in plane parallel stellar atmosphere in LTE and hydrostatic equilibrium

    NASA Technical Reports Server (NTRS)

    Massaglia, S.; Ferrari, A.; Bodo, G.; Kalkofen, W.; Rosner, R.

    1985-01-01

    The stability of current-driven filamentary modes in magnetic flux tubes embedded in a plane-parallel atmosphere in LTE and in hydrostatic equilibrium is discussed. Within the tube, energy transport by radiation only is considered. The dominant contribution to the opacity is due to H- ions and H atoms (in the Paschen continuum). A region in the parameter space of the equilibrium configuration in which the instability is effective is delimited, and the relevance of this process for the formation of structured coronae in late-type stars and accretion disks is discussed.

  1. An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b

    NASA Astrophysics Data System (ADS)

    Bourrier, V.; Lecavelier des Etangs, A.; Ehrenreich, D.; Tanaka, Y. A.; Vidotto, A. A.

    2016-06-01

    Observations of the warm Neptune GJ 436 b were performed with HST/STIS at three different epochs (2012, 2013, 2014) in the stellar Lyman-α line. They showed deep, repeated transits that were attributed to a giant exosphere of neutral hydrogen. The low radiation pressure from the M-dwarf host star was shown to play a major role in the dynamics of the escaping gas and its dispersion within a large volume around the planet. Yet by itself it cannot explain the specific time-variable spectral features detected in each transit. Here we investigate the combined role of radiative braking and stellar wind interactions using numerical simulations with the EVaporating Exoplanet code (EVE) and we derive atmospheric and stellar properties through the direct comparison of simulated and observed spectra. The first epoch of observations is difficult to interpret because of the lack of out-of-transit data. In contrast, the results of our simulations match the observations obtained in 2013 and 2014 well. The sharp early ingresses observed in these epochs come from the abrasion of the planetary coma by the stellar wind. Spectra observed at later times during the transit can be produced by a dual exosphere of planetary neutrals (escaped from the upper atmosphere of the planet) and neutralized protons (created by charge-exchange with the stellar wind). We find similar properties at both epochs for the planetary escape rate (~2.5 × 108 g s-1), the stellar photoionization rate (~2 × 10-5 s-1), the stellar wind bulk velocity (~85 km s-1), and its kinetic dispersion velocity (~10 km s-1, corresponding to a kinetic temperature of 12 000 K). We also find high velocities for the escaping gas (~50-60 km s-1) that may indicate magnetohydrodynamic (MHD) waves that dissipate in the upper atmosphere and drive the planetary outflow. In 2014 the high density of the stellar wind (~3 × 103 cm-3) led to the formation of an exospheric tail that was mainly composed of neutralized protons and produced

  2. Targeted Optimization of Quasi-Symmetric Stellarators

    SciTech Connect

    Hegna, Chris C.; Anderson, D. T.; Talmadge, J. N.

    2016-10-06

    The proposed research focuses on targeted areas of plasma physics dedicated to improving the stellarator concept. Research was pursued in the technical areas of edge/divertor physics in 3D configurations, magnetic island physics in stellarators, the role of 3D shaping on microinstabilities and turbulent transport and energetic ion confinement in stellarators.

  3. Plasma Sloshing in Pulse-heated Solar and Stellar Coronal Loops

    NASA Astrophysics Data System (ADS)

    Reale, F.

    2016-08-01

    There is evidence that coronal heating is highly intermittent, and flares are the high energy extreme. The properties of the heat pulses are difficult to constrain. Here, hydrodynamic loop modeling shows that several large amplitude oscillations (˜20% in density) are triggered in flare light curves if the duration of the heat pulse is shorter than the sound crossing time of the flaring loop. The reason for this is that the plasma does not have enough time to reach pressure equilibrium during heating, and traveling pressure fronts develop. The period is a few minutes for typical solar coronal loops, dictated by the sound crossing time in the decay phase. The long period and large amplitude make these oscillations different from typical magnetohydrodynamic (MHD) waves. This diagnostic can be applied both to observations of solar and stellar flares and to future observations of non-flaring loops at high resolution.

  4. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    SciTech Connect

    Ma, X. Maurer, D. A.; Knowlton, S. F.; ArchMiller, M. C.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberds, N. A.; Traverso, P. J.; Cianciosa, M. R.

    2015-12-15

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. The inversion radius of standard sawteeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.

  5. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    SciTech Connect

    Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ArchMiller, M. C.; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Hebert, J. D.; Herfindal, J. L.; Pandya, M. D.; Roberts, N. A.; Traverso, P. J.; Cianciosa, M. R.

    2015-12-22

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is used to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.

  6. Non-axisymmetric equilibrium reconstruction of a current-carrying stellarator using external magnetic and soft x-ray inversion radius measurements

    DOE PAGES

    Ma, X.; Maurer, D. A.; Knowlton, Stephen F.; ...

    2015-12-22

    Non-axisymmetric free-boundary equilibrium reconstructions of stellarator plasmas are performed for discharges in which the magnetic configuration is strongly modified by ohmically driven plasma current. These studies were performed on the compact toroidal hybrid device using the V3FIT reconstruction code with a set of 50 magnetic diagnostics external to the plasma. With the assumption of closed magnetic flux surfaces, the reconstructions using external magnetic measurements allow accurate estimates of the net toroidal flux within the last closed flux surface, the edge safety factor, and the plasma shape of these highly non-axisymmetric plasmas. Lastly, the inversion radius of standard saw-teeth is usedmore » to infer the current profile near the magnetic axis; with external magnetic diagnostics alone, the current density profile is imprecisely reconstructed.« less

  7. Theory of stellar convection - II. First stellar models

    NASA Astrophysics Data System (ADS)

    Pasetto, S.; Chiosi, C.; Chiosi, E.; Cropper, M.; Weiss, A.

    2016-07-01

    We present here the first stellar models on the Hertzsprung-Russell diagram, in which convection is treated according to the new scale-free convection theory (SFC theory) by Pasetto et al. The aim is to compare the results of the new theory with those from the classical, calibrated mixing-length (ML) theory to examine differences and similarities. We integrate the equations describing the structure of the atmosphere from the stellar surface down to a few per cent of the stellar mass using both ML theory and SFC theory. The key temperature over pressure gradients, the energy fluxes, and the extension of the convective zones are compared in both theories. The analysis is first made for the Sun and then extended to other stars of different mass and evolutionary stage. The results are adequate: the SFC theory yields convective zones, temperature gradients ∇ and ∇e, and energy fluxes that are very similar to those derived from the `calibrated' MT theory for main-sequence stars. We conclude that the old scale dependent ML theory can now be replaced with a self-consistent scale-free theory able to predict correct results, as it is more physically grounded than the ML theory. Fundamentally, the SFC theory offers a deeper insight of the underlying physics than numerical simulations.

  8. Magnetic Field Line Topology of the Scrape-Off Layer in the Compact Stellarator NCSX

    NASA Astrophysics Data System (ADS)

    Grossman, Arthur; Mioduszewski, Peter; Fenstermacher, Max; Koniges, Alice; Rognlien, Tom

    2001-10-01

    The magnetic topology of the plasma boundary of the proposed compact stellarator NCSX is investigated using the MFBE[1] and VMEC2000[2] codes. The VMEC code provides a free boundary equilibrium and the magnetics from external coils and bootstrap plasma currents inside the last closed magnetic surface (LCMS). The MFBE code uses these results to calculate the magnetic fields of these finite beta equilibria outside the LCMS in a form suitable for line tracing. The Poincaré plots of field lines started outside the LCMS indicate preservation of initial radial ordering of field lines up to intersections with vacuum vessel and plasma facing components. A large flux expansion of field lines is observed between the midplane and tips of the banana shaped cross-section, due to the presence of a nearby poloidal field null used to create the banana shape. TRIM coils used to heal islands just within the LCMS appear to reduce stochasticity just outside the LCMS as well as enhance an island structure outside the LCMS. Field lines are observed to move in and out radially as they are followed toroidally. Power and particle control design based on these observations include the limiting structure geometry and baffles designed to intersect islands outside the LCMS. [1] E.Strumberger, Nuclear Fusion 37 1997 19. [2] S.Hirshman, Comp. Phys. Commun. 43 1986 143.

  9. Sea-Water Magnetohydrodynamic Propulsion for Next-Generation Undersea Vehicles

    DTIC Science & Technology

    1990-02-01

    1961. 2 J. B. Friauf, "Electromagnetic Ship Propulsion ," J. of Amer. Soc. of Naval Engrs., Feb., 1961, pp 139-142. 3 0. M. Phillips, "The Prospects for...Magnetohydrodynamic Ship Propulsion ," J. of Ship Research, March, 1962, pp 43-51. 4 R. A. Doragh, "Magnetohydrodynamic Ship Propulsion using...Paper # 67-432. I A. P. Baranov, "Future of Magnetohydrodynamic Ship Propulsion ," Sudostroyeniye, No. 12, 1966, pp 3-6. 8 A. Iwata, Y. Saji and S. Sato

  10. Deriving stellar inclination of slow rotators using stellar activity signal

    NASA Astrophysics Data System (ADS)

    Dumusque, Xavier

    2015-01-01

    Stellar inclination is an important parameter for many astrophysical studies. In the context of exoplanets, this allows us to derive the true obliquity of a system if the projected stellar spin-planetary orbit angle can measured via the Rossiter-Mclaughlin effect. Although different techniques allow us to estimate stellar inclination for fast rotators, it becomes much more difficult when stars are rotating slower than 2-2.5 km.s-1. By using the new activity simulation SOAP 2.0 that can reproduce the photometric and spectroscopic variations induced by stellar activity, we are able to fit the activity variation of solar-type stars and derive their inclination. The case of the equator-on star HD189733 will be presented, as well as the case of Alpha Centauri B, which present an inclination of 45+9-19 degrees, implying that the earth-mass orbiting planet is not transiting if aligned with its host star. Other exemples will also demonstrate the power of the technique, that can infer a stellar inclination, even for slow rotators like Alpha Centauri B, that present a projected rotational velocity smaller than 1.15 km.s-1. In addition, the SOAP 2.0 simulation can be used to correct for the effect of activity when one major active region is dominating the RV signal. This could enhance the detection of small mass exoplanets orbiting slightly active stars.This project is funded by ETAEARTH (European Union Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 313014), a transnational collaboration between European countries and the US (the Swiss Space Office, the Harvard Origin of Life Initiative, the Scottish Universities Physics Alliance, the University of Geneva, the Smithsonian Astrophysical Observatory, the Italian National Astrophysical Institute, the University of St. Andrews, Queens University Belfast, and the University of Edinburgh) setup to optimize the synergy between space-and ground-based data whose scientific potential for the characterization of

  11. STELLAR WIND INFLUENCE ON PLANETARY DYNAMOS

    SciTech Connect

    Heyner, Daniel; Glassmeier, Karl-Heinz; Schmitt, Dieter

    2012-05-10

    We examine the possible influence of early stellar wind conditions on the evolution of planetary dynamo action. In our model, the dynamo operates within a significant ambient magnetospheric magnetic field generated by the interaction between the stellar wind and the planetary magnetic field. This provides a negative feedback mechanism which quenches the dynamo growth. The external magnetic field magnitude which the dynamo experiences, and thus the strength of the quenching, depends on the stellar wind dynamic pressure. As this pressure significantly changes during stellar evolution, we argue that under early stellar system conditions the coupling between the stellar wind and the interior dynamics of a planet is much more important than has been thought up to now. We demonstrate the effects of the feedback coupling in the course of stellar evolution with a planet at a similar distance to the central star as Mercury is to the Sun.

  12. Stellar structures in Extended Gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; De Laurentis, M.

    2016-09-01

    Stellar structures are investigated by considering the modified Lané-Emden equation coming out from Extended Gravity. In particular, this equation is obtained in the Newtonian limit of f ( R) -gravity by introducing a polytropic relation between the pressure and the density into the modified Poisson equation. The result is an integro-differential equation, which, in the limit f ( R) → R , becomes the standard Lané-Emden equation usually adopted in the stellar theory. We find the radial profiles of gravitational potential by solving for some values of the polytropic index. The solutions are compatible with those coming from General Relativity and could be physically relevant in order to address peculiar and extremely massive objects.

  13. Transport analysis of stellarator reactors

    SciTech Connect

    Painter, S.L. . Dept. of Nuclear Engineering Australian National Univ., Canberra . Research School of Physical Sciences); Lyon, J.F. )

    1991-02-01

    The performance of deuterium-tritium stellarator reactors is studied with a new, fast one-dimensional (1-D) transport survey code that is based on the spectral collocation method. Two operating modes with different signs of the assumed radial electric field are identified. The operating mode with a positive electric field is characterized by high temperatures and moderate densities, whereas the other mode has lower temperatures and higher densities. Both modes lead to possible reactors that could tolerate a large alpha-particle energy loss. The sensitivity to device parameters and to profile assumptions is examined. Scaling expressions useful for parametric studies are obtained for different quantities of interest, and the 1-D code results are compared with results derived from an empirical scaling relation. Deuterium-helium-3 (D-{sup 3}He) operation is also feasible but is more demanding. The implications for stellarator reactor design optimization are discussed. 47 refs., 16 figs., 1 tab.

  14. Modular Stellarator Fusion Reactor concept

    SciTech Connect

    Miller, R.L.; Krakowski, R.A.

    1981-08-01

    A preliminary conceptual study is made of the Modular Stellarator Reactor (MSR). A steady-state ignited, DT-fueled, magnetic fusion reactor is proposed for use as a central electric-power station. The MSR concept combines the physics of the classic stellarator confinement topology with an innovative, modular-coil design. Parametric tradeoff calculations are described, leading to the selection of an interim design point for a 4-GWt plant based on Alcator transport scaling and an average beta value of 0.04 in an l = 2 system with a plasma aspect ratio of 11. The physics basis of the design point is described together with supporting magnetics, coil-force, and stress computations. The approach and results presented herein will be modified in the course of ongoing work to form a firmer basis for a detailed conceptual design of the MSR.

  15. Chaotic pulsations in stellar models

    SciTech Connect

    Buchler, J.R. )

    1990-12-01

    The irregular behavior of large-amplitude pulsating stars undergoing radial oscillations is examined theoretically, with a focus on hydrodynamic simulations of the W Virginis population II Cepheids (stars which show both regular and RV Tau characteristics). Sequences of models are constructed as one-parameter families (with luminosity, mass, and composition fixed and Teff as the control parameter) and analyzed to derive a systematic map of the bifurcation set; i.e., of the possible types of pulsations. The results are presented graphically, and it is shown that both cascades of period doubling (via destabilization of an overtone through a half-integer-type resonance) and tangent bifurcation are possible routes to chaos in these systems, depending on the stellar parameters. The general robustness of the chaotic behavior and the existence of a 'chaotic blue edge' in stellar-parameter space are demonstrated. 55 refs.

  16. Investigating Exoplanets Within Stellar Clusters

    NASA Astrophysics Data System (ADS)

    Glaser, Joseph Paul; Reisinger, Tyler; Thornton, Jonathan; McMillan, Stephen L. W.

    2017-01-01

    Recent surveys exploring nearby open clusters have yielded noticeable differences in the planetary population from that seen in the Field. This is surprising, as it is widely accepted that a majority of stars form within clustered environments before dispersing throughout the galaxy. Though dynamical arguments have been used to explain this discrepancy in the past, previous surveys' observational statistics and detection biases can also be used to argue that the open cluster planet population is indistinguishable from the Field.Our group aims to explore the role of stellar close encounters and interplanetary interactions in producing the observed exoplanet populations for both open cluster stars and Field stars. We employ a variety of different computational techniques to investigate these effects, ranging from traditional Monte Carlo scattering experiments to multi-scale n-body simulations. We are interested in: the effects of stellar binaries; Hot Jupiter migrations; long-period ice giants; and the habitability history of terrestrial planets.

  17. The Solar/Stellar Connection

    NASA Astrophysics Data System (ADS)

    Brun, Allan Sacha

    2015-08-01

    The Sun is the archetype of magnetic star. Its proximity and the wealth of very high accuracy observations that this has allowed us to gather over many decades have greatly helped us understanding how solar-like stars (e.g with a convective envelope) redistribute angular momentum and generate a cyclic magnetic field. However most models have been so fine tuned that when they are straightforwardly extended to other solar-like stars and are compared with the ever growing stellar magnetism and differential rotation observations the agreement is not as good as one could hope. In this review I will discuss based on theoretical considerations and multi-D MHD stellar models what can be considered as robust properties of solar-like star dynamics and magnetism and what is still speculative.

  18. bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT

    SciTech Connect

    Ryan, B. R.; Gammie, C. F.; Dolence, J. C.

    2015-07-01

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry.

  19. Diagnostic development and support of MHD (magnetohydrodynamics) test facilities

    SciTech Connect

    Not Available

    1989-07-01

    Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

  20. Hamiltonian magnetohydrodynamics: Lagrangian, Eulerian, and dynamically accessible stability—Theory

    SciTech Connect

    Andreussi, T.; Morrison, P. J.; Pegoraro, F.

    2013-09-15

    Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian variable energy principle is described and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the energy-Casimir principle is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e., variations that explicitly preserve invariants of the system, are introduced and the respective energy principle is considered. General criteria for stability are obtained, along with comparisons between the three different approaches.

  1. Characterization of Magnetohydrodynamic (MHD) Shock Sensor using Schlieren Imaging

    NASA Astrophysics Data System (ADS)

    Rockwell, Owen; Hargather, Michael

    2013-11-01

    Schlieren imaging is used to quantitatively determine the speed and pressure duration of a shock wave traveling through air. The high-speed quantitative schlieren images are then used to characterize a new magnetohydrodynamic (MHD) shock sensor. This device uses the air density and particle velocity changes across a shock wave to determine the shock velocity via the distortion of a magnetic field. Using Faraday's law of electromagnetic induction, the shock velocity and pressure can be interpreted from a change in potential across the electrodes within the device. This principle along with the assumption that the shock wave is traveling through the undisturbed air allows for the calculation of shock velocity. Piezoelectric pressure gauges are used for comparison to measure the pressure pulse magnitude and duration.

  2. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    DOE PAGES

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is nomore » strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.« less

  3. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence

    SciTech Connect

    Squire, J.; Bhattacharjee, A.

    2015-11-02

    Here, this article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  4. High-beta turbulence in two-dimensional magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Fyfe, D.; Montgomery, D.

    1975-01-01

    Incompressible turbulent flows were investigated in the framework of ideal magnetohydrodynamics. Equilibrium canonical distributions are determined in a phase whose coordinates are the real and imaginary parts of the Fourier coefficients for the field variables. The magnetic field and fluid velocity have variable x and y components, and all field quantities are independent of z. Three constants of the motion are found which survive the truncation in Fourier space and permit the construction of canonical distributions with three independent temperatures. Spectral densities are calculated. One of the more novel physical effects is the appearance of macroscopic structures involving long wavelength, self-generated, magnetic fields ("magnetic islands"). In the presence of finite dissipation, energy cascades to higher wave numbers can be accompanied by vector potential cascades to lower wave numbers, in much the same way that in the fluid dynamic case, energy cascades to lower wave numbers accompany entropy cascades to higher wave numbers.

  5. Hamiltonian and action formalisms for two-dimensional gyroviscous magnetohydrodynamics

    SciTech Connect

    Morrison, P. J. Lingam, M.; Acevedo, R.

    2014-08-15

    A general procedure for constructing action principles for continuum models via a generalization of Hamilton's principle of mechanics is described. Through the procedure, an action principle for a gyroviscous magnetohydrodynamics model is constructed. The model is shown to agree with a reduced version of Braginskii's fluid equations. The construction reveals the origin of the gyromap, a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket. The construction procedure yields a class of Casimir invariants, which are then used to construct variational principles for equilibrium equations with flow and gyroviscosity. The procedure for obtaining reduced fluid models with gyroviscosity is also described.

  6. Development of magnetohydrodynamic modes during sawteeth in tokamak plasmas

    SciTech Connect

    Firpo, M.-C.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.; Lifschitz, A. F.

    2013-07-15

    A dynamical analysis applied to a reduced resistive magnetohydrodynamics model is shown to explain the chronology of the nonlinear destabilization of modes observed in tokamak sawteeth. A special emphasis is put on the nonlinear self-consistent perturbation of the axisymmetric m = n = 0 mode that manifests through the q-profile evolution. For the very low fusion-relevant resistivity values, the q-profile is shown to remain almost unchanged on the early nonlinear timescale within the central tokamak region, which supports a partial reconnection scenario. Within the resistive region, indications for a local flattening or even a local reversed-shear of the q-profile are given. The impact of this ingredient in the occurrence of the sawtooth crash is discussed.

  7. MAGNETOHYDRODYNAMIC SIMULATION OF A SIGMOID ERUPTION OF ACTIVE REGION 11283

    SciTech Connect

    Jiang Chaowei; Feng Xueshang; Wu, S. T.; Hu Qiang E-mail: fengx@spaceweather.ac.cn E-mail: qh0001@uah.edu

    2013-07-10

    Current magnetohydrodynamic (MHD) simulations of the initiation of solar eruptions are still commonly carried out with idealized magnetic field models, whereas the realistic coronal field prior to eruptions can possibly be reconstructed from the observable photospheric field. Using a nonlinear force-free field extrapolation prior to a sigmoid eruption in AR 11283 as the initial condition in an MHD model, we successfully simulate the realistic initiation process of the eruption event, as is confirmed by a remarkable resemblance to the SDO/AIA observations. Analysis of the pre-eruption field reveals that the envelope flux of the sigmoidal core contains a coronal null and furthermore the flux rope is prone to a torus instability. Observations suggest that reconnection at the null cuts overlying tethers and likely triggers the torus instability of the flux rope, which results in the eruption. This kind of simulation demonstrates the capability of modeling the realistic solar eruptions to provide the initiation process.

  8. Magnetohydrodynamic disc winds and line width distributions - II

    NASA Astrophysics Data System (ADS)

    Chajet, L. S.; Hall, P. B.

    2017-02-01

    We study AGN emission line profiles combining an improved version of the accretion disc-wind model of Murray & Chiang with the magnetohydrodynamic (MHD) model of Emmering et al. Here, we extend our previous work to consider central objects with different masses and/or luminosities. We have compared the dispersions in our model C IV line-width distributions to observational upper limit on that dispersion, considering both smooth and clumpy torus models. Following Fine et al., we transform that scatter in the profile line-widths into a constraint on the torus geometry and show how the half-opening angle of the obscuring structure depends on the mass of the central object and the accretion rate. We find that the results depend only mildly on the dimensionless angular momentum, one of the two integrals of motion that characterize the dynamics of the self-similar ideal MHD outflows.

  9. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE PAGES

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  10. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    SciTech Connect

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; MacLachlan, Scott P.; Tuminaro, Raymond S.

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxation procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.

  11. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  12. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence.

    PubMed

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Boldyrev, Stanislav

    2015-02-13

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.

  13. Magnetohydrodynamic actuation of droplets for millimetric planar fluidic systems

    SciTech Connect

    Ahmadi, A. McDermid, C. M.; Markley, L.

    2016-01-04

    In this work, a magnetohydrodynamic method is proposed for the actuation of droplets in small-scale planar fluidic systems, providing an alternative to commonly used methods such as electrowetting-on-dielectric. Elementary droplet-based operations, including transport, merging, and mixing, are demonstrated. The forces acting on millimetric droplets are carefully investigated, with a primary focus on the magnetic actuation force and on the unbalanced capillary forces that arise due to hysteresis. A super-hydrophobic channel is 3D printed to guide the droplets, with thin wires installed as contact electrodes and permanent magnets providing a static magnetic field. It is shown that droplet motion is enhanced by increasing the droplet size and minimizing the electrode contact surface. The effects of channel geometry on threshold voltage and minimum moveable droplet volume are characterized. Finally, the presence of electrolysis is investigated and mitigating strategies are discussed.

  14. Three-dimensional force-free looplike magnetohydrodynamic equilibria

    NASA Technical Reports Server (NTRS)

    Finn, John M.; Guzdar, Parvez N.; Usikov, Daniel

    1994-01-01

    Computations of three-dimensional force-free magnetohydrodynamic (MHD) equilibria, del x B = lambdaB with lambda = lambda(sub 0), a constant are presented. These equilibria are determined by boundary conditions on a surface corresponding to the solar photosphere. The specific boundary conditions used correspond to looplike magnetic fields in the corona. It is found that as lambda(sub 0) is increased, the loops of flux become kinked, and for sufficiently large lambda(sub 0), develop knots. The relationship between the kinking and knotting properties of these equilibria and the presence of a kink instability and related loss of equilibrium is explored. Clearly, magnetic reconnection must be involved for an unknotted loop equilibrium to become knotted, and speculations are made about the creation of a closed hyperbolic field line (X-line) about which this reconnection creating knotted field lines is centered.

  15. Observation of a nonaxisymmetric magnetohydrodynamic self-organized state

    SciTech Connect

    Cothran, C. D.; Brown, M. R.; Gray, T.; Schaffer, M. J.; Marklin, G.; Lukin, V. S.

    2010-05-15

    A nonaxisymmetric stable magnetohydrodynamic (MHD) equilibrium within a prolate cylindrical conducting boundary has been produced experimentally at Swarthmore Spheromak Experiment (SSX) [M. R. Brown et al., Phys. Plasmas 6, 1717 (1999)]. It has m=1 toroidal symmetry, helical distortion, and flat lambda profile. Each of these observed characteristics are in agreement with the magnetically relaxed minimum magnetic energy Taylor state. The Taylor state is computed using the methods described by A. Bondeson et al. [Phys. Fluids 24, 1682 (1981)] and by J. M. Finn et al. [Phys. Fluids 24, 1336 (1981)] and is compared in detail to the measured internal magnetic structure. The lifetime of this nonaxisymmetric compact torus (CT) is comparable to or greater than that of the axisymmetric CTs produced at SSX; thus suggesting confinement is not degraded by its nonaxisymmetry. For both one- and two-spheromak initial state plasmas, this same equilibrium consistently emerges as the final state.

  16. Lagrangian Frequency Spectrum as a Diagnostic for Magnetohydrodynamic Turbulence Dynamics

    SciTech Connect

    Busse, Angela; Mueller, Wolf-Christian; Gogoberidze, Grigol

    2010-12-03

    For the phenomenological description of magnetohydrodynamic turbulence competing models exist, e.g., Boldyrev [Phys. Rev. Lett. 96, 115002 (2006)] and Gogoberidze [Phys. Plasmas 14, 022304 (2007)], which predict the same Eulerian inertial-range scaling of the turbulent energy spectrum although they employ fundamentally different basic interaction mechanisms. A relation is found that links the Lagrangian frequency spectrum with the autocorrelation time scale of the turbulent fluctuations {tau}{sub ac} and the associated cascade time scale {tau}{sub cas}. Thus, the Lagrangian energy spectrum can serve to identify weak ({tau}{sub ac}<<{tau}{sub cas}) and strong ({tau}{sub ac{approx}{tau}cas}) interaction mechanisms providing insight into the turbulent energy cascade. The new approach is illustrated by results from direct numerical simulations of two- and three-dimensional incompressible MHD turbulence.

  17. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  18. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    SciTech Connect

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.

  19. Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas

    SciTech Connect

    Jardin, S C

    2010-09-28

    Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.

  20. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    SciTech Connect

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-08-27

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

  1. Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence.

    PubMed

    Squire, J; Bhattacharjee, A

    2015-11-01

    This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.

  2. Hamiltonian and action formalisms for two-dimensional gyroviscous magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.; Lingam, M.; Acevedo, R.

    2014-08-01

    A general procedure for constructing action principles for continuum models via a generalization of Hamilton's principle of mechanics is described. Through the procedure, an action principle for a gyroviscous magnetohydrodynamics model is constructed. The model is shown to agree with a reduced version of Braginskii's fluid equations. The construction reveals the origin of the gyromap, a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket. The construction procedure yields a class of Casimir invariants, which are then used to construct variational principles for equilibrium equations with flow and gyroviscosity. The procedure for obtaining reduced fluid models with gyroviscosity is also described.

  3. Correspondence between constrained transport and vector potential methods for magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Mocz, Philip

    2017-01-01

    We show that one can formulate second-order field- and flux-interpolated constrained transport/central difference (CT/CD) type methods as cell-centered magnetic vector potential schemes. We introduce four vector potential CTA/CDA schemes - three of which correspond to CT/CD methods of Tóth (2000) [1] and one of which is a new simple flux-CT-like scheme - where the centroidal vector potential is the primal update variable. These algorithms conserve a discretization of the ∇ ṡ B = 0 condition to machine precision and may be combined with shock-capturing Godunov type base schemes for magnetohydrodynamics. Recasting CT in terms of a centroidal vector potential allows for some simple generalizations of divergence-preserving methods to unstructured meshes, and potentially new directions to generalize CT schemes to higher-order.

  4. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    NASA Astrophysics Data System (ADS)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  5. Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.

    PubMed

    Müller, Wolf-Christian; Malapaka, Shiva Kumar; Busse, Angela

    2012-01-01

    The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.

  6. NON-LOCALITY OF HYDRODYNAMIC AND MAGNETOHYDRODYNAMIC TURBULENCE

    SciTech Connect

    Cho, Jungyeon

    2010-12-20

    We compare non-locality of interactions between different scales in hydrodynamic (HD) turbulence and magnetohydrodynamic (MHD) turbulence in a strongly magnetized medium. We use three-dimensional incompressible direct numerical simulations to evaluate non-locality of interactions. Our results show that non-locality in MHD turbulence is much more pronounced than that in HD turbulence. Roughly speaking, non-local interactions count for more than 10% of total interactions in our MHD simulation on a grid of 512{sup 3} points. However, there is no evidence that non-local interactions are important in our HD simulation with the same numerical resolution. We briefly discuss how non-locality affects the energy spectrum.

  7. Two-and-a-half-dimensional magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Montgomery, D.; Turner, L.

    1982-01-01

    The homogeneous turbulence for which fluctuating magnetic fields and velocity fields are independent of one spatial coordinate but still possess all three components are studied to form a generalized two-and-half dimensional geometry. The integral of the z-vector potential and the magnetic helicity are shown to be ideal invariants, and the basic dynamical variables and the equations of uniform-density incompressible magnetohydrodynamics are defined. The possibility of simultaneous inverse cascades is considered, and Kolmogoroff dimensional analysis is employed to infer omnidirectional inverse cascade spectra. Implications of a selective decay hypothesis, where a tendency exists in the initial value problem for the ideal invariants directly cascaded to higher wavenumbers to be selectively dissipated, and the possibility of a dynamo action in the considered geometry, are examined.

  8. Once more: The continuous spectrum of ideal magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    1998-09-01

    A controversy on the existence of continuous spectra of ideal magnetohydrodynamics in addition to the well-known Alfvén and slow continua, dating back to a conjecture by Grad [Proc. Natl. Acad. Sci. USA 70, 3377 (1973)] and revived by Lashmore-Davies, Thyagaraja, and Cairns [Phys. Plasmas 4, 3243 (1997)], is once more resolved by demonstrating that the resolvent operator is bounded in the relevant domain: There are no additional continua. In addition, the solution of the initial value problem is constructed in terms of the three-dimensional Green's dyadic, which is free of apparent singularities and clearly exhibits the classical continua as δ functions on the diagonal. This construction provides the connection with the proper and improper normal modes and shows that the local dynamics on the magnetic surfaces is described by the classical continua.

  9. An axisymmetric magnetohydrodynamic model for the Crab pulsar wind bubble

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1992-01-01

    We extend Kennel and Coroniti's (1984) spherical magnetohydrodynamic models for the Crab Nebula to include the pinching effect of the toroidal magnetic field. Since the bulk nebular flow is likely to be very submagnetosonic, a quasi-static treatment is possible. We show that the pinching effect can be responsible for the observed elongation of the pulsar wind bubble, as indicated by the surface brightness contours of optical synchrotron radiation. From the observed elongation we estimate a value for sigma, the ratio of Poynting flux to plasma kinetic energy flux in the free pulsar wind, which is consistent with previous results from spherical models. Using the inferred magnetic field configuration inside the pulsar wind bubble, combined with the observed dimensions of the X-ray nebula, we are able to constrain the particle distribution function. We conclude that, for a power-law injection function, the maximum energy has to be much larger in the pulsar equatorial region than in the polar region.

  10. Magnetohydrodynamic Modeling of Solar System Processes on Geodesic Grids

    NASA Astrophysics Data System (ADS)

    Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.

    2013-04-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional "Cartesian" frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  11. Scaling of Compressible Magnetohydrodynamic Turbulence in the Fast Solar Wind

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Hadid, L. Z.; Sahraoui, F.; Galtier, S.

    2016-10-01

    The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced form of an exact law derived recently for compressible isothermal magnetohydrodynamics and in situ observations from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade over a range of two decades of scales that is broader than the previous estimates made from an exact incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by the compressible fluctuations in the energy cascade. The compressible fluctuations are shown to amplify by two to four times the turbulent cascade rate with respect to the incompressible model in ∼ 10 % of the analyzed samples. This new estimated cascade rate is shown to provide the adequate energy dissipation required to account for the local heating of the non-adiabatic solar wind.

  12. Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2009-01-01

    Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.

  13. Viscous, resistive magnetohydrodynamic stability computed by spectral techniques

    PubMed Central

    Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.

    1983-01-01

    Expansions in Chebyshev polynomials are used to study the linear stability of one-dimensional magnetohydrodynamic quasiequilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds-like numbers involving Alfvén speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds-like numbers. Marginal stability curves, growth rates versus Reynolds-like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result that appears general is that instability has been found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three-dimensional instabilities may exist, similar to those in Poiseuille and Couette flow. PMID:16593375

  14. Perpendicular diffusion of energetic particles in noisy reduced magnetohydrodynamic turbulence

    SciTech Connect

    Shalchi, A.; Hussein, M. E-mail: m_hussein@physics.umanitoba.ca

    2014-10-10

    A model for noisy reduced magnetohydrodynamic turbulence was recently proposed. This model was already used to study the random walk of magnetic field lines. In the current article we use the same model to investigate the diffusion of energetic particles across the mean magnetic field. To compute the perpendicular diffusion coefficient, two analytical theories are used, namely, the Non-Linear Guiding Center theory and the Unified Non-Linear Transport (UNLT) theory. It is shown that the two theories provide different results for the perpendicular diffusion coefficient. We also perform test-particle simulations for the aforementioned turbulence model. We show that only the UNLT theory describes perpendicular transport accurately, confirming that this is a powerful tool in diffusion theory.

  15. Particle diffusion in strong field-guided magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Tsang, Yue-Kin; Joanne Mason Collaboration

    2015-11-01

    We consider three-dimensional incompressible magnetohydrodynamic turbulence in the presence of a strong mean background magnetic field. We examine the Lagrangian statistics and characterize the transport properties of the system by numerically tracking a large number of passive massless particles. Previous studies demonstrated that in two dimensions, the presence of a weak background guiding field can suppress turbulent transport in the field-perpendicular direction. The situation in three dimensions is less clear. Here, we measure the single-particle diffusion along different directions with respect to the background magnetic field. By varying the background field strength, we quantify the effect of such guiding field on turbulent diffusion and interpret the results in terms of the Lagrangian velocity function. This work is supported by the UK EPSRC Grant EP/M004546/1.

  16. MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS

    SciTech Connect

    Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.

    2013-04-01

    This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.

  17. Quantitative analytical model for magnetic reconnection in hall magnetohydrodynamics

    SciTech Connect

    Simakov, Andrei N

    2008-01-01

    Magnetic reconnection is of fundamental importance for laboratory and naturally occurring plasmas. Reconnection usually develops on time scales which are much shorter than those associated with classical collisional dissipation processes, and which are not fully understood. While such dissipation-independent (or 'fast') reconnection rates have been observed in particle and Hall magnetohydrodynamics (MHD) simulations and predicted analytically in electron MHD, a quantitative analytical theory of fast reconnection valid for arbitrary ion inertial lengths d{sub i} has been lacking. Here we propose such a theory without a guide field. The theory describes two-dimensional magnetic field diffusion regions, provides expressions for the reconnection rates, and derives a formal criterion for fast reconnection in terms of dissipation parameters and di. It also demonstrates that both open X-point and elongated diffusion regions allow dissipation-independent reconnection and reveals a possibility of strong dependence of the reconnection rates on d{sub i}.

  18. Derivation of the Hall and Extended Magnetohydrodynamics Brackets

    NASA Astrophysics Data System (ADS)

    D'Avignon, Eric; Lingam, Manasvi; Morrison, Philip

    2016-10-01

    There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this research we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.

  19. Concomitant Hamiltonian and topological structures of extended magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Lingam, Manasvi; Miloshevich, George; Morrison, Philip J.

    2016-07-01

    The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions for these models are presented in a topological context, emphasizing their universal facets. Some of the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which is widely utilized in Chern-Simons theory. The ensuing commonality is traced to the existence of an underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a unique noncanonical Poisson bracket, and its associated energy.

  20. bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport

    DOE PAGES

    Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.

    2015-06-25

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and tomore » a slowly accreting Kerr black hole in axisymmetry.« less

  1. bhlight: General Relativistic Radiation Magnetohydrodynamics with Monte Carlo Transport

    SciTech Connect

    Ryan, Benjamin R; Dolence, Joshua C.; Gammie, Charles F.

    2015-06-25

    We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry.

  2. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks

    SciTech Connect

    Chen, L. )

    1994-07-20

    The resonant excitations of high-n magnetohydrodynamic (MHD) instabilities by the energetic ions/alpha particles in tokamaks are theoretically analyzed. Here, n is the toroidal mode number. Since, typically, the MHD modes consist of two-scale structures; one singular ( inertial'') region and one regular (ideal) region, the energetic particle contributions in the singular region are suppressed by the finite-size orbits. Analytical dispersion relations can then be derived via the asymptotic matching analysis. The dispersion relations have the generic form of the fishbone'' dispersion relation and demonstrate, in particular, the existence of two types of modes; that is, the MHD gap mode and the energetic-particle continuum mode. Specific expressions are given for both the kinetic ballooning modes (KBM) and the toroidal Alfven modes (TAM). It is suggested that the stability property may be qualitatively regarded as the hybrid'' of conventional MHD tokamaks and field reversed ion rings. [copyright]American Institute of Physics

  3. Accelerated Fitting of Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; Conroy, Charlie; Rix, Hans-Walter

    2016-07-01

    Stellar spectra are often modeled and fitted by interpolating within a rectilinear grid of synthetic spectra to derive the stars’ labels: stellar parameters and elemental abundances. However, the number of synthetic spectra needed for a rectilinear grid grows exponentially with the label space dimensions, precluding the simultaneous and self-consistent fitting of more than a few elemental abundances. Shortcuts such as fitting subsets of labels separately can introduce unknown systematics and do not produce correct error covariances in the derived labels. In this paper we present a new approach—Convex Hull Adaptive Tessellation (chat)—which includes several new ideas for inexpensively generating a sufficient stellar synthetic library, using linear algebra and the concept of an adaptive, data-driven grid. A convex hull approximates the region where the data lie in the label space. A variety of tests with mock data sets demonstrate that chat can reduce the number of required synthetic model calculations by three orders of magnitude in an eight-dimensional label space. The reduction will be even larger for higher dimensional label spaces. In chat the computational effort increases only linearly with the number of labels that are fit simultaneously. Around each of these grid points in the label space an approximate synthetic spectrum can be generated through linear expansion using a set of “gradient spectra” that represent flux derivatives at every wavelength point with respect to all labels. These techniques provide new opportunities to fit the full stellar spectra from large surveys with 15-30 labels simultaneously.

  4. Integrated inertial stellar attitude sensor

    NASA Technical Reports Server (NTRS)

    Brady, Tye M. (Inventor); Kourepenis, Anthony S. (Inventor); Wyman, Jr., William F. (Inventor)

    2007-01-01

    An integrated inertial stellar attitude sensor for an aerospace vehicle includes a star camera system, a gyroscope system, a controller system for synchronously integrating an output of said star camera system and an output of said gyroscope system into a stream of data, and a flight computer responsive to said stream of data for determining from the star camera system output and the gyroscope system output the attitude of the aerospace vehicle.

  5. TURBULENT MAGNETOHYDRODYNAMIC RECONNECTION MEDIATED BY THE PLASMOID INSTABILITY

    SciTech Connect

    Huang, Yi-Min; Bhattacharjee, A.

    2016-02-10

    It has been established that the Sweet–Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet–Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from −2.3 to −2.1, while the kinetic energy spectral index is slightly steeper, in the range from −2.5 to −2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich–Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.

  6. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    NASA Astrophysics Data System (ADS)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χm<0 ), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time τ with a power law ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  7. Turbulent Magnetohydrodynamic Reconnection Mediated by the Plasmoid Instability

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Min; Bhattacharjee, A.

    2016-02-01

    It has been established that the Sweet-Parker current layer in high Lundquist number reconnection is unstable to the super-Alfvénic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet-Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, a three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfvén speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensional turbulent reconnection. Kinematic and magnetic energy fluctuations both form elongated eddies along the direction of the local magnetic field, which is a signature of anisotropic magnetohydrodynamic turbulence. Both energy fluctuations satisfy power-law spectra in the inertial range, where the magnetic energy spectral index is in the range from -2.3 to -2.1, while the kinetic energy spectral index is slightly steeper, in the range from -2.5 to -2.3. The anisotropy of turbulence eddies is found to be nearly scale-independent, in contrast with the prediction of the Goldreich-Sridhar theory for anisotropic turbulence in a homogeneous plasma permeated by a uniform magnetic field.

  8. Gyrokinetic Turbulence Simulations for Stellarators

    NASA Astrophysics Data System (ADS)

    Merz, F.; Xanthopoulos, P.; Gorler, T.; Jenko, F.; Mikkelsen, D.

    2007-11-01

    While there is an abundance of publications on plasma microturbulence in tokamaks, not much is presently known about its character in nonaxisymmetric devices. The present work constitutes the first attempt to investigate turbulent transport in modern stellarators, using the gyrokinetic turbulence code Gene and realistic magnetic equilibria. First, linear and nonlinear gyrokinetic simulations of ion-temperature-gradient (ITG) and trapped electron modes are presented for the optimized stellarator Wendelstein 7-X which is currently under construction at Greifswald, Germany. The newly developed code Tracer -- based on field line tracing -- is employed to extract the required geometric information from the MHD equilibria [Phys. Plasmas 13, 092301 (2006)]. Extensive linear studies reveal substantial differences with respect to axisymmetric geometry [Phys. Plasmas 14, 042501 (2007)]. Nonlinear ITG simulations are also presented [Phys. Rev. Lett., in print]. Several fundamental features are discussed, including the role of zonal flows for turbulence saturation, the resulting flux-gradient relationship and the co-existence of ITG modes with trapped ion modes in the saturated state. Similar studies will be presented for the stellarator experiment NCSX at PPPL with the aim to comprehend the effects of quasi-axisymmetric geometry on the properties - both linear and nonlinear - of various microinstabilities.

  9. Stellar oscillations in modified gravity

    NASA Astrophysics Data System (ADS)

    Sakstein, Jeremy

    2013-12-01

    Starting from the equations of modified gravity hydrodynamics, we derive the equations of motion governing linear, adiabatic, radial perturbations of stars in scalar-tensor theories. There are two new features: first, the eigenvalue equation for the period of stellar oscillations is modified such that the eigenfrequencies are always larger than predicted by general relativity. Second, the general relativity condition for stellar instability is altered so that the adiabatic index can fall below 4/3 before unstable modes appear. Stars are more stable in modified gravity theories. Specializing to the case of chameleonlike theories, we investigate these effects numerically using both polytropic Lane-Emden stars and models coming from modified gravity stellar structure simulations. We find that the change in the oscillation period of Cepheid star models can be as large as 30% for order-one matter couplings and the change in the inferred distance using the period-luminosity relation can be up to three times larger than if one had only considered the modified equilibrium structure. We discuss the implications of these results for recent and upcoming astrophysical tests and estimate that previous methods can produce new constraints such that the modifications are screened in regions of Newtonian potential of O(10-8).

  10. Stellar Echo Imaging of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  11. A grid of MHD models for stellar mass loss and spin-down rates of solar analogs

    SciTech Connect

    Cohen, O.; Drake, J. J.

    2014-03-01

    Stellar winds are believed to be the dominant factor in the spin-down of stars over time. However, stellar winds of solar analogs are poorly constrained due to observational challenges. In this paper, we present a grid of magnetohydrodynamic models to study and quantify the values of stellar mass loss and angular momentum loss rates as a function of the stellar rotation period, magnetic dipole component, and coronal base density. We derive simple scaling laws for the loss rates as a function of these parameters, and constrain the possible mass loss rate of stars with thermally driven winds. Despite the success of our scaling law in matching the results of the model, we find a deviation between the 'solar dipole' case and a real case based on solar observations that overestimates the actual solar mass loss rate by a factor of three. This implies that the model for stellar fields might require a further investigation with additional complexity. Mass loss rates in general are largely controlled by the magnetic field strength, with the wind density varying in proportion to the confining magnetic pressure B {sup 2}. We also find that the mass loss rates obtained using our grid models drop much faster with the increase in rotation period than scaling laws derived using observed stellar activity. For main-sequence solar-like stars, our scaling law for angular momentum loss versus poloidal magnetic field strength retrieves the well-known Skumanich decline of angular velocity with time, Ω{sub *}∝t {sup –1/2}, if the large-scale poloidal magnetic field scales with rotation rate as B{sub p}∝Ω{sub ⋆}{sup 2}.

  12. Subgrid-scale modeling for the study of compressible magnetohydrodynamic turbulence in space plasmas

    NASA Astrophysics Data System (ADS)

    Chernyshov, A. A.; Karelsky, K. V.; Petrosyan, A. S.

    2014-05-01

    A state-of-the-art review is given of research by computing physics methods on compressible magnetohydrodynamic turbulence in space plasmas. The presence of magnetic fields and compressibility in this case makes space plasma turbulence much less amenable to direct numerical simulations than a neutral incompressible fluid. The large eddy simulation method is discussed, which was developed as an alternative to direct modeling and which filters the initial magnetohydrodynamic equations and uses the subgrid-scale modeling of universal small-scale turbulence. A detailed analysis is made of both the method itself and different subgrid-scale parametrizations for compressible magnetohydrodynamic turbulent flows in polytropic and heat-conducting plasmas. The application of subgrid-scale modeling to study turbulence in the local interstellar medium and the scale-invariant spectra of magnetohydrodynamic turbulence are discussed.

  13. Stability of weak solutions to equations of magnetohydrodynamics with Lebesgue initial data

    NASA Astrophysics Data System (ADS)

    Fan, Jishan; Jiang, Song; Nakamura, Gen

    We prove the existence, the uniqueness and the Lipschitz continuous dependence on the initial data of global weak solutions to equations of magnetohydrodynamics (MHD) with the initial data in the Lebesgue spaces.

  14. Results of Compact Stellarator Engineering Trade Studies

    SciTech Connect

    Tom Brown, L. Bromberg, M. Cole

    2009-05-27

    number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  15. Results of Compact Stellarator Eengineering Trade Studies

    SciTech Connect

    T. Brown, L. Bromberg, and M. Cole

    2009-09-25

    A number of technical requirements and performance criteria can drive stellarator costs, e.g., tight tolerances, accurate coil positioning, low aspect ratio (compactness), choice of assembly strategy, metrology, and complexity of the stellarator coil geometry. With the completion of a seven-year design and construction effort of the National Compact Stellarator Experiment (NCSX) it is useful to interject the NCSX experience along with the collective experiences of the NCSX stellarator community to improving the stellarator configuration. Can improvements in maintenance be achieved by altering the stellarator magnet configuration with changes in the coil shape or with the combination of trim coils? Can a mechanical configuration be identified that incorporates a partial set of shaped fixed stellarator coils along with some removable coil set to enhance the overall machine maintenance? Are there other approaches that will simplify the concepts, improve access for maintenance, reduce overall cost and improve the reliability of a stellarator based power plant? Using ARIES-CS and NCSX as reference cases, alternative approaches have been studied and developed to show how these modifications would favorably impact the stellarator power plant and experimental projects. The current status of the alternate stellarator configurations being developed will be described and a comparison made to the recently designed and partially built NCSX device and the ARIES-CS reactor design study.

  16. On the universal stellar law

    NASA Astrophysics Data System (ADS)

    Krot, Alexander

    In this work, we consider a statistical theory of gravitating spheroidal bodies to derive and develop the universal stellar law for extrasolar systems. Previously, the statistical theory for a cosmogonic body forming (so-called spheroidal body)has been proposed [1-3]. This theory starts from the conception for forming a spheroidal body inside a gas-dust protoplanetary nebula; it permits us to derive the form of distribution functions, mass density, gravitational potentials and strengths both for immovable and rotating spheroidal bodies as well as to find the distribution function of specific angular momentum[1-3]. If we start from the conception for forming a spheroidal body as a protostar (in particular, proto-Sun) inside a prestellar (presolar) nebula then the derived distribution functions of particle (as well as the mass density of an immovable spheroidal body) characterizes the first stage of evolution: from a prestellar molecular cloud (the presolar nebula) to the forming core of protostar (the proto-Sun) together with its shell as a stellar nebula (the solar nebula). This work derives the equation of state of an ideal stellar substance based on conception of gravitating spheroidal body. Using this equation, we obtain the universal stellar law (USL) for the planetary systems connecting temperature, size and mass of each of stars. This work also considers the Solar corona in the connection with USL. Then it is accounting under calculation of the ratio of temperature of the Solar corona to effective temperature of the Sun’ surfaceand modification of USL. To test justice of the modified USLfor different types of stars, the temperature of stellar corona is estimated. The prediction of parameters of stars is carrying out by means of the modified USL,as well as the Hertzsprung-Russell’s dependence [5-7]is derivedby means of USL directly. This paper also shows that knowledge of some characteristics for multi-planet extrasolar systems refines own parameters of

  17. Physics of Compact Advanced Stellarators

    SciTech Connect

    M.C. Zarnstorff; L.A. Berry; A. Brooks; E. Fredrickson; G.-Y. Fu; S. Hirshman; S. Hudson; L.-P. Ku; E. Lazarus; D. Mikkelsen; D. Monticello; G.H. Neilson; N. Pomphrey; A. Reiman; D. Spong; D. Strickler; A. Boozer; W.A. Cooper; R. Goldston; R. Hatcher; M. Isaev; C. Kessel; J. Lewandowski; J. Lyon; P. Merkel; H. Mynick; B.E. Nelson; C. Nuehrenberg; M. Redi; W. Reiersen; P. Rutherford; R. Sanchez; J. Schmidt; R.B. White

    2001-08-14

    Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The 3-D plasma shape can be designed to enhance the MHD stability without feedback or nearby conducting structures and provide drift-orbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low-aspect ratio, high beta-limit, and good confinement of advanced tokamaks. Quasi-axisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation of approximately 1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassical-tearing modes for beta > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at beta = 4% (the rest is from the coils), thus the equilibrium is much less nonlinear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of ''reversed'' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.

  18. From stellar nebula to planetesimals

    NASA Astrophysics Data System (ADS)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Cabral, Nahuel; Benz, Willy

    2014-10-01

    Context. Solar and extrasolar comets and extrasolar planets are the subject of numerous studies in order to determine their chemical composition and internal structure. In the case of planetesimals, their compositions are important as they govern in part the composition of future planets. Aims: The present works aims at determining the chemical composition of icy planetesimals, believed to be similar to present day comets, formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data on chemical composition for models of planetesimals and comets, and models of planet formation and evolution. Methods: We have developed a model that calculates the composition of ices formed during the cooling of the stellar nebula. Coupled with a model of refractory element formation, it allows us to determine the chemical composition and mass ratio of ices to rocks in icy planetesimals throughout in the protoplanetary disc. Results: We provide relationships for ice line positions (for different volatile species) in the disc, and chemical compositions and mass ratios of ice relative to rock for icy planetesimals in stellar systems of solar chemical composition. From an initial homogeneous composition of the nebula, a wide variety of chemical compositions of planetesimals were produced as a function of the mass of the disc and distance to the star. Ices incorporated in planetesimals are mainly composed of H2O, CO, CO2, CH3OH, and NH3. The ice/rock mass ratio is equal to 1 ± 0.5 in icy planetesimals following assumptions. This last value is in good agreement with observations of solar system comets, but remains lower than usual assumptions made in planet formation models, taking this ratio to be of 2-3.

  19. Abundance measurements in stellar environments

    SciTech Connect

    Leone, F.

    2014-05-09

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  20. Abundance measurements in stellar environments

    NASA Astrophysics Data System (ADS)

    Leone, F.

    2014-05-01

    Most of what we know about stars, and systems of stars, is derived from the analysis of their electromagnetic radiation. This lesson is an attempt to describe to Physicists, without any Astrophysical background, the framework to understand the present status of abundance determination in stellar environments and its limit. These notes are dedicated to the recently passed, November 21, 2013, Prof. Dimitri Mihalas who spent his life confuting the 19th century positivist philosopher Auguste Comte who stated that we shall not at all be able to determine the chemical composition of stars.

  1. The Solar-Stellar Connection

    NASA Astrophysics Data System (ADS)

    Schunker, Hannah

    2015-08-01

    The influence of rotation on stellar magnetism, and the importance of the shear layer between a radiative core and the convective envelope for the generation of magnetic fields are key to understanding solar-like dynamos. Despite having an abundance of observational constraints, the answer to the solar dynamo problem remains tantalisingly out of reach. With the advent of space-based instrumentation for asteroseismology including Kepler, CoRoT, and in the future PLATO, we can exploit the sheer number of observations, and complementary techniques to constrain the rotation of Sun-like stars.

  2. Development of quasi-isodynamic stellarators

    NASA Astrophysics Data System (ADS)

    Nührenberg, Jürgen

    2010-12-01

    Theoretical stellarator research from MHD-stable stellarators via quasi-helically symmetric ones to Wendelstein 7-X, quasi-axisymmetric tokamaks and quasi-isodynamic stellarators is sketched. Research strategy, computational aspects and various favorable properties are emphasized. The results found, but only together with the completion of according experimental devices and their scientific exploitation, may form a basis for selecting the confinement geometry most viable for fusion.

  3. Icarus: Stellar binary light curve synthesis tool

    NASA Astrophysics Data System (ADS)

    Breton, Rene

    2016-11-01

    Icarus is a stellar binary light curve synthesis tool that generates a star, given some basic binary parameters, by solving the gravitational potential equation, creating a discretized stellar grid, and populating the stellar grid with physical parameters, including temperature and surface gravity. Icarus also evaluates the outcoming flux from the star given an observer's point of view (i.e., orbital phase and orbital orientation).

  4. Stellar Tools for High Resolution Population Synthesis

    NASA Astrophysics Data System (ADS)

    Chávez, M.; Bertone, E.; Rodríguez-Merino, L.; Buzzoni, A.

    2005-12-01

    We present preliminary results of the application of a new stellar library of high-resolution synthetic spectra (based upon ATLAS9 and SYNTHE codes developed by R. L. Kurucz) in the calculation of the ultraviolet-optical spectral energy distribution of simple stellar populations (SSPs). For this purpose, the library has been coupled with Buzzoni's population synthesis code. Part of this paper is also devoted to illustrate quantitatively the extent to which synthetic stellar libraries represent real stars.

  5. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  6. Symmetry breaking of quasihelical stellarator equilibria

    SciTech Connect

    Weening, R.H. )

    1993-04-01

    A mean-field Ohm's law is used to determine the effects of the bootstrap current on quasihelically symmetric stellarator equilibria. The Ohm's law leads to the conclusion that the effects of the bootstrap current break the quasihelical stellarator symmetry at second order in an inverse aspect ratio expansion of the magnetic field strength. The level of symmetry breaking suggests that good approximations to quasihelical stellarator fusion reactors may not be attainable.

  7. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  8. Drift-resistive-inertial ballooning modes in quasihelical stellarators

    SciTech Connect

    Rafiq, T.; Kritz, A. H.; Hegna, C. C.; Callen, J. D.

    2010-02-15

    A linear stability theory of nonideal magnetohydrodynamic (MHD) ballooning modes is investigated using a two fluid model for electron-ion plasmas. Drift-resistive-inertial ballooning mode eigenvalues and eigenfunctions are calculated for a variety of equilibria including axisymmetric shifted circular geometry (s-alpha model) as well as for three dimensional configurations relevant for the Helically Symmetric Stellarator (HSX) [F. S. B. Anderson, A. F. Almagri, D. T. Anderson, et al., Fusion Technology 27, 273 (1995)]. For typical HSX parameters, characteristic ballooning mode growth rates exceed the electron collision frequency. In this regime, electron inertial effects dominate plasma resistivity and produce an instability whose growth rate scales with the electromagnetic skin depth. However, as plasma beta is increased, the resistive and inertial effects become unimportant. Under these conditions, the mode is completely stabilized by drift frequency effects, which dominate resistivity and inertia. Numerical results indicate that in the absence of drift effects, the resistive-inertial MHD modes are purely growing and persist in regimes where ideal MHD ballooning modes are stable. It is found that the magnitudes of the linear growth rates are not sensitive to the addition of a mirror term to the magnetic spectrum that spoils the quasihelical symmetry of the configuration. The eigenvalues and eigenvectors in the strong ballooning approximation are used together with a quasilinear mixing length estimate to determine particle flux and particle diffusivity. The particle diffusivity increases with rising density gradient and collisionality in a plasma with a low electron temperature. This increase in transport is consistent with the increase observed in the edge region of HSX plasmas. The magnitude of the particle diffusivity is computed to be in the range from 5 to 10 m{sup 2}/s, which is consistent with the experimental measured particle diffusivity at the edge of HSX

  9. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  10. Stellar x-ray flares

    NASA Astrophysics Data System (ADS)

    Haisch, B.; Uchida, Y.; Kosugi, T.; Hudson, H. S.

    1995-01-01

    What is the importance of stellar X-ray flares to astrophysics, or even more, to the world at large? In the case of the Sun, changes in solar activity at the two temporal extremes can have quite significant consequences. Longterm changes in solar activity, such as the Maunder Minimum, can apparently lead to non-negligible alterations of the earth's climate. The extreme short term changes are solar flares, the most energetic of which can cause communications disruptions, power outages and ionizing radiation levels amounting to medical X-ray dosages on long commercial flights and even potentially lethal exposures for unshielded astronauts. Why does the Sun exhibit such behaviour? Even if we had a detailed knowledge of the relevant physical processes on the Sun - which we may be on the way to having in hand as evidenced by these Proceedings- our understanding would remain incomplete in regard to fundamental causation so long as we could not say whether the Sun is, in this respect, unique among the stars. This current paper discusses the stellar x-ray flare detections and astronomical models (quasi-static cooling model and two-ribbon model) that are used to observe the x-ray emission.

  11. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  12. Stellarator Research at Columbia University

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Caliri, C.; Clark, A. W.; Febre, A.; Hammond, K. C.; Massidda, S. D.; Sweeney, R. M.; Pedersen, T. S.; Sarasola, X.; Spong, D. A.; Kornbluth, Y.

    2013-10-01

    Neutral plasmas were formed and heated by Electron Cyclotron and Electron Bernstein Waves at 2.45 GHz in the Columbia Nonneutral Torus (CNT) and were characterized with Langmuir probe and fast camera measurements. Future research will take advantage of the low aspect ratio (A = 2.3-2.7), high fraction of trapped particles and large vessel of CNT. The first plasma was obtained in a prototype circular coil tokamak-stellarator hybrid (Proto-CIRCUS). As a result of the toroidal-field coils being tilted and interlinked with each other, the device can be operated at lower plasma-current than a tokamak of comparable size and field, with implications for disruptions and steady state. Additionally, the toroidal magnetic ripple is less pronounced. Comparisons between field-line calculations and experimental mapping is expected to confirm the generation of rotational transform and its dependence on the radial location and tilt of the coils, both of which can be varied. Finally we propose a small EC-heated classical stellarator to improve the production-rate and charge-state of ions in EC-resonant ion sources (ECRIS) over the conventional magnetic-mirror design, and discuss how ions would be extracted, for injection in research and medical accelerators.

  13. WHY ONE-DIMENSIONAL MODELS FAIL IN THE DIAGNOSIS OF AVERAGE SPECTRA FROM INHOMOGENEOUS STELLAR ATMOSPHERES

    SciTech Connect

    Uitenbroek, Han

    2011-07-20

    We investigate the feasibility of representing a structured multi-dimensional stellar atmosphere with a single one-dimensional average stratification for the purpose of spectral diagnosis of the atmosphere's average spectrum. In particular, we construct four different one-dimensional stratifications from a single snapshot of a magnetohydrodynamic simulation of solar convection: one by averaging its properties over surfaces of constant height and three by averaging over surfaces of constant optical depth at 500 nm. Using these models, we calculate continuum and atomic and molecular line intensities and their center-to-limb variations. From an analysis of the emerging spectra, we identify three main reasons why these average representations are inadequate for accurate determination of stellar atmospheric properties through spectroscopic analysis. These reasons are nonlinearity in the Planck function with temperature, which raises the average emergent intensity of an inhomogeneous atmosphere above that of an average-property atmosphere, even if their temperature-optical depth stratification is identical; nonlinearities in molecular formation with temperature and density, which raise the abundance of molecules of an inhomogeneous atmosphere over that in a one-dimensional model with the same average properties; and the anisotropy of convective motions, which strongly affects the center-to-limb variation of line-core intensities. We argue therefore that a one-dimensional atmospheric model that reproduces the mean spectrum of an inhomogeneous atmosphere necessarily does not reflect the average physical properties of that atmosphere and is therefore inherently unreliable.

  14. Clustered frequency analysis of shear Alfvén modes in stellarators

    NASA Astrophysics Data System (ADS)

    Spong, D. A.; D'Azevedo, E.; Todo, Y.

    2010-02-01

    The shear Alfvén spectrum in three-dimensional configurations, such as stellarators and rippled tokamaks, is more densely populated due to the larger number of mode couplings caused by the variation in the magnetic field in the toroidal dimension. This implies more significant computational requirements that can rapidly become prohibitive as more resolution is requested. Alfvén eigenfrequencies and mode structures are a primary point of contact between theory and experiment. A new algorithm based on the Jacobi-Davidson method is developed here and applied for a reduced magnetohydrodynamics model to several stellarator configurations. This technique focuses on finding a subset of eigenmodes clustered about a specified input frequency. This approach can be especially useful in modeling experimental observations, where the mode frequency can generally be measured with good accuracy and several different simultaneous frequency lines may be of interest. For cases considered in this paper, it can be a factor of 102-103 times faster than more conventional methods.

  15. Anderson Localization of Ballooning Modes, Quantum Chaos and the Stability of Compact Quasiaxially Symmetric Stellarators

    SciTech Connect

    M.H. Redi; J.L. Johnson; S. Klasky; J. Canik; R.L. Dewar; W.A. Cooper

    2001-10-31

    The radially local magnetohydrodynamic (MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHD stability is analyzed through the calculation and examination of the ballooning mode eigenvalue isosurfaces in the 3-space [s, alpha, theta(subscript ''k'')]; s is the edge normalized toroidal flux, alpha is the field line variable, and q(subscript ''k'') is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong ''quantum chaos.'' The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-n MHD computations are required to predict the beta limit.

  16. Structure, Dynamics, and Deuterium Fractionation of Massive Pre-stellar Cores

    NASA Astrophysics Data System (ADS)

    Goodson, Matthew D.; Kong, Shuo; Tan, Jonathan C.; Heitsch, Fabian; Caselli, Paola

    2016-12-01

    High levels of deuterium fraction in N2H+ are observed in some pre-stellar cores. Single-zone chemical models find that the timescale required to reach observed values ({D}{frac}{{{N}}2{{{H}}}+}\\equiv {{{N}}}2{{{D}}}+/{{{N}}}2{{{H}}}+≳ 0.1) is longer than the free-fall time, possibly 10 times longer. Here, we explore the deuteration of turbulent, magnetized cores with 3D magnetohydrodynamics simulations. We use an approximate chemical model to follow the growth in abundances of N2H+ and N2D+. We then examine the dynamics of the core using each tracer for comparison to observations. We find that the velocity dispersion of the core as traced by N2D+ appears slightly sub-virial compared to predictions of the Turbulent Core Model of McKee & Tan, except at late times just before the onset of protostar formation. By varying the initial mass surface density, the magnetic energy, the chemical age, and the ortho-to-para ratio of H2, we also determine the physical and temporal properties required for high deuteration. We find that low initial ortho-to-para ratios (≲ 0.01) and/or multiple free-fall times (≳ 3) of prior chemical evolution are necessary to reach the observed values of deuterium fraction in pre-stellar cores.

  17. Intrinsic Wavelength Shifts in Stellar Spectra

    NASA Astrophysics Data System (ADS)

    Dravins, D.; Lindegren, L.; Ludwig, H.-G.; Madsen, S.

    2004-12-01

    Wavelengths of stellar spectral lines do not have the precise values `naively' expected from laboratory wavelengths merely Doppler-shifted by stellar radial motion. Slight displacements may originate as convective shifts (correlated velocity and brightness patterns in the photosphere), as gravitational redshifts, or perhaps be induced by wave motions. Intrinsic lineshifts thus reveal stellar surface structure, while possible periodic changes (during a stellar activity cycle, say) need to be segregated from variability induced by orbiting exoplanets. Absolute lineshifts can now be studied also in some stars other than the Sun, thanks to astrometric determinations of stellar radial motion. Comparisons between spectroscopic apparent radial velocities and astrometrically determined radial motions reveal greater spectral blueshifts in F-type stars than in the Sun (as theoretically expected from their more vigorous convection), further increasing in A-type stars (possibly due to atmospheric shockwaves). Solar spectral atlases, and high-resolution spectra (from UVES on ESO VLT) of a dozen solar-type stars are being surveyed for `unblended' photospheric lines of most atomic species with accurate laboratory wavelengths available. One aim is to understand the ultimate information content of stellar spectra, and in what detail it will be feasible to verify models of stellar atmospheric hydrodynamics. These may predict line asymmetries (bisectors) and shifts for widely different classes of lines, but there will not result any comparison with observations if such lines do not exist in real spectra. An expected near-future development in stellar physics is spatially resolved spectroscopy across stellar disks, enabled by optical interferometry and adaptive optics on very large telescopes. Stellar surface structure manifests itself in the center-to-limb wavelength changes along a stellar diameter, and their spatially resolved time variability, diagnostics which already now can be

  18. The classification of magnetohydrodynamic regimes of thermonuclear combustion

    SciTech Connect

    Remming, Ian S.; Khokhlov, Alexei M.

    2014-10-10

    Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Ia supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.

  19. High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.

    PubMed

    Graham, J Pietarila; Mininni, P D; Pouquet, A

    2011-07-01

    With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.

  20. Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology.

    PubMed

    Panta, Yogendra M; Farmer, Dennis E; Johnson, Paula; Cheney, Marcos A; Qian, Shizhi

    2010-02-01

    Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated.

  1. An adaptive mesh magneto-hydrodynamic analysis of interstellar clouds

    NASA Astrophysics Data System (ADS)

    Kominsky, Paul J.

    Interstellar clouds play a key role in many astrophysical events. The interactions of dense interstellar clouds with shock waves and interstellar wind were investigated using an adaptive three-dimensional Cartesian mesh approach to the magneto-hydrodynamic equations. The mixing of the cloud material with the post-shock material results in complex layers of current density. In both the shock and wind interactions, a tail develops similar to the tail found with comets due to the solar wind. The orientation of this tail structure changes with the direction of the magnetic field, and may be useful to observationally determining the orientation of magnetic fields in the interstellar medium. The octree data structure was analyzed in regard to parallel work units. Larger block sizes have a higher volume to surface ratio and support a higher percentage of computational cells to non-computational cells, but require more cells at the finest grid resolution. Keeping the minimum resolution of the grid fixed, and averaging over all possible grids, the analysis confirms experience that block sizes larger than 8 × 8 × 8 cells do not improve storage efficiency. A novel algorithm was developed to implement rotationally periodic boundary conditions on quadtree and octree data, structures. Astrophysical flows wit h symmetric circulation, such as accretion disks, or periodic instabilities, such supernova remnants, may be able to take advantage of such boundary conditions while maintaining the other benefits of a Cartesian grid.

  2. Inverse cascades and the evolution of decaying magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Berera, Arjun

    2014-11-01

    Ensemble averaged high resolution direct numerical simulations of inverse cascade are presented, extending on the many single realization numerical studies done up to now. This identifies inverse cascade as a statistical property of magnetohydrodynamic turbulence and thus permits reliable numerical exploration of its dynamics. Our results show that at early times during the decay the properties of the ensemble average are represented by one realization, as the deviations between realizations are small. In contrast, at late times we measure significant deviations between realizations, thus the ensemble average cannot be avoided in this time frame. This is important for measurements of the magnetic energy decay exponent, which has been determined from these ensemble runs to be nE = (0 . 47 +/- 0 . 03) + (13 . 9 +/- 0 . 8) /Rλ for initially helical magnetic fields. We show for the first time that even after removing the Lorentz force term in the momentum equation, thus decoupling it from the induction equation, inverse cascade persists. The induction equation is now a linear partial differential equation with an externally imposed velocity field, thus amenable to numerous analysis techniques. A new door has opened for analyzing inverse cascade, with various ideas discussed. This work has made use of the resources provided by the UK supercomputing services HECToR and ARCHER, made available through ECDF. AB acknowledges funding from STFC, and ML is supported by EPSRC.

  3. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1986-01-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  4. Magnetic field correlations in kinematic two-dimensional magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Schumacher, Jörg; Eckhardt, Bruno

    1999-09-01

    The scaling properties of the second order magnetic structure function D2(B)(r) and the corresponding magnetic correlation function C2(B)(r) are derived for two-dimensional magnetohydrodynamic turbulence in the kinematic regime where the ratio of kinetic energy to magnetic energy is much larger than one. In this regime the magnetic flux function ψ can be treated as a passive scalar advected in a two-dimensional turbulent flow. Its structure function D2(ψ)(r) and the one for the magnetic field D2(B)(r) are connected by an exact relation. We calculate D2(ψ)(r) and thus D2(B)(r) within geometric measure theory over a wide range of scales r and magnetic Prandtl numbers Prm. The magnetic field correlations follow a r-4/3-scaling law and show an anticorrelation at the beginning of the Batchelor regime indicative of the formation of strongly filamented current sheets. Differences to the full dynamic regime, where the ratio of kinetic to magnetic energies is smaller than in the kinematic case, are discussed.

  5. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  6. The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Tricco, T. S.; Price, D. J.; Federrath, C.

    2016-05-01

    Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small- scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of starforming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning method may be used to achieve ∇ • B = 0 to machine precision, albeit at significant computational expense.

  7. Can non-ideal magnetohydrodynamics solve the magnetic braking catastrophe?

    NASA Astrophysics Data System (ADS)

    Wurster, James; Price, Daniel J.; Bate, Matthew R.

    2016-03-01

    We investigate whether or not the low ionization fractions in molecular cloud cores can solve the `magnetic braking catastrophe', where magnetic fields prevent the formation of circumstellar discs around young stars. We perform three-dimensional smoothed particle non-ideal magnetohydrodynamics (MHD) simulations of the gravitational collapse of one solar mass molecular cloud cores, incorporating the effects of ambipolar diffusion, Ohmic resistivity and the Hall effect alongside a self-consistent calculation of the ionization chemistry assuming 0.1 μm grains. When including only ambipolar diffusion or Ohmic resistivity, discs do not form in the presence of strong magnetic fields, similar to the cases using ideal MHD. With the Hall effect included, disc formation depends on the direction of the magnetic field with respect to the rotation vector of the gas cloud. When the vectors are aligned, strong magnetic braking occurs and no disc is formed. When the vectors are anti-aligned, a disc with radius of 13 au can form even in strong magnetic when all three non-ideal terms are present, and a disc of 38 au can form when only the Hall effect is present; in both cases, a counter-rotating envelope forms around the first hydrostatic core. For weaker, anti-aligned fields, the Hall effect produces massive discs comparable to those produced in the absence of magnetic fields, suggesting that planet formation via gravitational instability may depend on the sign of the magnetic field in the precursor molecular cloud core.

  8. A high current density DC magnetohydrodynamic (MHD) micropump.

    PubMed

    Homsy, Alexandra; Koster, Sander; Eijkel, Jan C T; van den Berg, Albert; Lucklum, F; Verpoorte, E; de Rooij, Nico F

    2005-04-01

    This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-microm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined frit-like structure that connects the pumping channel to side reservoirs, where platinum electrodes are located. Current densities up to 4000 A m(-2) could be obtained without noticeable Joule heating in the system. The pump performance was studied as a function of current density and magnetic field intensity, as well as buffer ionic strength and pH. Bead velocities of up to 1 mm s(-1) (0.5 microL min(-1)) were observed in buffered solutions using a 0.4 T NdFeB permanent magnet, at an applied current density of 4000 A m(-2). This pump is intended for transport of electrolyte solutions having a relatively high ionic strength (0.5-1 M) in a DC magnetic field environment. The application of this pump for the study of biological samples in a miniaturized total analysis system (microTAS) with integrated NMR detection is foreseen. In the 7 T NMR environment, a minimum 16-fold increase in volumetric flow rate for a given applied current density is expected.

  9. A MAGNETOHYDRODYNAMIC MODEL OF THE 2006 DECEMBER 13 ERUPTIVE FLARE

    SciTech Connect

    Fan, Y.

    2011-10-20

    We present a three-dimensional magnetohydrodynamic simulation that qualitatively models the coronal magnetic field evolution associated with the eruptive flare that occurred on 2006 December 13 in the emerging {delta}-sunspot region NOAA 10930 observed by the Hinode satellite. The simulation is set up to drive the emergence of an east-west-oriented magnetic flux rope at the lower boundary into a preexisting coronal field constructed from the Solar and Heliospheric Observatory/Michelson Doppler Imager full-disk magnetogram at 20:51:01 UT on 2006 December 12. The resulting coronal flux rope embedded in the ambient coronal magnetic field first settles into a stage of quasi-static rise and then undergoes a dynamic eruption, with the leading edge of the flux rope cavity accelerating to a steady speed of about 830 km s{sup -1}. The pre-eruption coronal magnetic field shows morphology that is in qualitative agreement with that seen in the Hinode soft X-ray observation in both the magnetic connectivity as well as the development of an inverse-S-shaped X-ray sigmoid. We examine the properties of the erupting flux rope and the morphology of the post-reconnection loops, and compare them with the observations.

  10. A new framework for magnetohydrodynamic simulations with anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro; Amano, Takanobu

    2016-12-01

    We describe a new theoretical and numerical framework for magnetohydrodynamic (MHD) simulations with an incorporated anisotropic pressure tensor, which can play an important role in collisionless plasmas. The classical approach to handle the anisotropy is based on application of the double adiabatic approximation, assuming that the pressure tensor is well described only by those components that are oriented parallel and perpendicular to the local magnetic field. This gyrotropic assumption, however, fails around magnetically neutral regions, where the cyclotron period may become comparable to or even longer than the system's dynamical time, which causes a singularity in the mathematical expression. In this paper, we demonstrate that this singularity can be completely removed by direct use of the 2nd-moment of the Vlasov equation, combined with an ingenious gyrotropization model. Numerical tests are used to verify that our model properly reduces to the standard MHD results or the double adiabatic formulation in an asymptotic manner under the limit of fast isotropization and fast gyrotropization, respectively.

  11. Magnetic discontinuities in magnetohydrodynamic turbulence and in the solar wind.

    PubMed

    Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos

    2012-04-27

    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Δθ, across fixed spatial increments Δx in direct numerical simulations of MHD turbulence with an imposed uniform guide field B(0). A large region of the probability density function (pdf) for Δθ is found to follow an exponential decay, proportional to exp(-Δθ/θ(*)), with characteristic angle θ(*)≈(14°)(b(rms)/B(0))(0.65) for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b(rms)/B(0). We also observe an excess of small angular discontinuities when Δx becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.

  12. Dynamical instabilities in magnetohydrodynamic wind-cloud interactions

    NASA Astrophysics Data System (ADS)

    Banda-Barragan, Wladimir Eduardo; Parkin, Elliot Ross; Crocker, Roland M.; Federrath, Christoph; Bicknell, Geoffrey Vincent

    2015-08-01

    We report the results from a comprehensive numerical study that investigates the role of dynamical instabilities in magnetohydrodynamic interactions between winds and spherical clouds in the interstellar medium. The growth of Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities at interfaces between wind and cloud material is responsible for the disruption of clouds and the formation of filamentary tails. We show how different strengths and orientations of the initial magnetic field affect the development of unstable modes and the ultimate morphology of these filaments. In the weak field limit, for example, KH instabilities developing at the flanks of clouds are dominant, whilst they are suppressed when stronger fields are considered. On the other hand, perturbations that originate RT instabilities at the leading edge of clouds are enhanced when fields are locally stronger. The orientation of the field lines also plays an important role in the structure of filaments. Magnetic ropes are key features of systems in which fields are aligned with the wind velocity, whilst current sheets are favoured when the initial field is preferentially transverse to the wind velocity. We compare our findings with analytical predictions obtained from the linear theory of hydromagnetic stability and provide a classification of filamentary tails based on their morphology.

  13. THE ATHENA ASTROPHYSICAL MAGNETOHYDRODYNAMICS CODE IN CYLINDRICAL GEOMETRY

    SciTech Connect

    Skinner, M. Aaron; Ostriker, Eve C. E-mail: ostriker@astro.umd.ed

    2010-05-15

    A method for implementing cylindrical coordinates in the Athena magnetohydrodynamics (MHD) code is described. The extension follows the approach of Athena's original developers and has been designed to alter the existing Cartesian-coordinates code as minimally and transparently as possible. The numerical equations in cylindrical coordinates are formulated to maintain consistency with constrained transport (CT), a central feature of the Athena algorithm, while making use of previously implemented code modules such as the Riemann solvers. Angular momentum transport, which is critical in astrophysical disk systems dominated by rotation, is treated carefully. We describe modifications for cylindrical coordinates of the higher-order spatial reconstruction and characteristic evolution steps as well as the finite-volume and CT updates. Finally, we present a test suite of standard and novel problems in one, two, and three dimensions designed to validate our algorithms and implementation and to be of use to other code developers. The code is suitable for use in a wide variety of astrophysical applications and is freely available for download on the Web.

  14. SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION

    SciTech Connect

    Chhiber, R; Usmanov, AV; Matthaeus, WH; Goldstein, ML

    2016-04-10

    Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.

  15. CONSTRAINED-TRANSPORT MAGNETOHYDRODYNAMICS WITH ADAPTIVE MESH REFINEMENT IN CHARM

    SciTech Connect

    Miniati, Francesco; Martin, Daniel F. E-mail: DFMartin@lbl.gov

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  16. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    SciTech Connect

    Soler, R.; Oliver, R.; Ballester, J. L. E-mail: ramon.oliver@uib.es

    2009-07-10

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10{sup 4} K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  17. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    DOE PAGES

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less

  18. Criticality and turbulence in a resistive magnetohydrodynamic current sheet

    NASA Astrophysics Data System (ADS)

    Klimas, Alexander J.; Uritsky, Vadim M.

    2017-02-01

    Scaling properties of a two-dimensional (2d) plasma physical current-sheet simulation model involving a full set of magnetohydrodynamic (MHD) equations with current-dependent resistivity are investigated. The current sheet supports a spatial magnetic field reversal that is forced through loading of magnetic flux containing plasma at boundaries of the simulation domain. A balance is reached between loading and annihilation of the magnetic flux through reconnection at the current sheet; the transport of magnetic flux from boundaries to current sheet is realized in the form of spatiotemporal avalanches exhibiting power-law statistics of lifetimes and sizes. We identify this dynamics as self-organized criticality (SOC) by verifying an extended set of scaling laws related to both global and local properties of the current sheet (critical susceptibility, finite-size scaling of probability distributions, geometric exponents). The critical exponents obtained from this analysis suggest that the model operates in a slowly driven SOC state similar to the mean-field state of the directed stochastic sandpile model. We also investigate multiscale correlations in the velocity field and find them numerically indistinguishable from certain intermittent turbulence (IT) theories. The results provide clues on physical conditions for SOC behavior in a broad class of plasma systems with propagating instabilities, and suggest that SOC and IT may coexist in driven current sheets which occur ubiquitously in astrophysical and space plasmas.

  19. Two-dimensional state in driven magnetohydrodynamic turbulence

    SciTech Connect

    Bigot, Barbara; Galtier, Sebastien

    2011-02-15

    The dynamics of the two-dimensional (2D) state in driven three-dimensional (3D) incompressible magnetohydrodynamic turbulence is investigated through high-resolution direct numerical simulations and in the presence of an external magnetic field at various intensities. For such a flow the 2D state (or slow mode) and the 3D modes correspond, respectively, to spectral fluctuations in the plane k{sub ||}=0 and in the area k{sub ||}>0. It is shown that if initially the 2D state is set to zero it becomes nonnegligible in few turnover times, particularly when the external magnetic field is strong. The maintenance of a large-scale driving leads to a break for the energy spectra of 3D modes; when the driving is stopped, the previous break is removed and a decay phase emerges with Alfvenic fluctuations. For a strong external magnetic field the energy at large perpendicular scales lies mainly in the 2D state, and in all situations a pinning effect is observed at small scales.

  20. Nonlinear evolution of double tearing mode in Hall magnetohydrodynamics

    SciTech Connect

    Zhang, C. L.; Ma, Z. W.

    2009-12-15

    Nonlinear evolution of a double tearing mode for different plasma resistivities (eta) and ion inertial lengths (d{sub i}) is investigated using Hall magnetohydrodynamics simulations. In the Hall dominant regime, the magnetic field configuration in the reconnection region evolves from Y-type to X-type geometry, which leads to fast reconnection in the nonlinear growth phase. The maximum growth rate of total kinetic energy of plasma gamma{sub max} in the explosive growth phase is found to have a d{sub i}{sup 2/5}eta{sup 1/10} scaling and the maximum total kinetic energy (E{sub k}){sub max} scales as d{sub i}{sup 4/5}. In the regime with weak Hall effect, it is found that the elongated thin current sheet formed in the early phase is broken into two X-points, forming a magnetic island in the late stage, instead of shrinking to an X-type geometry.