Science.gov

Sample records for free-flying space robot

  1. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1977-01-01

    To accelerate the development of multi-armed, free-flying satellite manipulators, a fixed-base cooperative manipulation facility is being developed. The work performed on multiple arm cooperation on a free-flying robot is summarized. Research is also summarized on global navigation and control of free-flying space robots. The Locomotion Enhancement via Arm Pushoff (LEAP) approach is described and progress to date is presented.

  2. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1990-01-01

    New control techniques for self contained, autonomous free flying space robots were developed and tested experimentally. Free flying robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require human extravehicular activity (EVA). A set of research projects were developed and carried out using lab models of satellite robots and a flexible manipulator. The second generation space robot models use air cushion vehicle (ACV) technology to simulate in 2-D the drag free, zero g conditions of space. The current work is divided into 5 major projects: Global Navigation and Control of a Free Floating Robot, Cooperative Manipulation from a Free Flying Robot, Multiple Robot Cooperation, Thrusterless Robotic Locomotion, and Dynamic Payload Manipulation. These projects are examined in detail.

  3. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1989-01-01

    Control techniques for self-contained, autonomous free-flying space robots are being tested and developed. Free-flying space robots are envisioned as a key element of any successful long term presence in space. These robots must be capable of performing the assembly, maintenance, and inspection, and repair tasks that currently require astronaut extra-vehicular activity (EVA). Use of robots will provide economic savings as well as improved astronaut safety by reducing and in many cases, eliminating the need for human EVA. The focus of the work is to develop and carry out a set of research projects using laboratory models of satellite robots. These devices use air-cushion-vehicle (ACV) technology to simulate in two dimensions the drag-free, zero-g conditions of space. Current work is divided into six major projects or research areas. Fixed-base cooperative manipulation work represents our initial entry into multiple arm cooperation and high-level control with a sophisticated user interface. The floating-base cooperative manipulation project strives to transfer some of the technologies developed in the fixed-base work onto a floating base. The global control and navigation experiment seeks to demonstrate simultaneous control of the robot manipulators and the robot base position so that tasks can be accomplished while the base is undergoing a controlled motion. The multiple-vehicle cooperation project's goal is to demonstrate multiple free-floating robots working in teams to carry out tasks too difficult or complex for a single robot to perform. The Location Enhancement Arm Push-off (LEAP) activity's goal is to provide a viable alternative to expendable gas thrusters for vehicle propulsion wherein the robot uses its manipulators to throw itself from place to place. Because the successful execution of the LEAP technique requires an accurate model of the robot and payload mass properties, it was deemed an attractive testbed for adaptive control technology.

  4. Mini AERCam: A Free-Flying Robot for Space Inspection

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven

    2001-01-01

    The NASA Johnson Space Center Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a free-flying camera system for remote viewing and inspection of human spacecraft. The AERCam project team is currently developing a miniaturized version of AERCam known as Mini AERCam, a spherical nanosatellite 7.5 inches in diameter. Mini AERCam development builds on the success of AERCam Sprint, a 1997 Space Shuttle flight experiment, by integrating new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving these productivity-enhancing capabilities in a smaller package depends on aggressive component miniaturization. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion, rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for laboratory demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides on-orbit views of the Space Shuttle and International Space Station unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers.

  5. Guidance algorithms for a free-flying space robot

    NASA Technical Reports Server (NTRS)

    Brindle, A. F.; Viggh, H. E. M.; Albert, J. H.

    1989-01-01

    Robotics is a promising technology for assembly, servicing, and maintenance of platforms in space. Several aspects of planning and guidance for telesupervised and fully autonomous robotic servicers are investigated. Guidance algorithms for proximity operation of a free flyer are described. Numeric trajectory optimization is combined with artificial intelligence based obstacle avoidance. An initial algorithm and the results of its simulating platform servicing scenario are discussed. A second algorithm experiment is then proposed.

  6. Control of free-flying space robot manipulator systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.

    1988-01-01

    The focus of the work is to develop and perform a set of research projects using laboratory models of satellite robots. These devices use air cushion technology to simulate in two dimensions the drag-free, zero-g conditions of space. Five research areas are examined: cooperative manipulation on a fixed base; cooperative manipulation on a free-floating base; global navigation and control of a free-floating robot; an alternative transport mode call Locomotion Enhancement via Arm Push-Off (LEAP), and adaptive control of LEAP.

  7. Control of Free-Flying Space Robot Manipulator Systems

    NASA Technical Reports Server (NTRS)

    Cannon, Robert H., Jr.; Rock, Stephen M.; How, Jonathan

    2000-01-01

    This is the final report on the Stanford University portion of a major NASA program in telerobotics called the TRIWG Program, led strongly from NASA Headquarters by David Lavery This portion of the TRIWG research was carried out in Stanford's Aerospace Robotics Laboratory (ARL) to (1) contribute in unique and valuable ways to new fundamental capability for NASA in its space missions (the total contribution came from some 100 PhD-student years of research), and (2) to provide a steady stream of very capable PhD graduates to the American space enterprise.

  8. Astrobee: A New Platform for Free-Flying Robotics on the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Trey; Barlow, Jonathan; Bualat, Maria; Fong, Terrence; Provencher, Christopher; Sanchez, Hugo; Smith, Ernest

    2016-01-01

    The Astrobees are next-generation free-flying robots that will operate in the interior of the International Space Station (ISS). Their primary purpose is to provide a flexible platform for research on zero-g freeflying robotics, with the ability to carry a wide variety of future research payloads and guest science software. They will also serve utility functions: as free-flying cameras to record video of astronaut activities, and as mobile sensor platforms to conduct surveys of the ISS. The Astrobee system includes two robots, a docking station, and a ground data system (GDS). It is developed by the Human Exploration Telerobotics 2 (HET-2) Project, which began in Oct. 2014, and will deliver the Astrobees for launch to ISS in 2017. This paper covers selected aspects of the Astrobee design, focusing on capabilities relevant to potential users of the platform.

  9. Experiments in Nonlinear Adaptive Control of Multi-Manipulator, Free-Flying Space Robots

    NASA Technical Reports Server (NTRS)

    Chen, Vincent Wei-Kang

    1992-01-01

    Sophisticated robots can greatly enhance the role of humans in space by relieving astronauts of low level, tedious assembly and maintenance chores and allowing them to concentrate on higher level tasks. Robots and astronauts can work together efficiently, as a team; but the robot must be capable of accomplishing complex operations and yet be easy to use. Multiple cooperating manipulators are essential to dexterity and can broaden greatly the types of activities the robot can achieve; adding adaptive control can ease greatly robot usage by allowing the robot to change its own controller actions, without human intervention, in response to changes in its environment. Previous work in the Aerospace Robotics Laboratory (ARL) have shown the usefulness of a space robot with cooperating manipulators. The research presented in this dissertation extends that work by adding adaptive control. To help achieve this high level of robot sophistication, this research made several advances to the field of nonlinear adaptive control of robotic systems. A nonlinear adaptive control algorithm developed originally for control of robots, but requiring joint positions as inputs, was extended here to handle the much more general case of manipulator endpoint-position commands. A new system modelling technique, called system concatenation was developed to simplify the generation of a system model for complicated systems, such as a free-flying multiple-manipulator robot system. Finally, the task-space concept was introduced wherein the operator's inputs specify only the robot's task. The robot's subsequent autonomous performance of each task still involves, of course, endpoint positions and joint configurations as subsets. The combination of these developments resulted in a new adaptive control framework that is capable of continuously providing full adaptation capability to the complex space-robot system in all modes of operation. The new adaptive control algorithm easily handles free-flying

  10. Astrobee: Developing a Free Flying Robot for the International Space Station

    NASA Technical Reports Server (NTRS)

    Bualat, Maria; Barlow, Jonathan; Fong, Terrence; Provencher, Christopher; Smith, Trey; Zuniga, Allison

    2015-01-01

    Astronaut time will always be in short supply, consumables (e.g., oxygen) will always be limited, and some work will not be feasible, or productive, for astronauts to do manually. Free flyers offer significant potential to perform a great variety of tasks, include routine, repetitive or simple but long-duration work, such as conducting environment surveys, taking sensor readings or monitoring crew activities. The "Astrobee" project is developing a new free flying robot system suitable for performing Intravehicular Activity (IVA) work on the International Space Station (ISS). This paper will describe the Astrobee project objectives, initial design, concept of operations, and key challenges.

  11. Parameter identification of unknown object handled by free-flying space robot

    NASA Astrophysics Data System (ADS)

    Murotsu, Yoshisada; Senda, Kei; Ozaki, Mitsuhiro

    1994-05-01

    This paper is concerned with parameter identification methods for inertial parameters for the unknown object handled by manipulators on a free-flying space robot. The parameter identification is necessary for the precise control because of changes in the kinematics of the system together with the dynamics. Two methods are proposed under the condition that the robot is free to translate and rotate. One method is based on the conservation principle of linear and angular momentum and the other on Newton-Euler equations of motion. Only the linear/angular velocities and accelerations of the satellite base are used in the identification methods with no information about the force and torque utilized. The feasibility of the methods is demonstrated by a hardware experiment on the ground as well as numerical simulation.

  12. Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.; Reuter, G. J.; Healey, Kathleen J.; Phinney, D. E.

    1990-01-01

    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations.

  13. Issues and solutions for testing free-flying robots

    NASA Astrophysics Data System (ADS)

    Menon, Carlo; Busolo, S.; Cocuzza, S.; Aboudan, A.; Bulgarelli, A.; Bettanini, C.; Marchesi, M.; Angrilli, F.

    2007-06-01

    Space robotics currently has an important role in space operations and scientists and engineers are designing new robotic systems for space servicing missions and extra-vehicular activities. In particular, free-flying robots with extended arms have compelling applications and several prototypes have recently been developed. Testing on Earth free-flying robots is a main issue as the unconstrained environment of free space must be simulated. From the experience acquired by testing a free-flying robot prototype both in a tethered facility and during a parabolic flight campaign, and after several years of experiments using air-bearing planar systems, the authors describe and discuss methods to test free-flying robots. A recent study aimed at designing a free-flying platform suitable for an under-water environment is also presented and discussed.

  14. Multiple impedance control of space free-flying robots via virtual linkages

    NASA Astrophysics Data System (ADS)

    Rastegari, Rambod; Moosavian, S. Ali A.

    2010-03-01

    Multiple impedance control (MIC) is a Model-Based algorithm that enforces a designated impedance on all cooperating manipulators, the manipulated object, and the moving base if applied on a mobile robotic system such as a space free flying robotic system. The MIC can be properly applied to manipulate a grasped object, and move it on a desired path. However, during such maneuvers, some inner forces and torques are usually produced in the object. For tuning the inner object forces, it is needed to model the inner forces/torques or their effects on the object. In this paper, a virtual linkage model is introduced to determine the inner forces using the MIC law. Also, the load distribution among the end-effectors is modeled. To this end, the MIC law is used to control both path tracking and inner forces tuning when manipulating an object. The moving object is grasped solidly with two 6 degrees of freedom (DOF) cooperating end-effectors mounted on a 6 DOF spacecraft appended with a 2 DOF antenna. An explicit dynamics model of this highly complicated 20 DOF system is derived using SPACEMAPLE, and then simulated in MATLAB. The obtained results reveal good tracking performance of the proposed MIC controller, besides tuning the object internal forces due to tension or compression forces, also torsion and bending moments.

  15. Experiments in Neural-Network Control of a Free-Flying Space Robot

    NASA Technical Reports Server (NTRS)

    Wilson, Edward

    1995-01-01

    Four important generic issues are identified and addressed in some depth in this thesis as part of the development of an adaptive neural network based control system for an experimental free flying space robot prototype. The first issue concerns the importance of true system level design of the control system. A new hybrid strategy is developed here, in depth, for the beneficial integration of neural networks into the total control system. A second important issue in neural network control concerns incorporating a priori knowledge into the neural network. In many applications, it is possible to get a reasonably accurate controller using conventional means. If this prior information is used purposefully to provide a starting point for the optimizing capabilities of the neural network, it can provide much faster initial learning. In a step towards addressing this issue, a new generic Fully Connected Architecture (FCA) is developed for use with backpropagation. A third issue is that neural networks are commonly trained using a gradient based optimization method such as backpropagation; but many real world systems have Discrete Valued Functions (DVFs) that do not permit gradient based optimization. One example is the on-off thrusters that are common on spacecraft. A new technique is developed here that now extends backpropagation learning for use with DVFs. The fourth issue is that the speed of adaptation is often a limiting factor in the implementation of a neural network control system. This issue has been strongly resolved in the research by drawing on the above new contributions.

  16. Intelligent tracking control of fixed-base and free-flying flexible space robots

    NASA Astrophysics Data System (ADS)

    Green, Anthony

    minimal compared to the overriding effect of fuzzy logic system adaptive control. Hybrid control strategies are synthesized and simulated tracking results obtained for combinations of inverse flexible dynamics control with an extended Kalman filter or a fuzzy logic adaptive extended Kalman filter for noise filtering and a fuzzy logic system for vibration suppression. The effect of Kalman filtering is minimal while the fuzzy logic system has an overriding effect on diminishing transient vibration overshoot amplitudes at trajectory direction switches. Finally, the end effector of a free-flying flexible space robot autonomously tracks a trajectory between two points in a space orbit using inverse flexible dynamics and fuzzy logic system adaptive control strategies for comparison. The robot autonomously tracks its end effector between initial and final positions in two-dimensional space while maintaining stability and station keeping the rigid spacecraft in its location in space. Simulated tracking results show inverse flexible dynamics control produces a significant drift and fails to reach its commanded final position. Fuzzy logic system adaptive control produces a more accurate direct trajectory with less drift and terminates closer to the commanded final position. But, sporadic high magnitude driving torque "spikes" occur, similar to the "bursting phenomenon" often encountered with adaptive control systems, but they are damped by the fuzzy logic system. The rigid spacecraft reactive translation and attitude change is minimal in each case but less so for fuzzy logic system adaptive control.

  17. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.; Phinney, Dale E.

    1989-01-01

    The ground based demonstration of the extensive extravehicular activity (EVA) Retriever, a voice-supervised, intelligent, free flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out; (2) searches for and acquires the target; (3) plans and executes a rendezvous while continuously tracking the target; (4) avoids stationary and moving obstacles; (5) reaches for and grapples the target; (6) returns to transfer the object; and (7) returns to base.

  18. An intelligent, free-flying robot

    NASA Technical Reports Server (NTRS)

    Reuter, G. J.; Hess, C. W.; Rhoades, D. E.; Mcfadin, L. W.; Healey, K. J.; Erickson, J. D.

    1988-01-01

    The ground-based demonstration of EVA Retriever, a voice-supervised, intelligent, free-flying robot, is designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The major objective of the EVA Retriever Project is to design, develop, and evaluate an integrated robotic hardware and on-board software system which autonomously: (1) performs system activation and check-out, (2) searches for and acquires the target, (3) plans and executes a rendezvous while continuously tracking the target, (4) avoids stationary and moving obstacles, (5) reaches for and grapples the target, (6) returns to transfer the object, and (7) returns to base.

  19. Reactionless camera inspection with a free-flying space robot under reaction null-space motion control

    NASA Astrophysics Data System (ADS)

    Sone, Hiroki; Nenchev, Dragomir

    2016-11-01

    The possibility of implementing reactionless motion control w.r.t. base orientation of a free-flying space robot in practical tasks is addressed. It is shown that such possibility depends strongly on the kinematic/dynamic design parameters as well as on the mission task. A successful implementation of a camera inspection task is reported. The presence of kinematic redundancy and the manipulator attachment position are shown to play important roles. More specifically, for a manipulator arm with a typical seven degree-of-freedom (DoF) kinematic structure, it is shown that two motion patterns, wrist reorientation and folding/unfolding of the arm, result in almost reactionless motion. The orientation pattern is adopted as the main task for camera inspection, while the remaining four DoFs are used to ensure complete reactionless motion and to minimize the position errors. Since the composition of these tasks introduces the so-called algorithmic singularities, two methods are suggested to alleviate the problem. Furthermore, it is shown that other types of singularities may also be introduced in case of an inappropriate choice of the manipulator attachment position. At the end, numerical analysis is performed to show that reactionless motion provides an advantage in terms of kinetic energy as well.

  20. Control of a free-flying robot manipulator system

    NASA Technical Reports Server (NTRS)

    Alexander, H.

    1986-01-01

    The development of and test control strategies for self-contained, autonomous free flying space robots are discussed. Such a robot would perform operations in space similar to those currently handled by astronauts during extravehicular activity (EVA). Use of robots should reduce the expense and danger attending EVA both by providing assistance to astronauts and in many cases by eliminating altogether the need for human EVA, thus greatly enhancing the scope and flexibility of space assembly and repair activities. The focus of the work is to develop and carry out a program of research with a series of physical Satellite Robot Simulator Vehicles (SRSV's), two-dimensionally freely mobile laboratory models of autonomous free-flying space robots such as might perform extravehicular functions associated with operation of a space station or repair of orbiting satellites. It is planned, in a later phase, to extend the research to three dimensions by carrying out experiments in the Space Shuttle cargo bay.

  1. Technology test results from an intelligent, free-flying robot for crew and equipment retrieval in space

    NASA Technical Reports Server (NTRS)

    Erickson, J.; Goode, R.; Grimm, K.; Hess, C.; Norsworthy, R.; Anderson, G.; Merkel, L.; Phinney, D.

    1992-01-01

    The ground-based demonstrations of Extra Vehicular Activity (EVA) Retriever, a voice-supervised, intelligent, free-flying robot, are designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the Space Station. The EVA Retriever software is required to autonomously plan and execute a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles with subsequent object handover. The software architecture incorporates a heirarchical decomposition of the control system that is horizontally partitioned into five major functional subsystems: sensing, perception, world model, reasoning, and acting. The design provides for supervised autonomy as the primary mode of operation. It is intended to be an evolutionary system improving in capability over time and as it earns crew trust through reliable and safe operation. This paper gives an overview of the hardware, a focus on software, and a summary of results achieved recently from both computer simulations and air bearing floor demonstrations. Limitations of the technology used are evaluated. Plans for the next phase, during which moving targets and obstacles drive realtime behavior requirements, are discussed.

  2. Technology test results from an intelligent, free-flying robot for crew and equipment retrieval in space

    NASA Astrophysics Data System (ADS)

    Erickson, Jon D.; Goode, R.; Grimm, K. A.; Hess, Clifford W.; Norsworthy, Robert S.; Anderson, Greg D.; Merkel, L.; Phinney, Dale E.

    1992-03-01

    The ground-based demonstrations of Extra Vehicular Activity (EVA) Retriever, a voice- supervised, intelligent, free-flying robot, are designed to evaluate the capability to retrieve objects (astronauts, equipment, and tools) which have accidentally separated from the space station. The EVA Retriever software is required to autonomously plan and execute a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles with subsequent object handover. The software architecture incorporates a hierarchical decomposition of the control system that is horizontally partitioned into five major functional subsystems: sensing, perception, world model, reasoning, and acting. The design provides for supervised autonomy as the primary mode of operation. It is intended to be an evolutionary system improving in capability over time and as it earns crew trust through reliable and safe operation. This paper gives an overview of the hardware, a focus on software, and a summary of results achieved recently from both computer simulations and air bearing floor demonstrations. Limitations of the technology used are evaluated. Plans for the next phase, during which moving targets and obstacles drive realtime behavior requirements, are discussed.

  3. Research in free-flying robots and flexible manipulators at the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Ballhaus, W. L.; Alder, L. J.; Chen, V. W.; Dickson, W. C.; Ullman, M. A.; Wilson, E.

    1993-01-01

    Over the last ten years, the Stanford Aerospace Robotics Laboratory (ARL) has developed a hardware facility in which a number of space robotics issues have been, and continue to be addressed. This paper reviews two of the current ARL research areas: navigation and control of free flying space robots, and modeling and control of extremely flexible space structures.

  4. Motion planning for a free-flying robot

    NASA Technical Reports Server (NTRS)

    Kaiser, Donald Leo; Hawkins, Patrick J.

    1988-01-01

    An investigation is presented of motion planning combining low level control and obstacle avoidance for a free flying robot. This free flying robot is an outgrowth of the concept of an assistant for astronauts on the U.S. Space Station and Shuttle. A motion planner based on the Khatib potential field approach is described. Because of the uncluttered environment in space, it generates a path from representation of known obstacles rather than from a representation of free space. A global planner supplies the low level controller with interim points between the current position and the desired goal position so that the vehicle does not become trapped by local minima, a phenomenon of the potential field approach. Discussion of the feasibility of this system for space applications is presented.

  5. Control of a free-flying robot manipulator system

    NASA Technical Reports Server (NTRS)

    Alexander, H.; Cannon, R. H., Jr.

    1985-01-01

    The goal of the research is to develop and test control strategies for a self-contained, free flying space robot. Such a robot would perform operations in space similar to those currently handled by astronauts during extravehicular activity (EVA). The focus of the work is to develop and carry out a program of research with a series of physical Satellite Robot Simulator Vehicles (SRSV's), two-dimensionally freely mobile laboratory models of autonomous free-flying space robots such as might perform extravehicular functions associated with operation of a space station or repair of orbiting satellites. The development of the SRSV and of some of the controller subsystems are discribed. The two-link arm was fitted to the SRSV base, and researchers explored the open-loop characteristics of the arm and thruster actuators. Work began on building the software foundation necessary for use of the on-board computer, as well as hardware and software for a local vision system for target identification and tracking.

  6. Localization from Visual Landmarks on a Free-Flying Robot

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert

    2016-01-01

    We present the localization approach for Astrobee, a new free-flying robot designed to navigate autonomously on the International Space Station (ISS). Astrobee will accommodate a variety of payloads and enable guest scientists to run experiments in zero-g, as well as assist astronauts and ground controllers. Astrobee will replace the SPHERES robots which currently operate on the ISS, whose use of fixed ultrasonic beacons for localization limits them to work in a 2 meter cube. Astrobee localizes with monocular vision and an IMU, without any environmental modifications. Visual features detected on a pre-built map, optical flow information, and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise, and extensively evaluate the localization algorithm.

  7. Localization from Visual Landmarks on a Free-Flying Robot

    NASA Technical Reports Server (NTRS)

    Coltin, Brian; Fusco, Jesse; Moratto, Zack; Alexandrov, Oleg; Nakamura, Robert

    2016-01-01

    We present the localization approach for Astrobee,a new free-flying robot designed to navigate autonomously on board the International Space Station (ISS). Astrobee will conduct experiments in microgravity, as well as assisst astronauts and ground controllers. Astrobee replaces the SPHERES robots which currently operate on the ISS, which were limited to operating in a small cube since their localization system relied on triangulation from ultrasonic transmitters. Astrobee localizes with only monocular vision and an IMU, enabling it to traverse the entire US segment of the station. Features detected on a previously-built map, optical flow information,and IMU readings are all integrated into an extended Kalman filter (EKF) to estimate the robot pose. We introduce several modifications to the filter to make it more robust to noise.Finally, we extensively evaluate the behavior of the filter on atwo-dimensional testing surface.

  8. Initial experiments in thrusterless locomotion control of a free-flying robot

    NASA Technical Reports Server (NTRS)

    Jasper, W. J.; Cannon, R. H., Jr.

    1990-01-01

    A two-arm free-flying robot has been constructed to study thrusterless locomotion in space. This is accomplished by pushing off or landing on a large structure in a coordinated two-arm maneuver. A new control method, called system momentum control, allows the robot to follow desired momentum trajectories and thus leap or crawl from one structure to another. The robot floats on an air-cushion, simulating in two dimensions the drag-free zero-g environment of space. The control paradigm has been verified experimentally by commanding the robot to push off a bar with both arms, rotate 180 degrees, and catch itself on another bar.

  9. Initial experiments in thrusterless locomotion control of a free-flying robot

    NASA Technical Reports Server (NTRS)

    Jasper, W. J.; Cannon, R. H., Jr.

    1990-01-01

    A two-arm free-flying robot has been constructed to study thrusterless locomotion in space. This is accomplished by pushing off or landing on a large structure in a coordinated two-arm maneuver. A new control method, called system momentum control, allows the robot to follow desired momentum trajectories and thus leap or crawl from one structure to another. The robot floats on an air-cushion, simulating in two dimensions the drag-free zero-g environment of space. The control paradigm has been verified experimentally by commanding the robot to push off a bar with both arms, rotate 180 degrees, and catch itself on another bar.

  10. Propulsion recommendations for Space Station free flying platforms

    NASA Technical Reports Server (NTRS)

    Redd, L. R.; Rose, L. J.

    1986-01-01

    Propulsion system candidates have been defined for Space Station free flying platforms for the purpose of comparison and to understand the impact of the various mission requirements on the candidate designs. Consideration of the platform mission requirements and comparisons of the conceptual propulsion system design candidates has led to a fairly clear set of recommendations for propulsion for each of the various platforms.

  11. Propulsion recommendations for space station free flying platforms

    NASA Technical Reports Server (NTRS)

    Redd, L. R.; Rose, L. J.

    1986-01-01

    Propulsion system candidates have been defined for Space Station free flying platforms for the purpose of comparison and to understand the impact of the various mission requirements on the candidate designs. Recommendations for propulsion for each of the various platforms are given.

  12. Stabilization of Free-Flying Underactuated Mechanisms in Space

    DTIC Science & Technology

    1991-09-01

    would be left unactuated. We intend to control such an underactuated mechanism such that it would be possible to configure the system in any desired way... underactuated mechanism in spare to an equilibrium manifold 2. Dynamics of free-flying underactuated systems - A Hamiltonian formulation In this...discussed in our paper the dynamics and control of underactuated mechanisms in space. The dynamics of the system was formulated using Hamilton’s canonical

  13. Early space station user accommodations. [manned free flying orbital platform

    NASA Technical Reports Server (NTRS)

    Saxton, D. R.; Wolbers, H. L.

    1975-01-01

    The requirements for extended-duration space missions in earth orbit beyond those anticipated for the 7- to 30-day Shuttle Spacelab system have been examined. It has been determined that a continuously manned, free-flying orbital facility provides a realistic and cost-effective space platform for multidiscipline payloads designed to support research, applications, and system implementation programs such as the assembly of large space structures, and on-orbit space manufacturing. A conceptual description of such a manned facility (early Space Station) and the accommodations that it can provide using agencies and organizations is presented in this paper.

  14. Computed torque control of a free-flying cooperat ing-arm robot

    NASA Technical Reports Server (NTRS)

    Koningstein, Ross; Ullman, Marc; Cannon, Robert H., Jr.

    1989-01-01

    The unified approach to solving free-floating space robot manipulator end-point control problems is presented using a control formulation based on an extension of computed torque. Once the desired end-point accelerations have been specified, the kinematic equations are used with momentum conservation equations to solve for the joint accelerations in any of the robot's possible configurations: fixed base or free-flying with open/closed chain grasp. The joint accelerations can then be used to calculate the arm control torques and internal forces using a recursive order N algorithm. Initial experimental verification of these techniques has been performed using a laboratory model of a two-armed space robot. This fully autonomous spacecraft system experiences the drag-free, zero G characteristics of space in two dimensions through the use of an air cushion support system. Results of these initial experiments are included which validate the correctness of the proposed methodology. The further problem of control in the large where not only the manipulator tip positions but the entire system consisting of base and arms must be controlled is also presented. The availability of a physical testbed has brought a keener insight into the subtleties of the problem at hand.

  15. Tracking and stationkeeping for free-flying robots using sliding surfaces

    NASA Technical Reports Server (NTRS)

    Carignan, Craig R.; Akin, David L.

    1988-01-01

    The authors use the concept of sliding surfaces for generating two types of tracking control laws for a free-flying robot engaged in zero-gravity assembly tasks. Suction control, developed elsewhere for controlling manipulators with stationary bases, is used here to track workspace trajectories for manipulators mounted on mobile platforms. Zone control is formulated for the purpose of stationkeeping a robot maneuvering unit during payload manipulation. Experimental results are described for tests performed on an air-bearing robot tracking payload trajectories along a glass surface.

  16. Tracking and stationkeeping for free-flying robots using sliding surfaces

    NASA Technical Reports Server (NTRS)

    Carignan, Craig R.; Akin, David L.

    1988-01-01

    The authors use the concept of sliding surfaces for generating two types of tracking control laws for a free-flying robot engaged in zero-gravity assembly tasks. Suction control, developed elsewhere for controlling manipulators with stationary bases, is used here to track workspace trajectories for manipulators mounted on mobile platforms. Zone control is formulated for the purpose of stationkeeping a robot maneuvering unit during payload manipulation. Experimental results are described for tests performed on an air-bearing robot tracking payload trajectories along a glass surface.

  17. Capture of free-flying payloads with flexible space manipulators

    NASA Technical Reports Server (NTRS)

    Komatsu, T.; Uenohara, M.; Iikura, S.; Miura, H.; Shimoyama, I.

    1989-01-01

    A recently developed control system for capturing free-flying payloads with flexible manipulators is discussed. Three essential points in this control system are, calculating optimal path, using a vision sensor for an external sensor, and controlling active vibration. Experimental results are shown using a planar flexible manipulator.

  18. Astrobee: Space Station Robotic Free Flyer

    NASA Technical Reports Server (NTRS)

    Provencher, Chris; Bualat, Maria G.; Barlow, Jonathan; Fong, Terrence W.; Smith, Marion F.; Smith, Ernest E.; Sanchez, Hugo S.

    2016-01-01

    Astrobee is a free flying robot that will fly inside the International Space Station and primarily serve as a research platform for robotics in zero gravity. Astrobee will also provide mobile camera views to ISS flight and payload controllers, and collect various sensor data within the ISS environment for the ISS Program. Astrobee consists of two free flying robots, a dock, and ground data system. This presentation provides an overview, high level design description, and project status.

  19. Space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Whittaker, William; Lowrie, James W.; Mccain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-01-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  20. Space robotics in Japan

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Lowrie, James W.; McCain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-03-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  1. Development of a low-cost free-flying telerobotic space flight vehicle

    NASA Technical Reports Server (NTRS)

    Akin, D.; Howard, R.; Smith, J.; Graves, J.; Gefke, G.

    1992-01-01

    Ranger, a low-cost moderate-risk high-return telerobotics flight experiment, is discussed. Range incorporates two manipulators, a grappling arm, and a camera-positioning manipulator all mounted on a free-flying base with limited orbital maneuvering capability. Ranger will provide data on neutral buoyancy simulations, advanced telerobotics control and design, remote maneuvering, human factors involved in ground-based control of space telerobotics, and advanced small spacecraft technology.

  2. Adjustably Autonomous Multi-agent Plan Execution with an Internal Spacecraft Free-Flying Robot Prototype

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.; Nicewarner, Keith

    2006-01-01

    We present an multi-agent model-based autonomy architecture with monitoring, planning, diagnosis, and execution elements. We discuss an internal spacecraft free-flying robot prototype controlled by an implementation of this architecture and a ground test facility used for development. In addition, we discuss a simplified environment control life support system for the spacecraft domain also controlled by an implementation of this architecture. We discuss adjustable autonomy and how it applies to this architecture. We describe an interface that provides the user situation awareness of both autonomous systems and enables the user to dynamically edit the plans prior to and during execution as well as control these agents at various levels of autonomy. This interface also permits the agents to query the user or request the user to perform tasks to help achieve the commanded goals. We conclude by describing a scenario where these two agents and a human interact to cooperatively detect, diagnose and recover from a simulated spacecraft fault.

  3. NASA Ames Participates in Two Major Bay Area Events (Reporter Package)NASA Ames Research Center participated in two important outreach events: Maker Faire and a gathering of hardware and software industry professionals called the Solid Conference. The conference was an opportunity for the Intelligent Robotics Group from NASA Ames to publicly unveil their latest version of the free flying robot used on the International Space Station. NASA also participated at the Bay Area Maker Faire, a gathering of more than 120,000 innovators, enthusiasts, crafters, hobbyists and tinkerers to share what they have invented and made.

    NASA Image and Video Library

    2014-05-28

    NASA Ames Research Center participated in two important outreach events: Maker Faire and a gathering of hardware and software industry professionals called the Solid Conference. The conference was an opportunity for the Intelligent Robotics Group from NASA Ames to publicly unveil their latest version of the free flying robot used on the International Space Station. NASA also participated at the Bay Area Maker Faire, a gathering of more than 120,000 innovators, enthusiasts, crafters, hobbyists and tinkerers to share what they have invented and made.

  4. Experiments in cooperative-arm object manipulation with a two-armed free-flying robot. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koningstein, Ross

    1990-01-01

    Developing computed-torque controllers for complex manipulator systems using current techniques and tools is difficult because they address the issues pertinent to simulation, as opposed to control. A new formulation of computed-torque (CT) control that leads to an automated computer-torque robot controller program is presented. This automated tool is used for simulations and experimental demonstrations of endpoint and object control from a free-flying robot. A new computed-torque formulation states the multibody control problem in an elegant, homogeneous, and practical form. A recursive dynamics algorithm is presented that numerically evaluates kinematics and dynamics terms for multibody systems given a topological description. Manipulators may be free-flying, and may have closed-chain constraints. With the exception of object squeeze-force control, the algorithm does not deal with actuator redundancy. The algorithm is used to implement an automated 2D computed-torque dynamics and control package that allows joint, endpoint, orientation, momentum, and object squeeze-force control. This package obviates the need for hand-derivation of kinematics and dynamics, and is used for both simulation and experimental control. Endpoint control experiments are performed on a laboratory robot that has two arms to manipulate payloads, and uses an air bearing to achieve very-low drag characteristics. Simulations and experimental data for endpoint and object controllers are presented for the experimental robot - a complex dynamic system. There is a certain rather wide set of conditions under which CT endpoint controllers can neglect robot base accelerations (but not motions) and achieve comparable performance including base accelerations in the model. The regime over which this simplification holds is explored by simulation and experiment.

  5. A computer program for an analysis of the relative motion of a space station and a free flying experiment module

    NASA Technical Reports Server (NTRS)

    Butler, J. H.

    1971-01-01

    A preliminary analysis of the relative motion of a free flying experiment module in the vicinity of a space station under the perturbative effects of drag and earth oblateness was made. A listing of a computer program developed for determining the relative motion of a module utilizing the Cowell procedure is presented, as well as instructions for its use.

  6. AERCam Autonomy: Intelligent Software Architecture for Robotic Free Flying Nanosatellite Inspection Vehicles

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.

    2006-01-01

    The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits

  7. Space Robotics

    DTIC Science & Technology

    1982-08-01

    ACCESSION NO 3. RECIPIENTS CATALOG NUIA3.R CMU-RI-TR-82-10 I4 1 (. 4. ;,;-LL (and Sublitle) S. TYPE OF REPORT & PERIOD CovEREO SPACE ROBOTICS Interim... Robotics Institute Pittsburgh, PA. 15213 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research -August 1982 Arlington, VA 22217...SXnet.eE . Space Robotics Richard E. Korf Department of Computer Science and The Robotics Institute Carnegie-Mellon University Pittsburgh, Oetusylvania

  8. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  9. Automation and robotics for COLUMBUS: An implementation concept for the free flying laboratory (MTFF)

    NASA Technical Reports Server (NTRS)

    Goelz, G.; Sommer, B.

    1992-01-01

    With nearly forty percent of the funding, Germany is the main contributor to the European COLUMBUS Programme, followed by Italy, France and further ESA member states. The COLUMBUS elements are the Attached Laboratory (APM) to be permanently attached to the Space Station FREEDOM, the polar platform (PPF) and the Man Tended Free Flyer (MTFF). The latter element is regarded to be of special interest for the German micro-g community. Until now the implementation of A&R Technologies has not been included as part of the system concept for the COLUMBUS laboratory modules. Yet especially for the Free Flyer, a high degree of A&R will be indispensible. An A&R system concept and implementation options for A&R are given to make the COLUMBUS labs 'intelligent' laboratories in orbit.

  10. Free-flying dynamics and control of an astronaut assistant robot based on fuzzy sliding mode algorithm

    NASA Astrophysics Data System (ADS)

    Gao, Qing; Liu, Jinguo; Tian, Tongtong; Li, Yangmin

    2017-09-01

    Space robots can perform some tasks in harsh environment as assistants of astronauts or substitutions of astronauts. Taking the limited working time and the arduous task of the astronauts in the space station into account, an astronaut assistant robot (AAR-2) applied in the space station is proposed and designed in this paper. The AAR-2 is achieved with some improvements on the basis of AAR-1 which was designed before. It can exploit its position and attitude sensors and control system to free flight or hover in the space cabin. And it also has a definite environmental awareness and artificial intelligence to complete some specified tasks under the control of astronauts or autonomously. In this paper, it mainly analyzes and controls the 6-DOF motion of the AAR-2. Firstly, the system configuration of AAR-2 is specifically described, and the movement principles are analyzed. Secondly, according to the physical model of the AAR-2, the Newton - Euler equation is applied in the preparation of space dynamics model of 6-DOF motion. Then, according to the mathematical model's characteristics which are nonlinear and strong coupling, a dual closed loop position and attitude controller based on fuzzy sliding mode control is proposed and designed. Finally, simulation experiments are appropriate to provide for AAR-2 control system by using Matlab/Simulink. From the simulation results it can be observed that the designed fuzzy sliding mode controller can control the 6-DOF motion of AAR-2 quickly and precisely.

  11. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025030 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  12. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025012 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  13. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025017 (26 July 2013) --- In the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, speaks in a microphone as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  14. Space Robotics

    NASA Image and Video Library

    2013-07-26

    ISS036-E-025034 (26 July 2013) --- From the International Space Station?s Destiny laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, uses a computer as he partners with Ames Research Center to remotely control a surface rover in California. The experiment, called Surface Telerobotics, will help scientists plan future missions where a robotic rover could prepare a site on a moon or a planet for a crew.

  15. Results from teleoperated free-flying spacecraft simulations in the Martin Marietta space operations simulator lab

    NASA Technical Reports Server (NTRS)

    Hartley, Craig S.

    1990-01-01

    To augment the capabilities of the Space Transportation System, NASA has funded studies and developed programs aimed at developing reusable, remotely piloted spacecraft and satellite servicing systems capable of delivering, retrieving, and servicing payloads at altitudes and inclinations beyond the reach of the present Shuttle Orbiters. Since the mid 1970's, researchers at the Martin Marietta Astronautics Group Space Operations Simulation (SOS) Laboratory have been engaged in investigations of remotely piloted and supervised autonomous spacecraft operations. These investigations were based on high fidelity, real-time simulations and have covered a wide range of human factors issues related to controllability. Among these are: (1) mission conditions, including thruster plume impingements and signal time delays; (2) vehicle performance variables, including control authority, control harmony, minimum impulse, and cross coupling of accelerations; (3) maneuvering task requirements such as target distance and dynamics; (4) control parameters including various control modes and rate/displacement deadbands; and (5) display parameters involving camera placement and function, visual aids, and presentation of operational feedback from the spacecraft. This presentation includes a brief description of the capabilities of the SOS Lab to simulate real-time free-flyer operations using live video, advanced technology ground and on-orbit workstations, and sophisticated computer models of on-orbit spacecraft behavior. Sample results from human factors studies in the five categories cited above are provided.

  16. Rotating-unbalanced-mass Devices for Scanning Balloon-borne Experiments, Free-flying Spacecraft, and Space Shuttle/space Station Experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.

    1990-01-01

    A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.

  17. HP-9825A HFRMP trajectory processor (#TRAJ), detailed description. [relative motion of the space shuttle orbiter and a free-flying payload

    NASA Technical Reports Server (NTRS)

    Kindall, S. M.

    1980-01-01

    The computer code for the trajectory processor (#TRAJ) of the high fidelity relative motion program is described. The #TRAJ processor is a 12-degrees-of-freedom trajectory integrator (6 degrees of freedom for each of two vehicles) which can be used to generate digital and graphical data describing the relative motion of the Space Shuttle Orbiter and a free-flying cylindrical payload. A listing of the code, coding standards and conventions, detailed flow charts, and discussions of the computational logic are included.

  18. Cooperative intelligent robotics in space III; Proceedings of the Meeting, Boston, MA, Nov. 16-18, 1992

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1992-01-01

    The present volume on cooperative intelligent robotics in space discusses sensing and perception, Space Station Freedom robotics, cooperative human/intelligent robot teams, and intelligent space robotics. Attention is given to space robotics reasoning and control, ground-based space applications, intelligent space robotics architectures, free-flying orbital space robotics, and cooperative intelligent robotics in space exploration. Topics addressed include proportional proximity sensing for telerobots using coherent lasar radar, ground operation of the mobile servicing system on Space Station Freedom, teleprogramming a cooperative space robotic workcell for space stations, and knowledge-based task planning for the special-purpose dextrous manipulator. Also discussed are dimensions of complexity in learning from interactive instruction, an overview of the dynamic predictive architecture for robotic assistants, recent developments at the Goddard engineering testbed, and parallel fault-tolerant robot control.

  19. Rotating-unbalanced-mass devices and methods for scanning balloon-borne-experiments, free-flying spacecraft, and space shuttle/space station attached experiments

    NASA Technical Reports Server (NTRS)

    Polites, Michael E. (Inventor)

    1992-01-01

    A method and apparatus for scanning balloon-borne experiments, free-flying spacecraft, or gimballed experiments mounted on a space shuttle or space station, makes use of one or more rotating unbalanced mass devices for selectively generating circular, line, or raster scan patterns for the experiment line of sight. An auxiliary control system may also be used in combination with the rotating unbalanced mass device, for target acquisition, keeping the scan centered on the target, or for producing complementary motion for raster scanning. The rotating unbalanced mass makes use of a mass associated with a drive shaft, such mass having a center of gravity which is displaced from the drive shaft rotation axis. The drive shaft is driven with a substantially constant angular velocity, thereby resulting in relatively low power requirements since no acceleration or deceleration of the mass is generally involved during steady state operations. The resulting centrifugal force of the rotating unbalanced mass is used to generate desired reaction forces on the experiment or spacecraft to create a desired scan pattern for the experiment line of sight.

  20. Control of intelligent robots in space

    NASA Technical Reports Server (NTRS)

    Freund, E.; Buehler, CH.

    1989-01-01

    In view of space activities like International Space Station, Man-Tended-Free-Flyer (MTFF) and free flying platforms, the development of intelligent robotic systems is gaining increasing importance. The range of applications that have to be performed by robotic systems in space includes e.g., the execution of experiments in space laboratories, the service and maintenance of satellites and flying platforms, the support of automatic production processes or the assembly of large network structures. Some of these tasks will require the development of bi-armed or of multiple robotic systems including functional redundancy. For the development of robotic systems which are able to perform this variety of tasks a hierarchically structured modular concept of automation is required. This concept is characterized by high flexibility as well as by automatic specialization to the particular sequence of tasks that have to be performed. On the other hand it has to be designed such that the human operator can influence or guide the system on different levels of control supervision, and decision. This leads to requirements for the hardware and software concept which permit a range of application of the robotic systems from telemanipulation to autonomous operation. The realization of this goal requires strong efforts in the development of new methods, software and hardware concepts, and the integration into an automation concept.

  1. Space Technology Game Changing Development Astrobee: ISS Robotic Free Flyer

    NASA Technical Reports Server (NTRS)

    Bualat, Maria Gabriele

    2015-01-01

    Astrobee will be a free-flying robot that can be remotely operated by astronauts in space or by mission controllers on the ground. NASA is developing Astrobee to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station. These IVA tasks include interior environmental surveys (e.g., sound level measurement), inventory and mobile camera work. Astrobee will also serve as a platform for robotics research in microgravity. Here we describe the Astrobee project objectives, concept of operations, development approach, key challenges, and initial design.

  2. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  3. Experiments in advanced control concepts for space robotics - An overview of the Stanford Aerospace Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hollars, M. G.; Cannon, R. H., Jr.; Alexander, H. L.; Morse, D. F.

    1987-01-01

    The Stanford University Aerospace Robotics Laboratory is actively developing and experimentally testing advanced robot control strategies for space robotic applications. Early experiments focused on control of very lightweight one-link manipulators and other flexible structures. The results are being extended to position and force control of mini-manipulators attached to flexible manipulators and multilink manipulators with flexible drive trains. Experimental results show that end-point sensing and careful dynamic modeling or adaptive control are key to the success of these control strategies. Free-flying space robot simulators that operate on an air cushion table have been built to test control strategies in which the dynamics of the base of the robot and the payload are important.

  4. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  5. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  6. The role of robotics in space system operations

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.; Spector, V. A.

    1985-01-01

    The role of automation and robotics in support of man's activities in space is discussed, with emphasis given to satellite servicing functions on board the NASA Space Station (SS) or at remote locations. Consideration is given to four satellite servicing mission scenarios, including: low-earth-orbit (LEO) servicing of satellite in situ or on the Space Station following orbital transfer by means of an Orbital Maneuvering Vehicle (OMV); in situ servicing of a free-flying coorbiting materials processing platform; repair/refurbishment of Space Station payloads of substations; an in situ servicing of geostationary satellites by means of an Orbital Transfer Vehicle (OTV). The potential applications of three different automation technologies are examined, including: teleoperation; robotics; and artificial intelligence. Consideration is also given to the potential applications of the Space Station data system in support of servicing activities. A list of the more common terms of automation technology is provided.

  7. The role of robotics in space system operations

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.; Spector, V. A.

    1985-01-01

    The role of automation and robotics in support of man's activities in space is discussed, with emphasis given to satellite servicing functions on board the NASA Space Station (SS) or at remote locations. Consideration is given to four satellite servicing mission scenarios, including: low-earth-orbit (LEO) servicing of satellite in situ or on the Space Station following orbital transfer by means of an Orbital Maneuvering Vehicle (OMV); in situ servicing of a free-flying coorbiting materials processing platform; repair/refurbishment of Space Station payloads of substations; an in situ servicing of geostationary satellites by means of an Orbital Transfer Vehicle (OTV). The potential applications of three different automation technologies are examined, including: teleoperation; robotics; and artificial intelligence. Consideration is also given to the potential applications of the Space Station data system in support of servicing activities. A list of the more common terms of automation technology is provided.

  8. Logistics and operations integration requirements to support Space Station servicing of free flying spacecraft - OMV flight operation

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Mcgeehan, Richard T.

    1987-01-01

    The logistics of OMV free-flyer servicing are examined, with emphasis on integrating the OMV operations into the overall STS-Space Station system. The depletion rate of consumables and lifetimes of free-flyer components are known quantities, which permits definition of a predictable maintenance schedule. Servicing with an OMV will depend on the position and capabilities of the OMV, Shuttle and Station when free-flyer maintenance is needed. Optimized orbital servicing of free-flyers will involve coordination of and resolution of schedule conflicts among STS, the OMV and the Station. The scheduled availability of any of the three components will be predicted in terms of probabilities that any one of the components will not be needed for another mission while performing the mission they are on.

  9. A Survey of Space Robotics

    NASA Technical Reports Server (NTRS)

    Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)

    2003-01-01

    In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.

  10. Robots in Space -Psychological Aspects

    NASA Technical Reports Server (NTRS)

    Sipes, Walter E.

    2006-01-01

    A viewgraph presentation on the psychological aspects of developing robots to perform routine operations associated with monitoring, inspection, maintenance and repair in space is shown. The topics include: 1) Purpose; 2) Vision; 3) Current Robots in Space; 4) Ground Based Robots; 5) AERCam; 6) Rotating Bladder Robot (ROBLR); 7) DART; 8) Robonaut; 9) Full Immersion Telepresence Testbed; 10) ERA; and 11) Psychological Aspects

  11. Robots Aboard International Space Station

    NASA Image and Video Library

    Ames Research Center, MIT and Johnson Space Center have two new robotics projects aboard the International Space Station (ISS). Robonaut 2, a two-armed humanoid robot with astronaut-like dexterity,...

  12. Teleoperation And Autonomy In Space Station Robotic Systems

    NASA Astrophysics Data System (ADS)

    Campbell, Paul D.

    1988-10-01

    The United States Space Station will employ robotic systems in conjunction with crew-member Extravehicular Activity (EVA). The control methods and corresponding crew interfaces for these systems are currently in development. Both teleoperation and autonomous operation are being pursued to provide either low-level control or high-level supervision of robotic tasks. The Flight Telerobotic Servicer (FTS) will be launched during the Station assembly process and will be teleoperated to perform a variety of assembly, maintenance, and servicing tasks. The EVA Retriever is a free-flying autonomous robot designed for retrieval of a drifting crewmember or piece of equipment inadvertently detached from the Station. These two robotic systems exemplify the choices which must be made in designing the robot control method. Teleoperation and autonomy are the ends of a spectrum of possible control modes. In choosing a design point along this dimension, the complexity of the robotic task must be considered along with the technologies required to support either teleoperation or autonomous performance of the task. Requirements of the crew operators and the workloads to be imposed on them must be weighed during selection and design of the control method. Safety considerations will also constrain the design. Space Station operations will be enhanced by optimization of each robot's control method with respect to its mission.

  13. A Space Station robot walker and its shared control software

    NASA Technical Reports Server (NTRS)

    Xu, Yangsheng; Brown, Ben; Aoki, Shigeru; Yoshida, Tetsuji

    1994-01-01

    In this paper, we first briefly overview the update of the self-mobile space manipulator (SMSM) configuration and testbed. The new robot is capable of projecting cameras anywhere interior or exterior of the Space Station Freedom (SSF), and will be an ideal tool for inspecting connectors, structures, and other facilities on SSF. Experiments have been performed under two gravity compensation systems and a full-scale model of a segment of SSF. This paper presents a real-time shared control architecture that enables the robot to coordinate autonomous locomotion and teleoperation input for reliable walking on SSF. Autonomous locomotion can be executed based on a CAD model and off-line trajectory planning, or can be guided by a vision system with neural network identification. Teleoperation control can be specified by a real-time graphical interface and a free-flying hand controller. SMSM will be a valuable assistant for astronauts in inspection and other EVA missions.

  14. Military Space Robotics

    DTIC Science & Technology

    1987-04-30

    Engineering Center 333 Ravenswood Avenue Menlo Park, California 94025 U.S.A. D (415) 326-6200 * Cable: SRI INTL MPK TWX: 910-373-2046 UNCLASSIFIED...Automation and Robotics Study," p. 2-6, Final Report, Operator-Systems Interface, Boeing Aerospace Company and Boeing Computer Services Company (November 1984...Clara, California 95052 G.E. Co. Space Division Bldg. 11 Space Station Amy L. Buhrig King of Prussia, Pennsylvania 19406 Boeing Aerospace Company, M/S

  15. Robot Serviced Space Facility

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R. (Inventor)

    1992-01-01

    A robot serviced space facility includes multiple modules which are identical in physical structure, but selectively differing in function. and purpose. Each module includes multiple like attachment points which are identically placed on each module so as to permit interconnection with immediately adjacent modules. Connection is made through like outwardly extending flange assemblies having identical male and female configurations for interconnecting to and locking to a complementary side of another flange. Multiple rows of interconnected modules permit force, fluid, data and power transfer to be accomplished by redundant circuit paths. Redundant modules of critical subsystems are included. Redundancy of modules and of interconnections results in a space complex with any module being removable upon demand, either for module replacement or facility reconfiguration. without eliminating any vital functions of the complex. Module replacement and facility assembly or reconfiguration are accomplished by a computer controlled articulated walker type robotic manipulator arm assembly having two identical end-effectors in the form of male configurations which are identical to those on module flanges and which interconnect to female configurations on other flanges. The robotic arm assembly moves along a connected set or modules by successively disconnecting, moving and reconnecting alternate ends of itself to a succession of flanges in a walking type maneuver. To transport a module, the robot keeps the transported module attached to one of its end-effectors and uses another flange male configuration of the attached module as a substitute end-effector during walking.

  16. NASA Robotics for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fischer, RIchard T.

    2007-01-01

    This presentation focuses on NASA's use of robotics in support of space exploration. The content was taken from public available websites in an effort to minimize any ITAR or EAR issues. The agenda starts with an introduction to NASA and the "Vision for Space Exploration" followed by NASA's major areas of robotic use: Robotic Explorers, Astronaut Assistants, Space Vehicle, Processing, and In-Space Workhorse (space infrastructure). Pictorials and movies of NASA robots in use by the major NASA programs: Space Shuttle, International Space Station, current Solar Systems Exploration and Mars Exploration, and future Lunar Exploration are throughout the presentation.

  17. Innovative Robot Archetypes for In-Space Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  18. SDIO robotics in space applications

    NASA Technical Reports Server (NTRS)

    Iliff, Richard

    1990-01-01

    Robotics in space supporting the Strategic Defense System (SDS) program is discussed. Ongoing initiatives which are intended to establish an initial Robotics in Space capability are addressed. This is specifically being referred to as the Satellite Servicing System (SSS). This system is based on the NASA Orbital Maneuvering Vehicle (OMV) with a Robotic Manipulator(s) based on the NASA Flight Telerobotic Servicer (FTS) and other SSS equipment required to do the satellite servicing work attached to the OMV. Specific Robotics in Space Requirements which have resulted from the completion of the Robotics Requirements Study Contract are addressed.

  19. Application of robots in space.

    NASA Technical Reports Server (NTRS)

    Johnsen, E. G.

    1971-01-01

    Robots are defined as electromechanical systems (with local computers) receiving inputs from sensors, and in turn, controlling motors and effectors to do tasks requiring some measure of intelligence and permitting the whole system to interact with the real world. Robot systems for space applications are categorized into three general groups consisting of roving exploration robots, spacecraft robots, and planet development robots. The functions of systems in each category are defined in terms of intended applications, and requirements for operating and decision making are outlined. Further developments which must be achieved in robot technology are summarized.

  20. Space Station robotics planning tools

    NASA Technical Reports Server (NTRS)

    Testa, Bridget Mintz

    1992-01-01

    The concepts are described for the set of advanced Space Station Freedom (SSF) robotics planning tools for use in the Space Station Control Center (SSCC). It is also shown how planning for SSF robotics operations is an international process, and baseline concepts are indicated for that process. Current SRMS methods provide the backdrop for this SSF theater of multiple robots, long operating time-space, advanced tools, and international cooperation.

  1. Space Robotics: AWIMR an Overview

    NASA Technical Reports Server (NTRS)

    Wagner, Rick

    2006-01-01

    This viewgraph presentation reviews the usages of Autonomous Walking Inspection and Maintenance Robots (AWIMR) in space. Some of the uses that these robots in support of space exploration can have are: inspection of a space craft, cleaning, astronaut assistance, assembly of a structure, repair of structures, and replenishment of supplies.

  2. Robot arm system for automatic satellite capture and berthing

    NASA Technical Reports Server (NTRS)

    Nishida, Shinichiro; Toriu, Hidetoshi; Hayashi, Masato; Kubo, Tomoaki; Miyata, Makoto

    1994-01-01

    Load control is one of the most important technologies for capturing and berthing free flying satellites by a space robot arm because free flying satellites have different motion rates. The performance of active compliance control techniques depend on the location of the force sensor and the arm's structural compliance. A compliance control technique for the robot arm's structural elasticity and a consideration for an end-effector appropriate for it are presented in this paper.

  3. Neoplasms identified in free-flying birds

    USGS Publications Warehouse

    Siegfried, L.M.

    1983-01-01

    Nine neoplasms were identified in carcasses of free-flying wild birds received at the National Wildlife Health Laboratory; gross and microscopic descriptions are reported herein. The prevalence of neoplasia in captive and free-flying birds is discussed, and lesions in the present cases are compared with those previously described in mammals and birds.

  4. Robotic space colonies

    NASA Technical Reports Server (NTRS)

    Schenker, P.; Easter, R.; Rodriguez, G.

    2001-01-01

    This paper reviews recent advances in these technologies, with a particular focus on experimental state-of-the-art robot work crew system demonstrations at JPL, that are being conducted now to begin to realize the futuristic robotic colony vision.

  5. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John; Schmitz, Eric; Hoff, William

    1991-01-01

    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations.

  6. Object-based task-level control: A hierarchical control architecture for remote operation of space robots

    NASA Technical Reports Server (NTRS)

    Stevens, H. D.; Miles, E. S.; Rock, S. J.; Cannon, R. H.

    1994-01-01

    Expanding man's presence in space requires capable, dexterous robots capable of being controlled from the Earth. Traditional 'hand-in-glove' control paradigms require the human operator to directly control virtually every aspect of the robot's operation. While the human provides excellent judgment and perception, human interaction is limited by low bandwidth, delayed communications. These delays make 'hand-in-glove' operation from Earth impractical. In order to alleviate many of the problems inherent to remote operation, Stanford University's Aerospace Robotics Laboratory (ARL) has developed the Object-Based Task-Level Control architecture. Object-Based Task-Level Control (OBTLC) removes the burden of teleoperation from the human operator and enables execution of tasks not possible with current techniques. OBTLC is a hierarchical approach to control where the human operator is able to specify high-level, object-related tasks through an intuitive graphical user interface. Infrequent task-level command replace constant joystick operations, eliminating communications bandwidth and time delay problems. The details of robot control and task execution are handled entirely by the robot and computer control system. The ARL has implemented the OBTLC architecture on a set of Free-Flying Space Robots. The capability of the OBTLC architecture has been demonstrated by controlling the ARL Free-Flying Space Robots from NASA Ames Research Center.

  7. Robot free-flyers in space extravehicular activity

    NASA Astrophysics Data System (ADS)

    Weigl, Harald J.; Alexander, Harold L.

    1992-11-01

    image. This paper includes a description of the underwater vehicle's vision-based navigation and control system and applications of vision-based navigation and control for free-flying space robots. Experimental results from underwater tests of STAR's vision system are also presented.

  8. i-SAIRAS '90; Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, Kobe, Japan, Nov. 18-20, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.

  9. i-SAIRAS '90; Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space, Kobe, Japan, Nov. 18-20, 1990

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The present conference on artificial intelligence (AI), robotics, and automation in space encompasses robot systems, lunar and planetary robots, advanced processing, expert systems, knowledge bases, issues of operation and management, manipulator control, and on-orbit service. Specific issues addressed include fundamental research in AI at NASA, the FTS dexterous telerobot, a target-capture experiment by a free-flying robot, the NASA Planetary Rover Program, the Katydid system for compiling KEE applications to Ada, and speech recognition for robots. Also addressed are a knowledge base for real-time diagnosis, a pilot-in-the-loop simulation of an orbital docking maneuver, intelligent perturbation algorithms for space scheduling optimization, a fuzzy control method for a space manipulator system, hyperredundant manipulator applications, robotic servicing of EOS instruments, and a summary of astronaut inputs on automation and robotics for the Space Station Freedom.

  10. 'Smart SPHERES' Fly High Aboard International Space Station

    NASA Image and Video Library

    On Dec. 12 engineers at NASA's Ames Research Center, Moffett Field, Calif., and Johnson Space Center in Houston conducted an experiment using small, free-flying robotic satellites called "Smart SPH...

  11. Robotics for space vehicle processing

    SciTech Connect

    Clarke, M.M.; Manouchehri, D.; Hansen, J.M.

    1994-12-31

    The work represents significant advances in robotics for the safe and efficient processing of the Space Shuttle. The rewaterproofing end-effector is complete and brings significant benefits. For example, the DMES leak-detection and containment feature fully contains all DMES, thus improving efficiency, and all data collection and analysis are automated. In addition, it lays the groundwork for the expanded use of robotics in other space vehicle launch-site operations.

  12. Space robotics--DLR's telerobotic concepts, lightweight arms and articulated hands.

    PubMed

    Hirzinger, G; Brunner, B; Landzettel, K; Sporer, N; Butterfass, J; Schedl, M

    2003-01-01

    The paper briefly outlines DLR's experience with real space robot missions (ROTEX and ETS VII). It then discusses forthcoming projects, e.g., free-flying systems in low or geostationary orbit and robot systems around the space station ISS, where the telerobotic system MARCO might represent a common baseline. Finally it describes our efforts in developing a new generation of "mechatronic" ultra-light weight arms with multifingered hands. The third arm generation is operable now (approaching present-day technical limits). In a similar way DLR's four-fingered hand II was a big step towards higher reliability and yet better performance. Artificial robonauts for space are a central goal now for the Europeans as well as for NASA, and the first verification tests of DLR's joint components are supposed to fly already end of 93 on the space station.

  13. The flight telerobotic servicer (FTS): A focus for automation and robotics on the space station

    NASA Astrophysics Data System (ADS)

    Hinkal, S. W.; Andary, J. F.; Watzin, J. G.; Provost, D. E.

    NASA has committed to the design and implementation of a robotic device to assist the astronauts in assembly, maintenance, servicing and inspection tasks in the unpressurized environment of the Space Station, substantially reducing the time required for crew extra vehicular activity (EVA). This system introduces into the Space Station program a "telerobot" adaptable to a variety of tasks and worksites. The term "telerobot" is used to indicate the combined attributes of an autonomous robot and a teleoperated manipulator. Design requirements for the telerobot are driven by a detailed analysis of the tasks which are required on the Space Station and its associated free-flying platforms. The Space Station will have several kilometers of truss structure to which are attached numerous scientific payloads, as well as functional elements and utilities of the Space Station itself. Scientific payloads require servicing of different levels of complexity. Free-flying spacecraft will be brought into the hangar-like servicing facility for repair. There will be maintenance and inspection tasks of the Space Station elements, as well as initial Space Station assembly tasks. A step-by-step analysis of candidate tasks has led to a design envelope for the telerobot. Since the telerobot is an extension or telepresence of the astronaut at the remote worksite, design of the workstation in the pressurized module has to give careful consideration to the man/machine interface, as well as the constrained volume in the pressurized modules. The flight telerobotic servicer (FTS) is designed for future growth toward more autonomy. By a careful selection of the functional architecture, and a modular approach to the hardware and software design, the FTS can accept developments in artificial intelligence and newer, more advanced sensors, such as machine vision and collision avoidance. The FTS is a focus for automation and robotics on the Space Station, as well as a baseline from which visionary

  14. Experiments in thrusterless robot locomotion control for space applications. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jasper, Warren Joseph

    1990-01-01

    While performing complex assembly tasks or moving about in space, a space robot should minimize the amount of propellant consumed. A study is presented of space robot locomotion and orientation without the use of thrusters. The goal was to design a robot control paradigm that will perform thrusterless locomotion between two points on a structure, and to implement this paradigm on an experimental robot. A two arm free flying robot was constructed which floats on a cushion of air to simulate in 2-D the drag free, zero-g environment of space. The robot can impart momentum to itself by pushing off from an external structure in a coordinated two arm maneuver, and can then reorient itself by activating a momentum wheel. The controller design consists of two parts: a high level strategic controller and a low level dynamic controller. The control paradigm was verified experimentally by commanding the robot to push off from a structure with both arms, rotate 180 degs while translating freely, and then to catch itself on another structure. This method, based on the computed torque, provides a linear feedback law in momentum and its derivatives for a system of rigid bodies.

  15. Space robotics in the '90s.

    PubMed

    Ruoff, C F

    1989-08-01

    This article describes the use of robots to perform work in space. In particular, telerobotics, which uses human operators to control the movement and operation of the robots, are explored. The relationship between the human operator and the robot is very complex but these systems are being used to explore planetary surfaces and will also be used in the construction of the space station. Research being conducted at NASA facilities is described, providing a picture of the future of space robotics.

  16. Advances in space robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio

    1989-01-01

    The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.

  17. Advances in space robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio

    1989-01-01

    The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.

  18. The next decade of space robotics

    NASA Technical Reports Server (NTRS)

    Lavery, Dave; Weisbin, Charles

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000.

  19. Space Station Live: Robotic Refueling Mission

    NASA Image and Video Library

    NASA Public Affairs Officer Dan Huot speaks with Robert Pickle, Robotic Refueling Mission ROBO lead, about the International Space Station demonstration of the tools, technologies and techniques to...

  20. Robotics in near-earth space

    NASA Technical Reports Server (NTRS)

    Card, Michael E.

    1991-01-01

    The areas of space exploration in which robotic devices will play a part are identified, and progress to date in the space agency plans to acquire this capability is briefly reviewed. Roles and functions on orbit for robotic devices include well known activities, such as inspection and maintenance, assembly, docking, berthing, deployment, retrieval, materials handling, orbital replacement unit exchange, and repairs. Missions that could benefit from a robotic capability are discussed.

  1. Envisioning Cognitive Robots for Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stoica, Adrian

    2010-01-01

    Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.

  2. Envisioning Cognitive Robots for Future Space Exploration

    NASA Technical Reports Server (NTRS)

    Huntsberger, Terry; Stoica, Adrian

    2010-01-01

    Cognitive robots in the context of space exploration are envisioned with advanced capabilities of model building, continuous planning/re-planning, self-diagnosis, as well as the ability to exhibit a level of 'understanding' of new situations. An overview of some JPL components (e.g. CASPER, CAMPOUT) and a description of the architecture CARACaS (Control Architecture for Robotic Agent Command and Sensing) that combines these in the context of a cognitive robotic system operating in a various scenarios are presented. Finally, two examples of typical scenarios of a multi-robot construction mission and a human-robot mission, involving direct collaboration with humans is given.

  3. A perspective on space robotics in Japan

    NASA Technical Reports Server (NTRS)

    Ohkami, Yoshiaki; Nakatani, Ichiro; Wakabayashi, Yasufumi; Iwata, Tsutomu

    1994-01-01

    This report summarizes the research and development status and perspective on space robotics in Japan. The R & D status emphasizes the current on-going projects at NASDA including the JEM Remote Manipulator System (JEMRMS) to be used on Space Station Freedom and the robotics experiments on Engineering Satellite 7 (ETS-7). As a future perspective, not only NASDA, but also ISAS and other government institutes have been promoting their own research in space robotics in order to support wide spread space activities in the future. Included in this future research is an autonomous satellite retrieval experiment, a dexterous robot experiment, an on-orbit servicing platform, an IVA robot, and several moon/planetary rovers proposed by NASDA or ISAS and other organizations.

  4. Robotics in space-age manufacturing

    NASA Technical Reports Server (NTRS)

    Jones, Chip

    1991-01-01

    Robotics technologies are developed to improve manufacturing of space hardware. The following applications of robotics are covered: (1) welding for the space shuttle and space station Freedom programs; (2) manipulation of high-pressure water for shuttle solid rocket booster refurbishment; (3) automating the application of insulation materials; (4) precision application of sealants; and (5) automation of inspection procedures. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Many of the technologies are also being actively pursued in private sector manufacturing operations.

  5. Space robotics in the '90s

    NASA Technical Reports Server (NTRS)

    Ruoff, Carl F.

    1989-01-01

    The use of telerobots and rovers in space missions is examined. The functioning of the telerobots and rovers and their proposed applications are described. Research developments needed to design robots for specific environments and functions are described. Examples of NASA robotics projects are presented.

  6. Space environment robot vision system

    NASA Technical Reports Server (NTRS)

    Wood, H. John; Eichhorn, William L.

    1990-01-01

    A prototype twin-camera stereo vision system for autonomous robots has been developed at Goddard Space Flight Center. Standard charge coupled device (CCD) imagers are interfaced with commercial frame buffers and direct memory access to a computer. The overlapping portions of the images are analyzed using photogrammetric techniques to obtain information about the position and orientation of objects in the scene. The camera head consists of two 510 x 492 x 8-bit CCD cameras mounted on individually adjustable mounts. The 16 mm efl lenses are designed for minimum geometric distortion. The cameras can be rotated in the pitch, roll, and yaw (pan angle) directions with respect to their optical axes. Calibration routines have been developed which automatically determine the lens focal lengths and pan angle between the two cameras. The calibration utilizes observations of a calibration structure with known geometry. Test results show the precision attainable is plus or minus 0.8 mm in range at 2 m distance using a camera separation of 171 mm. To demonstrate a task needed on Space Station Freedom, a target structure with a movable I beam was built. The camera head can autonomously direct actuators to dock the I-beam to another one so that they could be bolted together.

  7. Supervised space robots are needed in space exploration

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    High level systems engineering models were developed to simulate and analyze the types, numbers, and roles of intelligent systems, including supervised autonomous robots, which will be required to support human space exploration. Conventional and intelligent systems were compared for two missions: (1) a 20-year option 5A space exploration; and (2) the First Lunar Outpost (FLO). These studies indicate that use of supervised intelligent systems on planet surfaces will 'enable' human space exploration. The author points out that space robotics can be considered a form of the emerging technology of field robotics and solutions to many space applications will apply to problems relative to operating in Earth-based hazardous environments.

  8. Space robotics programs at Sandia National Laboratories

    SciTech Connect

    Klarer, P.

    1993-01-01

    Existing robotic rover and space satellite technologies at Sandia National Laboratories (SNL), coupled with existing launch vehicles and converted military Multiple Independent Reentry Vehicle (MIRV) technologies, can be applied towards the realization of a robotic lunar rover mission in the near term. SNL's Advanced Vehicle Development Department has been designing, producing, and operating prototype rover systems at the Robotic Vehicle Range facility since 1984, and has extensive experience with teleoperated and semiautonomous mobile robotic systems. SNL's Space Systems Directorate has been designing, producing, and operating satellite systems and subsystems in earth orbit for national security missions since the early 1960's. The facilities and robotic vehicle fleet at SNL's Robotic Vehicle Range (SNL-RVR) have been used to support technology base development in applications ranging from DoD battlefield and security missions, to multi-agency nuclear emergency response team exercises and the development of a prototype robotic rover for planetary exploration. Recent activities at the SNL-RVR include the Robotic All Terrain Lunar Exploration Rover (RATLER) prototype development program, exploratory studies on a Near Term Lunar Return Mission scenario for small robotic rovers based on existing space hardware technology, and demonstrations of the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low data rate teleoperation, multi-vehicle control, remote site and sample inspection, and standard bandwidth stereo vision. The paper describes Sandia National Laboratories' activities in the Space Robotics area, and highlights the laboratory's supporting technical capabilities.

  9. Space robotics programs at Sandia National Laboratories

    SciTech Connect

    Klarer, P.

    1993-01-01

    Existing robotic rover and space satellite technologies at Sandia National Laboratories (SNL), coupled with existing launch vehicles and converted military Multiple Independent Reentry Vehicle (MIRV) technologies, can be applied towards the realization of a robotic lunar rover mission in the near term. SNL`s Advanced Vehicle Development Department has been designing, producing, and operating prototype rover systems at the Robotic Vehicle Range facility since 1984, and has extensive experience with teleoperated and semiautonomous mobile robotic systems. SNL`s Space Systems Directorate has been designing, producing, and operating satellite systems and subsystems in earth orbit for national security missions since the early 1960`s. The facilities and robotic vehicle fleet at SNL`s Robotic Vehicle Range (SNL-RVR) have been used to support technology base development in applications ranging from DoD battlefield and security missions, to multi-agency nuclear emergency response team exercises and the development of a prototype robotic rover for planetary exploration. Recent activities at the SNL-RVR include the Robotic All Terrain Lunar Exploration Rover (RATLER) prototype development program, exploratory studies on a Near Term Lunar Return Mission scenario for small robotic rovers based on existing space hardware technology, and demonstrations of the utility of existing rover technologies for performing remote field geology tasks similar to those envisioned on a robotic lunar rover mission. Specific technologies demonstrated include low data rate teleoperation, multi-vehicle control, remote site and sample inspection, and standard bandwidth stereo vision. The paper describes Sandia National Laboratories` activities in the Space Robotics area, and highlights the laboratory`s supporting technical capabilities.

  10. Space robotic system for proximity operations

    NASA Technical Reports Server (NTRS)

    Magnani, P. G.; Colomba, M.

    1989-01-01

    Key to an efficient accomplishment of space station servicing operations is the development of a scenario where the presence of man in space is well integrated with the capability of teleoperated and automatic robot system outside the stations. Results focusing on mission requirements, trajectory sequences, propulsion subsystem features, and manipulative kit characteristics relevant to proximity servicing during a Man Tended Free Flyers Robotic Mission (MTFF-RM) are illustrated.

  11. Selected topics in robotics for space exploration

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C. (Editor); Kaufman, Howard (Editor)

    1993-01-01

    Papers and abstracts included represent both formal presentations and experimental demonstrations at the Workshop on Selected Topics in Robotics for Space Exploration which took place at NASA Langley Research Center, 17-18 March 1993. The workshop was cosponsored by the Guidance, Navigation, and Control Technical Committee of the NASA Langley Research Center and the Center for Intelligent Robotic Systems for Space Exploration (CIRSSE) at RPI, Troy, NY. Participation was from industry, government, and other universities with close ties to either Langley Research Center or to CIRSSE. The presentations were very broad in scope with attention given to space assembly, space exploration, flexible structure control, and telerobotics.

  12. Future needs for space robots for SEI

    NASA Astrophysics Data System (ADS)

    Erickson, Jon D.; Price, Charles R.; Cooke, Don

    1992-03-01

    Recent studies of the types, numbers, and roles of robotic systems for use in the Space Exploration Initiative (SEI), with a focus on planet surface systems (PSS), are summarized in this paper. These high-level systems' engineering, modeling, and analysis activities have supported trade studies and development of preliminary requirements for intelligent systems including supervised autonomous robotic systems. The analyses are summarized, results presented, and conclusions and recommendations are made. One conclusion is that SEI will be `enabled' by the use of supervised intelligent systems on the planet surfaces. These intelligent systems include capabilities for control and monitoring of all elements including supervised autonomous robotic systems. With the proper level of intelligent systems, the number and skills of humans on the planet surface will be determined predominantly by surface science and technology (not outpost) objectives and requirements. A broad range of robotic system uses in Earth orbit or during space transport are indicated by current studies. These include assembly of very large spacecraft systems such as propulsion systems and aerobraking structures. Maintenance is another robotic system use being studied. The differences in requirements for these and other space robotic systems compared to current industrial robotic systems are presented. Improvements in safety, reliability, and maintainability for these remote systems are stressed. Space robotics, especially those systems being developed to operate on planetary surfaces, can be considered a form of the emerging technology of field robotics on Earth. The solutions to the problems we will be solving to make the exploration of our solar system possible and practical will apply to the many problems we have which require operating in hazardous environments on Earth and to critically improving human productivity in many fields.

  13. Teleprogramming a cooperative space robotic workcell for space station

    NASA Astrophysics Data System (ADS)

    Haule, Damian D.; Noorhosseini, S. M.; Malowany, Alfred S.

    1992-11-01

    The growing insight into the complexity and cost of in-orbit operations of future space missions strengthens the belief that a significant amount of automation will be needed to operate the orbital laboratories in a safe, efficient, and economic way. Thus, Automation & Robotics (A&R) technology is vital for unmanned exploration missions to comets and planets. While part of the space worksite may be structured, the space environment is generally unstructured. By `structured,' we mean environments that are designed and engineered to somehow `cooperate' with the machine. In addition, the structured part of the space worksite may be damaged or in an unknown condition. This lack of structure, as well as the non- repetitive nature of the tasks, require constant adaptation to the space environment by the robot. This is the motivation for increased space robot autonomy. However, complete autonomy is still beyond the scope of today's state-of-the-art in the case of a system executing a complete mission in a hazardous environment such as space. A systematic approach for the development of A&R technologies will reduce the lead-times and costs of facilities for recurrent basic tasks. A space robotic workcell (SRW) is a collection of robots, sensors, and other industrial equipment grouped in a cooperative environment to perform various complex tasks in space. Due to their distributed nature, the control and programming of SRWs is often a difficult task. The issues involved in order to design a real-time teleprogrammable SRW system that performs intervention tasks at remote unstructured sites are summarized. The concept of `remotely operated autonomous robots' (i.e., robots teleprogrammed and telesupervised at the task level while at a space worksite) is also developed via telepresence for human-machine interface and voice/speech programming. This paper makes an assessment of the role that teleprogramming may have in furthering the automation capabilities of space teleoperated

  14. A Robot Emotion Generation Mechanism Based on PAD Emotion Space

    NASA Astrophysics Data System (ADS)

    Qingji, Gao; Kai, Wang; Haijuan, Liu

    A robot emotion generation mechanism is presented in this paper, in which emotion is described in PAD emotion space. In this mechanism, emotion is affected by the robot personality, the robot task and the emotion origin, so the robot emotion will change naturally when it senses the extern stimuli. We also experiment on Fuwa robot, and demonstrate that this mechanism can make the robot's emotion change be more easily accepted by people and is good for human-robot interaction.

  15. Free-Flying Magnetometer Data System

    NASA Technical Reports Server (NTRS)

    Blaes, B.; Javadi, H.; Spencer, H.

    2000-01-01

    The Free-Flying Magnetometer (FFM) is an autonomous "sensorcraft" developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy sounding rocket mission. This mission was a collaborative project between the University of New Hampshire, Cornell University and JPL. The science goal of the mission was the study of current filamentation phenomena in the northern auroral region through multipoint measurements of magnetic field. The technical objective of the mission was the proof of concept of the JPL FFM design and the demonstration of an in-situ multipoint measurement technique employing many free-flying spacecraft. Four FFMs were successfully deployed from a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. These hockey-puck-sized (80 mm diameter, 38 mm. height, 250 gram mass) free flyers each carry a miniature 3-axis flux-gate magnetometer that output +/- 2 V signals corresponding to a +/- 60,000 nT measurement range for each axis. The FFM uses a synchronized four-channel Sigma(Delta) Analog-to-Digital Converter (ADC) having a dynamic range of +/- 2.5V and converting at a rate of 279 samples/second/channel. Three channels are used to digitize the magnetometer signals to 17-bit (1.144 nT/bit) resolution. The fourth ADC channel is multiplexed for system monitoring of four temperature sensors and two battery voltages. The FFM also contains two sun sensors, a laser diode which emits a fan-shaped beam, a miniature S-band transmitter for direct communication to the ground station antennas, an ultra-stable Temperature Compensated Crystal Oscillator (TCXO) clock, an integrated data subsystem implemented in a Field-Programmable Gate Array (FPGA), a 4 Mbit Static Random Access Memory (SRAM) for data storage and Lithium Thionyl Chloride batteries for power. Communicating commands to the FFM prior to deployment is achieved with an infrared (IR) link. The FFM IR receiver responds to 9-bit pulse coded signals that are generated by an IR Light Emitting

  16. Free-Flying Magnetometer Data System

    NASA Technical Reports Server (NTRS)

    Blaes, B.; Javadi, H.; Spencer, H.

    2000-01-01

    The Free-Flying Magnetometer (FFM) is an autonomous "sensorcraft" developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy sounding rocket mission. This mission was a collaborative project between the University of New Hampshire, Cornell University and JPL. The science goal of the mission was the study of current filamentation phenomena in the northern auroral region through multipoint measurements of magnetic field. The technical objective of the mission was the proof of concept of the JPL FFM design and the demonstration of an in-situ multipoint measurement technique employing many free-flying spacecraft. Four FFMs were successfully deployed from a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. These hockey-puck-sized (80 mm diameter, 38 mm. height, 250 gram mass) free flyers each carry a miniature 3-axis flux-gate magnetometer that output +/- 2 V signals corresponding to a +/- 60,000 nT measurement range for each axis. The FFM uses a synchronized four-channel Sigma(Delta) Analog-to-Digital Converter (ADC) having a dynamic range of +/- 2.5V and converting at a rate of 279 samples/second/channel. Three channels are used to digitize the magnetometer signals to 17-bit (1.144 nT/bit) resolution. The fourth ADC channel is multiplexed for system monitoring of four temperature sensors and two battery voltages. The FFM also contains two sun sensors, a laser diode which emits a fan-shaped beam, a miniature S-band transmitter for direct communication to the ground station antennas, an ultra-stable Temperature Compensated Crystal Oscillator (TCXO) clock, an integrated data subsystem implemented in a Field-Programmable Gate Array (FPGA), a 4 Mbit Static Random Access Memory (SRAM) for data storage and Lithium Thionyl Chloride batteries for power. Communicating commands to the FFM prior to deployment is achieved with an infrared (IR) link. The FFM IR receiver responds to 9-bit pulse coded signals that are generated by an IR Light Emitting

  17. Dedicated robotic servicing for the space station

    NASA Technical Reports Server (NTRS)

    Thompson, R. F.; Arnold, G.; Gutow, D.

    1987-01-01

    The concept of a series of dedicated robotics manipulators that would be resident in the subsystems of the Space Station is presented. These would be used to do Orbital Replacement Unit (ORU) exchanges, inspection of the components, and in certain cases subsystem assembly. By performing these well-definded tasks automatically, higher crew productivity would be achieved. In order to utilize the robots effectively, ORU's must be designed to allow remote release and quick disconnection of the electrical, fluid, and thermal connections. The robot must be of a modular design for ease of maintenance and must have an adaptive control capability to make-up for slight errors in programming.

  18. Challenges of In Space Robotic Servicing

    NASA Technical Reports Server (NTRS)

    Roberts, Brian John

    2015-01-01

    As future space missions extend beyond the friendly confines of low earth orbit, robots are becoming an increasingly vital component on flight manifests. While the main focus to-date has been on satellite servicing due to its high commercial potential, robots are also being considered for orbital debris removal, space construction, and asteroid sample retrieval. The robotic technologies and automation required to carry out these missions represent a significant advancement beyond the manipulation technology used previously on the Space Shuttle, the International Space Station, and planetary rovers. While higher demands are being driven by the more ambitious nature of the tasks, the handling of uncooperative targets such as satellites and asteroids, present a greater challenge.

  19. Challenges of In Space Robotic Servicing

    NASA Technical Reports Server (NTRS)

    Roberts, Brian John

    2015-01-01

    As future space missions extend beyond the friendly confines of low earth orbit, robots are becoming an increasingly vital component on flight manifests. While the main focus to-date has been on satellite servicing due to its high commercial potential, robots are also being considered for orbital debris removal, space construction, and asteroid sample retrieval. The robotic technologies and automation required to carry out these missions represent a significant advancement beyond the manipulation technology used previously on the Space Shuttle, the International Space Station, and planetary rovers. While higher demands are being driven by the more ambitious nature of the tasks, the handling of uncooperative targets such as satellites and asteroids, present a greater challenge.

  20. IVA robotics for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica

    1992-01-01

    The objective is to increase the scientific productivity of Space Station Freedom (Spacelab) during the man-tended phase and beyond. The topics are presented in viewgraph form and include: Space Station Freedom (SSF) background, man-tended phase, intra-vehicular activity (IVA) robotics, protein crystal growth experiment, thermal enclosure system equipment, and candidate mockup demonstrations.

  1. IVA robotics for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica

    1992-01-01

    The objective is to increase the scientific productivity of Space Station Freedom (Spacelab) during the man-tended phase and beyond. The topics are presented in viewgraph form and include: Space Station Freedom (SSF) background, man-tended phase, intra-vehicular activity (IVA) robotics, protein crystal growth experiment, thermal enclosure system equipment, and candidate mockup demonstrations.

  2. ESA successfully conducts experiment in Advanced Space Robotics on Japanese satellite

    NASA Astrophysics Data System (ADS)

    1999-04-01

    performed even without the artificial markers which are typically used to guide telemanipulation. This is an important capability for robotically servicing "non-cooperative" targets. The success of these experiments is an important step towards the development of a number of ESA space robot systems which will be launched and installed on the International Space Station in the next few years. Looking beyond the ISS, the functional demonstration of satellite capture by robotic means could also inspire novel applications for space robotics on free-flying servicing vehicles. Development work for the ESA experiments was funded by Belgium under the ESA Technology Demonstration Programme (TDP) and the ESA General Support Technology Programme (GSTP). After competitive tendering, the contract was awarded to a team led by TRASYS Space and including as sub-contractors SAS and two institutes at the Catholic University (KUL) in Louvain, Belgium. ETS-VII was launched in November 1997. It operates in a circular orbit at an altitude of 550 km and is controlled from the Tsukuba Space Centre via NASA's Tracking and Data Relay Satellite. In the course of 1998, NASDA successfully performed a range of experiments in space robotics and rendez-vous and docking. In an effort to strengthen international cooperation NASDA offered ESA an opportunity to participate in the ETS-VII experiments. ESA responded positively with several proposals and in 1997 an ESA/NASDA Memorandum of Understanding was concluded concerning the joint robot experiment. Information on this and the other experiments on ETS-VII can be viewed on http://oss1.tksc.nasda.go.jp/ets-7index_e.html More information on ESA at http://www.esa.int

  3. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free- flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  4. Smart SPHERES: A Telerobotic Free-Flyer for Intravehicular Activities in Space

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Micire, Mark J.; Morse, Ted; Park, Eric; Provencher, Chris; To, Vinh; Wheeler, D. W.; Mittman, David; Torres, R. Jay; Smith, Ernest

    2013-01-01

    Smart SPHERES is a prototype free-flying space robot based on the SPHERES platform. Smart SPHERES can be remotely operated by astronauts inside a spacecraft, or by mission controllers on the ground. We developed Smart SPHERES to perform a variety of intravehicular activities (IVA), such as operations inside the International Space Station (ISS). These IVA tasks include environmental monitoring surveys (radiation, sound levels, etc.), inventory, and mobile camera work. In this paper, we first discuss the motivation for free-flying space robots. We then describe the development of the Smart SPHERES prototype, including avionics, software, and data communications. Finally, we present results of initial flight tests on-board the ISS.

  5. 81 FR 54853 - Notice of Centennial Challenges Space Robotics Challenge

    Federal Register 2010, 2011, 2012, 2013, 2014

    2016-08-17

    ... Space Robotics Challenge AGENCY: National Aeronautics and Space Administration (NASA). NOTICE: (16-056). ACTION: Notice of Centennial Challenges Space Robotics Challenge. SUMMARY: This notice is issued in accordance with 51 U.S.C. 20144(c). The Space Robotics Challenge is open and teams that wish to compete...

  6. Dynamics modelling and Hybrid Suppression Control of space robots performing cooperative object manipulation

    NASA Astrophysics Data System (ADS)

    Zarafshan, P.; Moosavian, S. Ali A.

    2013-10-01

    Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors

  7. Adaptive control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    For space based robots in which the base is free to move, motion planning and control is complicated by uncertainties in the inertial properties of the manipulator and its load. A new adaptive control method is presented for space based robots which achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. A partition is made of the fifteen degree of freedom system dynamics into two parts: a nine degree of freedom invertible portion and a six degree of freedom noninvertible portion. The controller is then designed to achieve trajectory tracking of the invertible portion of the system. This portion consist of the manipulator joint positions and the orientation of the base. The motion of the noninvertible portion is bounded, but unpredictable. This portion consist of the position of the robot's base and the position of the reaction wheel.

  8. Maneuvering and control of flexible space robots

    NASA Technical Reports Server (NTRS)

    Meirovitch, Leonard; Lim, Seungchul

    1994-01-01

    This paper is concerned with a flexible space robot capable of maneuvering payloads. The robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector holding a payload; the robot is mounted on a rigid platform floating in space. The equations of motion are nonlinear and of high order. Based on the assumption that the maneuvering motions are one order of magnitude larger than the elastic vibrations, a perturbation approach permits design of controls for the two types of motion separately. The rigid-body maneuvering is carried out open loop, but the elastic motions are controlled closed loop, by means of discrete-time linear quadratic regulator theory with prescribed degree of stability. A numerical example demonstrates the approach. In the example, the controls derived by the perturbation approach are applied to the original nonlinear system and errors are found to be relatively small.

  9. Robotics research at Canadian Space Agency

    NASA Technical Reports Server (NTRS)

    Hui, Raymond

    1994-01-01

    In addition to major crown projects such as the Mobile Servicing System for Space Station, the Canadian Space Agency is also engaged in internal, industrial and academic research and development activities in robotics and other space-related areas of science and technology. These activities support current and future space projects, and lead to technology development which can be spun off to terrestrial applications, thus satisfying the Agency's objective of providing economic benefits to the public at large through its space-related work.

  10. Shuttle free-flying teleoperator system experiment definition. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The applicability and utility of a free-flying teleoperator system were evaluated to support future earth orbital missions, specific emphasis on the early missions of the space shuttle. In-flight experiments and tests were specified, which will provide sufficient experience and data applicable to the development of future operational systems. The difinition of a useful early experimental system is presented, which will be checked out and used with early shuttle missions.

  11. Space environments and their effects on space automation and robotics

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.

    1990-01-01

    Automated and robotic systems will be exposed to a variety of environmental anomalies as a result of adverse interactions with the space environment. As an example, the coupling of electrical transients into control systems, due to EMI from plasma interactions and solar array arcing, may cause spurious commands that could be difficult to detect and correct in time to prevent damage during critical operations. Spacecraft glow and space debris could introduce false imaging information into optical sensor systems. The presentation provides a brief overview of the primary environments (plasma, neutral atmosphere, magnetic and electric fields, and solid particulates) that cause such adverse interactions. The descriptions, while brief, are intended to provide a basis for the other papers presented at this conference which detail the key interactions with automated and robotic systems. Given the growing complexity and sensitivity of automated and robotic space systems, an understanding of adverse space environments will be crucial to mitigating their effects.

  12. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  13. Artificial intelligence - NASA. [robotics for Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, J. D.

    1985-01-01

    Artificial Intelligence (AI) represents a vital common space support element needed to enable the civil space program and commercial space program to perform their missions successfully. It is pointed out that advances in AI stimulated by the Space Station Program could benefit the U.S. in many ways. A fundamental challenge for the civil space program is to meet the needs of the customers and users of space with facilities enabling maximum productivity and having low start-up costs, and low annual operating costs. An effective way to meet this challenge may involve a man-machine system in which artificial intelligence, robotics, and advanced automation are integrated into high reliability organizations. Attention is given to the benefits, NASA strategy for AI, candidate space station systems, the Space Station as a stepping stone, and the commercialization of space.

  14. Future needs for space robots for SEI. [Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.; Price, Charles R.; Cooke, Douglas

    1992-01-01

    High level systems engineering modeling and analysis activities for the Space Exploration Initiative (SEI) are reviewed, with emphasis on planet surface systems. Particular attention is given to SEI studies, preliminary space robotic system requirements, and usefulness of space robotic systems developed to operate on planetary surfaces on earth. It is concluded that supervised intelligent systems on the planet surfaces are necessary to make SEI planet surface activities reliable and productive and encompass capabilities for control and monitoring of all elements, including supervised autonomous robotic systems. Amplification of human capabilities due to applying more knowledge and reasoning in more flexible and appropriate ways than conventional automation approaches will provide more robust performance, greater choice of interaction modes with operators, and greater transparency of operation.

  15. The sixth generation robot in space

    NASA Technical Reports Server (NTRS)

    Butcher, A.; Das, A.; Reddy, Y. V.; Singh, H.

    1990-01-01

    The knowledge based simulator developed in the artificial intelligence laboratory has become a working test bed for experimenting with intelligent reasoning architectures. With this simulator, recently, small experiments have been done with an aim to simulate robot behavior to avoid colliding paths. An automatic extension of such experiments to intelligently planning robots in space demands advanced reasoning architectures. One such architecture for general purpose problem solving is explored. The robot, seen as a knowledge base machine, goes via predesigned abstraction mechanism for problem understanding and response generation. The three phases in one such abstraction scheme are: abstraction for representation, abstraction for evaluation, and abstraction for resolution. Such abstractions require multimodality. This multimodality requires the use of intensional variables to deal with beliefs in the system. Abstraction mechanisms help in synthesizing possible propagating lattices for such beliefs. The machine controller enters into a sixth generation paradigm.

  16. Key technology issues for space robotic systems

    NASA Technical Reports Server (NTRS)

    Schappell, Roger T.

    1987-01-01

    Robotics has become a key technology consideration for the Space Station project to enable enhanced crew productivity and to maximize safety. There are many robotic functions currently being studied, including Space Station assembly, repair, and maintenance as well as satellite refurbishment, repair, and retrieval. Another area of concern is that of providing ground based experimenters with a natural interface that they might directly interact with their hardware onboard the Space Station or ancillary spacecraft. The state of the technology is such that the above functions are feasible; however, considerable development work is required for operation in this gravity-free vacuum environment. Furthermore, a program plan is evolving within NASA that will capitalize on recent government, university, and industrial robotics research and development (R and D) accomplishments. A brief summary is presented of the primary technology issues and physical examples are provided of the state of the technology for the initial operational capability (IOC) system as well as for the eventual final operational capability (FOC) Space Station.

  17. Use of control umbilicals as a deployment mode for free flying telerobotic work systems

    NASA Technical Reports Server (NTRS)

    Kuehn, J. S.; Selle, E. D.

    1987-01-01

    Work to date on telerobotic work systems for use in space generally consider two deployment modes, free flying, or fixed within a limited work envelope. Control tethers may be employed to obtain a number of operational advantages and added flexibility in the basing and deployment of telerobotic work systems. Use of a tether allows the work system to be separated into two major modules, the remote work package and the control module. The Remote Work Package (RWP) comprises the free flying portion of the work system while the Control Module (CM) remains at the work system base. The chief advantage of this configuration is that only the components required for completion of the work task must be located at the work site. Reaction mass used in free flight is stored at the Control module and supplied to the RWP through the tether, eliminating the need for the RWP to carry it. The RWP can be made less massive than a self contained free flying work system. As a result, reaction mass required for free flight is lower than for a self contained free flyer.

  18. Technology for robotic surface inspection in space

    NASA Technical Reports Server (NTRS)

    Volpe, Richard; Balaram, J.

    1994-01-01

    This paper presents on-going research in robotic inspection of space platforms. Three main areas of investigation are discussed: machine vision inspection techniques, an integrated sensor end-effector, and an orbital environment laboratory simulation. Machine vision inspection utilizes automatic comparison of new and reference images to detect on-orbit induced damage such as micrometeorite impacts. The cameras and lighting used for this inspection are housed in a multisensor end-effector, which also contains a suite of sensors for detection of temperature, gas leaks, proximity, and forces. To fully test all of these sensors, a realistic space platform mock-up has been created, complete with visual, temperature, and gas anomalies. Further, changing orbital lighting conditions are effectively mimicked by a robotic solar simulator. In the paper, each of these technology components will be discussed, and experimental results are provided.

  19. Standards for space automation and robotics

    NASA Technical Reports Server (NTRS)

    Kader, Jac B.; Loftin, R. B.

    1992-01-01

    The AIAA's Committee on Standards for Space Automation and Robotics (COS/SAR) is charged with the identification of key functions and critical technologies applicable to multiple missions that reflect fundamental consideration of environmental factors. COS/SAR's standards/practices/guidelines implementation methods will be based on reliability, performance, and operations, as well as economic viability and life-cycle costs, simplicity, and modularity.

  20. Study of robotics systems applications to the space station program

    NASA Technical Reports Server (NTRS)

    Fox, J. C.

    1983-01-01

    Applications of robotics systems to potential uses of the Space Station as an assembly facility, and secondarily as a servicing facility, are considered. A typical robotics system mission is described along with the pertinent application guidelines and Space Station environmental assumptions utilized in developing the robotic task scenarios. A functional description of a supervised dual-robot space structure construction system is given, and four key areas of robotic technology are defined, described, and assessed. Alternate technologies for implementing the more routine space technology support subsystems that will be required to support the Space Station robotic systems in assembly and servicing tasks are briefly discussed. The environmental conditions impacting on the robotic configuration design and operation are reviewed.

  1. Robotic welding at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Jones, Clyde S.

    1992-01-01

    The Marshall Space Flight Center is developing welding and robotics technologies to improve manufacturing of space hardware. Commercial robots are used for these development programs, but they are teamed with advanced sensors, process controls, and computer simulation to form highly productive manufacturing systems. Application of welding robotics and controls to structural welding for the space shuttle and space station Freedom programs is addressed. Several advanced welding process sensors under development for application to space hardware are discussed, as well as the application of commercial robotic simulation software to provide offline programming.

  2. Free-flying solar reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1981-01-01

    Results of investigations of requirements and design concepts for large solar-reflecting spacecraft are given. The emphasis is on the one kilometer diameter self contained spacecraft that can be packaged and launched in the space shuttle. The configuration consists of a compression rim stabilized by stays coming from each end of the central compression hub. The stays are stowed on reels on the ends of the hub. The hub consists of two Astromasts which are deployed after launch. The reflector membrane is a two micron thick Kapton film with a vapor deposited aluminum coating.

  3. Robotic vision techniques for space operations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1994-01-01

    Automation and robotics for space applications are being pursued for increased productivity, enhanced reliability, increased flexibility, higher safety, and for the automation of time-consuming tasks and those activities which are beyond the capacity of the crew. One of the key functional elements of an automated robotic system is sensing and perception. As the robotics era dawns in space, vision systems will be required to provide the key sensory data needed for multifaceted intelligent operations. In general, the three-dimensional scene/object description, along with location, orientation, and motion parameters will be needed. In space, the absence of diffused lighting due to a lack of atmosphere gives rise to: (a) high dynamic range (10(exp 8)) of scattered sunlight intensities, resulting in very high contrast between shadowed and specular portions of the scene; (b) intense specular reflections causing target/scene bloom; and (c) loss of portions of the image due to shadowing and presence of stars, Earth, Moon, and other space objects in the scene. In this work, developments for combating the adverse effects described earlier and for enhancing scene definition are discussed. Both active and passive sensors are used. The algorithm for selecting appropriate wavelength, polarization, look angle of vision sensors is based on environmental factors as well as the properties of the target/scene which are to be perceived. The environment is characterized on the basis of sunlight and other illumination incident on the target/scene and the temperature profiles estimated on the basis of the incident illumination. The unknown geometrical and physical parameters are then derived from the fusion of the active and passive microwave, infrared, laser, and optical data.

  4. Concept verification of three dimensional free motion simulator for space robot

    NASA Technical Reports Server (NTRS)

    Okamoto, Osamu; Nakaya, Teruomi; Pokines, Brett

    1994-01-01

    In the development of automatic assembling technologies for space structures, it is an indispensable matter to investigate and simulate the movements of robot satellites concerned with mission operation. The movement investigation and simulation on the ground will be effectively realized by a free motion simulator. Various types of ground systems for simulating free motion have been proposed and utilized. Some of these methods are a neutral buoyancy system, an air or magnetic suspension system, a passive suspension balance system, and a free flying aircraft or drop tower system. In addition, systems can be simulated by computers using an analytical model. Each free motion simulation method has limitations and well known problems, specifically, disturbance by water viscosity, limited number of degrees-of-freedom, complex dynamics induced by the attachment of the simulation system, short experiment time, and the lack of high speed super-computer simulation systems, respectively. The basic idea presented here is to realize 3-dimensional free motion. This is achieved by combining a spherical air bearing, a cylindrical air bearing, and a flat air bearing. A conventional air bearing system has difficulty realizing free vertical motion suspension. The idea of free vertical suspension is that a cylindrical air bearing and counter balance weight realize vertical free motion. This paper presents a design concept, configuration, and basic performance characteristics of an innovative free motion simulator. A prototype simulator verifies the feasibility of 3-dimensional free motion simulation.

  5. Robots in space into the 21st century

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Lavery, D.; Rodriguez, G.

    1997-01-01

    Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.

  6. Robots in space into the 21st century

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Lavery, D.; Rodriguez, G.

    1997-01-01

    Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.

  7. Robots in space into the 21st century.

    PubMed

    Weisbin, C R; Lavery, D; Rodriguez, G

    1997-01-01

    Describes the technological developments which are establishing the foundation for an exciting era of in situ exploration missions to planets, comets and asteroids with advanced robotic systems. Also outlines important concurrent terrestrial applications and spinoffs of the space robotics technology. These include high-precision robotic manipulators for microsurgical operations and dexterous arm control systems.

  8. TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1990-01-01

    In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.

  9. TROTER's (Tiny Robotic Operation Team Experiment): A new concept of space robots

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1990-01-01

    In view of the future need of automation and robotics in space and the existing approaches to the problem, we proposed a new concept of robots for space construction. The new concept is based on the basic idea of decentralization. Decentralization occurs, on the one hand, in using teams of many cooperative robots for construction tasks. Redundancy and modular design are explored to achieve high reliability for team robotic operations. Reliability requirement on individual robots is greatly reduced. Another area of decentralization is manifested by the proposed control hierarchy which eventually includes humans in the loop. The control strategy is constrained by various time delays and calls for different levels of abstraction of the task dynamics. Such technology is needed for remote control of robots in an uncertain environment. Thus, concerns of human safety around robots are relaxed. This presentation also introduces the required technologies behind the new robotic concept.

  10. Space technology and robotics in school projects

    NASA Astrophysics Data System (ADS)

    Villias, Georgios

    2016-04-01

    Space-related educational activities is a very inspiring and attractive way to involve students into science courses, present them the variety of STEM careers that they can follow, while giving them at the same time the opportunity to develop various practical and communication skills necessary for their future professional development. As part of a large scale extracurricular course in Space Science, Space Technology and Robotics that has been introduced in our school, our students, divided in smaller groups of 3-4 students in each, try to understand the challenges that current and future space exploration is facing. Following a mixture of an inquiry-based learning methodology and hands-on practical activities related with constructions and experiments, students get a glimpse of the pre-mentioned fields. Our main goal is to gain practical knowledge and inspiration from the exciting field of Space, to attain an adequate level of team spirit and effective cooperation, while developing technical and research data-mining skills. We use the following two approaches: 1. Constructive (Technical) approach Designing and constructing various customized robotic machines, that will simulate the future space exploration vehicles and satellites needed to study the atmosphere, surface and subsurface of planets, moons or other planetary bodies of our solar system that have shown some promising indications for the existence of life, taking seriously into account their special characteristics and known existing conditions (like Mars, Titan, Europa & Enceladus). The STEM tools we use are the following: - LEGO Mindstorms: to construct rovers for surface exploration. - Hydrobots: an MIT's SeaPerch program for the construction of submarine semi-autonomous robots. - CanSats: Arduino-based microsatellites able to receive, record & transmit data. - Space balloons: appropriate for high altitude atmospheric measurements & photography. 2. Scientific approach Conducting interesting physics

  11. Dynamics analysis of space robot manipulator with joint clearance

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Bai, Zheng Feng

    2011-04-01

    A computational methodology for analysis of space robot manipulator systems, considering the effects of the clearances in the joint, is presented. The contact dynamics model in joint clearance is established using the nonlinear equivalent spring-damp model and the friction effect is considered using the Coulomb friction model. The space robot system dynamic equation of manipulator with clearance is established. Then the dynamics simulation is presented and the dynamics characteristics of robot manipulator with clearance are analyzed. This work provides a practical method to analyze the dynamics characteristics of space robot manipulator with joint clearance and improves the engineering application. The computational methodology can predict the effects of clearance on space robot manipulator preferably, which is the basis of space robot manipulator design, precision analysis and ground test.

  12. Robotic mobile servicing platform for space station

    NASA Technical Reports Server (NTRS)

    Lowenthal, S. H.; Vanerden, L.

    1987-01-01

    The semi-autonomous inspection and servicing of the Space Station's major thermal, electrical, mechanical subsystems are critical needs for the safe and reliable operation of the station. A conceptual design is presented of a self-intelligent, small and highly mobile robotic platform. Equipped with suitable inspection sensors (cameras, ammonia detectors, etc.), this system's primary mission is to perform routine, autonomous inspection of the Station's primary subsystems. Typical tasks include detection of leaks from thermal fluid or refueling lines, as well as detection of micro-meteroid damage to the primary structure. Equipped with stereo cameras and a dexterous manipulator, simple teleoperator repairs and small On-orbit Replacement Unit (ORU) changeout can also be accomplished. More difficult robotic repairs would be left to the larger, more sophisticated Mobile Remote Manipulator System (MRMS). An ancillary function is to ferry crew members and equipment around the station. The primary design objectives were to provide a flexible, but uncomplicated robotic platform, one which caused minimal impact to the design of the Station's primary structure but could accept more advanced telerobotic technology as it evolves.

  13. Micro-Flying Robotics in Space Missions

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2005-01-01

    The Columbia Accident Investigation Board issued a major recommendation to NASA. Prior to return to flight, NASA should develop and implement a comprehensive inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) system components. This inspection plan should take advantage of advanced non-destructive inspection technology. This paper describes a non-intrusive technology with a micro-flying robot to continuously monitor inside a space vehicle for any stress related fissures, cracks and foreign material embedded in walls, tubes etc.

  14. Micro-Flying Robotics in Space Missions

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2005-01-01

    The Columbia Accident Investigation Board issued a major recommendation to NASA. Prior to return to flight, NASA should develop and implement a comprehensive inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) system components. This inspection plan should take advantage of advanced non-destructive inspection technology. This paper describes a non-intrusive technology with a micro-flying robot to continuously monitor inside a space vehicle for any stress related fissures, cracks and foreign material embedded in walls, tubes etc.

  15. Robotic Technology Efforts at the NASA/Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Diftler, Ron

    2017-01-01

    The NASA/Johnson Space Center has been developing robotic systems in support of space exploration for more than two decades. The goal of the Center's Robotic Systems Technology Branch is to design and build hardware and software to assist astronauts in performing their mission. These systems include: rovers, humanoid robots, inspection devices and wearable robotics. Inspection systems provide external views of space vehicles to search for surface damage and also maneuver inside restricted areas to verify proper connections. New concepts in human and robotic rovers offer solutions for navigating difficult terrain expected in future planetary missions. An important objective for humanoid robots is to relieve the crew of "dull, dirty or dangerous" tasks allowing them more time to perform their important science and exploration missions. Wearable robotics one of the Center's newest development areas can provide crew with low mass exercise capability and also augment an astronaut's strength while wearing a space suit. This presentation will describe the robotic technology and prototypes developed at the Johnson Space Center that are the basis for future flight systems. An overview of inspection robots will show their operation on the ground and in-orbit. Rovers with independent wheel modules, crab steering, and active suspension are able to climb over large obstacles, and nimbly maneuver around others. Humanoid robots, including the First Humanoid Robot in Space: Robonaut 2, demonstrate capabilities that will lead to robotic caretakers for human habitats in space, and on Mars. The Center's Wearable Robotics Lab supports work in assistive and sensing devices, including exoskeletons, force measuring shoes, and grasp assist gloves.

  16. Conceptual design studies for large free-flying solar-reflector spacecraft

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.; Miller, R. K.; Knapp, K. P. W.

    1981-01-01

    The 1 km diameter reflecting film surface is supported by a lightweight structure which may be automatically deployed after launch in the Space Shuttle. A twin rotor, control moment gyroscope, with deployable rotors, is included as a primary control actuator. The vehicle has a total specific mass of less than 12 g/sq m including allowances for all required subsystems. The structural elements were sized to accommodate the loads of a typical SOLARES type mission where a swam of these free flying satellites is employed to concentrate sunlight on a number of energy conversion stations on the ground.

  17. Robotics development for the enhancement of space endeavors

    NASA Astrophysics Data System (ADS)

    Mauceri, A. J.; Clarke, Margaret M.

    Telerobotics and robotics development activities to support NASA's goal of increasing opportunities in space commercialization and exploration are described. The Rockwell International activities center is using robotics to improve efficiency and safety in three related areas: remote control of autonomous systems, automated nondestructive evaluation of aspects of vehicle integrity, and the use of robotics in space vehicle ground reprocessing operations. In the first area, autonomous robotic control, Rockwell is using the control architecture, NASREM, as the foundation for the high level command of robotic tasks. In the second area, we have demonstrated the use of nondestructive evaluation (using acoustic excitation and lasers sensors) to evaluate the integrity of space vehicle surface material bonds, using Orbiter 102 as the test case. In the third area, Rockwell is building an automated version of the present manual tool used for Space Shuttle surface tile re-waterproofing. The tool will be integrated into an orbiter processing robot being developed by a KSC-led team.

  18. RoMPS concept review automatic control of space robot

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Robot operated Material Processing in Space (RoMPS) experiment is being performed to explore the marriage of two emerging space commercialization technologies: materials processing in microgravity and robotics. This concept review presents engineering drawings and limited technical descriptions of the RoMPS programs' electrical and software systems.

  19. Automation and robotics for the National Space Program

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The emphasis on automation and robotics in the augmentation of the human centered systems as it concerns the space station is discussed. How automation and robotics can amplify the capabilities of humans is detailed. A detailed developmental program for the space station is outlined.

  20. Heuristic search in robot configuration space using variable metric

    NASA Technical Reports Server (NTRS)

    Verwer, Ben J. H.

    1987-01-01

    A method to generate obstacle free trajectories for both mobile robots and linked robots is proposed. The approach generates the shortest paths in a configuration space. The metric in the configuration space can be adjusted to obtain a tradeoff between safety and velocity by imposing extra costs on paths near obstacles.

  1. Automation and Robotics for Space-Based Systems, 1991

    NASA Technical Reports Server (NTRS)

    Williams, Robert L., II (Editor)

    1992-01-01

    The purpose of this in-house workshop was to assess the state-of-the-art of automation and robotics for space operations from an LaRC perspective and to identify areas of opportunity for future research. Over half of the presentations came from the Automation Technology Branch, covering telerobotic control, extravehicular activity (EVA) and intra-vehicular activity (IVA) robotics, hand controllers for teleoperation, sensors, neural networks, and automated structural assembly, all applied to space missions. Other talks covered the Remote Manipulator System (RMS) active damping augmentation, space crane work, modeling, simulation, and control of large, flexible space manipulators, and virtual passive controller designs for space robots.

  2. Sensory substitution for space gloves and for space robots

    NASA Technical Reports Server (NTRS)

    Bach-Y-rita, P.; Webster, J. G.; Tompkins, W. J.; Crabb, T.

    1987-01-01

    Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch.

  3. Shuttle free-flying teleoperator system experiment definition. Volume 3: program development requirements

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The planning data are presented for subsequent phases of free-flying teleoperator program (FFTO) and includes costs, schedules and supporting research and technology activities required to implement the free-flying teleoperator system and associated flight equipment. The purpose of the data presented is to provide NASA with the information needed to continue development of the FFTO and integrate it into the space shuttle program. The planning data describes three major program phases consisting of activities and events scheduled to effect integrated design, development, fabrication and operation of an FFTO system. Phase A, Concept Generation, represents a study effort directed toward generating and evaluating a number of feasible FFTO experiment system concepts. Phase B, Definition, will include preliminary design and supporting analysis of the FFTO, the shuttle based equipment and ground support equipment. Phase C/D, Design, Development and Operations will include detail design of the operational FFTO, its integration into the space shuttle, hardware fabrication and testing, delivery of flight hardware and support of flight operations. Emphasis is placed on the planning for Phases A and B since these studies will be implemented early in the development cycle. Phase C/D planning is more general and subject to refinement during the definition phase.

  4. Advanced robotics for in-space vehicle processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-extravehicular activity tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for robot services. Similarly, a set of robot primitives is presented that can be used to model robot actions for alternative robot reference configurations. The robot primitives are tied to technologies and used for composing robot operations for an automated refueling scenario. Robotics technology issues and design accommodation guidelines (hooks and scars) for Space Station Freedom are described.

  5. Dynamics and control of robot for capturing objects in space

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng

    Space robots are expected to perform intricate tasks in future space services, such as satellite maintenance, refueling, and replacing the orbital replacement unit (ORU). To realize these missions, the capturing operation may not be avoided. Such operations will encounter some challenges because space robots have some unique characteristics unfound on ground-based robots, such as, dynamic singularities, dynamic coupling between manipulator and space base, limited energy supply and working without a fixed base, and so on. In addition, since contacts and impacts may not be avoided during capturing operation. Therefore, dynamics and control problems of space robot for capturing objects are significant research topics if the robots are to be deployed for the space services. A typical servicing operation mainly includes three phases: capturing the object, berthing and docking the object, then repairing the target. Therefore, this thesis will focus on resolving some challenging problems during capturing the object, berthing and docking, and so on. In this thesis, I study and analyze the dynamics and control problems of space robot for capturing objects. This work has potential impact in space robotic applications. I first study the contact and impact dynamics of space robot and objects. I specifically focus on analyzing the impact dynamics and mapping the relationship of influence and speed. Then, I develop the fundamental theory for planning the minimum-collision based trajectory of space robot and designing the configuration of space robot at the moment of capture. To compensate for the attitude of the space base during the capturing approach operation, a new balance control concept which can effectively balance the attitude of the space base using the dynamic couplings is developed. The developed balance control concept helps to understand of the nature of space dynamic coupling, and can be readily applied to compensate or minimize the disturbance to the space base

  6. Service Oriented Robotic Architecture for Space Robotics: Design, Testing, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Fluckiger, Lorenzo Jean Marc E; Utz, Hans Heinrich

    2013-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at the NASA Ames Research Center. SORA relies on proven software engineering methods and technologies applied to space robotics. Based on a Service Oriented Architecture and robust middleware, SORA encompasses on-board robot control and a full suite of software tools necessary for remotely operated exploration missions. SORA has been eld tested in numerous scenarios of robotic lunar and planetary exploration. The experiments conducted by IRG with SORA exercise a large set of the constraints encountered in space applications: remote robotic assets, ight relevant science instruments, distributed operations, high network latencies and unreliable or intermittent communication links. In this paper, we present the results of these eld tests in regard to the developed architecture, and discuss its bene ts and limitations.

  7. Robotics technology developments in the United States space telerobotics program

    NASA Technical Reports Server (NTRS)

    Lavery, David

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.

  8. Robotics technology developments in the United States space telerobotics program

    NASA Technical Reports Server (NTRS)

    Lavery, David

    1994-01-01

    In the same way that the launch of Yuri Gagarin in April 1961 announced the beginning of human space flight, last year's flight of the German ROTEX robot flight experiment is heralding the start of a new era of space robotics. After a gap of twelve years since the introduction of a new capability in space remote manipulation, ROTEX is the first of at least ten new robotic systems and experiments which will fly before the year 2000. As a result of redefining the development approach for space robotic systems, and capitalizing on opportunities associated with the assembly and maintenance of the space station, the space robotics community is preparing a whole new generation of operational robotic capabilities. Expanding on the capabilities of earlier manipulation systems such as the Viking and Surveyor soil scoops, the Russian Lunakhods, and the Shuttle Remote Manipulator System (RMS), these new space robots will augment astronaut on-orbit capabilities and extend virtual human presence to lunar and planetary surfaces.

  9. Forming Human-Robot Teams Across Time and Space

    NASA Technical Reports Server (NTRS)

    Hambuchen, Kimberly; Burridge, Robert R.; Ambrose, Robert O.; Bluethmann, William J.; Diftler, Myron A.; Radford, Nicolaus A.

    2012-01-01

    NASA pushes telerobotics to distances that span the Solar System. At this scale, time of flight for communication is limited by the speed of light, inducing long time delays, narrow bandwidth and the real risk of data disruption. NASA also supports missions where humans are in direct contact with robots during extravehicular activity (EVA), giving a range of zero to hundreds of millions of miles for NASA s definition of "tele". . Another temporal variable is mission phasing. NASA missions are now being considered that combine early robotic phases with later human arrival, then transition back to robot only operations. Robots can preposition, scout, sample or construct in advance of human teammates, transition to assistant roles when the crew are present, and then become care-takers when the crew returns to Earth. This paper will describe advances in robot safety and command interaction approaches developed to form effective human-robot teams, overcoming challenges of time delay and adapting as the team transitions from robot only to robots and crew. The work is predicated on the idea that when robots are alone in space, they are still part of a human-robot team acting as surrogates for people back on Earth or in other distant locations. Software, interaction modes and control methods will be described that can operate robots in all these conditions. A novel control mode for operating robots across time delay was developed using a graphical simulation on the human side of the communication, allowing a remote supervisor to drive and command a robot in simulation with no time delay, then monitor progress of the actual robot as data returns from the round trip to and from the robot. Since the robot must be responsible for safety out to at least the round trip time period, the authors developed a multi layer safety system able to detect and protect the robot and people in its workspace. This safety system is also running when humans are in direct contact with the robot

  10. The Astromag superconducting magnet facility configured for a free-flying satellite

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Smoot, G. F.

    1992-01-01

    The magnet parameters of a free-flying version of Astromag and the parameters of the space cryogenic system for the magnet are presented. Consideration is given to the free-flyer version of the Astromag magnet. The diameter of the magnet, its cryostat, the satellite and the two instruments is limited by the 4.27-m shroud diameter of the Atlas IIa. The magnet coil must use a stable reliable superconductor which can carry the full magnet current at 4.2 K at a peak induction in the coil of 7.5 T. The magnet must operate in the persistent mode. The changes in the overall design and operating requirements for the free-flying-design Astromag suggest that the coils, the cryogenic system, and the charging system can be simplified without a loss of required magnet function. Attention is given to switches, trim coils, and plumbing in the low field region between the coils; the magnet charging system and the quench protection system; and cooled helium supply to the magnet gas-cooled electrical leads.

  11. The Astromag superconducting magnet facility configured for a free-flying satellite

    NASA Technical Reports Server (NTRS)

    Green, M. A.; Smoot, G. F.

    1992-01-01

    The magnet parameters of a free-flying version of Astromag and the parameters of the space cryogenic system for the magnet are presented. Consideration is given to the free-flyer version of the Astromag magnet. The diameter of the magnet, its cryostat, the satellite and the two instruments is limited by the 4.27-m shroud diameter of the Atlas IIa. The magnet coil must use a stable reliable superconductor which can carry the full magnet current at 4.2 K at a peak induction in the coil of 7.5 T. The magnet must operate in the persistent mode. The changes in the overall design and operating requirements for the free-flying-design Astromag suggest that the coils, the cryogenic system, and the charging system can be simplified without a loss of required magnet function. Attention is given to switches, trim coils, and plumbing in the low field region between the coils; the magnet charging system and the quench protection system; and cooled helium supply to the magnet gas-cooled electrical leads.

  12. Human-Robot Teaming: From Space Robotics to Self-Driving Cars

    NASA Technical Reports Server (NTRS)

    Fong, Terry

    2017-01-01

    In this talk, I describe how NASA Ames has been developing and testing robots for space exploration. In our research, we have focused on studying how human-robot teams can increase the performance, reduce the cost, and increase the success of space missions. A key tenet of our work is that humans and robots should support one another in order to compensate for limitations of manual control and autonomy. This principle has broad applicability beyond space exploration. Thus, I will conclude by discussing how we have worked with Nissan to apply our methods to self-driving cars, enabling humans to support autonomous vehicles operating in unpredictable and difficult situations.

  13. A Modular Robotic System with Applications to Space Exploration

    NASA Technical Reports Server (NTRS)

    Hancher, Matthew D.; Hornby, Gregory S.

    2006-01-01

    Modular robotic systems offer potential advantages as versatile, fault-tolerant, cost-effective platforms for space exploration, but a sufficiently mature system is not yet available. We describe the possible applications of such a system, and present prototype hardware intended as a step in the right direction. We also present elements of an automated design and optimization framework aimed at making modular robots easier to design and use, and discuss the results of applying the system to a gait optimization problem. Finally, we discuss the potential near-term applications of modular robotics to terrestrial robotics research.

  14. Control strategy for a dual-arm maneuverable space robot

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.

    1987-01-01

    A simple strategy for the attitude control and arm coordination of a maneuverable space robot with dual arms is proposed. The basic task for the robot consists of the placement of marked rigid solid objects with specified pairs of gripping points and a specified direction of approach for gripping. The strategy consists of three phases each of which involves only elementary rotational and translational collision-free maneuvers of the robot body. Control laws for these elementary maneuvers are derived by using a body-referenced dynamic model of the dual-arm robot.

  15. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    NASA Technical Reports Server (NTRS)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  16. The dynamic effects of internal robots on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Lawrence, Charles; Rohn, Douglas A.

    1991-01-01

    Many of the planned experiments of the Space Station Freedom (SSF) will require acceleration levels to be no greater than microgravity (10 exp -6 g) levels for long periods of time. Studies have demonstrated that without adequate control, routine operations may cause disturbances which are large enough to affect on-board experiments. One way to both minimize disturbances and make the SSF more autonomous is to utilize robots instead of astronauts for some operations. The present study addresses the feasibility of using robots for microgravity manipulation. Two methods for minimizing the dynamic disturbances resulting from the robot motions are evaluated. The first method is to use a robot with kinematic redundancy (redundant links). The second method involves the use of a vibration isolation device between the robot and the SSF laboratory module. The results from these methods are presented along with simulations of robots without disturbance control.

  17. Robot flow, clogging and jamming in confined spaces

    NASA Astrophysics Data System (ADS)

    Monaenkova, Daria; Linevich, Vadim; Goodisman, Michael A. D.; Goldman, Daniel I.

    We hypothesized that when a collection of robots operate in confined space, maximization of individual effort could negatively affect the collective performance by impeding the mobility of the individuals. To test our hypothesis, we built and programmed groups of 1-4 autonomous robotic diggers to construct a tunnel in a model cohesive soil. The robots' mobility, defined in terms of the residence time (T) required for a robot to move one body-length within the tunnel, was compared between groups of maximally active robots (mode 1), groups with different levels of activity between individuals (mode 2), and maximally active robots with a ``giving up'' behavior (mode 3), in which the robot ceased the attempt to excavate in a crowded tunnel. In small groups of two robots, T was ~3 sec and did not depend on the mode of operation. However, an increase in the number of robots caused an increase in T which depended upon mode. The residence time in groups of four robots in mode 1 (~9 sec) significantly exceeded the residence time in mode 2 and 3 (~4 sec), indicating that crowding was causing slower movement of individuals, particularly under maximum effort (mode 1). We will use our robophysical studies to discover principles of collective construction in subterranean social animals.

  18. Development of Methodologies, Metrics, and Tools for Investigating Human-Robot Interaction in Space Robotics

    NASA Technical Reports Server (NTRS)

    Ezer, Neta; Zumbado, Jennifer Rochlis; Sandor, Aniko; Boyer, Jennifer

    2011-01-01

    Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator (SPDM), Robonaut, and Space Exploration Vehicle (SEV), as well as interviews with robotics trainers, robot operators, and developers of gesture interfaces. A survey of methods and metrics used in HRI was completed to identify those most applicable to space robotics. These methods and metrics included techniques and tools associated with task performance, the quantification of human-robot interactions and communication, usability, human workload, and situation awareness. The need for more research in areas such as natural interfaces, compensations for loss of signal and poor video quality, psycho-physiological feedback, and common HRI testbeds were identified. The initial findings from these activities and planned future research are discussed. Human-robot systems are expected to have a central role in future space exploration missions that extend beyond low-earth orbit [1]. As part of a directed research project funded by NASA s Human Research Program (HRP), researchers at the Johnson Space Center have started to use a variety of techniques, including literature reviews, case studies, knowledge capture, field studies, and experiments to understand critical human-robot interaction (HRI) variables for current and future systems. Activities accomplished to date include observations of the International Space Station s Special Purpose Dexterous Manipulator

  19. The Astromag Superconducting Magnet Facility Configured for a FreeFlying Satellite

    SciTech Connect

    Green, M.A.; Smoot, George F.

    1991-06-01

    ASTROMAG is a particle astrophysics facility that was originally configured for the Space Station. The heart of the ASTROMAG facility is a large superconducting magnet which is cooled using superfluid helium. The task of resizing the facility so that it will fly in a satellite in. a high angle of inclination orbit is driven by the launch weight capability of the launch rocket and the desire to be able to do nearly the same physics as the Space Station version of ASTROMAG. In order to reduce the launch weight, the magnet and its cryogenic system had to be downsized, yet the integrated field generated by the magnet in the particle detectors has to match the Space Station version of the magnet. The use of aluminum matrix superconductor and oriented composite materials in the magnet insulation permits one to achieve this goal. The net magnetic dipole moment from the ASTROMAG magnet must be small to minimize the torque due to interaction with the earth's magnetic field. The ASTROMAG magnet consists of identical two coils 1.67 meters apart. The two coils are connected in series in persistent mode. Each coil is designed to carry 2.34 million ampere turns. Both coils are mounted on the same magnetic axis and they operate at opposite polarity. This reduces the dipole moment by a factor of more than 1000. This is tolerable for the Space Station version of the magnet. A magnet operating on a free flying satellite requires additional compensation. This report presents the magnet parameters of a free flying version of ASTROMAG and the parameters of the space cryogenic system for the magnet.

  20. Characteristics and requirements of robotic manipulators for space operations

    NASA Technical Reports Server (NTRS)

    Andary, James F.; Hewitt, Dennis R.; Spidaliere, Peter D.; Lambeck, Robert W.

    1992-01-01

    A robotic manipulator, DTF-1, developed as part of the Flight Telerobotic Servicer (FTS) project at Goddard Space Flight Center is discussed focusing on the technical, operational, and safety requirements. The DTF-1 system design, which is based on the manipulator, gripper, cameras, computer, and an operator control station incorporates the fundamental building blocks of the original FTS, the end product of which was to have been a light-weight, dexterous telerobotic device. For the first time in the history of NASA, space technology and robotics were combined to find new and unique solutions to the demanding requirements of flying a sophisticated robotic manipulator in space. DTF-1 is considered to be the prototype for all future development in space robotics.

  1. The Role of Robots and Automation in Space

    NASA Technical Reports Server (NTRS)

    Heer, E.

    1978-01-01

    Advanced space transportation systems based on the shuttle and interim upper stage will open the way to the use of large-scale industrial and commercial systems in space. The role of robot and automation technology in the cost-effective implementation and operation of such systems in the next two decades is discussed. Planning studies initiated by NASA are described as applied to space exploration, global services, and space industrialization, and a forecast of potential missions in each category is presented. The appendix lists highlights of space robot technology from 1967 to the present.

  2. Upgrading the free flying rendezvous and docking simulator and the orbital servicer system

    NASA Technical Reports Server (NTRS)

    Eastman, R. M.

    1980-01-01

    Recommendations are made for upgrading two teleoperator/robotics test and simulation systems based upon a review of latest technology advances in the involved disciplines. A second generation Free Flying Mobility Unit is recommended which adds a sixth degree of freedom and incorporates other improvements which greatly expand the center's capability to perform evaluation tests and demonstrations of advanced systems concepts for rendezvous and docking in support of the Teleoperator Maneuvering System (TMS) Program. The Orbital Servicer System provides the capability for testing and demonstrating concepts for on orbit servicing of compatibly designed satellites/payloads. The TMS is to be the transporting vehicle for the servicer. The manipulator arm of the Orbital service System is presently computer controlled in the trajectory portion of the module transfer operation. The ultimate objective is to fully automte its operation requiring additional capabilities in sensors, artificial intelligence, image analysis, communications, computer programming, pattern recognition, kinematics, and manipulator design. It is recommended that the Electronics and Control Laboratory move to acquire the basic competencies in robotics necessary to achieve full automation.

  3. Using conceptual spaces to fuse knowledge from heterogeneous robot platforms

    NASA Astrophysics Data System (ADS)

    Kira, Zsolt

    2010-04-01

    As robots become more common, it becomes increasingly useful for many applications to use them in teams that sense the world in a distributed manner. In such situations, the robots or a central control center must communicate and fuse information received from multiple sources. A key challenge for this problem is perceptual heterogeneity, where the sensors, perceptual representations, and training instances used by the robots differ dramatically. In this paper, we use Gärdenfors' conceptual spaces, a geometric representation with strong roots in cognitive science and psychology, in order to represent the appearance of objects and show how the problem of heterogeneity can be intuitively explored by looking at the situation where multiple robots differ in their conceptual spaces at different levels. To bridge low-level sensory differences, we abstract raw sensory data into properties (such as color or texture categories), represented as Gaussian Mixture Models, and demonstrate that this facilitates both individual learning and the fusion of concepts between robots. Concepts (e.g. objects) are represented as a fuzzy mixture of these properties. We then treat the problem where the conceptual spaces of two robots differ and they only share a subset of these properties. In this case, we use joint interaction and statistical metrics to determine which properties are shared. Finally, we show how conceptual spaces can handle the combination of such missing properties when fusing concepts received from different robots. We demonstrate the fusion of information in real-robot experiments with a Mobile Robots Amigobot and Pioneer 2DX with significantly different cameras and (on one robot) a SICK lidar.ÿÿÿÿ

  4. Integration of advanced teleoperation technologies for control of space robots

    NASA Technical Reports Server (NTRS)

    Stagnaro, Michael J.

    1993-01-01

    Teleoperated robots require one or more humans to control actuators, mechanisms, and other robot equipment given feedback from onboard sensors. To accomplish this task, the human or humans require some form of control station. Desirable features of such a control station include operation by a single human, comfort, and natural human interfaces (visual, audio, motion, tactile, etc.). These interfaces should work to maximize performance of the human/robot system by streamlining the link between human brain and robot equipment. This paper describes development of a control station testbed with the characteristics described above. Initially, this testbed will be used to control two teleoperated robots. Features of the robots include anthropomorphic mechanisms, slaving to the testbed, and delivery of sensory feedback to the testbed. The testbed will make use of technologies such as helmet mounted displays, voice recognition, and exoskeleton masters. It will allow tor integration and testing of emerging telepresence technologies along with techniques for coping with control link time delays. Systems developed from this testbed could be applied to ground control of space based robots. During man-tended operations, the Space Station Freedom may benefit from ground control of IVA or EVA robots with science or maintenance tasks. Planetary exploration may also find advanced teleoperation systems to be very useful.

  5. Tolerancing and design trades for free-flying occulters

    NASA Astrophysics Data System (ADS)

    Cady, E.

    2010-10-01

    Building free-flying occulters capable of detecting Earth-like planets requires precise optical design and tolerancing to suppress starlight by 10 orders of magnitude. Further, since the payload itself is acting as the optical element, this optical design must be developed in conjunction with the engineering of the underlying spacecraft. In this paper, we discuss the design of the occulter shape, the methods for placing tolerances on the optical system, and how these are iterated with thermal, structural, deployment and stationkeeping considerations. In particular, we discuss the relationship between occulter tolerancing and system parameters, such as occulter size and telescope diameter, and what design trades may be made to align the optical tolerances with the behavior of the physical occulter-telescope system.

  6. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    A programmable off-the-shelf Sphero robot is shown on a Mars mat at the Center for Space Education at NASA's Kennedy Space Center in Florida. The Spheros were available for students to practice their programming skills by navigating the robots around a challenge course on the mat. Students used the mat and Sphero robots during "loss of signal" times when the connection to the International Space Station was temporarily unavailable. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.

  7. Future of robotic space exploration: visions and prospects

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamas

    Autonomous and remote controlled mobile robots and manipulators have already proved their utility throughout several successful national and international space missions. NASA and ESA both sent robots and probes to Mars and beyond in the past years, and the Space Shuttle and Space Station Remote Manipulator Systems brought recognition to CSA. These achievements gained public attention and acknowledgement; however, all are based on technologies developed decades ago. Even the Canadian Dexter robotic arm-to be delivered to the International Space Station this year-had been completed many years ago. In the past decade robotics has become ubiquitous, and the speed of development has increased significantly, opening space for grandiose future plans of autonomous exploration missions. In the mean time, space agencies throughout the world insist on running their own costly human space flight programs. A recent workshop at NASA dealing with the issue stated that the primary reason behind US human space exploration is not science; rather the USA wants to maintain its international leadership in this field. A second space-race may fall upon us, fueled by the desire of the developing space powers to prove their capabilities, mainly driven by national pride. The aim of the paper is to introduce the upcoming unmanned space exploration scenarios that are already feasible with present day robotic technology and to show their humandriven alternatives. Astronauts are to conquer Mars in the foreseeable future, in but robots could go a lot further already. Serious engineering constraints and possibilities are to be discussed, along with issues beyond research and development. Future mission design planning must deal with both the technological and political aspects of space. Compromising on the scientific outcome may pay well by taking advantage of public awareness and nation and international interests.

  8. Ground Robotic Hand Applications for the Space Program study (GRASP)

    NASA Technical Reports Server (NTRS)

    Grissom, William A.; Rafla, Nader I. (Editor)

    1992-01-01

    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time.

  9. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics.

  10. An overview of the Kennedy Space Center robotics program

    NASA Astrophysics Data System (ADS)

    Rhodes, Eric L.

    1993-02-01

    The KSC program has the ability to prove the soundness of a particular robotic concept on the ground before it is used in space. In this context, three (3) robotic systems are discussed: the tile robot (Tessellator); HFIR (High Efficiency Particulate Air (HEPA) Filter Inspection Robot); and ARID (Automatic Radiator Inspection Project). The Tessellator is a semi-autonomous robotic system used to rewaterproof and inspect thermal protection system tiles on the underside of the orbiter. The HFIR is used for autonomous inspection of HEPA filters located at the top of the LC 39 payload changeout rooms. The ARID is designed for autonomous inspection of orbiter radiators for damage while in the orbiter processing facility.

  11. NASA Center for Intelligent Robotic Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's program for the civilian exploration of space is a challenge to scientists and engineers to help maintain and further develop the United States' position of leadership in a focused sphere of space activity. Such an ambitious plan requires the contribution and further development of many scientific and technological fields. One research area essential for the success of these space exploration programs is Intelligent Robotic Systems. These systems represent a class of autonomous and semi-autonomous machines that can perform human-like functions with or without human interaction. They are fundamental for activities too hazardous for humans or too distant or complex for remote telemanipulation. To meet this challenge, Rensselaer Polytechnic Institute (RPI) has established an Engineering Research Center for Intelligent Robotic Systems for Space Exploration (CIRSSE). The Center was created with a five year $5.5 million grant from NASA submitted by a team of the Robotics and Automation Laboratories. The Robotics and Automation Laboratories of RPI are the result of the merger of the Robotics and Automation Laboratory of the Department of Electrical, Computer, and Systems Engineering (ECSE) and the Research Laboratory for Kinematics and Robotic Mechanisms of the Department of Mechanical Engineering, Aeronautical Engineering, and Mechanics (ME,AE,&M), in 1987. This report is an examination of the activities that are centered at CIRSSE.

  12. Application of dexterous space robotics technology to myoelectric prostheses

    NASA Astrophysics Data System (ADS)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-02-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  13. Application of dexterous space robotics technology to myoelectric prostheses

    NASA Technical Reports Server (NTRS)

    Hess, Clifford; Li, Larry C. H.; Farry, Kristin A.; Walker, Ian D.

    1994-01-01

    Future space missions will require robots equipped with highly dexterous robotic hands to perform a variety of tasks. A major technical challenge in making this possible is an improvement in the way these dexterous robotic hands are remotely controlled or teleoperated. NASA is currently investigating the feasibility of using myoelectric signals to teleoperate a dexterous robotic hand. In theory, myoelectric control of robotic hands will require little or no mechanical parts and will greatly reduce the bulk and weight usually found in dexterous robotic hand control devices. An improvement in myoelectric control of multifinger hands will also benefit prosthetics users. Therefore, as an effort to transfer dexterous space robotics technology to prosthetics applications and to benefit from existing myoelectric technology, NASA is collaborating with the Limbs of Love Foundation, the Institute for Rehabilitation and Research, and Rice University in developing improved myoelectric control multifinger hands and prostheses. In this paper, we will address the objectives and approaches of this collaborative effort and discuss the technical issues associated with myoelectric control of multifinger hands. We will also report our current progress and discuss plans for future work.

  14. Ground operation of robotics on Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Wojcik, Z. Alex; Hunter, David G.; Cantin, Marc R.

    1993-01-01

    This paper reflects work carried out on Ground Operated Telerobotics (GOT) in 1992 to refine further the ideas, procedures, and technologies needed to test the procedures in a high latency environment, and to integrate GOT into Space Station Freedom operations. Space Station Freedom (SSF) will be in operation for 30 years, and will depend on robots to carry out a significant part of the assembly, maintenance, and utilization workload. Current plans call for on-orbit robotics to be operated by on-board crew members. This approach implies that on-orbit robotics operations use up considerable crew time, and that these operations cannot be carried out when SSF is unmanned. GOT will allow robotic operations to be operated from the ground, with on-orbit crew interventions only when absolutely required. The paper reviews how GOT would be implemented, how GOT operations would be planned and supported, and reviews GOT issues, critical success factors, and benefits.

  15. Human-like robots for space and hazardous environments

    NASA Technical Reports Server (NTRS)

    Cogley, Allen; Gustafson, David; White, Warren; Dyer, Ruth; Hampton, Tom (Editor); Freise, Jon (Editor)

    1990-01-01

    The three year goal for this NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of rough terrain crossing, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation and path planning skills. These goals came from the concept that the robot should have the abilities of both a planetary rover and a hazardous waste site scout.

  16. Human-like robots for space and hazardous environments

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The three year goal for the Kansas State USRA/NASA Senior Design team is to design and build a walking autonomous robotic rover. The rover should be capable of crossing rough terrain, traversing human made obstacles (such as stairs and doors), and moving through human and robot occupied spaces without collision. The rover is also to evidence considerable decision making ability, navigation, and path planning skills.

  17. Interaction Challenges in Human-Robot Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2005-01-01

    In January 2004, NASA established a new, long-term exploration program to fulfill the President's Vision for U.S. Space Exploration. The primary goal of this program is to establish a sustained human presence in space, beginning with robotic missions to the Moon in 2008, followed by extended human expeditions to the Moon as early as 2015. In addition, the program places significant emphasis on the development of joint human-robot systems. A key difference from previous exploration efforts is that future space exploration activities must be sustainable over the long-term. Experience with the space station has shown that cost pressures will keep astronaut teams small. Consequently, care must be taken to extend the effectiveness of these astronauts well beyond their individual human capacity. Thus, in order to reduce human workload, costs, and fatigue-driven error and risk, intelligent robots will have to be an integral part of mission design.

  18. Robonaut: a robot designed to work with humans in space.

    PubMed

    Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby

    2003-01-01

    The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.

  19. Robonaut: a robot designed to work with humans in space

    NASA Technical Reports Server (NTRS)

    Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby

    2003-01-01

    The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.

  20. Robonaut: a robot designed to work with humans in space

    NASA Technical Reports Server (NTRS)

    Bluethmann, William; Ambrose, Robert; Diftler, Myron; Askew, Scott; Huber, Eric; Goza, Michael; Rehnmark, Fredrik; Lovchik, Chris; Magruder, Darby

    2003-01-01

    The Robotics Technology Branch at the NASA Johnson Space Center is developing robotic systems to assist astronauts in space. One such system, Robonaut, is a humanoid robot with the dexterity approaching that of a suited astronaut. Robonaut currently has two dexterous arms and hands, a three degree-of-freedom articulating waist, and a two degree-of-freedom neck used as a camera and sensor platform. In contrast to other space manipulator systems, Robonaut is designed to work within existing corridors and use the same tools as space walking astronauts. Robonaut is envisioned as working with astronauts, both autonomously and by teleoperation, performing a variety of tasks including, routine maintenance, setting up and breaking down worksites, assisting crew members while outside of spacecraft, and serving in a rapid response capacity.

  1. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    A trio of programmable off-the-shelf Sphero robots are shown at the Center for Space Education at NASA's Kennedy Space Center in Florida. The Spheros were available for students to practice their programming skills during "loss of signal" times when the connection to the International Space Station was temporarily unavailable. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.

  2. A simple 5-DOF walking robot for space station application

    NASA Technical Reports Server (NTRS)

    Brown, H. Benjamin, Jr.; Friedman, Mark B.; Kanade, Takeo

    1991-01-01

    Robots on the NASA space station have a potential range of applications from assisting astronauts during EVA (extravehicular activity), to replacing astronauts in the performance of simple, dangerous, and tedious tasks; and to performing routine tasks such as inspections of structures and utilities. To provide a vehicle for demonstrating the pertinent technologies, a simple robot is being developed for locomotion and basic manipulation on the proposed space station. In addition to the robot, an experimental testbed was developed, including a 1/3 scale (1.67 meter modules) truss and a gravity compensation system to simulate a zero-gravity environment. The robot comprises two flexible links connected by a rotary joint, with a 2 degree of freedom wrist joints and grippers at each end. The grippers screw into threaded holes in the nodes of the space station truss, and enable it to walk by alternately shifting the base of support from one foot (gripper) to the other. Present efforts are focused on mechanical design, application of sensors, and development of control algorithms for lightweight, flexible structures. Long-range research will emphasize development of human interfaces to permit a range of control modes from teleoperated to semiautonomous, and coordination of robot/astronaut and multiple-robot teams.

  3. Laboratory testing of candidate robotic applications for space

    NASA Technical Reports Server (NTRS)

    Purves, R. B.

    1987-01-01

    Robots have potential for increasing the value of man's presence in space. Some categories with potential benefit are: (1) performing extravehicular tasks like satellite and station servicing, (2) supporting the science mission of the station by manipulating experiment tasks, and (3) performing intravehicular activities which would be boring, tedious, exacting, or otherwise unpleasant for astronauts. An important issue in space robotics is selection of an appropriate level of autonomy. In broad terms three levels of autonomy can be defined: (1) teleoperated - an operator explicitly controls robot movement; (2) telerobotic - an operator controls the robot directly, but by high-level commands, without, for example, detailed control of trajectories; and (3) autonomous - an operator supplies a single high-level command, the robot does all necessary task sequencing and planning to satisfy the command. Researchers chose three projects for their exploration of technology and implementation issues in space robots, one each of the three application areas, each with a different level of autonomy. The projects were: (1) satellite servicing - teleoperated; (2) laboratory assistant - telerobotic; and (3) on-orbit inventory manager - autonomous. These projects are described and some results of testing are summarized.

  4. CSI related dynamics and control issues in space robotics

    NASA Technical Reports Server (NTRS)

    Schmitz, Eric; Ramey, Madison

    1993-01-01

    The research addressed includes: (1) CSI issues in space robotics; (2) control of elastic payloads, which includes 1-DOF example, and 3-DOF harmonic drive arm with elastic beam; and (3) control of large space arms with elastic links, which includes testbed description, modeling, and experimental implementation of colocated PD and end-point tip position controllers.

  5. Extended Task Space Control for Robotic Manipulators

    NASA Technical Reports Server (NTRS)

    Backes, Paul G. (Inventor); Long, Mark K. (Inventor)

    1996-01-01

    The invention is a method of operating a robot in successive sampling intervals to perform a task, the robot having joints and joint actuators with actuator control loops, by decomposing the task into behavior forces, accelerations, velocities and positions of plural behaviors to be exhibited by the robot simultaneously, computing actuator accelerations of the joint actuators for the current sampling interval from both behavior forces, accelerations velocities and positions of the current sampling interval and actuator velocities and positions of the previous sampling interval, computing actuator velocities and positions of the joint actuators for the current sampling interval from the actuator velocities and positions of the previous sampling interval, and, finally, controlling the actuators in accordance with the actuator accelerations, velocities and positions of the current sampling interval. The actuator accelerations, velocities and positions of the current sampling interval are stored for use during the next sampling interval.

  6. Overview of NASA's In Space Robotic Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.

    2015-01-01

    The panel discussion will start with a presentation of the work of the Satellite Servicing Capabilities Office (SSCO), a team responsible for the overall management, coordination, and implementation of satellite servicing technologies and capabilities for NASA. Born from the team that executed the five Hubble servicing missions, SSCO is now maturing a core set of technologies that support both servicing goals and NASA's exploration and science objectives, including: autonomous rendezvous and docking systems; dexterous robotics; high-speed, fault-tolerant computing; advanced robotic tools, and propellant transfer systems. SSCOs proposed Restore-L mission, under development since 2009, is rapidly advancing the core capabilities the fledgling satellite-servicing industry needs to jumpstart a new national industry. Restore-L is also providing key technologies and core expertise to the Asteroid Redirect Robotic Mission (ARRM), with SSCO serving as the capture module lead for the ARRM effort. Reed will present a brief overview of SSCOs history, capabilities and technologies.

  7. Space station automation and robotics study. Operator-systems interface

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This is the final report of a Space Station Automation and Robotics Planning Study, which was a joint project of the Boeing Aerospace Company, Boeing Commercial Airplane Company, and Boeing Computer Services Company. The study is in support of the Advanced Technology Advisory Committee established by NASA in accordance with a mandate by the U.S. Congress. Boeing support complements that provided to the NASA Contractor study team by four aerospace contractors, the Stanford Research Institute (SRI), and the California Space Institute. This study identifies automation and robotics (A&R) technologies that can be advanced by requirements levied by the Space Station Program. The methodology used in the study is to establish functional requirements for the operator system interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with extravehicular (EV) robot operations.

  8. Technology demonstration of space intravehicular automation and robotics

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry; Barker, L. Keith

    1994-01-01

    Automation and robotic technologies are being developed and capabilities demonstrated which would increase the productivity of microgravity science and materials processing in the space station laboratory module, especially when the crew is not present. The Automation Technology Branch at NASA Langley has been working in the area of intravehicular automation and robotics (IVAR) to provide a user-friendly development facility, to determine customer requirements for automated laboratory systems, and to improve the quality and efficiency of commercial production and scientific experimentation in space. This paper will describe the IVAR facility and present the results of a demonstration using a simulated protein crystal growth experiment inside a full-scale mockup of the space station laboratory module using a unique seven-degree-of-freedom robot.

  9. Surgical robotic support for long duration space missions

    NASA Astrophysics Data System (ADS)

    Haidegger, Tamas; Benyo, Zoltan

    Robotic technology provides advanced solutions for new challenges in human space exploration. The aim of this paper is to identify the potential risks and to present the concept of a robotic surgical support system that could accompany the first astronauts to their historical journey to Mars. By integrating cutting-edge mechatronic equipment, semi-autonomous robots could ensure the medical support for a 2-3-year-long mission through teleoperation and telementoring. Besides the several advantages, there are some serious drawbacks of the concept that should be dealt with. Most important is the latency occurred from the transmission through long distance. Different methods are examined to overcome the difficulties in surgery robot control caused by the communication lag time.

  10. Enabling Interoperable Space Robots With the Joint Technical Architecture for Robotic Systems (JTARS)

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville

    2005-01-01

    Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.

  11. Enabling Interoperable Space Robots With the Joint Technical Architecture for Robotic Systems (JTARS)

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur; Dubowsky, Steven; Quinn, Roger; Marzwell, Neville

    2005-01-01

    Robots that operate independently of one another will not be adequate to accomplish the future exploration tasks of long-distance autonomous navigation, habitat construction, resource discovery, and material handling. Such activities will require that systems widely share information, plan and divide complex tasks, share common resources, and physically cooperate to manipulate objects. Recognizing the need for interoperable robots to accomplish the new exploration initiative, NASA s Office of Exploration Systems Research & Technology recently funded the development of the Joint Technical Architecture for Robotic Systems (JTARS). JTARS charter is to identify the interface standards necessary to achieve interoperability among space robots. A JTARS working group (JTARS-WG) has been established comprising recognized leaders in the field of space robotics including representatives from seven NASA centers along with academia and private industry. The working group s early accomplishments include addressing key issues required for interoperability, defining which systems are within the project s scope, and framing the JTARS manuals around classes of robotic systems.

  12. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    NASA Kennedy Space Center Associate Director Kelvin Manning speaks to students and sponsors in the spaceport’s Center for Space Education. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  13. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Students and their sponsors gather for a commemorative photo in the Center for Space Education at NASA’s Kennedy Space Center in Florida after participating in the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  14. Global Optimum Path Planning for a Redundant Space Robot.

    DTIC Science & Technology

    1991-12-01

    space mission . This paper presents a global optimum path planning scheme for redundant space robotic manipulators to be used in such missions. In this formulation, a variational approach is used to minimize the objective functional. Two optimum path planning problems are considered: first, given the end-effector trajectory, find the optimum trajectories of the joints, and second, given the terminal conditions of the end-effector, find the optimum trajectories for the end-effector and the joints. It is explicitly assumed that the gravity is zero in, and the robotic

  15. Using automatic robot programming for space telerobotics

    NASA Technical Reports Server (NTRS)

    Mazer, E.; Jones, J.; Lanusse, A.; Lozano-Perez, T.; Odonnell, P.; Tournassoud, P.

    1987-01-01

    The interpreter of a task level robot programming system called Handey is described. Handey is a system that can recognize, manipulate and assemble polyhedral parts when given only a specification of the goal. To perform an assembly, Handey makes use of a recognition module, a gross motion planner, a grasp planner, a local approach planner and is capable of planning part re-orientation. The possibility of including these modules in a telerobotics work-station is discussed.

  16. Collaborating with Humanoid Robots in Space

    DTIC Science & Technology

    2005-12-01

    histograms are computed between an environment object ( extracted from sensory data) and the robot to produce an egocentric model of the robot’s...environment. Features extracted from the histograms are fed into a system of rules33 or used as parameters in algorithms30 to produce linguistic spatial...roughly) orthogonal planes provides a better match with human spatial language. Range information is extracted from stereo vision; the vision

  17. Robot-friendly connector. [space truss structures

    NASA Technical Reports Server (NTRS)

    Parma, George F. (Inventor); Vandeberghe, Mark H. (Inventor); Ruiz, Steve C. (Inventor)

    1993-01-01

    Robot friendly connectors, which, in one aspect, are truss joints with two parts, a receptacle and a joint, are presented. The joints have a head which is loosely inserted into the receptacle and is then tightened and aligned. In one aspect, the head is a rounded hammerhead which initially is enclosed in the receptacle with sloppy fit provided by the shape, size, and configuration of surfaces on the head and on the receptacle.

  18. Space station automation and robotics study. Final report

    SciTech Connect

    Not Available

    1984-11-01

    The methodology used in the study is to establish functional requirements for the operator-system-interface (OSI), establish the technologies needed to meet these requirements, and to forecast the availability of these technologies. The study looked at progressively more detailed Space Station functions, starting from general stationkeeping functions, down to proximity operations, and finally to the extra vehicular (EV) robot functions. The EV robot envisioned would be a free-flyer while in transit from one location to another in close proximity to the orbiting Space Station. The OSI would perform path planning, tracking and control, object recognition, fault detection and correction, and plan modifications in connection with EV robot operations. The implementation of the OSI implies the use of natural languages, voice recognition and synthesis, speech understanding, expert diagnostic and advisory knowledge systems, and machine learning.

  19. Understanding the migratory orientation program of birds: extending laboratory studies to study free-flying migrants in a natural setting.

    PubMed

    Thorup, Kasper; Holland, Richard A; Tøttrup, Anders P; Wikelski, Martin

    2010-09-01

    For many years, orientation in migratory birds has primarily been studied in the laboratory. Although a laboratory-based setting enables greater control over environmental cues, the laboratory-based findings must be confirmed in the wild in free-flying birds to be able to fully understand how birds orient during migration. Despite the difficulties associated with following free-flying birds over long distances, a number of possibilities currently exist for tracking the long distance, sometimes even globe-spanning, journeys undertaken by migrating birds. Birds fitted with radio transmitters can either be located from the ground or from aircraft (conventional tracking), or from space. Alternatively, positional information obtained by onboard equipment (e.g., GPS units) can be transmitted to receivers in space. Use of these tracking methods has provided a wealth of information on migratory behaviors that are otherwise very difficult to study. Here, we focus on the progress in understanding certain components of the migration-orientation system. Comparably exciting results can be expected in the future from tracking free-flying migrants in the wild. Use of orientation cues has been studied in migrating raptors (satellite telemetry) and thrushes (conventional telemetry), highlighting that findings in the natural setting may not always be as expected on the basis of cage-experiments. Furthermore, field tracking methods combined with experimental approaches have finally allowed for an extension of the paradigmatic displacement experiments performed by Perdeck in 1958 on the short-distance, social migrant, the starling, to long-distance migrating storks and long-distance, non-socially migrating passerines. Results from these studies provide fundamental insights into the nature of the migratory orientation system that enables experienced birds to navigate and guide inexperienced, young birds to their species-specific winter grounds.

  20. A virtual manipulator model for space robotic systems

    NASA Technical Reports Server (NTRS)

    Dubowsky, S.; Vafa, Z.

    1987-01-01

    Future robotic manipulators carried by a spacecraft will be required to perform complex tasks in space, like repairing satellites. Such applications of robotic manipulators will encounter a number of kinematic, dynamic and control problems due to the dynamic coupling between the manipulators and the spacecraft. A new analytical modeling method for studying the kinematics and dynamics of manipulators in space is presented. The problem is treated by introducing the concept of a Virtual Manipulator (VM). The kinematic and dynamic motions of the manipulator, vehicle and payload, can be described relatively easily in terms of the Virtual Manipulator movements, which have a fixed base in inertial space at a point called a Virtual Ground. It is anticipated that the approach described here will aid in the design and development of future space manipulator systems.

  1. Station Robotics Testing at Johnson Space Center

    NASA Image and Video Library

    At the Space Vehicle Mockup Facility at Johnson Space Center, NASA tests the Japanese Experiment Module ORU Transfer Interface, or JOTI. This device would allow astronauts to transfer orbital repla...

  2. Architecture for in-space robotic assembly of a modular space telescope

    NASA Astrophysics Data System (ADS)

    Lee, Nicolas; Backes, Paul; Burdick, Joel; Pellegrino, Sergio; Fuller, Christine; Hogstrom, Kristina; Kennedy, Brett; Kim, Junggon; Mukherjee, Rudranarayan; Seubert, Carl; Wu, Yen-Hung

    2016-10-01

    An architecture and conceptual design for a robotically assembled, modular space telescope (RAMST) that enables extremely large space telescopes to be conceived is presented. The distinguishing features of the RAMST architecture compared with prior concepts include the use of a modular deployable structure, a general-purpose robot, and advanced metrology, with the option of formation flying. To demonstrate the feasibility of the robotic assembly concept, we present a reference design using the RAMST architecture for a formation flying 100-m telescope that is assembled in Earth orbit and operated at the Sun-Earth Lagrange Point 2.

  3. Proceedings of the Goddard Space Flight Center Workshop on Robotics for Commercial Microelectronic Processes in Space

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Potential applications of robots for cost effective commercial microelectronic processes in space were studied and the associated robotic requirements were defined. Potential space application areas include advanced materials processing, bulk crystal growth, and epitaxial thin film growth and related processes. All possible automation of these processes was considered, along with energy and environmental requirements. Aspects of robot capabilities considered include system intelligence, ROM requirements, kinematic and dynamic specifications, sensor design and configuration, flexibility and maintainability. Support elements discussed included facilities, logistics, ground support, launch and recovery, and management systems.

  4. Artificial intelligence planning applications for space exploration and space robotics

    NASA Technical Reports Server (NTRS)

    Rokey, Mark; Grenander, Sven

    1986-01-01

    Mission sequencing involves the plan for actuation of the experiments to be conducted aboard a spacecraft; automation is under study by NASA as a means to reduce time and manpower costs in mission planning and in robotic implementation. The development of a mission sequence is conditioned by the limited duration of advantageous spacecraft encounters with objects of study, more research requests than can be satisfied, and requested changes in objectives. Autonomous robot development is hampered by the absence of task-level programming languages, the existence of anomalies in real-world interactions, and a lack of required capabilities in current sensor technology.

  5. Distribution of Cost Growth in Robotic Space Science Missions

    NASA Technical Reports Server (NTRS)

    Swan, Christopher

    2007-01-01

    Cost growth characterization is a critical factor for effective cost risk analysis and project planning. This study analyzed low level budget changes in Jet Propulsion Laboratory-managed space science missions, which occurred during the development of the project. The data was then curve fit, according to cost distribution categories, to provide a reference set of distribution parameters with sufficient granularity to effectively model cost growth in robotic space science missions.

  6. Distribution of Cost Growth in Robotic Space Science Missions

    NASA Technical Reports Server (NTRS)

    Swan, Christopher

    2007-01-01

    Cost growth characterization is a critical factor for effective cost risk analysis and project planning. This study analyzed low level budget changes in Jet Propulsion Laboratory-managed space science missions, which occurred during the development of the project. The data was then curve fit, according to cost distribution categories, to provide a reference set of distribution parameters with sufficient granularity to effectively model cost growth in robotic space science missions.

  7. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    NASA Kennedy Space Center's Trent Smith conducts a quantum levitation demonstration, using liquid nitrogen, metal and a magnetic track, for students and their sponsors in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  8. Intelligent systems and robotics for an evolutionary Space Station

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1987-01-01

    The Space Station will be a multipurpose space facility to acquire and exploit unique knowledge with a planned lifetime of greater than 20 years. It will include laboratories for science and manufacturing, provide a platform for earth and interplanetary observations, conduct satellite servicing, and serve as a transportation node for potential manned geosynchronous, lunar, and Mars missions. Environmental safety considerations and limited manpower resources require the extensive use of intelligent systems and flexible robotics on the Space Station. Design accommodations must be planned in advance to allow incorporation of these advancing technologies on the evolutionary Space Station.

  9. The Design, Planning and Control of Robotic Systems in Space

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven

    1996-01-01

    In the future, robotic systems will be expected to perform important tasks in space, in orbit and in planetary exploration. In orbit, current technology requires that tasks such as the repair, construction and maintenance of space stations and satellites be performed by astronaut Extra Vehicular Activity (EVA). Eliminating, the need for astronaut EVA through the use of space manipulators would greatly reduce both mission costs and hazards to astronauts. In planetary exploration, cost and logistical considerations clearly make the use of autonomous and telerobotic systems also very attractive, even in cases where an astronaut explorer might be in the area. However, such applications introduce a number of technical problems not found in conventional earth-bound industrial robots. To design useful and practical systems to meet the needs of future space missions, substantial technical development is required, including in the areas of the design, control and planning. The objectives of this research program were to develop such design paradigms and control and planning algorithms to enable future space robotic systems to meet their proposed mission objectives. The underlying intellectual focus of the program is to construct a set of integrated design, planning and control techniques based on an understanding of the fundamental mechanics of space robotic systems. This work was to build upon the results obtained in our previous research in this area supported by NASA Langley Research Center in which we have made important contributions to the area of space robotics. This program was proposed and accepted as a three year research program, a period of time necessary to make the type of fundamental developments to make a significant contributions to space robotics. Unfortunately, less than a year into the program it became clear that the NASA Langley Research Center would be forced by budgetary constraints to essentially leave this area of research. As a result, the total

  10. Camera space control system for a mobile robot forklift

    NASA Astrophysics Data System (ADS)

    Miller, Richard K.; Stewart, D. G.; Brockman, W. H.; Skaar, Steven B.

    1993-05-01

    In this paper we present the method of camera space manipulation for control of a mobile cart with an on-board robot. The objective is to do three dimensional object placement. The robot- cart system is operated as a forklift. The cart has a rear wheel for steering and driving, two front wheels, and a tether allowing control from a remote computer. Two remotely placed CCTV cameras provide images for use by the control system. The method is illustrated experimentally by a box stacking task. None of the components-cameras, robot-cart, or target box are prepositioned. 'Ring cues' are placed on both boxes in order to simplify the image processing. A sequential estimation scheme solves the placement problem. This scheme produces the control necessary to place the image of the grasped box at the relevant target image position in each of the two dimensional camera planes. This results in a precise and robust manipulation strategy.

  11. A magneto-sensitive skin for robots in space

    NASA Technical Reports Server (NTRS)

    Chauhan, D. S.; Dehoff, P. H.

    1991-01-01

    The development of a robot arm proximity sensing skin that can sense intruding objects is described. The purpose of the sensor would be to prevent the robot from colliding with objects in space including human beings. Eventually a tri-mode system in envisioned including proximity, tactile, and thermal. To date the primary emphasis was on the proximity sensor which evolved from one based on magneto-inductive principles to the current design which is based on a capacitive-reflector system. The capacitive sensing element, backed by a reflector driven at the same voltage and in phase with the sensor, is used to reflect field lines away from the grounded robot toward the intruding object. This results in an increased sensing range of up to 12 in. with the reflector on compared with only 1 in. with it off. It is believed that this design advances the state-of-the-art in capacitive sensor performance.

  12. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1990-01-01

    A research program and strategy are described which include fundamental teleoperation issues and autonomous-control issues of sensing and navigation for satellite robots. The program consists of developing interfaces for visual operation and studying the consequences of interface designs as well as developing navigation and control technologies based on visual interaction. A space-robot-vehicle simulator is under development for use in virtual-environment teleoperation experiments and neutral-buoyancy investigations. These technologies can be utilized in a study of visual interfaces to address tradeoffs between head-tracking and manual remote cameras, panel-mounted and helmet-mounted displays, and stereoscopic and monoscopic display systems. The present program can provide significant data for the development of control experiments for autonomously controlled satellite robots.

  13. Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors

    NASA Technical Reports Server (NTRS)

    Allen, Ronald J.

    2004-01-01

    The requirements on station-keeping for constellations of free-flying collectors coupled as (future) imaging arrays in space for astrophysics applications are discussed. The typical knowledge precision required in the plane of the array depends on the angular size of the targets of interest; it is generally at a level of tens of centimeters for typical stellar targets, becoming of order centimeters only for the widest attainable fields of view. In the "piston" direction, perpendicular to the array, the typical knowledge precision required depends on the bandwidth of the signal, and is at a level of tens of wavelengths for narrow approx. 1% signal bands, becoming of order one wavelength only for the broadest bandwidths expected to be useful. The significance of this result is that, at this level of precision, it may be possible to provide the necessary knowledge of array geometry without the use of signal photons, thereby allowing observations of faint targets. "Closure-phase" imaging is a technique which has been very successfully applied to surmount instabilities owing to equipment and to the atmosphere, and which appears to be directly applicable to space imaging arrays where station-keeping drifts play the same role as (slow) atmospheric and equipment instabilities.

  14. Robust coordinated control of a dual-arm space robot

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Kayastha, Sharmila; Katupitiya, Jay

    2017-09-01

    Dual-arm space robots are more capable of implementing complex space tasks compared with single arm space robots. However, the dynamic coupling between the arms and the base will have a serious impact on the spacecraft attitude and the hand motion of each arm. Instead of considering one arm as the mission arm and the other as the balance arm, in this work two arms of the space robot perform as mission arms aimed at accomplishing secure capture of a floating target. The paper investigates coordinated control of the base's attitude and the arms' motion in the task space in the presence of system uncertainties. Two types of controllers, i.e. a Sliding Mode Controller (SMC) and a nonlinear Model Predictive Controller (MPC) are verified and compared with a conventional Computed-Torque Controller (CTC) through numerical simulations in terms of control accuracy and system robustness. Both controllers eliminate the need to linearly parameterize the dynamic equations. The MPC has been shown to achieve performance with higher accuracy than CTC and SMC in the absence of system uncertainties under the condition that they consume comparable energy. When the system uncertainties are included, SMC and CTC present advantageous robustness than MPC. Specifically, in a case where system inertia increases, SMC delivers higher accuracy than CTC and costs the least amount of energy.

  15. Free-floating dual-arm robots for space assembly

    NASA Technical Reports Server (NTRS)

    Agrawal, Sunil Kumar; Chen, M. Y.

    1994-01-01

    Freely moving systems in space conserve linear and angular momentum. As moving systems collide, the velocities get altered due to transfer of momentum. The development of strategies for assembly in a free-floating work environment requires a good understanding of primitives such as self motion of the robot, propulsion of the robot due to onboard thrusters, docking of the robot, retrieval of an object from a collection of objects, and release of an object in an object pool. The analytics of such assemblies involve not only kinematics and rigid body dynamics but also collision and impact dynamics of multibody systems. In an effort to understand such assemblies in zero gravity space environment, we are currently developing at Ohio University a free-floating assembly facility with a dual-arm planar robot equipped with thrusters, a free-floating material table, and a free-floating assembly table. The objective is to pick up workpieces from the material table and combine them into prespecified assemblies. This paper presents analytical models of assembly primitives and strategies for overall assembly. A computer simulation of an assembly is developed using the analytical models. The experiment facility will be used to verify the theoretical predictions.

  16. SpRoUTS (Space Robot Universal Truss System): Reversible Robotic Assembly of Deployable Truss Structures of Reconfigurable Length

    NASA Technical Reports Server (NTRS)

    Jenett, Benjamin; Cellucci, Daniel; Cheung, Kenneth

    2015-01-01

    Automatic deployment of structures has been a focus of much academic and industrial work on infrastructure applications and robotics in general. This paper presents a robotic truss assembler designed for space applications - the Space Robot Universal Truss System (SpRoUTS) - that reversibly assembles a truss from a feedstock of hinged andflat-packed components, by folding the sides of each component up and locking onto the assembled structure. We describe the design and implementation of the robot and show that the assembled truss compares favorably with prior truss deployment systems.

  17. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    A middle-school student high-fives a Star Wars character from the 501st Legion in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  18. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Darth Vader and other Star Wars characters from the 501st Legion address students and sponsors in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  19. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Students and sponsors hear from astronauts aboard the International Space Station on a big screen in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.

  20. The dynamic control of robotic manipulators in space

    NASA Technical Reports Server (NTRS)

    Dubowsky, S.

    1988-01-01

    Described briefly is the work done during the first half year of a three-year study on dynamic control of robotic manipulators in space. The research focused on issues for advanced control of space manipulators including practical issues and new applications for the Virtual Manipulator. In addition, the development of simulations and graphics software for space manipulators, begun during the first NASA proposal in the area, has continued. The fabrication of the Vehicle Emulator System (VES) is completed and control algorithms are in process of development.

  1. Quantifying Astronaut Tasks: Robotic Technology and Future Space Suit Design

    NASA Technical Reports Server (NTRS)

    Newman, Dava

    2003-01-01

    The primary aim of this research effort was to advance the current understanding of astronauts' capabilities and limitations in space-suited EVA by developing models of the constitutive and compatibility relations of a space suit, based on experimental data gained from human test subjects as well as a 12 degree-of-freedom human-sized robot, and utilizing these fundamental relations to estimate a human factors performance metric for space suited EVA work. The three specific objectives are to: 1) Compile a detailed database of torques required to bend the joints of a space suit, using realistic, multi- joint human motions. 2) Develop a mathematical model of the constitutive relations between space suit joint torques and joint angular positions, based on experimental data and compare other investigators' physics-based models to experimental data. 3) Estimate the work envelope of a space suited astronaut, using the constitutive and compatibility relations of the space suit. The body of work that makes up this report includes experimentation, empirical and physics-based modeling, and model applications. A detailed space suit joint torque-angle database was compiled with a novel experimental approach that used space-suited human test subjects to generate realistic, multi-joint motions and an instrumented robot to measure the torques required to accomplish these motions in a space suit. Based on the experimental data, a mathematical model is developed to predict joint torque from the joint angle history. Two physics-based models of pressurized fabric cylinder bending are compared to experimental data, yielding design insights. The mathematical model is applied to EVA operations in an inverse kinematic analysis coupled to the space suit model to calculate the volume in which space-suited astronauts can work with their hands, demonstrating that operational human factors metrics can be predicted from fundamental space suit information.

  2. Development of Advanced Robotic Hand System for space application

    NASA Technical Reports Server (NTRS)

    Machida, Kazuo; Akita, Kenzo; Mikami, Tatsuo; Komada, Satoru

    1994-01-01

    The Advanced Robotic Hand System (ARH) is a precise telerobotics system with a semi dexterous hand for future space application. The ARH will be tested in space as one of the missions of the Engineering Tests Satellite 7 (ETS-7) which will be launched in 1997. The objectives of the ARH development are to evaluate the capability of a possible robot hand for precise and delicate tasks and to validate the related technologies implemented in the system. The ARH is designed to be controlled both from ground as a teleoperation and by locally autonomous control. This paper presents the overall system design and the functional capabilities of the ARH as well as its mission outline as the preliminary design has been completed.

  3. Conference on Intelligent Robotics in Field, Factory, Service and Space (CIRFFSS 1994), Volume 2

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservations can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed the following topics: (1) vision systems integration and architecture; (2) selective perception and human robot interaction; (3) robotic systems technology; (4) military and other field applications; (5) dual-use precommercial robotic technology; (6) building operations; (7) planetary exploration applications; (8) planning; (9) new directions in robotics; and (10) commercialization.

  4. Vision science and technology for supervised intelligent space robots

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1990-01-01

    The focus of recent work in robotic vision for application in intelligent space robots such as the Extravehicular Activity (EVA) Retriever is in visual function, that is, how information about the space world is derived and then conveyed to cognition. The goal of this work in visual function is first to understand how the relevant structure of the surrounding world is evidenced by regularities among the pixels of images, then to understand how these regularities are mapped on the premises that form the primitive elements of cognition, and then to apply these understandings with the elements of visual processing (algorithms) and visual mechanism (machine organization) to intelligent space robot simulations and test beds. Since visual perception is the process of recognizing regularities in images that are known on the basis of a model of the world to be reliable related to causal structure in the environment (because perception attaches meaning to the link between a conception of the environment and the objective environment), the work involves understanding generic, generally applicable models of world structure (not merely objects) and how that structure evidences itself in images.

  5. Task Learning of an Arm Robot in Real Space by Using a Learning System in Virtual Space

    NASA Astrophysics Data System (ADS)

    Tsubone, Tadashi; Kurimoto, Kenichi; Sugiyama, Koichi; Wada, Yasuhiro

    Reinforced learning by which a robot acquires control rules through trial and error has gotten a lot of attention. However, it is quite difficult for robots to acquire control rules by reinforcement learning in real space because many learning trials are needed to achieve the control rules; the robot itself may lose control, or there may be safety problems with the control objects. In this paper, we propose a method in which a robot in real space learns a virtual task; then the task is transferred from virtual to real space. The robot eventually acquires the task in a real environment. We show that a real robot can acquire a task in virtual space with an input device by an example of an inverted pendulum. Next, we verify availability that the acquired task in virtual space can be applied to a real world task. We emphasize the utilization of virtual space to effectively obtain the real world task.

  6. Evolution of the Space Station Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Razvi, Shakeel; Burns, Susan H.

    2007-01-01

    The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that

  7. An integrated dexterous robotic testbed for space applications

    NASA Technical Reports Server (NTRS)

    Li, Larry C.; Nguyen, Hai; Sauer, Edward

    1992-01-01

    An integrated dexterous robotic system was developed as a testbed to evaluate various robotics technologies for advanced space applications. The system configuration consisted of a Utah/MIT Dexterous Hand, a PUMA 562 arm, a stereo vision system, and a multiprocessing computer control system. In addition to these major subsystems, a proximity sensing system was integrated with the Utah/MIT Hand to provide capability for non-contact sensing of a nearby object. A high-speed fiber-optic link was used to transmit digitized proximity sensor signals back to the multiprocessing control system. The hardware system was designed to satisfy the requirements for both teleoperated and autonomous operations. The software system was designed to exploit parallel processing capability, pursue functional modularity, incorporate artificial intelligence for robot control, allow high-level symbolic robot commands, maximize reusable code, minimize compilation requirements, and provide an interactive application development and debugging environment for the end users. An overview is presented of the system hardware and software configurations, and implementation is discussed of subsystem functions.

  8. Ground controlled robotic assembly operations for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Parrish, Joseph C.

    1991-01-01

    A number of dextrous robotic systems and associated positioning and transportation devices are available on Space Station Freedom (SSF) to perform assembly tasks that would otherwise need to be performed by extravehicular activity (EVA) crewmembers. The currently planned operating mode for these robotic systems during the assembly phase is teleoperation by intravehicular activity (IVA) crewmembers. While this operating mode is less hazardous and expensive than manned EVA operations, and has insignificant control loop time delays, the amount of IVA time available to support telerobotic operations is much less than the anticipated requirements. Some alternative is needed to allow the robotic systems to perform useful tasks without exhausting the available IVA resources; ground control is one such alternative. The issues associated with ground control of SSF robotic systems to alleviate onboard crew time availability constraints are investigated. Key technical issues include the effect of communication time delays, the need for safe, reliable execution of remote operations, and required modifications to the SSF ground and flight system architecture. Time delay compensation techniques such as predictive displays and world model-based force reflection are addressed and collision detection and avoidance strategies to ensure the safety of the on-orbit crew, Orbiter, and SSF are described. Although more time consuming and difficult than IVA controlled teleoperations or manned EVA, ground controlled telerobotic operations offer significant benefits during the SSF assembly phase, and should be considered in assembly planning activities.

  9. ASI's space automation and robotics programs: The second step

    NASA Technical Reports Server (NTRS)

    Dipippo, Simonetta

    1994-01-01

    The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.

  10. ASI's space automation and robotics programs: The second step

    NASA Astrophysics Data System (ADS)

    Dipippo, Simonetta

    1994-10-01

    The strategic decisions taken by ASI in the last few years in building up the overall A&R program, represent the technological drivers for other applications (i.e., internal automation of the Columbus Orbital Facility in the ESA Manned Space program, applications to mobile robots both in space and non-space environments, etc...). In this context, the main area of application now emerging is the scientific missions domain. Due to the broad range of applications of the developed technologies, both in the in-orbit servicing and maintenance of space structures and scientific missions, ASI foresaw the need to have a common technological development path, mainly focusing on: (1) control; (2) manipulation; (3) on-board computing; (4) sensors; and (5) teleoperation. Before entering into new applications in the scientific missions field, a brief overview of the status of the SPIDER related projects is given, underlining also the possible new applications for the LEO/GEO space structures.

  11. Automation and robotics - Key to productivity. [in industry and space

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    The automated and robotic systems requirements of the NASA Space Station are prompted by maintenance, repair, servicing and assembly requirements. Trend analyses, fault diagnoses, and subsystem status assessments for the Station's electrical power, guidance, navigation, control, data management and environmental control subsystems will be undertaken by cybernetic expert systems; this will reduce or eliminate on-board or ground facility activities that would otherwise be essential, enhancing system productivity. Additional capabilities may also be obtained through the incorporation of even a limited amount of artificial intelligence in the controllers of the various Space Station systems.

  12. Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey

    NASA Technical Reports Server (NTRS)

    Sanger, George F.

    1988-01-01

    A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.

  13. Review of multi-robot taxonomy, trends, and applications for defense and space

    NASA Astrophysics Data System (ADS)

    Lucas, Nathan P.; Pandya, Abhilash K.; Ellis, R. Darin

    2012-06-01

    Multi-robot systems may be capable of performing a wide variety of distributed, hazardous, and complex tasks that are difficult or impossible for independent robots. Despite significant research accomplishments and potential benefits for defense, space, and other application areas, much of the technology is still in early development. This paper reviews influential taxonomy and trends in multi-robotics. A condensed model of multi-robot interaction is presented. Potential near-term defense and space applications are categorized into two mission types: distributed and complex. Conclusions are drawn concerning research opportunities toward multi-robot systems for the defense and space domains.

  14. Surgery in space: the future of robotic telesurgery.

    PubMed

    Haidegger, Tamás; Sándor, József; Benyó, Zoltán

    2011-03-01

    The origins of telemedicine date back to the early 1970s, and combined with the concept of minimally invasive surgery, the idea of surgical robotics was born in the late 1980s based on the principle of providing active telepresence to surgeons. Many research projects were initiated, creating a set of instruments for endoscopic telesurgery, while visionary surgeons built networks for telesurgical patient care, demonstrated transcontinental surgery, and performed procedures in weightlessness. Long-distance telesurgery became the testbed for new medical support concepts of space missions. This article provides a complete review of the milestone experiments in the field, and describes a feasible concept to extend telemedicine beyond Earth orbit. With a possible foundation of an extraplanetary human outpost either on the Moon or on Mars, space agencies are carefully looking for effective and affordable solutions for life-support and medical care. The major challenges of surgery in weightlessness are also discussed. Teleoperated surgical robots have the potential to shape the future of extreme health care both in space and on Earth. Besides the apparent advantages, there are some serious challenges, primarily the difficulty of latency with teleoperation over long distances. Advanced virtualization and augmented-reality techniques should help human operators to adapt better to the special conditions. To meet safety standards and requirements in space, a three-layered architecture is recommended to provide the highest quality of telepresence technically achievable for provisional exploration missions. Surgical robotic technology is an emerging interdisciplinary field, with a great potential impact on many areas of health care, including telemedicine. With the proposed three-layered concept-relying only on currently available technology-effective support of long-distance telesurgery and human space missions are both feasible.

  15. Lymphovascular space invasion in robotic surgery for endometrial cancer.

    PubMed

    Hopkins, Mark R; Richmond, Abby M; Cheng, Georgina; Davidson, Susan; Spillman, Monique A; Sheeder, Jeanelle; Post, Miriam D; Guntupalli, Saketh R

    2014-01-01

    Minimally invasive surgery has become a standard treatment for endometrial cancer and offers significant benefits over abdominal approaches. There are discrepant data regarding lymphovascular space invasion (LVSI) and positive peritoneal cytology with the use of a uterine manipulator, with previous small-scale studies demonstrating an increased incidence of these prognostically important events. We sought to determine if there was a higher incidence of LVSI in patients who underwent robot-assisted surgery for endometrial cancer. We performed a single-institution review of medical records for patients who underwent open abdominal or robot-assisted hysterectomy for endometrial cancer over a 24-month period. The following data were abstracted: age, tumor grade and stage, size, depth of invasion, LVSI, and peritoneal cytology. For patients with LVSI, slides were reviewed by 2 pathologists for confirmation of LVSI. Of 104 patients identified, LVSI was reported in 39 (37.5%) and positive peritoneal cytology in 6 (4.8%). Rates of peritoneal cytology were not significantly different between the 2 groups (odds ratio, 0.55; 95% confidence interval, 0.10-3.17; P=.50). LVSI was reported in significantly fewer robot-assisted hysterectomies than open procedures (odds ratio, 0.39; 95% confidence interval, 0.17-0.92; P=.03). In subgroup analyses restricted to early-stage disease (stage≤II), there was no significant difference in LVSI between open and robot-assisted hysterectomies (odds ratio, 0.64; 95% confidence interval, 0.22-1.85; P=.43). In this retrospective study, we found that use of a uterine manipulator in robot-assisted surgery did not increase the incidence of LVSI.

  16. Kinematic path planning for space-based robotics

    NASA Astrophysics Data System (ADS)

    Seereeram, Sanjeev; Wen, John T.

    1998-01-01

    Future space robotics tasks require manipulators of significant dexterity, achievable through kinematic redundancy and modular reconfigurability, but with a corresponding complexity of motion planning. Existing research aims for full autonomy and completeness, at the expense of efficiency, generality or even user friendliness. Commercial simulators require user-taught joint paths-a significant burden for assembly tasks subject to collision avoidance, kinematic and dynamic constraints. Our research has developed a Kinematic Path Planning (KPP) algorithm which bridges the gap between research and industry to produce a powerful and useful product. KPP consists of three key components: path-space iterative search, probabilistic refinement, and an operator guidance interface. The KPP algorithm has been successfully applied to the SSRMS for PMA relocation and dual-arm truss assembly tasks. Other KPP capabilities include Cartesian path following, hybrid Cartesian endpoint/intermediate via-point planning, redundancy resolution and path optimization. KPP incorporates supervisory (operator) input at any detail to influence the solution, yielding desirable/predictable paths for multi-jointed arms, avoiding obstacles and obeying manipulator limits. This software will eventually form a marketable robotic planner suitable for commercialization in conjunction with existing robotic CAD/CAM packages.

  17. Dynamics and control of space robot considering joint friction

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Feng; Li, Hai-Quan; Chen, Yi-Jun; Cai, Guo-Ping

    2015-06-01

    It is well known that friction is an inevitable phenomenon existing in almost all mechanical systems including robotic systems. It can affect dynamic characteristics of mechanical systems and even harm accuracy of manual control. In this paper, we have conducted comprehensive study in detail on dynamics and control of a space robot with joint friction. Dynamic equation of the system is established based on Jourdain's velocity variation principle and the single direction recursive construction method. The Coulomb friction model, the Stribeck friction model and the LuGre friction model are adopted to describe the joint friction. Meanwhile, the calculation method for joint friction is discussed in detail, and the relationship between ideal constraint force and Lagrange multipliers is derived. Moreover, an active controller is designed by the nonlinear decoupling method for the trajectory tracking for the system. The validity of the proposed dynamic model is verified by comparison of numerical simulation results and results obtained from the software ADAMS. And then we carry out a series of simulations in order to observe the influence of joint friction on operating a space robot with different friction models. We also study the interaction between the low-speed motion and joint friction in the process of trajectory tracking.

  18. Space applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 2: Space projects overview

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  19. Space applications of automation, robotics and machine intelligence systems (ARAMIS). Volume 2. Space projects overview

    SciTech Connect

    Miller, R.H.; Minsky, M.L.; Smith, D.B.S.

    1982-08-01

    Applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and their related ground support functions are studied so that informed decisions can be made on which aspects of ARAMIS to develop. The space project breakdowns, which are used to identify tasks ('functional elements'), are described. The study method concentrates on the production of a matrix relating space project tasks to pieces of ARAMIS.

  20. Experiments in teleoperator and autonomous control of space robotic vehicles

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.

  1. Interactive intelligent remote operations: application to space robotics

    NASA Astrophysics Data System (ADS)

    Dupuis, Erick; Gillett, G. R.; Boulanger, Pierre; Edwards, Eric; Lipsett, Michael G.

    1999-11-01

    A set of tolls addressing the problems specific to the control and monitoring of remote robotic systems from extreme distances has been developed. The tools include the capability to model and visualize the remote environment, to generate and edit complex task scripts, to execute the scripts to supervisory control mode and to monitor and diagnostic equipment from multiple remote locations. Two prototype systems are implemented for demonstration. The first demonstration, using a prototype joint design called Dexter, shows the applicability of the approach to space robotic operation in low Earth orbit. The second demonstration uses a remotely controlled excavator in an operational open-pit tar sand mine. This demonstrates that the tools developed can also be used for planetary exploration operations as well as for terrestrial mining applications.

  2. Vision technology/algorithms for space robotics applications

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar; Defigueiredo, Rui J. P.

    1987-01-01

    The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.

  3. Autonomous assistance navigation for robotic wheelchairs in confined spaces.

    PubMed

    Cheein, Fernando Auat; Carelli, Ricardo; De la Cruz, Celso; Muller, Sandra; Bastos Filho, Teodiano F

    2010-01-01

    In this work, a visual interface for the assistance of a robotic wheelchair's navigation is presented. The visual interface is developed for the navigation in confined spaces such as narrows corridors or corridor-ends. The interface performs two navigation modus: non-autonomous and autonomous. The non-autonomous driving of the robotic wheelchair is made by means of a hand-joystick. The joystick directs the motion of the vehicle within the environment. The autonomous driving is performed when the user of the wheelchair has to turn (90, 90 or 180 degrees) within the environment. The turning strategy is performed by a maneuverability algorithm compatible with the kinematics of the wheelchair and by the SLAM (Simultaneous Localization and Mapping) algorithm. The SLAM algorithm provides the interface with the information concerning the environment disposition and the pose -position and orientation-of the wheelchair within the environment. Experimental and statistical results of the interface are also shown in this work.

  4. A matrix safety frame approach to robot safety for space applications. Thesis

    NASA Technical Reports Server (NTRS)

    Montgomery, T. D.; Lauderbaugh, L. Ken

    1988-01-01

    The planned use of autonomous robots in space applications has generated many new safety problems. This thesis assesses safety of autonomous robot systems through the structure of a proposed three-dimensional matrix safety frame. By identifying the common points of accidents and fatalities involving terrestrial robots, reviewing terrestrial robot safety standards, and modifying and extending these results to space applications, hazards are identified and their associated risks assessed. Three components of the safeguarding dimension of the matrix safety frame, safeguarding through design and operation for intrinsic safety, and incorporation of add-on safety systems are explained through examples for both terrestrial and space robots. A space robot hazard identification checklist, a qualitative tool for robot systems designers, is developed using the structure imparted by the matrix safety frame. The development of an expert system from the contents of the checklist is discussed.

  5. A Flexible Path for Human and Robotic Space Exploration

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Landis, Robert; Merrill, Raymond Gabriel; Mazanek, Daniel D.; Falck, Robert D.; Adams, Robert B.

    2010-01-01

    During the summer of 2009, a flexible path scenario for human and robotic space exploration was developed that enables frequent, measured, and publicly notable human exploration of space beyond low-Earth orbit (LEO). The formulation of this scenario was in support of the Exploration Beyond LEO subcommittee of the Review of U.S. Human Space Flight Plans Committee that was commissioned by President Obama. Exploration mission sequences that allow humans to visit a wide number of inner solar system destinations were investigated. The scope of destinations included the Earth-Moon and Earth-Sun Lagrange points, near-Earth objects (NEOs), the Moon, and Mars and its moons. The missions examined assumed the use of Constellation Program elements along with existing launch vehicles and proposed augmentations. Additionally, robotic missions were envisioned as complements to human exploration through precursor missions, as crew emplaced scientific investigations, and as sample gathering assistants to the human crews. The focus of the flexible path approach was to gain ever-increasing operational experience through human exploration missions ranging from a few weeks to several years in duration, beginning in deep space beyond LEO and evolving to landings on the Moon and eventually Mars.

  6. Automation and robotics for the Space Exploration Initiative: Results from Project Outreach

    NASA Technical Reports Server (NTRS)

    Gonzales, D.; Criswell, D.; Heer, E.

    1991-01-01

    A total of 52 submissions were received in the Automation and Robotics (A&R) area during Project Outreach. About half of the submissions (24) contained concepts that were judged to have high utility for the Space Exploration Initiative (SEI) and were analyzed further by the robotics panel. These 24 submissions are analyzed here. Three types of robots were proposed in the high scoring submissions: structured task robots (STRs), teleoperated robots (TORs), and surface exploration robots. Several advanced TOR control interface technologies were proposed in the submissions. Many A&R concepts or potential standards were presented or alluded to by the submitters, but few specific technologies or systems were suggested.

  7. RoMPS concept review automatic control of space robot, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form and include: (1) system concept; (2) Hitchhiker Interface Requirements; (3) robot axis control concepts; (4) Autonomous Experiment Management System; (5) Zymate Robot Controller; (6) Southwest SC-4 Computer; (7) oven control housekeeping data; and (8) power distribution.

  8. Independent study of automation and robotics for the National Space Program by the Automation and Robotics Panel

    SciTech Connect

    Not Available

    1985-02-25

    Methods are suggested for promoting continual growth in Space Station Automation and Robotics. Initial operation capability (IOC) Space Station design criteria are emphasized that will allow for ever-increasing levels of automation. The required technology advancement in robotics are described. The need is explained for improved human-machine interfaces, manipulators and sensors, and their combination with Earth developed robot technology into hybrid systems. The needed research base in computer science, artificial intelligence, and applied mathematics is discussed. Effects on private and Government Sectors are explained. It is shown that the Station will provide broader opportunities in time, space and society. Organizational recommendations are given for meeting Congressional goals for Space Station automation and robotics.

  9. Advancing automation and robotics technology for the Space Station and for the US economy, volume 2

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Technical Report, Volume 2, provides background information on automation and robotics technologies and their potential and documents: the relevant aspects of Space Station design; representative examples of automation and robotics; applications; the state of the technology and advances needed; and considerations for technology transfer to U.S. industry and for space commercialization.

  10. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robots

    NASA Technical Reports Server (NTRS)

    Erikson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  11. Lyndon B. Johnson Space Center (JSC) proposed dual-use technology investment program in intelligent robotics

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D.

    1994-01-01

    This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an objective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.

  12. Command and Telemetry Latency Effects on Operator Performance during International Space Station Robotics Operations

    NASA Technical Reports Server (NTRS)

    Currie, Nancy J.; Rochlis, Jennifer

    2004-01-01

    International Space Station (ISS) operations will require the on-board crew to perform numerous robotic-assisted assembly, maintenance, and inspection activities. Current estimates for some robotically performed maintenance timelines are disproportionate and potentially exceed crew availability and duty times. Ground-based control of the ISS robotic manipulators, specifically the Special Purpose Dexterous Manipulator (SPDM), is being examined as one potential solution to alleviate the excessive amounts of crew time required for extravehicular robotic maintenance and inspection tasks.

  13. Peer-to-Peer Human-Robot Interaction for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  14. Peer-to-Peer Human-Robot Interaction for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Nourbakhsh, Illah

    2004-01-01

    NASA has embarked on a long-term program to develop human-robot systems for sustained, affordable space exploration. To support this mission, we are working to improve human-robot interaction and performance on planetary surfaces. Rather than building robots that function as glorified tools, our focus is to enable humans and robots to work as partners and peers. In this paper. we describe our approach, which includes contextual dialogue, cognitive modeling, and metrics-based field testing.

  15. The climbing crawling robot (a unique cable robot for space and Earth)

    NASA Technical Reports Server (NTRS)

    Kerley, James J.; May, Edward; Eklund, Wayne

    1991-01-01

    Some of the greatest concerns in robotic designs have been the high center of gravity of the robot, the irregular or flat surface that the robot has to work on, the weight of the robot that has to handle heavy weights or use heavy forces, and the ability of the robot to climb straight up in the air. This climbing crawling robot handles these problems well with magnets, suction cups, or actuators. The cables give body to the robot and it performs very similar to a caterpillar. The computer program is simple and inexpensive as is the robot. One of the important features of this system is that the robot can work in pairs or triplets to handle jobs that would be extremely difficult for single robots. The light weight of the robot allows it to handle quite heavy weights. The number of feet give the robot many roots where a simple set of feet would give it trouble.

  16. Advancing Robotic Control for Space Exploration Using Robonaut 2

    NASA Technical Reports Server (NTRS)

    Badger, Julia; Diftler, Myron; Hart, Stephen; Joyce, Charles

    2012-01-01

    Robonaut 2, or R2, arrived on the International Space Station (ISS) in February 2011 and is currently being tested in preparation for its role initially as an Intra-Vehicular Activity (IVA) tool and eventually as a robot that performs Extra-Vehicular Activities (EVA). Robonaut 2, is a state of the art dexterous anthropomorphic robotic torso designed for assisting astronauts. R2 features increased force sensing, greater range of motion, higher bandwidth, and improved dexterity over its predecessor. Robonaut 2 is unique in its ability to safely allow humans in its workspace and to perform significant tasks in a workspace designed for humans. The current operational paradigm involves either the crew or the ground control team running semi-autonomous scripts on the robot as both the astronaut and the ground team monitor R2 and the data it produces. While this is appropriate for the check-out phase of operations, the future plans for R2 will stress the current operational framework. The approach described here will outline a suite of operational modes that will be developed for Robonaut 2. These operational modes include teleoperation, shared control, directed autonomy, and supervised autonomy, and they cover a spectrum of human involvement in controlling R2.

  17. Robust Task Space Trajectory Tracking Control of Robotic Manipulators

    NASA Astrophysics Data System (ADS)

    Galicki, M.

    2016-08-01

    This work deals with the problem of the accurate task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the end-effector. Furthermore, the movement is to be accomplished in such a way as to reduce both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we propose a class of chattering-free robust controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  18. Conference on Space and Military Applications of Automation and Robotics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.

  19. Conference on Space and Military Applications of Automation and Robotics

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Topics addressed include: robotics; deployment strategies; artificial intelligence; expert systems; sensors and image processing; robotic systems; guidance, navigation, and control; aerospace and missile system manufacturing; and telerobotics.

  20. Design reuse experience of space and hazardous operations robots

    NASA Technical Reports Server (NTRS)

    Oneil, P. Graham

    1994-01-01

    A comparison of design drivers for space and hazardous nuclear waste operating robots details similarities and differences in operations, performance and environmental parameters for these critical environments. The similarities are exploited to provide low risk system components based on reuse principles and design knowledge. Risk reduction techniques are used for bridging areas of significant differences. As an example, risk reduction of a new sensor design for nuclear environment operations is employed to provide upgradeable replacement units in a reusable architecture for significantly higher levels of radiation.

  1. 3D reconstruction and analysis of wing deformation in free-flying dragonflies.

    PubMed

    Koehler, Christopher; Liang, Zongxian; Gaston, Zachary; Wan, Hui; Dong, Haibo

    2012-09-01

    Insect wings demonstrate elaborate three-dimensional deformations and kinematics. These deformations are key to understanding many aspects of insect flight including aerodynamics, structural dynamics and control. In this paper, we propose a template-based subdivision surface reconstruction method that is capable of reconstructing the wing deformations and kinematics of free-flying insects based on the output of a high-speed camera system. The reconstruction method makes no rigid wing assumptions and allows for an arbitrary arrangement of marker points on the interior and edges of each wing. The resulting wing surfaces are projected back into image space and compared with expert segmentations to validate reconstruction accuracy. A least squares plane is then proposed as a universal reference to aid in making repeatable measurements of the reconstructed wing deformations. Using an Eastern pondhawk (Erythimus simplicicollis) dragonfly for demonstration, we quantify and visualize the wing twist and camber in both the chord-wise and span-wise directions, and discuss the implications of the results. In particular, a detailed analysis of the subtle deformation in the dragonfly's right hindwing suggests that the muscles near the wing root could be used to induce chord-wise camber in the portion of the wing nearest the specimen's body. We conclude by proposing a novel technique for modeling wing corrugation in the reconstructed flapping wings. In this method, displacement mapping is used to combine wing surface details measured from static wings with the reconstructed flapping wings, while not requiring any additional information be tracked in the high speed camera output.

  2. A Test of Transitive Inferences in Free-Flying Honeybees: Unsuccessful Performance Due to Memory Constraints

    ERIC Educational Resources Information Center

    Benard, Julie; Giurfa, Martin

    2004-01-01

    We asked whether honeybees, "Apis mellifera," could solve a transitive inference problem. Individual free-flying bees were conditioned with four overlapping premise pairs of five visual patterns in a multiple discrimination task (A+ vs. B-, B+ vs. C-, C+ vs. D-, D+ vs. E-, where + and - indicate sucrose reward or absence of it,…

  3. A Test of Transitive Inferences in Free-Flying Honeybees: Unsuccessful Performance Due to Memory Constraints

    ERIC Educational Resources Information Center

    Benard, Julie; Giurfa, Martin

    2004-01-01

    We asked whether honeybees, "Apis mellifera," could solve a transitive inference problem. Individual free-flying bees were conditioned with four overlapping premise pairs of five visual patterns in a multiple discrimination task (A+ vs. B-, B+ vs. C-, C+ vs. D-, D+ vs. E-, where + and - indicate sucrose reward or absence of it,…

  4. Space robotics: Recent accomplishments and opportunities for future research

    NASA Technical Reports Server (NTRS)

    Montgomery, Raymond C.; Buttrill, Carey S.; Dorsey, John T.; Juang, Jer-Nan; Lallman, Frederick J.; Moerder, Daniel D.; Scott, Michael A.; Troutman, Patrick; Williams, Robert L., II

    1992-01-01

    The Langley Guidance, Navigation, and Control Technical Committee (GNCTC) was one of six technical committees created in 1991 by the Chief Scientist, Dr. Michael F. Card. During the kickoff meeting Dr. Card charged the chairmen to: (1) establish a cross-Center committee; (2) support at least one workshop in a selected discipline; and (3) prepare a technical paper on recent accomplishments in the discipline and on opportunities for future research. The Guidance, Navigation, and Control Committee was formed and selected for focus on the discipline of Space robotics. This report is a summary of the committee's assessment of recent accomplishments and opportunities for future research. The report is organized as follows. First is an overview of the data sources used by the committee. Next is a description of technical needs identified by the committee followed by recent accomplishments. Opportunities for future research ends the main body of the report. It includes the primary recommendation of the committee that NASA establish a national space facility for the development of space automation and robotics, one element of which is a telerobotic research platform in space. References 1 and 2 are the proceedings of two workshops sponsored by the committee during its June 1991, through May 1992 term. The focus of the committee for the June 1992 - May 1993 term will be to further define to the recommended platform in space and to add an additional discipline which includes aircraft related GN&C issues. To the latter end members performing aircraft related research will be added to the committee. (A preliminary assessment of future opportunities in aircraft-related GN&C research has been included as appendix A.)

  5. Mini AERCam Inspection Robot for Human Space Missions

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  6. Space Missions for Automation and Robotics Technologies (SMART) Program

    NASA Technical Reports Server (NTRS)

    Cliffone, D. L.; Lum, H., Jr.

    1985-01-01

    NASA is currently considering the establishment of a Space Mission for Automation and Robotics Technologies (SMART) Program to define, develop, integrate, test, and operate a spaceborne national research facility for the validation of advanced automation and robotics technologies. Initially, the concept is envisioned to be implemented through a series of shuttle based flight experiments which will utilize telepresence technologies and real time operation concepts. However, eventually the facility will be capable of a more autonomous role and will be supported by either the shuttle or the space station. To ensure incorporation of leading edge technology in the facility, performance capability will periodically and systematically be upgraded by the solicitation of recommendations from a user advisory group. The facility will be managed by NASA, but will be available to all potential investigators. Experiments for each flight will be selected by a peer review group. Detailed definition and design is proposed to take place during FY 86, with the first SMART flight projected for FY 89.

  7. Mini AERCam Inspection Robot for Human Space Missions

    NASA Technical Reports Server (NTRS)

    Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.

    2004-01-01

    The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.

  8. Next Generation Simulation Framework for Robotic and Human Space Missions

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  9. Next Generation Simulation Framework for Robotic and Human Space Missions

    NASA Technical Reports Server (NTRS)

    Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven

    2012-01-01

    The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.

  10. Robonaut 2 - The First Humanoid Robot in Space

    NASA Technical Reports Server (NTRS)

    Diftler, M. A.; Radford, N. A.; Mehling, J. S.; Abdallah, M. E.; Bridgwater, L. B.; Sanders, A. M.; Askew, R. S.; Linn, D. M.; Yamokoski, J. D.; Permenter, F. A.; Hargrave, B. K.

    2010-01-01

    NASA and General Motors have developed the second generation Robonaut, Robonaut 2 or R2, and it is scheduled to arrive on the International Space Station in late 2010 and undergo initial testing in early 2011. This state of the art, dexterous, anthropomorphic robotic torso has significant technical improvements over its predecessor making it a far more valuable tool for astronauts. Upgrades include: increased force sensing, greater range of motion, higher bandwidth and improved dexterity. R2 s integrated mechatronics design results in a more compact and robust distributed control system with a faction of the wiring of the original Robonaut. Modularity is prevalent throughout the hardware and software along with innovative and layered approaches for sensing and control. The most important aspects of the Robonaut philosophy are clearly present in this latest model s ability to allow comfortable human interaction and in its design to perform significant work using the same hardware and interfaces used by people. The following describes the mechanisms, integrated electronics, control strategies and user interface that make R2 a promising addition to the Space Station and other environments where humanoid robots can assist people.

  11. Free-flying teleoperator requirements and conceptual design.

    NASA Technical Reports Server (NTRS)

    Onega, G. T.; Clingman, J. H.

    1973-01-01

    A teleoperator, as defined by NASA, is a remotely controlled cybernetic man-machine system designed to augment and extend man's sensory, manipulative, and cognitive capabilities. Teleoperator systems can fulfill an important function in the Space Shuttle program. They can retrieve automated satellites for refurbishment and reuse. Cargo can be transferred over short or large distances and orbital operations can be supported. A requirements analysis is discussed, giving attention to the teleoperator spacecraft, docking and stowage systems, display and controls, propulsion, guidance, navigation, control, the manipulators, the video system, the electrical power, and aspects of communication and data management. Questions of concept definition and evaluation are also examined.

  12. Manipulability measure of dual-arm space robot and its application to design an optimal configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liang, Bin; Wang, Xueqian; Li, Gang; Chen, Zhang; Zhu, Xiaojun

    2016-11-01

    Coupling effect exists among different arms and the base in a multi-arm space robot. The manipulability measure of one arm can be affected by the base and the other arms, which has important effects on the configuration optimization, the singularity avoidance and the compliant control. The manipulability measure for a multi-arm space robot is more complex than that of a single-arm space robot. At present, the manipulability measure of a multi-arm space robot has not been studied. In the paper, a new concept of manipulability measure is applied to analyze the manipulability measure for a dual-arm space robot, especially for the manipulability measure of the mission arm subjecting to the influence from coupling effect of auxiliary arm and the base. Based on the manipulability measure of mission arm, a performance index is introduced and used to design and choose an optimization configuration for a dual-arm space robot. Finally, a plane dual-arm space robot is simulated, which is illustrated the influence of joint angles and the base attitude on mission arm's manipulability measure. Simulation results show that the proposed manipulability measure is useful for a multi-arm space robot and optimal configuration can be extended and applied to the coordinated soft rendezvous and docking and the target capture in the field of on-orbit servicing.

  13. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  14. Robotic Materials Handling in Space: Mechanical Design of the Robot Operated Materials Processing System HitchHiker Experiment

    NASA Technical Reports Server (NTRS)

    Voellmer, George

    1997-01-01

    The Goddard Space Flight Center has developed the Robot Operated Materials Processing System (ROMPS) that flew aboard STS-64 in September, 1994. The ROMPS robot transported pallets containing wafers of different materials from their storage racks to a furnace for thermal processing. A system of tapered guides and compliant springs was designed to deal with the potential misalignments. The robot and all the sample pallets were locked down for launch and landing. The design of the passive lockdown system, and the interplay between it and the alignment system are presented.

  15. International space station mobile servicing system robotic workstation displays and overlays

    NASA Astrophysics Data System (ADS)

    Burns, Susan H.

    1997-07-01

    The International Space Station (ISSP) currently under development is equipped with robotic workstations to perform and provide information on the mobile servicing system robotic functions in use. The workstations include conventional and special developed hardware, software displays, and control software configurations. The robotic activities are critical to the ISSP during assembly and maintenance activities resulting in detailed crew interface requirements. Operational scenarios were used to develop the requirements of the ISSP Robotic activities resulting in the specification and configuration of the Mobile Servicing System Robotic Workstation.

  16. Gaze strategy in the free flying zebra finch (Taeniopygia guttata).

    PubMed

    Eckmeier, Dennis; Geurten, Bart R H; Kress, Daniel; Mertes, Marcel; Kern, Roland; Egelhaaf, Martin; Bischof, Hans-Joachim

    2008-01-01

    Fast moving animals depend on cues derived from the optic flow on their retina. Optic flow from translational locomotion includes information about the three-dimensional composition of the environment, while optic flow experienced during a rotational self motion does not. Thus, a saccadic gaze strategy that segregates rotations from translational movements during locomotion will facilitate extraction of spatial information from the visual input. We analysed whether birds use such a strategy by highspeed video recording zebra finches from two directions during an obstacle avoidance task. Each frame of the recording was examined to derive position and orientation of the beak in three-dimensional space. The data show that in all flights the head orientation was shifted in a saccadic fashion and was kept straight between saccades. Therefore, birds use a gaze strategy that actively stabilizes their gaze during translation to simplify optic flow based navigation. This is the first evidence of birds actively optimizing optic flow during flight.

  17. Survey of modeling, planning, and ground verification of space robotic systems

    NASA Astrophysics Data System (ADS)

    Xu, Wenfu; Liang, Bin; Xu, Yangsheng

    2011-06-01

    Space robotic systems are expected to play an increasingly important role in future space activities. Nevertheless, dynamics modeling and motion planning of a space robot are much more complex than those of a fixed-base robot, due to the dynamic coupling between the manipulator and its base. On the other hand, in order to assure the success of on-orbital missions, many experiments are required to verify the key algorithms on the ground before the space robot is launched. In this paper, the main research achievements on dynamics modeling, path planning, and ground verification are reviewed, and future studies are recommended. Firstly, we summarize the essential modeling concepts, and deduce the kinematics and dynamics equations of a space robot. Secondly, the main motion planning approaches are discussed. Then, different ground verification systems, including the air-bearing table, neutral buoyancy, airplane flying, free-falling motion, suspension system, and hybrid system, are introduced. Finally, the future research trends are forecasted.

  18. A three-finger multisensory hand for dexterous space robotic tasks

    NASA Technical Reports Server (NTRS)

    Murase, Yuichi; Komada, Satoru; Uchiyama, Takashi; Machida, Kazuo; Akita, Kenzo

    1994-01-01

    The National Space Development Agency of Japan will launch ETS-7 in 1997, as a test bed for next generation space technology of RV&D and space robot. MITI has been developing a three-finger multisensory hand for complex space robotic tasks. The hand can be operated under remote control or autonomously. This paper describes the design and development of the hand and the performance of a breadboard model.

  19. Transoral robotic surgery in retrostyloid parapharyngeal space schwannomas.

    PubMed

    Ansarin, Mohssen; Tagliabue, Marta; Chu, Francesco; Zorzi, Stefano; Proh, Michele; Preda, Lorenzo

    2014-01-01

    Parapharyngeal space (PPS) tumors are very rare, representing about 0.5% of head and neck neoplasms. An external surgical approach is mainly used. Several recent papers show how transoral robotic surgery (TORS) excision could be a prospective tool to remove mainly benign lesions in PPS; no cases of neurogenic tumors from the retrostyloid space treated with TORS have been reported. We present two cases which underwent TORS for schwannomas from the retrostyloid compartment of the parapharyngeal space. Clinical diagnosis of schwannoma was performed by magnetic resonance imaging (MRI). In the first case a 6 cm neurogenic tumor arose from the vagus nerve and in the second case a 5 cm mass from the sympathetic chain was observed. Both cases were treated successfully by the TORS approach using a new "J"-shaped incision through the mucosa and superior pharyngeal constrictor muscle. Left vocal cord palsy and the Claude Bernard Horner syndrome, respectively, were observed as expected postsurgical sequelae. In case 1 the first bite syndrome developed after three months, while no complications were observed in case 2. Both patients regained a normal swallowing function. TORS seems to be a feasible mini-invasive procedure for benign PPS masses including masses in the poststyloid space.

  20. Control of Human-Following Robot Based on Cooperative Positioning with an Intelligent Space

    NASA Astrophysics Data System (ADS)

    Morioka, Kazuyuki; Oinaga, Yudai; Nakamura, Yuichi

    This paper proposes the localization method based on interactive communication between a mobile robot and a networked laser range scanner installed in an intelligent space and achieves human-following control of a mobile robot with the method. Generally, human tracking with cameras or laser range scanners on board the robots has been utilized for control of mobile robots to follow human walking. In addition to human tracking, mobile robots have to perform position estimation simultaneously. There is constraints in measurement for landmark detection or SLAM, because target human walks close to the robot while human following. Then, proposed system consiers to utilize an intelligent environment where sensors are distributed. The proposed system exchanges position and heading information estimated in the mobile robot and the networked laser range scanner with each other. The networked laser range scanner searches and detects target human and the robot based on the position information sent from the robot. The robot receives the detection results from the networked laser range scanner. Then, the estimate position is updated and reference velocities for human-following control are calculated with them. Estimation errors with odometry in the robot and unstable tracking of target in the networked laser range scanner are compensated with this system. In this paper, communication timing between the robot and the networked laser range scanners while human-following is discussed. Human-following experiments are performed and the results are shown.

  1. Robotic experiment with a force reflecting handcontroller onboard MIR space station

    NASA Technical Reports Server (NTRS)

    Delpech, M.; Matzakis, Y.

    1994-01-01

    During the French CASSIOPEE mission that will fly onboard MIR space station in 1996, ergonomic evaluations of a force reflecting handcontroller will be performed on a simulated robotic task. This handcontroller is a part of the COGNILAB payload that will be used also for experiments in neurophysiology. The purpose of the robotic experiment is the validation of a new control and design concept that would enhance the task performances for telemanipulating space robots. Besides the handcontroller and its control unit, the experimental system includes a simulator of the slave robot dynamics for both free and constrained motions, a flat display screen and a seat with special fixtures for holding the astronaut.

  2. Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    NASA Technical Reports Server (NTRS)

    Erickson, Jon D. (Editor)

    1994-01-01

    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications.

  3. Development of a large space robot - A multi-segment approach. I

    NASA Technical Reports Server (NTRS)

    Spanos, P. D.; Berka, Reginald B.

    1993-01-01

    A concept of multisegment robot (of a class of large space cranes) is developed for use in space-based construction operations. The robot consists of a collection of segments, which are pinned together to form a snakelike configuration, with a single degree of freedom representing rotation being retained at each pinned connection and with reaction flywheels suspended within each segment for the control necessary to position each body segment. Algorithms are developed for positioning this serpentine robot to a prescribed location and orientation. A multibody dynamics simulation is used to investigate the behavior and interactions of the robot, demonstrating its viability.

  4. Self-Sustaining Robotic Ecologies and Space Architecture

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    2004-01-01

    Contents include the folowing: rom "one shot" explorations to infrastructure building. Challenges to infrastructure building. Modularity and self-sustaining robotic ecologies. A pathway to human presence. Robotic " archntecture". The "robosphere" concept.

  5. Dynamic control of robot arms in tasks space using nonlinear feedback

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Tarn, T. J.

    1988-01-01

    Differential geometric system and control theory is used to develop a new dynamic system feedback technique for robot task space commands. The nonlinear robot arm system is feedback-linearized and simultaneously is output-decoupled by an appropriate nonlinear feedback and nonlinear coordinate transformation. On the joint space level, the scheme only commands drive forces or torques or their equivalent quantities addressed to the joint drives. An important property of the technique is that the planned and commanded task space trajectory together with its time derivatives directly drive the robot arm through a linear system model. A method for task space motion planning matching the requirements of the new scheme is briefly presented. The implications of the new technique for second and third order model robot arms with and without force feedback measuremnts and for two or more dynamically cooperating robot arms are discussed.

  6. Preliminary results on noncollocated torque control of space robot actuators

    NASA Technical Reports Server (NTRS)

    Tilley, Scott W.; Francis, Colin M.; Emerick, Ken; Hollars, Michael G.

    1989-01-01

    In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given.

  7. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  8. Robotics.

    ERIC Educational Resources Information Center

    Waddell, Steve; Doty, Keith L.

    1999-01-01

    "Why Teach Robotics?" (Waddell) suggests that the United States lags behind Europe and Japan in use of robotics in industry and teaching. "Creating a Course in Mobile Robotics" (Doty) outlines course elements of the Intelligent Machines Design Lab. (SK)

  9. Mathematical model for adaptive control system of ASEA robot at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Zia, Omar

    1989-01-01

    The dynamic properties and the mathematical model for the adaptive control of the robotic system presently under investigation at Robotic Application and Development Laboratory at Kennedy Space Center are discussed. NASA is currently investigating the use of robotic manipulators for mating and demating of fuel lines to the Space Shuttle Vehicle prior to launch. The Robotic system used as a testbed for this purpose is an ASEA IRB-90 industrial robot with adaptive control capabilities. The system was tested and it's performance with respect to stability was improved by using an analogue force controller. The objective of this research project is to determine the mathematical model of the system operating under force feedback control with varying dynamic internal perturbation in order to provide continuous stable operation under variable load conditions. A series of lumped parameter models are developed. The models include some effects of robot structural dynamics, sensor compliance, and workpiece dynamics.

  10. The impact of an IVA robot on the Space Station microgravity environment

    NASA Technical Reports Server (NTRS)

    Harman, Phillip E.; Rohn, Douglas A.

    1989-01-01

    In order to maintain a microgravity environment during Space Station operations, it will be necessary to minimize reaction forces. These mechanical forces will typically occur during reboost, docking, equipment operation, intravehicular activities (IVA) robot operation, or crew activity. This paper focuses on those disturbances created by an IVA robot and its impact on the Space Station microgravity environment. The robot dynamic analysis that was used to generate the forcing function as the input into a finite element model of the U.S. Laboratory will be shown. Acceleration levels were determined through analysis and have shown that a robotic system can sustain reaction forces into the station below 0.0001 g. A comparison between IVA robot effects and crew motion effects on the low-g environment is also described. It is concluded that robot trajectory shaping and motor accelerations feedback can minimize reaction forces.

  11. The impact of an IVA robot on the Space Station microgravity environment

    NASA Technical Reports Server (NTRS)

    Harman, Phillip E.; Rohn, Douglas A.

    1989-01-01

    In order to maintain a microgravity environment during Space Station operations, it will be necessary to minimize reaction forces. These mechanical forces will typically occur during reboost, docking, equipment operation, intravehicular activities (IVA) robot operation, or crew activity. This paper focuses on those disturbances created by an IVA robot and its impact on the Space Station microgravity environment. The robot dynamic analysis that was used to generate the forcing function as the input into a finite element model of the U.S. Laboratory will be shown. Acceleration levels were determined through analysis and have shown that a robotic system can sustain reaction forces into the station below 0.0001 g. A comparison between IVA robot effects and crew motion effects on the low-g environment is also described. It is concluded that robot trajectory shaping and motor accelerations feedback can minimize reaction forces.

  12. Robonaut 2 - Building a Robot on the International Space Station

    NASA Technical Reports Server (NTRS)

    Diftler, Myron; Badger, Julia; Joyce, Charles; Potter, Elliott; Pike, Leah

    2015-01-01

    In 2010, the Robonaut Project embarked on a multi-phase mission to perform technology demonstrations on-board the International Space Station (ISS), showcasing state of the art robotics technologies through the use of Robonaut 2 (R2). This phased approach implements a strategy that allows for the use of ISS as a test bed during early development to both demonstrate capability and test technology while still making advancements in the earth based laboratories for future testing and operations in space. While R2 was performing experimental trials onboard the ISS during the first phase, engineers were actively designing for Phase 2, Intra-Vehicular Activity (IVA) Mobility, that utilizes a set of zero-g climbing legs outfitted with grippers to grasp handrails and seat tracks. In addition to affixing the new climbing legs to the existing R2 torso, it became clear that upgrades to the torso to both physically accommodate the climbing legs and to expand processing power and capabilities of the robot were required. In addition to these upgrades, a new safety architecture was also implemented in order to account for the expanded capabilities of the robot. The IVA climbing legs not only needed to attach structurally to the R2 torso on ISS, but also required power and data connections that did not exist in the upper body. The climbing legs were outfitted with a blind mate adapter and coarse alignment guides for easy installation, but the upper body required extensive rewiring to accommodate the power and data connections. This was achieved by mounting a custom adapter plate to the torso and routing the additional wiring through the waist joint to connect to the new set of processors. In addition to the power and data channels, the integrated unit also required updated electronics boards, additional sensors and updated processors to accommodate a new operating system, software platform, and custom control system. In order to perform the unprecedented task of building a robot

  13. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  14. Development of automation and robotics for space via computer graphic simulation methods

    NASA Technical Reports Server (NTRS)

    Fernandez, Ken

    1988-01-01

    A robot simulation system, has been developed to perform automation and robotics system design studies. The system uses a procedure-oriented solid modeling language to produce a model of the robotic mechanism. The simulator generates the kinematics, inverse kinematics, dynamics, control, and real-time graphic simulations needed to evaluate the performance of the model. Simulation examples are presented, including simulation of the Space Station and the design of telerobotics for the Orbital Maneuvering Vehicle.

  15. Status of robotic mission studies for the Space Exploration Initiative - 1991

    NASA Technical Reports Server (NTRS)

    Bourke, Roger D.; Dias, William C.; Golombek, Matthew P.; Pivirotto, Donna L.; Sturms, Francis M.; Hubbard, G. S.

    1991-01-01

    Results of studies of robotic missions to the moon and Mars planned under the U.S. Space Exploration Initiative are summarized. First, an overall strategy for small robotic missions to accomplish the information gathering required by human missions is reviewed, and the principal robotic mission requirements are discussed. The discussion covers the following studies: the Lunar Observer, the Mars Environmental Survey mission, Mars Sample Return missions using microtechnology, and payloads.

  16. Exhaustive geographic search with mobile robots along space-filling curves

    SciTech Connect

    Spires, S.V.; Goldsmith, S.Y.

    1998-03-01

    Swarms of mobile robots can be tasked with searching a geographic region for targets of interest, such as buried land mines. The authors assume that the individual robots are equipped with sensors tuned to the targets of interest, that these sensors have limited range, and that the robots can communicate with one another to enable cooperation. How can a swarm of cooperating sensate robots efficiently search a given geographic region for targets in the absence of a priori information about the target`s locations? Many of the obvious approaches are inefficient or lack robustness. One efficient approach is to have the robots traverse a space-filling curve. For many geographic search applications, this method is energy-frugal, highly robust, and provides guaranteed coverage in a finite time that decreases as the reciprocal of the number of robots sharing the search task. Furthermore, it minimizes the amount of robot-to-robot communication needed for the robots to organize their movements. This report presents some preliminary results from applying the Hilbert space-filling curve to geographic search by mobile robots.

  17. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The progress made by levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology is described. Emphasis is placed upon the Space Station Freedom Program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) progress report 10, the flight telerobotic servicer, and the Advanced Development Program. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  18. Experimental Test Rig for Optimal Control of Flexible Space Robotic Arms

    DTIC Science & Technology

    2016-12-01

    RIG FOR OPTIMAL CONTROL OF FLEXIBLE SPACE ROBOTIC ARMS by Martin J. Griggs December 2016 Thesis Advisor: Mark Karpenko Second Reader...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE EXPERIMENTAL TEST RIG FOR OPTIMAL CONTROL OF FLEXIBLE SPACE ROBOTIC ARMS 5. FUNDING...rig for demonstrations on flexible space systems control. Specifically, an air-bearing test bed incorporated a two-degree of freedom (2DOF) rigid

  19. Robotic Drilling Technology and Applications to Future Space Missions

    NASA Astrophysics Data System (ADS)

    Guerrero, J. L.; Reiter, J. W.; Rumann, A.; Wu, D.; Wang, G. Y.; Meyers, M.; Craig, J.; Abbey, W.; Beegle, L. W.

    2006-12-01

    Introduction: Robotic drilling has great potential to become a vital, enabling technology in the context of future human and robotic exploration of the Solar System. Specific needs for human exploration relate to the ability for remote missions to scout potential locations for habitability and/or resource recovery. We will describe relevant challenges to robotic drilling and development pertaining to operations within hostile planetary environments. From the perspective of a system concept for mission architectures and exploration approaches, the ability to drill into extra-terrestrial planetary bodies and recover samples for analysis and/or utilization can provide vital references, resources, and opportunities for mission enrichment. The technology for supporting and planning such missions presents a feed-forward advantage for a human presence in such environments. Future space missions for drilling in the shallow and mid-to-deep subsurface face issues unfamiliar to terrestrial analogues, including limited power, very low or very high pressures, and widely varying thermal environments. We will discuss the means and approaches for establishing drilling operations, managing drilling sites, and mitigating environmental effects. Early robotic phases will leverage system-of-systems collaborations among humans and machines on and above the surface of planetary bodies. Such "precursor missions" will be charged with the task of mapping subsurface geology, understanding soil/rock particle distributions, obtaining geologic history, and determining local resource profiles. An example of the need for this kind of information is given to good effect by one of the lessons learned by NASA's Apollo program: the effects of lunar dust on humans, drilling mechanisms, and mission expectations were far greater than initially expected, and are still being critically considered. Future missions to Solar System bodies, including the Moon and Mars, will need to have advance information

  20. Tuneable autonomy and human interfaces for free-flying servicing vehicles

    NASA Astrophysics Data System (ADS)

    Roger, Alexander; Welsh, Teri; McInnes, Colin R.

    2001-02-01

    Future mission applications for on-orbit servicing vehicles include inspection and maintenance of the International Space Station (ISS) and future crewed deep space missions. The use of robotic servicing vehicles is seen as a key requirement to significantly reduce total human EVA hours for such applications. A necessary technology for these vehicles is the provision of automated mission and trajectory planning tools and suitable human-machine interfaces. This paper will explore new methods for such automation along with approaches to blend autonomy and human control in a seamless manner. These methods have been applied to a range of vehicles including the Daimler-Chrysler ISS Inspector. .

  1. Advances in Robotic, Human, and Autonomous Systems for Missions of Space Exploration

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R.; Briggs, Geoffrey A.; Glass, Brian J.; Pedersen, Liam; Kortenkamp, David M.; Wettergreen, David S.; Nourbakhsh, I.; Clancy, Daniel J.; Zornetzer, Steven (Technical Monitor)

    2002-01-01

    Space exploration missions are evolving toward more complex architectures involving more capable robotic systems, new levels of human and robotic interaction, and increasingly autonomous systems. How this evolving mix of advanced capabilities will be utilized in the design of new missions is a subject of much current interest. Cost and risk constraints also play a key role in the development of new missions, resulting in a complex interplay of a broad range of factors in the mission development and planning of new missions. This paper will discuss how human, robotic, and autonomous systems could be used in advanced space exploration missions. In particular, a recently completed survey of the state of the art and the potential future of robotic systems, as well as new experiments utilizing human and robotic approaches will be described. Finally, there will be a discussion of how best to utilize these various approaches for meeting space exploration goals.

  2. Automation and robotics for the Space Station - The influence of the Advanced Technology Advisory Committee

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert R.; Willshire, Kelli F.

    1988-01-01

    The reports of a committee established by Congress to identify specific systems of the Space Station which would advance automation and robotics technologies are reviewed. The history of the committee, its relation to NASA, and the reports which it has released are discussed. The committee's reports recommend the widespread use of automation and robotics for the Space Station, a program for technology development and transfer between industries and research and development communities, and the planned use of robots to service and repair satellites and their payloads which are accessible from the Space Station.

  3. Robots Explore the Farthest Reaches of Earth and Space

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "We were the first that ever burst/Into that silent sea," the title character recounts in Samuel Taylor Coleridge s opus Rime of the Ancient Mariner. This famous couplet is equally applicable to undersea exploration today as surface voyages then, and has recently been applied to space travel in the title of a chronicle of the early years of human space flight ("Into That Silent Sea: Trailblazers of the Space Era, 1961-1965"), companion to the +n the Shadow of the Moon book and movie. The parallel is certainly fitting, considering both fields explore unknown, harsh, and tantalizingly inhospitable environments. For starters, exploring the Briny Deep and the Final Frontier requires special vehicles, and the most economical and safest means for each employ remotely operated vehicles (ROVs). ROVs have proven the tool of choice for exploring remote locations, allowing scientists to explore the deepest part of the sea and the furthest reaches of the solar system with the least weight penalty, the most flexibility and specialization of design, and without the need to provide for sustaining human life, or the risk of jeopardizing that life. Most NASA probes, including the historic Voyager I and II spacecraft and especially the Mars rovers, Spirit and Opportunity, feature remote operation, but new missions and new planetary environments will demand new capabilities from the robotic explorers of the future. NASA has an acute interest in the development of specialized ROVs, as new lessons learned on Earth can be applied to new environments and increasingly complex missions in the future of space exploration.

  4. Requirements and applications for robotic servicing of military space systems

    NASA Technical Reports Server (NTRS)

    Ledford, Otto C., Jr.; Bennett, Rodney G.

    1992-01-01

    The utility of on-orbit servicing of spacecraft has been demonstrated by NASA several times using shuttle-based astronaut EVA. There has been interest in utilizing on-orbit servicing for military space systems as well. This interest has been driven by the increasing reliance of all branches of the military upon space-based assets, the growing numbers, complexity, and cost of those assets, and a desire to normalize support policies for space-based operations. Many military satellites are placed in orbits which are unduly hostile for astronaut operations and/or cannot be reached by the shuttle. In addition, some of the projected tasks may involve hazardous operations. This has led to a focus on robotic systems, instead of astronauts, for the basis of projected servicing systems. This paper describes studies and activities which will hopefully lead to on-orbit servicing being one of the tools available to military space systems designers and operators. The utility of various forms of servicing has been evaluated for present and projected systems, critical technologies have been identified, and strategies for the development and insertion of this technology into operational systems have been developed. Many of the projected plans have been adversely affected by budgetary restrictions and evolving architectures, but the fundamental benefits and requirements are well understood. A method of introducing servicing capabilities in a manner which has a low impact on the system designer and does not require the prior development of an expensive infrastructure is discussed. This can potentially lead to an evolutionary implementation of the full technology.

  5. Deployable robotic woven wire structures and joints for space applications

    NASA Technical Reports Server (NTRS)

    Shahinpoor, MO; Smith, Bradford

    1991-01-01

    Deployable robotic structures are basically expandable and contractable structures that may be transported or launched to space in a compact form. These structures may then be intelligently deployed by suitable actuators. The deployment may also be done by means of either airbag or spring-loaded typed mechanisms. The actuators may be pneumatic, hydraulic, ball-screw type, or electromagnetic. The means to trigger actuation may be on-board EPROMS, programmable logic controllers (PLCs) that trigger actuation based on some input caused by the placement of the structure in the space environment. The actuation may also be performed remotely by suitable remote triggering devices. Several deployable woven wire structures are examined. These woven wire structures possess a unique form of joint, the woven wire joint, which is capable of moving and changing its position and orientation with respect to the structure itself. Due to the highly dynamic and articulate nature of these joints the 3-D structures built using them are uniquely and highly expandable, deployable, and dynamic. The 3-D structure naturally gives rise to a new generation of deployable three-dimensional spatial structures.

  6. A study of space-rated connectors using a robot end-effector

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.

    1995-01-01

    The main research activities have been directed toward the study of the Robot Operated Materials Processing System (ROMPS), developed at GSFC under a flight project to investigate commercially promising in-space material processes and to design reflyable robot automated systems to be used in the above processes for low-cost operations. The research activities can be divided into two phases. Phase 1 dealt with testing of ROMPS robot mechanical interfaces and compliant device using a Stewart Platform testbed and Phase 2 with computer simulation study of the ROMPS robot control system. This report provides a summary of the results obtained in Phase 1 and Phase 2.

  7. Adaptive task-space synchronisation of networked robotic agents without task-space velocity measurements

    NASA Astrophysics Data System (ADS)

    Wang, Lijiao; Meng, Bin; Wang, Hanlei

    2014-02-01

    In this paper, we investigate the problem of task-space synchronisation of multiple robotic agents in the presence of uncertain kinematics and dynamics. Our control objective is to realise synchronisation without the measurements of task-space velocity. The communication topology is assumed to be directed graphs containing a spanning tree. A decentralised task-space observer with kinematic parameter updating is proposed to avoid the reliance of task-space velocity. Based on the observer, we propose the distributed adaptive synchronisation controller for two cases: (1) the leaderless consensus case and (2) the leader-follower case, where all the followers track the convex hull spanned by the virtual leaders and for each follower, it is required that there exists at least one leader that has a directed path to the follower. The asymptotic synchronisation is proved with Lyapunov analysis and input-output stability analysis tools. Simulations with multiple robotic agents are performed to show the effectiveness of the proposed schemes.

  8. Coordinated coupling control of tethered space robot using releasing characteristics of space tether

    NASA Astrophysics Data System (ADS)

    Huang, Panfeng; Zhang, Fan; Xu, Xiudong; Meng, Zhongjie; Liu, Zhengxiong; Hu, Yongxin

    2016-04-01

    Tethered space robot (TSR) is a new concept of space robot, which is released from the platform satellite, and retrieved via connected tether after space debris capture. In this paper, we propose a new coordinate control scheme for optimal trajectory and attitude tracking, and use releasing motor torque to instead the tension force, since it is difficult to track in practical. Firstly, the 6-DOF dynamics model of TSR is derived, in which the dynamics of tether releasing system is taken into account. Then, we propose and design the coordinated coupled controller, which is composed of a 6-DOF sliding mode controller and a PD controller tether's releasing. Thrust is treated as control input of the 6-DOF sliding mode controller to control the in-plane and out-of-plane angle of the tether and attitude angles of the TSR. The torque of releasing motor is used as input of PD controller, which controls the length rate of space tether. After the verification of the control scheme, finally, the simulation experiment is presented in order to validate the effectiveness of this control method. The results show that TSR can track the optimal approaching trajectory accurately. Simultaneously, the attitude angles can be changed to the desired attitude angles in control period, and the terminal accuracy is ±0.3°.

  9. An overview of the program to place advanced automation and robotics on the Space Station

    NASA Technical Reports Server (NTRS)

    Heydorn, Richard P.

    1987-01-01

    The preliminary design phase of the Space Station has uncovered a large number of potential uses of automation and robotics, most of which deal with the assembly and operation of the Station. If NASA were to vigorously push automation and robotics concepts in the design, the Station crew would probably be free to spend a substantial portion of time on payload activities. However, at this point NASA has taken a conservative attitude toward automation and robotics. For example, the belief is that robotics should evolve through telerobotics and that uses of artificial intelligence should be initially used in an advisory capacity. This conservativeness is in part due to the new and untested nature of automation and robotics; but, it is also due to emphases plased on designing the Station to the so-called upfront cost without thoroughly understanding the life cycle cost. Presumably automation and robotics has a tendency to increase the initial cost of the Space Station but could substantially reduce the life cycle cost. To insure that NASA will include some form of robotic capability, Congress directed to set aside funding. While this stimulates the development of robotics, it does not necessarily stimulate uses of artificial intelligence. However, since the initial development costs of some forms of artificial intelligence, such as expert systems, are in general lower than they are for robotics one is likely to see several expert systems being used on the Station.

  10. hwhap_Ep14_ Robotic Arms In Space

    NASA Image and Video Library

    2017-10-13

    >> HOUSTON, WE HAVE A PODCAST. WELCOME TO THE OFFICIAL PODCAST OF THE NASA JOHNSON SPACE CENTER EPISODE 14: ROBOTIC ARMS IN SPACE. I’M GARY JORDAN AND I’LL BE YOUR HOST TODAY. SO IF YOU’RE NEW TO THE SHOW, THIS IS WHERE WE BRING IN NASA EXPERTS-- SCIENTISTS, ENGINEERS, ASTRONAUTS-- ALL TO TELL YOU THE COOLEST STUFF ABOUT WHAT’S GOING ON HERE AT NASA. SO TODAY WE’RE TALKING WITH TIM BRAITHWAITE. HE’S THE CANADIAN SPACE AGENCY’S LIAISON MANAGER HERE AT THE NASA JOHNSON SPACE CENTER IN HOUSTON, TEXAS. AND WE TALKED ABOUT THE ROBOTIC ARMS IN SPACE, WHICH IS PERFECT BECAUSE ASTRONAUTS ABOARD THE INTERNATIONAL SPACE STATION ARE GOING TO PERFORM THREE SPACEWALKS IN THE MONTH OF OCTOBER. AND IN ALL THREE THE ASTRONAUTS ARE WORKING ON THE CANADARM2, WHICH WE’LL BE TALKING ABOUT IN THIS EPISODE, ALONG WITH HOW IT WAS DEVELOPED AND HOW IT WORKS TODAY, HOW THE TECHNOLOGY HELPS PEOPLE HERE ON EARTH, AND WHAT’S COMING UP IN THE FUTURE. BUT FOR A LOT OF EPISODES, WE TIE TOPICS TO WHAT’S GOING ON TODAY HERE IN SPACE, AND TRY TO EXPLAIN IT AT A HIGH LEVEL. WE’RE ALWAYS LISTENING TO WHAT YOU WANT TO HEAR ABOUT, AND WE’RE LOOKING ON SOCIAL MEDIA ESPECIALLY. SO IF YOU’VE LISTENED TO PREVIOUS EPISODES, WE TELL YOU WHERE TO ASK THESE QUESTIONS SO WE CAN PUT IT IN THE PODCAST AT THE END OF EVERY EPISODE. SO I WANTED TO ANSWER THIS TWITTER QUESTION FROM JENNIFER, WHO ASKED AFTER THE MISSION CONTROL EPISODE, “WHEN YOU RUN AN EXPERIMENT, ARE SCIENTISTS INVITED TO THE MISSION CONTROL CENTER?” SO I WENT AND DID SOME DIGGING AND FOUND OUT THAT SOMETIMES THEY COME TO MISSION CONTROL HOUSTON, BUT A LOT OF THE TIMES THEY’RE PATCHED THROUGH FROM THE PAYLOAD OPERATIONS INTEGRATION CENTER AT MARSHALL SPACE FLIGHT CENTER IN HUNTSVILLE, ALABAMA. THEY’RE PATCHED ALL THE WAY UP TO THE ASTRONAUTS ON THE INTERNATIONAL SPACE STATION. OTHERWISE THEY CAN BE PATCHED THROUGH FROM A REMOTE LOCATION, AND THEY SORT OF HELP WALK THE ASTRONAUTS THROUGH SOME OF THEIR TASKS, AND

  11. Robot tongues in space: continuum surfaces for robotic grasping and manipulation

    NASA Astrophysics Data System (ADS)

    Cohen, Caleb; Hiott, Brandon; Kapadia, Apoorva D.; Walker, Ian D.

    2016-05-01

    In this paper, we introduce a novel, continuously bending "robot tongue." The tongue replaces the existing parallel jaw gripper at the end of a KUKA industrial robot manipulator. The resulting system augments the precise positioning of the KUKA with unique capabilities for adaptive grasping afforded by the new robot tongue. We demonstrate the ability of the system to grasp and manipulate objects over a wide range of scales and geometries and evaluate the potential for use of such tongues in various applications.

  12. Control of a flexible space robot tracking a moving target

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Feng

    1993-01-01

    This dissertation is concerned with a space robot consisting of a rigid platform, two articulated flexible arms and a rigid end-effector. The task is to ferry some payload and to dock smoothly with an orbiting target whose motion is either known or not known a priori. The dynamical equations for planar motion of the space robot are derived by means of Lagrange's equations. They are then separated into two sets of equations suitable for rigid-body maneuver control design and vibration suppression control design. A perturbation method is used when the target motion is known a priori and direct partitioning is used when the target motion is not known. Both approaches are under the assumption that maneuver motions are much larger than elastic motions. As far as the rigid-body maneuver control is concerned, optimal trajectory planning is carried out off-line by means of the global optimization method under the assumption that the target motion is known a priori. In contrast, when the target motion is not known a priori, online feedback tracking control is carried out by means of an algorithm based on Liapunov-like methodology and using on-line measurements of the target motion. As far as the vibration suppression control is concerned, the use of the piezoelectric sensor/actuator pairs dispersed along the flexible arms is proposed. Collocated sensors/actuators for vibration control exhibit good performance. The actuators are designed to compensate for the disturbances caused by the rigid-body maneuver and to realize the LQR feedback control. Assuming that the number of actuators along each flexible arm is equal to the number of modes used to model the beam, the LQR control design is based on a linear time-varying system without persistent disturbances. Problems related to the digital implementation of the control algorithms are also discussed. Some undesirable effects, such as the bursting phenomenon and even system instability, can occur if the control algorithms are

  13. 'Lump Sugar and Salt Shaker'-Like Nano and Pico Space Devices and Robots

    NASA Astrophysics Data System (ADS)

    Vizi, P.; Horváth, A.; Hudoba, Gy.; Bérczi, Sz.; Sík, A.

    2012-10-01

    Nano, Pico Space Devices and Robots (NPSDR) with a new strategy, multiple parallel use of these great number of devices allows the covering of larger surfaces on the planet measuring several focused parameters, e.g., DDS. Environmental friendly design.

  14. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039685 (4 Sept. 2013) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.

  15. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039743 (4 Sept. 2013) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.

  16. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-09-04

    ISS036-E-039697 (4 Sept. 2013) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Luca Parmitano, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.

  17. Integration of a sensor based multiple robot environment for space applications: The Johnson Space Center Teleoperator Branch Robotics Laboratory

    NASA Technical Reports Server (NTRS)

    Hwang, James; Campbell, Perry; Ross, Mike; Price, Charles R.; Barron, Don

    1989-01-01

    An integrated operating environment was designed to incorporate three general purpose robots, sensors, and end effectors, including Force/Torque Sensors, Tactile Array sensors, Tactile force sensors, and Force-sensing grippers. The design and implementation of: (1) the teleoperation of a general purpose PUMA robot; (2) an integrated sensor hardware/software system; (3) the force-sensing gripper control; (4) the host computer system for dual Robotic Research arms; and (5) the Ethernet integration are described.

  18. Dynamic analysis and trajectory tracking of a tethered space robot

    NASA Astrophysics Data System (ADS)

    Soltani, Mehrzad; Keshmiri, Mehdi; Misra, Arun K.

    2016-11-01

    Dynamic analysis and trajectory tracking of a Tethered Space Robot (TSR) is investigated in this paper. A hybrid controller is used to perform the control task. It consists of two components, the first one deals with librational motion of the tether, while the second one takes care of the manipulator motion. A Nonlinear Model Predictive Control (NMPC) approach is used to control the tether libration; for this purpose, the libration is described by a single degree of freedom and the tether length rate is employed as the input to suppress the librational motion. A modified Computed Torque Method (CTM) is used to control the manipulator motion. The dynamic interaction between the manipulator motion and the librational motion is considered both in the system dynamics and control of the system. Using numerical simulations, performance of the proposed control system is evaluated for end-effector positioning as well as for trajectory tracking for two cases: a Low Earth Orbit (LEO) and the Geostationary Earth Orbit (GEO).

  19. Second Annual Workshop on Space Operations Automation and Robotics (SOAR 1988)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1988-01-01

    Papers presented at the Second Annual Workshop on Space Operation Automation and Robotics (SOAR '88), hosted by Wright State University at Dayton, Ohio, on July 20, 21, 22, and 23, 1988, are documented herein. During the 4 days, approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Panel discussions on Human Factors, Artificial Intelligence, Robotics, and Space Systems were held but are not documented herein. Technical topics addressed included knowledge-based systems, human factors, and robotics.

  20. TRICCS: A proposed teleoperator/robot integrated command and control system for space applications

    NASA Technical Reports Server (NTRS)

    Will, R. W.

    1985-01-01

    Robotic systems will play an increasingly important role in space operations. An integrated command and control system based on the requirements of space-related applications and incorporating features necessary for the evolution of advanced goal-directed robotic systems is described. These features include: interaction with a world model or domain knowledge base, sensor feedback, multiple-arm capability and concurrent operations. The system makes maximum use of manual interaction at all levels for debug, monitoring, and operational reliability. It is shown that the robotic command and control system may most advantageously be implemented as packages and tasks in Ada.

  1. Advances in dynamics and control of flexible spacecraft and space-based manipulations; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M. (Editor); Alberts, Thomas E. (Editor); Kakad, Yogendra P. (Editor)

    1990-01-01

    Consideration is given to control formulations for vibration suppression of an active structure in slewing motions, the use if distributed sensing in control of large flexible spacecraft, an improved shooting method for solving minimum-time maneuver problems, and nonlinear slew maneuver dynamics of large flexible spacecrafts. Attention is also given to initial experiments in trusterless locomotion control of a free-flying robot, dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System, initial experiments in cooperative manipulation from a moving platform, and intelligent pipelined control architecture for remote robotic applications.

  2. Advances in dynamics and control of flexible spacecraft and space-based manipulations; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990

    NASA Technical Reports Server (NTRS)

    Joshi, Suresh M. (Editor); Alberts, Thomas E. (Editor); Kakad, Yogendra P. (Editor)

    1990-01-01

    Consideration is given to control formulations for vibration suppression of an active structure in slewing motions, the use if distributed sensing in control of large flexible spacecraft, an improved shooting method for solving minimum-time maneuver problems, and nonlinear slew maneuver dynamics of large flexible spacecrafts. Attention is also given to initial experiments in trusterless locomotion control of a free-flying robot, dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System, initial experiments in cooperative manipulation from a moving platform, and intelligent pipelined control architecture for remote robotic applications.

  3. Advances in dynamics and control of flexible spacecraft and space-based manipulations; Proceedings of the Symposium, ASME Winter Annual Meeting, Dallas, TX, Nov. 25-30, 1990

    NASA Astrophysics Data System (ADS)

    Joshi, Suresh M.; Alberts, Thomas E.; Kakad, Yogendra P.

    Consideration is given to control formulations for vibration suppression of an active structure in slewing motions, the use if distributed sensing in control of large flexible spacecraft, an improved shooting method for solving minimum-time maneuver problems, and nonlinear slew maneuver dynamics of large flexible spacecrafts. Attention is also given to initial experiments in trusterless locomotion control of a free-flying robot, dynamic analysis to evaluate viscoelastic passive damping augmentation for the Space Shuttle Remote Manipulator System, initial experiments in cooperative manipulation from a moving platform, and intelligent pipelined control architecture for remote robotic applications.

  4. Assessing multi-tissue lead burdens in free-flying obligate scavengers in eastern North America.

    PubMed

    Behmke, Shannon; Mazik, Patricia; Katzner, Todd

    2017-04-01

    Avian scavengers are regularly exposed to anthropogenic lead. Although many studies evaluate lead concentrations of either blood or tissues of lead-poisoned birds, there is comparatively less research on lead burdens of free-flying, apparently healthy individuals and populations. Here, we address this lack of information by assessing lead levels of multiple tissues (femur, liver, kidney, breast muscle, thigh muscle) in free-flying black vultures (n = 98) and turkey vultures (n = 10) collected outside the hunting season. We found only one individual had a soft tissue lead concentration indicative of acute exposure (6.17 mg/kg wet weight in the liver), while the other 107 vultures showed consistent low-level lead exposure throughout the soft tissues. All vultures, however, had femur lead concentrations indicative of chronic lead exposure (black vultures [Formula: see text]31.80 ± 20.42 mg/kg (±SD); turkey vultures 23.21 ± 18.77 mg/kg). Lead levels were similar in all tissues in both vulture species (in each case, p > 0.05) and were generally highest in the femur, intermediate in the kidney and liver, and lowest in the breast and thigh muscle. Despite the consistency of these patterns, there were few strong correlations between lead levels in different tissues within each species, and those correlations that did exist were not consistent between species. Because these vultures were free flying and apparently healthy, the organism-wide lead distributions and between-species trends we report here provide important insight into the sublethal lead burdens that black vultures and turkey vultures commonly carry. Furthermore, these data offer a framework to better interpret and contextualize lead exposure data collected from these and other species.

  5. Assessing multi-tissue lead burdens in free-flying obligate scavengers in eastern North America

    USGS Publications Warehouse

    Behmke, Shannon; Mazik, Patricia; Katzner, Todd

    2017-01-01

    Avian scavengers are regularly exposed to anthropogenic lead. Although many studies evaluate lead concentrations of either blood or tissues of lead-poisoned birds, there is comparatively less research on lead burdens of free-flying, apparently healthy individuals and populations. Here, we address this lack of information by assessing lead levels of multiple tissues (femur, liver, kidney, breast muscle, thigh muscle) in free-flying black vultures (n = 98) and turkey vultures (n = 10) collected outside the hunting season. We found only one individual had a soft tissue lead concentration indicative of acute exposure (6.17 mg/kg wet weight in the liver), while the other 107 vultures showed consistent low-level lead exposure throughout the soft tissues. All vultures, however, had femur lead concentrations indicative of chronic lead exposure (black vultures x¯¯¯=x¯= 31.80 ± 20.42 mg/kg (±SD); turkey vultures 23.21 ± 18.77 mg/kg). Lead levels were similar in all tissues in both vulture species (in each case, p > 0.05) and were generally highest in the femur, intermediate in the kidney and liver, and lowest in the breast and thigh muscle. Despite the consistency of these patterns, there were few strong correlations between lead levels in different tissues within each species, and those correlations that did exist were not consistent between species. Because these vultures were free flying and apparently healthy, the organism-wide lead distributions and between-species trends we report here provide important insight into the sublethal lead burdens that black vultures and turkey vultures commonly carry. Furthermore, these data offer a framework to better interpret and contextualize lead exposure data collected from these and other species.

  6. Aversive Reinforcement Improves Visual Discrimination Learning in Free-Flying Honeybees

    PubMed Central

    Avarguès-Weber, Aurore; de Brito Sanchez, Maria G.

    2010-01-01

    Background Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning), whilst if the same target is learnt in isolation (absolute conditioning), discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. Methodology/Principal Findings We show that the presence of a highly concentrated quinine solution (60 mM) acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. Conclusion The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience. PMID:20976170

  7. A demonstration of virtual reality in free-flying honeybees: Apis mellifera.

    PubMed

    Abramson, C I; Buckbee, D A; Edwards, S; Bowe, K

    1996-01-01

    Two experiments are reported on virtual reality illusion in free-flying honeybees. In the first experiment, subjects are trained on a simultaneous discrimination between two colored targets, one of which contains a sucrose reward. The ability to be influenced by a virtual reality illusion was assessed during an extinction test in which the training stimuli were a mirage of those used during acquisition. The results indicate that the bees consistently attempt to land on the previously rewarded color despite the fact that it is not there. In a second experiment, bees were unable to discriminate between two simultaneously presented, identically colored targets--one of which was real, the other a mirage.

  8. The occurrence of salmonellae in free-flying-avifauna: isolation and antibiogram.

    PubMed

    Sharma, V D; Sethi, M S; Singh, S P

    1980-06-01

    The occurrence of salmonellae in a variety of free-flying birds was investigated. Of 790 intestinal-content-samples examined, 20 yielded different Salmonella serotypes, which included 10 strains of S. saint-paul, 4 of S. bareilly, 3 of S. weltevreden, 2 of S. typhimurium and 1 of Salmonella E1 group. Common Mynah, house-sparrow, swallow, grey-partridge, parrot and crow were found positive for the presence of salmonellae. Antibiogram of the isolates was studied against 14 common chemotherapeutic agents.

  9. Social Reinforcement Delays in Free-Flying Honey Bees (Apis mellifera L.)

    PubMed Central

    Craig, David Philip Arthur; Grice, James W.; Varnon, Chris A.; Gibson, B.; Sokolowski, Michel B. C.; Abramson, Charles I.

    2012-01-01

    Free-flying honey bees (Apis mellifera L.) reactions were observed when presented with varying schedules of post-reinforcement delays of 0 s, 300 s, or 600 s. We measured inter-visit-interval, response length, inter-response-time, and response rate. Honey bees exposed to these post-reinforcement delay intervals exhibit one of several patterns compared to groups not encountering delays, and had longer inter-visit-intervals. We observed no group differences in inter-response time. Honey bees with higher response rates tended to not finish the experiment. The removal of the delay intervals increased response rates for those subjects that completed the trials. PMID:23056425

  10. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience

    NASA Astrophysics Data System (ADS)

    Rembala, Richard; Ower, Cameron

    2009-10-01

    MDA has provided 25 years of real-time engineering support to Shuttle (Canadarm) and ISS (Canadarm2) robotic operations beginning with the second shuttle flight STS-2 in 1981. In this capacity, our engineering support teams have become familiar with the evolution of mission planning and flight support practices for robotic assembly and support operations at mission control. This paper presents observations on existing practices and ideas to achieve reduced operational overhead to present programs. It also identifies areas where robotic assembly and maintenance of future space stations and space-based facilities could be accomplished more effectively and efficiently. Specifically, our experience shows that past and current space Shuttle and ISS assembly and maintenance operations have used the approach of extensive preflight mission planning and training to prepare the flight crews for the entire mission. This has been driven by the overall communication latency between the earth and remote location of the space station/vehicle as well as the lack of consistent robotic and interface standards. While the early Shuttle and ISS architectures included robotics, their eventual benefits on the overall assembly and maintenance operations could have been greater through incorporating them as a major design driver from the beginning of the system design. Lessons learned from the ISS highlight the potential benefits of real-time health monitoring systems, consistent standards for robotic interfaces and procedures and automated script-driven ground control in future space station assembly and logistics architectures. In addition, advances in computer vision systems and remote operation, supervised autonomous command and control systems offer the potential to adjust the balance between assembly and maintenance tasks performed using extra vehicular activity (EVA), extra vehicular robotics (EVR) and EVR controlled from the ground, offloading the EVA astronaut and even the robotic

  11. Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments.

  12. In-Space Propulsion Technologies for Robotic Exploration of the Solar System

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Meyer, Rae Ann; Frame, Kyle

    2006-01-01

    Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.

  13. An Intelligent Space for Mobile Robot Localization Using a Multi-Camera System

    PubMed Central

    Rampinelli, Mariana.; Covre, Vitor Buback.; de Queiroz, Felippe Mendonça.; Vassallo, Raquel Frizera.; Bastos-Filho, Teodiano Freire.; Mazo, Manuel.

    2014-01-01

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization. PMID:25196009

  14. An intelligent space for mobile robot localization using a multi-camera system.

    PubMed

    Rampinelli, Mariana; Covre, Vitor Buback; de Queiroz, Felippe Mendonça; Vassallo, Raquel Frizera; Bastos-Filho, Teodiano Freire; Mazo, Manuel

    2014-08-15

    This paper describes an intelligent space, whose objective is to localize and control robots or robotic wheelchairs to help people. Such an intelligent space has 11 cameras distributed in two laboratories and a corridor. The cameras are fixed in the environment, and image capturing is done synchronously. The system was programmed as a client/server with TCP/IP connections, and a communication protocol was defined. The client coordinates the activities inside the intelligent space, and the servers provide the information needed for that. Once the cameras are used for localization, they have to be properly calibrated. Therefore, a calibration method for a multi-camera network is also proposed in this paper. A robot is used to move a calibration pattern throughout the field of view of the cameras. Then, the captured images and the robot odometry are used for calibration. As a result, the proposed algorithm provides a solution for multi-camera calibration and robot localization at the same time. The intelligent space and the calibration method were evaluated under different scenarios using computer simulations and real experiments. The results demonstrate the proper functioning of the intelligent space and validate the multi-camera calibration method, which also improves robot localization.

  15. Human-Robot Site Survey and Sampling for Space Exploration

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Edwards, Laurence; Flueckiger, Lorenzo; Kunz, Clayton; Lee, Susan Y.; Park, Eric; To, Vinh; Utz, Hans; Ackner, Nir

    2006-01-01

    NASA is planning to send humans and robots back to the Moon before 2020. In order for extended missions to be productive, high quality maps of lunar terrain and resources are required. Although orbital images can provide much information, many features (local topography, resources, etc) will have to be characterized directly on the surface. To address this need, we are developing a system to perform site survey and sampling. The system includes multiple robots and humans operating in a variety of team configurations, coordinated via peer-to-peer human-robot interaction. In this paper, we present our system design and describe planned field tests.

  16. User needs, benefits, and integration of robotic systems in a space station laboratory

    NASA Technical Reports Server (NTRS)

    Dodd, W. R.; Badgley, M. B.; Konkel, C. R.

    1989-01-01

    The methodology, results and conclusions of all tasks of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in a Space Station Laboratory are summarized. Study goals included the determination of user requirements for robotics within the Space Station, United States Laboratory. In Task 1, three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. In Task 2, a NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of microgravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz) and Level 2 (less than equal 10-6 G at 0.1 Hz). This task included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in Task 3 in order to determine their ability to perform a range of tasks related to the three microgravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements for an orbital flight demonstration were determined in Task 4. Task 5 assessed the impact of robotics.

  17. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1992-01-01

    Described here is the progress made by Levels 1, 2, and 3 of the Space Station Freedom in developing and applying advanced automation and robotics technology. Emphasis was placed on the Space Station Freedom program responses to specific recommendations made in the Advanced Technology Advisory Committee (ATAC) Progress Report 13, and issues of A&R implementation into the payload operations integration Center at Marshall Space Flight Center. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for Space Station Freedom.

  18. IVA the robot: Design guidelines and lessons learned from the first space station laboratory manipulation system

    NASA Technical Reports Server (NTRS)

    Konkel, Carl R.; Powers, Allen K.; Dewitt, J. Russell

    1991-01-01

    The first interactive Space Station Freedom (SSF) lab robot exhibit was installed at the Space and Rocket Center in Huntsville, AL, and has been running daily since. IntraVehicular Activity (IVA) the robot is mounted in a full scale U.S. Lab (USL) mockup to educate the public on possible automation and robotic applications aboard the SSF. Responding to audio and video instructions at the Command Console, exhibit patrons may prompt IVA to perform a housekeeping task or give a speaking tour of the module. Other exemplary space station tasks are simulated and the public can even challenge IVA to a game of tic tac toe. In anticipation of such a system being built for the Space Station, a discussion is provided of the approach taken, along with suggestions for applicability to the Space Station Environment.

  19. Space-age robots come down to earth.

    PubMed

    Puttre, M

    1995-01-01

    The author describes recent trends in the robotics industry toward development of slimmer arms and more dexterous hands and commercial use of the devices. The Moll sewing arm, BarrettArm, and BarrettWrist are used as examples.

  20. Color Difference and Memory Recall in Free-Flying Honeybees: Forget the Hard Problem.

    PubMed

    Dyer, Adrian G; Garcia, Jair E

    2014-07-30

    Free-flying honeybees acquire color information differently depending upon whether a target color is learnt in isolation (absolute conditioning), or in relation to a perceptually similar color (differential conditioning). Absolute conditioning allows for rapid learning, but color discrimination is coarse. Differential conditioning requires more learning trials, but enables fine discriminations. Currently it is unknown whether differential conditioning to similar colors in honeybees forms a long-term memory, and the stability of memory in a biologically relevant scenario considering similar or saliently different color stimuli. Individual free-flying honeybees (N = 6) were trained to similar color stimuli separated by 0.06 hexagon units for 60 trials and mean accuracy was 81.7% ± 12.2% s.d. Bees retested on subsequent days showed a reduction in the number of correct choices with increasing time from the initial training, and for four of the bees this reduction was significant from chance expectation considering binomially distributed logistic regression models. In contrast, an independent group of 6 bees trained to saliently different colors (>0.14 hexagon units) did not experience any decay in memory retention with increasing time. This suggests that whilst the bees' visual system can permit fine discriminations, flowers producing saliently different colors are more easily remembered by foraging bees over several days.

  1. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B. S.; Mahalingam, S.

    1992-01-01

    A capacitance based proximity sensor, the 'Capaciflector' (Vranish 92), has been developed at the Goddard Space Flight Center of NASA. We had investigated the use of this sensor for avoiding and maneuvering around unexpected objects (Mahalingam 92). The approach developed there would help in executing collision-free gross motions. Another important aspect of robot motion planning is fine motion planning. Let us classify manipulator robot motion planning into two groups at the task level: gross motion planning and fine motion planning. We use the term 'gross planning' where the major degrees of freedom of the robot execute large motions, for example, the motion of a robot in a pick and place type operation. We use the term 'fine motion' to indicate motions of the robot where the large dofs do not move much, and move far less than the mirror dofs, such as in inserting a peg in a hole. In this report we describe our experiments and experiences in this area.

  2. Task-Space Iterative Learning for Redundant Robotic Systems: Existence of a Task-Space Control and Convergence of Learning

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru; Sekimoto, Masahiro; Kawamura, Sadao

    This paper presents a feasibility study of iterative learning control for a class of redundant multi-joint robotic systems when a desired motion trajectory is specified in task-space with less dimension than that of joint space. First, it is shown that if the desired trajectory described in task-space for a time interval t ∈ [0,T] is twice continuously differentiable then a unique control signal describable in task-space exists despite of the system joint-redundancy. Second, a learning control update law is constructed through transpose of the Jacobian matrix of task-space coordinates with respect to joint coordinates by using measured data of motion trajectories in task-space. Third, the convergence of trajectory trackings through iterative learning is proved theoretically on the basis of original nonlinear robot dynamics in joint space.

  3. Robotics

    SciTech Connect

    Scheide, A.W.

    1983-11-01

    This article reviews some of the technical areas and history associated with robotics, provides information relative to the formation of a Robotics Industry Committee within the Industry Applications Society (IAS), and describes how all activities relating to robotics will be coordinated within the IEEE. Industrial robots are being used for material handling, processes such as coating and arc welding, and some mechanical and electronics assembly. An industrial robot is defined as a programmable, multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for a variety of tasks. The initial focus of the Robotics Industry Committee will be on the application of robotics systems to the various industries that are represented within the IAS.

  4. L'espace articulaire de la Robotique Industrielle est un espace vectorielIndustrial Robotics joint space is a vector space

    NASA Astrophysics Data System (ADS)

    Tondu, Bertrand

    2003-05-01

    The mathematical modelling of industrial robots is based on the vectorial nature of the n-dimensional joint space of the robot, defined as a kinematic chain with n degrees of freedom. However, in our opinion, the vectorial nature of the joint space has been insufficiently discussed in the literature. We establish the vectorial nature of the joint space of an industrial robot from the fundamental studies of B. Roth on screws. To cite this article: B. Tondu, C. R. Mecanique 331 (2003).

  5. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In April 1985, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on Space Station Freedom. This material was documented in the initial report (NASA Technical Memorandum 87566). The progress made by Levels 1, 2, and 3 of the Office of Space Station in developing and applying advanced automation and robotics technology are described. Emphasis was placed upon the Space Station Freedom Program responses to specific recommendations made in ATAC Progress Report 9, the Flight Telerobotic Servicer, the Advanced Development Program, and the Data Management System. Assessments are presented for these and other areas as they apply to the advancement of automation and robotics technology for the Space Station Freedom.

  6. User needs, benefits and integration of robotic systems in a space station laboratory

    NASA Technical Reports Server (NTRS)

    Farnell, K. E.; Richard, J. A.; Ploge, E.; Badgley, M. B.; Konkel, C. R.; Dodd, W. R.

    1989-01-01

    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established.

  7. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-08-13

    ISS036-E-032134 (13 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.

  8. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-08-13

    ISS036-E-032138 (13 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.

  9. SPHERES Zero Robotics Session

    NASA Image and Video Library

    2013-08-13

    ISS036-E-032180 (13 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Chris Cassidy, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES.

  10. Space station as a vital focus for advancing the technologies of automation and robotics

    NASA Technical Reports Server (NTRS)

    Varsi, Giulio; Herman, Daniel H.

    1988-01-01

    A major guideline for the design of the U.S. Space Station is that the Space Station address a wide variety of functions. These functions include the servicing of unmanned assets in space, the support of commercial labs in space and the efficient management of the Space Station itself; the largest space asset. The technologies of Automation and Robotics have the promise to help in reducing Space Station operating costs and to achieve a highly efficient use of the human in space. The use of advanced automation and artificial intelligence techniques, such as expert systems, in Space Station subsystems for activity planning and failure mode management will enable us to reduce dependency on a mission control center and could ultimately result in breaking the umbilical link from Earth to the Space Station. The application of robotic technologies with advanced perception capability and hierarchical intelligent control to servicing system will enable the servicing of assets either in space or in situ with a high degree of human efficiency. The results of studies leading toward the formulation of an automation and robotics plan for Space Station development are presented.

  11. Adaptive Cartesian coordinate control of space based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A Cartesian coordinate robot controller is presented for use when the mass properties of a load are unknown. The mass, center of mass, and moments of inertia of the end-effector are assumed unknown. All other inertial properties of the robot are assumed known. This knowledge of the parameters allows the control of the end-effector in a way similar to the use of reaction wheels to control the orientation of a satellite. This is the primary result of the controller. The basic method of the controller is similar to that used for terrestrial-based robot manipulators. The controller is demonstrated using a new simulation algorithm which is based on Hamilton's form of the equations of motion.

  12. Truss Climbing Robot for Space Station: Design, Analysis, and Motion Control

    NASA Astrophysics Data System (ADS)

    Chung, Wing Kwong

    The application of space robots has become more popular in performing tasks such as Intra and Extra Vehicular Activities (EVA) in Low Earth Orbit. For EVA, space robots were always designed as a chain-like manipulator with a joint configuration similar to on the earth robotic arm. Based on their joint configuration, they can be classified into two main categories. The first one is the six degrees of freedom (DOF) robotic arm including Shuttle Remote Manipulator System (SRMS), Engineering Test Satellite No. 7 (ETS-VII), the Main Arm (MA) and the Small Fine Arm (SFA) of Module Remote Manipulator System (JEMRMS). The other group is the seven-DOF space robotic arm which includes European Robotic Arm (ERA) and Space Station Remote Manipulator System (SSRMS), or Canadarm2. They not only perform manipulation tasks, but also be able to navigate on the exterior of the International Space Station (ISS). In a free floating environment, motions of a space robotic arm cause the attitude change of a space station because of their dynamic coupling effect. Hence, the stabilization of the space station attitude is important to maintain the electrical energy generated by the solar panels and the signal strength for communication. Most of research in this area focuses on the motion control of a space manipulator through the study of Generalized Jacobian Matrix. Little research has been conducted specifically on the design of locomotion mechanism of a space manipulator. This dissertation proposes a novel methodology for the locomotion on a space station which aims to lower the disturbance on a space station. Without modifying the joint configuration of conventional space manipulators, the use of a new gripping mechanism is proposed which combines the advantages of active wheels and conventional grippers. To realize the proposed gripping mechanism, this dissertation also presents the design of a novel frame climbing robot (Frambot) which is equipped with the new gripping mechanism

  13. Projective virtual reality in space applications: a telerobotic ground station for a space mission

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Commanding complex robotic systems over long distances in an intuitive manner requires new techniques of man-machine- interaction. A first disadvantage of conventional approaches is that the user has to be a robotic expert because he directly has to command the robots. He often is part of the real-time control loop while moving the robot and thus has to cope with long delays. Experience with space robot missions showed that it is very difficult to control a robot just by camera images. At the IRF, a new approach to overcome such problems was developed. By means of Projective Virtual Reality, we introduce a new, intuitive way of man-machine communication based on a combination of action planning and Virtual Reality methods. Using data-helmet and data-glove the user can immerse into the virtual world and interact with the virtual objects as he would do in reality. The Virtual Reality System derives the user's intention from his actions and then projects the tasks in to the physical world by means of robots. The robots carry out the action physically that is equivalent to the user's action in the virtual world. The developed Projective Virtual Reality System is of especially great use for space applications. During the joint project GETEX (German ETS-VII Experiment), the IRF realized the telerobotic ground station for the free flying robot ERA on board the Japanese satellite ETS-VII. During the mission in April 1999 the Virtual Reality based command interface turned out to be an ideally suited platform for the intuitive commanding and supervision of the robot in space. During the mission, it first had to be verified that the system is fully operational, but then out Japanese colleagues allowed to take the full control over the real robot by the Projective Virtual Reality System. The final paper will describe key issues of this approach and the results and experiences gained during the GETEX mission.

  14. Avian wing geometry and kinematics of a free-flying barn owl in flapping flight

    NASA Astrophysics Data System (ADS)

    Wolf, Thomas; Konrath, Robert

    2015-02-01

    This paper presents results of high-resolution three-dimensional wing shape measurements performed on free-flying barn owls in flapping flight. The applied measurement technique is introduced together with a moving camera set-up, allowing for an investigation of the free flapping flight of birds with high spatial and temporal resolution. Based on the three-dimensional surface data, a methodology for parameterizing the wing profile along with wing kinematics during flapping flight has been developed. This allowed a description of the spanwise varying kinematics and aerodynamic parameters (e.g. effective angles of attack, camber, thickness) of the wing in dependence on the flapping phase. The results are discussed in detail using the data of a single flight, whereas a comparison of some kinematic parameters obtained from different flights is given too.

  15. IN SITU INFRARED MEASUREMENTS OF FREE-FLYING SILICATE DURING CONDENSATION IN THE LABORATORY

    SciTech Connect

    Ishizuka, Shinnosuke; Kimura, Yuki; Sakon, Itsuki

    2015-04-20

    We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicate would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.

  16. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  17. Robotics

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O.

    2007-01-01

    Lunar robotic functions include: 1. Transport of crew and payloads on the surface of the moon; 2. Offloading payloads from a lunar lander; 3. Handling the deployment of surface systems; with 4. Human commanding of these functions from inside a lunar vehicle, habitat, or extravehicular (space walk), with Earth-based supervision. The systems that will perform these functions may not look like robots from science fiction. In fact, robotic functions may be automated trucks, cranes and winches. Use of this equipment prior to the crew s arrival or in the potentially long periods without crews on the surface, will require that these systems be computer controlled machines. The public release of NASA's Exploration plans at the 2nd Space Exploration Conference (Houston, December 2006) included a lunar outpost with as many as four unique mobility chassis designs. The sequence of lander offloading tasks involved as many as ten payloads, each with a unique set of geometry, mass and interface requirements. This plan was refined during a second phase study concluded in August 2007. Among the many improvements to the exploration plan were a reduction in the number of unique mobility chassis designs and a reduction in unique payload specifications. As the lunar surface system payloads have matured, so have the mobility and offloading functional requirements. While the architecture work continues, the community can expect to see functional requirements in the areas of surface mobility, surface handling, and human-systems interaction as follows: Surface Mobility 1. Transport crew on the lunar surface, accelerating construction tasks, expanding the crew s sphere of influence for scientific exploration, and providing a rapid return to an ascent module in an emergency. The crew transport can be with an un-pressurized rover, a small pressurized rover, or a larger mobile habitat. 2. Transport Extra-Vehicular Activity (EVA) equipment and construction payloads. 3. Transport habitats and

  18. Space Networking Demonstrated for Distributed Human-Robotic Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Bizon, Thomas P.; Seibert, Marc A.

    2003-01-01

    Communications and networking experts from the NASA Glenn Research Center designed and implemented an innovative communications infrastructure for a simulated human-robotic planetary mission. The mission, which was executed in the Arizona desert during the first 2 weeks of September 2002, involved a diverse team of researchers from several NASA centers and academic institutions.

  19. The Goddard Space Flight Center (GSFC) robotics technology testbed

    NASA Technical Reports Server (NTRS)

    Schnurr, Rick; Obrien, Maureen; Cofer, Sue

    1989-01-01

    Much of the technology planned for use in NASA's Flight Telerobotic Servicer (FTS) and the Demonstration Test Flight (DTF) is relatively new and untested. To provide the answers needed to design safe, reliable, and fully functional robotics for flight, NASA/GSFC is developing a robotics technology testbed for research of issues such as zero-g robot control, dual arm teleoperation, simulations, and hierarchical control using a high level programming language. The testbed will be used to investigate these high risk technologies required for the FTS and DTF projects. The robotics technology testbed is centered around the dual arm teleoperation of a pair of 7 degree-of-freedom (DOF) manipulators, each with their own 6-DOF mini-master hand controllers. Several levels of safety are implemented using the control processor, a separate watchdog computer, and other low level features. High speed input/output ports allow the control processor to interface to a simulation workstation: all or part of the testbed hardware can be used in real time dynamic simulation of the testbed operations, allowing a quick and safe means for testing new control strategies. The NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) hierarchical control scheme, is being used as the reference standard for system design. All software developed for the testbed, excluding some of simulation workstation software, is being developed in Ada. The testbed is being developed in phases. The first phase, which is nearing completion, and highlights future developments is described.

  20. Automation and Robotics for space operation and planetary exploration

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  1. Automation and Robotics for space operation and planetary exploration

    NASA Technical Reports Server (NTRS)

    Montemerlo, Melvin D.

    1990-01-01

    This paper presents a perspective of Automation and Robotics (A&R) research and developments at NASA in terms of its history, its current status, and its future. It covers artificial intelligence, telerobotics and planetary rovers, and it encompasses ground operations, operations in earth orbit, and planetary exploration.

  2. Model predictive control for cooperative control of space robots

    NASA Astrophysics Data System (ADS)

    Kannan, Somasundar; Alamdari, Seyed Amin Sajadi; Dentler, Jan; Olivares-Mendez, Miguel A.; Voos, Holger

    2017-01-01

    The problem of Orbital Manipulation of Passive body is discussed here. Two scenarios including passive object rigidly attached to robotic servicers and passive body attached to servicers through manipulators are discussed. The Model Predictive Control (MPC) technique is briefly presented and successfully tested through simulations on two cases of position control of passive body in the orbit.

  3. Input-Shaped Link Motion Control of Planar Space Robot Equipped with Flexible Appendage

    NASA Astrophysics Data System (ADS)

    Kasai, Shinya; Kojima, Hirohisa

    Control of a space robot without actuators on the main body is an underactuated control problem. Various stabilization methods, such as the time-varying feedback control method, discontinuous feedback control method, center manifold-based method, zero-dynamics method and sliding-mode control method have been proposed. However, past studies have not considered underactuated space robots equipped with a flexible appendage, such as solar panels. If the manipulators are simply controlled to achieve the target state for the robot using the past controllers without taking a flexible appendage into consideration, residual vibration remains even after the link motion has finished. In order to suppress the residual vibration on the flexible appendage, we apply the input-shaping technique to the link motion of an underactuated planar space robot. Numerical and experimental studies are carried out to validate the proposed method for a planar dual-link space robot with a flexible appendage. The results show that the proposed method is capable of not only controlling the link angles and the main body attitude to the goal angles, but also suppressing the residual vibration on the flexible appendage.

  4. A Prototype Novel Sensor for Autonomous, Space Based Robots - Phase 2

    NASA Technical Reports Server (NTRS)

    Squillante, M. R.; Derochemont, L. P.; Cirignano, L.; Lieberman, P.; Soller, M. S.

    1990-01-01

    The goal of this program was to develop new sensing capabilities for autonomous robots operating in space. Information gained by the robot using these new capabilities would be combined with other information gained through more traditional capabilities, such as video, to help the robot characterize its environment as well as to identify known or unknown objects that it encounters. Several sensing capabilities using nuclear radiation detectors and backscatter technology were investigated. The result of this research has been the construction and delivery to NASA of a prototype system with three capabilities for use by autonomous robots. The primary capability was the use of beta particle backscatter measurements to determine the average atomic number (Z) of an object. This gives the robot a powerful tool to differentiate objects which may look the same, such as objects made out of different plastics or other light weight materials. In addition, the same nuclear sensor used in the backscatter measurement can be used as a nuclear spectrometer to identify sources of nuclear radiation that may be encountered by the robot, such as nuclear powered satellites. A complete nuclear analysis system is included in the software and hardware of the prototype system built in phase 2 of this effort. Finally, a method to estimate the radiation dose in the environment of the robot has been included as a third capability. Again, the same nuclear sensor is used in a different operating mode and with different analysis software. Each of these capabilities are described.

  5. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    NASA Technical Reports Server (NTRS)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  6. Applications of artificial intelligence to space station and automated software techniques: High level robot command language

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1989-01-01

    The objective is to develop a system that will allow a person not necessarily skilled in the art of programming robots to quickly and naturally create the necessary data and commands to enable a robot to perform a desired task. The system will use a menu driven graphical user interface. This interface will allow the user to input data to select objects to be moved. There will be an imbedded expert system to process the knowledge about objects and the robot to determine how they are to be moved. There will be automatic path planning to avoid obstacles in the work space and to create a near optimum path. The system will contain the software to generate the required robot instructions.

  7. Infrared sensor system for mobile-robot positioning in intelligent spaces.

    PubMed

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems.

  8. Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces

    PubMed Central

    Gorostiza, Ernesto Martín; Galilea, José Luis Lázaro; Meca, Franciso Javier Meca; Monzú, David Salido; Zapata, Felipe Espinosa; Puerto, Luis Pallarés

    2011-01-01

    The aim of this work was to position a Mobile Robot in an Intelligent Space, and this paper presents a sensorial system for measuring differential phase-shifts in a sinusoidally modulated infrared signal transmitted from the robot. Differential distances were obtained from these phase-shifts, and the position of the robot was estimated by hyperbolic trilateration. Due to the extremely severe trade-off between SNR, angle (coverage) and real-time response, a very accurate design and device selection was required to achieve good precision with wide coverage and acceptable robot speed. An I/Q demodulator was used to measure phases with one-stage synchronous demodulation to DC. A complete set of results from real measurements, both for distance and position estimations, is provided to demonstrate the validity of the system proposed, comparing it with other similar indoor positioning systems. PMID:22163907

  9. Systems integration for the Kennedy Space Center (KSC) Robotics Applications Development Laboratory (RADL)

    NASA Technical Reports Server (NTRS)

    Davis, V. Leon; Nordeen, Ross

    1988-01-01

    A laboratory for developing robotics technology for hazardous and repetitive Shuttle and payload processing activities is discussed. An overview of the computer hardware and software responsible for integrating the laboratory systems is given. The center's anthropomorphic robot is placed on a track allowing it to be moved to different stations. Various aspects of the laboratory equipment are described, including industrial robot arm control, smart systems integration, the supervisory computer, programmable process controller, real-time tracking controller, image processing hardware, and control display graphics. Topics of research include: automated loading and unloading of hypergolics for space vehicles and payloads; the use of mobile robotics for security, fire fighting, and hazardous spill operations; nondestructive testing for SRB joint and seal verification; Shuttle Orbiter radiator damage inspection; and Orbiter contour measurements. The possibility of expanding the laboratory in the future is examined.

  10. Robotic space simulation integration of vision algorithms into an orbital operations simulation

    NASA Technical Reports Server (NTRS)

    Bochsler, Daniel C.

    1987-01-01

    In order to successfully plan and analyze future space activities, computer-based simulations of activities in low earth orbit will be required to model and integrate vision and robotic operations with vehicle dynamics and proximity operations procedures. The orbital operations simulation (OOS) is configured and enhanced as a testbed for robotic space operations. Vision integration algorithms are being developed in three areas: preprocessing, recognition, and attitude/attitude rates. The vision program (Rice University) was modified for use in the OOS. Systems integration testing is now in progress.

  11. PharmaSat: drug dose response in microgravity from a free-flying integrated biofluidic/optical culture-and-analysis satellite

    NASA Astrophysics Data System (ADS)

    Ricco, Antonio J.; Parra, Macarena; Niesel, David; Piccini, Matthew; Ly, Diana; McGinnis, Michael; Kudlicki, Andrzej; Hines, John W.; Timucin, Linda; Beasley, Chris; Ricks, Robert; McIntyre, Michael; Friedericks, Charlie; Henschke, Michael; Leung, Ricky; Diaz-Aguado, Millan; Kitts, Christopher; Mas, Ignacio; Rasay, Mike; Agasid, Elwood; Luzzi, Ed; Ronzano, Karolyn; Squires, David; Yost, Bruce

    2011-02-01

    We designed, built, tested, space-qualified, launched, and collected telemetered data from low Earth orbit from Pharma- Sat, a 5.1-kg free flying "nanosatellite" that supported microbial growth in 48 microfluidic wells, dosed microbes with multiple concentrations of a pharmaceutical agent, and monitored microbial growth and metabolic activity using a dedicated 3-color optical absorbance system at each microwell. The PharmaSat nanosatellite comprised a structure approximately 10 x 10 x 35 cm, including triple-junction solar cells, bidirectional communications, power-generation and energy- storage system, and a sealed payload 1.2-L containment vessel that housed the biological organisms along with the fluidic, optical, thermal, sensor, and electronic subsystems. Growth curves for S. cerevisiae (Brewer's yeast) were obtained for multiple concentrations of the antifungal drug voriconazole in the microgravity conditions of low Earth orbit. Corresponding terrestrial control experiments were conducted for comparison.

  12. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot.

    PubMed

    McCain, H G; Andary, J F; Hewitt, D R; Haley, D C

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  13. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  14. The Space Station Freedom Flight Telerobotic Servicer: the design and evolution of a dexterous space robot

    NASA Technical Reports Server (NTRS)

    McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.

    1991-01-01

    The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.

  15. Adaptive Task-Space Cooperative Tracking Control of Networked Robotic Manipulators Without Task-Space Velocity Measurements.

    PubMed

    Liang, Xinwu; Wang, Hesheng; Liu, Yun-Hui; Chen, Weidong; Hu, Guoqiang; Zhao, Jie

    2016-10-01

    In this paper, the task-space cooperative tracking control problem of networked robotic manipulators without task-space velocity measurements is addressed. To overcome the problem without task-space velocity measurements, a novel task-space position observer is designed to update the estimated task-space position and to simultaneously provide the estimated task-space velocity, based on which an adaptive cooperative tracking controller without task-space velocity measurements is presented by introducing new estimated task-space reference velocity and acceleration. Furthermore, adaptive laws are provided to cope with uncertain kinematics and dynamics and rigorous stability analysis is given to show asymptotical convergence of the task-space tracking and synchronization errors in the presence of communication delays under strongly connected directed graphs. Simulation results are given to demonstrate the performance of the proposed approach.

  16. Distributed cooperating processes in a mobile robot control system

    NASA Technical Reports Server (NTRS)

    Skillman, Thomas L., Jr.

    1988-01-01

    A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.

  17. Distributed cooperating processes in a mobile robot control system

    NASA Technical Reports Server (NTRS)

    Skillman, Thomas L., Jr.

    1988-01-01

    A mobile inspection robot has been proposed for the NASA Space Station. It will be a free flying autonomous vehicle that will leave a berthing unit to accomplish a variety of inspection tasks around the Space Station, and then return to its berth to recharge, refuel, and transfer information. The Flying Eye robot will receive voice communication to change its attitude, move at a constant velocity, and move to a predefined location along a self generated path. This mobile robot control system requires integration of traditional command and control techniques with a number of AI technologies. Speech recognition, natural language understanding, task and path planning, sensory abstraction and pattern recognition are all required for successful implementation. The interface between the traditional numeric control techniques and the symbolic processing to the AI technologies must be developed, and a distributed computing approach will be needed to meet the real time computing requirements. To study the integration of the elements of this project, a novel mobile robot control architecture and simulation based on the blackboard architecture was developed. The control system operation and structure is discussed.

  18. Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects

    NASA Astrophysics Data System (ADS)

    Luo, Jianjun; Zong, Lijun; Wang, Mingming; Yuan, Jianping

    2017-07-01

    This paper presents an optimal trajectory planning scheme for robotic capturing of a tumbling object. Motion planning of a space robot is much more complex than that of a fixed-based robot, due to the dynamic coupling between the manipulator and its base. In this work, the Path Independent Workspace (PIW), in which no dynamic singularity occurs, and Path Dependent Workspace (PDW) of the space robot are first calculated by the proposed algorithm. The motion equations of the tumbling object are formulated based on the Euler dynamics equations and the quaternion, which are used to predict the long-term motion of a grasping point on the tumbling object. Subsequently, the obtained PIW workspace and predicted motion trajectories are used to plan the trajectory of the end-effector to intercept the grasping point with zero relative velocity (to avoid impact) in an optimal way. In order to avoid dynamic singularity occurring at the capture moment, the optimal capture occasion is first determined by three proposed criterions guaranteeing the capture can be safely, reliably and rapidly performed, then the optimal trajectory of the end-effector is generated minimizing a cost function which acts as a constraint on acceleration magnitude. Simulations are presented to demonstrate the trajectory planning scheme for a space robot with a 3-degree of freedom (DOF) manipulator grasping a tumbling satellite, the results show that the manipulator end-effector can smoothly intercept the grasping point on the tumbling satellite with zero relative velocity.

  19. The detrimental effect of friction on space microgravity robotics

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S.; Glosser, Gregory D.; Miller, Jeffrey H.; Rohn, Douglas

    1992-01-01

    The authors present an analysis of why control systems are ineffective in compensating for acceleration disturbances due to Coulomb friction. Linear arguments indicate that the effects of Coulomb friction on a body are most difficult to reject when the control actuator is separated from the body of compliance. The linear arguments were illustrated in a nonlinear simulation of optimal linear tracking control in the presence of nonlinear friction. The results of endpoint acceleration measurements for four robot designs are presented and are compared with simulation and to equivalent measurements on a human. It is concluded that Coulomb friction in common bearings and transmission induces unacceptable levels of endpoint acceleration, that these accelerations cannot be adequately attenuated by control, and that robots for microgravity work will require special design considerations for inherently low friction.

  20. Aeronautics and Space Report of the President: Fiscal Year 2009 Activities

    NASA Technical Reports Server (NTRS)

    2009-01-01

    In fiscal year 2009 (FY 09), the Exploration Systems Mission Directorate's (ESMD) Advanced Capabilities Division (ACD) provided critical research and technology products that reduced operational and technical risks for the flight systems being developed by the Constellation Program.1 These products addressed high-priority technology requirements for lunar exploration; risk mitigation related to astronaut health and performance; basic research in life and physical sciences using the International Space Station (ISS), free-flying spacecraft, and ground-based laboratories; and lunar robotic missions to gather data relevant to future human lunar missions.

  1. Sensor-based fine telemanipulation for space robotics

    NASA Technical Reports Server (NTRS)

    Andrenucci, M.; Bergamasco, M.; Dario, P.

    1989-01-01

    The control of a multifingered hand slave in order to accurately exert arbitrary forces and impart small movements to a grasped object is, at present, a knotty problem in teleoperation. Although a number of articulated robotic hands have been proposed in the recent past for dexterous manipulation in autonomous robots, the possible use of such hands as slaves in teleoperated manipulation is hindered by the present lack of sensors in those hands, and (even if those sensors were available) by the inherent difficulty of transmitting to the master operator the complex sensations elicited by such sensors at the slave level. An analysis of different problems related to sensor-based telemanipulation is presented. The general sensory systems requirements for dexterous slave manipulators are pointed out and the description of a practical sensory system set-up for the developed robotic system is presented. The problem of feeding back to the human master operator stimuli that can be interpreted by his central nervous system as originated during real dexterous manipulation is then considered. Finally, some preliminary work aimed at developing an instrumented glove designed purposely for commanding the master operation and incorporating Kevlar tendons and tension sensors, is discussed.

  2. Advancing automation and robotics technology for the space station and the US economy

    NASA Technical Reports Server (NTRS)

    Cohen, A.

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  3. Advancing automation and robotics technology for the space station and the US economy

    NASA Astrophysics Data System (ADS)

    Cohen, A.

    1985-09-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and rebotics for use in the space station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the space station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the space station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  4. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Astrophysics Data System (ADS)

    Prinz, F. B.

    1991-11-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  5. Avoiding space robot collisions utilizing the NASA/GSFC tri-mode skin sensor

    NASA Technical Reports Server (NTRS)

    Prinz, F. B.

    1991-01-01

    Sensor based robot motion planning research has primarily focused on mobile robots. Consider, however, the case of a robot manipulator expected to operate autonomously in a dynamic environment where unexpected collisions can occur with many parts of the robot. Only a sensor based system capable of generating collision free paths would be acceptable in such situations. Recently, work in this area has been reported in which a deterministic solution for 2DOF systems has been generated. The arm was sensitized with 'skin' of infra-red sensors. We have proposed a heuristic (potential field based) methodology for redundant robots with large DOF's. The key concepts are solving the path planning problem by cooperating global and local planning modules, the use of complete information from the sensors and partial (but appropriate) information from a world model, representation of objects with hyper-ellipsoids in the world model, and the use of variational planning. We intend to sensitize the robot arm with a 'skin' of capacitive proximity sensors. These sensors were developed at NASA, and are exceptionally suited for the space application. In the first part of the report, we discuss the development and modeling of the capacitive proximity sensor. In the second part we discuss the motion planning algorithm.

  6. The life of the Chief Designer of scientific robotic space systems—Georgii N. Babakin

    NASA Astrophysics Data System (ADS)

    Khartov, V. V.; Romanov, V. M.; Pichkhadze, K. M.

    2015-12-01

    This paper is dedicated to the life and creative career of Georgii N. Babakin, the outstanding designer of native robotic space complexes for fundamental scientific studies of the Moon, Venus, and Mars, and Chief Designer of the S.A. Lavochkin machine building enterprise.

  7. Advanced Space Robotics and Solar Electric Propulsion: Enabling Technologies for Future Planetary Exploration

    NASA Astrophysics Data System (ADS)

    Kaplan, M.; Tadros, A.

    2017-02-01

    Obtaining answers to questions posed by planetary scientists over the next several decades will require the ability to travel further while exploring and gathering data in more remote locations of our solar system. Timely investments need to be made in developing and demonstrating solar electric propulsion and advanced space robotics technologies.

  8. Online kernel-based learning for task-space tracking robot control.

    PubMed

    Nguyen-Tuong, Duy; Peters, Jan

    2012-09-01

    Task-space control of redundant robot systems based on analytical models is known to be susceptive to modeling errors. Data-driven model learning methods may present an interesting alternative approach. However, learning models for task-space tracking control from sampled data is an ill-posed problem. In particular, the same input data point can yield many different output values, which can form a nonconvex solution space. Because the problem is ill-posed, models cannot be learned from such data using common regression methods. While learning of task-space control mappings is globally ill-posed, it has been shown in recent work that it is locally a well-defined problem. In this paper, we use this insight to formulate a local kernel-based learning approach for online model learning for task-space tracking control. We propose a parametrization for the local model, which makes an application in task-space tracking control of redundant robots possible. The model parametrization further allows us to apply the kernel-trick and, therefore, enables a formulation within the kernel learning framework. In our evaluations, we show the ability of the method for online model learning for task-space tracking control of redundant robots.

  9. Experimental validation of docking and capture using space robotics testbeds

    NASA Technical Reports Server (NTRS)

    Spofford, John

    1991-01-01

    Docking concepts include capture, berthing, and docking. The definitions of these terms, consistent with AIAA, are as follows: (1) capture (grasping)--the use of a manipulator to make initial contact and attachment between transfer vehicle and a platform; (2) berthing--positioning of a transfer vehicle or payload into platform restraints using a manipulator; and (3) docking--propulsive mechanical connection between vehicle and platform. The combination of the capture and berthing operations is effectively the same as docking; i.e., capture (grasping) + berthing = docking. These concepts are discussed in terms of Martin Marietta's ability to develop validation methods using robotics testbeds.

  10. Free-Space Optical Link to an Explosive Ordnance Disposal (EOD) Robot

    DTIC Science & Technology

    2009-01-01

    sufficient power, payload capacity, and platform stability to operate it. It can communicate data to a second, small platform conventionally by...2009 NRL REVIEW 167 INFORMATION TECHNOLOGY AND COMMUNICATIONS Free-Space Optical Link to an Explosive Ordnance Disposal (EOD) Robot W.S. Rabinovich...demonstrated. This matches the maximum range for the RF link. Free-space optical communication has emerged in recent years as an attractive

  11. Third Annual Workshop on Space Operations Automation and Robotics (SOAR 1989)

    NASA Technical Reports Server (NTRS)

    Griffin, Sandy (Editor)

    1990-01-01

    Papers presented at the Third Annual Workshop on Space Operations Automation and Robotics (SOAR '89), hosted by the NASA Lyndon B. Johnson Space Center at Houston, Texas, on July 25 to 27, 1989, are given. Approximately 100 technical papers were presented by experts from NASA, the USAF, universities, and technical companies. Also held were panel discussions on Air Force/NASA Artificial Intelligence Overview and Expert System Verification and Validation.

  12. Goal driven kinematic simulation of flexible arm robot for space station missions

    NASA Technical Reports Server (NTRS)

    Janssen, P.; Choudry, A.

    1987-01-01

    Flexible arms offer a great degree of flexibility in maneuvering in the space environment. The problem of transporting an astronaut for extra-vehicular activity using a space station based flexible arm robot was studied. Inverse kinematic solutions of the multilink structure were developed. The technique is goal driven and can support decision making for configuration selection as required for stability and obstacle avoidance. Details of this technique and results are given.

  13. Experimental evaluation of a Dielectric Elastomer robotic arm for space applications

    NASA Astrophysics Data System (ADS)

    Branz, F.; Francesconi, A.

    2017-04-01

    A growing interest within the space community focuses on robotics due to the large number of possible applications in many mission scenarios. On-Orbit Servicing (OOS) is arguably the most appealing implementation of space automatic systems. In several cases, OOS requires the capture of orbital objects, which is a complex and risky operation that can be successfully performed by robotic manipulators. Soft robotics, in particular, seems to be suitable for such applications given its intrinsic compliance to the operative environment. Devices based on Dielectric Elastomers (DE) can be employed for the implementation of soft robotic systems and showed promising performances. The introduction of DEs to orbital systems would represent a breakthrough in space technologies. In addition, space conditions could further advantage DE robotics, given the reduced environmental loads experienced and the longer times for operations. Nevertheless, Dielectric Elastomer Actuators (DEA) are a low-TRL (Technology Readiness Level) technology that needs to prove its maturity and suitability to space implementation. In this work, the performances of a redundant manipulator based on DEAs are presented in terms of numerical and experimental results. A 4-DoF planar manipulator has been tested in a gravity-compensated setup. The system is composed by two double-cone actuators mounted in series, each of them providing actuation of two DoF. The end-effector is an optical marker whose position is detected by a vision system. The system has a total of four joint DoF and operates in the xy horizontal plane; only the x and y positions of the end-effector are controlled. Two degrees of redundancy are obtained and exploited for the optimization of joint torques to avoid the saturation of actuators. Numerical simulations have been conducted to predict the system behaviour. The laboratory facility emulates the zero-gravity orbital environment by means of a suspending cable. Detailed experimental results

  14. Human-Robot Teaming in a Multi-Agent Space Assembly Task

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Currie, Nancy; Ambrose, Robert O.; Culbert, Christopher

    2004-01-01

    NASA's Human Space Flight program depends heavily on spacewalks performed by pairs of suited human astronauts. These Extra-Vehicular Activities (EVAs) are severely restricted in both duration and scope by consumables and available manpower. An expanded multi-agent EVA team combining the information-gathering and problem-solving skills of humans with the survivability and physical capabilities of robots is proposed and illustrated by example. Such teams are useful for large-scale, complex missions requiring dispersed manipulation, locomotion and sensing capabilities. To study collaboration modalities within a multi-agent EVA team, a 1-g test is conducted with humans and robots working together in various supporting roles.

  15. Computer coordination of limb motion for locomotion of a multiple-armed robot for space assembly

    NASA Technical Reports Server (NTRS)

    Klein, C. A.; Patterson, M. R.

    1982-01-01

    Consideration is given to a possible robotic system for the construction of large space structures, which may be described as a multiple general purpose arm manipulator vehicle that can walk over the structure under construction to a given site for further work. A description is presented of the locomotion of such a vehicle, modeling its arms in terms of a currently available industrial manipulator. It is noted that for whatever maximum speed of operation is chosen, rapid changes in robot velocity create situations in which already-selected handholds are no longer practical. A step is added to the 'free gait' walking algorithm in order to solve this problem.

  16. Space Station Freedom automation and robotics: An assessment of the potential for increased productivity

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Zimmerman, Wayne F.; Swietek, Gregory E.; Reid, David H.; Hoffman, Ronald B.; Stammerjohn, Lambert W., Jr.; Stoney, William; Ghovanlou, Ali H.

    1990-01-01

    This report presents the results of a study performed in support of the Space Station Freedom Advanced Development Program, under the sponsorship of the Space Station Engineering (Code MT), Office of Space Flight. The study consisted of the collection, compilation, and analysis of lessons learned, crew time requirements, and other factors influencing the application of advanced automation and robotics, with emphasis on potential improvements in productivity. The lessons learned data collected were based primarily on Skylab, Spacelab, and other Space Shuttle experiences, consisting principally of interviews with current and former crew members and other NASA personnel with relevant experience. The objectives of this report are to present a summary of this data and its analysis, and to present conclusions regarding promising areas for the application of advanced automation and robotics technology to the Space Station Freedom and the potential benefits in terms of increased productivity. In this study, primary emphasis was placed on advanced automation technology because of its fairly extensive utilization within private industry including the aerospace sector. In contrast, other than the Remote Manipulator System (RMS), there has been relatively limited experience with advanced robotics technology applicable to the Space Station. This report should be used as a guide and is not intended to be used as a substitute for official Astronaut Office crew positions on specific issues.

  17. The servicing aid tool: A teleoperated robotics system for space applications

    NASA Technical Reports Server (NTRS)

    Dorman, Keith W.; Pullen, John L.; Keksz, William O.; Eismann, Paul H.; Kowalski, Keith A.; Karlen, James P.

    1994-01-01

    The Servicing Aid Tool (SAT) is a teleoperated, force-reflecting manipulation system designed for use on the Space Shuttle. The system will assist Extravehicular Activity (EVA) servicing of spacecraft such as the Hubble Space Telescope. The SAT stands out from other robotics development programs in that special attention was given to provide a low-cost, space-qualified design which can easily and inexpensively be reconfigured and/or enhanced through the addition of existing NASA funded technology as that technology matures. SAT components are spaceflight adaptations of existing ground-based designs from Robotics Research Corporation (RRC), the leading supplier of robotics systems to the NASA and university research community in the United States. Fairchild Space is the prime contractor and provides the control electronics, safety system, system integration, and qualification testing. The manipulator consists of a 6-DOF Slave Arm mounted on a 1-DOF Positioning Link in the shuttle payload bay. The Slave Arm is controlled via a highly similar, 6-DOF, force-reflecting Master Arm from Schilling Development, Inc. This work is being performed under contract to the Goddard Space Flight Center Code, Code 442, Hubble Space Telescope Flight Systems and Servicing Project.

  18. A Method for Estimating Costs and Benefits of Space Assembly and Servicing By Astronauts and Robots

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.; Benfield, Mark (Technical Monitor)

    2002-01-01

    One aspect of designing future space missions is to determine whether Space Assembly and Servicing (SAS) is useful and, if so, what combination of robots and astronauts provides the most effective means of accomplishing it. Certain aspects of these choices, such as the societal value of developing the means for humans to live in space, do not lend themselves to quantification. However, other SAS costs and benefits can be quantified in a manner that can help select the most cost-effective SAS approach. Any space facility, whether it is assembled and serviced or not, entails an eventual replacement cost due to wear and obsolescence. Servicing can reduce this cost by limiting replacement to only failed or obsolete components. However, servicing systems, such as space robots, have their own logistics cost, and astronauts can have even greater logistics requirements. On the other hand, humans can be more capable than robots at performing dexterous and unstructured tasks, which can reduce logistics costs by allowing a reduction in mass of replacement components. Overall, the cost-effectiveness of astronaut SAS depends on its efficiency; and, if astronauts have to be wholly justified by their servicing usefulness, then the serviced space facility has to be large enough to fully occupy them.

  19. Recognition of human emotion using sensor agent robot for interactive and adaptive living spaces

    NASA Astrophysics Data System (ADS)

    Murata, Sozo; Mita, Akira

    2011-04-01

    Safer, more comfortable and energy-efficient living spaces are always demanded. However, most buildings are designed based on prescribed scenarios so that they do not act on abrupt changes of environments. We propose "Biofication of Living Spaces" that has functions of learning occupants' lifestyles and taking actions based on collected information. By doing so, we can incorporate the high adaptability to the building. Our goal is to make living spaces more "comfortable". However, human beings have emotion that implies the meaning of "comfortable" depends on each individual. Therefore our study focuses on recognition of human emotion. We suggest using robots as sensor agents. By using robots equipped with various sensors, they can interact with occupants and environment. We use a sensor agent robot called "e-bio". In this research, we construct a human tracking system and identified emotions of residents using their walking information. We focus on the influences of illuminance and sound. We classified emotions by calculating the distance of the mapped points in comfortable and uncomfortable spaces with parametric eigen space method, in which parameters are determined by a mapping of tracks in the space. As a method of pattern recognition, a weighted k-nearest neighbor is used. Experiments considering illuminance and sound environments, illustrates good correlation between emotion and environments.

  20. Optimization of the Robotic Joint Equipped with Epicyloidal Gear and Direct Drive for Space Applications

    NASA Astrophysics Data System (ADS)

    Seweryn, Karol; Grassmann, Kamil; Ciesielska, Monika; Rybus, Tomasz; Turek, Michal

    2013-09-01

    One of the most critical element in the orbital manipulators are kinematic joints. Joints must be adapted to work in tough conditions of space environment and must ensure the greatest efficiency and work without backlash. At the Space Mechatronics and Robotics Laboratory (LMRS) of the Space Research Centre, PAS our team designed and built a lightweight kinematic pair based on a new concept. The new concept is based on the epicycloid two-stage gearbox with torque motor. In this paper we have focused on optimization of the joint design for space application. The optimization was focused on the minimization of the mass and backlash effects and on maximizing the joint efficiency.

  1. Aeroservoelastic Testing of a Sidewall Mounted Free Flying Wind-Tunnel Model

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2008-01-01

    A team comprised of the Air Force Research Laboratory (AFRL), Northrop Grumman, Lockheed Martin, and the NASA Langley Research Center conducted three j wind-tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, exible vehicles. In the rst of these three tests, a semispan, aeroelastically scaled, wind-tunnel model of a ying wing SensorCraft vehi- cle was mounted to a force balance to demonstrate gust load alleviation. In the second and third tests, the same wing was mated to a new, multi-degree-of-freedom, sidewall mount. This mount allowed the half-span model to translate vertically and pitch at the wing root, allowing better simulation of the full span vehicle's rigid-body modes. Gust Load Alleviation (GLA) and Body Freedom Flutter (BFF) suppression were successfully demonstrated. The rigid body degrees-of-freedom required that the model be own in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort.

  2. Differential pressure measurement using a free-flying insect-like ornithopter with an MEMS sensor.

    PubMed

    Takahashi, Hidetoshi; Aoyama, Yuichiro; Ohsawa, Kazuharu; Tanaka, Hiroto; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-09-01

    This paper presents direct measurements of the aerodynamic forces on the wing of a free-flying, insect-like ornithopter that was modeled on a hawk moth (Manduca sexta). A micro differential pressure sensor was fabricated with micro electro mechanical systems (MEMS) technology and attached to the wing of the ornithopter. The sensor chip was less than 0.1% of the wing area. The mass of the sensor chip was 2.0 mg, which was less than 1% of the wing mass. Thus, the sensor was both small and light in comparison with the wing, resulting in a measurement system that had a minimal impact on the aerodynamics of the wing. With this sensor, the 'pressure coefficient' of the ornithopter wing was measured during both steady airflow and actual free flight. The maximum pressure coefficient observed for steady airflow conditions was 1.4 at an angle of attack of 30 degrees . In flapping flight, the coefficient was around 2.0 for angles of attack that ranged from 25 degrees to 40 degrees . Therefore, a larger aerodynamic force was generated during the downstroke in free flight compared to steady airflow conditions.

  3. Neuropharmacological Manipulation of Restrained and Free-flying Honey Bees, Apis mellifera.

    PubMed

    Søvik, Eirik; Plath, Jenny A; Devaud, Jean-Marc; Barron, Andrew B

    2016-11-26

    Honey bees demonstrate astonishing learning abilities and advanced social behavior and communication. In addition, their brain is small, easy to visualize and to study. Therefore, bees have long been a favored model amongst neurobiologists and neuroethologists for studying the neural basis of social and natural behavior. It is important, however, that the experimental techniques used to study bees do not interfere with the behaviors being studied. Because of this, it has been necessary to develop a range of techniques for pharmacological manipulation of honey bees. In this paper we demonstrate methods for treating restrained or free-flying honey bees with a wide range of pharmacological agents. These include both noninvasive methods such as oral and topical treatments, as well as more invasive methods that allow for precise drug delivery in either systemic or localized fashion. Finally, we discuss the advantages and disadvantages of each method and describe common hurdles and how to best overcome them. We conclude with a discussion on the importance of adapting the experimental method to the biological questions rather than the other way around.

  4. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    PubMed

    Sommerlandt, Frank M J; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G

    2016-01-01

    Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach.

  5. Temporary cavity created by free-flying projectiles propelled from a powder-actuated nail gun.

    PubMed

    Frank, Matthias; Schönekeß, Holger C; Jäger, Frank; Hertel, Heinz; Ekkernkamp, Axel; Bockholdt, Britta

    2012-09-01

    Nails and driving pins discharged from powder-actuated fastening tools bear some special ballistic characteristics. Compared to the usual pistol or revolver projectiles, the sectional density (S) of fastening pins is extremely high. The general prevailing opinion is that the kinetic energy delivered by fastening tools is not high enough to cause a temporary cavity. Therefore, it was the aim of this study to investigate the wound morphology due to fastening bolts discharged from a powder-actuated direct-acting nail gun (where, in contrast to modern piston-type tools, the expanding gases act directly on the fastener) using ballistic soap blocks as simulants. For test shots, a direct-acting powder-actuated nail gun which features three interchangeable barrels (caliber (cal.) 6, 8, and 10 mm) was used. The average kinetic energy was 537, 532, and 694 J for the 6-, 8-, and 10-mm cal. bolts, respectively. Test shots on the ballistic soap blocks demonstrated that free-flying projectiles discharged from direct-acting fastening tools are able to create a temporary cavity.

  6. TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies.

    PubMed

    Fry, Steven N; Rohrseitz, Nicola; Straw, Andrew D; Dickinson, Michael H

    2008-06-15

    Modern neuroscience and the interest in biomimetic control design demand increasingly sophisticated experimental techniques that can be applied in freely moving animals under realistic behavioral conditions. To explore sensorimotor flight control mechanisms in free-flying fruit flies (Drosophila melanogaster), we equipped a wind tunnel with a Virtual Reality (VR) display system based on standard digital hardware and a 3D path tracking system. We demonstrate the experimental power of this approach by example of a 'one-parameter open loop' testing paradigm. It provided (1) a straightforward measure of transient responses in presence of open loop visual stimulation; (2) high data throughput and standardized measurement conditions from process automation; and (3) simplified data analysis due to well-defined testing conditions. Being based on standard hardware and software techniques, our methods provide an affordable, easy to replicate and general solution for a broad range of behavioral applications in freely moving animals. Particular relevance for advanced behavioral research tools originates from the need to perform detailed behavioral analyses in genetically modified organisms and animal models for disease research.

  7. A proof-of-principle getaway special free-flying satellite demonstration

    NASA Technical Reports Server (NTRS)

    Moore, R. G.

    1984-01-01

    An air traffic control radar calibration satellite is described that will be used by the U.S. Federal Aviation Administration, U.S. military agencies and cooperating governments around the world to measure antenna patterns associated with the existing international air traffic control network. The satellite will employ three L-band receivers, a UHF command receiver, a VHF telemetry transmitter, associated antennas, a microprocessor, fixed solar arrays, and a power supply to acquire, store and forward signal strength data from some of the tracking radars. A second satellite is planned for launch in 1986 into a high altitude polar orbit with a lifetime of several years in order to provide a long-lived calibration service to the entire international air traffic control system. The initial satellite and associated ground station are being designed and built by a volunteer consortium of three educational institutions and more than a dozen aerospace companies. Following this initial demonstration of a free-flying Getaway Special satellite, a substantial number of organizations are contemplating commercial uses of the concept. Discussions are being held with NASA concerning the establishing of an appropriate fee for this new class of service.

  8. Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging.

    PubMed

    Bäckman, Johan; Andersson, Arne; Pedersen, Lykke; Sjöberg, Sissel; Tøttrup, Anders P; Alerstam, Thomas

    2017-03-25

    The use of accelerometers has become an important part of biologging techniques for large-sized birds with accelerometer data providing information about flight mode, wing-beat pattern, behaviour and energy expenditure. Such data show that birds using much energy-saving soaring/gliding flight like frigatebirds and swifts can stay airborne without landing for several months. Successful accelerometer studies have recently been conducted also for free-flying small songbirds during their entire annual cycle. Here we review the principles and possibilities for accelerometer studies in bird migration. We use the first annual actograms (for red-backed shrike Lanius collurio) to explore new analyses and insights that become possible with accelerometer data. Actogram data allow precise estimates of numbers of flights, flight durations as well as departure/landing times during the annual cycle. Annual and diurnal rhythms of migratory flights, as well as prolonged nocturnal flights across desert barriers are illustrated. The shifting balance between flight, rest and different intensities of activity throughout the year as revealed by actogram data can be used to analyse exertion levels during different phases of the life cycle. Accelerometer recording of the annual activity patterns of individual birds will open up a new dimension in bird migration research.

  9. Advanced torque converters for robotics and space applications

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This report describes the results of the evaluation of a novel torque converter concept. Features of the concept include: (1) automatic and rapid adjustment of effective gear ratio in response to changes in external torque (2) maintenance of output torque at zero output velocity without loading the input power source and (3) isolation of input power source from load. Two working models of the concept were fabricated and tested, and a theoretical analysis was performed to determine the limits of performance. It was found that the devices are apparently suited to certain types of tool driver applications, such as screwdrivers, nut drivers and valve actuators. However, quantiative information was insufficient to draw final conclusion as to robotic applications.

  10. A robot end effector exchange mechanism for space applications

    NASA Technical Reports Server (NTRS)

    Gorin, Barney F.

    1990-01-01

    Efficient robot operation requires the use of specialized end effectors or tools for tasks. In spacecraft applications, the microgravity environment precludes the use of gravitational forces to retain the tools in holding fixture. As a result of this, a retention mechanism which forms a part of the tool storage container is required. A unique approach to this problem has resulted in the development of an end effector exchange mechanism that meets the requirements for spaceflight applications while avoiding the complexity usually involved. This mechanism uses multiple latching cams both on the manipulator and in the tool storage container, combined with a system of catch rings to provide retention in both locations and the required failure tolerance. Because of the cam configuration the mechanism operates passively, requiring no electrical commands except those needed to move the manipulator into position. Similarly, it inherently provides interlocks to prevent the release of one cam before its opposite number is engaged.

  11. Adaptive control of space-based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A control method is presented that achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. The 15-DOF system dynamics are divided into two components: a 9-DOF invertible portion and 6-DOF noninvertible portion. A controller is then designed to achieve trajectory tracking of the invertible portion of the system, which consists of the manipulator-joint positions and the orientation of the base. The motion of the noninvertible portion is bounded but otherwise unspecified. This portion of the system consists of the position of the robot's base and the position of the reaction wheels. A simulation is presented to demonstrate the effectiveness of the controller. A quadratic polynomial is used to generate the desired trajectory to illustrate the trajectory-tracking capability of the controller.

  12. A robotic system for automation of logistics functions on the Space Station

    NASA Technical Reports Server (NTRS)

    Martin, J. C.; Purves, R. B.; Hosier, R. N.; Krein, B. A.

    1988-01-01

    Spacecraft inventory management is currently performed by the crew and as systems become more complex, increased crew time will be required to perform routine logistics activities. If future spacecraft are to function effectively as research labs and production facilities, the efficient use of crew time as a limited resource for performing mission functions must be employed. The use of automation and robotics technology, such as automated warehouse and materials handling functions, can free the crew from many logistics tasks and provide more efficient use of crew time. Design criteria for a Space Station Automated Logistics Inventory Management System is focused on through the design and demonstration of a mobile two armed terrestrial robot. The system functionally represents a 0 gravity automated inventory management system and the problems associated with operating in such an environment. Features of the system include automated storage and retrieval, item recognition, two armed robotic manipulation, and software control of all inventory item transitions and queries.

  13. A mobile robot system for ground servicing operations on the space shuttle

    NASA Technical Reports Server (NTRS)

    Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.

    1992-01-01

    A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.

  14. Micro-Power Sources Enabling Robotic Outpost Based Deep Space Exploration

    NASA Technical Reports Server (NTRS)

    West, W. C.; Whitacre, J. F.; Ratnakumar, B. V.; Brandon, E. J.; Studor, G. F.

    2001-01-01

    Robotic outpost based exploration represents a fundamental shift in mission design from conventional, single spacecraft missions towards a distributed risk approach with many miniaturized semi-autonomous robots and sensors. This approach can facilitate wide-area sampling and exploration, and may consist of a web of orbiters, landers, or penetrators. To meet the mass and volume constraints of deep space missions such as the Europa Ocean Science Station, the distributed units must be fully miniaturized to fully leverage the wide-area exploration approach. However, presently there is a dearth of available options for powering these miniaturized sensors and robots. This group is currently examining miniaturized, solid state batteries as candidates to meet the demand of applications requiring low power, mass, and volume micro-power sources. These applications may include powering microsensors, battery-backing rad-hard CMOS memory and providing momentary chip back-up power. Additional information is contained in the original extended abstract.

  15. Off-line programming motion and process commands for robotic welding of Space Shuttle main engines

    NASA Technical Reports Server (NTRS)

    Ruokangas, C. C.; Guthmiller, W. A.; Pierson, B. L.; Sliwinski, K. E.; Lee, J. M. F.

    1987-01-01

    The off-line-programming software and hardware being developed for robotic welding of the Space Shuttle main engine are described and illustrated with diagrams, drawings, graphs, and photographs. The menu-driven workstation-based interactive programming system is designed to permit generation of both motion and process commands for the robotic workcell by weld engineers (with only limited knowledge of programming or CAD systems) on the production floor. Consideration is given to the user interface, geometric-sources interfaces, overall menu structure, weld-parameter data base, and displays of run time and archived data. Ongoing efforts to address limitations related to automatic-downhand-configuration coordinated motion, a lack of source codes for the motion-control software, CAD data incompatibility, interfacing with the robotic workcell, and definition of the welding data base are discussed.

  16. A mobile robot system for ground servicing operations on the space shuttle

    NASA Astrophysics Data System (ADS)

    Dowling, K.; Bennett, R.; Blackwell, M.; Graham, T.; Gatrall, S.; O'Toole, R.; Schempf, H.

    1992-11-01

    A mobile system for space shuttle servicing, the Tessellator, has been configured, designed and is currently being built and integrated. Robot tasks include chemical injection and inspection of the shuttle's thermal protection system. This paper outlines tasks, rationale, and facility requirements for the development of this system. A detailed look at the mobile system and manipulator follow with a look at mechanics, electronics, and software. Salient features of the mobile robot include omnidirectionality, high reach, high stiffness and accuracy with safety and self-reliance integral to all aspects of the design. The robot system is shown to meet task, facility, and NASA requirements in its design resulting in unprecedented specifications for a mobile-manipulation system.

  17. A robotic system for automation of logistics functions on the Space Station

    NASA Technical Reports Server (NTRS)

    Martin, J. C.; Purves, R. B.; Hosier, R. N.; Krein, B. A.

    1988-01-01

    Spacecraft inventory management is currently performed by the crew and as systems become more complex, increased crew time will be required to perform routine logistics activities. If future spacecraft are to function effectively as research labs and production facilities, the efficient use of crew time as a limited resource for performing mission functions must be employed. The use of automation and robotics technology, such as automated warehouse and materials handling functions, can free the crew from many logistics tasks and provide more efficient use of crew time. Design criteria for a Space Station Automated Logistics Inventory Management System is focused on through the design and demonstration of a mobile two armed terrestrial robot. The system functionally represents a 0 gravity automated inventory management system and the problems associated with operating in such an environment. Features of the system include automated storage and retrieval, item recognition, two armed robotic manipulation, and software control of all inventory item transitions and queries.

  18. JSC flight experiment recommendation in support of Space Station robotic operations

    NASA Astrophysics Data System (ADS)

    Berka, Reginald B.

    1993-02-01

    The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.

  19. JSC flight experiment recommendation in support of Space Station robotic operations

    NASA Technical Reports Server (NTRS)

    Berka, Reginald B.

    1993-01-01

    The man-tended configuration (MTC) of Space Station Freedom (SSF) provides a unique opportunity to move robotic systems from the laboratory into the mainstream space program. Restricted crew access due to the Shuttle's flight rate, as well as constrained on-orbit stay time, reduces the productivity of a facility dependent on astronauts to perform useful work. A natural tendency toward robotics to perform maintenance and routine tasks will be seen in efforts to increase SSF usefulness. This tendency will provide the foothold for deploying space robots. This paper outlines a flight experiment that will capitalize on the investment in robotic technology made by NASA over the past ten years. The flight experiment described herein provides the technology demonstration necessary for taking advantage of the expected opportunity at MTC. As a context to this flight experiment, a broader view of the strategy developed at the JSC is required. The JSC is building toward MTC by developing a ground-based SSF emulation funded jointly by internal funds, NASA/Code R, and NASA/Code M. The purpose of this ground-based Station is to provide a platform whereby technology originally developed at JPL, LaRC, and GSFC can be integrated into a near flight-like condition. For instance, the Automated Robotic Maintenance of Space Station (ARMSS) project integrates flat targets, surface inspection, and other JPL technologies into a Station analogy for evaluation. Also, ARMSS provides the experimental platform for the Capaciflector from GSPC to be evaluated for its usefulness in performing ORU change out or other tasks where proximity detection is required. The use and enhancement of these ground-based SSF models are planned for use through FY-93. The experimental data gathered from tests in these facilities will provide the basis for the technology content of the proposed flight experiment.

  20. Adaptive neural control for an uncertain robotic manipulator with joint space constraints

    NASA Astrophysics Data System (ADS)

    Tang, Zhong-Liang; Ge, Shuzhi Sam; Tee, Keng Peng; He, Wei

    2016-07-01

    In this paper, adaptive neural tracking control is proposed for a robotic manipulator with uncertainties in both manipulator dynamics and joint actuator dynamics. The manipulator joints are subject to inequality constraints, i.e., the joint angles are required to remain in some compact sets. Integral barrier Lyapunov functionals (iBLFs) are employed to address the joint space constraints directly without performing an additional mapping to the error space. Neural networks (NNs) are utilised to compensate for the unknown robot dynamics and external force. Adapting parameters are developed to estimate the unknown bounds on NN approximations. By the Lyapunov synthesis, the proposed control can guarantee the semi-global uniform ultimate boundedness of the closed-loop system, and the practical tracking of joint reference trajectory is achieved without the violation of predefined joint space constraints. Simulation results are given to validate the effectiveness of the proposed control scheme.

  1. Advancing automation and robotics technology for the space station and for the US economy

    NASA Technical Reports Server (NTRS)

    1986-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the second in a series of progress updates and covers the period between October 4, 1985, and March 31, l986. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Program and serve as a highly visible stimulator effecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  2. Advancing automation and robotics technology for the space station and for the US economy

    NASA Technical Reports Server (NTRS)

    Nunamaker, Robert

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Space Station. This material was documented in the initial report (NASA Technical Memo 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the sixth in a series of progress updates and covers the period between October 1, 1987 and March 1, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station program and serve as a highly visible stimulator affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Space Station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the Space Station.

  3. Real-time collision avoidance in space: the GETEX experiment

    NASA Astrophysics Data System (ADS)

    Freund, Eckhard; Rossmann, Juergen; Schluse, Michael

    2000-10-01

    Intelligent autonomous robotic systems require efficient safety components to assure system reliability during the entire operation. Especially if commanded over long distances, the robotic system must be able to guarantee the planning of safe and collision free movements independently. Therefore the IRF developed a new collision avoidance methodology satisfying the needs of autonomous safety systems considering the dynamics of the robots to protect. To do this, the collision avoidance system cyclically calculates the actual collision danger of the robots with respect to all static and dynamic obstacles in the environment. If a robot gets in collision danger the methodology immediately starts an evasive action to avoid the collision and guides the robot around the obstacle to its target position. This evasive action is calculated in real-time in a mathematically exact way by solving a quadratic convex optimization problem. The secondary conditions of this optimization problem include the potential collision danger of the robots kinematic chain including all temporarily attached grippers and objects and the dynamic constraints of the robots. The result of the optimization procedure are joint accelerations to apply to prevent the robot from colliding and to guide it to its target position. This methodology has been tested very successfully during the Japanese/German space robot project GETEX in April 1999. During the mission, the collision avoidance system successfully protected the free flying Japanese robot ERA on board the satellite ETS-VII at all times. The experiments showed, that the developed system is fully capable of ensuring the safety of such autonomous robotic systems by actively preventing collisions and generating evasive actions in cases of collision danger.

  4. A fuzzy structural matching scheme for space robotics vision

    NASA Technical Reports Server (NTRS)

    Naka, Masao; Yamamoto, Hiromichi; Homma, Khozo; Iwata, Yoshitaka

    1994-01-01

    In this paper, we propose a new fuzzy structural matching scheme for space stereo vision which is based on the fuzzy properties of regions of images and effectively reduces the computational burden in the following low level matching process. Three dimensional distance images of a space truss structural model are estimated using this scheme from stereo images sensed by Charge Coupled Device (CCD) TV cameras.

  5. Manipulator arm design for the Extravehicular Teleoperator Assist Robot (ETAR): Applications on the space station

    NASA Technical Reports Server (NTRS)

    Clarke, Margaret M.; Divona, Charles J.; Thompson, William M.

    1987-01-01

    The preliminary conceptual design of a new teleoperator robot manipulator system for space station maintenance missions has been completed. The system consists of a unique pair of arms that is part of a master-slave, force-reflecting servomanipulator. This design allows greater dexterity and greater volume coverage than that available in current designs and concepts. The teleoperator manipulator is specifically designed for space applications and is a valuable extension of the current state-of-the-art earthbound manipulators marketed today. The manipulator and its potential application on the space station are described.

  6. Visualization of redundancy resolution for kinematically redundant robots through the Jacobian null space

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Che; Walker, Ian D.; Cheatham, John B., Jr.

    1992-01-01

    We present a unified formulation for the inverse kinematics of redundant arms, based on a special formulation of the null space of the Jacobian. By extending (appropriately re-scaling) previously used null space parameterizations, we obtain, in a unified fashion, the manipulability measure, the null space projector, and particular solutions for the joint velocities. We obtain the minimum norm pseudo-inverse solution as a projection from any particular solution, and the method provides an intuitive visualization of the self-motion. The result is a computationally efficient, consistent approach to computing redundant robot inverse kinematics.

  7. Technology for Space Station Evolution. Volume 4: Power Systems/Propulsion/Robotics

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution on 16-19 Jan. 1990. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 4 consists of the technology discipline sections for Power, Propulsion, and Robotics. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  8. On-orbit spacecraft servicing: An element in the evolution of space robotics applications

    NASA Technical Reports Server (NTRS)

    Anders, Carl J.; Roy, Claude H.

    1994-01-01

    This paper addresses the renewed interest in on-orbit spacecraft servicing (OSS), and how it fits into the evolution of space applications for intelligent robots. Investment in the development of space robotics and associated technologies is growing as nations recognize that it is a critical component of the exploration and commercial development of space. At the same time, changes in world conditions have generated a renewal of the interest in OSS. This is reflected in the level of activity in the U.S., Japan and Europe in the form of studies and technology demonstration programs. OSS is becoming widely accepted as an opportunity in the evolution of space robotics applications. Importantly, it is a feasible proposition with current technologies and the direction of ongoing research and development activities. Interest in OSS dates back more than two decades, and several programs have been initiated, but no operational system has come on line, arguably with the Shuttle as the exception. With new opportunities arising, however, a fresh look at the feasibility of OSS is warranted. This involves the resolution of complex market, technical and political issues, through market studies, economic analyses, mission requirement definitions, trade studies, concept designs and technology demonstrations. System architectures for OSS are strongly dependent on target spacecraft design and launch delivery systems. Performance and cost factors are currently forcing significant changes in these areas. This presents both challenges and opportunities in the provision of OSS services. In conclusion, there is no question OSS will become a reality, but only when the technical feasibility is combined with either economic viability or political will. In the evolution of space robotics satellite servicing can become the next step towards its eventual role in support of planetary exploration and human beings' journey out into the universe.

  9. Advancing automation and robotics technology for the Space Station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the seventh in a series of progress updates and covers the period between April 1, 1988 and September 30, 1988. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.

  10. Advancing automation and robotics technology for the space station Freedom and for the US economy

    NASA Technical Reports Server (NTRS)

    Creedon, Jeremiah F.

    1989-01-01

    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the Freedom space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the eighth in a series of progress updates and covers the period between October 1, 1988, and March 31, 1989. NASA has accepted the basic recommendations of ATAC for its Space Station Freedom efforts. ATAC and NASA agree that the thrust of Congress is to build an advanced automation and robotics technology base that will support an evolutionary Space Station Freedom program and serve as a highly visible stimulator, affecting the U.S. long-term economy. The progress report identifies the work of NASA and the Freedom study contractors. It also describes research in progress, and it makes assessments of the advancement of automation and robotics technology on the Freedom space station.

  11. Use of Robotically Hollowed Out Moon of Mars as a Mars Space Station

    NASA Astrophysics Data System (ADS)

    Mardon, A.

    2002-01-01

    For long term manned exploration and colonization of Mars it is necessary to develop a space station as a way station to and from the Earth. The author proposes that one of the Moons of Mars could be converted into a permanent hollowed out space station. This could be done robotically before any manned mission to Mars arrives in orbit around Mars. In the construction industry there already exists small robotic tunneling devices that are used underground in urban settings. With excavated tunnels being completed by remotely controlled operators when a manned vehicle arrives from Earth with a crew all that would be needed to be done is seal the tunnels underneath the surface of one of the Moons of mars and then either erect tent like structures in the tunnels or seal up the actual surfaces of the tunnels so that it could be shirt sleeve rated. The hollowed out space station for Mars could be a permanent structure. Because the station would be inside the Moon the threat of micro-meteorites would be non-existent. If more space was needed then all that would be needed is to excavate more of the Moons. Also by using robots to tunnel the structure would be complete before the manned mission would arrive.

  12. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    NASA Astrophysics Data System (ADS)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  13. SpaceWire- Based Control System Architecture for the Lightweight Advanced Robotic Arm Demonstrator [LARAD

    NASA Astrophysics Data System (ADS)

    Rucinski, Marek; Coates, Adam; Montano, Giuseppe; Allouis, Elie; Jameux, David

    2015-09-01

    The Lightweight Advanced Robotic Arm Demonstrator (LARAD) is a state-of-the-art, two-meter long robotic arm for planetary surface exploration currently being developed by a UK consortium led by Airbus Defence and Space Ltd under contract to the UK Space Agency (CREST-2 programme). LARAD has a modular design, which allows for experimentation with different electronics and control software. The control system architecture includes the on-board computer, control software and firmware, and the communication infrastructure (e.g. data links, switches) connecting on-board computer(s), sensors, actuators and the end-effector. The purpose of the control system is to operate the arm according to pre-defined performance requirements, monitoring its behaviour in real-time and performing safing/recovery actions in case of faults. This paper reports on the results of a recent study about the feasibility of the development and integration of a novel control system architecture for LARAD fully based on the SpaceWire protocol. The current control system architecture is based on the combination of two communication protocols, Ethernet and CAN. The new SpaceWire-based control system will allow for improved monitoring and telecommanding performance thanks to higher communication data rate, allowing for the adoption of advanced control schemes, potentially based on multiple vision sensors, and for the handling of sophisticated end-effectors that require fine control, such as science payloads or robotic hands.

  14. A non-linear model predictive controller with obstacle avoidance for a space robot

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Walter, Ulrich

    2016-04-01

    This study investigates the use of the non-linear model predictive control (NMPC) strategy for a kinematically redundant space robot to approach an un-cooperative target in complex space environment. Collision avoidance, traditionally treated as a high level planning problem, can be effectively translated into control constraints as part of the NMPC. The objective of this paper is to evaluate the performance of the predictive controller in a constrained workspace and to investigate the feasibility of imposing additional constraints into the NMPC. In this paper, we reformulated the issue of the space robot motion control by using NMPC with predefined objectives under input, output and obstacle constraints over a receding horizon. An on-line quadratic programming (QP) procedure is employed to obtain the constrained optimal control decisions in real-time. This study has been implemented for a 7 degree-of-freedom (DOF) kinematically redundant manipulator mounted on a 6 DOF free-floating spacecraft via simulation studies. Real-time trajectory tracking and collision avoidance particularly demonstrate the effectiveness and potential of the proposed NMPC strategy for the space robot.

  15. Exposure of free-flying birds to anticholinesterase insecticides in two conventionally managed fruit orchards

    USGS Publications Warehouse

    Borges, S.L.

    2002-01-01

    Conventionally managed orchards receive extensive applications of anticholinesterase (anti-ChE) insecticides throughout the growing season. Because many avian species make use of these environments for nesting and foraging, they may receive substantial exposure to anti-ChEs. The model used to assess avian risk in these environments is highly simplified, and indicator species used in risk studies may misrepresent the risk of the species in the field. A better understanding of avian risk is needed, and should begin with a closer examination o# their exposure in these environments. Exposure of free-flying birds was examined in two conventional orchards during the nesting seasons of 1999 and 2000. Our goal was to demonstrate the influences of species and chemical differences on the exposure we observed. Plasma ChE activity and ChE reactivation were used to identify exposure in multiple species following anti-ChE applications (applied singly and in mixtures). Chipping sparrows (Spizella passerina), American goldfinches (Carduelis tristis), and American robins (Turdus migratorius) demonstrated significant ChE activity depression in 1999 (p 0.005), and only chipping sparrows demonstrated significant depression in 2000 (p = 0.0002). These three species demonstrated the highest proportion of exposed individuals among all species examined in both years. Because many chemicals were simultaneously present in each orchard, chemical influences on the exposure we observed could not be discerned. This work does demonstrate, however, that avian species differ significantly in their exposure, and that chipping sparrows demonstrated the greatest exposure among the species analyzed. These results underscore the need for multiple species studies and for choosing indicator species on a biologically relevant basis.

  16. Does Fine Color Discrimination Learning in Free-Flying Honeybees Change Mushroom-Body Calyx Neuroarchitecture?

    PubMed Central

    Sommerlandt, Frank M. J.; Spaethe, Johannes; Rössler, Wolfgang; Dyer, Adrian G.

    2016-01-01

    Honeybees learn color information of rewarding flowers and recall these memories in future decisions. For fine color discrimination, bees require differential conditioning with a concurrent presentation of target and distractor stimuli to form a long-term memory. Here we investigated whether the long-term storage of color information shapes the neural network of microglomeruli in the mushroom body calyces and if this depends on the type of conditioning. Free-flying honeybees were individually trained to a pair of perceptually similar colors in either absolute conditioning towards one of the colors or in differential conditioning with both colors. Subsequently, bees of either conditioning groups were tested in non-rewarded discrimination tests with the two colors. Only bees trained with differential conditioning preferred the previously learned color, whereas bees of the absolute conditioning group, and a stimuli-naïve group, chose randomly among color stimuli. All bees were then kept individually for three days in the dark to allow for complete long-term memory formation. Whole-mount immunostaining was subsequently used to quantify variation of microglomeruli number and density in the mushroom-body lip and collar. We found no significant differences among groups in neuropil volumes and total microglomeruli numbers, but learning performance was negatively correlated with microglomeruli density in the absolute conditioning group. Based on these findings we aim to promote future research approaches combining behaviorally relevant color learning tests in honeybees under free-flight conditions with neuroimaging analysis; we also discuss possible limitations of this approach. PMID:27783640

  17. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees.

    PubMed

    Rodríguez-Gironés, Miguel A; Trillo, Alejandro; Corcobado, Guadalupe

    2013-01-01

    The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices) were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities.

  18. Long Term Effects of Aversive Reinforcement on Colour Discrimination Learning in Free-Flying Bumblebees

    PubMed Central

    Rodríguez-Gironés, Miguel A.; Trillo, Alejandro; Corcobado, Guadalupe

    2013-01-01

    The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices) were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities. PMID:23951186

  19. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds.

    PubMed

    Schmaljohann, H; Liechti, F

    2009-11-01

    Birds adjust their flight behaviour to the physical properties of the air. Lift and drag, the two major properties in aerodynamics, are highly dependent on air density. With decreasing air density drag is reduced and lift per wingbeat decreases. According to flight mechanical theory, wingbeat frequency and air speed should increase with decreasing air density, i.e. increasing flight altitude. Although wind tunnel experiments have shed light on many aspects of avian flight, the effect of air density remained ambiguous, because air density could not be adjusted in wind tunnels, until now. By means of radar we recorded tracks of several thousand free-flying individual birds during nocturnal migration. From these tracks we derived wingbeat frequencies and air speeds covering air densities from 0.84 kg m(-3) to 1.13 kg m(-3), corresponding to an altitudinal range of about 3000 m. We demonstrate here with this sample of nocturnal migrants that: (1) wingbeat frequency decreases with air density (which corresponds to an increase in flap-gliding flyers by 0.4 Hz km(-1) and in bounding flyers by 1.1 Hz km(-1)), (2) reducing wingbeat frequency to equivalent sea level values did not abolish the dependency on air density, as expected by flight mechanical theory, and (3) bounding flyers show a higher response in their flight behavioural adjustments to changes in air density than flap-gliding flyers. With respect to air speed flap-gliding flyers increase their air speed by 1.0 m s(-1) km(-1) and bounding flyers by 1.4 m s(-1) km(-1).

  20. Duck plague in free-flying waterfowl observed during the Lake Andes epizootic

    USGS Publications Warehouse

    Proctor, S.J.; Pearson, G.L.; Leibovitz, L.

    1975-01-01

    The first major epizootic of duck plague in free-flying waterfowl occurred at Lake Andes, South Dakota, in January and February, 1973. Duck plague was diagnosed in black ducks, mallards, pintail-mallard hybrids, redheads, common mergansers, common golden eyes, canvasbacks, American widgeon, wood ducks, and Canada geese, indicating the general susceptibility of ducks to duck plague. Clinical signs observed in mallards were droopiness, polydipsia, lethargy, reduced wariness, weakness, reluctance to fly, swimming in circles, bloody diarrhea, bloody fluid draining from the nares and bill, and terminal convulsions.Because the mallard was the most numerous and heavily infected species during the Lake Andes epizootic, gross and microscopic lesions of the gastrointestinal tract, liver, spleen, thymus, bursa of Fabricius, heart, lung, bone marrow, pancreas, and ovaries were described. Lesions of the esophagus and cloaca were in the stratified submucosal glands. In the small and large intestine, lesions were located in lymphocytic aggregates, lamina propria, and crypt epithelium. Hemorrhages and necrosis of hepatocytes and bile duct epithelium were noted in the liver. Diffuse necrosis of lymphocytic and reticuloendothelial tissue were evident in the spleen, bursa of Fabricius, and thymus. Hemorrhages in other tissues such as the lung and heart were often associated with lymphoid nodules, while those in organs such as the pancreas were associated with acinar necrosis. Intranuclear inclusion bodies were seen in stratified squamous epithelium of the esophagus and cloaca, crypt epithelium of the intestine, hepatocytes, bile duct epithelium, cells of Hassel's corpuscles, splenic periarteriolar reticular cells, and epithelial cells in the bursa of Fabricius.

  1. Thin film microelectronics materials production in the vacuum of space

    NASA Astrophysics Data System (ADS)

    Ignatiev, A.; Sterling, M.; Horton, C.; Freundlich, A.; Pei, S.; Hill, R.

    1997-01-01

    The international Space Station era will open up a new dimension in the use of one of the unique attributes of space, vacuum, for the production of advanced semiconductor materials and devices for microelectronics applications. Ultra-vacuum is required for the fabrication in thin film form of high quality semiconductors. This can be accomplished behind a free flying platform similar to the current Wake Shield Facility which is specifically designed to support in-space production. The platform will require apparatus for thin film growth, a robotics interface to allow for the change out of raw materials and the harvesting of finished product, and a servicing plant incorporating Space Station that will support long-term utilization of the platform.

  2. Remotely Manipulated And Autonomous Robotic Welding Fabrication In Space

    NASA Astrophysics Data System (ADS)

    Agapakis, John E.; Masubuchi, Koichi

    1985-12-01

    The results of a National Aeronautics and Space Administration (NASA) sponsored study, performed in order to establish the feasibility of remotely manipulated or unmanned welding fabrication systems for space construction, are first presented in this paper. Possible space welding fabrication tasks and operational modes are classified and the capabilities and limitations of human operators and machines are outlined. The human performance in remote welding tasks is experimentally tested under the sensing and actuation constraints imposed by remote manipulation in outer space environments. Proposals for the development of space welding technology are made and necessary future research and development (R&D) efforts are identified. The development of improved visual sensing strategies and computer encoding of the human welding engineering expertise are identified as essential, both for human operator assistance and for autonomous operation in all phases of welding fabrication. Results of a related follow-up study are then briefly presented. Novel uses of machine vision for the determination of the weld joint and bead geometry are proposed and implemented, and a first prototype of a rule-based expert system is developed for the interpretation of the visually detected weld features and defects.

  3. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Liang, Bin; Wang, Ziwei; Mi, Yilin; Zhang, Yiman; Chen, Zhang

    2017-05-01

    A noncooperative target with large inertia grasped by space robot may contain a large unkonwn initial angular momentum, which will cause the compound system unstable. Unloading the unkonwn angular momentum of the compound system is a necessary and diffcult task. In the paper, a coordinated stabilization scenario is introduced to reduce the angular momentum, which has two stages, Momentum Reduction and Momentum Redistribution. For the Momentum Reduction, a modified adaptive sliding mode control algorithm is proposed and used to reduce the unknown angular momentum of target, which uses a new signum function and time-delay estimation to assure fast convergence and achieve good performance with small chattering effect. Finally, a plane dual-arm space robot is simulated, the numerical simulations show that the proposed control algorithm is able to stabilize a noncooperative target with large inertia successfully, while the attitude disturbance of base is small. The control algorithm also has a good robust performance.

  4. Visualization of dual-arm robot motion space under kinematic constraints

    SciTech Connect

    Tarn, T.J. ); De, P.K. ); Bejczy, A.K. ); Li, Z. )

    1995-02-01

    This article presents a technique for determining and visualizing the geometric motion capabilities of dual-arm robotic systems when the arms work on an object in a closed kinematic chain configuration, taking account of robot arms' base placements, object dimensions, object holding and contact constraints, and space occupancy conflicts of the two arms' links. The constrained and object orientation restricted motion space in general can be visualized as a complex 3D object with hidden unreachable holes or cavities of varying shapes. An automated visualization methodology is presented together with its graphical implementation, illustrated by an example. The methodology is an inverse computer vision technique in the sense that it creates rather than recognizes visual forms. 18 refs., 5 figs.

  5. Remotely manipulated and autonomous robotic welding fabrication in space

    NASA Technical Reports Server (NTRS)

    Agapakis, J. E.; Masubuchi, K.

    1985-01-01

    The results of a NASA sponsored study, performed in order to establish the feasibility of remotely manipulated or unmanned welding fabrication systems for space construction, are presented. Possible space welding fabrication tasks and operational modes are classified and the capabilities and limitations of human operators and machines are outlined. Human performance in remote welding tasks was experimentally tested under the sensing and actuation constraints imposed by remote manipulation in outer space environments. Proposals for the development of space welding technology are made and necessary future R&D efforts are identified. The development of improved visual sensing strategies and computer encoding of the human welding engineering expertise are identified as essential, both for human operator assistance and for autonomous operation in all phases of welding fabrication. Novel uses of machine vision for the determination of the weld joint and bead geometry are proposed, and a prototype of a rule-based expert system is described for the interpretation of the visually detected weld features and defects.

  6. Navigation and Control Based on LOS Angle of Space Robot to Approach the Target Satellite

    NASA Astrophysics Data System (ADS)

    Sugahara, Masayuki; Masutani, Yasuhiro; Miyazaki, Fumio

    This paper presents a method of navigation and control for a space robot (chaser) flying around a troubled satellite (target) on a circular orbit around the earth to approach the target satellite. Orbital dynamics of the chaser is represented by the Hill’s equation. The technique based on LOS angle of approaching the target is proposed. We prove the validity of the technique on the situation that the chaser approach the target satellite after the circular trajectory, which is periodically free motion.

  7. Experiences in the development of rotary joints for robotic manipulators in space applications

    NASA Technical Reports Server (NTRS)

    Priesett, Klaus

    1992-01-01

    European developments in robotics for space applications have resulted in human arm-like manipulators with six or more rotational degrees of freedom. The rotary joints including their own electromechanical actuator and feedback sensors must be very compact units. The specific joint concept is presented as evolved so far. The problems encountered during the first hardware development phases are covered on both component and joint level.

  8. Trajectory planning of free-floating space robot using Particle Swarm Optimization (PSO)

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Luo, Jianjun; Walter, Ulrich

    2015-07-01

    This paper investigates the application of Particle Swarm Optimization (PSO) strategy to trajectory planning of the kinematically redundant space robot in free-floating mode. Due to the path dependent dynamic singularities, the volume of available workspace of the space robot is limited and enormous joint velocities are required when such singularities are met. In order to overcome this effect, the direct kinematics equations in conjunction with PSO are employed for trajectory planning of free-floating space robot. The joint trajectories are parametrized with the Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for trajectory planning of 7 degree-of-freedom (DOF) redundant manipulator mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  9. Multisensor robotic system for autonomous space maintenance and repair

    NASA Technical Reports Server (NTRS)

    Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.

    1988-01-01

    The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.

  10. Multisensor robotic system for autonomous space maintenance and repair

    NASA Technical Reports Server (NTRS)

    Abidi, M. A.; Green, W. L.; Chandra, T.; Spears, J.

    1988-01-01

    The feasibility of realistic autonomous space manipulation tasks using multisensory information is demonstrated. The system is capable of acquiring, integrating, and interpreting multisensory data to locate, mate, and demate a Fluid Interchange System (FIS) and a Module Interchange System (MIS). In both cases, autonomous location of a guiding light target, mating, and demating of the system are performed. Implemented visio-driven techniques are used to determine the arbitrary two-dimensional position and orientation of the mating elements as well as the arbitrary three-dimensional position and orientation of the light targets. A force/torque sensor continuously monitors the six components of force and torque exerted on the end-effector. Both FIS and MIS experiments were successfully accomplished on mock-ups built for this purpose. The method is immune to variations in the ambient light, in particular because of the 90-minute day-night shift in space.

  11. Advanced development for space robotics with emphasis on fault tolerance

    NASA Technical Reports Server (NTRS)

    Tesar, D.; Chladek, J.; Hooper, R.; Sreevijayan, D.; Kapoor, C.; Geisinger, J.; Meaney, M.; Browning, G.; Rackers, K.

    1995-01-01

    This paper describes the ongoing work in fault tolerance at the University of Texas at Austin. The paper describes the technical goals the group is striving to achieve and includes a brief description of the individual projects focusing on fault tolerance. The ultimate goal is to develop and test technology applicable to all future missions of NASA (lunar base, Mars exploration, planetary surveillance, space station, etc.).

  12. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  13. CSA's robotic arm, the Space Station Remote Manipulator System, inside the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers in the Space Station Processing Facility raise two segments of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS). CSA's first contribution to the International Space Station (ISS), the SSRMS is the primary means of transferring payloads between the orbiter payload bay and the ISS for assembly. The 56-foot-long robotic arm includes two 12- foot booms joined by a hinge. Seven joints on the arm allow highly flexible and precise movement. Latching End Effectors are mounted on each end of the arm for grappling. Video cameras mounted on the booms and end effectors will give astronauts maximum visibility for operations and maintenance tasks on the ISS. The SSRMS is at KSC to begin a campaign of prelaunch processing activities. It is scheduled to be launched aboard Space Shuttle Endeavour on mission STS-100, currently planned for July 2000.

  14. CSA's robotic arm, the Space Station Remote Manipulator System, inside the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers in the Space Station Processing Facility raise a segment of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS) to move it to a workstand. CSA's first contribution to the International Space Station (ISS), the SSRMS is the primary means of transferring payloads between the orbiter payload bay and the ISS for assembly. The 56-foot-long robotic arm includes two 12-foot booms joined by a hinge. Seven joints on the arm allow highly flexible and precise movement. Latching End Effectors are mounted on each end of the arm for grappling. Video cameras mounted on the booms and end effectors will give astronauts maximum visibility for operations and maintenance tasks on the ISS. The SSRMS is at KSC to begin a campaign of prelaunch processing activities. It is scheduled to be launched aboard Space Shuttle Endeavour on mission STS-100, currently planned for July 2000.

  15. CSA's robotic arm, the Space Station Remote Manipulator System, inside the SSPF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Workers in the in the Space Station Processing Facility move two segments of the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS) to a workstand. CSA's first contribution to the International Space Station (ISS), the SSRMS is the primary means of transferring payloads between the orbiter payload bay and the ISS for assembly. The 56-foot-long robotic arm includes two 12-foot booms joined by a hinge. Seven joints on the arm allow highly flexible and precise movement.. Latching End Effectors are mounted on each end of the arm for grappling. Video cameras mounted on the booms and end effectors will give astronauts maximum visibility for operations and maintenance tasks on the ISS. The SSRMS is at KSC to begin a campaign of prelaunch processing activities. It is scheduled to be launched aboard Space Shuttle Endeavour on mission STS-100, currently planned for July 2000.

  16. ISS Robotic Student Programming

    NASA Technical Reports Server (NTRS)

    Barlow, J.; Benavides, J.; Hanson, R.; Cortez, J.; Le Vasseur, D.; Soloway, D.; Oyadomari, K.

    2016-01-01

    The SPHERES facility is a set of three free-flying satellites launched in 2006. In addition to scientists and engineering, middle- and high-school students program the SPHERES during the annual Zero Robotics programming competition. Zero Robotics conducts virtual competitions via simulator and on SPHERES aboard the ISS, with students doing the programming. A web interface allows teams to submit code, receive results, collaborate, and compete in simulator-based initial rounds and semi-final rounds. The final round of each competition is conducted with SPHERES aboard the ISS. At the end of 2017 a new robotic platform called Astrobee will launch, providing new game elements and new ground support for even more student interaction.

  17. Miniature Free-Flying Magnetometer Utilizing System-On-A-Chip Technology

    NASA Technical Reports Server (NTRS)

    Eyre, F. B.; Blaes, B. R.

    2001-01-01

    Four Free-Flying Magnetometers (FFMs), developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy mission, were successfully deployed from the payload of a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. The FFMs functioned successfully by synchronously measuring the vector magnetic field at 4 points separate from the payload and at relative distances up to 3 km, and communicated their data, in bursts, to the ground. This is the first time synchronized in-situ multipoint measurements of the Earth's magnetic field utilizing miniature spin-stabilized "sensorcraft" have been performed. The data they provided have enabled, for the first time, the direct measure of field-aligned current density and are enabling new science by determining the fine-scale structure of the currents in the Earth's ionosphere involved in the production of aurora. These proof-of-concept "hockey puck" (80 mm diameter, 38 mm height, 250 gram mass) FFMs were built using off-the-shelf commercial, industrial, and military grade surface-mount electronic components. Radiation-hard electronics was not required for the Enstrophy mission's short sub-orbital flight. The successful design, implementation, and flight demonstration of this 1st generation FFM design has provided a solid base for further development of a 2nd generation FFM design for planetary science applications. A reliable ultra-miniature radiation-hard 2nd-generation FFM utilizing System-On-A-Chip (SOAC) technologies is proposed. This design would be targeted for long-term planetary missions to investigate magnetospheric field configurations in regions having small-scale structure and to separate spatial and temporal variations. A fleet of short-lived (expendable) FFMs would be deployed into a targeted region to gather multiprobe vector magnetic field data. The FFMs would be ejected from a parent spacecraft at a speed of a few m/sec and would cover spatial volumes of order tens of kilometers for times of

  18. Miniature Free-Flying Magnetometer Utilizing System-On-A-Chip Technology

    NASA Technical Reports Server (NTRS)

    Eyre, F. B.; Blaes, B. R.

    2001-01-01

    Four Free-Flying Magnetometers (FFMs), developed at the Jet Propulsion Laboratory (JPL) for the Enstrophy mission, were successfully deployed from the payload of a sounding rocket launched from Poker Flats, Alaska on February 11, 1999. The FFMs functioned successfully by synchronously measuring the vector magnetic field at 4 points separate from the payload and at relative distances up to 3 km, and communicated their data, in bursts, to the ground. This is the first time synchronized in-situ multipoint measurements of the Earth's magnetic field utilizing miniature spin-stabilized "sensorcraft" have been performed. The data they provided have enabled, for the first time, the direct measure of field-aligned current density and are enabling new science by determining the fine-scale structure of the currents in the Earth's ionosphere involved in the production of aurora. These proof-of-concept "hockey puck" (80 mm diameter, 38 mm height, 250 gram mass) FFMs were built using off-the-shelf commercial, industrial, and military grade surface-mount electronic components. Radiation-hard electronics was not required for the Enstrophy mission's short sub-orbital flight. The successful design, implementation, and flight demonstration of this 1st generation FFM design has provided a solid base for further development of a 2nd generation FFM design for planetary science applications. A reliable ultra-miniature radiation-hard 2nd-generation FFM utilizing System-On-A-Chip (SOAC) technologies is proposed. This design would be targeted for long-term planetary missions to investigate magnetospheric field configurations in regions having small-scale structure and to separate spatial and temporal variations. A fleet of short-lived (expendable) FFMs would be deployed into a targeted region to gather multiprobe vector magnetic field data. The FFMs would be ejected from a parent spacecraft at a speed of a few m/sec and would cover spatial volumes of order tens of kilometers for times of

  19. NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2

    NASA Technical Reports Server (NTRS)

    Dobbs, M. E.

    1991-01-01

    Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.

  20. Guidelines and rules for automated assembly by robots in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sadanand

    1992-01-01

    The development of an expert system for a 'Mechanical Design System' is discussed. Two different implementation approaches are described. One is coded in C, and the other is realized by a software package - 'Exsys.' The first method has the advantage of greater flexibility and quicker responses, while the latter one is easier to develop. This report discusses the feasible ways to establish a real mechanical intelligent design system applying artificial intelligence techniques so that the products designed by this system could best meet the requirements for space assembly.

  1. Inertial-space disturbance rejection for robotic manipulators

    NASA Technical Reports Server (NTRS)

    Holt, Kevin

    1992-01-01

    The disturbance rejection control problem for a 6-DOF (degree of freedom) PUMA manipulator mounted on a 3-DOF platform is investigated. A control algorithm is designed to track the desired position and attitude of the end-effector in inertial space, subject to unknown disturbances in the platform axes. Conditions for the stability of the closed-loop system are derived. The performance of the controller is compared for step, sinusoidal, and random disturbances in the platform rotational axis and in the neighborhood of kinematic singularities.

  2. Image-based robot navigation in 3D environments (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Remazeilles, Anthony; Chaumette, François; Gros, Patrick

    2005-12-01

    In this paper a new method is proposed to control a vision-based robot in large navigation spaces. In this case, visual features observed by an on-board camera can change drastically or even disappear completely between the initial image, as seen at the beginning of a task, and the final image, as seen at the desired position of the robot. These features are therefore not suffcient for controlling the entire motion of the robotic system from beginning to end. This problem requires a more complete definition and representation of the navigation space. This can be achieved by a topological representation, where the environment is directly defined in the sensor space by a data-base of images. In our approach, this data-base is acquired during an offline learning step. An image retrieval method then indexes and matches a request image, given by the camera, to the closest view within the data-base. In this way, an image path is extracted from the database to link the initial and desired images providing enough information to control the robot. The central point of this paper is focused on the closed-loop control law that drives the robot to its desired position using this image path. The method proposed does not require either a global reconstruction or a temporal planning step. Furthermore, the robot is not obliged to converge directly upon each image waypoint but chooses automatically a better trajectory. The visual servoing control law designed uses specific features which ensure that the robot navigates within the visibility path. Experimental simulations are given to show the effectiveness of this method for controlling the motion of a camera in three-dimensional environments (free-flying camera, or camera moving on a plane).

  3. Transoral robotic approach to parapharyngeal space tumors: Case series and technical limitations.

    PubMed

    Boyce, Brian J; Curry, Joseph M; Luginbuhl, Adam; Cognetti, David M

    2016-08-01

    The transoral robotic approach to parapharyngeal space (PPS) tumors is a new technique with limited data available on its feasibility, safety, and efficacy. We analyzed our experience with transoral robotic excisions of PPS tumors to evaluate the safety and efficacy of this technique. Retrospective chart analysis at tertiary academic medical center. From July 2010 to June 2014, 17 patients who had transoral robotic excision of PPS tumors were included in the study. Our cohort had an average age of 61.6 years and was 52.9% male. All patients had successful removal of their PPS tumors, and the average size of the tumors was 27.3 cm(3) (range 2-80 cm(3) ). Two cases (11.7%) required a cervical incision to assist with tumor removal. The average total operative time was 140.5 minutes. Two PPS PAs had focal areas of capsule rupture and one was fragmented. The average length of stay was 1.8 days (range 1-7 days), and all patients were discharged on an oral diet. Three patients experienced complications. There was no clinical or radiographic evidence of recurrence. This is the largest single-institution case series of transoral robotic approaches to PPS tumors. We demonstrate that this approach is feasible and safe but also note limitations of the robotic approaches for tumors on the far lateral and superior areas of the PPS, which required transcervical assistance. There were no patients who demonstrated recurrent tumor either radiographically or clinically. 4. Laryngoscope, 126:1776-1782, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  4. Advanced Robotics for In-Space Vehicle Processing

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Estus, Jay; Heneghan, Cate; Bosley, John

    1990-01-01

    An analysis of spaceborne vehicle processing is described. Generic crew-EVA tasks are presented for a specific vehicle, the orbital maneuvering vehicle (OMV), with general implications to other on-orbit vehicles. The OMV is examined with respect to both servicing and maintenance. Crew-EVA activities are presented by task and mapped to a common set of generic crew-EVA primitives to identify high-demand areas for telerobot services. Similarly, a set of telerobot primitives is presented that can be used to model telerobot actions for alternative telerobot reference configurations. The telerobot primitives are tied to technologies and used for composting telerobot operations for an automated refueling scenario. Telerobotics technology issues and design accomodation guidelines (hooks and scars) for the Space Station Freedom are described.

  5. JPL space robotics: Present accomplishments and future thrusts

    NASA Technical Reports Server (NTRS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-01-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  6. JPL space robotics: Present accomplishments and future thrusts

    NASA Astrophysics Data System (ADS)

    Weisbin, C. R.; Hayati, S. A.; Rodriguez, G.

    1994-10-01

    Complex missions require routine and unscheduled inspection for safe operation. The purpose of research in this task is to facilitate structural inspection of the planned Space Station while mitigating the need for extravehicular activity (EVA), and giving the operator supervisory control over detailed and somewhat mundane, but important tasks. The telerobotic system enables inspection relative to a given reference (e.g., the status of the facility at the time of the last inspection) and alerts the operator to potential anomalies for verification and action. There are two primary objectives of this project: (1) To develop technologies that enable well-integrated NASA ground-to-orbit telerobotics operations, and (2) to develop a prototype common architecture workstation which implements these capabilities for other NASA technology projects and planned NASA flight applications. This task develops and supports three telerobot control modes which are applicable to time delay operation: Preview teleoperation, teleprogramming, and supervised autonomy.

  7. A Lego Robot on the ISS: Chronicles of a Successful Space Outreach Programme

    NASA Astrophysics Data System (ADS)

    Carl, S.; Mirra, C.

    2002-01-01

    In a recent effort, a space outreach project on the International Space Station (ISS) was initiated and successfully implemented. This project, named "Mindstorms in Space", was solely supported by industry. The Lego Company, being active in the non-space area, in co-operation with Intospace, a space industry service provider, developed a space education project aimed at developing, launching and operating a Lego Robot on the Space Station. The idea behind the project is part of a subsequent marketing campaign of Lego in Central Europe in order to promote their Lego Mindstorms series. This series is a highly sophisticated assembly set with programmable microchips and advanced reaction systems such as light-, touch or rotational sensors. The space environment of the ISS was perceived as the right scenario for this hi-tech project. Therefore a public competition was announced to create attention offering interested people to participate in developing a robot that will be in the condition to support the ISS crew during their daily routine work. The criteria of the competition were kept in line with the common Lego principles, i.e. creativity, innovation, fun and teamwork, as well as the basic manned space support parameters, i.e. usefulness, functionality in microgravity, interaction with the crew. Several steps were necessary to make this happen including the qualification of the hardware and selection of the competition winner by a jury. Furthermore integration preparation tasks, the actual launch and the final demonstration during a live transmission from onboard the ISS represented a good example of how such a project can be successfully accomplished in a short time. This paper will present the development and execution of this project and will provide a snapshot on the success of the public outreach campaign.

  8. Small Stirling dynamic isotope power system for robotic space missions

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1992-01-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

  9. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a nonlinear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. The development includes an analysis of the estimator stability given errors in the measured attitude. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given, including scenarios with erroneous measured attitudes. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  10. Hubble Space Telescope Angular Velocity Estimation During the Robotic Servicing Mission

    NASA Technical Reports Server (NTRS)

    Thienel, Julie K.; Queen, Steven Z.; VanEepoel, John M.; Sanner, Robert M.

    2005-01-01

    In 2004 NASA began investigation of a robotic servicing mission for the Hubble Space Telescope (HST). Such a mission would require estimates of the HST attitude and rates in order to achieve a capture by the proposed Hubble robotic vehicle (HRV). HRV was to be equipped with vision-based sensors, capable of estimating the relative attitude between HST and HRV. The inertial HST attitude is derived from the measured relative attitude and the HRV computed inertial attitude. However, the relative rate between HST and HRV cannot be measured directly. Therefore, the HST rate with respect to inertial space is not known. Two approaches are developed to estimate the HST rates. Both methods utilize the measured relative attitude and the HRV inertial attitude and rates. First, a non-linear estimator is developed. The nonlinear approach estimates the HST rate through an estimation of the inertial angular momentum. Second, a linearized approach is developed. The linearized approach is a pseudo-linear Kalman filter. Simulation test results for both methods are given. Even though the development began as an application for the HST robotic servicing mission, the methods presented are applicable to any rendezvous/capture mission involving a non-cooperative target spacecraft.

  11. A review of space robotics technologies for on-orbit servicing

    NASA Astrophysics Data System (ADS)

    Flores-Abad, Angel; Ma, Ou; Pham, Khanh; Ulrich, Steve

    2014-07-01

    Space robotics is considered one of the most promising approaches for on-orbit servicing (OOS) missions such as docking, berthing, refueling, repairing, upgrading, transporting, rescuing, and orbital debris removal. Many enabling techniques have been developed in the past two decades and several technology demonstration missions have been completed. A number of manned on-orbit servicing missions were successfully accomplished but unmanned, fully autonomous, servicing missions have not been done yet. Furthermore, all previous unmanned technology demonstration missions were designed to service cooperative targets only. Robotic servicing of a non-cooperative satellite is still an open research area facing many technical challenges. One of the greatest challenges is to ensure the servicing spacecraft safely and reliably docks with the target spacecraft or capture the target to stabilize it for subsequent servicing. This is especially important if the target has an unknown motion and kinematics/dynamics properties. Obviously, further research and development of the enabling technologies are needed. To motivate and facilitate such research and development, this paper provides a literature review of the recently developed technologies related to the kinematics, dynamics, control and verification of space robotic systems for manned and unmanned on-orbit servicing missions.

  12. Optical Observations of Space Debris with a global network of robotic telescopes

    NASA Astrophysics Data System (ADS)

    Laas-Bourez, Myrtille; Coward, David; Klotz, Alain; Boer, Michel

    The two TAROTs (Télescopes a Action Rapide pour les Objets Transitoires; Rapid Response ` Telescopes for Transient Objects) are fully robotic optical observatories with optimized observa-tion scheduling, data processing and archiving. In 2008, a new algorithm based on morpholog-ical mathematic was implemented in the standard pipeline. The method works by correlating measurements of the same object on successive images and provides very imprecise detection and false alarm rates. We have improved the algorithm and present the optimized version in this paper. With show that the efficiency and quality of the geostationary orbit survey is drastically improved. We find false detection and non-detection rates near zero. In this paper, we provide an overview of an international network of robotic optical telescopes that now includes the two TAROTs, a new Australian facility, the 1-m Zadko Telescope, and two other French telescopes. This robotic telescope networks offer simplicity in managing data, facilities and optimizes the potential science output for the individual instruments. In relation to space debris , the network will allow the Zadko Telescope to participate in a satellite and space debris tracking program. The network will potentially access 100% of all geostationary belt objects, provide accurate satellites positions and track low Earth orbit objects.

  13. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  14. Advancing automation and robotics technology for the Space Station and for the US economy. Volume 1: Executive overview

    NASA Astrophysics Data System (ADS)

    1985-03-01

    In response to Public Law 98-371, dated July 18, 1984, the NASA Advanced Technology Advisory Committee has studied automation and robotics for use in the Space Station. The Executive Overview, Volume 1 presents the major findings of the study and recommends to NASA principles for advancing automation and robotics technologies for the benefit of the Space Station and of the U.S. economy in general. As a result of its study, the Advanced Technology Advisory Committee believes that a key element of technology for the Space Station is extensive use of advanced general-purpose automation and robotics. These systems could provide the United States with important new methods of generating and exploiting space knowledge in commercial enterprises and thereby help preserve U.S. leadership in space.

  15. Robots for hazardous duties: Military, space, and nuclear facility applications. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1993-09-01

    The bibliography contains citations concerning the design and application of robots used in place of humans where the environment could be hazardous. Military applications include autonomous land vehicles, robotic howitzers, and battlefield support operations. Space operations include docking, maintenance, mission support, and intra-vehicular and extra-vehicular activities. Nuclear applications include operations within the containment vessel, radioactive waste operations, fueling operations, and plant security. Many of the articles reference control techniques and the use of expert systems in robotic operations. Applications involving industrial manufacturing, walking robots, and robot welding are cited in other published searches in this series. (Contains a minimum of 183 citations and includes a subject term index and title list.)

  16. Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Minsky, M. L.; Smith, D. B. S.

    1982-01-01

    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions are explored. The specific tasks which will be required by future space projects are identified. ARAMIS options which are candidates for those space project tasks and the relative merits of these options are defined and evaluated. Promising applications of ARAMIS and specific areas for further research are identified. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks.

  17. Design of multihundredwatt DIPS for robotic space missions

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Geng, S. M.; Schreiber, J. G.; Withrow, C. A.; Schmitz, P. C.; Mccomas, Thomas J.

    1991-01-01

    Design of a dynamic isotope power system (DIPS) general purpose heat source (GPHS) and small free piston Stirling engine (FPSE) is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to SEI precursor missions. These are multihundredwatt missions. The incentive for any dynamic system is that it can save fuel which reduces cost and radiological hazard. However, unlike a conventional DIPS based on turbomachinery converions, the small Stirling DIPS can be advantageously scaled to multihundred watt unit size while preserving size and weight competitiveness with RTG's. Stirling conversion extends the range where dynamic systems are competitive to hundreds of watts (a power range not previously considered for dynamic systems). The challenge of course is to demonstrate reliability similar to RTG experience. Since the competative potential of FPSE as an isotope converter was first identified, work has focused on the feasibility of directly integrating GPHS with the Stirling heater head. Extensive thermal modeling of various radiatively coupled heat source/heater head geometries were performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within safe operating limits under all conditions including shutdown of one engine. Based on these results, preliminary characterizations of multihundred watt units were established.

  18. Space Station Human Factors: Designing a Human-Robot Interface

    NASA Technical Reports Server (NTRS)

    Rochlis, Jennifer L.; Clarke, John Paul; Goza, S. Michael

    2001-01-01

    The experiments described in this paper are part of a larger joint MIT/NASA research effort and focus on the development of a methodology for designing and evaluating integrated interfaces for highly dexterous and multifunctional telerobot. Specifically, a telerobotic workstation is being designed for an Extravehicular Activity (EVA) anthropomorphic space station telerobot called Robonaut. Previous researchers have designed telerobotic workstations based upon performance of discrete subsets of tasks (for example, peg-in-hole, tracking, etc.) without regard for transitions that operators go through between tasks performed sequentially in the context of larger integrated tasks. The experiments presented here took an integrated approach to describing teleoperator performance and assessed how subjects operating a full-immersion telerobot perform during fine position and gross position tasks. In addition, a Robonaut simulation was also developed as part of this research effort, and experimentally tested against Robonaut itself to determine its utility. Results show that subject performance of teleoperated tasks using both Robonaut and the simulation are virtually identical, with no significant difference between the two. These results indicate that the simulation can be utilized as both a Robonaut training tool, and as a powerful design platform for telepresence displays and aids.

  19. Verification Test of Automated Robotic Assembly of Space Truss Structures

    NASA Technical Reports Server (NTRS)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  20. Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 2: A Centerline Supported Fullspan Model Tested for Gust Load Alleviation

    NASA Technical Reports Server (NTRS)

    Scott, Robert C.; Vetter, Travis K.; Penning, Kevin B.; Coulson, David A.; Heeg, Jennifer

    2014-01-01

    This is part 2 of a two part document. Part 1 is titled: "Aeroservoelastic Testing of Free Flying Wind Tunnel Models Part 1: A Sidewall Supported Semispan Model Tested for Gust Load Alleviation and Flutter Suppression." A team comprised of the Air Force Research Laboratory (AFRL), Boeing, and the NASA Langley Research Center conducted three aeroservoelastic wind tunnel tests in the Transonic Dynamics Tunnel to demonstrate active control technologies relevant to large, flexible vehicles. In the first of these three tests, a full-span, aeroelastically scaled, wind tunnel model of a joined wing SensorCraft vehicle was mounted to a force balance to acquire a basic aerodynamic data set. In the second and third tests, the same wind tunnel model was mated to a new, two degree of freedom, beam mount. This mount allowed the full-span model to translate vertically and pitch. Trimmed flight at10 percent static margin and gust load alleviation were successfully demonstrated. The rigid body degrees of freedom required that the model be flown in the wind tunnel using an active control system. This risky mode of testing necessitated that a model arrestment system be integrated into the new mount. The safe and successful completion of these free-flying tests required the development and integration of custom hardware and software. This paper describes the many systems, software, and procedures that were developed as part of this effort. The balance and free flying wind tunnel tests will be summarized. The design of the trim and gust load alleviation control laws along with the associated results will also be discussed.