Retention/Diffusivity Studies in Free-Surface Flowing Liquid Lithium
R.A. Stubbers; G.H. Miley; M. Nieto; W. Olczak; D.N. Ruzic; A. Hassanein
2004-12-14
FLIRE was designed to measure the hydrogen and helium retention and diffusivity in a flowing stream of liquid lithium, and it has accomplished these goals. Retention coefficients for helium in the flowing liquid stream were 0.1-2% for flow speeds of 44 cm/s and implantation energies between 500 and 2000 eV. The energy dependence of retention is linear for the energy range considered, as expected, and the dependence of retention on flow velocity fits the expected square-root of flow speed dependence. Estimates of the helium diffusion coefficient in the flowing lithium stream were {approx} 4 x 10{sup -7} cm{sup 2}/s, and are independent of implantation energy. This value is much lower than expected, which could be due to several factors, such as mixing, bubble formation or surface film formation. In the case of hydrogen, long term retention and release mechanisms are of greatest importance, since this relates to tritium inventory in flowing lithium PFCs for fusion applications. The amount of hydride formation was measured for flowing lithium exposed to neutral deuterium gas. Thermal desorption spectroscopy (TDS) measurements indicate that the hydride concentration was between 0.1 and 0.2% over a wide range of pressures (6.5 x 10{sup -5} to 1 Torr). This result implies that the deuterium absorption rate is limited by the surface dissociation rate, since deuterium (hydrogen/tritium) is absorbed in its atomic form, not its molecular form.
Simulation of free-surface electrohydrodynamic flow
NASA Astrophysics Data System (ADS)
Kaiser, Kenneth L.; Kaiser, Mark J.; Weeks, Walter L.
1994-04-01
Theoretical and experimental analysis of free-surface electrohydrodynamic flow is fragmented and incomplete. Simulation studies of this phenomenon are further limited by the inherent complexities in the modeling process. In this note a mathematical model is developed to analyze free-surface electrohydrodynamic flow in two dimensions, and preliminary results of the simulation are described. The configurations examined include electrified conducting surfaces, the dielectrophoretic forces, and a conducting jet. The simulation is compared with analytical results in the first two investigations and is shown to be quite accurate. In the last simulation it is demonstrated that in the initial formation of a conducting jet, a 10% increase in applied voltage results in about a 10% increase in fluid velocity.
Model Reduction for Free-Surface Flows
NASA Astrophysics Data System (ADS)
Kees, C. E.; Farthing, M. W.; Lozovskiy, A.; Hesser, T.; Gildin, E.
2015-12-01
Accurate resolution of free-surface flows in natural systems usually requires characterization of the system's bathymetry andthe impact of bottom stress induced by surface roughness. Unfortunately, constants like Manning's n in common parameterizationsof bottom stress are not directly measurable, while in situ measurement of bathymetry can be expensive and impractical in many environments.This leads to the need to solve one or more inverse problems to estimate depths and/or roughness parameters using available data, which may be limited to surface velocities and/or free-surface elevations. While a variety of techniques can be used to solve the resulting inverse problem, many involve a sampling step that can be expected to require a large number of forward simulations for real systems. Here, we consider model reduction for free-surface flows based on Galerkin projection on a global basis provided by Proper OrthogonalDecomposition (POD). To achieve realistic speedup, we evaluate alternative hyper-reduction methods for non-polynomial nonlinearities that arise in standard formulations. We evaluate the schemes' performance by considering their accuracy, robustness, and speed for a variety of hydrodynamic regimes in the context of both forward simulation and sampling strategies for inverse problems.
Vortex dynamics in nonlinear free surface flows
NASA Astrophysics Data System (ADS)
Curtis, Christopher W.; Kalisch, Henrik
2017-03-01
The two-dimensional motion of point vortices in an inviscid fluid with a free surface and an impenetrable bed is investigated. The work is based on forming a closed system of equations for surface variables and vortex positions using a variant of the Ablowitz, Fokas, and Musslimani formulation [M. J. Ablowitz, A. S. Fokas, and Z. H. Musslimani, J. Fluid Mech. 562, 313-343 (2006)] of the water-wave free-surface problem. The equations are approximated with a dealiased spectral method making use of a high-order approximation of the Dirichlet-Neumann operator and a high-order time-stepping scheme. Numerical simulations reveal that the combination of vortex motion and solid bottom boundary yields interesting dynamics not seen in the case of vortex motion in an infinitely deep fluid. In particular, strong deformations of the free surface, including non-symmetric surface profiles and regions of large energy concentration, are observed. Our simulations also uncover a rich variety of vortex trajectories including orbiting and nearly parallel patterns of motion. The dynamics of the free surface and of the point vortices are strongly influenced by the initial placement and polarity of the vortices. The method put forward here is flexible enough to handle a large number of vortices and may easily be extended to include the effects of varying bathymetry, stratification, and background shear currents.
RIPPLE: A new model for incompressible flows with free surfaces
Kothe, D.B.; Mjolsness, R.C.
1991-01-01
A new free surface flow model, RIPPLE, is summarized. RIPPLE obtains finite difference solutions for incompressible flow problems having strong surface tension forces at free surfaces of arbitrarily complex topology. The key innovation is the Continuum Surface Force (CSF) model which represents surface tension as a (strongly) localized volume force. Other features include a high-order momentum advection model, a volume-of-fluid free surface treatment, and an efficient two-step projection solution method. RIPPLE'S unique capabilities are illustrated with two example problems: low-gravity jet-induced tank flow, and the collision and coalescence of two cylindrical rods. 17 refs., 7 figs.
Application of the PTT model to axisymmetric free surface flows
NASA Astrophysics Data System (ADS)
Merejolli, R.; Paulo, G. S.; Tomé, M. F.
2013-10-01
This work is concerned with numerical simulation of axisymmetric viscoelastic free surface flows using the Phan-Thien-Tanner (PTT) constitutive equation. A finite difference technique for solving the governing equations for unsteady incompressible flows written in Cylindrical coordinates on a staggered grid is described. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are applied. The numerical method is verified by comparing numerical predictions of fully developed flow in a pipe with the corresponding analytic solutions. To demonstrate that the numerical method can simulate axisymmetric free surface flows governed by the PTT model, numerical results of the flow evolution of a drop impacting on a rigid dry plate are presented. In these simulations, the rheological effects of the parameters ɛ and ξ are investigated.
Free-Surface Flow Over Curved Surfaces
1993-08-01
names does not constitute an official endorsement or approval of the use of such comme,.,ial products . PRIMNTED ON RECYCLED PAPER, Technical Report HL-93...1 Viii PREFACE This report is the product of research conducted from 1986 to 1992 by Dr. R. C. l0•iger, Jr., of the Estuaries Division...3.2) containing a discontinuity. The flow variables will not allow the production of vertical acceleration and short period waves associated with a
Aeration efficiency of free-surface conduit flow systems.
Unsal, M; Baylar, A; Tugal, M; Ozkan, F
2009-12-14
Dissolved oxygen is a measure of the quantity of oxygen present in water and is one of the best indicators of the health of a water ecosystem. Dissolved oxygen levels in water can be increased by creating turbulent conditions where fine air bubbles are carried into the bulk of the flow. This is achieved by hydraulic structures. A free-surface conduit is a particular instance of this. In the present work, a series of experiments were conducted to investigate the aeration efficiency of free-surface conduit flow systems. The results indicate that free-surface conduit flow systems are very effective for oxygen transfer. At Froude numbers greater than 15, almost full oxygen transfer up to the saturation value was reached. Moreover, from experimental data, a regression equation was obtained with a very high correlation coefficient, showing the effect of various parameters on the aeration efficiency.
Local mesh refinement for incompressible fluid flow with free surfaces
Terasaka, H.; Kajiwara, H.; Ogura, K.
1995-09-01
A new local mesh refinement (LMR) technique has been developed and applied to incompressible fluid flows with free surface boundaries. The LMR method embeds patches of fine grid in arbitrary regions of interest. Hence, more accurate solutions can be obtained with a lower number of computational cells. This method is very suitable for the simulation of free surface movements because free surface flow problems generally require a finer computational grid to obtain adequate results. By using this technique, one can place finer grids only near the surfaces, and therefore greatly reduce the total number of cells and computational costs. This paper introduces LMR3D, a three-dimensional incompressible flow analysis code. Numerical examples calculated with the code demonstrate well the advantages of the LMR method.
Free surface and flow problem for a viscous liquid
Zaytsev, M. L. Akkerman, V. B.
2011-10-15
An exact closed system of equations is proposed for describing the shape of the free surface of a viscous steady-state liquid in the 2D case in terms of the surface itself. A method that lowers the dimensionality in the Navier-Stokes equation is demonstrated, and its application in problems of steady-state flow past solids is considered.
Wetting and free surface flow modeling for potting and encapsulation.
Brooks, Carlton, F.; Brooks, Michael J. (Los Alamos National Laboratory, Los Alamos, NM); Graham, Alan Lyman; Noble, David F. ); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James; Baer, Thomas A.; Berchtold, Kathryn (Los Alamos National Laboratory, Los Alamos, NM); Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael
2007-06-01
As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.
Incompressible material point method for free surface flow
NASA Astrophysics Data System (ADS)
Zhang, Fan; Zhang, Xiong; Sze, Kam Yim; Lian, Yanping; Liu, Yan
2017-02-01
To overcome the shortcomings of the weakly compressible material point method (WCMPM) for modeling the free surface flow problems, an incompressible material point method (iMPM) is proposed based on operator splitting technique which splits the solution of momentum equation into two steps. An intermediate velocity field is first obtained by solving the momentum equations ignoring the pressure gradient term, and then the intermediate velocity field is corrected by the pressure term to obtain a divergence-free velocity field. A level set function which represents the signed distance to free surface is used to track the free surface and apply the pressure boundary conditions. Moreover, an hourglass damping is introduced to suppress the spurious velocity modes which are caused by the discretization of the cell center velocity divergence from the grid vertexes velocities when solving pressure Poisson equations. Numerical examples including dam break, oscillation of a cubic liquid drop and a droplet impact into deep pool show that the proposed incompressible material point method is much more accurate and efficient than the weakly compressible material point method in solving free surface flow problems.
Molecular Modeling of Viscoelastic Flow with Free Surface
NASA Astrophysics Data System (ADS)
Hu, Xin; Lee, L. James
2004-06-01
Viscoelastic flow simulation is a difficult work when one faces the complicated constitutive equation. A possible way to avoid this is to use the Brownian dynamics method — CONNFFESSIT, which has already been proved to be successful in many applications. By using this method, one should replace the constitutive equation with the so-called "Brownian Configuration Field" (BCF) equation and use the statistical method to calculate the stresses coming from the contribution of the polymer molecules. Transient free surface simulation in the viscoelastic flow is challenging because we need to calculate the velocity field and track the moving free surface at the same time. In this presentation, the modified DEVSS-G/SUPG method associated with the ALE method is used for the die-exit flow and the long bubble penetration flow using the CONNFFESSIT approach. The spine method is used to track the movement of the free surface. We study two bead-spring dumbbell models: the Hookean and FENE dumbbells. A Gaussian random generator is used to simulate the stochastic process — the standard Wiener's process. Results are also compared with those using the Non-Newtonian Oldroyd-B constitutive model.
Free-surface turbulent flow and contaminants transport modeling
Wang, S.S.Y.
1994-12-31
The requirement of maintaining the environmental quality and ecological balance of the surface water systems at the acceptable level both now and in the future has accelerated the development and refinement of a cost-effective engineering analysis and design tool--Computational Modeling. This paper presents the progress of an on-going study to develop and refine computational models to simulate the free-surface turbulent flows and contaminants transport phenomena. New developments include: the efficient Element Method, which adopts the advantages of both Finite Element and Finite Difference; the most effective up-winding and/or characteristic-path integration; the prescribed solution forcing to conduct modeling verification studies of this correctness and capabilities in prediction of nonlinear effects; among others. The newly refined computational models have been applied to simulate unsteady, three-dimensional, turbulent, free-surface flows and pollutant transport in lakes, reservoirs, streams, rivers, estuaries, and coastal waters with natural (highly-irregular) geometric configurations. They have been verified in some cases to be able to predict basic physical characteristics of the free surface flows including boundary layer separations and re-attachments, wake flow and vortex shedding, corner separation and re-circulation, etc. They are also capable of simulating the transport of solute substances, solid particles and heat energy in these waters. Results can be displayed in stationary (snapshots) color graphics and in animation (motion pictures) recorded on video cassettes.
Steep waves in free-surface flow past narrow topography
NASA Astrophysics Data System (ADS)
Wade, Stephen L.; Binder, Benjamin J.; Mattner, Trent W.; Denier, James P.
2017-06-01
In this work, we compute steep forced solitary wave solutions for the problem of free-surface flow over a localised topographic disturbance in an otherwise flat horizontal channel bottom. A single forced solitary wave and a double-crested forced solitary wave solution are shown to exist, both of which approach the Stokes limiting configuration of an included angle of 12 0° and a stagnation point at the wave crests. The solution space for the topographically forced problem is compared to that found in Wade et al. ["On the free-surface flow of very steep forced solitary waves," J. Fluid Mech. 739, 1-21 (2014)], who considered forcing due to a localised distribution of pressure applied to the free surface. The main feature that differentiates the two types of forcing is an additional solution that exists in the pressure-forced problem, a steep wave with a cusp at a single wave crest. Our numerical results suggest that this cusped-wave solution does not exist in the topographically forced problem.
Heat transfer in free-surface, flowing liquid metal
NASA Astrophysics Data System (ADS)
Rhoads, J.; Spence, E.; Edlund, E.; Sloboda, P.; Ji, H.
2012-10-01
The presence of a strong external magnetic field affects structures within the flow of conducting fluids such as liquid metals, which may have significant implications for thermal convection in proposed liquid-metal divertor concepts. Experiments have been conducted in the Liquid Metal Experiment (LMX) using a GaInSn eutectic alloy as a working fluid to investigate the anisotropization due to the magnetic field on turbulent structures in the flow and the resulting effects on convective heat transfer. These experiments considered free-surface, wide aspect-ratio flow through a channel situated in a magnetic field (up to Ha 50). Heat was injected into the fluid via resistive heaters located either on the surface or submerged in the fluid. The thermal profile was tracked on the surface of the flow by a mid-wavelength IR camera and at the bottom of the flow by a dense array of fine gage thermocouples. Along with internal velocity measurements, the temporal and spatial thermal profiles show the effects of the magnetic field on convection, yielding valuable insight into the behavior of heat transfer in free-surface, liquid metal flows. Experimental results and proposed explanations will be presented.
CFD Modeling of Local Scour under Complex Free Surface Flow
NASA Astrophysics Data System (ADS)
Bihs, Hans; Ahmad, Nadeem; Kamath, Arun; Arntsen, Øivind A.
2017-04-01
In the present study the open-source three-dimensional numerical model REEF3D is used to calculate the complex free surface flow over a spillway, the corresponding hydraulic jump downstream of the spillway and the resulting local scour. The numerical results are compared with experimental data. The transcritical flow changes from supercritical to subcritical after the hydraulic structure, which results in the hydraulic jump. The flow of the hydraulic jump is characterised by the its violent nature and the large amount of turbulence production. While the downstream area of a spillway is typically protected by a concrete apron, scour can still occur downstream of this protection. REEF3D has advanced interface capturing capabilities, with which it is possible to simulate the complex free surface dynamics. With the level set method free surface is modeled as the zero level set of a scalar signed distance function. The flow velocities are calculated together with the pressure on a staggered grid, ensuring a tight velocity-pressure coupling. Complex geometries are modeled with a ghost cell immersed boundary method. The convective terms of the momentum equations, the level set function and the equations of the k-ω turbulence model are discretized with the fifth-order finite difference WENO scheme. Parallelization of the numerical scheme is achieved by using the domain decomposition framework together with the MPI library. The topography of the sediment bed is implicitly described by a level set function. Based on bedload and suspended load transport formulations, the sediment continuity defect in the bed cells is converted into the rate of change of the vertical bed elevation. This strategy has two major advantages: the topology is a well defined surface when calculating the incipient motion on the sloping bed and the sand avalanche. In addition, the numerically error prone re-meshing can be avoided, because the complex boundary surface is accounted for by the immersed
Magnetohydrodynamic Vortex Behavior in Free-Surface Channel Flow
NASA Astrophysics Data System (ADS)
Kubricht, J.; Rhoads, J.; Spence, E.; Ji, H.
2011-10-01
Flowing liquid plasma-facing systems have been proposed for fusion devices due to their structural consistency and capability to withstand enormous heat fluxes. In support of these designs, the effects of magnetic field on the thermal mixing of conductive fluids need to be studied and understood. The Princeton Liquid Metal Experiment (LMX) consists of a free-surface, externally driven channel flow subjected to a strong vertical magnetic field. LMX uses an infrared camera and non-intrusive heat signatures to visually study the vortex street of a vertical cylinder while an array of potential probes has been installed to map the velocity profile for varying magnetic field strengths. Our studies show a decrease in surface activity with increasing field strength as well as distinct changes in vortex behavior. Velocity distributions across the channel are compared with infrared observations and the relationship between Strouhal number and magnetic field strength is examined.
Viscous free-surface flows on rotating elliptical cylinders
NASA Astrophysics Data System (ADS)
Li, Weihua; Carvalho, Marcio S.; Kumar, Satish
2017-09-01
The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.
Computation of rapidly varied unsteady, free-surface flow
Basco, D.R.
1987-01-01
Many unsteady flows in hydraulics occur with relatively large gradients in free surface profiles. The assumption of hydrostatic pressure distribution with depth is no longer valid. These are rapidly-varied unsteady flows (RVF) of classical hydraulics and also encompass short wave propagation of coastal hydraulics. The purpose of this report is to present an introductory review of the Boussinnesq-type differential equations that describe these flows and to discuss methods for their numerical integration. On variable slopes and for large scale (finite-amplitude) disturbances, three independent derivational methods all gave differences in the motion equation for higher order terms. The importance of these higher-order terms for riverine applications must be determined by numerical experiments. Care must be taken in selection of the appropriate finite-difference scheme to minimize truncation error effects and the possibility of diverging (double mode) numerical solutions. It is recommended that practical hydraulics cases be established and tested numerically to demonstrate the order of differences in solution with those obtained from the long wave equations of St. Venant. (USGS)
Rotating Polygon Instability of a Swirling Free Surface Flow
NASA Astrophysics Data System (ADS)
Tophøj, L.; Mougel, J.; Bohr, T.; Fabre, D.
2013-05-01
We explain the rotating polygon instability on a swirling fluid surface [G. H. Vatistas, J. Fluid Mech. 217, 241 (1990)JFLSA70022-1120 and Jansson et al., Phys. Rev. Lett. 96, 174502 (2006)PRLTAO0031-9007] in terms of resonant interactions between gravity waves on the outer part of the surface and centrifugal waves on the inner part. Our model is based on potential flow theory, linearized around a potential vortex flow with a free surface for which we show that unstable resonant states appear. Limiting our attention to the lowest order mode of each type of wave and their interaction, we obtain an analytically soluble model, which, together with estimates of the circulation based on angular momentum balance, reproduces the main features of the experimental phase diagram. The generality of our arguments implies that the instability should not be limited to flows with a rotating bottom (implying singular behavior near the corners), and indeed we show that we can obtain the polygons transiently by violently stirring liquid nitrogen in a hot container.
On the flow structure of cloud cavitating flow around an axisymmetric body near the free surface
NASA Astrophysics Data System (ADS)
Wang, Yiwei; Wu, Xiaocui; Huang, Chenguang; Yu, XianXian
2015-12-01
The influence of the free surface on the cavitating flow is an important issue involved in the design of high speed surface vehicles. In the present paper, unsteady cavitating turbulent flow around an axisymmetric body near the free surface was investigated by both launching experiment and LES simulation. The vortex motion induced by cavity shedding under the effect of the free surface is emphatically analyzed by comparing with the submerged condition. The vortex shedding process around the projectile is not synchronized, while the asymmetric characteristic in collapse process is more remarkable, with the generation of multiple vortex ring structures.
Measurement of the interaction between the flow and the free surface of a liquid
Okamoto, Koji; Schmidl, W.D.; Philip, O.G.
1995-09-01
The interaction between the flow and free surface was evaluated measuring the velocity distribution and surface movement simultaneously. The test section was a rectangular tank having a free surface. A rectangular nozzle was set near the free surface, causing the wavy free surface condition. The flow under the free surface was visualized by a laser light sheet and small tracer particles. With image processing techniques, the movement of the free surface and the movement of the particles were simultaneously measured from the recorded images, resulting in the velocity distributions and surface locations. Then, the interactions between the flow and free surface were evaluated using the form of turbulent energy and surface-related turbulent values. By increasing the turbulent energy near the free surface, the fluctuations of the free surface height and the inclination of the free surface were increased. The higher fluctuation of horizontal velocity was related to the higher surface position and negative inclination. The image processing technique is found to be very useful to evaluate the interaction between free surface and flow.
Method of driving liquid flow at or near the free surface using magnetic microparticles
Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL
2011-10-11
The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.
Modelling of a free-surface ferrofluid flow
NASA Astrophysics Data System (ADS)
Habera, M.; Hron, J.
2017-06-01
The Cauchy's stress tensor of a ferrofluid exposed to an external magnetic field is subject to additional magnetic terms. For a linearly magnetizable medium, the terms result in interfacial magnetic force acting on the ferrofluid boundaries. This force changes the characteristics of many free-surface ferrofluid phenomena. The aim of this work is to implement this force into the incompressible Navier-Stokes equations and propose a numerical method to solve them. The interface of ferrofluid is tracked with the use of the characteristic level-set method and additional reinitialization step assures conservation of its volume. Incompressible Navier-Stokes equations are formulated for a divergence-free velocity fields while discrete interfacial forces are treated with continuous surface force model. Velocity-pressure coupling is implemented via the projection method. To predict the magnetic force effect quantitatively, Maxwell's equations for magnetostatics are solved in each time step. Finite element method is utilized for the spatial discretization. At the end of the work, equilibrium droplet shape are compared to known experimental results.
Stability and accuracy of free surface time integration in viscous flows
NASA Astrophysics Data System (ADS)
Rose, Ian; Buffett, Bruce; Heister, Timo
2017-01-01
Geodynamic simulations increasingly rely on models with a true free surface to investigate questions of dynamic topography, tectonic deformation, gravity perturbations, and global mantle convection. However, implementations of free surface boundary conditions have proven challenging from a standpoint of accuracy, robustness, and stability. In particular, time integration of a free surface tends to suffer from a numerical instability that manifests as sloshing surface motions, also known as the "drunken sailor" instability. This instability severely limits stable timestep sizes to those much smaller than can be used in geodynamic simulations without a free surface. Several schemes have been proposed in the literature to deal with these instabilities. Here we analyze the problem of creeping viscous flow with a free surface and discuss the origin of these instabilities. We demonstrate their cause and how existing stabilization schemes work to damp them out. We also propose a new scheme for removing instabilities from free surface calculations. It does not require modifications to the system matrix, nor additional variables, but is instead an explicit scheme based on nonstandard finite differences. It relies on a single stabilization parameter which may be identified with the smallest relaxation timescale of the free surface. Finally, we present numerical results to show the effectiveness of the new approach and discuss the free surface implementation in the open source, community based mantle convection software ASPECT.
Flow of a Non-Newtonian Liquid with a Free Surface
NASA Astrophysics Data System (ADS)
Borzenko, E. I.; Shrager, G. R.
2016-07-01
A fountain flow of a non-Newtonian liquid filling a vertical plane channel was investigated. The problem of this flow was solved by the finite-difference method on the basis of a system of complete equations of motion with natural boundary conditions on the free surface of the liquid. The stability of calculations was provided by regularization of the rheological Ostwald-de Waele law. It is shown that the indicated flow is divided into a zone of two-dimensional flow in the neighborhood of the free surface and a zone of one-dimensional flow at a distance from this surface. A parametric investigation of the dependence of the kinetic characteristics of the fountain flow and the behavior of its free surface on the determining criteria of this flow and its rheological parameters has been performed.
CFD simulation of two- and three-dimensional free-surface flow
NASA Astrophysics Data System (ADS)
Apsley, David; Hu, Wei
2003-06-01
The paper describes the implementation of moving-mesh and free-surface capabilities within a 3-d finite-volume Reynolds-averaged-Navier-Stokes solver, using surface-conforming multi-block structured meshes. The free-surface kinematic condition can be applied in two ways: enforcing zero net mass flux or solving the kinematic equation by a finite-difference method. The free surface is best defined by intermediate control points rather than the mesh vertices. Application of the dynamic boundary condition to the piezometric pressure at these points provides a hydrostatic restoring force which helps to eliminate any unnatural free-surface undulations. The implementation of time-marching methods on moving grids are described in some detail and it is shown that a second-order scheme must be applied in both scalar-transport and free-surface equations if flows driven by free-surface height variations are to be computed without significant wave attenuation using a modest number of time steps. Computations of five flows of theoretical and practical interest - forced motion in a pump, linear waves in a tank, quasi-1d flow over a ramp, solitary wave interaction with a submerged obstacle and 3-d flow about a surface-penetrating cylinder - are described to illustrate the capabilities of our code and methods.
Suppressing Taylor vortices in a Taylor-Couette flow system with free surface
NASA Astrophysics Data System (ADS)
Bouabdallah, A.; Oualli, H.; Mekadem, M.; Gad-El-Hak, M.
2016-11-01
Taylor-Couette flows have been extensively investigated due to their many industrial applications, such as catalytic reactors, electrochemistry, photochemistry, biochemistry, and polymerization. Mass transfer applications include extraction, tangential filtration, crystallization, and dialysis. A 3D study is carried out to simulate a Taylor-Couette flow with a rotating and pulsating inner cylinder. We utilize FLUENT to simulate the incompressible flow with a free surface. The study reveals that flow structuring is initiated with the development of an Ekman vortex at low Taylor number, Ta = 0 . 01 . For all encountered flow regimes, the Taylor vortices are systematically inhibited by the pulsatile motion of the inner cylinder. A spectral analysis shows that this pulsatile motion causes a rapid decay of the free surface oscillations, from a periodic wavy movement to a chaotic one, then to a fully turbulent motion. This degenerative free surface behavior is interpreted as the underlying mechanism responsible for the inhibition of the Taylor vortices.
Segregating photoelastic particles in free-surface granular flows
NASA Astrophysics Data System (ADS)
Thomas, Amalia L.; Vriend, Nathalie M.
2016-11-01
We experimentally investigate bimodal avalanches of photoelastic discs between two narrow side-walls. We visualize the physical phenomena that occur during segregation and quantify the dynamic appearance of force chains within the bulk of the flow from fringe patterns using photoelastic theory. The photoelastic technique has been used in granular research for almost half a century and has been applied in a variety of quasi-steady systems. We have now adapted the technique to perform well within dynamic granular flows where collisions are short-lived and force chains are formed and broken continuously. Our photoelastic urethane discs are cast in-house to provide high-resolution fringe patterns and a high stress-optic coefficient. In addition we carried out stress relaxation tests to study the viscoelastic properties of the photoelastic material, and measured the speed of force transmission and dampening from a moving particle onto a static chain of particles. In our avalanche experiments, we also employ particle tracking and particle velocimetry techniques to measure the general flow field within the avalanche. The overall goal of our work is to investigate and quantify the influence of the distribution of forces on the fundamental processes that drive segregation.
Numerical simulation of unsteady free surface flow and dynamic performance for a Pelton turbine
NASA Astrophysics Data System (ADS)
Xiao, Y. X.; Cui, T.; Wang, Z. W.; Yan, Z. G.
2012-11-01
Different from the reaction turbines, the hydraulic performance of the Pelton turbine is dynamic due to the unsteady free surface flow in the rotating buckets in time and space. This paper aims to present the results of investigations conducted on the free surface flow in a Pelton turbine rotating buckets. The unsteady numerical simulations were performed with the CFX code by using the Realizable k-ε turbulence model coupling the two-phase flow volume of fluid method. The unsteady free surface flow patterns and torque varying with the bucket rotating were analysed. The predicted relative performance at five operating conditions was compared with the field test results. The study was also conducted the interactions between the bucket rear and the water jet.
Modeling for free surface flow with phase change and its application to fusion technology
NASA Astrophysics Data System (ADS)
Luo, Xiaoyong
The development of predictive capabilities for free surface flow with phase change is essential to evaluate liquid wall protection schemes for various fusion chambers. With inertial fusion energy (IFE) concepts such as HYLIFE-II, rapid condensation into cold liquid surfaces is required when using liquid curtains for protecting reactor walls from blasts and intense neutron radiation. With magnetic fusion energy (MFE) concepts, droplets are injected onto the free surface of the liquid to minimize evaporation by minimizing the surface temperature. This dissertation presents a numerical methodology for free surface flow with phase change to help resolve feasibility issues encountered in the aforementioned fusion engineering fields, especially spray droplet condensation efficiency in IFE and droplet heat transfer enhancement on free surface liquid divertors in MFE. The numerical methodology is being conducted within the framework of the incompressible flow with the phase change model. A new second-order projection method is presented in conjunction with Approximate-Factorization techniques (AF method) for incompressible Navier-Stokes equations. A sub-cell conception is introduced and the Ghost Fluid Method in extended in a modified mass transfer model to accurately calculate the mass transfer across the interface. The Crank-Nicholson method is used for the diffusion term to eliminate the numerical viscous stability restriction. The third-order ENO scheme is used for the convective term to guarantee the accuracy of the method. The level set method is used to capture accurately the free surface of the flow and the deformation of the droplets. This numerical investigation identifies the physics characterizing transient heat and mass transfer of the droplet and the free surface flow. The results show that the numerical methodology is quite successful in modeling the free surface with phase change even though some severe deformations such as breaking and merging occur. The
Free-surface flow around an appended hull
NASA Astrophysics Data System (ADS)
Lungu, A.; Pacuraru, F.
2010-08-01
The prediction of the total drag experienced by an advancing ship is a complicated problem which requires a thorough understanding of the hydrodynamic forces acting on the hull, the physical processes from which these forces arise as well as their mutual interaction. A general numerical method to predict the hydrodynamic performance of a twin-propeller combatant ship is presented in the paper, which describes the solution of a RANS solver coupled with a body force method as an attempt in investigating the flow features around the ship hull equipped with rotating propellers and rudders. A special focus is made on the propeller non-symmetrical inflow field, aimed at obtaining the necessary data for the propulsive performances evaluation as well as for the propeller final design. The reported work allows not only the performance evaluation for the overall performances of a hull, but also leads to the development, implementation and validation of new concepts in modeling the turbulent vortical flows, with direct connection to the ship propulsion problem.
Experimental investigation of interface deformation in free surface flow of concentrated suspensions
NASA Astrophysics Data System (ADS)
Kumar, A. Ashok; Medhi, Bhaskar Jyoti; Singh, Anugrah
2016-11-01
It is well known that during the free surface flow of concentrated suspension of non-colloidal particles, the suspension-air interface becomes highly corrugated. This surface corrugation changes the interfacial area which could have important implications in various applications involving heat and mass transfer across the interface. Surface corrugation in free surface flow has been studied in the past, but its mechanism is not fully understood. We report detailed experiments on quantitative measurement of the surface deformation of concentrated suspension of non-colloidal particles in open channel flow. The motion and location of the interface and the velocity field of the bulk flow beneath the free surface were measured using the particle image velocimetry technique. Experiments were performed to study the effect of particle size, particle concentration, and viscosity of suspending fluid on the corrugation. The interface fluctuation was found to increase linearly with the flow rate. The deformation of the interface increased with increase in particle concentration until an optimum concentration is reached and thereafter it decreases. Our observation supports the previous studies on surface corrugation interpreted from the power spectra of the reflected light from the interface. Suspension of larger particles and less viscous fluid gives larger deformations of the suspension-air interface. These results can be used to determine the optimum parameters to control the interfacial area in free surface flow of concentrated suspensions.
Effect of free surface on near-wake flow of elliptic cylinders with different aspect ratios
NASA Astrophysics Data System (ADS)
Lee, Sang Joon; Daichin, -
2003-04-01
The flow fields behind elliptic cylinders with different aspect ratios adjacent to a free surface were investigated experimentally in a circulating water channel. The elliptic cylinders tested in this study have same cross section area. For each elliptic cylinder, the experiments were carried out under different conditions by varying the submergence depth of the cylinder beneath the free surface. The flow fields were measured using a single-frame double-exposure PIV system. For each experimental condition, 350 instantaneous velocity fields were captured and ensemble-averaged to obtain the mean flow field information and spatial distribution of turbulent statistics. The near-wakes can be basically classified into three typical patterns, which are formation of Coanda effect, generation of substantial jet-like flow, and attachment of jet flow to the free surface. The general flow structures behind the elliptic cylinder are similar to previous results for a circular submerged near to a free surface. However, the wake width and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder are smaller than those for the circular cylinder. These trends are enhance with increasing of the cylinder aspect ratios.
A Robust volume conservative divergence-free ISPH framework for free-surface flow problems
NASA Astrophysics Data System (ADS)
Pahar, Gourabananda; Dhar, Anirban
2016-10-01
This study presents a Volume Conservative approach for resolving volume conservation issue in divergence-free incompressible Smoothed Particle Hydrodynamics (ISPH). Irregular free surface deformation may introduce error in volume computation, which has a cascading effect over time. Proposed correction decreases this numerical compressibility to a minimal value. The correction is obtained directly by solving Navier-Stokes momentum equation. Consequently, the framework does not require any parametric study for mixed source/sink term or iterative solution of pressure Poisson equations. The correction is implemented on four different types of flow: (a) pressurized flow in a closed box, (b) dambreak flow, (c) flow through porous block, (d) lock-exchange flow of immiscible fluids (both free-surface and pressurized flow). All four scenarios are shown to have minimal error compared to pure divergence-free ISPH.
Mechanism and flow measurement of AC electrowetting propulsion on free surface
NASA Astrophysics Data System (ADS)
Yuan, Junqi; Cho, Sung Kwon
2015-03-01
A free surface in contact with a floating object can be vertically oscillated by applying an alternating current electrowetting-on-dielectric (AC EWOD). The oscillation of the free surface generates a propelling force on the centimeter-sized floating object. This paper describes a propulsion mechanism in free-surface oscillation along with its experimental results. Flow visualizations, wave patterns measured by the free-surface synthetic schlieren method, and PIV measurements show that the oscillation generates a capillary Stokes drift on the water surface and two counter-rotating spiral underwater vortices, leading to an ejecting flow (streaming flow) normal to the wall of the boat. The momentum of the ejecting flow produces a reaction force on the wall and ultimately propels the floating boat. The propulsion speed of the boat highly depends on the amplitude, frequency, and shape of the AC EWOD signal. Curve fittings based on the Stokes drift well match the experimental measurements of propulsion speed. The width of the EWOD electrode also has significant effects on the boat speed.
NASA Astrophysics Data System (ADS)
Abd-El-Malek, Mina B.; Helal, Medhat M.
2006-05-01
Method of characteristic function has been applied for solving a system of first order nonlinear sheared flows with a free surface. The application of a one-parameter group of infinitesimal transformations reduces the number of independent variables by one, and consequently, by applying this method twice, the system of partial differential equations, in three independent variables, with the boundary conditions reduces to a system of ordinary differential equations with the appropriate corresponding conditions. The obtained differential equations are solved analytically and the forms of the free surface, the horizontal component and vertical component of the velocity are obtained in closed form for different cases. The results are illustrated graphically for different parameters.
Phase-detection measurements in free-surface turbulent shear flows
NASA Astrophysics Data System (ADS)
Chanson, Hubert
2016-04-01
High-velocity self-aerated flows are described as ‘white waters’ because of the entrained air bubbles. The air entrainment induces a drastic change in the multiphase flow structure of the water column and this leads to significant bubble-turbulence interactions, turbulence modulation and associated mixing processes impacting on the bulk flow properties. In these high-velocity free-surface turbulent flows, the phase-detection needle probe is a most reliable instrumentation. The signal processing of a phase-detection probe is re-visited herein. It is shown that the processing may be performed on the raw probe signal as well as the thresholded data. The latter yields the time-averaged void fraction, the bubble count rate, the particle chord time distributions and the particle clustering properties within the particulate flow regions. The raw probe signal analysis gives further the auto-correlation time scale and the power spectrum density function. Finally dimensional considerations are developed with a focus on the physical modelling of free-surface flows in hydraulic structures. It is argued that the notion of scale effects must be defined in terms of some specific set of air-water flow properties within well-defined testing conditions, while a number of free-surface flow characteristics are more prone to scale effects than others, even in large-size physical facilities.
The capturing of free surfaces in incompressible multi-fluid flows
NASA Astrophysics Data System (ADS)
Pan, Dartzi; Chang, Chih-Hao
2000-05-01
By treating it as a contact discontinuity in the density field, a free surface between two immiscible fluids can be automatically captured by the enforcement of conservation laws. A surface-capturing method of this kind requires no special tracking or fitting treatment for the free surface, thereby offering the advantage of algorithm simplicity over the surface-tracking or the surface-fitting method. A surface-capturing method based on a new multi-fluid incompressible Navier-Stokes formulation is developed. It is applied to a variety of free-surface flows, including the Rayleigh-Taylor instability problem, the ship waves around a Wigley hull and a model bubble-rising problem to demonstrate the validity and versatility of the present method. Copyright
Evolution of karst conduit networks in transition from pressurised flow to free surface flow
NASA Astrophysics Data System (ADS)
Perne, M.; Covington, M. D.; Gabrovšek, F.
2014-06-01
We present a novel modelling approach to study the evolution of conduit networks in soluble rocks. Unlike the models presented so far, the model allows a transition from pressurised (pipe) flow to a free surface (open channel) flow in evolving discrete conduit networks. It calculates flow, solute transport and dissolutional enlargement within each time step and steps through time until a stable flow pattern establishes. The flow in each time step is calculated by calling the EPA Storm Water Management Model (EPA SWMM), which efficiently solves the 1-D Saint Venant equations in a network of conduits. We present several cases with low dip and sub-vertical networks to demonstrate mechanisms of flow pathway selection. In low dip models the inputs were randomly distributed to several junctions. The evolution of pathways progresses upstream: initially pathways linking outlets to the closest inputs evolve fastest because the gradient along these pathways is largest. When a pathway efficiently drains the available recharge, the head drop along the pathway attracts flow from the neighbouring upstream junctions and new connecting pathways evolve. The mechanism progresses from the output boundary inwards until all inputs are connected to the stable flow system. In the pressurised phase, each junction is drained by at least one conduit, but only one conduit remains active in the vadose phase. The selection depends on the initial geometry of a junction, initial distribution of diameters, the evolution in a pressurised regime, and on the dip of the conduits, which plays an important role in vadose entrenchment. In high dip networks, the vadose zone propagates downwards and inwards from the rim of the massif. When a network with randomly distributed initial diameters is supplied with concentrated recharge from the adjacent area, the sink point regresses up upstream along junctions connected to the prominent pathways. Large conductive structures provide deep penetration of high
A particle filter to reconstruct a free-surface flow from a depth camera
NASA Astrophysics Data System (ADS)
Combés, Benoit; Heitz, Dominique; Guibert, Anthony; Mémin, Etienne
2015-10-01
We investigate the combined use of a kinect depth sensor and of a stochastic data assimilation (DA) method to recover free-surface flows. More specifically, we use a weighted ensemble Kalman filter method to reconstruct the complete state of free-surface flows from a sequence of depth images only. This particle filter accounts for model and observations errors. This DA scheme is enhanced with the use of two observations instead of one classically. We evaluate the developed approach on two numerical test cases: a collapse of a water column as a toy-example and a flow in an suddenly expanding flume as a more realistic flow. The robustness of the method to depth data errors and also to initial and inflow conditions is considered. We illustrate the interest of using two observations instead of one observation into the correction step, especially for unknown inflow boundary conditions. Then, the performance of the Kinect sensor in capturing the temporal sequences of depth observations is investigated. Finally, the efficiency of the algorithm is qualified for a wave in a real rectangular flat bottomed tank. It is shown that for basic initial conditions, the particle filter rapidly and remarkably reconstructs the velocity and height of the free surface flow based on noisy measurements of the elevation alone.
Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems
BAER,THOMAS A.; SUBIA,SAMUEL R.; SACKINGER,PHILIP A.
2000-01-18
We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line in three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.
On the Nature of Boundary Conditions for Flows with Moving Free Surfaces
NASA Astrophysics Data System (ADS)
Renardy, Michael; Renardy, Yuriko
1991-04-01
We consider small perturbations of plane parallel flow between a wall and a moving free surface. The problem is posed on a rectangle with inflow and outflow boundaries. The usual boundary conditions are posed at the wall and the free surface, and the fluid satisfies the Navier-Stokes equations. We examine the nature of boundary conditions which can be imposed at the inflow and outflow boundaries in order to yield a well-posed problem. This question turns out to be more delicate than is generally appreciated. Depending on the precise situation and on the regularity required of the solution, boundary conditions at just one or both endpoints of the free surface need to be imposed. For example, we show that if the velocities at te inflow and outflow boundaries are prescribed, then the position of the free surface at the inflow boundary can be prescribed, but not at the outflow if an H1-solution is desired. Numerical simulations with the FIDAP package are used to illustrate our analytical results.
Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems
BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.
1999-10-14
Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.
Numerical and experimental investigation of the 3D free surface flow in a model Pelton turbine
NASA Astrophysics Data System (ADS)
Fiereder, R.; Riemann, S.; Schilling, R.
2010-08-01
This investigation focuses on the numerical and experimental analysis of the 3D free surface flow in a Pelton turbine. In particular, two typical flow conditions occurring in a full scale Pelton turbine - a configuration with a straight inlet as well as a configuration with a 90 degree elbow upstream of the nozzle - are considered. Thereby, the effect of secondary flow due to the 90 degree bending of the upstream pipe on the characteristics of the jet is explored. The hybrid flow field consists of pure liquid flow within the conduit and free surface two component flow of the liquid jet emerging out of the nozzle into air. The numerical results are validated against experimental investigations performed in the laboratory of the Institute of Fluid Mechanics (FLM). For the numerical simulation of the flow the in-house unstructured fully parallelized finite volume solver solver3D is utilized. An advanced interface capturing model based on the classic Volume of Fluid method is applied. In order to ensure sharp interface resolution an additional convection term is added to the transport equation of the volume fraction. A collocated variable arrangement is used and the set of non-linear equations, containing fluid conservation equations and model equations for turbulence and volume fraction, are solved in a segregated manner. For pressure-velocity coupling the SIMPLE and PISO algorithms are implemented. Detailed analysis of the observed flow patterns in the jet and of the jet geometry are presented.
Effects of free surface on flow energy harvesting system based on flapping foils
NASA Astrophysics Data System (ADS)
Teng, Lubao; Deng, Jian; Shao, Xueming
2016-11-01
Here, we consider a flapping foil based energy harvester, which is modelled by a 2D NACA0015 foil performing coupled motions of pitching and heaving. Volume of fraction(VOF) method is employed to capture the free surface. We fix the Reynolds number at Re = 900 , and the Froude number at Fr = 0 . 32 . We fix the non-dimensional flapping frequency at f = 0 . 16 , the pitching amplitude at θ0 =75° , and the heaving amplitude at h0 = 1 c , where c is the chord length. With these parameters, the harvester has been proved to reach its highest efficiency of η = 0 . 34 in a single phase flow. By varying the submergence d, which is defined as the distance between the calm free surface and the highest position of the pitching pivot of the flapping foil, we find that the free surface affects pronouncedly the energy harvesting efficiency η. As d decreases from 24 c to 0 . 5 c , η increases from 0 . 34 to 0 . 41 , getting a 20% promotion of the efficiency. To reveal the underlying physical mechanism of the effects of free surface, we examine the time histories of hydrodynamic forces on the foil. We find that due to the existence of the the free surface, the lift force and pitching moment experience asymmetric time histories during the upstroke and downstroke of the foil. This research is supported by the National Natural Science Foundation of China (Grant No: 11272283) and the Public Projects of Zhejiang Province (Grant No: 2015C31126) to conduct this research.
Halfon, S.; Feinberg, G.; Arenshtam, A.; Kijel, D.; Weissman, L.; Aviv, O.; Berkovits, D.; Dudovitch, O.; Eisen, Y.; Eliyahu, I.; Haquin, G.; Hazenshprung, N.; Kreisel, A.; Mardor, I.; Shimel, G.; Shor, A.; Silverman, I.; Yungrais, Z.; Paul, M. Tessler, M.
2014-05-15
The free-surface Liquid-Lithium Target, recently developed at Soreq Applied Research Accelerator Facility (SARAF), was successfully used with a 1.9 MeV, 1.2 mA (2.3 kW) continuous-wave proton beam. Neutrons (∼2 × 10{sup 10} n/s having a peak energy of ∼27 keV) from the {sup 7}Li(p,n){sup 7}Be reaction were detected with a fission-chamber detector and by gold activation targets positioned in the forward direction. The setup is being used for nuclear astrophysics experiments to study neutron-induced reactions at stellar energies and to demonstrate the feasibility of accelerator-based boron neutron capture therapy.
Free-surface flow of liquid oxygen under non-uniform magnetic field
NASA Astrophysics Data System (ADS)
Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min
2017-01-01
The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
Magnetohydrodynamics and heat transfer in a free-surface, flowing liquid metal experiment
NASA Astrophysics Data System (ADS)
Rhoads, John Rayburn
This thesis examines magnetohydrodynamic (MHD) effects and heat transfer in free-surface, liquid metal flow. The interaction of the flow with the applied magnetic field introduces an anisotropy to the fluid motion, resulting in starkly different behavior depending on the orientation and strength of the applied magnetic field. The transition from a hydrodynamic state to an MHD state was experimentally found to be characterized by the interaction parameter, N = sigma L B20/rho v0 , crossing above 0.5. The experiment consisted of a channel 1 m in length, up to 16 cm in width and 1 to 2.5 cm in depth situated within an electromagnet capable of producing a uniform magnetic field up to 2.7 kG. The fluid velocity was measured with an array of 25 potential probes that resolved the spanwise velocity profile, while waves on the surface of the metal were monitored via a diagnostic that tracked the motion of a laser beam reflected off of the free surface. Lastly, the temperature response of the fluid was recorded with an array of 32 thermocouples embedded in the bottom of the channel and a mid-wavelength infrared camera used to image the free surface. Three distinct sets of experiments were performed to investigate the effects of the applied magnetic field on the dynamics within the flow, studying: 1) changes to vortices in the wake of a cylinder, 2) behavior of surface fluctuations due to the turbulent flow, and 3) vertical heat transfer resulting from heat deposition on the free surface. The first set of experiments examined the wake of a cylinder inserted into the flow with its axis parallel to the magnetic field. Measurements with the potential probes indicated that vortices in the wake became laminarized as the field was increased due to the alignment of the injected vorticity with the applied field. The second set of experiments showed that surface fluctuations were suppressed at high magnetic fields, but the precise nature of the damping depended on the orientation of
Magnetohydrodynamics and Heat Transfer in a Free-Surface, Flowing Liquid Metal Experiment
Rhoads, John Rayburn
2013-11-01
This thesis examines magnetohydrodynamic (MHD) effects and heat transfer in free-surface, liquid metal flow. The interaction of the flow with the applied magnetic field introduces an anisotropy to the fluid motion, resulting in starkly different behavior depending on the orientation and strength of the applied magnetic field. The transition from a hydrodynamic state to an MHD state was experimentally found to be characterized by the interaction parameter,
Motion of a cylinder adjacent to a free-surface: flow patterns and loading
NASA Astrophysics Data System (ADS)
Zhu, Q.; Lin, J.-C.; Unal, M. F.; Rockwell, D.
The flow structure and loading due to combined translatory and sinusoidal motion of a cylinder adjacent to a free-surface are characterized using a cinema technique of high-image-density particle image velocimetry and simultaneous force measurements. The instantaneous patterns of vorticity and streamline topology are interpreted as a function of degree of submergence beneath the free-surface. The relative magnitudes of the peak vorticity and the circulation of vortices formed from the upper and lower surfaces of the cylinder, as well as vortex formation from the free-surface, are remarkably affected by the nominal submergence. The corresponding streamline topology, interpreted in terms of foci, saddle points, and multiple separation and reattachment points also exhibit substantial changes with submergence. All of these features affect the instantaneous loading of the cylinder. Calculation of instantaneous moments of vorticity and the incremental changes in these moments during the cylinder motion allow identification of those vortices that contribute most substantially to the instantaneous lift and drag. Furthermore, the calculated moments are in general accord with the time integrals of the measured lift and drag acting on the cylinder for sufficiently large submergence.
Ventilated cloud cavitating flow around a blunt body close to the free surface
NASA Astrophysics Data System (ADS)
Wang, Yiwei; Xu, Chang; Wu, Xiaocui; Huang, Chenguang; Wu, Xianqian
2017-08-01
Ventilated cavitation occurs as a complicated problem if the free surface is close to the cavity boundary around a high-speed underwater vehicle. The present study investigate the cavitating flow around a blunt axisymmetric body very near the free surface. A typical experiment is conducted by using a launching system with a split Hopkinson pressure bar device, and a numerical scheme is established based on large eddy simulation and volume-of-fluid methods. Unsteady behavior, including air entrainment and shedding of the cloud cavity, is observed, and high consistency is achieved between numerical and experimental results. Distinctions of evolution features between the cavities on the upper and lower sides are presented and analyzed. First, strong entrainment of noncondensable air occurs and changes the fluid property inside the cavity, which makes the cavity larger. Moreover, given the small distance between the vehicle and the free surface, the re-entrant jet generated in the upper part is thin and cannot completely cut off the main cavity, which causes the upper part of the cavity to remain approximately unchanged after the growth stage without the occurrence of the shedding phenomenon. Finally, the evolution of vortex structures is also discussed by comparisons with the motions of the air entrainment, re-entrant jet, and shedding cavity.
Numerical simulation of turbulent free surface flow with two-equation k- eddy-viscosity models
NASA Astrophysics Data System (ADS)
Ferreira, V. G.; Mangiavacchi, N.; Tomé, M. F.; Castelo, A.; Cuminato, J. A.; McKee, S.
2004-02-01
This paper presents a finite difference technique for solving incompressible turbulent free surface fluid flow problems. The closure of the time-averaged Navier-Stokes equations is achieved by using the two-equation eddy-viscosity model: the high-Reynolds k- (standard) model, with a time scale proposed by Durbin; and a low-Reynolds number form of the standard k- model, similar to that proposed by Yang and Shih. In order to achieve an accurate discretization of the non-linear terms, a second/third-order upwinding technique is adopted. The computational method is validated by applying it to the flat plate boundary layer problem and to impinging jet flows. The method is then applied to a turbulent planar jet flow beneath and parallel to a free surface. Computations show that the high-Reynolds k- model yields favourable predictions both of the zero-pressure-gradient turbulent boundary layer on a flat plate and jet impingement flows. However, the results using the low-Reynolds number form of the k- model are somewhat unsatisfactory.
A boundary element approach to estimate the free surface in stratified two-phase flow
NASA Astrophysics Data System (ADS)
Ren, Shangjie; Dong, Feng; Tan, Chao; Xu, Yaoyuan
2012-10-01
Two-phase flows widely exist in many industries. Measuring the phase distribution in two-phase flow is important for the optimization and control of some industrial processes. Electrical resistance tomography (ERT) is a promising non-intrusive visualization technique for monitoring the two-phase flow. However, due to its nonlinear and ill-posed character, high-quality image reconstruction is difficult and some iterative approach is time consuming. In this paper, a boundary element approach is presented for directly estimating the free-surface in two-phase flow using ERT. The unknown free surface is parameterized by a Bézier curve. Coefficients of its control points are estimated by minimizing a residual function using the iterative Levenberg-Marquardt method. To speed up the estimation process, the physical model of ERT is formulated using a boundary element method. Based on this formulation, the forward problem is fast solved through a small size system matrix and the Jacobian matrix is efficiently calculated using an analytic method. After several numerical experiments, this approach is proved fast and precise and several factors influencing the estimation quality are analyzed based on these simulations.
Experimental investigation of heat transfer in free-surface MHD flow
NASA Astrophysics Data System (ADS)
Rhoads, J.; Katzenstein, A.; Edlund, E.; Sloboda, P.; Spence, E.; Ji, H.
2012-11-01
The presence of a strong external magnetic field can significantly alter the dynamics of large and small scale features within the flow. In particular, turbulent eddies with vorticity non-parallel to the magnetic field are strongly damped. This anisotropization of the turbulence may be critically important for heat transport in flowing liquid metal walls in a fusion reactor. Experiments have been conducted in the Liquid Metal Experiment (LMX) using a GaInSn eutectic alloy as a working fluid to investigate these effects. These experiments considered free-surface, wide aspect-ratio flows up to 20 cm/s through a channel situated in a magnetic field up to 2 kG, corresponding to a Reynolds number up to Re ~104 and a Hartmann number up to Ha ~ 50 . Resistive heaters were placed on the free surface and the fluid temperature downstream was monitored by an array of thermocouples and an infrared camera. The relationship between Nusselt number and Hartmann number will be presented. Work supported under contract DE-AC02-09CH11466.
Surfactant-induced stagnant zones in the Jeong-Moffatt free surface Stokes flow problem
NASA Astrophysics Data System (ADS)
Crowdy, Darren G.
2013-09-01
We investigate the effect of surfactants on the problem introduced by Jeong and Moffatt [J. Fluid Mech. 241, 1-22 (1992)] to model the free surface deformation induced by two rollers beneath an infinite interface in a bath of viscous fluid. We demonstrate that the presence of surfactant dramatically affects the shape of the response curve for steady state equilibria. It is also shown that there is a well defined, albeit non-uniform, passage to the clean flow limit as the influence of the surfactant vanishes. Our analysis proceeds via a new mathematical approach to mixed boundary value problems arising in free surface Marangoni flows at infinite Péclet number in two-dimensional Stokes flows. Such problems often involve interfaces with a mixture of no-slip zones and regions where a capillary stress balance holds. By a conformal mapping technique accounting for the square root singularities inherent in such mixed boundary value problems it is shown that the latter can be transformed to the classical modified Schwarz problem of complex analysis solvable by standard methods. As a second application of the method we give a new derivation, and representation, of the solutions for steady surfactant-laden stagnant-cap bubbles in a linear strain presented by Siegel [SIAM J. Appl. Math. 59, 1998-2027 (1999)].
Evaluation of Influence of Time-Varying Electromagnetic Component in M-EMS on Flow at Free Surface
NASA Astrophysics Data System (ADS)
Satou, Shoji; Fujisaki, Keisuke
In the continuous casting process, surface quality of steel is as important as its productivity. The surface quality is mostly decided in the molten metal flow during initial solidification stage, which progresses at the free surface of the molten steel. To improve the surface quality, this flow must be controlled. M-EMS generates the time-varying electromagnetic force, which helps to control the shape of the free surface. In this paper, we evaluate the possibility of controlling the flow at the free surface by the MHD calculations. The result showed a little possibility of the flow at the free surface being controlled. Though the free surface variation in a pulsed EMC process, which controls the shape of the free surface using the time-varying electromagnetic force component, depends on electromagnetic force, the time-varying component in the M-EMS is decided by the velocity of the molten metal. Since there is a first-order lag between the electromagnetic force and this velocity, free surface variation in M-EMS does not linearly depend on the time-varying electromagnetic component.
Efficient Computation of N-S Equation with Free Surface Flow Around an ACV on ShirazUCFD Grid
NASA Astrophysics Data System (ADS)
Sheikhalishahi, Seyyed Mehdi; Alizadehrad, Davood; Dastghaibyfard, Gholamhossein; Alishahi, Mohammad Mehdi; Nikseresht, Amir Hossein
This paper presents the application of a parallel high accuracy simulation code for Incompressible Navier-Stokes solution with free surface flow around an ACV (Air Cushion Vehicle) on ShirazUCFD Grid environment. The parallel finite volume code is developed for incompressible Navier-Stokes solver on general curvilinear coordinates system for modeling free surface flows. A single set of dimensionless equations is derived to handle both liquid and air phases in viscous incompressible free surface flow in general curvilinear coordinates. The volume of fluid (VOF) method with lagrangian propagation in computational domain for modeling the free surface flow is implemented. The parallelization approach uses a domain decomposition method for the subdivision of the numerical grid, the SPMD program model and MPICH-G2 as the message passing environment is used to obtain a portable application.
NASA Astrophysics Data System (ADS)
Wu, Chun-Mei; Li, You-Rong; Liao, Rui-Jin
2014-10-01
In order to understand the characteristics of the complex flow driven by the combined thermocapillary-buoyancy effect and differential rotation of a cylindrical pool and a disk on the free surface, a series of unsteady three-dimensional numerical simulations were performed. Results indicate that the flow is axisymmetric and steady at a small temperature difference and low rotation rates. The basic meridional flow structures are composed of toroidal circulations. With an increase of the rotation rate and/or temperature difference, the basic flow transits to a three-dimensional oscillatory flow. Without rotation, the unstable thermocapillary-buoyancy flow is characterized by pulsating spoke patterns with the periodic growth and decay of temperature and velocity oscillations. When the disk and/or cylinder rotate, the oscillatory flow behaves as temperature and velocity fluctuation waves traveling in the azimuthal direction. The wave propagation velocity and direction, fluctuation amplitude, and wave number depend on the interaction of the thermocapillary, buoyancy, centrifugal and Coriolis forces. The critical conditions for the flow transition are determined. It is found that the critical thermocapillary Reynolds number initially increases before decreasing with the increase of the disk rotation rate, but the rotation of cylinder always retards the flow instability. In addition, the mechanisms of the flow instabilities are discussed and briefly summarized.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Butterly, Jack G
1947-01-01
The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
Time-dependent liquid metal flows with free convection and free surfaces
McClelland, M.A.
1990-11-01
A finite element analysis is given for time-dependent liquid metal flows with free convection and free surfaces. Consideration is given to a two-dimensional shallow trough with vertical walls maintained at different temperatures. The spatial formulation incorporates mixed Lagrangian approximations to the velocity, pressure, temperature, and interface position. The time integration method is performed using the Trapezoid Rule with step-size control. The Galerkin method is employed to reduce the problem to a set of nonlinear algebraic equations which are solved with the Newton-Raphson method. Calculations are performed for conditions relevant to the electron beam vaporization of refractory metals. The Prandtl number is 0.015, and Grashof numbers are in the transition region between laminar and turbulent flow. The results reveal the effects of flow intensity, surface-tension gradients, and mesh and time-step refinement.
Experimental study on the effects of fixed boundaries in channelized free surface dry granular flows
NASA Astrophysics Data System (ADS)
Sarno, Luca; Carleo, Luigi; Nicolina Papa, Maria
2017-04-01
The dynamics of granular mixtures, involved in geophysical flows like avalanches and debris flows, is far from being completely understood. Several features of their motion, such as rheological stratification, non-local and boundary effects, still represent open problems. Experimental investigations at laboratory scale are an important tool that can provide insights about the dynamics of gravity driven granular flows. The measuring techniques should be non-invasive in order to measure undisturbed flows. In this work we present an experimental campaign devoted to the measurement of the velocity profiles of free surface steady granular flows in an open channel. To achieve this goal the flows were recorded by two cameras and velocity profiles were obtained by image analysis. The employed granular medium consists of acetal-polymeric beads with a mean diameter of 3mm and an estimated internal friction angle of 27°. All the experiments have been performed in a 2m-long plexiglas flume with a rectangular cross-section and a slope angle of 30°. The upper part of the channel was used as a reservoir where the material was loaded before each run and then let flow down through an adjustable gate. Several mass flow rates were investigated. Three different basal surfaces were employed so as to observe slip and non-slip boundary conditions: a smooth Bakelite surface, a roughened surface, obtained by gluing a layer of grains on the bed surface and a sandpaper surface with characteristic length of the roughness equal to 425 µm. The flume is equipped with two high-speed cameras, one placed aside the channel and the other one perpendicular to the channel bed, as to get both side-wall and free surface velocity profiles. The particle image velocimetry open-source code, PIVlab, is employed for estimating the flow velocities. All the free surface velocity profiles show an approximately parabolic shape with a maximum at the cross-section midpoint and a minimum at the side-walls, due to
Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows
NASA Astrophysics Data System (ADS)
Staroszczyk, Ryszard
2014-06-01
In this paper the problem of transient gravitational wave propagation in a viscous incompressible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing equations of the problem are solved by the smoothed particle hydrodynamics method (SPH). In order to impose the incompressibility constraint on the fluid motion, the so-called projection method is applied in which the discrete SPH equations are integrated in time by using a fractional-step technique. Numerical performance of the proposed model has been assessed by comparing its results with experimental data and with results obtained by a standard (weakly compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem is simulated, in order to investigate the formation and propagation of a wave generated by a sudden collapse of a water column initially contained in a rectangular tank, as well as the impact of such a wave on a rigid vertical wall. The results of simulations show the evolution of the free surface of water, the variation of velocity and pressure fields in the fluid, and the time history of pressures exerted by an impacting wave on a wall.
NASA Astrophysics Data System (ADS)
Kang, Seokkoo; Sotiropoulos, Fotis
2010-11-01
A numerical method is developed for simulating three-dimensional free surface flows in open channels of arbitrarily complex bathymetry. The complex geometry is handled using the curvilinear immersed boundary (CURVIB) method of Ge and Sotiropoulos (J. of Computational Physics, 2007) and free surface deformation is modeled by employing a two-phase flow level-set approach. A new method is developed for solving the level-set equations and the reinitialization equation in the context of the CURVIB framework. The method is validated for various free-surface model problems and its capabilities are demonstrated by applying to simulate turbulent free-surface flow in an open channel with embedded complex hydraulic structures.
NASA Technical Reports Server (NTRS)
Orlin, W James; Lindner, Norman J; Bitterly, Jack G
1947-01-01
The theory of hydraulic analogy, that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow and the limitations and conditions of the analogy are discussed. A test run was made using the hydraulic analogy as applied to the flow about circular cylinders at various diameters at subsonic velocities extending to the super critical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and airflow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Giannakis, Dimitrios
2009-06-01
Free-surface Hartmann flow is the parallel flow of a viscous, electrically conducting, capillary fluid on a planar surface, subject to gravity and a flow- normal magnetic field. This type of flow arises in a variety of industrial and astrophysical contexts, including liquid-metal walls in fusion devices, heavy- ion accelerator targets, and surface layers of white dwarfs and neutron stars. Typically, the Reynolds number, Re >10 4 , is high, and the background magnetic field is strong ( Ha >100, where the Hartmann number, Ha , measures the square root of the ratio of electromagnetic to viscous forces). On the other hand, the magnetic Prandtl number, Pm (the ratio of viscous to magnetic diffusivity), of laboratory fluids is small (e.g., Pm <10 -4 for liquid metals), as is the case in a number of astrophysical models. When the background magnetic field is zero, free-surface Hartmann flow exhibits the so-called soft and hard instability modes; the former being a surface wave destabilized by viscous stresses acting on the free surface, whereas the latter is a shear mode destabilized by positive Reynolds stress associated with an internal critical layer. We study in detail the influence of the external magnetic field on these two instabilities, working in the regime Pm <10^-4. We also consider flows in the inductionless limit, Pr [arrow right]0, where magnetic field perturbations diffuse infinitely fast, and the sole MHD effect is a Lorentz force arising from currents induced by the perturbed fluid motion within the background magnetic field. We have developed a spectral Galerkin method to solve the coupled Orr- Sommerfeld and induction equations, which, in conjunction with suitable stress conditions at the free surface and continuity conditions for the magnetic field, govern the linear stability of free-surface Hartmann flow. Our scheme's discrete bases for the velocity and magnetic fields consist of linear combinations of Legendre polynomials, chosen according to the
Strongly coupled partitioned approach for fluid structure interaction in free surface flows
NASA Astrophysics Data System (ADS)
Facci, Andrea Luigi; Ubertini, Stefano
2016-06-01
In this paper we describe and validate a methodology for the numerical simulation of the fluid structure interaction in free surface flows. Specifically, this study concentrates on the vertical impact of a rigid body on the water surface, (i.e. on the hull slamming problem). The fluid flow is modeled through the volume of fluid methodology, and the structure dynamics is described by the Newton's second law. An iterative algorithm guarantees the tight coupling between the fluid and solid solvers, allowing the simulations of lightweight (i.e. buoyant) structures. The methodology is validated comparing numerical results to experimental data on the free fall of different rigid wedges. The correspondence between numerical results and independent experimental findings from literature evidences the reliability and the accuracy of the proposed approach.
Investigation of ALEGRA shock hydrocode algorithms using an exact free surface jet flow solution.
Hanks, Bradley Wright.; Robinson, Allen C
2014-01-01
Computational testing of the arbitrary Lagrangian-Eulerian shock physics code, ALEGRA, is presented using an exact solution that is very similar to a shaped charge jet flow. The solution is a steady, isentropic, subsonic free surface flow with significant compression and release and is provided as a steady state initial condition. There should be no shocks and no entropy production throughout the problem. The purpose of this test problem is to present a detailed and challenging computation in order to provide evidence for algorithmic strengths and weaknesses in ALEGRA which should be examined further. The results of this work are intended to be used to guide future algorithmic improvements in the spirit of test-driven development processes.
Theory for source-responsive and free-surface film modeling of unsaturated flow
Nimmo, J.R.
2010-01-01
A new model explicitly incorporates the possibility of rapid response, across significant distance, to substantial water input. It is useful for unsaturated flow processes that are not inherently diffusive, or that do not progress through a series of equilibrium states. The term source-responsive is used to mean that flow responds sensitively to changing conditions at the source of water input (e.g., rainfall, irrigation, or ponded infiltration). The domain of preferential flow can be conceptualized as laminar flow in free-surface films along the walls of pores. These films may be considered to have uniform thickness, as suggested by field evidence that preferential flow moves at an approximately uniform rate when generated by a continuous and ample water supply. An effective facial area per unit volume quantitatively characterizes the medium with respect to source-responsive flow. A flow-intensity factor dependent on conditions within the medium represents the amount of source-responsive flow at a given time and position. Laminar flow theory provides relations for the velocity and thickness of flowing source-responsive films. Combination with the Darcy-Buckingham law and the continuity equation leads to expressions for both fluxes and dynamic water contents. Where preferential flow is sometimes or always significant, the interactive combination of source-responsive and diffuse flow has the potential to improve prediction of unsaturated-zone fluxes in response to hydraulic inputs and the evolving distribution of soil moisture. Examples for which this approach is efficient and physically plausible include (i) rainstorm-generated rapid fluctuations of a deep water table and (ii) space- and time-dependent soil water content response to infiltration in a macroporous soil. ?? Soil Science Society of America.
Surface Ripples Generated in a Couette Flow with a Free Surface
NASA Astrophysics Data System (ADS)
Masnadi, N.; Washuta, N.; Duncan, J. H.
2014-11-01
Free surface ripples created by subsurface turbulence in the gap between a vertical surface-piercing moving wall and a parallel fixed wall are studied experimentally. The moving wall is created with the aide of a meter-wide stainless steel belt that travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. One of the two 7.5-m-long belt sections between the rollers is in contact with the water in a large open-surface water tank and forms the moving wall. The fixed wall is an acrylic plate located 4 cm from the belt surface. The water surface ripples are measured in a plane normal to the belt using a cinematic LIF technique. Measurements are done at a location about 100 gap widths downstream of the leading edge of the fixed plate in order to have a fully developed flow condition. It is found that the overall RMS surface fluctuations increase linearly with belt speed. The frequency-domain spectra of the surface height fluctuation and its temporal derivative are computed at locations across the gap width and are used to explore the physics of the free surface motions. The support of the Office of Naval Research is gratefully acknowledged.
Low Reynolds Flow Visualization Revisited: Free-Surface and Wall Effects
NASA Astrophysics Data System (ADS)
Chan, Shelley; Sznitman, Josue; Smits, Alexander
2009-11-01
Many of the seminal experimental flow visualizations at low Reynolds number can be attributed to the pioneering works of S. Taneda. These classic investigations are still considered today benchmark visualizations and are widely used as textbook examples (Van Dyke, An Album of Fluid Motion, 1982). With the advent of modern quantitative flow visualization techniques, we are in a position to revisit in more detail some of the original questions posed by Taneda, including boundary effects on viscous flows surrounding objects (J Phys Soc Jpn, 1964). In the present talk, we conduct experimental flow visualizations around three-dimensional objects at low Reynolds number (Re=O(10-3-10-1)). Quantitative visualizations are implemented in a tow tank using velocimetry measurements (PIV); models including cubes and spheres are submerged in a highly viscous Newtonian fluid (silicon oil, 5000x viscosity of water). Here, we discuss wall effects on velocity profiles in the near- and far-field surrounding such objects. Moreover, we interrogate the influence of the free surface of the tank on the resulting viscous flow fields. The present experimental setup offers a versatile framework to investigate a wide range of fundamental fluid mechanical problems relating flows at low Reynolds number.
Frequency-wavenumber spectrum of the free surface of shallow turbulent flows over a rough boundary
NASA Astrophysics Data System (ADS)
Dolcetti, G.; Horoshenkov, K. V.; Krynkin, A.; Tait, S. J.
2016-10-01
Data on the frequency-wavenumber spectra and dispersion relation of the dynamic water surface in an open channel flow are very scarce. In this work, new data on the frequency-wavenumber spectra were obtained in a rectangular laboratory flume with a rough bottom boundary, over a range of subcritical Froude numbers. These data were used to study the dispersion relation of the surface waves in such shallow turbulent water flows. The results show a complex pattern of surface waves, with a range of scales and velocities. When the mean surface velocity is faster than the minimum phase velocity of gravity-capillary waves, the wave pattern is dominated by stationary waves that interact with the static rough bed. There is a coherent three-dimensional pattern of radially propagating waves with the wavelength approximately equal to the wavelength of the stationary waves. Alongside these waves, there are freely propagating gravity-capillary waves that propagate mainly parallel to the mean flow, both upstream and downstream. In the flow conditions where the mean surface velocity is slower than the minimum phase velocity of gravity-capillary waves, patterns of non-dispersive waves are observed. It is suggested that these waves are forced by turbulence. The results demonstrate that the free surface carries information about the underlying turbulent flow. The knowledge obtained in this study paves the way for the development of novel airborne methods of non-invasive flow monitoring.
Choi, Hyunhee; Takezoe, Hideo
2016-01-14
We demonstrate circular flow formation at a surface in homeotropically oriented nematic liquid crystals with a free surface using focused laser beam irradiation. Under a weak laser power, a pit together with an associated circular bulge is formed: the Marangoni effect. Here a diverging molecular flow from the pit (thermocapillary flow) also induces director tilt in the radial direction. Upon increasing the laser power, the pit becomes deeper, and eventually evolves into a circular flow associated with a deeper pit and a subsidiary circular bulge or valley structure. This phenomenon is induced by escaping from excess deformation energy due to a bend deformation of the director. Actually, we confirmed that the circular flow is never formed in the isotropic phase. The handedness of the vortex cannot be controlled by circular polarisation, but is controllable by doping with chiral molecules. This rotational motion (a nematic micro-rotor) is a unique phenomenon only exhibited by anisotropic liquids, and is expected to be applied for novel devices.
Free-surface tracking of submerged features to infer hydrodynamic flow characteristics
NASA Astrophysics Data System (ADS)
Mandel, Tracy; Rosenzweig, Itay; Koseff, Jeffrey
2016-11-01
As sea level rise and stronger storm events threaten our coastlines, increased attention has been focused on coastal vegetation as a potentially resilient, financially viable tool to mitigate flooding and erosion. However, the actual effect of this "green infrastructure" on near-shore wave fields and flow patterns is not fully understood. For example, how do wave setup, wave nonlinearity, and canopy-generated instabilities change due to complex bottom roughness? Answering this question requires detailed knowledge of the free surface. We develop easy-to-use laboratory techniques to remotely measure physical processes by imaging the apparent distortion of the fixed features of a submerged cylinder array. Measurements of surface turbulence from a canopy-generated Kelvin-Helmholtz instability are possible with a single camera. A stereoscopic approach similar to Morris (2004) and Gomit et al. (2013) allows for measurement of waveform evolution and the effect of vegetation on wave steepness and nonlinearity.
a Finite Element Method for Flow Problems with Free Surfaces and Moving Fronts.
NASA Astrophysics Data System (ADS)
Westerberg, Kenneth William
A finite element technique to model a fluid flow with a liquid-gas free surface and/or a solid-liquid phase -change boundary has been developed. These types of problems are difficult because in addition to the flow and temperature fields, the domain boundaries are also unknown. Two specific applications where such a technique is needed are formulated and discussed. The first is the development of a model for the thermal printing of bar code labels. Thermal printer paper is heated by a moving print head and a heat-activated chemical reaction takes place to change the color of the paper. The extent of the region that has reacted is governed by the same equations that govern the melting of a pure material. The second application is building a model of an electron beam metal vaporizer. A beam of electrons strikes the surface of a pool of liquid metal causing the metal to vaporize. A pool of liquid metal forms in the vicinity of the beam impact area. The problem involves both a liquid-gas free surface and a solid-liquid phase -change front as well as a tri-junction point where solid, liquid and gas phases all meet. Both models two-dimensional and time-dependent. The technique is based on a deformable finite element mesh designed to keep the interfaces on element boundaries. There is a singularity in the force balance along the liquid-gas free interface due to surface tension and a singularity in the heat balance along the solid-liquid phase-change front due to the latent heat of the phase-change. These singularities are easily handled by the finite element method provided they are kept on element boundaries. The positions of the free and moving boundaries are tracked using spines. Special linear algebra techniques are developed to solve the equation system resulting from our finite element discretization of the free or moving boundary problem.
Electromagnetic braking of the flow of a liquid metal with a free surface
NASA Astrophysics Data System (ADS)
Löfgren, Hans B.; Åkerstedt, Hans O.
1998-07-01
The electromagnetic braking of liquid metal flowing over a moving boundary is considered. The flow is two dimensional and the upper boundary is a free surface. The main interest of this flow originates from the application of horizontal belt strip casting. In this process, the liquid metal is fed onto a single endless horizontal belt that runs between two rollers. The bottom of the belt is cooled by water and the liquid is fed onto the belt through a slit. This results in a flow that can be modelled as a flat free jet impinging onto a horizontally moving boundary. The flow after the impingement region is analysed using the boundary layer equations. Here, the flow depends on the Reynolds number R, the Froude number F, the Hartman number M, and the ratio of the belt velocity to jet velocity, β. For β< F-2/3, we have a supercritical flow which terminates in a hydraulic jump. For β> F-2/3, there is no hydraulic jump and the film thickness grows smoothly into the final state with constant thickness and uniform velocity. The braking length for the case without hydraulic jump is shown to be of order O( F2/3Ra/2) without magnetic field and of order O( M-2Ra/2) with magnetic field, where a is the jet width. Thus, the magnetic field decreases the braking distance considerably. This result is favourable for both the stability of the flow and for the solidification process in the horizontal belt strip casting process.
NASA Astrophysics Data System (ADS)
Daichin, K. V.; Lee, Sang Joon
The flow fields behind elliptic cylinders adjacent to a free surface were investigated experimentally in a circulating water channel. A range of cylinder aspect ratios (AR=2, 3, 4) were considered, while the cross-sectional area of the elliptical cylinder was kept constant. The main objective of this study was to investigate the effect of cylinder aspect ratio and a free surface on the flow structure in the near-wake behind elliptic cylinders. For each elliptic cylinder, the flow structure was analyzed for various values of the submergence depth of the cylinder beneath the free surface. The flow fields were measured using a single-frame double-exposure PIV (Particle Image Velocimetry) system. For each experimental condition, 350 instantaneous velocity fields were obtained and ensemble-averaged to obtain the mean velocity field and spatial distribution of the mean vorticity statistics. The results show that near-wake can be classified into three typical flow patterns: formation of a Coanda flow, generation of substantial jet-like flow, and attachment of this jet flow to the free surface. The general flow structure observed behind the elliptic cylinders resembles the structure previously reported for a circular cylinder submerged near a free surface. However, the wake width and the angle of downward deflection of the shear layer developed from the lower surface of the elliptic cylinder differ from those observed for a circular cylinder. These trends are enhanced as cylinder aspect ratio is increased. In addition, the free surface distortion is also discussed in the paper.
Modeling anisotropy in free-surface overland and shallow inundation flows
NASA Astrophysics Data System (ADS)
Viero, Daniele Pietro; Valipour, Mohammad
2017-06-01
Regular patterns, which are found in both natural and man-modified environments, are strongly interwoven with free-surface flows. Examples are ridge and slough landscapes, cultivated terrains with ditches and furrows, and urban areas, with many of them characterized by a marked anisotropy. Simulation of overland and shallow inundation flows in these contexts is complex and demanding, especially if very different spatial scales are involved. Anisotropic effects are introduced to cope with two-dimensional shallow water models and, particularly, with the subgrid modeling technique. Application to schematic test cases shows the key role played by anisotropy in shallow flows, and second, that anisotropy can be effectively captured by the subgrid model with low computational effort and preserving mesh-independentness. High-resolution model results are accurately reproduced on coarser meshes using one fiftieth of the original computational elements, with a speed-up of more than 20. The subgrid approach could serve in view of physically based, large-scale modeling of floodplain inundation processes, in irrigation science, and in high-resolution hydrodynamic-hydrological simulations at the basin scale.
A computational Lagrangian-Eulerian advection remap for free surface flows
NASA Astrophysics Data System (ADS)
Ashgriz, Nasser; Barbat, Tiberiu; Wang, Gang
2004-01-01
A VOF-based algorithm for advecting free surfaces and interfaces across a 2-D unstructured grid is presented. This algorithm is based on a combination of a Computational Lagrangian-Eulerian Advection Remap and the Volume of the Fluid method (CLEAR-VOF). A set of geometric tools are used to remap the advected shape of the volume fraction from one cell onto the Eulerian fixed unstructured grid. The geometric remapping is used to compute the fluxes onto a group of neighbouring cells of the mesh. These fluxes are then redistributed and corrected to satisfy the conservation of mass. Here, we present methods for developing identification algorithms for surface cells and incorporating them with CLEAR-VOF. The CLEAR-VOF algorithm is then tested for translation of several geometries. It is also incorporated in a finite element based flow solver and tested in a laminar flow over a broad-crested weir and a turbulent flow over a semi-circular obstacle.
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; Kolekar, Nitin
2015-11-01
The current experimental investigation aims at understanding the effect of free surface proximity and associated blockage on near-wake flow-field and performance of a three bladed horizontal axis marine hydrokinetic turbine. Experiments were conducted on a 0.14m radius, three bladed constant chord turbine in a 0.61m ×0.61m test section water channel. The turbine was subjected to various rotational speeds, flow speeds and depths of immersion. Experimental data was acquired through a submerged in-line thrust-torque sensor that was corrected to an unblocked dataset with a blockage correction using measured thrust data. A detailed comparison is presented between blocked and unblocked datasets to identify influence of Reynolds number and free surface proximity on blockage effects. The percent change in Cp was found to be dependent on flow velocity, rotational speed and free surface to blade tip clearance. Further, flow visualization using a stereoscopic particle image velocimetry was carried out in the near-wake region of turbine to understand the mechanism responsible for variation of Cp with rotational speed and free surface proximity. Results revealed presence of slower wake at higher rotational velocities and increased asymmetry in the wake at high free surface proximity.
NASA Astrophysics Data System (ADS)
Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish
2015-10-01
Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.
NASA Astrophysics Data System (ADS)
Kahouadji, L.; Witkowski, L. Martin
2014-07-01
The flow driven by a rotating disk at the bottom of an open fixed cylindrical cavity is studied numerically and experimentally. The steady axisymmetric Navier-Stokes equations projected onto a curvilinear coordinate system are solved by a Newton-Raphson algorithm. The free surface shape is computed by an iterative process in order to satisfy a zero normal stress balance at the interface. In previous studies, regarding the free surface deflection, there is a significant disagreement between a first-order approximation [M. Piva and E. Meiburg, "Steady axisymmetric flow in an open cylindrical container with a partially rotating bottom wall," Phys. Fluids 17, 063603 (2005)] and a full numerical simulation [R. Bouffanais and D. Lo Jacono, "Unsteady transitional swirling flow in the presence of a moving free surface," Phys. Fluids 21, 064107 (2009)]. For a small deflection, the first-order approximation matches with our numerical simulation and for a large deflection a good agreement is found with experimental measurements.
Free surface flow impact on a vertical wall: a numerical assessment
NASA Astrophysics Data System (ADS)
Pugliese Carratelli, Eugenio; Viccione, Giacomo; Bovolin, Vittorio
2016-10-01
The sudden impact of a free surface flow upon a solid wall is a common occurrence in many situations in nature and technology. The design of marine structures is probably the most obvious example, but also river and dam hydraulics as well as the necessity of understanding flood and debris flow-induced damage have led to theoretical and experimental work on the mechanism of fluid slamming loads. This is therefore a very old and rich research field, which has not yet reached full maturity, so that semi-empirical methods in design practice are still the rule in many sectors. Up-to-date CFD technology with both Eulerian and Lagrangian approaches is employed to investigate highly non-stationary fluid impact on a solid wall. The development of the pressure wave produced by the impact is examined as it propagates and interacts with the fluid boundaries, as well as the subsequent build-up of high-pressure gradients of high fluid velocities. The geometry and the velocity field of the problem considered are very simple, but the results seem to provide new insight, in particular, into the connection between phenomena with different timescales.
Velocity Measurements of Free Surface Liquid Metal Flows in a Magnetic Field
NASA Astrophysics Data System (ADS)
Pfeffer, Scott; Ji, Hantao; Nornberg, Mark; Rhoads, John
2008-11-01
A potential probe diagnostic was developed and calibrated to map the velocity profile of free-surface liquid metal channel flow and quantify the effect an applied magnetic field played in shaping the velocity profile. The setup for this experiment consists of a wide aspect ratio channel sealed from the air, with argon replacing the air in the channel, placed within an electromagnet capable of producing more than a 2000 Gauss field perpendicular to the flow. An alloy of GaInSn, which is liquid at room temperature, is pumped through the channel by a screw pump at a specified rate. The velocity profile is obtained by measuring the voltage across pairs of probes. Various materials were used to determine which probe material would maximize the signal from the voltage induced by the Hall effect and reduce the voltage due to thermoelectric effects. Extensive calibration was then carried out to ensure an accurate velocity measurement. After amplification and filtering this signal gives us a good measurement of the velocity of the liquid metal over the cross-section of a specific probe.
NASA Astrophysics Data System (ADS)
Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed
2016-04-01
Rheological studies concerning natural muddy debris flows have shown that these materials can be modelled as non-Newtonian viscoplastic fluids. These complex flows are generally represented using models based on a depth-integrated approach (Shallow Water) that take into account closure terms depending on the shape of the velocity profile. But to date, there is poor knowledge about the shape of velocity profiles and the position of the interface between sheared and unsheared regions (plug) in these flows, especially in the vicinity of the front. In this research, the internal dynamics of a free-surface viscoplastic flow down an inclined channel is investigated and compared to the predictions of a Shallow Water model based on the lubrication approximation. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity, which allows generating and observing gravity-driven stationary surges in the laboratory frame. Carbopol microgel has been used as a homogeneous and transparent viscoplastic fluid. High-resolution measurements of velocity field is performed through optical velocimetry techniques both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Specific analyses have been developed to determine the position of the plug within the surge. Flow height is accessible through image processing and ultrasonic sensors. Sufficiently far from the front, experimental results are shown to be in good agreement with theoretical predictions regarding the velocity profiles and the flow height evolution. In the vicinity of the front, however, analysis of measured velocity profiles shows an evolution of the plug different from that predicted by lubrication approximation. Accordingly, the free surface shape also deviates from the predictions of the classical Shallow Water model. These results highlight the necessity to take into account higher
Granular-front formation in free-surface flow of concentrated suspensions
NASA Astrophysics Data System (ADS)
Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.
2015-11-01
A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.
Numerical simulation of free surface incompressible liquid flows surrounded by compressible gas
NASA Astrophysics Data System (ADS)
Caboussat, A.; Picasso, M.; Rappaz, J.
2005-03-01
A numerical model for the three-dimensional simulation of liquid-gas flows with free surfaces is presented. The incompressible Navier-Stokes equations are assumed to hold in the liquid domain. In the gas domain, the velocity is disregarded, the pressure is supposed to be constant in each connected component of the gas domain and follows the ideal gas law. The gas pressure is imposed as a normal force on the liquid-gas interface. An implicit splitting scheme is used to decouple the physical phenomena. Given the gas pressure on the interface, the method described in [J. Comput Phys. 155 (1999) 439; Int. J. Numer. Meth. Fluids 42(7) (2003) 697] is used to track the liquid domain and to compute the velocity and pressure fields in the liquid. Then the connected components of the gas domain are found using an original numbering algorithm. Finally, the gas pressure is updated from the ideal gas law in each connected component of gas. The implementation is validated in the frame of mould filling. Numerical results in two and three space dimensions show that the effect of pressure in the bubbles of gas trapped by the liquid cannot be neglected.
Role of algal biofilm in improving the performance of free surface, up-flow constructed wetland.
Badhe, Neha; Saha, Shaswati; Biswas, Rima; Nandy, Tapas
2014-10-01
The role of algal biofilm in a pilot-scale, free-surface, up-flow constructed wetland (CW), was studied for its effect on chemical oxygen demand (COD), ammonia and phosphate removal during three seasons-autumn, winter and early spring. Effect of hydraulic retention time (HRT) was also investigated in presence and absence of algal biofilm. Principal Component Analysis was used to identify the independent factors governing the performance of CW. The study showed algal biofilm significantly improved nutrient removal, especially phosphate. Ammonia removal varied with HRT, biofilm and ambient temperature. Increase in biofilm thickness affected ammonia removal efficiency adversely. Algal biofilm-assisted COD removal compensated for reduced macrophyte density during winter. Two-way ANOVA test and the coefficients of dependent factors derived through multiple linear regression model confirmed role of algal biofilm in improving nutrient removal in CW. The study suggests that algal biofilm can be a green solution for bio-augmenting COD and nutrient removal in CW. Copyright © 2014 Elsevier Ltd. All rights reserved.
El-Dib, Yusry O
2003-03-15
Capillary-gravity waves of permanent form at the interface between two unbounded magnetic fluids in porous media are investigated. The system is influenced by the horizontal direction of the magnetic field to the separation face of two semi-infinite homogeneous and incompressible fluids, so that the fields allow free-surface currents at the interface. The solutions of the linearized equations of motion under nonlinear boundary conditions lead to derivation of a nonlinear equation governing the interfacial displacement. This equation is accomplished by using the cubic nonlinearity. Taylor theory is used to expand the governing nonlinear equation in the light of the multiple scales in both space and time. The perturbation analysis leads to imposition of two levels of solvability conditions, which are used to construct the well-known nonlinear Ginzburg-Landau equation. The stability criteria are discussed theoretically and numerically and stability diagrams are obtained. Regions of stability and instability are identified for the surface current density. It is found that the stabilizing role for the magnetic field is retarded when the flow is in porous media. Moreover, the increase in the values of resistance parameters plays a dual role, in stability behavior and in the increase in surface current density.
NASA Astrophysics Data System (ADS)
Beckstein, P.; Galindo, V.; Schönecker, A.; Gerbeth, G.
2017-07-01
The Ribbon Growth on Substrate (RGS) technology is a crystallization technique that allows direct casting of silicon wafers and sheets of advanced metal-silicide compounds. With the potential of reaching high crystallization rates, it promises a very efficient approach for future photo-voltaic silicon wafer production compared to well-established processes in industry. However, a number of remaining problems, like process stability and controllability, need to be addressed for the RGS technology to eventually become a competitor in the near future. In this regard, it is very desirable to gain detailed insights into the characteristic process dynamics. To comply with this demand, we have developed a new numerical tool based on OpenFOAM (foam-extend), capable of simulating the free-surface dynamics of the melt flow under the influence of an applied alternating magnetic field. Our corresponding model thereby resolves the interaction of hydrodynamic and magnetodynamic effects in three-dimensional space. Although we currently focus on the RGS process, the modeling itself has been formulated in a more general form, which may be used for the investigation of similar problems, too. Here we provide a brief overview of these developments.
NASA Astrophysics Data System (ADS)
Naaim, Mohamed; Faug, Thierry
2017-04-01
The discontinuities in height and velocity, namely jumps, formed in free-surface flows are important processes in geophysics, for instance when they are formed during the interaction of avalanche-flows with protection structures. The present study investigates steady state jumps formed in free-surface flows with the help of numerical simulations based on depth-averaged equations. A control constant mass discharge is supplied to an incline. By imposing a difference in basal friction between a upper part of the chute bottom and a lower part of the chute bottom, a supercritical flow is produced upstream while a subcritical flow appears downstream. The transition between both gives birth to a jump located at the transition between the two portions of the chute with different basal friction. Different constitutive equations are tested (laminar, turbulent, local granular rheology, Voellmy, Herschel Bulkley), thus allowing us to quantify the influence of the fluid rheology on the jump properties : position, geometry and size.
NASA Astrophysics Data System (ADS)
Kolekar, Nitin; Banerjee, Arindam
2013-11-01
Results from an experimental study to investigate the effect of blockage and free surface proximity on the performance of a constant chord, zero twist, fixed pitch hydro kinetic turbine in an open surface water channel will be presented. The presence of free surface and the size of turbine relative to the flow channel (blockage effect) affects the fluid dynamics around and in the near wake of turbine and hence the thrust-torque loading on turbine blades. Detailed parametric studies will be carried out to understand the effect of free surface proximity, Froude number (which depends on water velocity and depth of the channel), turbine proximity to channel walls and blockage on the turbine performance. Characterization of wake meandering and flow around the turbine is performed using a stereo-Particle Image Velocimetry technique for flows with various Froude number. The thrust and torque on turbine will be measured using a submerged thrust-torque sensor in-line with the turbine. The results of experiments will be compared with analytical models based on blade element momentum theory by modeling free surface and blockage effects. The authors gratefully acknowledge the financial support from the Office of Naval Research through contract ONR N000141010923.
NASA Astrophysics Data System (ADS)
Ghazanfarian, Jafar; Saghatchi, Roozbeh; Gorji-Bandpy, Mofid
2016-08-01
This paper studies a two-dimensional incompressible viscous flow past a circular cylinder with in-line oscillation close to a free-surface. The sub-particle scale (SPS) turbulence model of a Lagrangian particle-based smoothed-particle hydrodynamics (SPH) method has been used to solve the full Navier-Stokes equations together with the continuity equation. The accuracy of numerical code has been verified using two cases consisting of an oscillating cylinder placed in the stationary fluid, and flow over a fixed cylinder close to a free-surface. Simulations are conducted for the Froude number of 0.3, the Reynolds numbers of 40 and 80, various gap ratios for fully-submerged and half-submerge cylinders. The dimensionless frequency and amplitude of oscillating have been chosen as 0.5, 0.8 and 10, 15, respectively. The selection of such a high oscillating frequency causes the flow regime to become turbulent. It is seen that the gap ratio defined as the ratio of cylinder distance from free-surface and its diameter, strongly affects the flow pattern and the magnitude of the drag and lift coefficients. The jet-like flow (the region above the cylinder and beneath the free-surface) creation is discussed in detail and showed that the strength of this jet-like flow is weakened when the gap ratio shrinks. It is seen that by decreasing the gap ratio, the lift and drag coefficients increase and decrease, respectively. It is found that the Reynolds number has an inverse effect on the drag and lift coefficients. Also, it is concluded that by increasing the amplitude of oscillation the drag coefficient increases.
A new numerical framework to simulate viscoelastic free-surface flows with the finite-volume method
NASA Astrophysics Data System (ADS)
Comminal, R.; Spangenberg, J.; Hattel, J. H.
2015-04-01
A new method for the simulation of 2D viscoelastic flow is presented. Numerical stability is obtained by the logarithmic-conformation change of variable, and a fully-implicit pure-streamfunction flow formulation, without use of any artificial diffusion. As opposed to other simulation results, our calculations predict a hydrodynamic instability in the 4:1 contraction geometry at a Weissenberg number of order 4. This new result is in qualitative agreement with the prediction of a non-linear subcritical elastic instability in Poiseuille flow. Our viscoelastic flow solver is coupled with a volume-of-fluid solver in order to predict free- surfaces in extrusion.
A σ-coordinate model for 3D free-surface flows using an unstructured finite-volume technique
NASA Astrophysics Data System (ADS)
Uh Zapata, Miguel
2016-11-01
The aim of this work is to develop a numerical solution of three-dimensional free-surface flows using a σ-coordinate model, a projection method and an unstructured finite-volume technique. The coordinate transformation is used in order to overcome difficulties arising from free surface elevation and irregular geometry. The projection method consists to combine the momentum and continuity equations in order to establish a Poisson-type equation for the non-hydrostatic pressure. A cell-centered finite volume method with a triangular mesh in the horizontal direction is used to simulate the flows with free-surfaces, in which the average values of conserved variables are stored at the centre of each element. A parallel algorithm is also presented for the finite volume discretization of the 3D Navier-Stokes equations. The proposed parallel method is formulated by using a multi-color SOR method, a block domain decomposition and interprocessor data communication techniques with Message Passing Interface. The model has been validated by several benchmarks which numerical simulations are in good agreement with the corresponding analytical and existing experimental results.
Wang, Xiao-dan; Zhai, Zhen-hua; Zhao, Shuang; Li, Rong-qi; Ma, Wen-lin; Li, Yan-hong
2009-01-01
To achieve the effects of artificial wetland on the bacterial diversity, the culturable bacteria and total cell counts of three wetland cells, including sewage pond (SP), free surface wetland (SF) and subsurface flow wetland (SSF), were investigated using the traditional culture-dependent approach and flow cytometry method, based on the detecting the water quality. The bacterial diversity and dominant groups were also compared by PCR-DGGE profiles and 16S rDNA library technique based on its V3 region. Results show that SF and SSF cells can remove the nutrients effectively, the highest removal ratio of COD, total nitrogen, and total phosphorus reach to 42.33%, 52.92% and 41.4%, respectively; The total microbes are increased continuously with the treatment by SF and SSF, and the culturable bacteria clones are decreased after treatment by SF, and increased after further train by SSF. The Shannon-Weaver index is increased to 3.2850 from 3.0819 while the water flowing through SF, but decreased to 3.0181 after flowing through SSF; The dominant groups in SP include Actinobacteria, Cyanobacteria and alpha-Proteobacteria, reach to 38%, 18% and 18%, respectively; but the most dominant bacteria is changed to beta-Proteobacteria with the ratio of 32% and 44%, after treatment by SF and SSF, respectively. Cytophagal Flexibacter/Bacteroides (CFB) phylum is also increased to 24% finally. Therefore, while the Cuihu Wetland removing the nutrients,the bacterial counts, diversity and dominant groups are also changed,some beneficial bacteria in beta-Proteobacteria and CFB phylum increased, and part of those deleterious bacteria in Actinobacteria and Cyanobacteria decreased.
An explicit Lagrangian finite element method for free-surface weakly compressible flows
NASA Astrophysics Data System (ADS)
Cremonesi, Massimiliano; Meduri, Simone; Perego, Umberto; Frangi, Attilio
2017-07-01
In the present work, an explicit finite element approach to the solution of the Lagrangian formulation of the Navier-Stokes equations for weakly compressible fluids or fluid-like materials is investigated. The introduction of a small amount of compressibility is shown to allow for the formulation of a fast and robust explicit solver based on a particle finite element method. Newtonian and Non-Newtonian Bingham laws are considered. A barotropic equation of state completes the model relating pressure and density fields. The approach has been validated through comparison with experimental tests and numerical simulations of free surface fluid problems involving water and water-soil mixtures.
NASA Astrophysics Data System (ADS)
Alessandrini, B.; Delhommeau, G.
1999-01-01
This paper deals with the calculation of free surface flow of viscous incompressible fluid around the hull of a boat moving with rectilinear motion. An original method used to avoid a large part of the theoretical problems connected with free surface boundary conditions in three-dimensional Navier-Stokes-Reynolds equations is proposed here. The linearised system of convective equations for velocities, pressure and free surface elevation unknowns is discretised by finite differences and two methods to solve the fully coupled resulting matrix are presented here. The non-linear convergence of fully coupled algorithm is compared with the velocity-pressure weakly coupled algorithm SIMPLER. Turbulence is taken into account through Reynolds decomposition and k- or k- model to close the equations. These two models are implemented without wall function and numerical calculations are performed up to the viscous sub-layer. Numerical results and comparisons with experiments are presented on the Series 60 CB=0.60 ship model for a Reynolds number Rn=4.5×106 and a Froude number Fn=0.316. Copyright
NASA Astrophysics Data System (ADS)
Mallios, Christos; Bakas, Nikolaos A.
2017-02-01
Modal and nonmodal growth of three-dimensional perturbations in a shear flow with a free surface are examined for a wide range of Froude numbers. By approximating the mean flow with a piecewise linear profile, the modal instabilities are shown to arise from the interaction of three-dimensional edge waves supported at the interfaces of density discontinuity at the surface and mean vorticity discontinuity at the edges of the shear layer. The mechanism and properties of the instability are explained in terms of the dynamics of the edge-wave interactions. Previously reported modal stability analysis restricted to two-dimensional perturbations in the plane of the flow accurately predicts the fastest growing perturbations but underestimates the range of length scales for the unstable structures. Robust nonmodal transient growth of perturbations within a few advective time units is found. For low Froude numbers or low values of the shear, three-dimensional perturbations with small horizontal scales exhibit the largest growth through a synergy between the Orr and the lift-up mechanisms and produce large streamwise streaks in the shear flow without an effect on the free surface. For large Froude numbers or large values of the shear, planar perturbations with larger horizontal scales exhibit the largest energy growth by effectively instigating the modal instability and excite surface waves at large amplitude.
NASA Astrophysics Data System (ADS)
Fabre, D.; Mougel, J.
2014-12-01
The free surface flow in a cylindrical tank over a rotating bottom is known to support spectacular three-dimensional patterns, including deformation of the inner free surface into the shape of rotating polygons and sloshing behavior of the upper free surface (e.g. Iga et al 2014 Fluid Dyn. Res. 46 031409). Through a stability analysis of a simplified model of this flow, we show that such patterns can be explained as a resonance mechanism involving different families of waves. The approach extends a previous work (Tophøj et al 2013 Phys. Rev. Lett. 110 194502) which explained the rotating polygons as an interaction between gravity waves and centrifugal waves, under the assumption that the base flow can be modeled as a potential vortex. We show that this previous model is justified for strong rotation rates (Dry-Potential case), and that for weaker rotations it can be improved by introducing an inner vortex core in solid-body rotation, which either extends to the center of the plate (Wet case) or surrounds a dry central region (Dry-Composite case). The study of this improved model predicts two new kinds of instabilities. The first occurs at low rotations (Wet case) and results from an interaction between gravity waves and the Kelvin-Kirchhoff wave (namely, oscillation of the boundary of the vortex core). This instability is proposed to be at the origin of the sloshing phenomenon. The second new instability occurs, for moderate rotations, (Dry-Composite case) as an interaction between gravity waves and a ‘Kelvin-Centrifugal’ wave characterized by deformation of the inner surface and the vortex core boundary in opposite directions. This instability exists for all azimuthal wave numbers starting from m = 1, this case corresponding to a ‘monogon’ pattern.
NASA Technical Reports Server (NTRS)
Lai, Chun-Liang; Greenberg, Paul S.; Chai, An-Ti
1988-01-01
To study thermocapillary flows in a two-dimensional thin liquid layer with heat fluxes imposed on the free surface experimentally, a long tray configuration was employed to simulate the infinite layer. The surface temperature distribution due to thermocapillary convective for different flow regimes was measured and compared with theoretical predictions. A short tray configuration was also employed to study the end wall effects (insulating or conducting). The results show that for a strong convection flow with an insulating wall as the boundary the surface temperature distribution became quite uniform. Consequently, the thermocapillary driving force was greatly reduced. On the other hand, a strong fluid motion always existed adjacent to the conducting wall because of the large surface temperature gradient near the wall.
NASA Astrophysics Data System (ADS)
Fraggedakis, D.; Papaioannou, J.; Dimakopoulos, Y.; Tsamopoulos, J.
2017-09-01
A new boundary-fitted technique to describe free surface and moving boundary problems is presented. We have extended the 2D elliptic grid generator developed by Dimakopoulos and Tsamopoulos (2003) [19] and further advanced by Chatzidai et al. (2009) [18] to 3D geometries. The set of equations arises from the fulfillment of the variational principles established by Brackbill and Saltzman (1982) [21], and refined by Christodoulou and Scriven (1992) [22]. These account for both smoothness and orthogonality of the grid lines of tessellated physical domains. The elliptic-grid equations are accompanied by new boundary constraints and conditions which are based either on the equidistribution of the nodes on boundary surfaces or on the existing 2D quasi-elliptic grid methodologies. The capabilities of the proposed algorithm are first demonstrated in tests with analytically described complex surfaces. The sequence in which these tests are presented is chosen to help the reader build up experience on the best choice of the elliptic grid parameters. Subsequently, the mesh equations are coupled with the Navier-Stokes equations, in order to reveal the full potential of the proposed methodology in free surface flows. More specifically, the problem of gas assisted injection in ducts of circular and square cross-sections is examined, where the fluid domain experiences extreme deformations. Finally, the flow-mesh solver is used to calculate the equilibrium shapes of static menisci in capillary tubes.
Baer, T.A.; Cairncross, R.A.; Rao, R.R.; Sackinger, P.A.; Schunk, P.R.
1999-01-29
To date, few researchers have solved three-dimensional free-surface problems with dynamic wetting lines. This paper extends the free-surface finite element method described in a companion paper [Cairncross, R.A., P.R. Schunk, T.A. Baer, P.A. Sackinger, R.R. Rao, "A finite element method for free surface flows of incompressible fluid in three dimensions, Part I: Boundary-Fitted mesh motion.", to be published (1998)] to handle dynamic wetting. A generalization of the technique used in two dimensional modeling to circumvent double-valued velocities at the wetting line, the so-called kinematic paradox, is presented for a wetting line in three dimensions. This approach requires the fluid velocity normal to the contact line to be zero, the fluid velocity tangent to the contact line to be equal to the tangential component of web velocity, and the fluid velocity into the web to be zero. In addition, slip is allowed in a narrow strip along the substrate surface near the dynamic contact line. For realistic wetting-line motion, a contact angle which varies with wetting speed is required because contact lines in three dimensions typically advance or recede a different rates depending upon location and/or have both advancing and receding portions. The theory is applied to capillary rise of static fluid in a corner, the initial motion of a Newtonian droplet down an inclined plane, and extrusion of a Newtonian fluid from a nozzle onto a moving substrate. The extrusion results are compared to experimental visualization. Subject Categories
Kollet, S J; Maxwell, R M
2005-04-08
Interactions between surface and ground water are a key component of the hydrologic budget on the watershed scale. Models that honor these interactions are commonly based on the conductance concept that presumes a distinct interface at the land surface, separating the surface from the subsurface domain. These types of models link the subsurface and surface domains via an exchange flux that depends upon the magnitude and direction of the hydraulic gradient across the interface and a proportionality constant (a measure of the hydraulic connectivity). Because experimental evidence of such a distinct interface is often lacking in field systems, there is a need for a more general coupled modeling approach. A more general coupled model is presented that incorporates a new two-dimensional overland flow simulator into the parallel three-dimensional variable saturated subsurface flow code ParFlow. In ParFlow, the overland flow simulator takes the form of an upper boundary condition and is, thus, fully integrated without relying on the conductance concept. Another important advantage of this approach is the efficient parallelism incorporated into ParFlow, which is efficiently exploited by the overland flow simulator. Several verification and simulation examples are presented that focus on the two main processes of runoff production: excess infiltration and saturation. The model is shown to reproduce an analytical solution for overland flow and compares favorably to other commonly used hydrologic models. The influence of heterogeneity of the shallow subsurface on overland flow is also examined. The results show the uncertainty in overland flow predictions due to subsurface heterogeneity and demonstrate the usefulness of our approach. Both the overland flow component and the coupled model are evaluated in a parallel scaling study and show to be efficient.
NASA Astrophysics Data System (ADS)
Faug, Thierry
2015-12-01
In the present paper, flows of granular materials impacting wall-like obstacles down inclines are described by depth-averaged analytic solutions. Particular attention is paid to extending the existing depth-averaged equations initially developed for frictionless and incompressible fluids down a horizontal plane. The effects of the gravitational acceleration along the slope, and of the retarding acceleration caused by friction as well, are systematically taken into account. The analytic solutions are then used to revisit existing data on rigid walls impacted by granular flows. This approach allows establishing a complete phase diagram for granular flow-wall interaction.
NASA Astrophysics Data System (ADS)
Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed
2015-04-01
Debris flows constitute one of the most important natural hazards throughout the mountainous regions of the world, causing significant damages and economic losses. These mass are composed of particles of all sizes from clay to boulders suspended in a viscous fluid. An important goal resides in developing models that are able to accurately predict the hydraulic properties of debris flows. First, these flows are generally represented using models based on a momentum integral approach that consists in assuming a shallow flow and in depth averaging the local conservation equations. These models take into account closure terms depending on the shape of the velocity profile inside the flow. Second, the specific migration mechanisms of the suspended particles, which have a strong influence on the propagation of the surges, also depend on the internal dynamics within the flow. However, to date, few studies concerning the internal dynamics in particular in the vicinity of the front, of such flows have been carried out. The aim of this study is to document the internal dynamics in free-surface viscoplastic flows down an inclined channel. The rheological studies concerning natural muddy debris flows, rich in fine particles, have shown that these materials can be modeled, at least as a first approximation as non-Newtonian viscoplastic fluids. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity. Carbopol microgel has been used as a homogeneous transparent viscoplastic fluid. This experimental setup allows generating and monitoring stationary gravity-driven surges in the laboratory frame. We use PIV technique (Particle Image Velocimetry) to obtain velocity fields both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Experimental velocity profiles and determination of plug position will be presented and compared to theoretical
Analysis of free-surface flows through energy considerations: Single-phase versus two-phase modeling
NASA Astrophysics Data System (ADS)
Marrone, Salvatore; Colagrossi, Andrea; Di Mascio, Andrea; Le Touzé, David
2016-05-01
The study of energetic free-surface flows is challenging because of the large range of interface scales involved due to multiple fragmentations and reconnections of the air-water interface with the formation of drops and bubbles. Because of their complexity the investigation of such phenomena through numerical simulation largely increased during recent years. Actually, in the last decades different numerical models have been developed to study these flows, especially in the context of particle methods. In the latter a single-phase approximation is usually adopted to reduce the computational costs and the model complexity. While it is well known that the role of air largely affects the local flow evolution, it is still not clear whether this single-phase approximation is able to predict global flow features like the evolution of the global mechanical energy dissipation. The present work is dedicated to this topic through the study of a selected problem simulated with both single-phase and two-phase models. It is shown that, interestingly, even though flow evolutions are different, energy evolutions can be similar when including or not the presence of air. This is remarkable since, in the problem considered, with the two-phase model about half of the energy is lost in the air phase while in the one-phase model the energy is mainly dissipated by cavity collapses.
Effects of bulk and free surface shear flows on amyloid fibril formation
NASA Astrophysics Data System (ADS)
Posada, David; Sorci, Mirco; Belfort, Georges; Hirsa, Amir
2008-11-01
Amyloid diseases such as Alzheimer's and Huntington's, among others, are characterized by the conversion of monomers to oligomers (precursors) and then to amyloid fibrils. Besides factors such as concentration, pH, and ionic strength, evidence exists that shearing flow strongly influences amyloid formation in vitro. Also, during fibrillation in the presence of either gas or solid surfaces, both the polarity and roughness of the surfaces play a significant role in the kinetics of the fibrillation process. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field, we can identify the flow and interfacial conditions that impact protein aggregation kinetics. The present flow system consists of an annular region, bounded by stationary inner and outer cylinders and driven by rotation of the floor, with either a hydrophobic (air) or hydrophilic (solid) interface. We show both the combined and separated effects of shear and interfacial hydrophobicity on the fibrillation process, and the use of interfacial shear viscosity as a parameter for quantifying the oligomerization process.
NASA Astrophysics Data System (ADS)
Nomeritae; Daly, Edoardo; Grimaldi, Stefania; Bui, Ha Hong
2016-11-01
Several numerical schemes are available to simulate fluid flow with Smoothed Particles Hydrodynamics (SPH). Although commonly experiencing pressure fluctuations, schemes allowing for small changes in fluid density, referred to as weakly compressible (WCSPH and δ-SPH), are often used because of their faster computational time when compared to implicit incompressible schemes (IISPH). Explicit numerical schemes for incompressible fluid flow (EISPH), although more computationally efficient than IISPH, have not been largely used in the literature. To explore advantages and disadvantages of EISPH, this study compared an EISPH scheme with WCSPH and δ-SPH. The three schemes were compared for the case of still water and a wave generated by a dam-break. EISPH and δ-SPH were also compared for the case of a dam-break wave colliding with a vertical wall and a dam-break wave flowing over a wet bed. The three schemes performed similarly in reproducing theoretical and experimental results. EISPH led to results overall similar to WCSPH and δ-SPH, but with smoother pressure dynamics and faster computational times. EISPH presented some errors in the imposition of incompressibility, with the divergence of velocity being different from zero in parts of the fluid flow, especially near the surface. These errors in the divergence of velocity were comparable to the values of velocity divergence obtained with δ-SPH. In an attempt to reduce the velocity divergence in EISPH, an iterative procedure was implemented to calculate the pressure (iterative-EISPH). Although no real improvement was achieved in terms of velocity divergence, the pressure thus calculated was smoother and in some cases was closer to measured experimental values.
NASA Astrophysics Data System (ADS)
Bahmanpour, Alireza; Eames, Ian
2016-11-01
We study the flow around multiple rectangular obstacles in an unsteady free-surface channel flow using a combination of mathematical models, computations and experiments. The unsteady flow is triggered by a dam-break. The total drag force and surface pressure distribution on the obstacles are examined. The height and length of the building are fixed; the influence of initial water height and blocking ratio b / w is studied. The force scalings are confirmed from the computational analysis and found to be consistent with the experimental results. The effects of the additional buildings on the total drag force are noted and compared against the case of a single building. Increasing the number of buildings as well as the blocking ratio results in the water to inundate further onshore. The pressure distribution on the individual surfaces are analyzed and shown to vary linearly with height from the building base and dominated by the hydrostatic component. We summarize the results in terms of a new Fr - b / w regime diagram and explain how the force on buildings subject to an unsteady flow can be estimated from the upstream velocity and water height. We would like to thank HR Wallingford for their continued support in funding the project.
Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme
NASA Astrophysics Data System (ADS)
Jin-Lian, Ren; Tao, Jiang
2016-02-01
In this work, the behavior of the three-dimensional (3D) jet coiling based on the viscoelastic Oldroyd-B model is investigated by a corrected particle scheme, which is named the smoothed particle hydrodynamics with corrected symmetric kernel gradient and shifting particle technique (SPH_CS_SP) method. The accuracy and stability of SPH_CS_SP method is first tested by solving Poiseuille flow and Taylor-Green flow. Then the capacity for the SPH_CS_SP method to solve the viscoelastic fluid is verified by the polymer flow through a periodic array of cylinders. Moreover, the convergence of the SPH_CS_SP method is also investigated. Finally, the proposed method is further applied to the 3D viscoelastic jet coiling problem, and the influences of macroscopic parameters on the jet coiling are discussed. The numerical results show that the SPH_CS_SP method has higher accuracy and better stability than the traditional SPH method and other corrected SPH method, and can improve the tensile instability. Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130436 and BK20150436) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 15KJB110025).
Interfacial stress balances in structured continua and free surface flows in ferrofluids
Chaves, Arlex; Rinaldi, Carlos
2014-04-15
Interfacial linear and internal angular momentum balances are obtained for a structured continuum and for the special case of a ferrofluid, a suspension of magnetic nanoparticles in a Newtonian fluid. The interfacial balance equations account for the effects of surface tension and surface tension gradient, magnetic surface excess forces, antisymmetric stresses, and couple stresses in driving interfacial flows in ferrofluids. Application of the interfacial balance equations is illustrated by obtaining analytical expressions for the translational and spin velocity profiles in a thin film of ferrofluid on an infinite flat plate when a rotating magnetic field is applied with axis of rotation parallel to the ferrofluid/air interface. The cases of zero and non-zero spin viscosity are considered for small applied magnetic field amplitude. Expressions for the maximum translational velocity, slope of the translational velocity profile at the ferrofluid/air interface, and volumetric flow rate are obtained and their use to test the relevance of spin viscosity and couple stresses in the flow situation under consideration is discussed.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Li, Qiang; Kuang, S. B.; Zou, Zongshu
2017-02-01
Transient flow structures in a continuous casting mold can strongly influence the slag entrainment in liquid steel and the bubbles capture in the initial solidified shell, both of which are associated with the quality of the final product. This paper presents a numerical study of the turbulent flow with a top free surface in the continuous casting mold at a meso-scale level by a three-dimensional combined approach of Free Surface Lattice Boltzmann Method and Large Eddy Simulation (FSLBM-LES). The validity of the model is verified by the good agreement between the calculated results and the measurements from various water experiments in terms of the flow velocity and free surface profile. The mathematical model is then used to reveal the transient and spatiotemporal asymmetric characteristics associated with the transient flow field and the free surface fluctuation, although the steady state operation is considered during the continuous casting process. The results show that the locations of the jets of liquid steel from the two out ports of the Submerged Entry Nozzle (SEN) always fluctuate alternatively within a certain range, and periodically deviate from the design angle of the SEN within the same time period. The oscillating behavior of the jets promotes the asymmetric flow patterns and multi-scale vortices at both sides of the SEN. By introducing the Q-criterion in the results analysis, the formation, development, and shedding of the coherent structure (CS) of the turbulent flow are quantitatively characterized. The interaction between the transient flow patterns and the fluctuations of the top free surface as well as the evolution of the transient profile and velocities of the free surface are also demonstrated. The results obtained from the current study suggest that the FSLBM-LES model offers a promising way to study the complex flows and related transfer phenomena in the continuous casting process.
A new three-dimensional terrain-following tidal model of free-surface flows
NASA Astrophysics Data System (ADS)
Lu, Fuqiang; Zhang, Zhuo; Song, Zhiyao; Yue, Songshan; Wen, Yongning
2015-12-01
A three-dimensional hydrodynamic model is presented which combines a terrain-following vertical coordinate with a horizontally orthogonal curvilinear coordinate system to fit the complex bottom topography and coastlines near estuaries, continental shelves, and harbors. To solve the governing equations more efficiently, we improve the alternating direction implicit method, which is extensively used in the numerical modeling of horizontal two-dimensional shallow water equations, and extend it to a three-dimensional tidal model with relatively little computational effort. Through several test cases and realistic applications, as presented in the paper, it can be demonstrated that the model is capable of simulating the periodic to-and-fro currents, wind-driven flow, Ekman spirals, and tidal currents in the near-shore region.
Large eddy simulation of free surface turbulent flow in partly vegetated open channels
NASA Astrophysics Data System (ADS)
Xiaohui, Su; Li, C. W.
2002-08-01
A large eddy simulation (LES) model has been developed to simulate the hydrodynamic behaviour of turbulent flow in an open channel with a domain of vegetation. Vegetation is considered as an internal source of resistant force and turbulence energy. The model is modified from the LES model of Li and Wang (International Journal for Numerical Methods in Fluids 2000; 34), and is distinctive in that the subgrid scale turbulence is parameterized by a k-l model. The length scale of turbulence l is proportional to the grid size and the turbulence energy k is obtained from the solution of the turbulence energy transport equation. An operator splitting method, which splits the solution procedure into advection, diffusion and pressure propagation steps, is employed so that different numerical schemes can be used for the solution of different physical processes. The model has been applied to simulate open channel flow with transverse shear produced by vegetation drag. Some organized large eddies were found in the interface between the vegetated and non-vegetated regions and the organized structure clearly has a life cycle. At the interface the transverse velocity profile exhibits a steep gradient, which induces significant mass and momentum exchange, acts as a source of vorticity, and generates high Reynolds stresses. The logarithmic vertical velocity variation becomes uniform in the vegetated domain. The agreement between the numerical results and the experimental data (Tsujimoto and Kitamura, KHL Progressive Report '92, Hydrology Laboratory, Kanazawa University, Japan, 1992; 21) is satisfactory. The present k-l LES model is proven to be a useful tool for engineering applications, as it can simulate the dynamic development of large eddies and the associated intermittent turbulence. Copyright
NASA Astrophysics Data System (ADS)
Furuichi, M.
2009-12-01
We are interested in solving a large-scale plate-mantle simulation enables capture of the large and complex deformation of a subducting plate. In our earlier study (Furuichi, et al 2008), we developed a numerical method toward plate-mantle simulation especially for the highly parallel vector supercomputer system (e.g. Earth Simulator). Our scheme is based on the finite volume method combines (i) the multigrid technique together with ACuTE smoother algorithm (Kameyama et al., 2005), and (ii) the low diffusive CIP-CSLR advection. The validity test of our simulation code by using a fluid rope coiling event (Furuichi, et al 2009) showed that our method enable us to reproduce large non-linear deformation problems of a rigid plate surrounded by soft material without serious quantitative errors. Then as a next step, I am trying to create a Stokes flow solver scalable against a large jump in a viscosity profile, for moving surface (geometrically free boundary) problems. It is for solving the Stokes flow motion under the same condition as real earth. In this presentation, I propose to apply BFBt preconditioner and AMG techniques for the problems of large viscosity contrast and moving free surface boundary condition respectively. I would like to show some numerical experiments for a self-gravitating motion of the layered Stokes flow.
NASA Astrophysics Data System (ADS)
Cheviron, Bruno; Moussa, Roger
2016-09-01
This review paper investigates the determinants of modelling choices, for numerous applications of 1-D free-surface flow and morphodynamic equations in hydrology and hydraulics, across multiple spatiotemporal scales. We aim to characterize each case study by its signature composed of model refinement (Navier-Stokes: NS; Reynolds-averaged Navier-Stokes: RANS; Saint-Venant: SV; or approximations to Saint-Venant: ASV), spatiotemporal scales and subscales (domain length: L from 1 cm to 1000 km; temporal scale: T from 1 s to 1 year; flow depth: H from 1 mm to 10 m; spatial step for modelling: δL; temporal step: δT), flow typology (Overland: O; High gradient: Hg; Bedforms: B; Fluvial: F), and dimensionless numbers (dimensionless time period T*, Reynolds number Re, Froude number Fr, slope S, inundation ratio Λz, Shields number θ). The determinants of modelling choices are therefore sought in the interplay between flow characteristics and cross-scale and scale-independent views. The influence of spatiotemporal scales on modelling choices is first quantified through the expected correlation between increasing scales and decreasing model refinements (though modelling objectives also show through the chosen spatial and temporal subscales). Then flow typology appears a secondary but important determinant in the choice of model refinement. This finding is confirmed by the discriminating values of several dimensionless numbers, which prove preferential associations between model refinements and flow typologies. This review is intended to help modellers in positioning their choices with respect to the most frequent practices, within a generic, normative procedure possibly enriched by the community for a larger, comprehensive and updated image of modelling strategies.
NASA Astrophysics Data System (ADS)
Khayat, Roger E.; Genouvrier, Delphine
2001-05-01
An adaptive (Lagrangian) boundary element approach is proposed for the general three-dimensional simulation of confined free-surface Stokes flow. The method is stable as it includes remeshing capabilities of the deforming free surface and thus can handle large deformations. A simple algorithm is developed for mesh refinement of the deforming free-surface mesh. Smooth transition between large and small elements is achieved without significant degradation of the aspect ratio of the elements in the mesh. Several flow problems are presented to illustrate the utility of the approach, particularly as encountered in polymer processing and rheology. These problems illustrate the transient nature of the flow during the processes of extrusion and thermoforming, the elongation of a fluid sample in an extensional rheometer, and the coating of a sphere. Surface tension effects are also explored. Copyright
Durbin, S.G.; Yoda, M.; Abdel-Khalik, S.I.
2005-04-15
The HYLIFE-II conceptual design uses arrays of high-speed oscillating and stationary slab jets, or turbulent liquid sheets, to protect the reactor chamber first walls. A major issue in thick liquid protection is the hydrodynamic source term due to the primary turbulent breakup of the protective slab jets. During turbulent breakup, drops are continuously ejected from the surface of turbulent liquid sheets and convected into the interior of the cavity, where they can interfere with driver propagation and target injection. Experimental data for vertical turbulent sheets of water issuing downwards from nozzles of thickness (small dimension) {delta} = 1 cm into ambient air are compared with empirical correlations at a nearly prototypical Reynolds number Re = 1.2 x 10{sup 5}. A simple collection technique was used to estimate the amount of mass ejected from the jet surface. The effectiveness of boundary-layer cutting at various 'depths' into the flow to reduce the source term and improve surface smoothness was evaluated. In all cases boundary-layer cutting was implemented immediately downstream of the nozzle exit. Planar laser-induced fluorescence (PLIF) was used to visualize the free-surface geometry of the liquid sheet in the near-field region up to 25{delta} downstream of the nozzle exit. Large-scale structures at the edges of the sheet, typically observed for Re < 5.0 x 10{sup 4}, reappeared at Re = 1.2 x 10{sup 5} for sheets with boundary-layer cutting. The results indicate that boundary-layer cutting can be used to suppress drop formation, i.e. the hydrodynamic source term, for a well-conditioned jet but is not a substitute for well-designed flow conditioning.
NASA Astrophysics Data System (ADS)
Zhang, Xiujie; Pan, Chuanjie; Xu, Zengyu
2016-12-01
Numerical and experimental investigation results on the magnetohydrodynamics (MHD) film flows along flat and curved bottom surfaces are summarized in this study. A simplified modeling has been developed to study the liquid metal MHD film state, which has been validated by the existing experimental results. Numerical results on how the inlet velocity (V), the chute width (W) and the inlet film thickness (d0) affect the MHD film flow state are obtained. MHD stability analysis results are also provided in this study. The results show that strong magnetic fields make the stable V decrease several times compared to the case with no magnetic field, especially small radial magnetic fields (Bn) will have a significant impact on the MHD film flow state. Based on the above numerical and MHD stability analysis results flow control methods are proposed for flat and curved MHD film flows. For curved film flow we firstly proposed a new multi-layers MHD film flow system with a solid metal mesh to get the stable MHD film flows along the curved bottom surface. Experiments on flat and curved MHD film flows are also carried out and some firstly observed results are achieved. supported by the National Magnetic Confinement Fusion Science Program of China (Nos. 2014GB125003 and 2013GB114002), National Natural Science Foundation of China (No. 11105044)
NASA Astrophysics Data System (ADS)
Zhong, Qiang; Chen, Qigang; Wang, Hao; Li, Danxun; Wang, Xingkui
2016-05-01
Long streamwise-elongated high- and low-speed streaks are repeatedly observed near the free surface in open channel flows in natural rivers and lab experiments. Super-streamwise vortex model has been proposed to explain this widespread phenomenon for quite some time. However, statistical evidence of the existence of the super-streamwise vortices as one type of coherent structures is still insufficient. Correlation and proper orthogonal decomposition (POD) analysis based on PIV experimental data in the streamwise-spanwise plane near the free surface in a smooth open channel flow are employed to investigate this topic. Correlation analysis revealed that the streaky structures appear frequently near the free surface and their occurrence probability at any spanwise position is equal. The spanwise velocity fluctuation usually flows from low-speed streaks toward high-speed streaks. The average spanwise width and spacing between neighboring low (or high) speed streaks are approximately h and 2h respectively. POD analysis reveals that there are streaks with different spanwise width in the instantaneous flow fields. Typical streamwise rotational movement can be sketched out directly based on the results from statistical analyses. Point-by-point analysis indicates that this pattern is consistent everywhere in the measurement window and is without any inhomogeneity in the spanwise direction, which reveals the essential difference between coherent structures and secondary flow cells. The pattern found by statistical analysis is consistent with the notion that the super-streamwise vortices exist universally as one type of coherent structure in open channel flows.
NASA Technical Reports Server (NTRS)
Preiswerk, Ernst
1940-01-01
The application is treated in sufficient detail to facilitate as much as possible its application by the engineer who is less familiar with the subject. The present work was undertaken with two objects in view. In the first place, it is considered as a contribution to the water analogy of gas flows, and secondly, a large portion is devoted to the general theory of the two-dimensional supersonic flows.
Lithium-Based High Energy Density Flow Batteries
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V. (Inventor); West, William C. (Inventor); Kindler, Andrew (Inventor); Smart, Marshall C. (Inventor)
2014-01-01
Systems and methods in accordance with embodiments of the invention implement a lithium-based high energy density flow battery. In one embodiment, a lithium-based high energy density flow battery includes a first anodic conductive solution that includes a lithium polyaromatic hydrocarbon complex dissolved in a solvent, a second cathodic conductive solution that includes a cathodic complex dissolved in a solvent, a solid lithium ion conductor disposed so as to separate the first solution from the second solution, such that the first conductive solution, the second conductive solution, and the solid lithium ionic conductor define a circuit, where when the circuit is closed, lithium from the lithium polyaromatic hydrocarbon complex in the first conductive solution dissociates from the lithium polyaromatic hydrocarbon complex, migrates through the solid lithium ionic conductor, and associates with the cathodic complex of the second conductive solution, and a current is generated.
NASA Astrophysics Data System (ADS)
Guinot, Vincent; Cappelaere, Bernard
2009-04-01
This paper presents the analytical properties of the solutions of the sensitivity equations for steady-state, two-dimensional shallow water flow. These analytical properties are used to provide guidelines for model calibration and validation. The sensitivity of the water depth/level and that of the longitudinal unit discharge are shown to contain redundant information. Under subcritical conditions, the sensitivities of the flow variables are shown to obey an anisotropic elliptic equation. The main directions of the contour lines for water depth and the longitudinal unit discharge sensitivity are parallel and perpendicular to the flow, while they are diagonal to the flow for the transverse unit discharge sensitivity. Moreover, the sensitivity for all three variables extends farther in the transverse direction than in the longitudinal direction, the anisotropy ratio being a function of the sole Froude number. For supercritical flow, the sensitivity obeys an anisotropic hyperbolic equation. These findings are confirmed by application examples on idealized and real-world simulations. The sensitivities to the geometry, friction coefficient or model boundary conditions are shown to behave in different ways, thus providing different types of information for model calibration and validation.
NASA Astrophysics Data System (ADS)
Furuichi, Mikito; May, Dave A.
2015-07-01
We present implicit time integration schemes suitable for modeling free surface Stokes flow dynamics with marker in cell (MIC) based spatial discretization. Our target is for example thermal convection surrounded by deformable surface boundaries to simulate the long term planetary formation process. The numerical system becomes stiff when the dynamical balancing time scale for the increasing/decreasing load by surface deformation is very short compared with the time scale associated with thermal convection. Any explicit time integration scheme will require very small time steps; otherwise, serious numerical oscillation (spurious solutions) will occur. The implicit time integration scheme possesses a wider stability region than the explicit method; therefore, it is suitable for stiff problems. To investigate an efficient solution method for the stiff Stokes flow system, we apply first (backward Euler (BE)) and second order (trapezoidal method (TR) and trapezoidal rule-backward difference formula (TR-BDF2)) accurate implicit methods for the MIC solution scheme. The introduction of implicit time integration schemes results in nonlinear systems of equations. We utilize a Jacobian free Newton Krylov (JFNK) based Newton framework to solve the resulting nonlinear equations. In this work we also investigate two efficient implicit solution strategies to reduce the computational cost when solving stiff nonlinear systems. The two methods differ in how the advective term in the material transport evolution equation is treated. We refer to the method that employs Lagrangian update as "fully implicit" (Imp), whilst the method that employs Eulerian update is referred to as "semi-implicit" (SImp). Using a finite difference (FD) method, we have performed a series of numerical experiments which clarify the accuracy of solutions and trade-off between the computational cost associated with the nonlinear solver and time step size. In comparison with the general explicit Euler method
Reserve, flowing electrolyte, high rate lithium battery
NASA Astrophysics Data System (ADS)
Puskar, M.; Harris, P.
Flowing electrolyte Li/SOCl2 tests in single cell and multicell bipolar fixtures have been conducted, and measurements are presented for electrolyte flow rates, inlet and outlet temperatures, fixture temperatures at several points, and the pressure drop across the fixture. Reserve lithium batteries with flowing thionyl-chloride electrolytes are found to be capable of very high energy densities with usable voltages and capacities at current densities as high as 500 mA/sq cm. At this current density, a battery stack 10 inches in diameter is shown to produce over 60 kW of power while maintaining a safe operating temperature.
NASA Technical Reports Server (NTRS)
Preiswerk, Ernst
1940-01-01
In this paper an introduction to shock polar diagrams is given which then leads into an examination of water depths in hydraulic jumps. Energy loss during these jumps is considered along with an extended look at elementary solutions of flow. An experimental test set-up is described and the results presented.
Lithium-Polysulfide Flow Battery Demonstration
Zheng, Wesley
2016-07-12
In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.
Lithium-Polysulfide Flow Battery Demonstration
Zheng, Wesley
2014-06-30
In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.
NASA Astrophysics Data System (ADS)
Noffz, Torsten; Kordilla, Jannes; Dentz, Marco; Sauter, Martin
2017-04-01
Flow in unsaturated fracture networks constitutes a high potential for rapid mass transport and can therefore possibly contributes to the vulnerability of aquifer systems. Numerical models are generally used to predict flow and transport and have to reproduce various complex effects of gravity-driven flow dynamics. However, many classical volume-effective modelling approaches often do not grasp the non-linear free surface flow dynamics and partitioning behaviour at fracture intersections in unsaturated fracture networks. Better process understanding can be obtained by laboratory experiments, that isolate single aspects of the mass partitioning process, which influence travel time distributions and allow possible cross-scale applications. We present a series of percolation experiments investigating partitioning dynamics of unsaturated multiphase flow at an individual horizontal fracture intersection. A high precision multichannel dispenser is used to establish gravity-driven free surface flow on a smooth and vertical PMMA (poly(methyl methacrylate)) surface at rates ranging from 1.5 to 4.5 mL/min to obtain various flow modes (droplets; rivulets). Cubes with dimensions 20 x 20 x 20 cm are used to create a set of simple geometries. A digital balance provides continuous real-time cumulative mass bypassing the network. The influence of variable flow rate, atmospheric pressure and temperature on the stability of flow modes is shown in single-inlet experiments. Droplet and rivulet flow are delineated and a transition zone exhibiting mixed flow modes can be determined. Furthermore, multi-inlet setups with constant total inflow rates are used to reduce variance and the effect of erratic free-surface flow dynamics. Investigated parameters include: variable aperture widths df, horizontal offsets dv of the vertical fracture surface and alternating injection methods for both droplet and rivulet flow. Repetitive structures with several horizontal fractures extend arrival times
NASA Astrophysics Data System (ADS)
Adjali, Saadia; Belkadi, Mustapha; Aounallah, Mohammed; Imine, Omar
2015-05-01
Accurate simulation of turbulent free surface flows around surface ships has a central role in the optimal design of such naval vessels. The flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. In this paper, our goal is to estimate the lift and drag coefficients for NACA 0012 of hydrofoil advancing in calm water under steady conditions with free surface and emerged NACA 0015. The commercial CFD software FLUENT version 14 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26.The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. In this computation, the second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretisation. The results obtained compare well with the experimental data.
NASA Astrophysics Data System (ADS)
Lusso, Christelle; Ern, Alexandre; Bouchut, François; Mangeney, Anne; Farin, Maxime; Roche, Olivier
2017-03-01
This work is devoted to numerical modeling and simulation of granular flows relevant to geophysical flows such as avalanches and debris flows. We consider an incompressible viscoplastic fluid, described by a rheology with pressure-dependent yield stress, in a 2D setting with a free surface. We implement a regularization method to deal with the singularity of the rheological law, using a mixed finite element approximation of the momentum and incompressibility equations, and an arbitrary Lagrangian Eulerian (ALE) formulation for the displacement of the domain. The free surface is evolved by taking care of its deposition onto the bottom and of preventing it from folding over itself. Several tests are performed to assess the efficiency of our method. The first test is dedicated to verify its accuracy and cost on a one-dimensional simple shear plug flow. On this configuration we setup rules for the choice of the numerical parameters. The second test aims to compare the results of our numerical method to those predicted by an augmented Lagrangian formulation in the case of the collapse and spreading of a granular column over a horizontal rigid bed. Finally we show the reliability of our method by comparing numerical predictions to data from experiments of granular collapse of both trapezoidal and rectangular columns over horizontal rigid or erodible granular bed made of the same material. We compare the evolution of the free surface, the velocity profiles, and the static-flowing interface. The results show the ability of our method to deal numerically with the front behavior of granular collapses over an erodible bed.
On the effect of standard PFEM remeshing on volume conservation in free-surface fluid flow problems
NASA Astrophysics Data System (ADS)
Franci, Alessandro; Cremonesi, Massimiliano
2017-07-01
The aim of this work is to analyze the remeshing procedure used in the particle finite element method (PFEM) and to investigate how this operation may affect the numerical results. The PFEM remeshing algorithm combines the Delaunay triangulation and the Alpha Shape method to guarantee a good quality of the Lagrangian mesh also in large deformation processes. However, this strategy may lead to local variations of the topology that may cause an artificial change of the global volume. The issue of volume conservation is here studied in detail. An accurate description of all the situations that may induce a volume variation during the PFEM regeneration of the mesh is provided. Moreover, the crucial role of the parameter α used in the Alpha Shape method is highlighted and a range of values of α for which the differences between the numerical results are negligible, is found. Furthermore, it is shown that the variation of volume induced by the remeshing reduces by refining the mesh. This check of convergence is of paramount importance for the reliability of the PFEM. The study is carried out for 2D free-surface fluid dynamics problems, however the conclusions can be extended to 3D and to all those problems characterized by significant variations of internal and external boundaries.
Free-surface wave-induced separation
Zhang, Z.J.; Stern, F.
1996-09-01
Free-surface wave-induced separation is studied for a surface-piercing NACA 0024 foil over a range of Froude numbers (0, .2, .37, .55) through computational fluid dynamics of the unsteady Reynolds-averaged Navier-Stokes and the continuity equations with the Baldwin-Lomax turbulence model, exact nonlinear kinematic and approximate dynamic free-surface boundary conditions, and a body/free-surface conforming grid. The flow conditions and uncertainty analysis are discussed. A topological rule for a surface-piercing body is derived and verified. Steady-flow results are presented and analyzed with regard to the wave and viscous flow and the nature of the separation.
NASA Astrophysics Data System (ADS)
Ueno, Kazuto
2007-03-01
Icicles and stalactites grow when their surfaces are covered with a thin film of flowing water through which latent heat of fusion and carbon dioxide are released to the surrounding air by diffusion and convection. Despite the complete difference in their basic growth mechanism, their surfaces often have ripples of centimeter-scale wavelengths. We consider the underlying common mechanism of ripple formation and find that the mean thickness of the water film and the capillary length associated with the surface tension of the water-air surface are common important characteristic lengths in determining the centimeter-scale wavelength of ripples. This is the first theoretical work on the morphological instability of solidification front during icicle and stalactite growth from a thin shear flow with one side being a free surface, in which we take into account the change of shape of the water-air surface when the shape of the solid-liquid interface is changed.
Interaction of Strong Turbulence With Free Surfaces
NASA Astrophysics Data System (ADS)
Dalrymple, Robert A.
Spray from a nozzle, spilling breakers, and “rooster tails” from speeding boats are all examples of a turbulent flow with a free surface. In many cases like these, the free surface is difficult to discern as the volume of air in the fluid can exceed that of the water.In traditional studies, the free surface is simply defined as a continuous surface separating the fluid from air. The pressure at the surface is assumed to be atmospheric pressure and the fluid comprising the surface moves with the surface. While these conditions are sufficient for non-turbulent flows, such as nonbreaking water waves, and lead to the (albeit non-linear) dynamic and kinematic free surface boundary conditions that serve to provide sufficient conditions to determine the surface, they are not valid descriptions for a bubbly free surface in a highly turbulent regime, such as the roller in front of a spilling breaker or the propeller wash behind a ship.
NASA Astrophysics Data System (ADS)
Carrión, Luis M.; Herrada, Miguel A.; Montanero, José M.; Vega, José M.
2017-09-01
As is well known, confined fluid systems subject to forced vibrations produce mean flows, called in this context streaming flows. These mean flows promote an overall mass transport in the fluid that has consequences in the transport of passive scalars and surfactants, when these are present in a fluid interface. Such transport causes surfactant concentration inhomogeneities that are to be counterbalanced by Marangoni elasticity. Therefore, the interaction of streaming flows and Marangoni convection is expected to produce new flow structures that are different from those resulting when only one of these effects is present. The present paper focuses on this interaction using the liquid bridge geometry as a paradigmatic system for the analysis. Such analysis is based on an appropriate post-processing of the results obtained via direct numerical simulation of the system for moderately small viscosity, a condition consistent with typical experiments of vibrated millimetric liquid bridges. It is seen that the flow patterns show a nonmonotone behavior as the Marangoni number is increased. In addition, the strength of the mean flow at the free surface exhibits two well-defined regimes as the forcing amplitude increases. These regimes show fairly universal power-law behaviors.
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Takagi, Y.; Okano, Y.; Dost, S.
2016-03-01
NASA astronaut Pettit has conducted thermocapillary flow experiments in water films suspended in a solid ring onboard the International Space Station (ISS) in 2003 and 2011. In one of these experiments, an oscillatory thermocapillary flow was observed. The developed flow broke its symmetry along the centerline of the film. To the best of our knowledge, there are no studies on such oscillatory thermocapillary flows in thin films, and the flow-mechanism giving rise to such oscillatory flows is also not well understood. In order to shed light on the subject, we have carried out a numerical simulation study. The simulation results have shown that the water film geometry (film surface shape; being concave) is an important parameter and give rise to three oscillatory flow structures in the film, namely, a hydrothermal wave developing near the heated section, a symmetric oscillatory flow due to temperature variations, and a symmetry breaking flow due to the hydrodynamic instability along the free boundary layer (mixing layer) and the development of the hydrothermal waves. Simulation results show that the symmetry-breaking phenomenon observed in the thin film experiment on the ISS can be explained by the hydrodynamic instability and the development of hydrothermal waves.
NASA Technical Reports Server (NTRS)
Faghri, Amir; Swanson, Theodore D.
1988-01-01
The results of a numerical computation and theoretical analysis are presented for the flow of a thin liquid film in the presence and absence of a gravitational body force. Five different flow systems were used. Also presented are the governing equations and boundary conditions for the situation of a thin liquid emanating from a pressure vessel; traveling along a horizontal plate with a constant initial height and uniform initial velocity; and traveling radially along a horizontal disk with a constant initial height and uniform initial velocity.
NASA Astrophysics Data System (ADS)
Cherepanov, Roman O.; Gerasimov, Alexander V.
2016-11-01
A fully conservative first order accuracy smooth particle method is proposed for elastic-plastic flows. The paper also provides an algorithm for calculating free boundary conditions. A weak variational formulation is used to achieve energy and momentum conservation and to decrease an order of spatial derivatives for the boundary condition calculation, and the Taylor series expansion is used for restoring particle inconsistence and for getting at least the first order of accuracy of spatial derivatives. The approach proposed allows us to avoid the "ghost" particle usage.
A low diffusive Lagrange-remap scheme for the simulation of violent ai-water free-surface flows
NASA Astrophysics Data System (ADS)
Bernard-Champmartin, Aude; De Vuyst, Florian
2014-10-01
In 2002, Després and Lagoutière [17] proposed a low-diffusive advection scheme for pure transport equation problems, which is particularly accurate for step-shaped solutions, and thus suited for interface tracking procedure by a color function. This has been extended by Kokh and Lagoutière [28] in the context of compressible multifluid flows using a five-equation model. In this paper, we explore a simplified variant approach for gas-liquid three-equation models. The Eulerian numerical scheme has two ingredients: a robust remapped Lagrange solver for the solution of the volume-averaged equations, and a low diffusive compressive scheme for the advection of the gas mass fraction. Numerical experiments show the performance of the computational approach on various flow reference problems: dam break, sloshing of a tank filled with water, wate-water impact and finally a case of Rayleigh-Taylor instability. One of the advantages of the present interface capturing solver is its natural implementation on parallel processors or computers. wave formation and wave breaking; wall wave impacts, local pressure peaks and pressure loadings; formation of air pockets; ejection, fragmentation of liquid droplets; Archimedes buoyancy effect with rising of bubbles and fall of droplets; effects of gas compressibility inducing a gas-to-liquid response by a pressure wave, etc. In this paper, we consider immiscible gas-liquid two-phase flow problems. The strong ratio of mass density between gas and liquid (typically 1:1000) is known to be a source of numerical stiffness and numerical instability. Therefore robust computational approaches supporting high density ratio have to be considered. Among the family of conservative Finite Volume methods (FVM), the Lagrange-remapped solvers (see e.g. [42,45,6,4,25,2]) provide both robustness and stability with achievement of mathematical properties of positiveness and entropy compatibility.Lagrange-remap numerical schemes (also referred to as Eule
A meshfree approach to non-Newtonian free surface ice flow: Application to the Haut Glacier d'Arolla
NASA Astrophysics Data System (ADS)
Ahlkrona, Josefin; Shcherbakov, Victor
2017-02-01
Numerical models of glacier and ice sheet dynamics traditionally employ finite difference or finite element methods. Although these are highly developed and mature methods, they suffer from some drawbacks, such as inability to handle complex geometries (finite differences) or a costly assembly procedure for nonlinear problems (finite elements). Additionally, they are mesh-based, and therefore moving domains become a challenge. In this paper, we introduce a novel meshfree approach based on a radial basis function (RBF) method. The meshfree nature of RBF methods enables efficient handling of moving margins and free ice surface. RBF methods are also accurate, easy to implement, and allow for reduction the computational cost associated with the linear system assembly, since stated in strong form. To demonstrate the global RBF method we model the velocity field of ice flow in the Haut Glacier d'Arolla, which is governed by the nonlinear Stokes equations. We test the method for different basal conditions and for a free moving surface. We also compare the global RBF method with its localized counterpart-the RBF partition of unity method (RBF-PUM)-that allows for a significant gain in the computational efficiency. Both RBF methods are compared with the classical finite element method in terms of accuracy and efficiency. We find that the RBF methods are more efficient than the finite element method and well suited for ice dynamics modeling, especially the partition of unity approach.
Corrosion behavior of vanadium alloys in flowing lithium
Chopra, O.K.; Smith, D.L.
1987-08-01
Corrosion data are presented for several vanadium alloys exposed to flowing lithium at 427, 482, and 538/sup 0/C. The corrosion behavior is evaluated by weight change measurements. Metallographic results and data on the nonmetallic element transfer in lithium-exposed specimens are also presented. The influence of alloy composition and exposure conditions on the corrosion behavior of vanadium alloys is discussed. 6 refs., 9 figs., 2 tabs.
NASA Astrophysics Data System (ADS)
Yapalparvi, Ramesh; Protas, Bartosz
2010-11-01
In this investigation we introduce the concept of an "effective free surface" arising as a solution of time--averaged equations in the presence of free boundaries. This work is motivated by applications of optimization theory to problems involving free surfaces, such as droplets impinging on the weld pool surface in welding processes. In such problems the time--dependent governing equations lead to technical difficulties, many of which are alleviated when methods of optimization are applied to a steady problem with effective free surfaces. The corresponding equations are obtained by performing the Reynolds decomposition and averaging of the time--dependent free--boundary equations based on the volume--of--fluid (VoF) formalism. We identify the terms representing the average effect of fluctuating free boundaries which, in analogy with the Reynolds stresses in classical turbulence models, need to be modelled and propose some simple algebraic closures for these terms. We argue that effective free boundaries can be computed using methods of shape optimization and present some results.
Transient Shear Flow of Model Lithium Lubricating Greases
NASA Astrophysics Data System (ADS)
Delgado, M. A.; Franco, J. M.; Valencia, C.; Kuhn, E.; Gallegos, C.
2008-07-01
This work deals with the analysis of the transient shear flow behaviour of lithium lubricating greases differing in soap concentration and base oil viscosity. The shear-induced evolution of lithium grease microstructure has been studied by means of stress-growth experiments. With this aim, different lubricating grease formulations were manufactured by modifying lithium 12-hydroxystearate concentration and base oil viscosity. Different rheological parameters, related to both the elastic response and the structural breakdown of greases, have been analysed. In this sense, it has been found that the elastic properties of lithium lubricating greases were highly influenced by soap concentration and oil viscosity. Moreover, an asymptotic tendency has been found for the stress overshoot by increasing shear rate. The asymptotic values of this parameter have been correlated to the friction coefficient obtained in a ball-disc tribometer.
Han, L.H. Hu, X.Y. Adams, N.A.
2015-01-01
In this paper we present a scale separation approach for multi-scale modeling of free-surface and two-phase flows with complex interface evolution. By performing a stimulus-response operation on the level-set function representing the interface, separation of resolvable and non-resolvable interface scales is achieved efficiently. Uniform positive and negative shifts of the level-set function are used to determine non-resolvable interface structures. Non-resolved interface structures are separated from the resolved ones and can be treated by a mixing model or a Lagrangian-particle model in order to preserve mass. Resolved interface structures are treated by the conservative sharp-interface model. Since the proposed scale separation approach does not rely on topological information, unlike in previous work, it can be implemented in a straightforward fashion into a given level set based interface model. A number of two- and three-dimensional numerical tests demonstrate that the proposed method is able to cope with complex interface variations accurately and significantly increases robustness against underresolved interface structures.
Velocity Measurements of Thermoelectric Driven Flowing Liquid Lithium
NASA Astrophysics Data System (ADS)
Szott, Matthew; Xu, Wenyu; Fiflis, Peter; Haehnlein, Ian; Kapat, Aveek; Kalathiparambil, Kishor; Ruzic, David N.
2014-10-01
Liquid lithium has garnered additional attention as a PFC due to its several advantages over solid PFCs, including reduced erosion and thermal fatigue, increased heat transfer, higher device lifetime, and enhanced plasma performance due to the establishment of low recycling regimes at the wall. The Lithium Metal Infused Trenches concept (LiMIT) has demonstrated thermoelectric magnetohydrodynamic flow of liquid lithium through horizontal open-faced metal trenches with measured velocities varying from 3.7+/-0.5 cm/s in the 1.76 T field of HT-7 to 22+/-3 cm/s in the SLiDE facility at UIUC at 0.059 T. To demonstrate the versatility of the concept, a new LiMIT design using narrower trenches shows steady state, thermoelectric-driven flow at an arbitrary angle from horizontal. Velocity characteristics are measured and discussed. Based on this LiMIT concept, a new limiter design has been developed to be tested on the mid-plane of the EAST plasma. Preliminary modelling suggests lithium flow of 6 cm/s in this device. Additionally, recent testing at the Magnum-PSI facility has given encouraging results, and velocity measurements in relation to magnetic field strength and plasma flux are also presented.
Effect of Energetic Plasma Flux on Flowing Liquid Lithium Surfaces
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor; Jung, Soonwook; Christenson, Michael; Fiflis, Peter; Xu, Wenyu; Szott, Mathew; Ruzic, David
2014-10-01
An operational liquid lithium system with steady state flow driven by thermo-electric magneto-hydrodynamic force and capable of constantly refreshing the plasma exposed surface have been demonstrated at U of I. To evaluate the system performance in reactor relevant conditions, specifically to understand the effect of disruptive plasma events on the performance of the liquid metal PFCs, the setup was integrated to a pulsed plasma generator. A coaxial plasma generator drives the plasma towards a theta pinch which preferentially heats the ions, simulating ELM like flux, and the plasma is further guided towards the target chamber which houses the flowing lithium system. The effect of the incident flux is examined using diagnostic tools including triple Langmuir probe, calorimeter, rogowski coils, Ion energy analyzers, and fast frame spectral image acquisition with specific optical filters. The plasma have been well characterized and a density of ~1021 m-3, with electron temperature ~10 - 20 eV is measured, and final plasma velocities of 34 - 74 kms-1 have been observed. Calorimetric measurements using planar molybdenum targets indicate a maximum plasma energy (with 6 kV plasma gun and 20 kV theta pinch) of 0.08 MJm-2 with plasma divergence effects resulting in marginal reduction of 40 +/- 23 J in plasma energy. Further results from the other diagnostic tools, using the flowing lithium targets and the planar targets coated with lithium will be presented. DOE DE-SC0008587.
On the Generation of Vorticity at a Free Surface
NASA Astrophysics Data System (ADS)
Lundgren, Thomas; Koumoutsakos, Petros
1997-11-01
An algorithm for the generation of vorticity at a viscous free surface is described. The scheme is a free surface analogue of Lighthill's strategy for determining the vorticity flux at solid boundaries. In this method the zero shear stress and pressure boundary conditions are transformed into a boundary integral formulation suitable for the velocity-vorticity description of the flow. Vorticity is generated at free surfaces when there is flow past regions of surface curvature. It is shown that vorticity is conserved in a vortex dynamics formulation of free surface viscous flows. Vorticity which flows from the fluid is gained by a vortex sheet along the surface; the integral of vorticity over the entire fluid region plus the integral of ``surface vorticity'' over the free surface remains constant. The implications of the present algorithm as a tool for numerical calculations are discussed.
Jaskula, B.W.
2011-01-01
In 2010, lithium consumption in the United States was estimated to have been about 1 kt (1,100 st) of contained lithium, a 23-percent decrease from 2009. The United States was estimated to be the fourth largest consumer of lithium. It remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2010, world lithium consumption was estimated to have been about 21 kt (22,000 st) of lithium contained in minerals and compounds, a 12-percent increase from 2009.
Jaskula, B.W.
2010-01-01
In 2009, lithium consumption in the United States was estimated to have been about 1.2 kt (1,300 st) of contained lithium, a 40-percent decrease from 2008. The United States was estimated to be the fourth largest consumer of lithium, and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. Only one company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic resources. In 2009, world lithium consumption was estimated to have been about 18.7 kt (20,600 st) of lithium contained in minerals and compounds.
Two-Dimensional Optical Measurement of Waves on Liquid Lithium Jet Simulating IFMIF Target Flow
Kazuhiro Itoh; Hiroyuki Koterazawa; Taro Itoh; Yutaka Kukita; Hiroo Kondo; Nobuo Yamaoka; Hiroshi Horiike; Mizuho Ida; Hideo Nakamura; Hiroo Nakamura; Takeo Muroga
2006-07-01
Waves on a liquid-lithium jet flow, simulating a proposed high-energy beam target design, have been measured using an optical technique based on specular reflection of a single laser beam on the jet surface. The stream-wise and spanwise fluctuations of the local free-surface slope were least-square fitted with a sinusoidal curve to makeup the signals lost due to the constriction in the optical arrangement. The waveform was estimated with an assumption that wave phase speed can be calculated using the dispersion relation for linear capillary-gravity waves. The direction of propagation on the jet surface was also evaluated so that the wave amplitudes, calculated by integral of slope angle signal, agree consistently in stream-wise and spanwise direction. These measurements and analyses show that the waves at the measurement location for a jet velocity of 1.2 m/s can best be represented by oblique waves with an inclination of 1.23 rad, a wavelength of 3.8 mm and a wave amplitude of about 0.05 mm. (authors)
Jaskula, B.W.
2012-01-01
In 2011, world lithium consumption was estimated to have been about 25 kt (25,000 st) of lithium contained in minerals and compounds, a 10-percent increase from 2010. U.S. consumption was estimated to have been about 2 kt (2,200 st) of contained lithium, a 100-percent increase from 2010. The United States was estimated to be the fourth-ranked consumer of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Chemetall Foote Corp. (a subsidiary of Chemetall GmbH of Germany), produced lithium compounds from domestic brine resources near Silver Peak, NV.
Ober, J.A.
2006-01-01
In 2005, lithium consumption in the United States was at 2.5 kt of contained lithium, nearly 32% more than the estimate for 2004. World consumption was 14.1 kt of lithium contained in minerals and compounds in 2003. Exports from the US increased slightly compared with 2004. Due to strong demand for lithium compounds in 2005, both lithium carbonate plants in Chile were operating at or near capacity.
On the generation of vorticity at a free surface
NASA Astrophysics Data System (ADS)
Lundgren, Thomas; Koumoutsakos, Petros
1999-03-01
The mechanism for the generation of vorticity at a viscous free surface is described. This is a free-surface analogue of Lighthill's strategy for determining the vorticity flux at solid boundaries. In this method the zero-shear-stress and pressure boundary conditions are transformed into a boundary integral formulation suitable for the velocity vorticity description of the flow. A vortex sheet along the free surface is determined by the pressure boundary condition, while the condition of zero shear stress determines the vorticity at the surface. In general, vorticity is generated at free surfaces whenever there is flow past regions of surface curvature. It is shown that vorticity is conserved in free-surface viscous flows. Vorticity which flows out of the fluid across the free surface is gained by the vortex sheet; the integral of vorticity over the entire fluid region plus the integral of ‘surface vorticity’ over the free surface remains constant. The implications of the present strategy as an algorithm for numerical calculations are discussed.
Vertical vorticity at a free surface
NASA Astrophysics Data System (ADS)
Fontana, Paul W.
2016-11-01
The concept of surface vorticity is developed as a necessary consequence of the discontinuity of flow at the fluid surface. The construct provides the proper boundary conditions for a vortex-dynamical description of surface waves. It is shown that the perturbed free surface in general possesses vertical vorticity, even when the underlying flow is irrotational and the fluid is ideal. This resolves a paradox pointed out by Umeki, who discovered irrotational surface waves with surface rotation in the horizontal plane. A dynamical equation for vertical vorticity at the free surface is derived and interpreted physically. The traditional idea that vortex lines terminate at fluid boundaries is shown to be unphysical and is amended to include surface vorticity. The extension of vertical surface vorticity into the bulk is connected with particular topological structures, such as plughole vortices, breaking waves, and Klein's Kaffeelöffel. This analysis generalizes boundary-layer vorticity theory to the free surface in the ideal limit. The analogy between surface vorticity on an ideal liquid and sheet currents at the surface of a superconductor is described. Work done as a Visiting Fellow at the Australian National University.
NASA Astrophysics Data System (ADS)
Ruzic, David
2004-11-01
The cost of a fusion power plant scales roughly as the volume of the torus. Scaling to a larger size typically allows almost any magnetic confinement concept to reach ignition, but also leads to a higher cost. The need for a larger size plasma results from the need to support a high core temperature while still preserving an edge temperature consistent with the requirements of the confinement scheme and the limitations of the wall material. Recent work has shown that a wall that has near-zero recycling will have very high edge plasma temperatures and can therefore support a high core temperature in a smaller volume.[1] The perceived difficulty with such concepts is that the only known low-Z, low-recycling surface is one composed of lithium, and lithium melts at 180C, has a very high vapor pressure at elevated temperatures, and is highly corrosive. The very fact that it is a low-recycling surface could be its downfall: what if it attracts so much tritium as to make the inventories untenable? In addition, a wall completely covered with lithium and a divertor protected by flowing lithium leaves no exit for the helium in a reactor concept. This talk will show results from the Flowing Illinois Lithium Retention Experiment[2] (FLIRE) which show that (1) the lithium adsorption of D (and by extension, T) is manageable, (2) the helium retention coefficient in flowing lithium may be high enough for He to be pumped, and (3) the corrosiveness of molten lithium is not beyond the technological capabilities of the fusion program. [1] L.E. Zakharov, N.N. Gorelenkov, R.B. White, S.I. Krasheninnikov, G.V. Pereverzev, Ignited spherical tokamaks and plasma regimes with Li walls, Fusion Engineering and Design, Sept. 2004. [2] J.P. Allain, M. Nieto, M.D. Coventry, R. Stubbers, D.N. Ruzic, "Studies of liquid-metal erosion and free surface flowing liquid-lithium retention of helium at the University of Illinois", Fusion Engineering and Design, Sept. 2004.
Active Free Surface Density Maps
NASA Astrophysics Data System (ADS)
Çelen, S.
2016-10-01
Percolation problems were occupied to many physical problems after their establishment in 1957 by Broadbent and Hammersley. They can be used to solve complex systems such as bone remodeling. Volume fraction method was adopted to set some algorithms in the literature. However, different rate of osteoporosis could be observed for different microstructures which have the same mass density, mechanical stimuli, hormonal stimuli and nutrition. Thus it was emphasized that the bone might have identical porosity with different specific surfaces. Active free surface density of bone refers the used total area for its effective free surface. The purpose of this manuscript is to consolidate a mathematical approach which can be called as “active free surface density maps” for different surface patterns and derive their formulations. Active free surface density ratios were calculated for different Archimedean lattice models according to Helmholtz free energy and they were compared with their site and bond percolation thresholds from the background studies to derive their potential probability for bone remodeling.
A thermo-electric-driven flowing liquid lithium limiter/divertor for magnetic confined fusion
NASA Astrophysics Data System (ADS)
Ruzic, D. N.; Xu, Wenyu; Curreli, Davide; Andruczyk, Daniel; Mui, Travis
2012-10-01
The concept of using a liquid metal, especially liquid lithium, as the plasma facing surface may provide the best path forward toward reactor designs. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactor. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can induce electric currents inside liquid lithium and an external magnetic field can drive liquid lithium to flow within metallic open trenches. IR camera and thermocouple measurements prove the strong heat transfer ability of this concept. A new flowing lithium system with active control of the temperature gradient inside the lithium trenches and back flow channels has been designed. TEMHD driven liquid lithium run steady state and pulsed for a few seconds of high heat flux (˜15MW/m^2) has been used to investigate the transient reaction of the flowing lithium. A similar tray is scheduled to be tested in HT-7, Hefei, China as a limiter in Sept. 2012. Related movies and analysis will be shown.
Ober, J.
1998-01-01
The lithium industry can be divided into two sectors: ore concentrate producers and chemical producers. Ore concentrate producers mine lithium minerals. They beneficiate the ores to produce material for use in ceramics and glass manufacturing.
Free surface dynamics of nematic liquid crystal
NASA Astrophysics Data System (ADS)
Cummings, Linda; Kondic, Lou; Lam, Michael; Lin, Te-Sheng
2014-11-01
Spreading thin films of nematic liquid crystal (NLC) are known to behave very differently to those of isotropic fluids. The polar interactions of the rod-like molecules with each other, and the interactions with the underlying substrate, can lead to intricate patterns and instabilities that are not yet fully understood. The physics of a system even as simple as a film of NLC spreading slowly over a surface (inclined or horizontal) are remarkably complex: the outcome depends strongly on the details of the NLC's behavior at both the substrate and the free surface (so-called ``anchoring'' effects). We will present a dynamic flow model that takes careful account of such nematic-substrate and nematic-free surface interactions. We will present model simulations for several different flow scenarios that indicate the variety of behavior that can emerge. Spreading over a horizontal substrate may exhibit a range of unstable behavior. Flow down an incline also exhibits intriguing instabilities: in addition to the usual transverse fingering, instabilities can be manifested behind the flowing front in a manner reminiscent of Newtonian flow down an inverted substrate. NSF DMS-1211713.
Transient shear flow of model lithium lubricating greases
NASA Astrophysics Data System (ADS)
Delgado, M. A.; Franco, J. M.; Valencia, C.; Kuhn, E.; Gallegos, C.
2009-03-01
This paper deals with the analysis of the transient shear flow behavior of lithium lubricating greases differing in soap concentration and base oil viscosity. The shear-induced evolution of grease microstructure has been studied by means of stress-growth experiments. With this aim, different lubricating grease formulations were manufactured by modifying the concentration of lithium 12-hydroxystearate and the viscosity of the base oil, according to a RSM statistical design. Moreover, atomic force microscopy (AFM) observations were carried out. The transient stress response can be successfully described by the generalized Leider-Bird model based on two exponential terms. Different rheological parameters, related to both the elastic response and the structural breakdown of greases, have been analysed. In this sense, it has been found that the elastic properties of lithium lubricating greases were highly influenced by soap concentration and oil viscosity. The stress overshoot, τ max , depends linearly on both variables in the whole shear rate range studied, although the effect of base oil viscosity on this parameter is opposite at low and high shear rates. Special attention has been given to the first part of the stress-growth curve. In this sense, it can be deduced that the “yielding” energy density not only depends on grease composition, but also on shear rate. Moreover, an interesting asymptotic tendency has been found for both the “yielding” energy density and the stress overshoot by increasing shear rate. The asymptotic values of these parameters have been correlated to the friction coefficient obtained in a ball-disc tribometer.
Heat transfer of TEMHD driven lithium flow in stainless steel trenches
NASA Astrophysics Data System (ADS)
Xu, W.; Curreli, D.; Andruczyk, D.; Mui, T.; Switts, R.; Ruzic, D. N.
2013-07-01
The Lithium/Metal Infused Trenches (LiMITs) concept, which utilizes the thermoelectric magnetohydrodynamic (TEMHD) driven flowing liquid lithium to cool the divertor surface, has been successfully demonstrated at the University of Illinois. The IR camera results show that such self-driven flowing liquid lithium in the open surface stainless steel trench structure can withstand heat fluxes of up to 10 MW/m2 for 10 s without significant evaporation. A clear asymmetric temperature distribution was observed from the IR result and such asymmetry can be affected by the direction of the driven magnetic field. Thermocouples are embedded in different positions to monitor the temperature within the lithium. These direct measurements also reveal that flowing liquid lithium can effectively bring the heat from the direct heating area and the efficiency can be influenced by magnetic field and heating power.
A compact self-flowing lithium system for use in an industrial neutron source
NASA Astrophysics Data System (ADS)
Kalathiparambil, Kishor Kumar; Szott, Matthew; Jurczyk, Brian; Ahn, Chisung; Ruzic, David
2016-10-01
A compact trench module to flow liquid lithium in closed loops for handling high heat and particle flux have been fabricated and tested at UIUC. The module was designed to demonstrate the proof of concept in utilizing liquid metals for two principal objectives: i) as self-healing low Z plasma facing components, which is expected to solve the issues facing the current high Z components and ii) using flowing lithium as an MeV-level neutron source. A continuously flowing lithium loop ensures a fresh lithium interface and also accommodate a higher concentration of D, enabling advanced D-Li reactions without using any radioactive tritium. Such a system is expected to have a base yield of 10e7 n/s. For both the applications, the key success factor of the module is attaining the necessary high flow velocity of the lithium especially over the impact area, which will be the disruptive plasma events in fusion reactors and the incident ion beam for the neutron beam source. This was achieved by the efficient shaping of the trenches to exploit the nozzle effect in liquid flow. The compactness of the module, which can also be scaled as desired, was fulfilled by the use of high Tc permanent magnets and air cooled channels attained the necessary temperature gradient for driving the lithium. The design considerations and parameters, experimental arrangements involving lithium filling and attaining flow, data and results obtained will be elaborated. DOE SBIR project DE-SC0013861.
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
NASA Astrophysics Data System (ADS)
Saye, Robert
2017-09-01
surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.
NASA Astrophysics Data System (ADS)
Le Lay, Hugo; Thomas, Zahra; Rouault, François; Pichelin, Pascal; Bour, Olivier; Moatar, Florentina
2017-04-01
Understanding and predicting stream thermal regimes is a key goal for aquatic ecosystems resiliency to climate change. Mapping thermal anomalies finely becomes feasible thanks to methods such as fiber-optic distributed temperature sensing (FO-DTS). Despite being the main thermal anomalies in stream, groundwater inflows are difficult to detect because of high water stages and turbulent stream flow. We hypothesized that thresholds in flow regime and hydraulic parameters may affect thermal regime characterization. Our main objective was to test and validate the use of FO-DTS for the quantification of inflows in order to determine the physical processes behind these thresholds. Experiments were carried out outdoor, using an open flow hydraulic channel. A warm water tank was used to simulate groundwater inflows with known discharge rates and temperatures. These discharge rates varied between 4 and 72% of the channel flow. Numerical experiments were also conducted to test the consistency of our experimental results and discriminate the effect of inflow rate and hydraulic parameters. The water temperature in the channel was monitored by Fiber-Optic Distributed Temperature Sensing with cables set on two lines, over three depths. The injected warm plume was tracked along the channel and across the water stage to estimate temperature increases it induced. A relationship was found between these thermal anomalies and flow dynamic, defining different types of flow configurations. For given channel flow rate and water stage, a threshold for the inflow rate was identified at which the injected plume is not detectable by our means. The effect of the channel flow velocity over the plume spreading appears clearly with a dominance of advection for high flow rate. In addition, outdoor experiments were affected by atmospheric conditions (air temperature, solar radiation, etc.) while simulations allowed refining results without external artefacts and showed a good fit with measurements
NASA Astrophysics Data System (ADS)
Juez, C.; Caviedes-Voullième, D.; Murillo, J.; García-Navarro, P.
2014-12-01
Dense granular flows are present in geophysics and in several industrial processes, which has lead to an increasing interest for the knowledge and understanding of the physics which govern their propagation. For this reason, a wide range of laboratory experiments on gravity-driven flows have been carried out during the last two decades. The present work is focused on geomorphological processes and, following previous work, a series of laboratory studies which constitute a further step in mimicking natural phenomena are described and simulated. Three situations are considered with some common properties: a two-dimensional configuration, variable slope of the topography and the presence of obstacles. The setup and measurement technique employed during the development of these experiments are deeply explained in the companion work. The first experiment is based on a single obstacle, the second one is performed against multiple obstacles and the third one studies the influence of a dike on which overtopping occurs. Due to the impact of the flow against the obstacles, fast moving shocks appear, and a variety of secondary waves emerge. In order to delve into the physics of these types of phenomena, a shock-capturing numerical scheme is used to simulate the cases. The suitability of the mathematical models employed in this work has been previously validated. Comparisons between computed and experimental data are presented for the three cases. The computed results show that the numerical tool is able to predict faithfully the overall behavior of this type of complex dense granular flow.
NASA Astrophysics Data System (ADS)
Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.
2016-12-01
Several environmental contaminants and remediation agents exhibit rheological complexity. Crude oil and displacing agents in EOR operations are rheologically nonlinear. These applications prompt the need for a theoretical analysis of non-Newtonian flow in natural porous and fractured media, considering gravity-driven and confined flows, different geometries and diverse boundary conditions. We present a review of the results obtained by our group concerning the modeling of power-law fluids, as this constitutive law is amenable to self-similar solutions which may act as benchmarks even for more complex rheology. First, closed form results were obtained for gravity currents advancing in plane or cylindrical geometry, deriving scalings for current length and thickness. Analogous results were obtained for confined flows in various geometries; here, scalings were obtained for pressure front and pressure field. Based on these benchmarks, the analytical models were refined introducing two additional factors: medium heterogeneity and topographic control. The inherent hetehrogeneity of natural media was modeled within a simplified framework considering continuous variations of spatial properties. Topographic control was introduced considering flows in porous channels of different shapes. Both factors proved relevant for the spreading of gravity currents as they influence the extent and shape of porous domain invaded by the contaminant, or reached by the remediation agent. Our theoretical results were validated against multiple sets of experiments, conducted with different combinations of spreading scenarios and types of heterogeneity or channelization. Two basic experimental setups were employed, adopting either reconstructed porous media made of glass beads, or Hele-Shaw analogues. To this end, existing Hele-Shaw analogies for porous flow of power-law fluids were extended to heterogeneous media. All scalings derived for the current front and thickness were confirmed by our
Stationary Flowing Liquid Lithium (SFLiLi) systems for tokamaks
NASA Astrophysics Data System (ADS)
Zakharov, Leonid; Gentile, Charles; Roquemore, Lane
2013-10-01
The present approach to magnetic fusion which relies on high recycling plasma-wall interaction has exhausted itself at the level of TFTR, JET, JT-60 devices with no realistic path to the burning plasma. Instead, magnetic fusion needs a return to its original idea of insulation of the plasma from the wall, which was the dominant approach in the 1970s and upon implementations has a clear path to the DEMO device with PDT ~= 100 MW and Qelectric > 1 . The SFLiLi systems of this talk is the technology tool for implementation of the guiding idea of magnetic fusion. It utilizes the unique properties of flowing LiLi to pump plasma particles and, thus, insulate plasma from the walls. The necessary flow rate, ~= 1 g3/s, is very small, thus, making the use of lithium practical and consistent with safety requirements. The talk describes how chemical activity of LiLi, which is the major technology challenge of using LiLi in tokamaks, is addressed by SFLiLi systems at the level of already performed (HT-7) experiment, and in ongoing implementations for a prototype of SFLiLi for tokamak divertors and the mid-plane limiter for EAST tokamak (to be tested in the next experimental campaign). This work is supported by US DoE contract No. DE-AC02-09-CH11466.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Free surface. 28.540 Section 28.540 Shipping COAST GUARD... Stability § 28.540 Free surface. (a) When doing the stability calculations required by this subpart, the... calculating the following— (1) For each type of consumable liquid, the maximum free surface effect of a tank...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Free surface. 28.540 Section 28.540 Shipping COAST GUARD... Stability § 28.540 Free surface. (a) When doing the stability calculations required by this subpart, the... calculating the following— (1) For each type of consumable liquid, the maximum free surface effect of a tank...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Free surface. 28.540 Section 28.540 Shipping COAST GUARD... Stability § 28.540 Free surface. (a) When doing the stability calculations required by this subpart, the... calculating the following— (1) For each type of consumable liquid, the maximum free surface effect of a tank...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Free surface. 28.540 Section 28.540 Shipping COAST GUARD... Stability § 28.540 Free surface. (a) When doing the stability calculations required by this subpart, the... calculating the following— (1) For each type of consumable liquid, the maximum free surface effect of a tank...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Free surface. 28.540 Section 28.540 Shipping COAST GUARD... Stability § 28.540 Free surface. (a) When doing the stability calculations required by this subpart, the... calculating the following— (1) For each type of consumable liquid, the maximum free surface effect of a tank...
Wei, Ze-Jun; Xie, Jian-Ping; Huang, Yu-Ming
2012-11-01
Many previous studies demonstrated that the performance of the subsurface constructed wetlands (SSCW) for wastewater treatment was superior to that of the free flow surface constructed wetlands (FFSCW). However, our results indicated that the performance of FFSCW derived from the evolution of SSCW due to clogging for COD, TOC, total nitrogen (TN), and total phosphor (TP) removal was higher than those of SSCW with the same substrate and plant. The laboratory culture experiments were adopted to evaluate the effect of the constructed wetland evolution on the organic matter mineralization, nitrification/denitrification as well as removal of nitrogen and phosphor. It was shown that, after evolution of SSCW into FFSCW, the mineralization rate for organic matter (as TOC) was 1.82 mg x h(-1), and it was 1.49 mg x h(-1) for SSCW. The removal efficiency for NO3(-) was 96.8%, and it was 58.1% for SSCW. The abiotic denitrification removal efficiency was 40%, and it was 28.2% for SSCW. In addition, the maximum equilibrium adsorption capacity of the substrate after evolution for phosphor (as P) was 160 mg x kg(-1), and it was 140 mg x kg(-1) for SSCW substrate. The organic coverage of the substrate was found to be beneficial to phosphor removal. The nitrification ability decreased after evolution. These results suggest the important effect of constructed wetland evolution on its performance.
A material flow of lithium batteries in Taiwan.
Chang, T C; You, S J; Yu, B S; Yao, K F
2009-04-30
Li batteries, including secondary and cylindrical/button primary Li batteries, are used worldwide in computers, communications and consumer electronics products. However, there are several dangerous issues that occur during the manufacture, shipping, and storage of Li batteries. This study analyzes the material flow of lithium batteries and their valuable heavy metals in Taiwan for the year 2006 by material flow analysis. According to data from the Taiwan Environmental Protection Administration, Taiwan External Trade Development Council, Bureau of Foreign Trade, Directorate General of Customs, and the Li batteries manufactures/importers/exporters. It was found that 2,952,696 kg of Li batteries was input into Taiwan for the year 2006, including 2,256,501 kg of imported Li batteries and 696,195 kg of stock Li batteries in 2005. In addition, 1,113,867 and 572,215 kg of Li batteries was domestically produced and sold abroad, revealing that 3,494,348 kg of different types of Li batteries was sold in Taiwan. Of these domestically sold batteries, 504,663 and 146,557 kg were treated domestically and abroad. Thus, a total of 2,843,128 kg of Li batteries was stored by individual/industry users or illegally disposed. In addition, it was also observed that 2,120,682 kg of heavy metals contained in Li batteries, including Ni, Co, Al, Cu and Ni, was accumulated in Taiwan, with a recycled value of 38.8 million USD. These results suggest that these heavy metals should be recovered by suitable collection, recycling and reuse procedures.
Grid Turbulence Interaction with a Free Surface
NASA Astrophysics Data System (ADS)
Huang, Haitao
1997-11-01
3-D Flow Diagnostics for Bubbly Two-Phase Flows DARIUS MODARES, DANA DABIRI, STEVE HAASE and KEN CAHDWICK, GALCIT - There is a need for a better understanding of bubble dynamics and in particular the complex phenomenon of bubble interactions with turbulent shear flows. Specifically, we are interested in further examination of the generation of bubbles through cavitation and/or free surface breakage near solid boundaries, their interactions with the rotating surfaces of ship propellers and bubble interaction with the turbulent wake of surface ships. A non-intrusive diagnostic instrumentation based on the Defocusing DPIV (DDPIV) technique suitable for both laboratory and field applications was developed in order to image and track bubbly two-phase flows in a 3-D volume. The defocusing technique uses a single camera. A three aperture pattern is used to obtain a triangular image pattern for each bubble. The position and the size of each triangle is directly related to the bubble size and its 3-D location within the volume of interrogation. We will discuss the details of the technique and quantify the spatial and temporal dynamic range and resolutions. Data related to the 3-D velocity fields of a two-phase vortical flow, bubble size distribution, bubble number density and void fractions will be presented. Sponsored by the Office of Naval Research (N00014-97-1-0303).
Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region
NASA Astrophysics Data System (ADS)
Furukawa, Masahiro; Kaji, Masao; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko
To improve the thermal performance of high temperature generator of absorption chiller/heater, heat transfer characteristics of flow boiling of lithium bromide aqueous solution in the subcooled region were experimentally investigated. Experiments were made for water and lithium bromide aqueous solution flowing in a rectangular channel (5 mm × 20 mm cross section) with one side wall heated. Boiling onset quality of lithium bromide aqueous solution is greater than that of water. The heat transfer coefficient of lithium bromide aqueous solution is about a half of that of water under the same experimental conditions of inlet velocity and heat flux. The experimental data of heat transfer coefficient for water are compared with the empirical correlation of Thom et al.11) and a fairly good agreement is obtained. The predictive calculations by the method of Sekoguchi et al.12) are compared with the data for water and lithium bromide aqueous solution. Agreement between them is good for water, while the results for lithium bromide aqueous solution are not satisfactory.
Numerical evaluation of gas core length in free surface vortices
NASA Astrophysics Data System (ADS)
Cristofano, L.; Nobili, M.; Caruso, G.
2014-11-01
The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.
Free Surface Influence on Low Head Hydro Power Generation
NASA Astrophysics Data System (ADS)
Pelz, Peter F.; Froehlich, Thibaud
2016-11-01
The free surface influence on the power extraction of turbines in open-channel flow is analyzed under use of continuity, momentum and energy equations. The approach differs of previous models by avoiding two drawbacks: the exceeding of the available power with the Betz definition and the inaccurate assumption of an undisturbed approaching flow. The result is an energetic optimization focusing on the energy dissipation due to wake and shock losses downstream of the turbine.
Solid/free-surface juncture boundary layer and wake
NASA Astrophysics Data System (ADS)
Longo, J.; Huang, H. P.; Stern, F.
The Reynolds-averaged flow for a solid/free-surface juncture boundary layer and wake is documented. The three mean-velocity components and five of the Reynolds stresses are measured for a surface-piercing flat plate in a towing tank using a laser-Doppler velocimeter system for both boundary-layer and wake planes in regions close to the free surface. The experimental method is described, including the foil-plate model, laser-Doppler velocimeter system, conditions, and uncertainty analysis. The underlying flow data is in excellent agreement with benchmark data. Inner (near the plate and wake centerplane and below the free surface) and outer (near the free surface) regions of high streamwise vorticity of opposite sign are observed, which transport, respectively, high mean velocity and low turbulence from the outer to the inner and low mean velocity and high turbulence from the inner to the outer portions of the boundary layer and wake. For the wake, the inner region of vorticity is relatively weak. The physical mechanism for the streamwise vorticity is analyzed with regard to the Reynolds-averaged streamwise vorticity equation. The anisotropy of the crossplane normal Reynolds stresses closely correlates with the vorticity and, additionally, indicates similarity, i.e., its nature is such that it only depends on the proximity to the plate and free surface boundaries or wake centerplane symmetry plane. Free-surface effects on the Reynolds stresses are analyzed with regard to the behavior close to the free surface of the turbulent kinetic energy and the normal components of the anisotropy tensor and the anisotropy invariants. Close to the free surface, the turbulent kinetic energy is nearly constant and increases for the inner and outer portions, respectively, of the boundary layer and wake and the normal components of the anisotropy tensor and the anisotropy invariants roughly correspond to the limiting values for two-component turbulence. The similarities and
Crawling beneath the free surface: Water snail locomotion
NASA Astrophysics Data System (ADS)
Lee, Sungyon; Bush, John W. M.; Hosoi, A. E.; Lauga, Eric
2008-08-01
Land snails move via adhesive locomotion. Through muscular contraction and expansion of their foot, they transmit waves of shear stress through a thin layer of mucus onto a solid substrate. Since a free surface cannot support shear stress, adhesive locomotion is not a viable propulsion mechanism for water snails that travel inverted beneath the free surface. Nevertheless, the motion of the freshwater snail, Sorbeoconcha physidae, is reminiscent of that of its terrestrial counterparts, being generated by the undulation of the snail foot that is separated from the free surface by a thin layer of mucus. Here, a lubrication model is used to describe the mucus flow in the limit of small-amplitude interfacial deformations. By assuming the shape of the snail foot to be a traveling sine wave and the mucus to be Newtonian, an evolution equation for the interface shape is obtained and the resulting propulsive force on the snail is calculated. This propulsive force is found to be nonzero for moderate values of the capillary number but vanishes in the limits of high and low capillary number. Physically, this force arises because the snail's foot deforms the free surface, thereby generating curvature pressures and lubrication flows inside the mucus layer that couple to the topography of the foot.
Chopra, O.K.; Hull, A.B.
1988-01-01
Chemical interactions involving nonmetallic elements play a dominant role in the corrosion behavior of ferrous and vanadium base alloys in lithium. Metallographic evaluations of the surface morphology and compositional changes of lithium-exposed ferrous and vanadium alloys are presented. Data on the corrosion behavior of several ferritic, austenitic, and vanadium-based structural materials in flowing lithium are reviewed and the effects of nonmetallic elements on corrosion are discussed. 11 refs., 3 figs., 3 tabs.
A free surface vortex method with weak viscous effects
NASA Technical Reports Server (NTRS)
Lundgren, T. S.
1989-01-01
The advantage of vortex methods for inviscid flows of several fluids separated by interfaces is that problems of this kind may be posed and solved numerically entirely on the interface surface. For free surface problems, where one of the fluids has negligible inertia, a small amount of viscosity produces a thin, weak rotational layer adjacent to the potential flow vortex sheet. Here, a method is described for including this weak viscous effect as a modification of the boundary conditions for the potential part of the flow, thus allowing this slightly viscous flow to be formulated as a vortex method on the free surface. This is important for unsupported free drops where the viscosity at the free surface is the only source of damping for oscillations, and for gas-filled bubbles, where it provides both drag and damping. Small applied shear stresses from aerodynamic, electrostatic, or other sources may be included provided they are of the same order as the potential flow shear stress or smaller.
A finite difference model for free surface gravity drainage
Couri, F.R.; Ramey, H.J. Jr.
1993-09-01
The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.
Glassy Dynamics Altered by a Free Surface
NASA Astrophysics Data System (ADS)
Tsui, Ophelia
Studies of polymer dynamics in thin films showed that a highly mobile region exists at the free surface of most if not all polymers. In this talk, I shall review some of these observations, with highlights given to the recent findings that chain flexibility and connectivity may on occasions be necessary for the free surface to exercise its influence. Afterward, I shall ponder on how the influence of the free surface may penetrate as far as several polymer radii of gyration into the inner region, as found both in experiments and simulations. Near the glass transition temperature, our MD simulations showed that the dynamics consist mainly of string-like particle hopping motions, as found by others. Importantly, as the temperature decreases, the hopping motions become increasingly repetitive and back-and-forth, contributing no structural relaxations. We propose that structural relaxations are then brought about by pair-interactions between strings. Near the free surface, however, similar repetitive hopping motions are only observed sufficiently far removed from the free surface. We propose that the free surface induces a penetrating surface mobile region by breaking the memory in the particle dynamics. A possible mechanism based on string interactions will be discussed. We are grateful to the support of NSF through Project DMR-1310536 and Hong Kong GRF Grant 15301014.
Reversible chemical delithiation/lithiation of LiFePO4: towards a redox flow lithium-ion battery.
Huang, Qizhao; Li, Hong; Grätzel, Michael; Wang, Qing
2013-02-14
Reversible chemical delithiation/lithiation of LiFePO(4) was successfully demonstrated using ferrocene derivatives, based on which a novel energy storage system--the redox flow lithium-ion battery (RFLB), was devised by integrating the operation flexibility of a redox flow battery and high energy density of a lithium-ion battery. Distinct from the recent semi-solid lithium rechargeable flow battery, the energy storage materials of RFLB stored in separate energy tanks remain stationary upon operation, giving us a fresh perspective on building large-scale energy storage systems with higher energy density and improved safety.
On blockage effects for a marine hydrokinetic turbine in free surface proximity
NASA Astrophysics Data System (ADS)
Banerjee, A.; Kolekar, N.
2016-12-01
Experimental investigation was carried out with a three-bladed, constant chord marine hydrokinetic turbine to understand the influence of free surface proximity on blockage effects and near wake flow field. The turbine was placed at various depths of immersion as rotational speeds and flow speeds were varied; thrust and torque data was acquired through a submerged thrust torque sensor positioned in-line with the turbine axis. Blockage effects were quantified in terms of changes in power coefficient and were found to be dependent on flow velocity, rotational speed and blade-tip clearence (from free-surface). Flow acceleration near turbine rotation plane was attributed to blockage offered by the rotor, wake, and free surface deformation; the resulting performance improvements were calculated based on the measured thrust values. In addition, stereoscopic particle imaging velocimetry was carried out in the near-wake region using time-averaged and phase-averaged techniques to understand the mechanism responsible for variation of torque (and power coefficient) with rotational speed and free-surface proximity. Flow vizualisation revealed slower wake propagation for higher rotational velocities and increased assymetry in the wake with increasing free surface proximity. Improved performance at high rotational speed was attributed to enhanced wake blockage; performance enhancements with free-surface proximity was attributed to additional blockage effects caused by free surface deformation.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
NASA Astrophysics Data System (ADS)
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Zakharov, L. E.; Xie, H.; Chen, Z. X.
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak
Ren, J.; Zuo, G. Z.; Hu, J. S.; Sun, Z.; Yang, Q. X.; Li, J. G.; Xie, H.; Chen, Z. X.; Zakharov, L. E.
2015-02-15
A program involving the extensive and systematic use of lithium (Li) as a “first,” or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak—both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
A flowing liquid lithium limiter for the Experimental Advanced Superconducting Tokamak.
Ren, J; Zuo, G Z; Hu, J S; Sun, Z; Yang, Q X; Li, J G; Zakharov, L E; Xie, H; Chen, Z X
2015-02-01
A program involving the extensive and systematic use of lithium (Li) as a "first," or plasma-facing, surface in Tokamak fusion research devices located at Institute of Plasma Physics, Chinese Academy of Sciences, was started in 2009. Many remarkable results have been obtained by the application of Li coatings in Experimental Advanced Superconducting Tokamak (EAST) and liquid Li limiters in the HT-7 Tokamak-both located at the institute. In furtherance of the lithium program, a flowing liquid lithium (FLiLi) limiter system has been designed and manufactured for EAST. The design of the FLiLi limiter is based on the concept of a thin flowing film which was previously tested in HT-7. Exploiting the capabilities of the existing material and plasma evaluation system on EAST, the limiter will be pre-wetted with Li and mechanically translated to the edge of EAST during plasma discharges. The limiter will employ a novel electro-magnetic pump which is designed to drive liquid Li flow from a collector at the bottom of limiter into a distributor at its top, and thus supply a continuously flowing liquid Li film to the wetted plasma-facing surface. This paper focuses on the major design elements of the FLiLi limiter. In addition, a simulation of incoming heat flux has shown that the distribution of heat flux on the limiter surface is acceptable for a future test of power extraction on EAST.
Effect of free surface shape on combined thermocapillary and natural convection
NASA Technical Reports Server (NTRS)
Kamotani, Yasuhiro; Platt, Jonathan
1992-01-01
Combined thermocapillary and natural convection in an open square cavity with differentially-heated side walls is studied numerically as well as experimentally. The test fluid is silicone oil with Prandtl number of 105. The shape of fluid-free surface is made either flat or curved to study its effect on the flow. A finite difference scheme to deal with a curved free surface is developed. The experimental results shown agree with the numerical results. With the curved-free surface, the flow and local heat transfer rate are reduced in the corner regions, and a sharp peak in heat transfer rate at the top edge of the cold wall disappears.
Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region
NASA Astrophysics Data System (ADS)
Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko
A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.
NASA Astrophysics Data System (ADS)
Hu, J. S.; Zuo, G. Z.; Ren, J.; Yang, Q. X.; Chen, Z. X.; Xu, H.; Zakharov, L. E.; Maingi, R.; Gentile, C.; Meng, X. C.; Sun, Z.; Xu, W.; Chen, Y.; Fan, D.; Yan, N.; Duan, Y. M.; Yang, Z. D.; Zhao, H. L.; Song, Y. T.; Zhang, X. D.; Wan, B. N.; Li, J. G.; EAST Team
2016-04-01
As an alternative choice of solid plasma facing components (PFCs), flowing liquid lithium can serve as a limiter or divertor PFC and offers a self-healing surface with acceptable heat removal and good impurity control. Such a system could improve plasma performance, and therefore be attractive for future fusion devices. Recently, a continuously flowing liquid lithium (FLiLi) limiter has been successfully designed and tested in the EAST superconducting tokamak. A circulating lithium layer with a thickness of <0.1 mm and a flow rate ~2 cm3 s-1 was achieved. A novel in-vessel electro-magnetic pump, working with the toroidal magnetic field of the EAST device, was reliable to control the lithium flow speed. The flowing liquid limiter was found to be fully compatible with various plasma scenarios, including high confinement mode plasmas heated by lower hybrid waves or by neutral beam injection. It was also found that the controllable lithium emission from the limiter was beneficial for the reduction of recycling and impurities, for the reduction of divertor heat flux, and in certain cases, for the improvement of plasma stored energy, which bodes well application for the use of flowing liquid lithium PFCs in future fusion devices.
Liquid jet leaping from a free surface
NASA Astrophysics Data System (ADS)
Zou, Jun; Lin, Fangye; Ji, Chen; Pan, Min
2017-07-01
We investigate the characteristics of a liquid jet ejected from an inclined tube, which is submerged immediately under a free surface. Jets are classified into three regimes: the curtain regime, transition regime, and column regime. In all regimes, the jet trajectories deviate from the standard projectile function. An important reason is that additive liquid is entrained from the bulk. The capillary force also contributes to the deviation in the curtain regime. Models are established to predict the horizontal distance that a jet travels above the free surface in the curtain regime and column regime.
Theoretical considerations on the free-surface role in the smoothed-particle-hydrodynamics model.
Colagrossi, Andrea; Antuono, Matteo; Le Touzé, David
2009-05-01
In the present work, an in-depth analysis of the theoretical structure of the smoothed-particle hydrodynamics (hereinafter SPH) is provided for an inviscid, weakly compressible, and barotropic flow in the presence of a free surface. The role of the free surface in the SPH scheme is indeed little addressed in literature. In the present analysis, the general continuous formulation of the SPH method is considered. A detailed description of the free-surface influence on the smoothed differential operators is supplied. New and existing forms are analyzed in detail, in terms of convergence and conservation properties. The proposed analysis is based on the principle of virtual works, which permits to exhibit the link with the enforcement of the dynamic free-surface boundary condition. Finally, possible SPH formulations resulting from this analysis are investigated, in terms of consistency, conservation, and dynamic free-surface boundary condition.
Jin, Yang; Zhou, Guangmin; Shi, Feifei; Zhuo, Denys; Zhao, Jie; Liu, Kai; Liu, Yayuan; Zu, Chenxi; Chen, Wei; Zhang, Rufan; Huang, Xuanyi; Cui, Yi
2017-09-06
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called "dead" sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahigh mass loading (0.125 g cm(-3), 2 g sulfur in a single cell), high volumetric energy density (135 Wh L(-1)), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.Lithium polysulfide batteries suffer from the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium. Here the authors show a reactivation strategy by a reaction with cheap sulfur powder under stirring and heating to recover the cell capacity.
Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack
NASA Astrophysics Data System (ADS)
Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao
2014-12-01
Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.
A carbon-free lithium-ion solid dispersion redox couple with low viscosity for redox flow batteries
NASA Astrophysics Data System (ADS)
Qi, Zhaoxiang; Koenig, Gary M.
2016-08-01
A new type of non-aqueous redox couple without carbon additives for flow batteries is proposed and the target anolyte chemistry is demonstrated. The so-called ;Solid Dispersion Redox Couple; incorporates solid electroactive materials dispersed in organic lithium-ion battery electrolyte as its flowing suspension. In this work, a unique and systematic characterization approach has been used to study the flow battery redox couple in half cell demonstrations relative to a lithium electrode. An electrolyte laden with Li4Ti5O12 (LTO) has been characterized in multiple specially designed lithium half cell configurations. The flow battery redox couple described in this report has relatively low viscosity, especially in comparison to other flow batteries with solid active materials. The lack of carbon additive allows characterization of the electrochemical properties of the electroactive material in flow without the complication of conductive additives and unambiguous observation of the electrorheological coupling in these dispersed particle systems.
Applicability of elliptic-relaxation method to free-surface turbulence
NASA Astrophysics Data System (ADS)
Yokojima, Satoshi; Shima, Nobuyuki
2010-06-01
The elliptic-relaxation method of Durbin (1993 J. Fluid Mech. 249 465-98), which has had remarkable success in predicting benchmark flows of many different types, is applied to prediction of free-surface turbulence for the first time. An appropriate free-surface boundary condition for the elliptic-relaxation equation is derived by taking account of the balance of dominant terms in the Reynolds-stress transport equation in the vicinity of a free surface. Test calculations for a fully developed turbulent open-channel flow are conducted. The flow consists of two kinds of impermeable boundaries, a solid wall and a free surface, and hence is quite suitable as a new benchmark flow. It is demonstrated that the proposed boundary condition does enable the elliptic-relaxation method to reproduce the correct surface-induced stress anisotropy and that the model properly describes the differences in features between wall-bounded flows and free-surface flows by its main quality in reproducing the non-local blocking effect, a kind of an elementary process of boundary-turbulence interaction. It is also found that the turbulent-transport term plays a central role in characterizing free-surface turbulence, which is therefore quite suitable for critical evaluation of the model performance.
Influence of free surface, unsteadiness and viscous effects on oar blade hydrodynamic loads.
Leroyer, Alban; Barré, Sophie; Kobus, Jean-Michel; Visonneau, Michel
2010-10-01
Flow around a rowing blade is a very complex phenomenon, involving unsteady three-dimensional flow with violent motion of the free surface. However, in the literature, forces acting on blades are modelled using extreme and dubious simplifications. The aim of the present study was to evaluate the influence of free surface and unsteadiness (two physical characteristics that are commonly neglected when modelling loads on blades) as well as viscous effects. In fact, quasi-static approaches are often used, with no influence of the free surface effects. To conduct this study, computational fluid dynamics is used, supported by experimental results performed with a dedicated device reproducing a simplified rowing stroke in the towing tank. Comparisons show that both free surface flow and unsteadiness must be considered to capture the whole physics of the phenomenon accurately. In contrast, the viscous effects have a very limited influence.
Can a dike "feel" a free surface?
NASA Astrophysics Data System (ADS)
Pansino, S.; Taisne, B.
2015-12-01
This study uses analogue experiments to examine the various factors that could influence the dynamic or arrest of a dike prior to an eruption. Dike propagation has been well-studied from the perspective of analogue experiments and it has been shown how various competing forces interact (buoyancy, viscosity, elastic properties, fracture toughness,…). It has been observed that dikes experience acceleration as they approach a free surface, which theoretically is due to increasing stress intensity as distance to the free surface decreases. Other unrelated studies analysed the constant-volume propagation of low-surface-energy liquids (e.g. hydrophilic liquids) in a semi-infinite medium and found the propagation rate to decelerate, as liquid gradually transferred from the head region to the tail and buoyancy abated. In contrast, high-surface-energy fluids transfer negligible quantities of their volume into the tail region, essentially maintain their volume, and experience no such deceleration. This study focuses on the aforementioned factors influencing dike propagation, acceleration due to a free surface and deceleration due to head volume loss, to determine what their combined effect is on magma eruptability. As previous studies used hydrophobic liquids to investigate free-surface effects, and as magma is expected to have a low surface energy with the crust (they are both silicate), hydrophilic liquids (e.g. glucose syrup) are used in this study. Each experiment is arranged to have a free surface condition occupying half of the apparatus, and a no-slip condition occupying the other half, which allows for side-by-side comparison. The results are analysed to determine the minimum volume needed for a dike to erupt; failure to erupt implies that the dike would instead come to arrest in the crust.
High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-01-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage. PMID:26702440
High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
Jia, Chuankun; Pan, Feng; Zhu, Yun Guang; Huang, Qizhao; Lu, Li; Wang, Qing
2015-11-01
Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approach to drastically enhancing the energy density of flow batteries. With LiFePO4 and TiO2 as the cathodic and anodic Li storage materials, respectively, the tank energy density of RFLB could reach ~500 watt-hours per liter (50% porosity), which is 10 times higher than that of a vanadium redox flow battery. The cell exhibits good electrochemical performance under a prolonged cycling test. Our prototype RFLB full cell paves the way toward the development of a new generation of flow batteries for large-scale energy storage.
Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries
Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.
2015-09-01
The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi_{0.4}Co_{0.2}Mn_{0.4}O_{2} [NMC]), lithium iron phosphate (LiFePO_{4} [LFP]), lithium cobalt oxide (LiCoO_{2} [LCO]), and an advanced lithium cathode (0.5Li_{2}MnO_{3}∙0.5LiNi_{0.44}Co_{0.25}Mn_{0.31}O_{2} [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.
Jin, Yang; Zhou, Guangmin; Shi, Feifei; ...
2017-09-06
Lithium polysulfide batteries possess several favorable attributes including low cost and high energy density for grid energy storage. However, the precipitation of insoluble and irreversible sulfide species on the surface of carbon and lithium (called “dead” sulfide species) leads to continuous capacity degradation in high mass loading cells, which represents a great challenge. To address this problem, herein we propose a strategy to reactivate dead sulfide species by reacting them with sulfur powder with stirring and heating (70 °C) to recover the cell capacity, and further demonstrate a flow battery system based on the reactivation approach. As a result, ultrahighmore » mass loading (0.125 g cm–3, 2g sulfur in a single cell), high volumetric energy density (135 Wh L–1), good cycle life, and high single-cell capacity are achieved. The high volumetric energy density indicates its promising application for future grid energy storage.« less
A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments
Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.
2008-08-27
We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.
NASA Astrophysics Data System (ADS)
Longo, Sandro
2011-01-01
This paper is a companion paper to a study devoted to the analysis of experimental instantaneous fluid levels and three-component fluid velocity measurements in a stationary flow field generated by a Crump weir in a laboratory flume, using an ultrasonic distance sensor and a three-probe arrangement of an ultrasonic Doppler velocity profiler (UVP) (Longo in Exp Fluids, doi: 10.1007/s00348-010-0881-5, 2010). Whereas Longo (Exp Fluids, doi: 10.1007/s00348-010-0881-5, 2010) deals with a general overview of the problem, the description of the experiments and the analysis of the free surface statistics and relevant scales, the present manuscript is devoted to a detailed analysis of the turbulence and the correlation with the free surface. The data are elaborated by obtaining the macroturbulence Reynolds tensor, using conditional averages based on free surface-fluctuation statistics. We also compute the two-point correlations of fluid velocity, the micro-scale and the integral scale, the correlation between free surface and the turbulence beneath. A free surface-boundary layer was detected having a thickness proportional to the root mean square of the free surface-height series and with a velocity scale that correlates well with the free surface-elevation time gradient. Most of the relevant state variables, such as the mean velocity and Reynolds stress components, collapse to a single curve if scaled appropriately. There are many indicators that a specific regime occurs that has an optimal tuning between the free surface and turbulence. In this regime, the length scales are considered as an indicator.
Free-surface turbulent wake of a surface-piercing slender body at various Froude numbers
NASA Astrophysics Data System (ADS)
Seo, Jeonghwa; Samad, Abdus; Rhee, Shin Hyung
2016-11-01
Free-surface effects on the near-wake around a surface-piercing slender body were investigated through flow field and wave elevation measurements. The near-wake flow field was measured by a towed underwater stereoscopic particle image velocimetry (SPIV) system. The measured flow field was analyzed to obtain coherent turbulence structures by using the Reynolds and proper orthogonal decomposition methods. Three different Froude numbers (Fr) - 0.126, 0.282, and 0.400 - were selected to represent mild, intermediate, and violent free-surface motions. At Fr = 0.126, the wave was hardly visible, although the turbulence strength and isotropy increased near the free-surface. At Fr = 0.282, though it was steady and smooth, wave-induced separation was clearly observed near the juncture of the free-surface and model trailing edge. At Fr = 0.400, wave breaking and the resulting bubbly free-surface were developed with an expanded wave-induced separation region. The wave-induced separation stimulated momentum transfer and turbulence dissipation, resulting in a significant change in the frequency of dominant free-surface motion in the downstream. This research was supported by the IT R&D program of MOTIE/KEIT (Grant No. 100660329) and the National Research Foundation of Korea, Grant funded by the Korean government (Grant No. 2013R1A1A2012597).
Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries
Dunn, Jennifer B.; James, Christine; Gaines, Linda G.; Gallagher, Kevin
2014-09-30
The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi_{0.4}Co_{0.2}Mn_{0.4}O_{2} [NMC]), lithium iron phosphate (LiFePO_{4} [LFP]), lithium cobalt oxide (LiCoO_{2} [LCO]), and an advanced lithium cathode (0.5Li_{2}MnO_{3}∙0.5LiNi_{0.44}Co_{0.25}Mn_{0.31}O_{2} [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.
Free surface deformation and heat transfer by thermocapillary convection
NASA Astrophysics Data System (ADS)
Fuhrmann, Eckart; Dreyer, Michael; Basting, Steffen; Bänsch, Eberhard
2016-04-01
Knowing the location of the free liquid/gas surface and the heat transfer from the wall towards the fluid is of paramount importance in the design and the optimization of cryogenic upper stage tanks for launchers with ballistic phases, where residual accelerations are smaller by up to four orders of magnitude compared to the gravity acceleration on earth. This changes the driving forces drastically: free surfaces become capillary dominated and natural or free convection is replaced by thermocapillary convection if a non-condensable gas is present. In this paper we report on a sounding rocket experiment that provided data of a liquid free surface with a nonisothermal boundary condition, i.e. a preheated test cell was filled with a cold but storable liquid in low gravity. The corresponding thermocapillary convection (driven by the temperature dependence of the surface tension) created a velocity field directed away from the hot wall towards the colder liquid and then in turn back at the bottom towards the wall. A deformation of the free surface resulting in an apparent contact angle rather different from the microscopic one could be observed. The thermocapillary flow convected the heat from the wall to the liquid and increased the heat transfer compared to pure conduction significantly. The paper presents results of the apparent contact angle as a function of the dimensionless numbers (Weber-Marangoni and Reynolds-Marangoni number) as well as heat transfer data in the form of a Nusselt number. Experimental results are complemented by corresponding numerical simulations with the commercial software Flow3D and the inhouse code Navier.
Statistical analysis of coherent vortices near a free surface in a fully developed turbulence
NASA Astrophysics Data System (ADS)
Nagaosa, Ryuichi; Handler, Robert A.
2003-02-01
The dynamics of coherent vortices, their interactions with an unsheared gas-liquid interface, i.e., free surface, and their contribution to turbulent heat transfer has been investigated in a fully developed turbulence using the results from a direct numerical simulation. Fully resolved free surface turbulence simulations were performed at Reynolds numbers of 150 and 300 based on the wall shear velocity and water depth. Passive heat transfer at a Prandtl number of 1 is enforced by imposing a constant temperature difference between the bottom no-slip boundary and free surface. Instantaneous turbulent flow realizations are stored and used to establish a database from which the statistical properties of the flow can be established. The three-dimensional two-point correlations between the total heat flux at the free surface and the subsurface hydrodynamics are evaluated to determine the spatial extent of the coherent vortices which contribute to the enhancement of heat transport at the free surface. A conditional averaging technique is also used to explore the structure of the typical coherent vortices which promote heat transfer at the interface. The two-point correlation technique reveals ring-like coherent vortices in the subsurface region, which are comprised of a vortex pair and spanwise vortices. The conditional averaging strategy is also applied to an intense ejection (second quadrant) event to examine dynamics of coherent vortices and their development. The results of the statistical analysis near the second quadrant event reveals a hairpin-like vortex, known as a bursting eddy, which is generated in the near-wall region and advects toward the free surface. The eddy then changes its shape to a ring-like structure as it approaches very near to the free surface. Backward tracking of the ring-like vortex shows that its origin is clearly a near-wall hairpin-like bursting vortex associated with the ejection of low-speed fluid in the direction normal to the wall. The
Development of liquid-lithium film jet-flow for the target of (7)Li(p,n)(7)Be reactions for BNCT.
Kobayashi, Tooru; Miura, Kuniaki; Hayashizaki, Noriyosu; Aritomi, Masanori
2014-06-01
A feasibility study on liquid lithium target in the form of a flowing film was performed to evaluate its potential use as a neutron generation target of (7)Li(p,n)(7)Be reaction in BNCT. The target is a windowless-type flowing film on a concave wall. Its configuration was adapted for a proton beam which is 30mm in diameter and with energy and current of up to 3MeV and 20mA, respectively. The flowing film of liquid lithium was 0.6mm in thickness, 50mm in width and 50mm in length. The shapes of the nozzle and concave back wall, which create a stable flowing film jet, were decided based on water experiments. A lithium hydrodynamic experiment was performed to observe the stability of liquid lithium flow behavior. The flowing film of liquid lithium was found to be feasible at temperatures below the liquid lithium boiling saturation of 342°C at the surface pressure of 1×10(-3)Pa. Using a proto-type liquid lithium-circulating loop for BNCT, the stability of the film flow was confirmed for velocities up to 30m/s at 220°C and 250°C in vacuum at a pressure lower than 10(-3) Pa. It is expected that for practical use, a flowing liquid lithium target of a windowless type can solve the problem of radiation damage and target cooling.
Numerical simulation of floating bodies in extreme free surface waves
NASA Astrophysics Data System (ADS)
Hu, Z. Z.; Causon, D. M.; Mingham, C. G.; Qian, L.
2011-02-01
In this paper, we use the in-house Computational Fluid Dynamics (CFD) flow code AMAZON-SC as a numerical wave tank (NWT) to study wave loading on a wave energy converter (WEC) device in heave motion. This is a surface-capturing method for two fluid flows that treats the free surface as contact surface in the density field that is captured automatically without special provision. A time-accurate artificial compressibility method and high resolution Godunov-type scheme are employed in both fluid regions (air/water). The Cartesian cut cell method can provide a boundary-fitted mesh for a complex geometry with no requirement to re-mesh globally or even locally for moving geometry, requiring only changes to cut cell data at the body contour. Extreme wave boundary conditions are prescribed in an empty NWT and compared with physical experiments prior to calculations of extreme waves acting on a floating Bobber-type device. The validation work also includes the wave force on a fixed cylinder compared with theoretical and experimental data under regular waves. Results include free surface elevations, vertical displacement of the float, induced vertical velocity and heave force for a typical Bobber geometry with a hemispherical base under extreme wave conditions.
Magnetic propulsion of intense lithium streams in a tokamak magnetic field.
Zakharov, Leonid E
2003-01-31
This paper describes the effect and gives the theory of magnetic propulsion which allows driving free surface plasma facing liquid lithium streams in tokamaks. In the approximation of a thin flowing layer the MHD equations are reduced to one integrodifferential equation which takes into account the propulsion effect, viscosity, and the drag force due to magnetic pumping and other interactions with the magnetic field. A stability criterion is obtained for stabilization of the "sausage" instability of the streams by centrifugal force.
Pan, Huilin; Wei, Xiaoliang; Henderson, Wesley A.; Shao, Yuyan; Chen, Junzheng; Bhattacharya, Priyanka; Xiao, Jie; Liu, Jun
2015-04-27
Lithium sulfur (Li-S) redox flow battery (RFB) is a promising candidate for high energy large-scale energy storage application due to good solubility of long-chain polysulfide species and low cost of sulfur. In this report, recent progress and new concepts for Li-S redox flow batteries are discussed with an emphasis on the fundamental understanding and control of lithium polysulfide chemistry to enable the development of liquid phase Li-S redox flow prototype cells. These differ significantly from conventional static Li-S batteries targeting for vehicle electrification. A high solubility of the different lithium polysulfides generated at different depths of discharge and states of charge is required for a flow battery in order to take full advantage of the multiple electron transitions between elemental sulfur and Li2S. A new DMSO-based electrolyte is proposed for Li-S redox flow batteries, which not only enables the high solubility of lithium polysulfide species, especially for the short-chain species, but also results in excellent cycling with a high Coulombic efficiency. The challenges and opportunities for the Li-S redox flow concept have also been discussed in depth.
Numerical simulation of sloshing with large deforming free surface by MPS-LES method
NASA Astrophysics Data System (ADS)
Pan, Xu-jie; Zhang, Huai-xin; Sun, Xue-yao
2012-12-01
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture
Characteristics of a horizontal square jet interacting with the free surface
NASA Astrophysics Data System (ADS)
Tay, Godwin F. K.; Rahman, Mohammad S.; Tachie, Mark F.
2017-06-01
The characteristics of a horizontal submerged square jet interacting with the free surface are investigated experimentally. A particle image velocimetry system is used to measure the mean flow and turbulent characteristics in the vertical symmetry plane of the jet at a Reynolds number of approximately 5500. It is shown that the effect of the free surface is to cancel the turbulent-nonturbulent interface and reduce the mean spanwise vorticity, Reynolds shear stress, and jet spreading rate in the upper shear layer in comparison to those measured in the lower shear layer. The results indicate that lowering of the jet offset height ratio increases the confinement effect of the free surface. Stronger confinement reduces the maximum mean streamwise velocity decay rate and mean surface velocity defect in the interaction region. The results also indicate a dramatic reduction in surface-normal turbulence intensity in the interaction region due to the damping effect of the free surface on the surface-normal velocity fluctuations. The decay of the surface-normal turbulence intensity near the free surface produces commensurate reductions in the surface-normal velocity fluctuation autocorrelation in the upper shear layer while enhancing the streamwise velocity fluctuation autocorrelation. The damping effect of the free surface on the surface-normal velocity fluctuations is found to be connected to the redistribution of the turbulent kinetic energy from the surface-normal velocity fluctuations to the streamwise velocity fluctuations.
NASA Astrophysics Data System (ADS)
Zhou, Xiaoming; Huai, Xiulan
2017-06-01
Steady thermo-solutocapillary convection in a rectangular cavity with deformable free surface under microgravity condition is numerically studied, where level set method is employed to capture the free surface deformation. Both the temperature and solute concentration gradients are applied horizontally. The computational results show that, as the thermal to solutal Marangoni number ratio varies between -10 and -1 (namely, -10 ≤ Rσ < -1), the flow field exists one anti-clockwise rotating convective cell driven by thermocapillary convection, and the free surface bulges out near the left end wall and bulges in near the right end wall. As -1 < Rσ < 0, the flow field exists one clockwise rotating convective cell driven by solutocapillary convection, and the free surface bulges out near the right end wall and bulges in near the left end wall. As Rσ = -1, the flow field consists of one clockwise and one anti-clockwise rotating convective cells, and the free surface bulges in at the central point and bulges out near the left and right end walls.
Flow Analyses of Liquid Metal First Wall
NASA Astrophysics Data System (ADS)
Hu, Gang; Huang, Jinhua
2003-06-01
Liquid metal first wall is attractive in fusion reactor designs because of its high heat removal and self-refreshment capabilities. In liquid wall study, method of forming stable liquid flows on the front surface of blanket has to be found. In order to do this, free surface magneto-hydrodynamic (MHD) effects and flow velocity distributions of liquid metal under gravity have been studied. In our study, liquid metal flows down along ducts half-opened to face the plasma. Net electromagnetic force forms from induced eddy current interacting with the confinement magnetic field (12T) in the liquid metal flow. For liquid metal lithium (about 4cm thick), distributions of velocity along the flow direction have been obtained by combined calculations of free surface flow and electromagnetic analysis. The results show that MHD baffle might be used to get stable in front of the blanket.
Free Surface and Flapping Foil Interactions
NASA Astrophysics Data System (ADS)
Ananthakrishnan, Palaniswamy
2014-11-01
Flapping foils for station-keeping of a near-surface body in a current is analyzed using a finite-difference method based on boundary-fitted coordinates. The foils are hinge-connected to the aft of the body and subject to pitch oscillation. Results are obtained for a range of Strouhal number, Froude number, unsteady frequency parameter τ, Reynolds number and the depth of foil submergence. Results show that at low Strouhal number (St < 0 . 1) and sub-critical unsteady parameter τ < 0 . 25 , the flapping generates drag instead of thrust. At high Strouhal number and super-critical value of the unsteady parameter (τ > 0 . 25) flapping generates high thrust with low efficiency. Thrust and efficiency are found to decrease with decreasing submergence depth of the foil. At the critical τ = 0 . 25 and shallow submergence of the foil, the standing wave generated above the foil continues to grow until breaking; both the thrust and efficiency of the foil are reduced at the critical τ. The necessary conditions for optimal thrust generation by a flapping foil underneath the free surface are found to be (i) Strouhal number in the range from 0.25 to 0.35, (ii) unsteady parameter τ > 0 . 25 and (iii) the maximum angle of attack less than 15° for the flat-plate foil. Supported by the US Office of Naval Research through the Naval Engineering Education Center (NEEC) Consortium of the University of Michigan, Ann Arbor.
Yu, Mingzhe; McCulloch, William D; Beauchamp, Damian R; Huang, Zhongjie; Ren, Xiaodi; Wu, Yiying
2015-07-08
Integrating both photoelectric-conversion and energy-storage functions into one device allows for the more efficient solar energy usage. Here we demonstrate the concept of an aqueous lithium-iodine (Li-I) solar flow battery (SFB) by incorporation of a built-in dye-sensitized TiO2 photoelectrode in a Li-I redox flow battery via linkage of an I3(-)/I(-) based catholyte, for the simultaneous conversion and storage of solar energy. During the photoassisted charging process, I(-) ions are photoelectrochemically oxidized to I3(-), harvesting solar energy and storing it as chemical energy. The Li-I SFB can be charged at a voltage of 2.90 V under 1 sun AM 1.5 illumination, which is lower than its discharging voltage of 3.30 V. The charging voltage reduction translates to energy savings of close to 20% compared to conventional Li-I batteries. This concept also serves as a guiding design that can be extended to other metal-redox flow battery systems.
46 CFR 42.20-10 - Free surface.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Free surface. 42.20-10 Section 42.20-10 Shipping COAST... Freeboards § 42.20-10 Free surface. When doing the calculations required in §§ 42.20-6(a), 42.20-7(a) and 42.20-8(a), the effect of free surface of the following liquids must be included: (a) For each type of...
46 CFR 42.20-10 - Free surface.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Free surface. 42.20-10 Section 42.20-10 Shipping COAST... Freeboards § 42.20-10 Free surface. When doing the calculations required in §§ 42.20-6(a), 42.20-7(a) and 42.20-8(a), the effect of free surface of the following liquids must be included: (a) For each type of...
46 CFR 42.20-10 - Free surface.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Free surface. 42.20-10 Section 42.20-10 Shipping COAST... Freeboards § 42.20-10 Free surface. When doing the calculations required in §§ 42.20-6(a), 42.20-7(a) and 42.20-8(a), the effect of free surface of the following liquids must be included: (a) For each type of...
46 CFR 42.20-10 - Free surface.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Free surface. 42.20-10 Section 42.20-10 Shipping COAST... Freeboards § 42.20-10 Free surface. When doing the calculations required in §§ 42.20-6(a), 42.20-7(a) and 42.20-8(a), the effect of free surface of the following liquids must be included: (a) For each type of...
46 CFR 42.20-10 - Free surface.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Free surface. 42.20-10 Section 42.20-10 Shipping COAST... Freeboards § 42.20-10 Free surface. When doing the calculations required in §§ 42.20-6(a), 42.20-7(a) and 42.20-8(a), the effect of free surface of the following liquids must be included: (a) For each type of...
Self-induced oscillation of free surface coupled with the axisymmetric jet and structure
Someya, Satoshi; Okamoto, Koji; Madarame, Haruki
1996-08-01
New self-induced free-surface oscillations were discovered, which were caused by the interaction between a jet, a free surface and a structure. A submerged upward round jet was injected into a cylindrical tank from an inlet nozzle at the bottom center. The jet impinged on a cylindrical rod (UIS) which was set just beneath the free surface of the tank. Then, the jet turned its direction along UIS and reached the free surface making a swell around UIS. Under a certain condition of jet velocity and UIS depth, several kinds of self-induced free surface oscillation were observed, which were roughly classified into two modes with their surface shapes. One had no diametric node and two nodal circles, (0,2), and the other had one node in each direction, (1,1). The (0,2) mode oscillation was divided into two types with their flow pattern. In the (0,2) mode with outward surface velocity, (0,2){sub OUT}, its oscillating frequency decreased with increasing jet velocity. The swell of the free surface characterized (0,2){sub OUT} mode oscillation which was different from the theoretical (0,2) mode sloshing. In the (0,2) mode with inward surface velocity, (0,2){sub IN}, its frequency was independent of jet velocity. Its growth mechanism was thought to be similar to that of self-induced sloshing in the previous study. The (1,1) mode oscillation was also divided into two types with the appearance of the swell around UIS. The (1,1) mode with swelling of the free surface, (1,1){sub {alpha}}, was found to be the same as Jet-Flutter in a cylindrical tank without UIS. This is important to evaluate performance of LMFBR.
NASA Astrophysics Data System (ADS)
Lind, S. J.; Stansby, P. K.
2016-12-01
The incompressible Smoothed Particle Hydrodynamics (ISPH) method is derived in Eulerian form with high-order smoothing kernels to provide increased accuracy for a range of steady and transient internal flows. Periodic transient flows, in particular, demonstrate high-order convergence and accuracies approaching, for example, spectral mesh-based methods. The improved accuracies are achieved through new high-order Gaussian kernels applied over regular particle distributions with time stepping formally up to 2nd order for transient flows. The Eulerian approach can be easily extended to model free surface flows by merging from Eulerian to Lagrangian regions in an Arbitrary-Lagrangian-Eulerian (ALE) fashion, and a demonstration with periodic wave propagation is presented. In the long term, it is envisaged that the method will greatly increase the accuracy and efficiency of SPH methods, while retaining the flexibility of SPH in modelling free surface and multiphase flows.
Free surface effects on the statistical properties of a submerged rectangular jet
NASA Astrophysics Data System (ADS)
Tay, Godwin F. K.; Mishra, Anuvrat; Kuhn, David C. S.; Tachie, Mark F.
2017-02-01
The results of an experimental investigation of turbulent rectangular jets offset from a free surface are presented. Two rectangular jets of aspect ratio 2 and 4 were examined and the results were compared to a square jet at the same offset height ratio of h/De ≈ 2.7, where De is the circle-equivalent diameter of the nozzle. A particle image velocimetry (PIV) was used to measure the mean flow and turbulent characteristics at a Reynolds number of 7900 and a Froude number of 1.29. The results indicate significant enhancements in the jet spreading rate and mean streamwise velocity decay rate for the larger aspect ratio nozzles. The results reveal that the jet-free surface interaction had a greater impact on the mean surface-normal velocity than the mean streamwise velocity. The values of the turbulence intensities, Reynolds shear stress and structure parameter were found to be nearly independent of the nozzle aspect ratio. Surface mean velocity and turbulence intensities were also measured to characterize the influence of the shear layer on the free surface. The results indicate a damping of the surface-normal turbulence intensities compared to the streamwise turbulence intensity. The influence of the free surface was felt as an enhancement in streamwise fluctuating velocity two-point correlation and a suppression of the surface-normal fluctuating velocity two-point correlation. The free surface also increased the structure inclination angle in the upper shear layer compared to that in the lower shear layer.
Study on the interactions between two identical oscillation bubbles and a free surface in a tank
NASA Astrophysics Data System (ADS)
Liu, N. N.; Cui, P.; Ren, S. F.; Zhang, A. M.
2017-05-01
A boundary element method based on the incompressible potential flow theory is adopted to investigate the interaction between two identical oscillating bubbles and a free surface in a tank. An axisymmetric numerical model is established, and certain numerical techniques are proposed to address coefficient matrix singularity and fluid-structure intersection. Experiments with spark-generated bubbles in a cylindrical tank recorded by a high-speed camera are conducted, and the numerical results are validated. On this basis, a typical case of bubbles interacting with a free surface in a tank with relatively small inter-bubble and bubble-free surface distances is carefully studied. A crown-shaped water column at the free surface is observed both numerically and experimentally. The maximum volume of the lower bubble is found to be much larger than that of the upper one. The effects of the inter-bubble and bubble-wall distances on bubble dynamics and free surface motion are analyzed. The results can provide a useful reference for underwater explosion experiments in the confined fluid field.
A numerical procedure for transient free surface seepage through fracture networks
NASA Astrophysics Data System (ADS)
Jiang, Qinghui; Ye, Zuyang; Zhou, Chuangbing
2014-11-01
A parabolic variational inequality (PVI) formulation is presented for the transient free surface seepage problem defined for a whole fracture network. Because the seepage faces are specified as Signorini-type conditions, the PVI formulation can effectively eliminate the singularity of spillpoints that evolve with time. By introducing a continuous penalty function to replace the original Heaviside function, a finite element procedure based on the PVI formulation is developed to predict the transient free surface response in the fracture network. The effects of the penalty parameter on the solution precision are analyzed. A relative error formula for evaluating the flow losses at steady state caused by the penalty parameter is obtained. To validate the proposed method, three typical examples are solved. The solutions for the first example are compared with the experimental results. The results from the last two examples further demonstrate that the orientation, extent and density of fractures significantly affect the free surface seepage behavior in the fracture network.
NASA Astrophysics Data System (ADS)
Xu, Wenyu; Christenson, Michael; Fiflis, Peter; Curreli, Davide; Andruczyk, Daniel; Ruzic, David
2013-10-01
The application of liquid metal, especially liquid lithium has become an important topic for plasma facing component (PFC) design. A liquid PFC can effectively eliminate the erosion and thermal stress problems compared to the solid PFC while transferring heat and prolong the lifetime limit of the PFCs. A liquid lithium surface can also suppress the hydrogen isotopes recycling and getter the impurities in fusion reactors. The Lithium/metal infused trench (LiMIT) concept successfully proved that the thermoelectric effect can be utilized to drive liquid lithium flow within horizontally placed metallic open trenches in transverse magnetic field. A limiter based on this concept was tested in HT-7 and gave out positive results. However a broader application of this concept may require the trench be tilted or even placed vertically, for which strong capillary force caused by narrow trenches may be the solution. A new LiMIT design with very narrow trenches have been manufactured and tested in University of Illinois and related results will be presented. Based on this idea new limiters are designed for EAST and LTX and scheduled experiments on both devices will be discussed. This project is supported by DOE/ALPS contract: DEFG02- 99ER54515.
Numerical Simulation of Floating Bodies in Extreme Free Surface Waves
NASA Astrophysics Data System (ADS)
Hu, Zheng Zheng; Causon, Derek; Mingham, Clive; Qiang, Ling
2010-05-01
and efficient. Firstly, extreme design wave conditions are generated in an empty NWT and compared with physical experiments as a precursor to calculations to investigate the survivability of the Bobber device operating in a challenging wave climate. Secondly, we consider a bench-mark test case involving in a first order regular wave maker acting on a fixed cylinder and Pelamis. Finally, a floating Bobber has been simulated under extreme wave conditions. These results will be reported at the meeting. Causon D.M., Ingram D.M., Mingham C.G., Yang G. Pearson R.V. (2000). Calculation of shallow water flows using a Cartesian cut cell approach. Advances in Water resources, 23: 545-562. Causon D.M., Ingram D.M., Mingham C.G. (2000). A Cartesian cut cell method for shallow water flows with moving boundaries. Advances in Water resources, 24: 899-911. Dalzell J.F. 1999 A note on finite depth second-order wave-wave interactions. Appl. Ocean Res. 21, 105-111. Ning D.Z., Zang J., Liu S.X. Eatock Taylor R. Teng B. & Taylor P.H. 2009 Free surface and wave kinematics for nonlinear focused wave groups. J. Ocean Engineering. Accepted. Hu Z.Z., Causon D.M., Mingham C.M. and Qian L.(2009). Numerical wave tank study of a wave energy converter in heave. Proceedlings 19th ISOPE conference, Osaka, Japan Qian L., Causon D.M. & Mingham C.G., Ingram D.M. 2006 A free-surface capturing method for two fluid flows with moving bodies. Proc. Roy. Soc. London, Vol. A 462 21-42.
Silva, Cássia Maria L da; Almeida, Vanessa G K; Cassella, Ricardo J
2007-10-15
In this work, a flow injection system with spectrophotometric detection was developed for the determination of lithium in pharmaceutical formulations used in the treatment of bipolar disorder. Reaction between Quinizarine (1,4-dihydroxyanthraquinone) and Li(I) ion in alkaline medium containing dimethylsulfoxide (DMSO) was explored for this purpose. The flow system was optimized regarding to its chemical (DMSO, Quinizarine and NaOH concentrations and sample pH) and physical parameters (sample loop volume, carrier flow rate and reactor length) in order to establish better conditions in terms of sensitivity and sampling frequency. The results obtained showed that the concentration of DMSO in the reagent solution presents remarkable influence on the magnitude of analytical signal. Chemical species that could be found in the formulations such as Na(I), K(I), Mg(II), Ca(II), Ti(IV), Cl(-), CO(3)(2-) e sodium dodecylsulfate were tested as possible interfering ions. Among them, only non-monovalent cations presented noticeable interference on lithium signal. However, they were not found in concentrations high enough to cause interference in the determination of lithium in the samples. Sample preparation was performed by sonicating a slurry prepared by dispersing 100mg of powdered sample in 15mL of 0.10molL(-1) HCl solution. Results obtained by developed methodology were not statistically different from those obtained by flame emission spectrometry. In the optimized conditions the method presented a linear range of 5-40mgL(-1) and a relative standard deviation of 3.6% at 5mgL(-1) Li concentration. Detection and quantification limits were 0.54 and 1.8mgL(-1), respectively. Sampling frequency, calculated as the time interval passed between two consecutive injections, was 60 samples per hour. The methodology was successfully applied in the determination of lithium in three commercial samples.
Unsteady free surface wave-induced separation: Vortical structures and instabilities
NASA Astrophysics Data System (ADS)
Kandasamy, M.; Xing, T.; Stern, F.
2009-02-01
Vortical structures and instability mechanisms of the unsteady free surface wave-induced separation around a surface-piercing NACA0024 foil at a Froude number of 0.37 and a Reynolds number of 1.52×106 are studied using an unsteady Reynolds-averaged Navier-Stokes (URANS) code with a blended k-ɛ/k-ω turbulence model and a free surface tracking method. At the free surface, the separated flow reattaches to the foil surface resulting in a wall-bounded separation bubble. The mean and instantaneous flow topologies in the separation region are similar to the owl-face pattern. The initial shear-layer instability, the Karman-like instability, and the flapping instability are identified, and their scaling and physical mechanisms are studied. Validation with experimental fluid dynamics (EFD) and comparison with complementary detached-eddy simulation (DES) indicate that URANS resolves part of the organized oscillations due to the large-scale unsteady vortical structures and instabilities, thereby capturing the gross features of the unsteady separation. The URANS solutions show an initial amplitude defect of 30% for the free surface oscillations where the shear layer separates, and the defect progressively increases downstream as URANS rapidly dissipates the rolled up vortices.
Turbulent mass transfer through a flat shear-free surface
NASA Astrophysics Data System (ADS)
Magnaudet, Jacques; Calmet, Isabelle
2006-04-01
Mass transfer through the flat shear-free surface of a turbulent open-channel flow is investigated over a wide range of Schmidt number (1 ≤ Sc ≤ 200) by means of large-eddy simulations using a dynamic subgrid-scale model. In contrast with situations previously analysed using direct numerical simulation, the turbulent Reynolds number Re is high enough for the near-surface turbulence to be fairly close to isotropy and almost independent of the structure of the flow in the bottom region (the statistics of the velocity field are identical to those described by I. Calmet & J. Magnaudet J. Fluid Mech. vol. 474, 2003, p. 355). The main statistical features of the concentration field are analysed in connection with the structure of the turbulent motion below the free surface, characterized by a velocity macroscale u and an integral length scale L. All near-surface statistical profiles are found to be Sc-independent when plotted vs. the dimensionless coordinate Sc({1) / 2}yu/nu (y is the distance to the surface and nu is the kinematic viscosity). Mean concentration profiles are observed to be linear throughout an inner diffusive sublayer whose thickness is about one Batchelor microscale, i.e. LSc({) - 1 / 2 }Re({) - 3 / 4}. In contrast, the concentration fluctuations are found to reach their maximum near the edge of the outer diffusive layer which scales as LSc({) - 1 / 2}Re({) - 1 / 2}. Instantaneous views of the near-surface isovalues of the concentration and vertical velocity are used to reveal the influence of the Schmidt number. In particular, it is observed that at high Schmidt number, the tiny concentration fluctuations that subsist in the diffusive sublayer just mirror the divergence of the two-component surface velocity field. Co-spectra of concentration and vertical velocity fluctuations indicate that the main contribution to the turbulent mass flux is provided by eddies whose horizontal size is close to L, which strongly supports the view that the mass
Zhao, Yu; Ding, Yu; Li, Yutao; Peng, Lele; Byon, Hye Ryung; Goodenough, John B; Yu, Guihua
2015-11-21
Electrical energy storage system such as secondary batteries is the principle power source for portable electronics, electric vehicles and stationary energy storage. As an emerging battery technology, Li-redox flow batteries inherit the advantageous features of modular design of conventional redox flow batteries and high voltage and energy efficiency of Li-ion batteries, showing great promise as efficient electrical energy storage system in transportation, commercial, and residential applications. The chemistry of lithium redox flow batteries with aqueous or non-aqueous electrolyte enables widened electrochemical potential window thus may provide much greater energy density and efficiency than conventional redox flow batteries based on proton chemistry. This Review summarizes the design rationale, fundamentals and characterization of Li-redox flow batteries from a chemistry and material perspective, with particular emphasis on the new chemistries and materials. The latest advances and associated challenges/opportunities are comprehensively discussed.
High-flux neutron source based on a liquid-lithium target
Halfon, S.; Feinberg, G.; Paul, M.; Arenshtam, A.; Berkovits, D.; Kijel, D.; Nagler, A.; Eliyahu, I.; Silverman, I.
2013-04-19
A prototype compact Liquid Lithium Target (LiLiT), able to constitute an accelerator-based intense neutron source, was built. The neutron source is intended for nuclear astrophysical research, boron neutron capture therapy (BNCT) in hospitals and material studies for fusion reactors. The LiLiT setup is presently being commissioned at Soreq Nuclear research Center (SNRC). The lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated by a high-intensity proton beam, necessary for intense neutron flux for the above applications. The liquid-lithium loop of LiLiT is designed to generate a stable lithium jet at high velocity on a concave supporting wall with free surface toward the incident proton beam (up to 10 kW). During off-line tests, liquid lithium was flown through the loop and generated a stable jet at velocity higher than 5 m/s on the concave supporting wall. The target is now under extensive test program using a high-power electron-gun. Up to 2 kW electron beam was applied on the lithium flow at velocity of 4 m/s without any flow instabilities or excessive evaporation. High-intensity proton beam irradiation will take place at SARAF (Soreq Applied Research Accelerator Facility) superconducting linear accelerator currently in commissioning at SNRC.
Computation of Capillary Interactions among Many Particles at Free Surface
NASA Astrophysics Data System (ADS)
Fujita, Masahiro; Koike, Osamu; Yamaguchi, Yukio
2013-03-01
We have developed a new computational method to efficiently estimate capillary interactions among many moving particles at a free surface. A novelty of the method is the immersed free surface (IFS) model that transforms the surface tension exerted on a three-phase contact line on a particle surface into the surface tension exerted on an artificially created virtual free surface in the particle. Using the IFS model along with a level set method and an immersed boundary method, we have reasonably simulated a capillary-force-induced self-assembly of particles that is common in coating-drying of particle suspension.
Dynamics of free surface perturbations along an annular viscous film.
Smolka, Linda B; North, Justin; Guerra, Bree K
2008-03-01
It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental study using fluids with different densities, surface tensions, and viscosities to investigate the growth and dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent agreement is found between predictions from a long-wave Stokes flow model [Craster and Matar, J. Fluid Mech. 553, 85 (2006)] and data, while fair to excellent agreement (depending on fiber size) is found between predictions from a moderate-Reynolds-number model [Sisoev, Chem. Eng. Sci. 61, 7279 (2006)] and data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to steady behavior at a critical flow rate Q(c) is correlated with a transition in the rate at which perturbations naturally form along the fiber. For QQ(c) (unsteady case), the rate of perturbation formation is modulated. As a result, the position along the fiber where perturbations form oscillates irregularly, and the initial speed and spacing between perturbations varies, resulting in the coalescence of neighboring perturbations further down the fiber.
Dynamics of free surface perturbations along an annular viscous film
NASA Astrophysics Data System (ADS)
Smolka, Linda B.; North, Justin; Guerra, Bree K.
2008-03-01
It is known that the free surface of an axisymmetric viscous film flowing down the outside of a thin vertical fiber under the influence of gravity becomes unstable to interfacial perturbations. We present an experimental study using fluids with different densities, surface tensions, and viscosities to investigate the growth and dynamics of these interfacial perturbations and to test the assumptions made by previous authors. We find that the initial perturbation growth is exponential, followed by a slower phase as the amplitude and wavelength saturate in size. Measurements of the perturbation growth for experiments conducted at low and moderate Reynolds numbers are compared to theoretical predictions developed from linear stability theory. Excellent agreement is found between predictions from a long-wave Stokes flow model [Craster and Matar, J. Fluid Mech. 553, 85 (2006)] and data, while fair to excellent agreement (depending on fiber size) is found between predictions from a moderate-Reynolds-number model [Sisoev , Chem. Eng. Sci. 61, 7279 (2006)] and data. Furthermore, we find that a known transition in the longer-time perturbation dynamics from unsteady to steady behavior at a critical flow rate Qc is correlated with a transition in the rate at which perturbations naturally form along the fiber. For Q
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik
2017-07-01
A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.
NASA Astrophysics Data System (ADS)
Sobolev, V. Ya.; Sinyavsky, V. V.
2014-12-01
Sub-megawatt space NPP use lithium as a coolant and niobium alloy as a structural material. In order to refine the lithium-niobium technology of the material and design engineering, lithium-niobium loops were worked out in RSC Energia, and they were tested at a working temperature of lithium equal to 1070-1300 K. In order to measure the lithium flow and pressure, special gauges were developed, which made possible the calibration and checkout of the loops without their dismantling. The paper describes the architecture of the electromagnetic flowmeter and the electromagnetic vibrating-wire pressure transducer (gauge) for lithium coolant in the nuclear power plant cooling systems. The operating principles of these meters are presented. Flowmeters have been developed for channel diameters ranging from 10 to 100 mm, which are capable of measuring lithium flows in the range of 0.1 to 30 L/s with the error of 3% for design calibration and 1% for volume graduation. The temperature error of the pressure transducers does not exceed 0.4% per 100 K; the nonlinearity and hysteresis of the calibration curve do not exceed 0.3 and 0.4%, respectively. The transducer applications are illustrated by the examples of results obtained from tests on the NPP module mockup and heat pipes of a radiation cooler.
Sensor-Free Surface Density Detector
NASA Astrophysics Data System (ADS)
Wu, Huixuan
2016-11-01
We have developed an optical-based method to measure the absolute air density on a wall surface in compressible turbulent boundary layers. The temporal resolution can be higher than 1MHz, and the spatial resolution can research 10 micron. For isothermal flows, our system can also be used to obtain the wall pressure distributions or volume-ratio of two-species gas. It is a powerful tool for observing turbulent fluctuations and flow separations in sub-, trans-, and supersonic airflows. The working principle of our method is to detect the air density by measuring the refractive index, which linearly depends on density and determines the transmission coefficient at the interface. For single- or multiple-point measurements, we do not need to install sensors on the wall surface, which is a big advantage compared to conventional methods. In 2D cases, a layer of anti-reflection coating is needed. The optical measurement range is not limited by the surface material or sensor. These advantages make our method a good complement or better alternative to the other approaches, such as focused laser differential interferometry technique, which provides density gradient, and pressure (temperature) sensitive paints, which depends significantly on the material properties.
NASA Astrophysics Data System (ADS)
Zhang, Yin; Huang, Hu-Lin; Zhou, Xiao-Ming; Zhu, Gui-Ping; Zou, Yong
2016-04-01
Floating zone technique is a crucible-free process for growth of high quality single crystals. Unstable thermocapillary convection is a typical phenomenon during the process under microgravity. Therefore, it is very important to investigate the instability of thermocapillary convection in liquid bridges with deformable free-surface under microgravity. In this works, the Volume of Fluid (VOF) method is employed to track the free-surface movement. The results are presented as the behavior of flow structure and temperature distribution of the molten zone. The impact of Marangoni number ( Ma) is also investigated on free-surface deformation as well as the instability of thermocapillary convection. The free-surface exhibits a noticeable axisymmetric (but it is non-centrosymmetric) and elliptical shape along the circumferential direction. This specific surface shape presents a typical narrow `neck-shaped' structure with convex at two ends of the zone and concave at the mid-plane along the axial direction. At both θ = 0° and θ = 90°, the deformation ratio ξ increases rapidly with Ma at first, and then increases slowly. Moreover, the hydrothermal wave number m and the instability of thermocapillary convection increase with Ma.
Time persistence of floating-particle clusters in free-surface turbulence.
Lovecchio, Salvatore; Marchioli, Cristian; Soldati, Alfredo
2013-09-01
We study the dispersion of light particles floating on a flat shear-free surface of an open channel in which the flow is turbulent. This configuration mimics the motion of buoyant matter (e.g., phytoplankton, pollutants, or nutrients) in water bodies when surface waves and ripples are smooth or absent. We perform direct numerical simulation of turbulence coupled with Lagrangian particle tracking, considering different values of the shear Reynolds number (Re_{τ}=171 and 509) and of the Stokes number (0.06
Turbulent swirling layer with free surface
NASA Astrophysics Data System (ADS)
Bardet, Philippe; Peterson, Per; Savas, Omer
2007-11-01
A turbulent annular liquid wall jet, or vortex tube, generated by helical injection inside a tube was characterized experimentally. The resulting hollow confined swirling layer is proposed for use in a thick liquid first-wall chamber concept for inertial fusion power plants. The velocity fields were measured with a single camera split-screen stereoscopic particle image velocimetry scheme. The flow was studied at 5 stations between 1.5 and 4.5 ``vortex tube'' diameters downstream of the injection nozzle in a horizontal plane that coincides with the tube axis. Up to 1024 independent realizations were recorded and analyzed for Reynolds numbers ranging from 3,200 to 14,000 at each station. The turbulent structures are non-isotropic and non-homogeneous. Gradients in average velocity and Reynolds stress result in turbulent kinetic energy production. Between 1.5 and 3.5 diameters, the average azimuthal velocity profile alone is non uniform away from the wall. Persistent large vortical structures are observed. The turbulent kinetic energy decreases slowly with distance while the dissipation decreases rapidly. At 4.5 diameters, the wall effect influences strongly the average velocity profiles. The vortical structures disappear and the turbulent kinetic energy increases.
Application of IR imaging for free-surface velocity measurement in liquid-metal systems
Hvasta, M. G.; Kolemen, E.; Fisher, A.
2017-01-05
Measuring free-surface, liquid-metal flow velocity is challenging to do in a reliable and accurate manner. This paper presents a non-invasive, easily calibrated method of measuring the surface velocities of open-channel liquid-metal flows using an IR camera. Unlike other spatially limited methods, this IR camera particle tracking technique provides full field-of-view data that can be used to better understand open-channel flows and determine surface boundary conditions. Lastly, this method could be implemented and automated for a wide range of liquid-metal experiments, even if they operate at high-temperatures or within strong magnetic fields.
NASA Astrophysics Data System (ADS)
Han, Rui; Zhang, A.-Man; Li, Shuai
2014-03-01
The motion of gas bubbles beneath a free surface will lead to a spike of fluid on the free surface. The distance of the bubbles to the free surface is the key factor to different phenomena. When the inception distance varies in some range, crown phenomenon would happen after the impact of weak buoyancy bubbles, so this kind of spike is defined as crown spike in the present paper. Based on potential flow theory, a three-dimensional numerical model is established to simulate the motion of the free-surface spike generated by one bubble or a horizontal line of two in-phase bubbles. After the downward jet formed near the end of the collapse phase, the simulation of the free surface is performed to study the crown spike without regard to the toroidal bubble's effect. Calculations about the interaction between one bubble and free surface agree well with the experimental results conducted with a high-speed camera, and relative error is within 15%. Crown spike in both single- and two-bubble cases are simulated numerically. Different features and laws of the motion of crown spike, depending on the bubble-boundary distances and the inter-bubble distances, have been investigated.
Free-surface roughness of thin-walled tubes in reduction
NASA Astrophysics Data System (ADS)
Alexandrov, S. E.; Lyamina, E. A.; Manabe, K.
2017-03-01
The problem of the stress-strain state of thin-walled tubes in axisymmetric steady-state deformation is solved using the membrane theory of shells and the model of an ideal rigid-plastic material satisfying the Mises yield condition and the associated flow law. The obtained solution is used together with the empirical relation between the strain state at an arbitrary point of the free surface and the surface roughness parameters at the same point to determine the influence of some tube reduction parameters on the surface roughness parameters in the product. The employed empirical relation is derived assuming that the free surface roughness parameters depend on two independent kinematic variables.
Front instability and energy of the free surface
NASA Astrophysics Data System (ADS)
Beltrame, Philippe
2014-05-01
In recent years, there has been a proliferation of research devoted to the formation of preferential flow paths occurring without macroscopic heterogeneity of the porous media. DiCarlo (2013) points out the connection between "overshoot" and the front instability. Extension of the standard Richards equation is required to capture this phenomenon. In most of the improvements, interfacial phenomena as the triple line at the front are considered. For instance, velocity dependent contact angle (Wang et al., 2013) or contact angle hysteresis (Rätz and Schweizer, 2012) allow to simulate successfully the instability. Another approach proposed by Cueto-Felgueroso and Juanes (2009) introduces a macroscopic surface tension related to the existence of the water/air interface. As previously, the simulation of an advancing front displays physical looking fingering displacements. The goal of this contribution is to better understand the role of the different surface energies in the emergence of the front instability. We propose a model involving both the macroscopic surface tension and the soil wettability. This latter allows to define a contact angle and possibly hysteresis using heterogeneous wettability (Beltrame et al., 2011). Therefore, we employ the phase field approach developed by Felgueroso and Juanes, 2009 to which we add a free energy term corresponding to the wettability: a disjoining or conjoining pressure resulting from effective molecular interactions between the substrate and the free surface (DeGennes, 1985). The difference with the classical suction pressure is the hydrophobic behavior for ultra-thin film (small water saturation). Such a water repellency was recently estimated in the soil (Diamantopoulos et al. 2013). Stability analysis of an advancing front in an uniform porous media shows that macroscopic surface tension and wettability may independently produce the instability growth. In contrast, for a front stopping when reaching the layers interface of
Spectral Analysis of Vortex/Free-Surface Interaction
1994-06-01
vorticity), and that the topological features of the two-dimensional turbulence on the free surface are inherent products of the mutual interaction of the...Dodu, J., 1955, "Turbulent Diffusion Across a Density Discontinuity," La Houille Blanche, Vol. 4, pp. 522-531. Salvesen, N. and Kerczek, C. von, 1976
Passive manipulation of free-surface instability by deformable solid bilayers
NASA Astrophysics Data System (ADS)
Sahu, Shivam; Shankar, V.
2016-07-01
This study deals with the elastohydrodynamic coupling that occurs in the flow of a liquid layer down an inclined plane lined with a deformable solid bilayer and its consequences on the stability of the free surface of the liquid layer. The fluid is Newtonian and incompressible, while the linear elastic constitutive relation has been considered for the deformable solid bilayer, and the densities of the fluid and the two solids are kept equal. A temporal linear stability analysis is carried out for this coupled solid-fluid system. A long-wave asymptotic analysis is employed to obtain an analytical expression for the complex wavespeed in the low wave-number regime, and a numerical shooting method is used to solve the coupled set of governing differential equations in order to obtain the stability criterion for arbitrary values of the wave number. In a previous work on plane Couette flow past an elastic bilayer, Neelmegam et al. [Phys. Rev. E 90, 043004 (2014), 10.1103/PhysRevE.90.043004] showed that the instability of the flow can be significantly influenced by the nature of the solid layer, which is adjacent to the liquid layer. In stark contrast, for free-surface flow past a bilayer, our long-wave asymptotic analysis demonstrates that the stability of the free-surface mode is insensitive to the nature of the solid adjacent to the liquid layer. Instead, it is the effective shear modulus of the bilayer Geff (given by H /Geff=H1/G1+H2/G2 , where H =H1+H2 is the total thickness of the solid bilayer, H1 and H2 are the thicknesses of the two solid layers, and G1 and G2 are the shear moduli of the two solid layers) that determines the stability of the free surface in the long-wave limit. We show that for a given Reynolds number, the free-surface instability is stabilized when Geff decreases below a critical value. At finite wave numbers, our numerical solution indicates that additional instabilities at the free surface and the liquid-solid interface can be induced by wall
Dunn, Jennifer B.; Gaines, Linda; Barnes, Matthew; Sullivan, John L.; Wang, Michael
2014-01-01
This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn₂O₄). These data are incorporated into Argonne National Laboratory’s Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn₂O₄ as the cathode material using Argonne’s Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.
Dunn, J.B.; Gaines, L.; Barnes, M.; Wang, M.; Sullivan, J.
2012-06-21
This document contains material and energy flows for lithium-ion batteries with an active cathode material of lithium manganese oxide (LiMn{sub 2}O{sub 4}). These data are incorporated into Argonne National Laboratory's Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, replacing previous data for lithium-ion batteries that are based on a nickel/cobalt/manganese (Ni/Co/Mn) cathode chemistry. To identify and determine the mass of lithium-ion battery components, we modeled batteries with LiMn{sub 2}O{sub 4} as the cathode material using Argonne's Battery Performance and Cost (BatPaC) model for hybrid electric vehicles, plug-in hybrid electric vehicles, and electric vehicles. As input for GREET, we developed new or updated data for the cathode material and the following materials that are included in its supply chain: soda ash, lime, petroleum-derived ethanol, lithium brine, and lithium carbonate. Also as input to GREET, we calculated new emission factors for equipment (kilns, dryers, and calciners) that were not previously included in the model and developed new material and energy flows for the battery electrolyte, binder, and binder solvent. Finally, we revised the data included in GREET for graphite (the anode active material), battery electronics, and battery assembly. For the first time, we incorporated energy and material flows for battery recycling into GREET, considering four battery recycling processes: pyrometallurgical, hydrometallurgical, intermediate physical, and direct physical. Opportunities for future research include considering alternative battery chemistries and battery packaging. As battery assembly and recycling technologies develop, staying up to date with them will be critical to understanding the energy, materials, and emissions burdens associated with batteries.
Experimental investigation of a free-surface turbulent jet with Coanda effect
NASA Astrophysics Data System (ADS)
Miozzi, M.; Lalli, F.; Romano, G. P.
2010-07-01
The deviation of a jet from the straight direction due to the presence of a lateral wall is investigated from the experimental point of view. This flow condition is known as Coanda jet (from the Romanian aerodynamicist Henry Marie Coanda who discovered and applied it at the beginning of XXth century) or offset jet. The objective of the work is to detail the underlying mechanisms of such a phenomenon aiming to use it as a flow control method at polluted river flows mouth. To do this, a large laboratory free-surface tank with an incoming channel has been set up and velocity field measurements are performed by Optical Flow methods (namely Feature Tracking). Preliminary tests on the well-known free jet configuration without any marine structure ( i.e. lateral wall) are performed to allow comparison with free jet scaling and self-similar solutions. The presence of the free-surface gives rise to centerline velocity decay which is lower than in free unbounded plane or circular jets due to the vertically limited ambient fluid entrainment. In the second part of the paper, the effect of a lateral wall on the jet configuration is examined by placing it at different lateral distances from the jet outlet. The resulting velocity fields clearly show an inclined Coanda jet with details which seems to depend on the lateral wall distance itself. The analysis of self-similarity along the inclined jet direction reveals that for wall distances larger than 5 jet widths this dependence almost disappears.
Numerical Simulation of Cavity with an Upper Free Surface
NASA Astrophysics Data System (ADS)
Benseghir, Chahrazed; Zitouni, Bariza; Haddad, Djamel; Zeroual, Mostefa
In this paper, 3D numerical study of Bénard-Marangoni instabilities in a horizontal liquid layer for a Rayleigh number Ra = 0 and aspect ratio A = 20. The layer is heated from below and cooled from above (vertical temperature gradient). The upper surface is assumed to be free and non-deformable. The surface tension at the free surface is linearly dependent on the temperature. Silicon oil with Prandtl number (Pr = 880) has been used as a working liquid. A parametric study has been carried out by considering the following parameters: the thermal Marangoni number (Ma), the Biot number (Bi). The governing equations were discretized by the finite volume method. The resolution of the coupling (pressure-velocity) was done with the projection method. A code has been elaborated with FORTRAN 6.6. Velocity vectors and temperature fields on the upper free surface are obtained.
Elastic lattice modelling of seismic waves including a free surface
NASA Astrophysics Data System (ADS)
O`Brien, Gareth S.
2014-06-01
Elastic lattice methods (ELMs) have been shown to accurately model seismic wave propagation in a heterogeneous medium. These methods represent an elastic solid as a series of interconnected springs arranged on a lattice and recover a continuum wave equation in the long wavelength limit. However, in the case of a regular lattice, the recovery of the continuum equation depends on the symmetry of the lattice. By removing particles above a free surface this symmetry is broken. Therefore, this free surface implementation leads to errors when compared with a traction free boundary condition. The error between a traction free boundary condition and the ELMs grows as the Poisson's ratio deviates from 0.25. By modifying the interaction constants with a scalar, the error can be reduced while keeping the flexibility of the nearest neighbour interaction rule. We present results of simulations where modified spring constants reduce the misfit with a traction free boundary solution and hence increase the accuracy of the elastic lattice method solution on the free surface.
NASA Astrophysics Data System (ADS)
Zhao, Y. P.; Liao, W. L.; Feng, H. D.; Ruan, H.; Luo, X. Q.
2012-11-01
For a bulb turbine, it has a low head and a big runner diameter, and the free surface influences the flow at the inlet and outlet of the turbine, which bring many problems such as vibration, cracks and cavitation to the turbine. Therefore, it is difficult to get the precise internal flow characteristics through a numerical simulation with conventional ideal flow conditions. In this paper, both numerical and experimental methods are adopted to investigate the flow characteristics at the inlet and outlet of the bulb turbine with considering free surface. Firstly, experimental and numerical studies in a low head pressure pipeline are conducted, and the corresponding boundary condition according with reality is obtained through the comparison between the model test result and the CFD simulation result. Then, through an analysis of the velocity and pressure fields at the inlet of the bulb turbine at different heads, the flow characteristics and rules at the entrance of the bulb turbine have been revealed with considering free surface; Finally, the performance predictions for a bulb turbine have been conducted by using the obtained flow rules at the inlet as the boundary condition of a turbine, and the causes that lead to non-uniform forces on blades, cavitation and vibration have been illustrated in this paper, which also provide a theory basis for an accurate numerical simulation and optimization design of a bulb turbine.
NASA Astrophysics Data System (ADS)
Bardet, Philippe M.; Peterson, Per F.; Savaş, Ömer
2010-08-01
An annular liquid wall jet, or vortex tube, generated by helical injection inside a tube is studied experimentally as a possible means of fusion reactor shielding. The hollow confined vortex/swirling layer exhibits simultaneously all the complexities of swirling turbulence, free surface, droplet formation, bubble entrapment; all posing challenging diagnostic issues. The construction of flow apparatus and the choice of working liquid and seeding particles facilitate unimpeded optical access to the flow field. A split-screen, single-camera stereoscopic particle image velocimetry (SPIV) scheme is employed for flow field characterization. Image calibration and free surface identification issues are discussed. The interference in measurements of laser beam reflection at the interface are identified and discussed. Selected velocity measurements and turbulence statistics are presented at Re_{\\uplambda}=70 (Re = 3500 based on mean layer thickness).
Free-surface light emission from shocked Teflon
NASA Astrophysics Data System (ADS)
Gallagher, Kathleen G.; Yang, Wenbo; Ahrens, Thomas J.
1994-07-01
Shock initiated light emission experiments were performed on Teflon shock loaded to pressures up to ˜17 GPa. Radiances up to 600×106Wṡm-2/(ster ṡnm), were measured over a range of 390 to 820 nm. We have measured the spectra of light emitted upon reflection of the shock at the free surface and observed it to be distinctly non-thermal in nature. The lights appears to result from bond destruction such as observed in shock recovery experiments on Teflon and in quasistatic experiments conducted on other polymers.
Study on Applicability of Numerical Simulation to Evaluation of Gas Entrainment From Free Surface
Kei Ito; Takaaki Sakai; Hiroyuki Ohshima
2006-07-01
An onset condition of gas entrainment (GE) due to free surface vortex has been studied to establish a design of fast breeder reactor with higher coolant velocity than conventional designs, because the GE might cause the reactor operation instability and therefore should be avoided. The onset condition of the GE has been investigated experimentally and theoretically, however, dependency of the vortex type GE on local geometry configuration of each experimental system and local velocity distribution has prevented researchers from formulating the universal onset condition of the vortex type GE. A real scale test is considered as an accurate method to evaluate the occurrence of the vortex type GE, but the real scale test is generally expensive and not useful in the design study of large and complicated FBR systems, because frequent displacement of inner equipments accompanied by the design change is difficult in the real scale test. Numerical simulation seems to be promising method as an alternative to the real scale test. In this research, to evaluate the applicability of the numerical simulation to the design work, numerical simulations were conducted on the basic experimental system of the vortex type GE. This basic experiment consisted of rectangular flow channel and two important equipments for vortex type GE in the channel, i.e. vortex generation and suction equipments. Generated vortex grew rapidly interacting with the suction flow and the grown vortex formed a free surface dent (gas core). When the tip of the gas core or the bubbles detached from the tip of the gas core reached the suction mouth, the gas was entrained to the suction tube. The results of numerical simulation under the experimental conditions were compared to the experiment in terms of velocity distributions and free surface shape. As a result, the numerical simulation showed qualitatively good agreement with experimental data. The numerical simulation results were similar to the experimental
The motion of a 3D toroidal bubble and its interaction with a free surface near an inclined boundary
NASA Astrophysics Data System (ADS)
Liu, Y. L.; Wang, Q. X.; Wang, S. P.; Zhang, A. M.
2016-12-01
The numerical modelling of 3D toroidal bubble dynamics is a challenging problem due to the complex topological transition of the flow domain, and physical and numerical instabilities, associated with jet penetration through the bubble. In this paper, this phenomenon is modelled using the boundary integral method (BIM) coupled with a vortex ring model. We implement a new impact model consisting of the refined local mesh near the impact location immediately before and after impact, and a surgical cut at a high resolution forming a smooth hole for the transition from a singly connected to doubly connected form. This enables a smooth transition from a singly connected bubble to a toroidal bubble. The potential due to a vortex ring is reduced to the line integral along the vortex ring. A new mesh density control technique is described to update the bubble and free surfaces, which provides a high mesh quality of the surfaces with the mesh density in terms of the curvature distribution of the surface. The pressure distribution in the flow field is calculated by using the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the BIM model to avoid numerical instabilities. Experiments are carried out for the interaction of a spark generated bubble with a free surface near a boundary, which is captured by using a high speed camera. Our numerical results agree well with the experimental images, for the bubble and free surface shapes for both before and after jet impact. New results are analyzed for the interaction of a toroidal bubble with a free surface near a vertical boundary and a sloping boundary, at both negative and positive angles to the vertical, without and with buoyancy, respectively. After jet impact, the bubble becomes a bubble ring, whose cross section is much thinner at the distal side from the boundary. It subsequently breaks into a crescent shaped bubble. The free surface displays singular features at its
Mathematical and computational studies of equilibrium capillary free surfaces
NASA Technical Reports Server (NTRS)
Albright, N.; Chen, N. F.; Concus, P.; Finn, R.
1977-01-01
The results of several independent studies are presented. The general question is considered of whether a wetting liquid always rises higher in a small capillary tube than in a larger one, when both are dipped vertically into an infinite reservoir. An analytical investigation is initiated to determine the qualitative behavior of the family of solutions of the equilibrium capillary free-surface equation that correspond to rotationally symmetric pendent liquid drops and the relationship of these solutions to the singular solution, which corresponds to an infinite spike of liquid extending downward to infinity. The block successive overrelaxation-Newton method and the generalized conjugate gradient method are investigated for solving the capillary equation on a uniform square mesh in a square domain, including the case for which the solution is unbounded at the corners. Capillary surfaces are calculated on the ellipse, on a circle with reentrant notches, and on other irregularly shaped domains using JASON, a general purpose program for solving nonlinear elliptic equations on a nonuniform quadrilaterial mesh. Analytical estimates for the nonexistence of solutions of the equilibrium capillary free-surface equation on the ellipse in zero gravity are evaluated.
Review of free-surface MHD experiments and modeling.
Molokov, S.; Reed, C. B.
2000-06-02
This review paper was prepared to survey the present status of analytical and experimental work in the area of free surface MHD and thus provide a well informed starting point for further work by the Advanced Limiter-diverter Plasma-facing Systems (ALPS) program. ALPS were initiated to evaluate the potential for improved performance and lifetime for plasma-facing systems. The main goal of the program is to demonstrate the advantages of advanced limiter/diverter systems over conventional systems in terms of power density capability, component lifetime, and power conversion efficiency, while providing for safe operation and minimizing impurity concerns for the plasma. Most of the work to date has been applied to free surface liquids. A multi-disciplinary team from several institutions has been organized to address the key issues associated with these systems. The main performance goals for advanced limiters and diverters are a peak heat flux of >50 MW/m{sup 2}, elimination of a lifetime limit for erosion, and the ability to extract useful heat at high power conversion efficiency ({approximately}40%). The evaluation of various options is being conducted through a combination of laboratory experiments, modeling of key processes, and conceptual design studies.
Free surface BCP self-assembly process characterization with CDSEM
NASA Astrophysics Data System (ADS)
Levi, Shimon; Weinberg, Yakov; Adan, Ofer; Klinov, Michael; Argoud, Maxime; Claveau, Guillaume; Tiron, Raluca
2016-03-01
A simple and common practice to evaluate Block copolymers (BCP) self-assembly performances, is on a free surface wafer. With no guiding pattern the BCP designed to form line space pattern for example, spontaneously rearranges to form a random fingerprint type of a pattern. The nature of the rearrangement is dictated by the physical properties of the BCP moieties, wafer surface treatment and the self-assembly process parameters. Traditional CDSEM metrology algorithms are designed to measure pattern with predefined structure, like linespace or oval via holes. Measurement of pattern with expected geometry can reduce measurement uncertainty. Fingerprint type of structure explored in this dissertation, poses a challenge for CD-SEM measurement uncertainty and offers an opportunity to explore 2D metrology capabilities. To measure this fingerprints we developed a new metrology approach that combines image segmentation and edge detection to measure 2D pattern with arbitrary rearrangement. The segmentation approach enabled to quantify the quality of the BCP material and process, detecting 2D attributes such as: CD and CDU at one axis, and number of intersections, length and number of PS fragments, etched PMMA spaces and donut shapes numbers on the second axis. In this paper we propose a 2D metrology to measure arbitrary BCP pattern on a free surface wafer. We demonstrate experimental results demonstrating precision data, and characterization of PS-b-PMMA BCP, intrinsic period L0 = 38nm (Arkema), processed at different bake time and temperatures.
Effect of surfactant on bubble collisions on a free surface
NASA Astrophysics Data System (ADS)
Wang, Shiyan; Guo, Tianqi; Dabiri, Sadegh; Vlachos, Pavlos P.; Ardekani, Arezoo M.
2017-04-01
We report on the coefficient of restitution of bubble collision on a free surface in the presence of surfactants. In pure fluids, the collision process is well described by a competition between thin film drainage and interfacial tension. When surfactants are introduced in pure water, they generate Marangoni stresses on both the bubble interface and free surface, which provides an additional mechanism affecting the collision process. We investigate this mechanism for the bubble collision process in surfactant solutions through a combination of experimental and numerical approaches, with results showing a reduced rebound velocity during the collision process in surfactant solutions compared with that in pure water. Furthermore, by varying both bubble size and surfactant concentration, our experiments show that bubbles experience elastic, partially inelastic, and perfectly inelastic collisions. We identify the Langmuir number, the ratio between absorption and desorption rates, as the fundamental parameter that quantifies the Marangoni effect on the collision process. The effect of Marangoni stress on the bubble's coefficient of restitution is nonmonotonic, where the coefficient of restitution first decreases with Langmuir number and then increases.
Plankton dynamics in thermally-stratified free-surface turbulence
NASA Astrophysics Data System (ADS)
Lovecchio, Salvatore; Soldati, Alfredo
2015-11-01
Thermal stratification induced by solar heating near the ocean-atmosphere interface influences the transfer fluxes of heat, momentum and chemical species across the interface. Due to thermal stratification, a region of large temperature gradients (thermocline) may form with strong consequences for the marine ecosystem. In particular, the thermocline is believed to prevent phytoplankton from reaching the well-lit surface layer, where they can grow through the process of photosynthesis. In this paper, we use a DNS-based Eulerian-Lagrangian approach to examine the role of stratification on phytoplankton dynamics in thermally-stratified free-surface turbulence. We focus on gyrotactic self-propelled phytoplankton cells, considering different stratification levels (quantified by the Richardson number) and different gyro tactic re-orientation times. We show that the modulation of turbulent fluctuations induced by stable stratification has a strong effect on the orientation and distribution of phytoplankton, possibly leading to trapping of some species within the thermocline. Specifically, we observe the appearance of a depletion layer just below the free-surface as stratification increases, accompanied by a reduction in the vertical stability of phytoplankton cells.
Self-induced sloshing caused by an upward round jet impinging on the free surface
Madarame, Haruki; Okamoto, Koji; Iida, Masao
1995-11-01
The demand for compact design of FBR made it necessary to study the interaction between high speed coolant flow and the free surface. Self-induced sloshing was found to occur with an upward round jet making a surface swell at the impinging point. The conditions under which the sloshing occurred were investigated experimentally together with the sloshing modes and frequencies. Without exception the induced mode had only one diametrical node, which was accompanied by the lateral motion of the swell. The mode was replaced by lower one with increasing the inlet-surface distance and the velocity, the reason of which was explained by the following assumption; the oscillation of water columns on both sides of the jet connected by a virtual cross flow through the jet, i.e., jet-flutter, was coupled with the sloshing and supplied energy to it.
46 CFR 170.285 - Free surface correction for intact stability calculations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Free surface correction for intact stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.285 Free surface... tanks must be determined by calculating— (1) For each type of consumable liquid, the maximum...
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Free surface correction for damage stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.290 Free surface correction for damage stability calculations. (a) When doing the damage stability calculations required by...
46 CFR 170.285 - Free surface correction for intact stability calculations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Free surface correction for intact stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.285 Free surface correction for intact stability calculations. (a) When doing the intact stability calculations required by...
46 CFR 170.285 - Free surface correction for intact stability calculations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Free surface correction for intact stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.285 Free surface correction for intact stability calculations. (a) When doing the intact stability calculations required by...
46 CFR 170.285 - Free surface correction for intact stability calculations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Free surface correction for intact stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.285 Free surface correction for intact stability calculations. (a) When doing the intact stability calculations required by...
46 CFR 170.290 - Free surface correction for damage stability calculations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Free surface correction for damage stability...) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface § 170.290 Free surface correction for damage stability calculations. (a) When doing the damage stability calculations required by...
46 CFR 170.300 - Special consideration for free surface of spoil in hopper dredge hoppers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Special consideration for free surface of spoil in... Special consideration for free surface of spoil in hopper dredge hoppers. The calculations required by this subchapter for each self-propelled hopper dredge must include— (a) The free surface effect...
Free surface stability of liquid metal plasma facing components
NASA Astrophysics Data System (ADS)
Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.
2016-10-01
An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.
New idea of suppressing free surface vortex during tapping liquid steel from converter
NASA Astrophysics Data System (ADS)
Lee, Seung-Jin; Kim, Sang-Joon; Lee, Hae-Geon
2016-01-01
During tapping liquid steel from a converter to a ladle, slag may carry over due to a formation of free surface vortex. Such vortex should be suppressed in order to minimize contamination of the steel by slag. In the present study, a new idea is proposed to minimize the vortex formation by applying dual tapping hole system. The idea was tested using a rectangular shape water vessel with dual tapping holes, supplemented by a numerical simulations, in order to evaluate feasibility of the dual tapping hole system. Both the water model experiment and the numerical simulation showed similar tendencies that the dual tapping hole system is promising to prevent the vortex formation. Experimental results showed that the free surface vortex formation is highly sensitive to shape and configuration of the nozzle. From the numerical simulation, flow characteristics were obtained, and vortex canceling between two nozzles is confirmed. Effect of dual tapping hole increased with increasing distance between two holes in the present experimental condition. Finally, a 1/7.8 scale-down water vessel simulating a real converter was employed in order to confirm the validity of the above findings. The result showed almost the same tendencies with the previous findings.
2016-01-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel. PMID:27493559
Trinh, Philippe H
2016-07-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.
NASA Astrophysics Data System (ADS)
Trinh, Philippe H.
2016-07-01
The standard analytical approach for studying steady gravity free-surface waves generated by a moving body often relies upon a linearization of the physical geometry, where the body is considered asymptotically small in one or several of its dimensions. In this paper, a methodology that avoids any such geometrical simplification is presented for the case of steady-state flows at low speeds. The approach is made possible through a reduction of the water-wave equations to a complex-valued integral equation that can be studied using the method of steepest descents. The main result is a theory that establishes a correspondence between different bluff-bodied free-surface flow configurations, with the topology of the Riemann surface formed by the steepest descent paths. Then, when a geometrical feature of the body is modified, a corresponding change to the Riemann surface is observed, and the resultant effects to the water waves can be derived. This visual procedure is demonstrated for the case of two-dimensional free-surface flow past a surface-piercing ship and over an angled step in a channel.
Marangoni instability in a liquid layer with two free surfaces
NASA Technical Reports Server (NTRS)
Deissler, Robert J.; Oron, Alxander; Duh, J. C.
1993-01-01
The onset of the Marangoni instability in a liquid layer with two free nearly insulating surfaces heated from below is studied. Linear stability analysis yields a condition for the emergence of a longwave or a finite wavelength instability from the quiescent equilibrium state. Using the method of asymptotic expansions, a weakly nonlinear evolution equation describing the spatiotemporal behavior of the velocity and temperature fields at the onset of the longwave instability is derived. The latter is given by delta(M) = 24, delta(M) being the difference between the upper and the lower Marangoni numbers. It is shown that in some parametric range one convective cell forms across the layer, while in other parametric domains two convective cells emerge between the two free surfaces.
Convective instabilities in complex systems with partly free surface
NASA Astrophysics Data System (ADS)
Schwabe, Dietrich
2007-04-01
Experiments and observations and some selected theoretical studies of thermocapillary instabilities are reviewed and presented together with new unpublished work. We start with simple idealized model systems of pure thermocapillarity and add to them more complex features like gravity forces, temperature gradients inclined to the free surface, static and dynamic surface deformations, solutocapillary effects and reacting or moving crystal boundaries (like during unidirectional solidification). Many effects and instabilities are demonstrated in video clips which can be downloaded from http://meyweb.physik.uni-giessen.de/1_Forschung/crystalgrowth/video/homepage.html. We try to point out the relationship of thermocapillary instabilities in the more complex systems with those in theoretical studies where the names of these instabilities have been coined.
Free surface damage induced by irradiation of BCC iron
NASA Astrophysics Data System (ADS)
Korchuganov, Aleksandr V.
2016-11-01
The influence of the crystallographic orientation of bcc iron samples on the character of structural changes near the free surface irradiated with ions was studied in the framework of a molecular dynamics method. Irradiation of the (111) surface leads to the formation of craters surrounded by atoms escaped on the surface (adatoms). In the case of the (110) surface irradiation, a vacancy-type dislocation loop with the Burgers vector a <100> or a/2 <111> was formed. The number of adatoms and survived point defects was greater in the sample with the (110) surface than in the sample with the (111) surface for the atomic displacement cascade energies lower than 20 keV. The influence of the irradiated surface orientation on the number of generated point defects decreased with the increasing atomic displacement cascade energy.
Repression and reactivation of lithium efflux from erythrocytes.
Goodnick, P J; Meltzer, H L; Dunner, D L; Fieve, R R
1979-10-01
Efflux of lithium from human erythrocytes was studied in patients before, during, and after discontinuation of administration of lithium carbonate. Onset of lithium-induced repression of efflux took approximately 10 days and was significantly shorter in patients who had had lithium therapy previously. Reactivation took a longer period of time--approximately 2 week--and was found to be related to duration of lithium therapy. Theoretical pathways of lithium flow through membranes are discussed.
Local Heat Transfer Characteristics of Free-Surface Liquid Jets and Jet Arrays.
NASA Astrophysics Data System (ADS)
Pan, Yichuan
1993-01-01
Infrared radiometric techniques have been used to characterize local heat transfer for single free-surface liquid jets and arrays of free-surface liquid jets. The single-jet study deals with the effect of selected nozzle configurations on the local heat transfer in the stagnation zone, and is accompanied by a separate flow structure study. The results show that for identical jet Reynolds numbers, significant differences (as much as 40%) exist in the magnitudes of the local Nusselt number for the four nozzle configurations studied. Local heat transfer results reveal that for already turbulent jets, the dimensionless mean radial velocity gradient appears to be more influential in determining the heat transfer than changes in turbulence level. An empirical correlation of the experimental data supports this conclusion, and reveals that the stagnation Nusselt number is affected independently by the jet Reynolds number and the dimensionless mean radial velocity gradient. The multiple-jet study reveals local heat transfer characteristics of jet arrays. The different inter-jet flow interaction, as represented by different jet array configurations (the in-line array and the staggered array with different nozzle-to-nozzle spacings), shows negligible influence on local heat transfer under the central jet. The secondary stagnation Nusselt number between the adjacent jets is a direct consequence of the inter-jet flow interaction, and can be as high as 50% of the primary stagnation Nusselt number. Local and average heat transfer also show dependence on the nozzle-to-plate spacing. A correlation for average heat transfer is proposed.
NASA Astrophysics Data System (ADS)
Lewerenz, Meinert; Warnecke, Alexander; Sauer, Dirk Uwe
2017-06-01
In this contribution a simple in-situ method named capacity difference analysis (CDA) is introduced to characterize lateral flow of lithium-ions within the anode. Therefore, simply the difference between two capacity measurements, which are determined at significantly different current rates, are evaluated for each check-up. During aging the initial capacity difference of 2-3% is reducing for all calendaric and cyclic aged cells until they reach a value which is close to zero difference. The initial capacity difference can be explained by lithium-ion flow between active and passive anode, whereby passive represents the excess anode without counter cathode (passive electrode effect). The successive reduction is likely caused by particle disconnection between active and passive anode and/or dry out of electrolyte in the anode overhang. Furthermore some cyclic aged cells reveal an increase after the initial decrease which can be associated to a process of forming a vertical deposition layer on top of the anode facing the separator that is not permeable to lithium-ions applying reasonable discharge currents. The CDA results are validated by laser microscope imaging after disassembling representative cells. The method is applied on a test matrix presented in our previous publication [1].
Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber
Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.
2012-07-08
A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.
NASA Astrophysics Data System (ADS)
Choi, Jung-Eun
1993-01-01
In Part One of this two-part thesis, laminar and turbulent solutions are presented for the Stokes-wave/flat-plate boundary-layer and wake for small - large wave steepness, including exact and approximate treatments of the viscous free-surface boundary conditions. The macro-scale flow exhibits the wave-induced pressure-gradient effects described in a precursory work. For laminar flow, the micro-scale flow indicates that the free-surface boundary conditions have a profound influence over the boundary layer and near and intermediate wake: the wave elevation and slopes correlate with the depthwise velocity; the streamwise and transverse velocities and vorticity display large variations, including islands of maximum/minimum values, whereas the depthwise velocity and pressure indicate small variations; significant free-surface vorticity flux and complex vorticity transport are displayed; wave-induced effects normalized by wave steepness are larger for small steepness with the exception of wave-induced separation; order-of-magnitude estimates are confirmed; and appreciable errors are introduced through approximations to the free-surface boundary conditions. For turbulent flow, the results are similar, but preliminary due to the present uncertainty in appropriate treatment of the free-surface boundary conditions and meniscus boundary layer. In Part Two, Navier-Stokes, boundary-layer, and perturbation expansion solutions are presented for the model problem of a flat-plate boundary layer and wake with temporal, spatial, and traveling horizontal-wave external flows, which are characterized by Stokes-layer overshoots, phase angles, and streaming and nonlinearities. The temporal wave displays close agreement with previous studies and is useful for validation and placing the current work in technical perspective. The spatial wave indicates significantly increased magnitudes and complex nature (e.g., wake bias), which is attributed to nonlinearities associated with large
Pottier, B; Frétigny, C; Talini, L
2015-06-05
We investigate the properties of nanometric liquid films with a new noninvasive technique. We measure the spontaneous thermal fluctuations of the free surfaces of liquids to probe their hydrodynamic boundary condition at a solid wall. The surface fluctuations of a silicon oil film could be described with a no-slip boundary condition for film thicknesses down to 20 nm. Oppositely, a 4 nm negative slip length had to be introduced to describe the behavior of n-hexadecane, consistently with previous surface force apparatus data on the same system. Our results demonstrate that at vanishing flow a nanometric solidlike layer close to the wall may exist according to the nature of the liquid.
Nonlinear Acoustics at the Air-Water Free Surface
NASA Astrophysics Data System (ADS)
Pree, Seth; Naranjo, Brian; Putterman, Seth
2016-11-01
According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.
Glasses crystallize rapidly at free surfaces by growing crystals upward.
Sun, Ye; Zhu, Lei; Kearns, Kenneth L; Ediger, Mark D; Yu, Lian
2011-04-12
The crystallization of glasses and amorphous solids is studied in many fields to understand the stability of amorphous materials, the fabrication of glass ceramics, and the mechanism of biomineralization. Recent studies have found that crystal growth in organic glasses can be orders of magnitude faster at the free surface than in the interior, a phenomenon potentially important for understanding glass crystallization in general. Current explanations differ for surface-enhanced crystal growth, including released tension and enhanced mobility at glass surfaces. We report here a feature of the phenomenon relevant for elucidating its mechanism: Despite their higher densities, surface crystals rise substantially above the glass surface as they grow laterally, without penetrating deep into the bulk. For indomethacin (IMC), an organic glass able to grow surface crystals in two polymorphs (α and γ), the growth front can be hundreds of nanometers above the glass surface. The process of surface crystal growth, meanwhile, is unperturbed by eliminating bulk material deeper than some threshold depth (ca. 300 nm for α IMC and less than 180 nm for γ IMC). As a growth strategy, the upward-lateral growth of surface crystals increases the system's surface energy, but can effectively take advantage of surface mobility and circumvent slow growth in the bulk.
Glasses crystallize rapidly at free surfaces by growing crystals upward
Sun, Ye; Zhu, Lei; Kearns, Kenneth L.; Ediger, Mark D.; Yu, Lian
2011-01-01
The crystallization of glasses and amorphous solids is studied in many fields to understand the stability of amorphous materials, the fabrication of glass ceramics, and the mechanism of biomineralization. Recent studies have found that crystal growth in organic glasses can be orders of magnitude faster at the free surface than in the interior, a phenomenon potentially important for understanding glass crystallization in general. Current explanations differ for surface-enhanced crystal growth, including released tension and enhanced mobility at glass surfaces. We report here a feature of the phenomenon relevant for elucidating its mechanism: Despite their higher densities, surface crystals rise substantially above the glass surface as they grow laterally, without penetrating deep into the bulk. For indomethacin (IMC), an organic glass able to grow surface crystals in two polymorphs (α and γ), the growth front can be hundreds of nanometers above the glass surface. The process of surface crystal growth, meanwhile, is unperturbed by eliminating bulk material deeper than some threshold depth (ca. 300 nm for α IMC and less than 180 nm for γ IMC). As a growth strategy, the upward-lateral growth of surface crystals increases the system’s surface energy, but can effectively take advantage of surface mobility and circumvent slow growth in the bulk. PMID:21444775
Label-free surface plasmon sensing towards cancer diagnostics
NASA Astrophysics Data System (ADS)
Sankaranarayanan, Goutham
The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.
Fabrication of Adhesive Lenses Using Free Surface Shaping
NASA Astrophysics Data System (ADS)
Hoheisel, D.; Kelb, C.; Wall, M.; Roth, B.; Rissing, L.
2013-09-01
Two approaches for fabricating polymer lenses are presented in this paper. Both are based on filling circular holes with UV curing adhesives. Initially, the viscous adhesive material creates a liquid and spherical free surface due to its own surface tension. This shape is then preserved by curing with UV-hardening light. For the first approach, the holes are generated in a 4 inch Si-wafer by deep reactive ion etching (DRIE) and for the second, a polydimethylsiloxane (PDMS) mould is manufactured. Three types of UV-curing adhesives are investigated (NOA 61, NOA 88 and NEA 121 by Norland Products). Preliminary to the determination of the lens curvature, a contact angle goniometer is used for taking side view images of the lenses. The radius of curvature is then extracted via image processing with the software MATLABÂ®. Furthermore, the surface roughness of the PDMS mould and the generated lenses is measured with a white light interferometer to characterize the casting process. The resolution power of the generated lenses is evaluated by measurement of their point spread functions (psf) and modulation transfer functions (mtf), respectively.
Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration
Yeo, B.T. Thomas; Sabuncu, Mert R.; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-01-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160k nodes requires less than 5 minutes when warping the atlas and less than 3 minutes when warping the subject on a Xeon 3.2GHz single processor machine. This is comparable to the fastest non-diffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image: (1) parcellation of in-vivo cortical surfaces and (2) Brodmann area localization in ex-vivo cortical surfaces. PMID:19709963
Spherical demons: fast diffeomorphic landmark-free surface registration.
Yeo, B T Thomas; Sabuncu, Mert R; Vercauteren, Tom; Ayache, Nicholas; Fischl, Bruce; Golland, Polina
2010-03-01
We present the Spherical Demons algorithm for registering two spherical images. By exploiting spherical vector spline interpolation theory, we show that a large class of regularizors for the modified Demons objective function can be efficiently approximated on the sphere using iterative smoothing. Based on one parameter subgroups of diffeomorphisms, the resulting registration is diffeomorphic and fast. The Spherical Demons algorithm can also be modified to register a given spherical image to a probabilistic atlas. We demonstrate two variants of the algorithm corresponding to warping the atlas or warping the subject. Registration of a cortical surface mesh to an atlas mesh, both with more than 160 k nodes requires less than 5 min when warping the atlas and less than 3 min when warping the subject on a Xeon 3.2 GHz single processor machine. This is comparable to the fastest nondiffeomorphic landmark-free surface registration algorithms. Furthermore, the accuracy of our method compares favorably to the popular FreeSurfer registration algorithm. We validate the technique in two different applications that use registration to transfer segmentation labels onto a new image 1) parcellation of in vivo cortical surfaces and 2) Brodmann area localization in ex vivo cortical surfaces.
Experimental study of shear layer instability below a free surface
NASA Astrophysics Data System (ADS)
André, Matthieu A.; Bardet, Philippe M.
2015-11-01
Relaxation of a laminar boundary layer at a free surface is an inviscidly unstable process and can lead to millimeter-scale surface waves, influencing interfacial processes. Due to the small time- and length-scales involved, previous experimental studies have been limited to visual observations and point-wise measurements of the surface profile to determine instability onset and frequency. However, effects of viscosity, surface tension, and non-linearity of the wave profile have not been systematically studied. In fact, no data have been reported on the velocity fields associated with this instability. In the present study, planar laser induced fluorescence and particle image velocimetry provide surface profiles coupled with liquid phase velocity fields for this instability in a time resolved manner. Wave steepness (ak, with a the amplitude and k the wave number) and Reynolds and Weber numbers based on momentum thickness range from 0 to 1.2, 143 to 177, and 4.79 to 6.61, respectively. Large datasets are analyzed to gain statistical information on the surface behavior. Discrete vortices are resolved, showing that the shear layer becomes unstable and rolls up above a Reynolds number of 140. The detection onset and steepness of the subsequent surface deformation by the vortices depend upon the Weber number. Non-linear behavior such as vortex motion and wave profile asymmetry are observed at steepness larger than 0.5.
Knaster, J; Kanemura, T; Kondo, K
2016-12-01
The flowing lithium target of a Li(d,xn) fusion relevant neutron source must evacuate the deuteron beam power and generate in a stable manner a flux of neutrons with a broad peak at 14 MeV capable to cause similar phenomena as would undergo the structural materials of plasma facing components of a DEMO like reactors. Whereas the physics of the beam-target interaction are understood and the stability of the lithium screen flowing at the nominal conditions of IFMIF (25 mm thick screen with +/-1 mm surface amplitudes flowing at 15 m/s and 523 K) has been demonstrated, a conclusive assessment of the evaporation and condensation of lithium during operation was missing. First attempts to determine evaporation rates started by Hertz in 1882 and have since been subject of continuous efforts driven by its practical importance; however intense surface evaporation is essentially a non-equilibrium process with its inherent theoretical difficulties. Hertz-Knudsen-Langmuir (HKL) equation with Schrage's 'accommodation factor' η = 1.66 provide excellent agreement with experiments for weak evaporation under certain conditions, which are present during a Li(d,xn) facility operation. An assessment of the impact under the known operational conditions for IFMIF (574 K and 10(-3)Pa on the free surface), with the sticking probability of 1 inherent to a hot lithium gas contained in room temperature steel walls, is carried out. An explanation of the main physical concepts to adequately place needed assumptions is included.
NASA Astrophysics Data System (ADS)
Guémas, Marine; Sellier, Antoine; Pigeonneau, Franck
2015-04-01
The axisymmetric gravity-driven dynamics of a bubble rising toward a free surface is addressed for gas-liquid interfaces having unequal surface tensions. The liquid flow is governed by the Stokes equations which are here solved using a boundary element method in axisymmetric configuration. Within this framework, two dimensionless numbers arise: the Bond number Bo1 based on the surface tension of the bubble interface and the surface tension ratio γ ˆ comparing the free surface and bubble surface tensions. Under a careful and discussed selection of the code key settings (number of boundary elements, initial bubble location, and distance beyond which the free surface is truncated), it has been possible to numerically and accurately track in time the bubble and free surface shapes for several values of ( Bo 1 , γ ˆ ) . The long-time shapes are found to deeply depend upon both Bo1 and γ ˆ and also to compare well with the shapes predicted in Princen and Mason ["Shape of a fluid drop at a fluid-liquid interface. II. Theory for three-phase systems," J. Colloid. Sci. 20, 246-266 (1965)] using a hydrostatic model in which both surfaces are touching. Similarly, the drainage dynamics of the liquid film thickness between the bubble and the free surface depends on ( Bo 1 , γ ˆ ) . The long-time film thickness exponentially decays in time and a so-called thinning rate α for which the numerical behaviors and a simple model reveal two basic behaviors: (i) at small Bond number, α behaves as 1/Bo1 and (ii) at large Bond number, α is nearly constant. In addition, it is found that in the entire range of the quantity χ = ( 1 + γ ˆ ) Bo 1 / ( 2 γ ˆ ) , the thinning rate α is well approximated by the function 1/(18χ) + α∞ with α∞ ≈ 0.158. Such a result also permits one to estimate the typical drainage time versus the initial bubble radius a, the liquid density ρ and viscosity μ, the gravity and the free surface, and bubble surface tensions.
Subduction Initiation from a Stagnant Lid: New Insights from Numerical Models with a Free Surface
NASA Astrophysics Data System (ADS)
Crameri, Fabio; Tackley, Paul
2016-04-01
Subduction initiation is key in understanding the dynamic evolution of the Earth and its fundamental difference to all other rocky planetary bodies in our solar system. Despite recent progress, the question about how a stiff, mostly stagnant planetary lid can break and become part in the global overturn of the mantle is still unresolved. Here, we present results on subduction initiation obtained by dynamically self-consistent, time-dependent numerical modelling of mantle convection and single-sided subduction (Crameri et al., 2012b) using the finite-difference, multigrid code StagYY (Tackley 2008). We show that the stress distribution and resulting deformation of the lithosphere is strongly controlled by the top boundary formulation: A free surface enables surface topography and plate bending, increases gravitational sliding of the plates and leads to more realistic, lithosphere-scale shear zones. As a consequence, subduction initiation induced by regional mantle flow is significantly favoured by a free surface compared to the commonly-applied, vertically-fixed (i.e., free-slip) surface. In addition, we present global, three-dimensional mantle convection experiments (see e.g. Crameri and Tackley, 2014) that employ basal heating that leads to narrow mantle plumes. Narrow mantle plumes impinging on the base of the plate cause locally weak plate segments and a large topography at the lithosphere-asthenosphere boundary. Both are shown to be key to induce subduction initiation. Finally, our model self-consistently reproduces an episodic lid with a fast global overturn due to the hotter mantle developed below a former stagnant lid. We conclude that once in a stagnant-lid mode, a planet (like Venus) thus preferentially evolves by temporally discrete, global overturn events rather than by a continuous recycling of lid. REFERENCES Crameri, F, Tackley, P.J, Meilick, I, Gerya, T.V, Kaus, B.J.P (2012) A free plate surface and weak oceanic crust produce single-sided subduction
A new free-surface stabilization algorithm for geodynamical modelling: Theory and numerical tests
NASA Astrophysics Data System (ADS)
Andrés-Martínez, Miguel; Morgan, Jason P.; Pérez-Gussinyé, Marta; Rüpke, Lars
2015-09-01
The surface of the solid Earth is effectively stress free in its subaerial portions, and hydrostatic beneath the oceans. Unfortunately, this type of boundary condition is difficult to treat computationally, and for computational convenience, numerical models have often used simpler approximations that do not involve a normal stress-loaded, shear-stress free top surface that is free to move. Viscous flow models with a computational free surface typically confront stability problems when the time step is bigger than the viscous relaxation time. The small time step required for stability (< 2 Kyr) makes this type of model computationally intensive, so there remains a need to develop strategies that mitigate the stability problem by making larger (at least ∼10 Kyr) time steps stable and accurate. Here we present a new free-surface stabilization algorithm for finite element codes which solves the stability problem by adding to the Stokes formulation an intrinsic penalization term equivalent to a portion of the future load at the surface nodes. Our algorithm is straightforward to implement and can be used with both Eulerian or Lagrangian grids. It includes α and β parameters to respectively control both the vertical and the horizontal slope-dependent penalization terms, and uses Uzawa-like iterations to solve the resulting system at a cost comparable to a non-stress free surface formulation. Four tests were carried out in order to study the accuracy and the stability of the algorithm: (1) a decaying first-order sinusoidal topography test, (2) a decaying high-order sinusoidal topography test, (3) a Rayleigh-Taylor instability test, and (4) a steep-slope test. For these tests, we investigate which α and β parameters give the best results in terms of both accuracy and stability. We also compare the accuracy and the stability of our algorithm with a similar implicit approach recently developed by Kaus et al. (2010). We find that our algorithm is slightly more accurate
Alternative mechanism for coffee-ring deposition based on active role of free surface
NASA Astrophysics Data System (ADS)
Jafari Kang, Saeed; Vandadi, Vahid; Felske, James D.; Masoud, Hassan
2016-12-01
When a colloidal sessile droplet dries on a substrate, the particles suspended in it usually deposit in a ringlike pattern. This phenomenon is commonly referred to as the "coffee-ring" effect. One paradigm for why this occurs is as a consequence of the solutes being transported towards the pinned contact line by the flow inside the drop, which is induced by surface evaporation. From this perspective, the role of the liquid-gas interface in shaping the deposition pattern is somewhat minimized. Here, we propose an alternative mechanism for the coffee-ring deposition. It is based on the bulk flow within the drop transporting particles to the interface where they are captured by the receding free surface and subsequently transported along the interface until they are deposited near the contact line. That the interface captures the solutes as the evaporation proceeds is supported by a Lagrangian tracing of particles advected by the flow field within the droplet. We model the interfacial adsorption and transport of particles as a one-dimensional advection-generation process in toroidal coordinates and show that the theory reproduces ring-shaped depositions. Using this model, deposition patterns on both hydrophilic and hydrophobic surfaces are examined in which the evaporation is modeled as being either diffusive or uniform over the surface.
Nonlinear simulation of free surfaces and atomization in pressure swirl atomizers
NASA Astrophysics Data System (ADS)
Park, Hongbok; Heister, Stephen D.
2006-05-01
A fully nonlinear boundary element method (BEM) model has been developed to simulate the pressure swirl or simplex atomizer. The free surface inside the vortex chamber and within the hollow-cone/primary atomization zone is simulated with a fourth order scheme thereby permitting investigation of highly distorted surfaces up to the point where atomization occurs. For the axisymmetric calculations, annular rings of fluid are pinched from the main liquid domain. Swirling flow is simulated via a superposition of a potential vortex with the base axial flow emanating from the nozzle in a BEM formulation. Results show good comparison to film thicknesses from test data as well as from linear one-dimensional theory. Parametric studies are conducted to assess the influence of injector geometry and flow characteristics on film thickness and spray angle produced by the atomizer. Limited results are also provided to compare droplet sizes with experimental data. In this regard, the linear stability analysis of Ponstein is used to predict the number of droplets created from each ring of fluid shed by the axisymmetric calculation.
A simple hydrodynamic model of a laminar free-surface jet in horizontal or vertical flight
NASA Astrophysics Data System (ADS)
Haustein, Herman D.; Harnik, Ron S.; Rohlfs, Wilko
2017-08-01
A useable model for laminar free-surface jet evolution during flight, for both horizontal and vertical jets, is developed through joint analytical, experimental, and simulation methods. The jet's impingement centerline velocity, recently shown to dictate stagnation zone heat transfer, encompasses the entire flow history: from pipe-flow velocity profile development to profile relaxation and jet contraction during flight. While pipe-flow is well-known, an alternative analytic solution is presented for the centerline velocity's viscous-driven decay. Jet-contraction is subject to influences of surface tension (We), pipe-flow profile development, in-flight viscous dissipation (Re), and gravity (Nj = Re/Fr). The effects of surface tension and emergence momentum flux (jet thrust) are incorporated analytically through a global momentum balance. Though emergence momentum is related to pipe flow development, and empirically linked to nominal pipe flow-length, it can be modified to incorporate low-Re downstream dissipation as well. Jet contraction's gravity dependence is extended beyond existing uniform-velocity theory to cases of partially and fully developed profiles. The final jet-evolution model relies on three empirical parameters and compares well to present and previous experiments and simulations. Hence, micro-jet flight experiments were conducted to fill-in gaps in the literature: jet contraction under mild gravity-effects, and intermediate Reynolds and Weber numbers (Nj = 5-8, Re = 350-520, We = 2.8-6.2). Furthermore, two-phase direct numerical simulations provided insight beyond the experimental range: Re = 200-1800, short pipes (Z = L/d . Re ≥ 0.01), variable nozzle wettability, and cases of no surface tension and/or gravity.
Giannakis, D.; Fischer, P. F.; Rosner, R.; Univ. of Chicago
2009-01-01
We develop and test spectral Galerkin schemes to solve the coupled Orr-Sommerfeld and induction equations for parallel, incompressible MHD in free-surface and fixed-boundary geometries. The schemes discrete bases consist of Legendre internal shape functions, supplemented with nodal shape functions for the weak imposition of the stress and insulating boundary conditions. The orthogonality properties of the basis polynomials solve the matrix-coefficient growth problem, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p=3000 with p-independent roundoff error. Accuracy is limited instead by roundoff sensitivity due to non-normality of the stability operators at large hydrodynamic and/or magnetic Reynolds numbers (Re,Rm {ge} 4 x 10{sup 4}). In problems with Hartmann velocity and magnetic-field profiles we employ suitable Gauss quadrature rules to evaluate the associated exponentially weighted sesquilinear forms without error. An alternative approach, which involves approximating the forms by means of Legendre-Gauss-Lobatto quadrature at the 2p?1 precision level, is found to yield equal eigenvalues within roundoff error. As a consistency check, we compare modal growth rates to energy growth rates in nonlinear simulations and record relative discrepancy smaller than 10{sup -5} for the least stable mode in free-surface flow at Re = 3 x 10{sup 4}. Moreover, we confirm that the computed normal modes satisfy an energy conservation law for free-surface MHD with error smaller than 10{sup -6}. The critical Reynolds number in free-surface MHD is found to be sensitive to the magnetic Prandtl number Pm, even at the Pm=O(10{sup -5}) regime of liquid metals.
NASA Astrophysics Data System (ADS)
Giannakis, Dimitrios; Fischer, Paul F.; Rosner, Robert
2009-03-01
We develop and test spectral Galerkin schemes to solve the coupled Orr-Sommerfeld and induction equations for parallel, incompressible MHD in free-surface and fixed-boundary geometries. The schemes' discrete bases consist of Legendre internal shape functions, supplemented with nodal shape functions for the weak imposition of the stress and insulating boundary conditions. The orthogonality properties of the basis polynomials solve the matrix-coefficient growth problem, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p=3000 with p-independent roundoff error. Accuracy is limited instead by roundoff sensitivity due to non-normality of the stability operators at large hydrodynamic and/or magnetic Reynolds numbers ( Re,Rm≳4×104). In problems with Hartmann velocity and magnetic-field profiles we employ suitable Gauss quadrature rules to evaluate the associated exponentially weighted sesquilinear forms without error. An alternative approach, which involves approximating the forms by means of Legendre-Gauss-Lobatto quadrature at the 2p-1 precision level, is found to yield equal eigenvalues within roundoff error. As a consistency check, we compare modal growth rates to energy growth rates in nonlinear simulations and record relative discrepancy smaller than 10-5 for the least stable mode in free-surface flow at Re=3×104. Moreover, we confirm that the computed normal modes satisfy an energy conservation law for free-surface MHD with error smaller than 10-6. The critical Reynolds number in free-surface MHD is found to be sensitive to the magnetic Prandtl number Pm, even at the Pm=O(10-5) regime of liquid metals.
Venkatasetty, A.V.
1984-01-01
This book presents papers on the use of lithium in electric batteries. Topics considered include solvents for lithium battery technology, transport properties and structure of nonaqueous electrolyte solutions, primary lithium batteries, lithium sulfur dioxide batteries, lithium oxyhalide batteries, medical batteries, ambient-temperature rechargeable lithium cells, high-temperature lithium batteries, and lithium ion-conducting solid electrolytes.
46 CFR 170.300 - Special consideration for free surface of spoil in hopper dredge hoppers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Special consideration for free surface of spoil in hopper dredge hoppers. 170.300 Section 170.300 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SUBDIVISION AND STABILITY STABILITY REQUIREMENTS FOR ALL INSPECTED VESSELS Free Surface §...
Woolley, Robert D.
2002-01-01
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fusion reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
Woolley, Robert D.
1998-10-21
A system for forming a thick flowing liquid metal, in this case lithium, layer on the inside wall of a toroid containing the plasma of a deuterium-tritium fission reactor. The presence of the liquid metal layer or first wall serves to prevent neutron damage to the walls of the toroid. A poloidal current in the liquid metal layer is oriented so that it flows in the same direction as the current in a series of external magnets used to confine the plasma. This current alignment results in the liquid metal being forced against the wall of the toroid. After the liquid metal exits the toroid it is pumped to a heat extraction and power conversion device prior to being reentering the toroid.
Numerical simulation of transient cooling of a hot solid by an impinging free surface jet
Fujimoto, Hitoshi; Takuda, Hirohiko; Hatta, Natsuo; Viskanta, R.
1999-12-01
In iron- and steel-making industries, jet impingement is widely used to cool hot strips and slabs. In the hot rolling process a hot strip passing through the finishing rolls is cooled along a runout table from an austenitic finishing temperature to a coiling temperature by means of impinging water jets. The upper surface of the strip is cooled by impingement of water sheets or bars, and the lower surface is cooled by water sprays. This paper treats transient cooling of a hot solid by an impinging circular free surface liquid jet. The flow and thermal fields in the liquid as well as the temperature distributions in the hot solid have been predicted numerically. The Navier-Stokes equations for incompressible fluid flow in an axisymmetric coordinate system and the transient heat conduction equation for a solid have been solved by a finite difference method. The hydrodynamics of the liquid film and the heat transfer processes have been investigated to understand the physics of the phenomena.
RTM-based Teleseismic Reflection Tomography with Free Surface Multiples
NASA Astrophysics Data System (ADS)
Burdick, S. A.; De Hoop, M. V.; van der Hilst, R. D.
2013-12-01
Receiver function analysis of teleseismic converted and free surface reflected phases has long been a cornerstone of lithospheric studies. Discontinuities in elastic properties are revealed by deconvolving the incident wavefield from scattered phases and projecting the time differences to depth to form an image. The accuracy of the image is determined to a large extent by the accuracy of the method and background velocity model used, but popular approaches for projecting receiver functions to depth commonly rely on simplifying assumptions of a 1D velocity and planar discontinuities. In tectonically complex regions like subduction zones and rift systems, strong heterogeneity can create an ambiguous tradeoff between the background velocity and the depth of the discontinuities. Furthermore, such structures are apt to create caustics at high frequencies, rendering ray-based methods inadequate. In order to better constrain the background velocity and correctly place the discontinuities at depth, we employ a novel reverse-time migration (RTM) based reflection tomography method. We adapt our reflection tomography from exploration seismology for use with teleseismic phases. Active source methods for exploration have focused on the annihilation of extended images - image gathers formed with different subsurface angle or offset information - as a means of judging the accuracy of the model. Applying these approaches to teleseismic data is untenable because 1) the sparse and uneven distribution of earthquake sources leads to the incomplete construction of extended image, 2) the imperfect separation and source deconvolution of the scattered wavefield render previous error measurements unreliable, and 3) the planar geometry of incoming arrivals makes measures of subsurface offset insensitive to perturbations in the model. To overcome these obstacles, we have developed a flexible approach based on pairwise single-source image correlations. We determine the success of the RTM and
NASA Astrophysics Data System (ADS)
Gessese, A.; Heining, C.; Sellier, M.; Mc Nish, R.; Rack, W.
2015-01-01
Glaciers are an important component of the climate system that respond sensitively to climate change. Small glaciers respond more quickly to changing weather patterns compared to large polar ice sheets and ice caps that make them ideal to study climate variability. This study relates to the numerical reconstruction of the glacier bed in order to generate basal boundary data for ice flow models. Bedrock elevation is a paramount input parameter in glacier flow modeling to accurately capture its flow dynamics but is difficult to measure. We present an easy to implement direct numerical and analytical methodology to infer the bedrock geometry under glacial ice from the knowledge of the free surface elevation or the free surface velocity in one space dimension. The numerical and analytical methods are both based on the shallow ice approximation and require the time series of the surface mass balance distribution. Moreover, the analytical method requires the knowledge of the glacier thickness at one arbitrary location. Numerical benchmark test cases are used to verify the suitability and applicability of the algorithms, and a sensitivity analysis demonstrates the robustness of the method.
Hydrogen, lithium, and lithium hydride production
Brown, Sam W.; Spencer, Larry S.; Phillips, Michael R.; Powell, G. Louis; Campbell, Peggy J.
2017-06-20
A method is provided for extracting hydrogen from lithium hydride. The method includes (a) heating lithium hydride to form liquid-phase lithium hydride; (b) extracting hydrogen from the liquid-phase lithium hydride, leaving residual liquid-phase lithium metal; (c) hydriding the residual liquid-phase lithium metal to form refined lithium hydride; and repeating steps (a) and (b) on the refined lithium hydride.
Foam Generation and Air Entrainment Near a Free Surface
1987-09-30
plunging jets and by the action of turbulent eddies in water flowing over spillways has been discussed by several authors. Data for the entrained air flow...r = mean jet radius. 1 They determined the size of the region in the liquid which was affected by air entrainment and mea- sured the...Spilling Breaker," J. Fluid Mech., Vol. 63, 1. E.J. McKeogh and D.A. Ervine, 1981, " Air Entrainment Rate and Diffusion Pattern of Plunging Liquid
Free-surface stability criterion as affected by velocity distribution
Cheng-Lung, Chen
1995-01-01
This paper examines how the velocity distribution of flow in open channels affects the kinematic and dynamic wave velocities, from which the various forms of the Vedernikov number V can be formulated. When V >1, disturbances created in open-channel flow will amplify in the form of roll waves; when V <1, some (though not all) disturbances will attenuate. A study of the Vedernikov stability criterion reveals that it can be readily deduced within the framework of the kinematic and dynamic wave theories by comparing the kinematic wave velocity to the corresponding dynamic wave velocity. -from Author
Hydrogen, lithium, and lithium hydride production
Brown, Sam W; Spencer, Larry S; Phillips, Michael R; Powell, G. Louis; Campbell, Peggy J
2014-03-25
A method of producing high purity lithium metal is provided, where gaseous-phase lithium metal is extracted from lithium hydride and condensed to form solid high purity lithium metal. The high purity lithium metal may be hydrided to provide high purity lithium hydride.
3D crown spike of free surface induced by two bubbles
NASA Astrophysics Data System (ADS)
Han, R.; Yao, X. L.; Zhang, A. M.
2015-12-01
A specific physics called ‘crown phenomenon’ is discovered in the interaction between weak buoyancy bubbles and free surface. The ‘crown phenomenon’ is that a circle of the outer fluid appears to surround the middle spike of water after the jet impact of bubbles, and this kind of spike is defined as ‘crown spike’. In this study, the crown spike due to the coupling effect between two bubbles and free surface is studied both experimentally and numerically. In the experiment, copper wires in series connection are used to generate two inphase bubbles and the bubble and free surface shapes are recorded by high-speed photography. In the numerical study, a three-dimensional model is established to simulate the bubble-free- surface interaction with a boundary integral method and then the motion of free surface is further simulated without regard to the effect of bubbles after the jet impact. The computation also traces the ‘crown phenomenon’, which is considered as a second spike related to a large high-pressure region formed after the impact. The large high-pressure region leads to a thick column of water on the free surface and then the column of water gradually increases to surround the first spike. Both oblique jets and crown spike are observed in the experimental and numerical results, and the favorable agreements of bubbles and free surface shapes validate the present model. The effect of the inter-bubble distance on crown spike is also investigated.
Kolowith, R.; Owen, T.J.; Berg, J.D.; Atwood, J.M.
1981-10-01
An engineering design and operating experience of a large, isothermal, lithium-coolant test loop are presented. This liquid metal coolant loop is called the Experimental Lithium System (ELS) and has operated safely and reliably for over 6500 hours through September 1981. The loop is used for full-scale testing of components for the Fusion Materials Irradiation Test (FMIT) Facility. Main system parameters include coolant temperatures to 430/sup 0/C and flow to 0.038 m/sup 3//s (600 gal/min). Performance of the main pump, vacuum system, and control system is discussed. Unique test capabilities of the ELS are also discussed.
Design procedures for flutter-free surface panels
NASA Technical Reports Server (NTRS)
Laurenson, R. M.; Mcpherson, J. I.
1977-01-01
An approach for the design of lightweight external surface panel configurations to preclude panel flutter was developed. Design procedures were developed for flat orthotropic panels under the interacting influence of parameters such as support flexibility, inplane loads, pressure differential, and flow angularity. The basic relationships required to define these design procedures were based on theoretical panel flutter analyses. Where possible, the design procedures were verified through comparison with available experimental panel flutter data.
Free surface modeling in OWC chamber with parabolic side walls using 3D BEM
Hasanabad, Madjid Ghodsi
2015-03-10
In this paper, BEM was used for free surface modeling in OWC chamber and out of it. Linear kinematic and dynamic boundary conditions were used for free surface out of OWC chamber and nonlinear forms were used for free surface in the chamber. These boundary conditions were discretized by finite differences method. Also, some thermodynamics relations were applied for trapped air behavior modeling in OWC chamber. Wave specifications in Chabahar region were used in modeling because these waves have an acceptable power for electricity generation. The results show a good agreement with results of other researches.
Cook, Chris B.; Richmond, Marshall C.; Serkowski, John A.; Ebner, Laurie L.
2002-07-30
Based upon acoustic tracking and fish tagging data, The Dalles Project constructed and operated by the U. S. Army Corps of Engineers has been shown to have the highest mortality rates for juvenile salmonids on the Lower Columbia River. In efforts to assist the hydraulic and biological communities in managing this hydroelectric project, a three-dimensional computational fluid dynamics (CFD) model was applied to the spillway, stilling basin, and tailrace zones downstream of the dam. To simulate the highly transient and turbulent flow conditions in this region, a free-surface computational fluid dynamics (CFD) numerical model has been applied. This model is based upon the volume-of-fluids (VOF) method, and is capable of simulating sudden discontinuities in the free surface, including wave breakup. The model solves the non-hydrostatic Reynolds-averaged Navier-Stokes (RANS) equations over variable-sized hexahedral cells. To verify the ability of the numerical model to simulate flows downstream of the spillway, the model was verified against data from three different physical models of The Dalles tailrace at scales of 1:36, 1:40, and 1:80. Results from these physical models allow for validation of the numerical model at various scales of motion from the small scale highly dynamic variations near the baffle blocks (1:36 and 1:40 scale) to the larger scale general circulation patterns that encompass the tailrace (1:80 scale).
Touihri, R; El Gallaf, A; Henry, D; Ben Hadid, H
2011-11-01
Convective instabilities in a cylindrical cavity heated from below, with a free surface at the top, are numerically investigated using a spectral-element code. Both buoyancy and surface tension forces are taken into account, and heat exchange is considered at the upper surface. This configuration corresponds to the Bénard-Marangoni situation. The primary thresholds associated with azimuthal eigenmodes and corresponding to the onset of convection are first given as a function of the aspect ratio of the cavity A (radius/height), the Biot number Bi, and the Marangoni number Ma. Particular attention is paid to the influence of the Biot and Marangoni numbers: a stabilizing surface tension effect (Ma>0) induces an increase of the primary thresholds, which is magnified for small values of Bi, but may also change the flow structure by creating counter-rotating rolls near the free surface. The nonlinear evolution of the convection beyond its onset is given through bifurcation diagrams for A=1.5. Two different branches of axisymmetric solutions, either with upflow or downflow at the center, emerge at the onset. The destabilization of these solutions and the further dynamical evolution of the flow has been highlighted for widely varying Biot numbers.
Micro-swimmer dynamics in free-surface turbulence subject to wind stress
NASA Astrophysics Data System (ADS)
Marchioli, Cristian; Lovecchio, Salvatore; Soldati, Alfredo
2015-11-01
We examine the effect of wind-induced shear on the orientation and distribution of motile micro-swimmers in free-surface turbulence. Winds blowing above the air-water interface can influence the distribution and productivity of motile organisms via the shear generated just below the surface. Swimmer dynamics depend not only by the advection of the fluid but also by external stimuli like nutrient concentration, light, gravity. Here we focus on gyrotaxis, resulting from the gravitational torque generated by an asymmetric mass distribution within the organism. The combination of such torque with the viscous torque due to shear can reorient swimmers, reducing their vertical migration and causing entrapment in horizontal fluid layers. Through DNS-based Euler-Lagrangian simulations we investigate the effect of wind-induced shear on the motion of gyrotactic swimmers in turbulent open channel flow. We consider different wind directions and swimmers with different reorientation time (reflecting the ability to react to turbulent fluctuations). We show that only stable (high-gyrotaxis) swimmers may reach the surface and form densely concentrated filaments, the topology of which depends on the wind direction. Otherwise swimmers exhibit weaker vertical fluxes and segregation at the surface.
Micro-swimmer dynamics in free-surface turbulence subject to wind stress
NASA Astrophysics Data System (ADS)
Marchioli, Cristian; Lovecchio, Salvatore; Soldati, Alfredo
2016-11-01
We examine the effect of wind-induced shear on the orientation and distribution of motile micro-swimmers in free-surface turbulence. Winds blowing above the air-water interface can influence the distribution and productivity of motile organisms via the shear generated just below the surface. Swimmer dynamics depend not only by the advection of the fluid but also by external stimuli like nutrient concentration, light, gravity. Here we focus on gyrotaxis, resulting from the gravitational torque generated by an asymmetric mass distribution within the organism. The combination of such torque with the viscous torque due to shear can re-orient swimmers, reducing their vertical migration and causing entrapment in horizontal fluid layers. Through DNS-based Euler-Lagrangian simulations we investigate the effect of wind-induced shear on the motion of gyrotactic swimmers in turbulent open channel flow. We consider different wind directions and swimmers with different reo-rientation time (reflecting the ability to react to turbulent fluctuations). We show that only stable (high-gyrotaxis) swimmers may reach the surface and form densely concentrated filaments, the topology of which depends on the wind direction. Otherwise swimmers exhibit weaker vertical fluxes and segregation at the surface.
Rongy, L; Assemat, P; De Wit, A
2012-09-01
Gradients of concentration and temperature across exothermic chemical fronts propagating in free-surface solution layers can initiate Marangoni-driven convection. We investigate here the dynamics arising from such a coupling between exothermic autocatalytic reactions, diffusion, and Marangoni-driven flows. To this end, we numerically integrate the incompressible Navier-Stokes equations coupled through the tangential stress balance to evolution equations for the concentration of the autocatalytic product and for the temperature. A solutal and a thermal Marangoni numbers measure the coupling between reaction-diffusion processes and surface-driven convection. In the case of an isothermal system, the asymptotic dynamics is characterized by a steady fluid vortex traveling at a constant speed with the front, deforming and accelerating it [L. Rongy and A. De Wit, J. Chem. Phys. 124, 164705 (2006)]. We analyze here the influence of the reaction exothermicity on the dynamics of the system in both cases of cooperative and competitive solutal and thermal effects. We show that exothermic fronts can exhibit new unsteady spatio-temporal dynamics when the solutal and thermal effects are antagonistic. The influence of the solutal and thermal Marangoni numbers, of the Lewis number (ratio of thermal diffusivity over molecular diffusivity), and of the height of the liquid layer on the spatio-temporal front evolution are investigated.
Thermal stratification hinders gyrotactic micro-organism rising in free-surface turbulence
NASA Astrophysics Data System (ADS)
Lovecchio, Salvatore; Zonta, Francesco; Marchioli, Cristian; Soldati, Alfredo
2017-05-01
Thermal stratification in water bodies influences the exchange of heat, momentum, and chemical species across the air-water interface by modifying the sub-surface turbulence characteristics. Turbulence modifications may in turn prevent small motile algae (phytoplankton, in particular) from reaching the heated surface. We examine how different regimes of stable thermal stratification affect the motion of these microscopic organisms (modelled as gyrotactic self-propelling cells) in a free-surface turbulent channel flow. This archetypal setup mimics an environmentally plausible situation that can be found in lakes and oceans. Results from direct numerical simulations of turbulence coupled with Lagrangian tracking reveal that rising of bottom-heavy self-propelling cells depends strongly on the strength of stratification, especially near the thermocline where high temperature and velocity gradients occur: Here hydrodynamic shear may disrupt directional cell motility and hamper near-surface accumulation. For all gyrotactic re-orientation times considered in this study (spanning two orders of magnitude), we observe a reduction of the cell rising speed and temporary confinement under the thermocline: If re-orientation is fast, cells eventually trespass the thermocline within the simulated time span; if re-orientation is slow, confinement lasts much longer because cells align in the streamwise direction and their vertical swimming is practically annihilated.
NASA Astrophysics Data System (ADS)
Aubry, R.; Oñate, E.; Idelsohn, S. R.
2006-09-01
The method presented in Aubry et al. (Comput Struc 83:1459-1475, 2005) for the solution of an incompressible viscous fluid flow with heat transfer using a fully Lagrangian description of motion is extended to three dimensions (3D) with particular emphasis on mass conservation. A modified fractional step (FS) based on the pressure Schur complement (Turek 1999), and related to the class of algebraic splittings Quarteroni et al. (Comput Methods Appl Mech Eng 188:505-526, 2000), is used and a new advantage of the splittings of the equations compared with the classical FS is highlighted for free surface problems. The temperature is semi-coupled with the displacement, which is the main variable in a Lagrangian description. Comparisons for various mesh Reynolds numbers are performed with the classical FS, an algebraic splitting and a monolithic solution, in order to illustrate the behaviour of the Uzawa operator and the mass conservation. As the classical fractional step is equivalent to one iteration of the Uzawa algorithm performed with a standard Laplacian as a preconditioner, it will behave well only in a Reynold mesh number domain where the preconditioner is efficient. Numerical results are provided to assess the superiority of the modified algebraic splitting to the classical FS.
NASA Astrophysics Data System (ADS)
Narula, Manmeet Singh
Innovative concepts using fast flowing thin films of liquid metals (like lithium) have been proposed for the protection of the divertor surface in magnetic fusion devices. However, concerns exist about the possibility of establishing the required flow of liquid metal thin films because of the presence of strong magnetic fields which can cause flow disrupting MHD effects. A plan is underway to design liquid lithium based divertor protection concepts for NSTX, a small spherical torus experiment at Princeton. Of these, a promising concept is the use of modularized fast flowing liquid lithium film zones, as the divertor (called the NSTX liquid surface module concept or NSTX LSM). The dynamic response of the liquid metal film flow in a spatially varying magnetic field configuration is still unknown and it is suspected that some unpredicted effects might be lurking. The primary goal of the research work being reported in this dissertation is to provide qualitative and quantitative information on the liquid metal film flow dynamics under spatially varying magnetic field conditions, typical of the divertor region of a magnetic fusion device. The liquid metal film flow dynamics have been studied through a synergic experimental and numerical modeling effort. The Magneto Thermofluid Omnibus Research (MTOR) facility at UCLA has been used to design several experiments to study the MHD interaction of liquid gallium films under a scaled NSTX outboard divertor magnetic field environment. A 3D multi-material, free surface MHD modeling capability is under development in collaboration with HyPerComp Inc., an SBIR vendor. This numerical code called HIMAG provides a unique capability to model the equations of incompressible MHD with a free surface. Some parts of this modeling capability have been developed in this research work, in the form of subroutines for HIMAG. Extensive code debugging and benchmarking exercise has also been carried out. Finally, HIMAG has been used to study the
A free surface capturing discretization for the staggered grid finite difference scheme
NASA Astrophysics Data System (ADS)
Duretz, T.; May, D. A.; Yamato, P.
2016-03-01
The coupling that exists between surface processes and deformation within both the shallow crust and the deeper mantle-lithosphere has stimulated the development of computational geodynamic models that incorporate a free surface boundary condition. We introduce a treatment of this boundary condition that is suitable for staggered grid, finite difference schemes employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free surface boundary condition via an interface that conforms with the edges of control volumes (e.g. a `staircase' representation) and requires only local stencil modifications to be performed. Comparisons with analytic solutions verify that the method is first-order accurate. Additional intermodel comparisons are performed between known reference models to further validate our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver to our free surface methodology and demonstrate that the local stencil modifications do not strongly influence the convergence of the iterative solver.
Oliveira, Jobson Lopes de; Silva Júnior, Geraldo Bezerra da; Abreu, Krasnalhia Lívia Soares de; Rocha, Natália de Albuquerque; Franco, Luiz Fernando Leonavicius G; Araújo, Sônia Maria Holanda Almeida; Daher, Elizabeth de Francesco
2010-01-01
Lithium has been widely used in the treatment of bipolar disorder. Its renal toxicity includes impaired urinary concentrating ability and natriuresis, renal tubular acidosis, tubulointerstitial nephritis progressing to chronic kidney disease and hypercalcemia. The most common adverse effect is nephrogenic diabetes insipidus, which affects 20-40% of patients within weeks of lithium initiation. Chronic nephropathy correlates with duration of lithium therapy. Early detection of renal dysfunction should be achieved by rigorous monitoring of patients and close collaboration between psychiatrists and nephrologists. Recent experimental and clinical studies begin to clarify the mechanisms by which lithium induces changes in renal function. The aim of this study was to review the pathogenesis, clinical presentation, histopathological aspects and treatment of lithium-induced nephrotoxicity.
NASA Astrophysics Data System (ADS)
Fraters, Menno; Glerum, Anne; Thieulot, Cedric; Spakman, Wim
2015-04-01
ASPECT (Kronbichler et al., 2012), short for Advanced Solver for Problems in Earth's ConvecTion, is a new Finite Element code which was originally designed for thermally driven (mantle) convection and is built on state of the art numerical methods (adaptive mesh refinement, linear and non-linear solver, stabilization of transport dominated processes and a high scalability on multiple processors). Here we present an application of ASPECT to the modelling of fully thermo-mechanically coupled subduction. Our model contains in the case of a true free surface three different compositions: two different crustal compositions, one on top of the subducting plate and one on top of the overriding plate, and a mantle composition. In the case of a free surface through a sticky air layer, a fourth composition representing this sticky air is added. We implemented a viscoplastic rheology using frictional plasticity and a composite viscosity defined by diffusion and dislocation creep. The lithospheric part of the mantle has the same composition as the rest of the mantle but has a higher viscosity because of a lower temperature. The temperature field is implemented in ASPECT as follows: a linear temperature gradient for the lithosphere and an adiabatic geotherm for the sublithospheric mantle. The Initial slab temperature is defined using the analytical solution of McKenzie (1970). The plates can be pushed from the sides of the model, and correspondingly it is possible to define an additional independent mantle in/out flow through the boundaries. We will show a preliminary set of models, highlighting the current codes capabilities, such as the fine tuned use of Adaptive Mesh Refinement in combination with topography development both through a true free surface and sticky air and solving for strongly non-linear rheologies.
Finite difference elastic wave modeling with an irregular free surface using ADER scheme
NASA Astrophysics Data System (ADS)
Almuhaidib, Abdulaziz M.; Nafi Toksöz, M.
2015-06-01
In numerical modeling of seismic wave propagation in the earth, we encounter two important issues: the free surface and the topography of the surface (i.e. irregularities). In this study, we develop a 2D finite difference solver for the elastic wave equation that combines a 4th- order ADER scheme (Arbitrary high-order accuracy using DERivatives), which is widely used in aeroacoustics, with the characteristic variable method at the free surface boundary. The idea is to treat the free surface boundary explicitly by using ghost values of the solution for points beyond the free surface to impose the physical boundary condition. The method is based on the velocity-stress formulation. The ultimate goal is to develop a numerical solver for the elastic wave equation that is stable, accurate and computationally efficient. The solver treats smooth arbitrary-shaped boundaries as simple plane boundaries. The computational cost added by treating the topography is negligible compared to flat free surface because only a small number of grid points near the boundary need to be computed. In the presence of topography, using 10 grid points per shortest shear-wavelength, the solver yields accurate results. Benchmark numerical tests using several complex models that are solved by our method and other independent accurate methods show an excellent agreement, confirming the validity of the method for modeling elastic waves with an irregular free surface.
Thermo-mechanically coupled subduction with a free surface using ASPECT
NASA Astrophysics Data System (ADS)
Fraters, Menno; Glerum, Anne; Thieulot, Cedric; Spakman, Wim
2014-05-01
ASPECT (Kronbichler et al., 2012), short for Advanced Solver for Problems in Earth's ConvecTion, is a new Finite Element code which was originally designed for thermally driven (mantle) convection and is built on state of the art numerical methods (adaptive mesh refinement, linear and nonlinear solver, stabilization of transport dominated processes and a high scalability on multiple processors). Here we present an application of ASPECT to modeling of fully thermo-mechanically coupled subduction. Our subduction model contains three different compositions: a crustal composition on top of both the subducting slab and the overriding plate, a mantle composition and a sticky air composition, which allows for simulating a free surface for modeling topography build-up. We implemented a visco-plastic rheology using frictional plasticity and a composite viscosity defined by diffusion and dislocation creep. The lithospheric mantle has the same composition as the mantle but has a higher viscosity because of a lower temperature. The temperature field is implemented in ASPECT as follows: a linear temperature gradient for the lithosphere and an adiabatic geotherm for the sublithospheric mantle. Initial slab temperature is defined using the analytical solution of McKenzie (1970). The plates can be pushed from the sides of the model, and it is possible to define an additional independent mantle in/out flow through the boundaries. We will show a preliminary set of models, highlighting the codes capabilities, such as the Adaptive Mesh Refinement, topography development and the influence of mantle flow on the subduction evolution. Kronbichler, M., Heister, T., and Bangerth, W. (2012), High accuracy mantle convection simulation through modern numerical methods, Geophysical Journal International,191, 12-29, doi:10.1111/j.1365-246X.2012.05609. McKenzie, D.P. (1970), Temperature and potential temperature beneath island arcs, Teconophysics, 10, 357-366, doi:10.1016/0040-1951(70)90115-0.
Erosive effects in liquid lithium
Down, M.G.; Bagnall, C.; Keeton, A.R.; Tsu, T.C.
1982-09-01
Results are reported of experimental testing to investigate the potential erosive effect of liquid lithium at 270/sup 0/C and velocities up to 24 ms/sup -1/, on type 304 stainless steel. Two experiments were performed in order to compare data from a conventional flow-through isothermal test leg with those from specimens attached to the circumference of a rotating disc in static lithium.
On the Finite-Time Splash and Splat Singularities for the 3-D Free-Surface Euler Equations
NASA Astrophysics Data System (ADS)
Coutand, Daniel; Shkoller, Steve
2014-01-01
We prove that the 3-D free-surface incompressible Euler equations with regular initial geometries and velocity fields have solutions which can form a finite-time "splash" (or "splat") singularity first introduced in Castro et al. (Splash singularity for water waves, http://arxiv.org/abs/1106.2120v2, 2011), wherein the evolving 2-D hypersurface, the moving boundary of the fluid domain, self-intersects at a point (or on surface). Such singularities can occur when the crest of a breaking wave falls unto its trough, or in the study of drop impact upon liquid surfaces. Our approach is founded upon the Lagrangian description of the free-boundary problem, combined with a novel approximation scheme of a finite collection of local coordinate charts; as such we are able to analyze a rather general set of geometries for the evolving 2-D free-surface of the fluid. We do not assume the fluid is irrotational, and as such, our method can be used for a number of other fluid interface problems, including compressible flows, plasmas, as well as the inclusion of surface tension effects.
NASA Astrophysics Data System (ADS)
Pratt, Kenneth R.; True, Aaron; Crimaldi, John P.
2017-07-01
Particles that float on the surface of a 3D incompressible turbulent flow are exposed to non-divergence-free properties that result in clustering and unmixing, a reversal of how turbulence normally acts to mix and dilute scalars. Particle clustering is dominated by Lagrangian processes that depend on the time history of the flow; this suggests that Lagrangian coherent structures (LCS) might serve as templates for cluster formation. In this study, non-divergence-free clustering is examined both experimentally and numerically to elucidate the role of LCS in the formation of particle clusters and voids. Experiments are performed on the free-surface of a water-filled tank with turbulence driven by the random pulsing of centrifugal pumps on the tank bottom. Clustering is quantified by imaging fluorescent, buoyant particles that are placed in an initially random distribution on the free-surface. Within clusters, concentrations are observed to increase by an order of magnitude, with the likelihood of observing enhanced concentrations increasing by two orders of magnitude. LCS, obtained from velocity fields utilizing particle image velocimetry, are shown to act as templates for cluster formation. In addition, LCS are shown to possess a dilatation component in non-divergence-free flows that is responsible for unmixing. Numerically, a non-divergence-free chaotic model consisting of interacting Taylor vortices is utilized to investigate processes responsible for cluster formation seen in the experiments. The model results support the experimental finding that LCS act as templates for particle clusters, with scalar unmixing driven by the dilatation component.
Kaczmarczyk, Ireneusz; Sułowicz, Władysław
2013-01-01
Lithium salts are the first-line drug therapy in the treatment of uni- and bipolar disorder since the sixties of the twentieth century. In the mid-70s, the first information about their nephrotoxicity appeared. Lithium salts have a narrow therapeutic index. Side effects during treatment are polyuria, polydipsia and nephrogenic diabetes insipidus. Accidental intoxication can cause acute renal failure requiring renal replacement therapy while receiving long-term lithium salt can lead to the development of chronic kidney disease. The renal biopsy changes revealed a type of chronic tubulointerstitial nephropathy. The imaging studies revealed the presence of numerous symmetric microcysts. Care of the patient receiving lithium should include regular determination of serum creatinine, creatinine clearance and monitoring of urine volume. In case of deterioration of renal function reducing the dose should be considered.
... Lithonate Note: Lithium is also commonly found in batteries, lubricants, high performance metal alloys, and soldering supplies. ... Kidney failure Memory problems Movement disorders Problems ... your body Psychosis (disturbed thought processes, unpredictable ...
Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-02-01
The prismatic dislocation loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, size and depth of the loop in the foil, they can escape to the free surface, thus invalidating TEM observations and conclusions. In this article small prismatic hexagonal and circular dislocation loops in tungsten with the Burgers vectors 1/2 < 1 1 1 > and < 1 0 0 > are studied by molecular statics simulations using three embedded atom method (EAM) potentials. The calculated image forces are compared to known elastic solutions. A particular attention is paid to the critical stress to move edge dislocations. The escape of the loop to the free surface is quantified by a combination of atomistic simulations and elastic calculations. For example, for the 1/2 < 1 1 1 > loop with diameter 7.4 nm in a 55 nm thick foil we calculated that about one half of the loops will escape to the free surface. This implies that TEM observations detect only approx. 50% of the loops that were originally present in the foil.
Improved free-surface expression for frequency-domain elastic optimal mixed-grid modeling
NASA Astrophysics Data System (ADS)
Cao, Jian; Chen, Jing-Bo; Dai, Meng-Xue
2016-07-01
An accurate and efficient forward modeling is the foundation of full-waveform inversion (FWI). In elastic wave modeling, one of the key problems is how to deal with the free-surface boundary condition appropriately. For the representation of the free-surface boundary condition, conventional displacement-based approaches and staggered-grid approaches are often used in time-domain. In frequency-domain, considering the saving of storage and CPU time, we integrate the idea of physical parameter-modified staggered-grid approach in time-domain with an elastic optimal mixed-grid modeling scheme to design an improved parameter-modified free-surface expression. Accuracy analysis shows that an elastic optimal mixed-grid modeling scheme using the parameter-modified free-surface expression can provide more accurate solutions with only 4 grid points per smallest shear wavelength than conventional displacement-based approaches and is stable for most Poisson ratios. Besides, it also yields smaller condition number of the resulting impedance matrix than conventional displacement-based approaches in laterally varying complex media. These advantages reveal great potential of this free-surface expression in big-data practical application.
Lithium Ion Battery Design and Safety
NASA Technical Reports Server (NTRS)
Au, George; Locke, Laura
2001-01-01
This viewgraph presentation makes several recommendations to ensure the safe and effective design of Lithium ion cell batteries. Large lithium ion cells require pressure switches and small cells require pressure disconnects and other safety devices with the ability to instantly interrupt flow. Other suggestions include specifications for batteries and battery chargers.
3D numerical simulation analysis of passive drag near free surface in swimming
NASA Astrophysics Data System (ADS)
Zhan, Jie-min; Li, Tian-zeng; Chen, Xue-bin; Li, Yok-sheung; Wai, Wing-hong Onyx
2015-04-01
The aim of this work is to build a 3D numerical model to study the characteristics of passive drag on competitive swimmers taking into account the impact of the free surface. This model solves the 3D incompressible Navier-Stokes equations using RNG k- ɛ turbulence closure. The volume of fluid (VOF) method is used to locate the free surface. The 3D virtual model is created by Computer Aided Industrial Design (CAID) software, Rhinoceros. Firstly, a specific posture of swimming is studied. The simulation results are in good agreement with the data from mannequin towing experiments. The effects of a swimmer's arms and legs positions on swimming performance are then studied. Finally, it is demonstrated that the present method is capable of simulating gliding near the free surface.
A comparative analysis of finite element and finite difference methods for free surface transport
Chen, S.C.; Vafai, K. . Dept of Mechanical Engineering)
1993-09-01
The present work consists of the comparative evaluation of the finite element method (FEM) and the finite difference method (FDM) for the analysis of free surface transport within a hollow ampule. The phenomenon of motion reversal of the free surfaces obtained earlier by the FDM is also analyzed by the FEM. It is found that the times at which the motion reversal occurs are independent of the applied pressure difference for any fixed dimension of the hollow ampule. Furthermore, it appears that the displacement of the inner and outer free surfaces varies linearly with the magnitude of the applied pressure difference. Finally, detailed comparative discussion is presented on the differences between the results obtained by FDM and FEM.
Combustion theory for liquids with a free surface. 3: Special problems
NASA Technical Reports Server (NTRS)
Milkov, S. N.; Sukhov, G. S.; Yarin, L. P.
1986-01-01
Two special problems concerning the combustion of liquids with a free surface, i.e., flame quenching during the mixing of a burning liquid inside a container and liquid burnout from a porous layer, are analyzed using a quasi-one-dimensional model. The critical parameters corresponding to the quenching of a burning fluid with a free surface are determined. Determinations are also made of the limiting pressure gradients corresponding to the transition from the combustion mode where the liquid evaporates from the surface of a porous layer to the mode where the phase transition surface lies inside the porous layer.
NASA Astrophysics Data System (ADS)
Bogner, Simon; Rüde, Ulrich; Harting, Jens
2016-04-01
The free surface lattice Boltzmann method (FSLBM) is a combination of the hydrodynamic lattice Boltzmann method with a volume-of-fluid (VOF) interface capturing technique for the simulation of incompressible free surface flows. Capillary effects are modeled by extracting the curvature of the interface from the VOF indicator function and imposing a pressure jump at the free boundary. However, obtaining accurate curvature estimates from a VOF description can introduce significant errors. This article reports numerical results for three different surface tension models in standard test cases and compares the according errors in the velocity field (spurious currents). Furthermore, the FSLBM is shown to be suited to simulate wetting effects at solid boundaries. To this end, a new method is developed to represent wetting boundary conditions in a least-squares curvature reconstruction technique. The main limitations of the current FSLBM are analyzed and are found to be caused by its simplified advection scheme. Possible improvements are suggested.
2010-07-14
lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval
Free-Surface Flow and Fluid-Object Interaction Modeling With Emphasis on Ship Hydrodynamics
2012-01-01
respectively. The level set function is simultaneously a signed-distance function, meaning its magnitude at a point in 3D space is the distance from that point ...to the air- water interface, and its sign determines if the point is in the water or air domain. The signed distance property of the scalar function...places the requirement on the level set function /h to maintain the signed distance prop- erty. This means that the value of /h at a point x at time t
Free-surface flow in horizontally rotating cylinder: experiment and simulation
NASA Astrophysics Data System (ADS)
Bohacek, J.; Kharicha, A.; Ludwig, A.; Wu, M.; Paar, A.; Brandner, M.; Elizondo, L.; Trickl, T.
2016-07-01
The horizontal centrifugal casting process targets on a liquid layer with a uniform thickness. To achieve this, the rotations of the mold have to be large enough so that the liquid can pick up the speed of the mold. In the present paper, an experiment was conducted using a laboratory plexi-glass mold with water as a working fluid. Starting with an initial volume fraction of liquid resting in the bottom of the mold, the mold rotations were gradually increased from 0 rpm to max rpm and a new position of the contact line was recorded. In addition, first critical rpm was recorded, at which the transition from the liquid pool to a uniform liquid layer occurred. While gradually going back from max rpm to 0 rpm, second critical rpm was recorded, at which the uniform liquid layer collapsed. The experiment was compared with the numerical simulation solving the modified shallow water equations using the Newton-Raphson method with the Wallington filter.
46 CFR 170.295 - Special consideration for free surface of passive roll stabilization tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... consideration for free surface of passive roll stabilization tanks. (a) The virtual increase in the vertical... paragraph (b) of this section if— (1) The virtual increase in the vertical center of gravity of the vessel... tank. (b) The virtual rise in the vertical center of gravity calculated in accordance with §...
Taylor cone and electrospraying at a free surface of superfluid helium charged from below
NASA Astrophysics Data System (ADS)
Moroshkin, P.; Leiderer, P.; Möller, Th. B.; Kono, K.
2017-05-01
Electrically charged metallic micro- and nanoparticles are trapped under a free surface of superfluid He in a vertical static electric field. We observe a static deformation of the charged liquid surface in the form of a Taylor cone and the emission of a charged liquid helium jet (electrospray). Our numeric calculations reproduce the static shape of the cone.
Low gravity experiment for studying a rotating fluid having a free surface
NASA Technical Reports Server (NTRS)
Holderer, O. C.
1983-01-01
Electrical, mechanical, and operational aspects of a test cell assembly for studying rotating fluids with a free surface are described. Results of a stress analysis prepared to document the structural adequacy for safe use on the KC-135 aircraft are presented along with results of a single load proof test of the most critical load case. Engineering drawings are included.
Low-Reynolds-number gravity-driven migration and deformation of bubbles near a free surface
NASA Astrophysics Data System (ADS)
Pigeonneau, Franck; Sellier, Antoine
2011-09-01
We investigate numerically the axisymmetric migration of bubbles toward a free surface, using a boundary-integral technique. Our careful numerical implementation allows to study the bubble(s) deformation and film drainage; it is benchmarked against several tests. The rise of one bubble toward a free surface is studied and the computed bubble shape compared with the results of Princen [J. Colloid Interface Sci. 18, 178 (1963)]. The liquid film between the bubble and the free surface is found to drain exponentially in time in full agreement with the experimental work of Debrégeas et al. [Science 279, 1704 (1998)]. Our numerical results also cast some light on the role played by the deformation of the fluid interfaces and it turns out that for weakly deformed interfaces (high surface tension or a tiny bubble) the film drainage is faster than for a large fluid deformation. By introducing one or two additional bubble(s) below the first one, we examine to which extent the previous trends are affected by bubble-bubble interactions. For instance, for a 2-bubble chain, decreasing the bubble-bubble separation increases the deformation of the last bubble in the chain. Finally, the exponential drainage of the film between the free surface and the closest bubble is preserved, yet the drainage is enhanced.
NASA Astrophysics Data System (ADS)
Javadi, Mehran; Manshadi, Mojtaba Dehghan; Kheradmand, Saeid; Moonesun, Mohammad
2015-03-01
In this paper, towing tank experiments are conducted to study the behavior of flow on a model of the underwater vehicle with various shapes of bows, i.e. tango and standard bows in free surface motion tests. The total resistances for different Froude numbers are considered experimentally. The towing tank is equipped with a trolley that can operate in through 0.05-6 m/s speed with ±0.02 m/s accuracy. Furthermore, the study is done on hydrodynamic coefficients i.e. total, residual and friction resistance coefficients, and the results are compared. Finally, the study on flow of wave fields around bows is done and wave filed around two bows are compared. The Froude number interval is between 0.099 and 0.349. Blockage fraction for the model is fixed to 0.005 3. The results showed that the residual resistance of the standard bow in 0.19 to 0.3 Froude number is more than the tango bow in surface motion which causes more total resistance for the submarine. Finally, details of wave generated by the bow are depicted and the effects of flow pattern on resistance drag are discussed.
Piorek, Brian D.; Lee, Seung Joon; Santiago, Juan G.; Moskovits, Martin; Banerjee, Sanjoy; Meinhart, Carl D.
2007-01-01
We present a microfluidic technique for sensitive, real-time, optimized detection of airborne water-soluble molecules by surface-enhanced Raman spectroscopy (SERS). The method is based on a free-surface fluidic device in which a pressure-driven liquid microchannel flow is constrained by surface tension. A colloidal suspension of silver nanoparticles flowing through the microchannel that is open to the atmosphere absorbs gas-phase 4-aminobenzenethiol (4-ABT) from the surrounding environment. As surface ions adsorbed on the colloid nanoparticles are substituted by 4-ABT, the colloid aggregates, forming SERS “hot spots” whose concentrations vary predictably along the microchannel flow. 4-ABT confined in these hot spots produces SERS spectra of very great intensity. An aggregation model is used to account quantitatively for the extent of colloid aggregation as determined from the variation of the SERS intensity measured as a function of the streamwise position along the microchannel, which also corresponds to nanoparticle exposure time. This allows us to monitor simultaneously the nanoparticle aggregation process and to determine the location at which the SERS signal is optimized. PMID:18025462
NASA Astrophysics Data System (ADS)
Crameri, Fabio; Tackley, Paul J.
2016-12-01
Subduction initiation is a key in understanding the dynamic evolution of the Earth and its fundamental difference to all other rocky planetary bodies in our solar system. Despite recent progress, the question about how a stiff, mostly stagnant planetary lid can break and become part in the global overturn of the mantle is still unresolved. Many mechanisms, externally or internally driven, are proposed in previous studies. Here, we present the results on subduction initiation obtained by dynamically self-consistent, time-dependent numerical modelling of mantle convection. We show that the stress distribution and resulting deformation of the lithosphere are strongly controlled by the top boundary formulation: A free surface enables surface topography and plate bending, increases gravitational sliding of the plates and leads to more realistic, lithosphere-scale shear zones. As a consequence, subduction initiation induced by regional mantle flow is demonstrably favoured by a free surface compared to the commonly applied, vertically fixed (i.e. free-slip) surface. In addition, we present global, three-dimensional mantle convection experiments that employ basal heating that leads to narrow mantle plumes. Narrow mantle plumes impinging on the base of the plate cause locally weak plate segments and a large topography at the lithosphere-asthenosphere boundary. Both are shown to be key to induce subduction initiation. Finally, our model self-consistently reproduces an episodic lid with a fast global overturn due to the hotter mantle developed below a former stagnant lid. We conclude that once in a stagnant-lid mode, a planet (like Venus) might preferentially evolve by temporally discrete, global overturn events rather than by a continuous recycling of lid and that this is something worth testing more rigorously in future studies.
Youssry, Mohamed; Madec, Lénaïc; Soudan, Patrick; Cerbelaud, Manuella; Guyomard, Dominique; Lestriez, Bernard
2013-09-14
We report on the rheological and electrical properties of non-aqueous carbon black (CB) suspensions at equilibrium and under steady shear flow. The smaller the primary particle size of carbon black is, the higher the magnitude of rheological parameters and the conductivity are. The electrical percolation threshold ranges seem to coincide with the strong gel rather than the weak gel rheological threshold ones. The simultaneous measurements of electrical properties under shear flow reveal the well-known breaking-and-reforming mechanism that characterises such complex fluids. The small shear rate breaks up the network into smaller agglomerates, which in turn transform into anisometric eroded ones at very high shear rates, recovering the network conductivity. The type of carbon black, its concentration range and the flow rate range are now precisely identified for optimizing the performance of a redox flow battery. A preliminary electrochemical study for a composite anolyte (CB/Li4Ti5O12) at different charge-discharge rates and thicknesses is shown.
NASA Technical Reports Server (NTRS)
Sankaran, Subramanian (Technical Monitor); Rice, Jeremy; Faghri, Amir; Cetegen, Baki M.
2005-01-01
A detailed analysis of the liquid film characteristics and the accompanying heat transfer of a free surface controlled liquid impinging jet onto a rotating disk are presented. The computations were run on a two-dimensional axi-symmetric Eulerian mesh while the free surface was calculated with the volume of fluid method. Flow rates between 3 and 15 1pm with rotational speeds between 50 and 200 rpm are analyzed. The effects of inlet temperature on the film thickness and heat transfer are characterized as well as evaporative effects. The conjugate heating effect is modeled, and was found to effect the heat transfer results the most at both the inner and outer edges of the heated surface. The heat transfer was enhanced with both increasing flow rate and increasing rotational speeds. When evaporative effects were modeled, the evaporation was found to increase the heat transfer at the lower flow rates the most because of a fully developed thermal field that was achieved. The evaporative effects did not significantly enhance the heat transfer at the higher flow rates.
ERIC Educational Resources Information Center
Papanastasiou, Tasos C.
1989-01-01
Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…
ERIC Educational Resources Information Center
Papanastasiou, Tasos C.
1989-01-01
Discusses fluid mechanics for undergraduates including the differential Navier-Stokes equations, dimensional analysis and simplified dimensionless numbers, control volume principles, the Reynolds lubrication equation for confined and free surface flows, capillary pressure, and simplified perturbation techniques. Provides a vertical dip coating…
Integral Length and Time Scales of Velocity, Heat and Mass At and Near a Turbulent Free Surface
NASA Astrophysics Data System (ADS)
Curtis, G. M.; Zappa, C. J.; Variano, E. A.
2010-12-01
Turbulence enhances both heat and CO2 gas exchange at a free surface. At the air-water interface, heat and mass transport is controlled by a thin thermal/diffusive boundary layer. Turbulence in the flow acts to thin the heat and mass boundary layers, thereby increasing the rate at which surface water is mixed into the bulk. Surface water is typically cool, and mixing replaces it with warmer water from the bulk. In our experiment, and in many environmental cases, the surface has a higher concentration of dissolved CO2 and carbonate species. . The dissolved gas is transported between the surface and bulk in a similar way to the heat. Because of this similarity, attempts are often made to find and exploit a relationship between the heat and mass transfer. Using a laboratory tank, which generates turbulence with very low mean shear flow, we measured heat and mass transfer by using infrared imagery to map the two-dimensional surface temperature field and by using planar laser-induced fluorescence (PLIF) to map the two-dimensional subsurface CO2 flux. In addition, particle image velocimetry (PIV) was used to measure subsurface velocity fields. A comparative analysis of these results allows us to determine the similarities and differences between heat, mass, and momentum transport at a free surface. This will contribute to the use of one quantity to predict transport of the others. The setup used here, i.e., turbulence with very low mean shear at the surface, allows us to evaluate the turbulent components of interfacial flux in a way that can be applied equally well to flows created by wind, waves, or current. Here, we quantify the integral length and time scales of the surface temperature and sub-surface CO2 and velocity measurements. Initial analysis shows that the integral length scales of temperature at the surface are significantly smaller than the sub-surface velocity scales. However, the integral scale of sub-surface velocity decreases approaching the surface. The
Jaskula, B.W.
2013-01-01
In 2012, estimated world lithium consumption was about 28 kt (31,000 st) of lithium contained in minerals and compounds, an 8 percent increase from that of 2011. Estimated U.S. consumption was about 2 kt (2,200 st) of contained lithium, the same as that of 2011. The United States was thought to rank fourth in consumption of lithium and remained the leading importer of lithium carbonate and the leading producer of value-added lithium materials. One company, Rockwood Lithium Inc., produced lithium compounds from domestic brine resources near Silver Peak, NV.
Segregation Behavior of Sulfur and Other Impurities onto the Free Surfaces of ED-NI Deposits
NASA Technical Reports Server (NTRS)
Panda, B.; Jerman, G.
2001-01-01
Most researchers attribute grain boundary embrittlement in electro-deposited nickel (ED-Ni) to the presence of small quantities of sulfur as an impurity. It occurs in a highly mobile form that segregates to the grain boundaries. Evaluation of sulfur segregation requires that a sample be fractured through the grain boundaries. However, this action may not always be possible. ED-Ni is inherently tough at ambient temperature, especially if a low level of sulfur was intentionally maintained. A new method was developed to study sulfur and other migrant species to the grain boundaries, which also migrate to free surfaces. A test specimen is heated by a quartz lamp within the sample preparation chamber, allowing the mobile species to migrate to polished free surfaces. There the mobile species are analyzed using X-ray photoelectron spectroscopy (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA).
Free surface profile of evaporative liquids at the vicinity of the contact line
NASA Astrophysics Data System (ADS)
Houssainy, Sammy; Kavehpour, Pirouz
2014-11-01
Interfacial phenomenon, specifically those associated with evaporation from thin liquid films near the contact line of a liquid drop, play a major role in many current engineering applications which require high local heat fluxes, as evident in heat pipes, grooved evaporators, fuel cells and suction nucleate boiling devices. This study will prove useful in the improvement of such applications. Fluoresces microscopy was used as our main technique of investigating the free surface profiles of evaporative liquids, as it delivers sufficient range and resolution to address the challenge of capturing the microscopic and macroscopic aspects of this phenomenon. Subsequent to our experimental findings, the results are compared with non-volatile liquids for both contact angle and free surface structures.
Segregation Behavior of Sulfur and Other Impurities Onto the Free Surfaces of ED-Ni Deposits
NASA Technical Reports Server (NTRS)
Panda, Binayak; Jerman, Gregory; Gentz, Steven J. (Technical Monitor)
2000-01-01
Most researchers attribute grain boundary embrittlement in electro-deposited Nickel (ED-Ni) to the presence of small quantities of Sulfur as an impurity. It occurs in a highly mobile form that segregates to the grain boundaries. Evaluation of Sulfur segregation requires that a sample be fractured through the grain boundaries. However, this action may not always be possible. ED-Ni is inherently tough at ambient temperature, especially if a low level of Sulfur was intentionally maintained. A new method was developed to study Sulfur and other migrant species to the grain boundaries, which also migrate to free surfaces. A test specimen is heated by a quartz lamp within the sample preparation chamber, allowing the mobile species to migrate to polished free surfaces. There the mobile species are analyzed using X-ray photoelectron spectroscopy (XPS) also known as Electron Spectroscopy for Chemical Analysis (ESCA).
Free-surface velocity measurements using an optically recording velocity interferometer
NASA Astrophysics Data System (ADS)
Lu, Jian-xin; Wang, Zhao; Liang, Jing; Shan, Yu-sheng; Zhou, Chuang-zhi; Xiang, Yi-huai; Lu, Ze; Tang, Xiu-zhang
2007-01-01
An optically recording velocity interferometer system (ORVIS) was developed for the free-surface velocity measurements in the equation of state experiments. The time history of free-surface velocity and the particle velocity in laser deduced shockwaves experiments can be recorded by the electronic streak camera in ORVIS. The interference fringe shifts recorded by the ORVIS is proportional to the Doppler shift of a laser beam induced by being reflected from the back suface of the monitored target. In the experiments, ORVIS got an 179 ps time resolution, and a higher time resolution could be got by minimizing the delay time. The equation of state experiments were carried out on the high power excimer laser system called "Heaven I", the velocity of iron and aluminium was researched.
Pattern formation on the free surface of a ferrofluid: Spatial dynamics and homoclinic bifurcation
NASA Astrophysics Data System (ADS)
Groves, M. D.; Lloyd, D. J. B.; Stylianou, A.
2017-07-01
We establish the existence of spatially localised one-dimensional free surfaces of a ferrofluid near onset of the Rosensweig instability, assuming a general (nonlinear) magnetisation law. It is shown that the ferrohydrostatic equations can be derived from a variational principle that allows one to formulate them as an (infinite-dimensional) spatial Hamiltonian system in which the unbounded free-surface direction plays the role of time. A centre-manifold reduction technique converts the problem for small solutions near onset to an equivalent Hamiltonian system with finitely many degrees of freedom. Normal-form theory yields the existence of homoclinic solutions to the reduced system, which correspond to spatially localised solutions of the ferrohydrostatic equations.
Rate of evaporation from the free surface of a heated liquid
NASA Astrophysics Data System (ADS)
Örvös, M.; Szabó, V.; Poós, T.
2016-11-01
A method and an experimental setup are developed for determining the intensity of evaporation from the free surface of water. During the measurement, the ambient air velocity and the water temperature can be varied. The mass and temperature of water, as well as the temperature, pressure, and humidity of the ambient air are measured as functions of time. The evaporation rates are calculated from the measured and recorded data in the cases of natural and forced convection.
A non-hydrostatic algorithm for free-surface ocean modelling
NASA Astrophysics Data System (ADS)
Auclair, Francis; Estournel, Claude; Floor, Jochem W.; Herrmann, Marine; Nguyen, Cyril; Marsaleix, Patrick
An original implementation of a non-hydrostatic, free-surface algorithm based on a pressure correction method is proposed for ocean modelling. The free surface is implemented through an explicit scheme combined with a mode-spitting method but the depth-averaged velocity and the position of the free surface are updated at each non-hydrostatic iteration. The vertical momentum equation is also integrated up to the surface enabling a natural and accurate treatment of the surface layer. The consistent specification of the numerical schemes provides balanced transfers of potential and kinetic energy. This algorithm is well-suited for implementation as a non-hydrostatic kernel on originally hydrostatic free-surface ocean models such as Symphonie ( http://poc.obs-mip.fr/pages/research_topics/modelling/symphonie/symphonie.htm) for which it has originally been developed. Energy balances associated with the propagation of short surface waves and solitary waves are presented for two dedicated well-documented configurations over closed domains. The buoyancy flux, the work rate of the pressure force together with the power of the advective terms are evaluated and discussed for the generation and the propagation of these two types of waves. The dissipation rate is in particular shown to be several orders of magnitude smaller than the work rates of the hydrostatic and non-hydrostatic pressure forces confirming the necessity for the exchanges of energy to be numerically balanced. The algorithm is subsequently applied to the complex generation of non-linear solitary internal waves by surface tides over Georges Bank, in the Gulf of Maine. The generation and the propagation of the observed non-linear and non-hydrostatic features in this region are correctly reproduced.
Mechanisms of fracture of the free surface of shock-compressed metals
Mokhova, V. V. Mikhailov, A. L.; Til’kunov, A. V.; Orlov, N. I.; Kanunova, L. I.; Bragunets, V. A.; Tkachenko, M. I.; Simakov, V. G.; Sokolov, S. S.; Podurets, A. M.
2015-12-15
The mechanisms of the ejection of aluminum and copper microparticles from the free surfaces of these metals have been studied under conditions of the escape of a moderate-intensity shock wave from a sample. The free surfaces of samples contained 0.7–0.9 mm deep artificial wells and protrusions simulating (on a greater scale of 10: 1) the natural surface roughness retained upon mechanical processing. The pressure in a shock-wave pulse at the base of a protrusion was controlled within P = 5–20 GPa (i.e., below the melting region), and the variable duration of pressure pulses was 0.02, 0.2, and 1 μs. Analysis of the free surfaces of postloaded samples showed that, for certain loading and roughness parameters, the ejection of metal from vertices of protruding ridges or pyramids (as a result of the longitudinal fracture) was about ten times greater than the amount of metal ejected in the form of cumulative jets from wells. The amount of ejected metal and the size distribution of metal microparticles were quantitatively characterized using “soft collecting targets” and by measuring mass losses of samples upon fracture.
A 2-D enlarged cell technique (ECT) for elastic wave modelling on a curved free surface
NASA Astrophysics Data System (ADS)
Wei, Songlin; Zhuang, Mingwei; Zhou, Jianyang; Liu, Qing Huo
2015-04-01
The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of the structured grid. This is similar to the situation for the FDTD method in electromagnetics when it is applied to model a curved perfect conductor surface, where the conformal FDTD methods have been recently developed to avoid this error. In this work a stable and second-order accurate 2-D FDTD method for elastic wave modelling on a curved free surface is presented based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the meantime, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability even for small irregular cells. This method is verified by several 2-D numerical examples. Results show that the method is second-order accurate and stable at the Courant stability limit for a regular FDTD grid.
A 3-D enlarged cell technique (ECT) for elastic wave modelling of a curved free surface
NASA Astrophysics Data System (ADS)
Wei, Songlin; Zhou, Jianyang; Zhuang, Mingwei; Liu, Qing Huo
2016-09-01
The conventional finite-difference time-domain (FDTD) method for elastic waves suffers from the staircasing error when applied to model a curved free surface because of its structured grid. In this work, an improved, stable and accurate 3-D FDTD method for elastic wave modelling on a curved free surface is developed based on the finite volume method and enlarged cell technique (ECT). To achieve a sufficiently accurate implementation, a finite volume scheme is applied to the curved free surface to remove the staircasing error; in the mean time, to achieve the same stability as the FDTD method without reducing the time step increment, the ECT is introduced to preserve the solution stability by enlarging small irregular cells into adjacent cells under the condition of conservation of force. This method is verified by several 3-D numerical examples. Results show that the method is stable at the Courant stability limit for a regular FDTD grid, and has much higher accuracy than the conventional FDTD method.
NASA Astrophysics Data System (ADS)
Crameri, Fabio; Tackley, Paul J.
2014-07-01
We present temporally evolving 3-D global mantle convection models with single-sided subduction and a free surface in both 3-D Cartesian and fully spherical geometry. Special focus is given to the spontaneous development of three-dimensional structures at the surface and in the upper mantle. We find that an arcuate shape is the natural form for trenches and slabs. Cartesian models are used first to study the dynamic evolution of subduction zones, spreading ridges, and interconnected transform features. These experiments highlight the strong variation of spontaneously developing, arcuate slab curvature and subduction polarity along the trench strike. The spontaneous development of spreading ridges leads to lateral offsets between separated segments that are characterized by normal transform motion. Spherical models then allow insights into the evolution of plate tectonics on a sphere. Investigated are the spontaneous evolution of slab geometry, trench motion, and subduction-induced mantle flow. Two new dynamical features are discovered: "back-slab spiral flow" and "slab tunneling." 2014. American Geophysical Union. All Rights Reserved.
Tritium recovery from lithium oxide pellets
Bertone, P.C.; Jassby, D.L.
1984-01-01
The TFTR Lithium Blanket Module is an assembly containing 650 kg of lithium oxide that will be used to test the ability of neutronics codes to model the tritium breeding characteristics of limited-coverage breeding zones in a tokamak. It is required that tritium concentrations as low as 0.1 nCi/g bred in both metallic lithium samples and lithium oxide pellets be measured with an uncertainty not exceeding +- 6%. A tritium assay technique for the metallic samples which meets this criterion has been developed. Two assay techniques for the lithium oxide pellets are being investigated. In one, the pellets are heated in a flowing stream of hydrogen, while in the other, the pellets are dissolved in 12 M hydrochloric acid.
Comparison of H-Mode Plasmas Diverted to Solid and Liquid Lithium Surfaces
R. Kaita, et. al.
2012-07-20
Experiments were conducted with a Liquid Lithium Divertor (LLD) in NSTX. Among the goals was to use lithium recoating to sustain deuterium (D) retention by a static liquid lithium surface, approximating the ability of flowing liquid lithium to maintain chemical reactivity. Lithium evaporators were used to deposit lithium on the LLD surface. Improvements in plasma edge conditions were similar to those with lithiated graphite plasma-facing components (PFCs), including an increase in confinement over discharges without lithiumcoated PFCs and ELM reduction during H-modes. With the outer strike point on the LLD, the D retention in the LLD was about the same as that for solid lithium coatings on graphite, or about two times that achieved without lithium PFC coatings. There were also indications of contamination of the LLD surface, possibly due erosion and redeposition of carbon from PFCs. Flowing lithium may thus be needed for chemically active PFCs during long-pulse operation.
The lithium vapor box divertor
NASA Astrophysics Data System (ADS)
Goldston, R. J.; Myers, R.; Schwartz, J.
2016-02-01
It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.
Lithium-associated hyperthyroidism.
Siyam, Fadi F; Deshmukh, Sanaa; Garcia-Touza, Mariana
2013-08-01
Goiters and hypothyroidism are well-known patient complications of the use of lithium for treatment of bipolar disease. However, the occurrence of lithium-induced hyperthyroidism is a more rare event. Many times, the condition can be confused with a flare of mania. Monitoring through serial biochemical measurement of thyroid function is critical in patients taking lithium. Hyperthyroidism induced by lithium is a condition that generally can be controlled medically without the patient having to discontinue lithium therapy, although in some circumstances, discontinuation of lithium therapy may be indicated. We report on a patient case of lithium-associated hyperthyroidism that resolved after discontinuation of the medication.
NASA Astrophysics Data System (ADS)
Mieras, R.; Puleo, J. A.; Anderson, D.; Cox, D. T.; Hsu, T. J.
2016-12-01
Considerable progress has been made in predicting surf zone sandbar migration. Yet present-day models require extensive calibration to predict cross-shore morphologic evolution. Interaction between important physical processes, such as sheet flow and suspended load, under skewed-asymmetric waves may be improperly parameterized or neglected entirely due to lack of measurements. A large wave flume experiment was conducted at Oregon State University's O.H. Hinsdale Wave Research Laboratory to examine the relative contributions of suspended load and sheet load to the total transport rate over sandbars, using a fixed, barred beach profile with a mobile sediment layer on the sandbar crest. The hybrid beach profile allowed for the isolation of small-scale bed response to large-scale wave forcing over an immobile sandbar, where an array of sensors was positioned to measure hydrodynamic forcing and sediment response. Monochromatic waves were tested under a wide range of wave skewness and asymmetry parameters typically associated with accretive or erosive conditions. Measured sediment concentration profiles in the sheet flow layer and lower half of the water column were combined and then extrapolated to the free surface to determine the overall sediment load. Total load sediment transport rates were computed by multiplying this concentration profile by measured near-bed velocity profiles and velocities recorded throughout the water column. The relative contribution of each sediment transport regime to the total was then determined by integrating across phase-averaged transport rates for each wave condition. The result is a per-wave total volume of sediment transported over a sandbar per meter of beach width via sheet flow and suspended load under waves with varying degrees of skewness and asymmetry.
Appelo, D; Petersson, N A
2007-12-17
The isotropic elastic wave equation governs the propagation of seismic waves caused by earthquakes and other seismic events. It also governs the propagation of waves in solid material structures and devices, such as gas pipes, wave guides, railroad rails and disc brakes. In the vast majority of wave propagation problems arising in seismology and solid mechanics there are free surfaces. These free surfaces have, in general, complicated shapes and are rarely flat. Another feature, characterizing problems arising in these areas, is the strong heterogeneity of the media, in which the problems are posed. For example, on the characteristic length scales of seismological problems, the geological structures of the earth can be considered piecewise constant, leading to models where the values of the elastic properties are also piecewise constant. Large spatial contrasts are also found in solid mechanics devices composed of different materials welded together. The presence of curved free surfaces, together with the typical strong material heterogeneity, makes the design of stable, efficient and accurate numerical methods for the elastic wave equation challenging. Today, many different classes of numerical methods are used for the simulation of elastic waves. Early on, most of the methods were based on finite difference approximations of space and time derivatives of the equations in second order differential form (displacement formulation), see for example [1, 2]. The main problem with these early discretizations were their inability to approximate free surface boundary conditions in a stable and fully explicit manner, see e.g. [10, 11, 18, 20]. The instabilities of these early methods were especially bad for problems with materials with high ratios between the P-wave (C{sub p}) and S-wave (C{sub s}) velocities. For rectangular domains, a stable and explicit discretization of the free surface boundary conditions is presented in the paper [17] by Nilsson et al. In summary
NASA Astrophysics Data System (ADS)
Favrie, N.; Gavrilyuk, S.
2017-07-01
A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.
NASA Astrophysics Data System (ADS)
Judd, K. Peter; Savelyev, Ivan; Smith, Geoffrey
2011-11-01
The thermal and hydrodynamic structure of a turbulent buoyant jet impinging normal to clean and contaminated free-surfaces was examined experimentally for fixed jet depth, reduced gravity and several Reynolds numbers. The objective of this investigation is to describe the resulting interaction and morphology of the surface thermal structures. Fluid for the jet is supplied from a gravity feed whose ambient temperature is several degrees above the receiving fluid of a large water basin. Thus the warmer fluid serves as a passive marker. The spatial and temporal characteristics of the surface thermal field were mapped using a mid-wave infrared imager sensitive to radiation in the 3-5 micron band and with an NEDT of 25 mK. As the Reynolds number and/or the degree of contamination are changed, noticeable structural changes were observed in the thermal field around the core and the outer turbulent/non- turbulent regions. Additionally, the subsurface jet was simultaneously interrogated using DPIV and the surface thermal structures are discussed in light of the resulting characteristics of the flow field.
Chevron Defect at the Intersection of Grain Boundaries with Free Surfaces in Au
NASA Astrophysics Data System (ADS)
Radetic, T.; Lançon, F.; Dahmen, U.
2002-08-01
We have identified a new defect at the intersection between grain boundaries and surfaces in Au using atomic resolution transmission electron microscopy. At the junction line of 90° <110> tilt grain boundaries of (110)-(001) orientation with the free surface, a small segment of the grain boundary, about 1nm in length, dissociates into a triangular region with a chevronlike stacking disorder and a distorted hcp structure. The structure and stability of these defects are confirmed by atomistic simulations, and we point out the relationship with the one-dimensional incommensurate structure of the grain boundary.
Observation of Defect-Free Surface Modes in Optical Waveguide Arrays
NASA Astrophysics Data System (ADS)
Szameit, Alexander; Garanovich, Ivan L.; Heinrich, Matthias; Sukhorukov, Andrey A.; Dreisow, Felix; Pertsch, Thomas; Nolte, Stefan; Tünnermann, Andreas; Kivshar, Yuri S.
2008-11-01
We report on the experimental observation of novel defect-free surface modes predicted theoretically for modulated photonic lattices [I. L. Garanovich et al., Phys. Rev. Lett. 100, 203904 (2008)PRLTAO0031-900710.1103/PhysRevLett.100.203904]. We generate the linear surface modes in truncated arrays of periodically curved optical waveguides created in fused silica by a laser direct-writing technique. Our results demonstrate that the degree of surface wave localization can be controlled by selecting the waveguide bending amplitude.
Test of the Fluctuation Relation in compressible turbulence on a free surface
NASA Astrophysics Data System (ADS)
Bandi, Mahesh; Cressman, John; Goldburg, Walter
2006-11-01
The statistics of lagrangian velocity divergence are studied for an assembly of particles in compressible turbulence on a free surface. Under an appropriate definition of entropy, the two-dimensional velocity divergence of a particle trajectory represents the local entropy rate, a random variable. The statistics of this rate are shown to be in agreement with the steady-state fluctuation relation of Gallavotti and Cohen over a limited range of averaging times. The probability distribution functions obtained in this analysis exhibit features different from those observed in previous experimental tests of the fluctuation relation.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre
2017-04-01
To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep
Virtual maneuvering test in CFD media in presence of free surface
NASA Astrophysics Data System (ADS)
Hajivand, Ahmad; Mousavizadegan, S. Hossein
2015-05-01
Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ɛ and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.
Virtual maneuvering test in CFD media in presence of free surface
NASA Astrophysics Data System (ADS)
Hajivand, Ahmad; Mousavizadegan, S. Hossein
2015-09-01
Maneuvering oblique towing test is simulated in a Computational Fluid Dynamic (CFD) environment to obtain the linear and nonlinear velocity dependent damping coefficients for a DTMB 5512 model ship. The simulations are carried out in freely accessible OpenFOAM library with three different solvers, rasInterFoam, LTSInterFoam and interDyMFoam, and two turbulence models, k-ɛ and SST k-ω in presence of free surface. Turning and zig-zag maneuvers are simulated for the DTMB 5512 model ship using the calculated damping coefficients with CFD. The comparison of simulated results with the available experimental shows a very good agreement among them.
Free-surface phenomena under low- and zero-gravity conditions
NASA Technical Reports Server (NTRS)
Hesselink, L.
1985-01-01
A free surface experiment using a liquid doped with a fluorescent dye under sheet illumination is summarized. The work includes the selection of a CCD camera for use during the design stages of the experiment as well as a preliminary demonstration of this technique in the production of a contour map of a liquid-liquid interface with better than 0.1 mm resolution. With a different data sampling and storage procedure, the image processing is reduced to a simple thresholding procedure which can be done in hardware.
NASA Astrophysics Data System (ADS)
Jain, Charitra; Rozel, Antoine; Tackley, Paul
2014-05-01
Rolf et al. (EPSL, 2012) and Coltice et al. (Science, 2012) investigated the thermal and dynamical influences of continents on plate tectonics and the thermal state of Earth's mantle, but they did not explicitly consider the influence of mantle plumes. When present, strong mantle plumes arising from the deep mantle can impose additional stresses on the continents, thereby facilitating continental rifting (Storey, Nature 1995; Santosh et al., Gondwana Research 2009) and disrupting the supercontinent cycle (Philips and Bunge, Geology 2007). In recent years, several studies have characterized the relation between the location of the plumes and the continents, but with contradicting observations. While Heron and Lowman (GRL, 2010; Tectonophysics, 2011) propose regions where downwelling has ceased (irrespective of overlying plate) as the preferred location for plumes, O'Neill et al. (Gondwana Research, 2009) show an anti-correlation between the average positions of subducting slabs at continental margins, and mantle plumes at continental/oceanic interiors. Continental motion is attributed to the viscous stresses imparted by the convecting mantle and the extent of this motion depends on the heat budget of the mantle. Core-mantle boundary (CMB) heat flux, internal heating from decay of radioactive elements, and mantle cooling contribute to this heat budget. Out of these sources, CMB heat flux is not well defined; however, the recent determination that the core's thermal conductivity is much higher than previously thought requires a CMB heat flow of at least 12 TW (de Koker et al., PNAS 2012; Pozzo et al., Nature 2012; Gomi et al., PEPI 2013), much higher than early estimates of 3-4 TW (Lay et al., Nature 2008). Thus, it is necessary to characterize the effect of increased CMB heat flux on mantle dynamics. In almost all mantle convection simulations, the top boundary is treated as a free-slip surface whereas Earth's surface is a deformable free surface. With a free
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; Scharff, Robert; Byers, Mark
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodology of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.
Asymmetric material impact: Achieving free surfaces velocities nearly double that of the projectile
Aslam, Tariq; Dattelbaum, Dana; Gustavsen, Richard; ...
2015-05-19
Hypervelocity impact speeds are often limited by practical considerations in guns and explosive driven systems. In particular, for gas guns (both powder driven and light gas guns), there is the general trend that higher projectile speeds often come at the expense of smaller diameters, and thus less time for examining shock phenomena prior to two dimensional release waves affecting the observed quantities of interest. Similarly, explosive driven systems have their own set of limiting conditions due to limitations in explosive energy and size of devices required as engineering dimensions increase. The focus in this study is to present a methodologymore » of obtaining free surface velocities well in excess of the projectile velocity. The key to this approach is in using a high impedance projectile that impacts a series of progressively lower impedance materials. The free surface velocity (if they were separated) of each of the progressively lower impedance materials would increase for each material. The theory behind this approach, as well as experimental results are presented.« less
Simulation of bubble expansion and collapse in the vicinity of a free surface
NASA Astrophysics Data System (ADS)
Koukouvinis, P.; Gavaises, M.; Supponen, O.; Farhat, M.
2016-05-01
The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jet with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.
Simulation of bubble expansion and collapse in the vicinity of a free surface
Koukouvinis, P. Gavaises, M.; Supponen, O.; Farhat, M.
2016-05-15
The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jet with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.
Migration of free-surface-related multiples: Removing artefacts using a water-layer model
NASA Astrophysics Data System (ADS)
Hu, Hao; Wang, Yibo; Chang, Xu; Xie, Songlei
2015-01-01
The migration of free-surface-related multiples has been developed for seismic data processing because such multiples can be utilised for imaging and sometimes provide additional subsurface illumination. Recently, the simultaneous migration of primaries and free-surface-related multiples has been proposed as an attractive approach for avoiding the costly prediction of multiples. However, the migration artefacts of multiples, generated by mismatched events, pollute the stacked image and degrade the image quality. We developed a new approach to attenuate the distinct migration artefacts of multiples using water-layer-related multiples. In addition to the original data, the only additional information required by this approach is the water-layer model, which can be acquired easily and accurately from sonar or the stacked profile. By using the predicted water-layer multiples, the distinct migration artefacts can be imaged and then subtracted from the migration image of multiples. Numerical experiments illustrate that the proposed approach can suppress most distinct artefacts in the migration of multiples while preserving the advantages. The proposed approach is an effective tool for the removal of artefacts from the migration of multiples and can be applied to different types of migration operators to produce better-illuminated images with fewer artefacts.
The Interaction of a Turbulent Ship-Hull Boundary Layer and a Free Surface
NASA Astrophysics Data System (ADS)
Masnadi, N.; Washuta, N.; Wang, A.; Duncan, J. H.
2013-11-01
The free-surface deformation pattern caused by subsurface turbulent velocity fluctuations in the boundary layer at the mid-length of a naval ship is studied with a novel laboratory scale experimental technique. In this technique, the boundary layer is created in a large tank (13.4 m long, 1.3 m tall, and 2.4 m wide) with a surface-piercing meter-wide stainless steel belt that travels in a horizontal loop around two vertically oriented rollers whose axes are separated by 7.5 m. The device is enclosed in a dry box except for one of the two lengths between the rollers where a straight 6-meter-long section is exposed to the water and represents one side of the ship hull. The belt operates at full-scale ship speeds (up to 15 m/s) in order to match the Reynolds, Froude, and Weber numbers to those of naval ships, thus faithfully modeling the interaction of the turbulence with the free surface at laboratory scale. The water surface profile history midway between the rollers is recorded cinematically in a vertical plane normal to the belt using a Laser Induced Fluorescence (LIF) technique. This surface profile data is used to study the near-wall and far-field frequency content and propagation behavior of the surface ripples. The support of the Office of Naval Research is gratefully acknowledged.
Stabilization of tokamak plasma by lithium streams
L.E. Zakharov
2000-08-07
The stabilization theory of free-boundary magnetohydrodynamic instabilities in tokamaks by liquid lithium streams driven by magnetic propulsion is formulated. While the conventional, wall-locked, resistive wall mode can be well suppressed by the flow, a new, stream-locked mode determines the limits of the flow stabilization.
Raistrick, I.D.; Poris, J.; Huggins, R.A.
1980-07-18
Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.
Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.
1983-01-01
Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).
Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.
1982-02-09
Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).
Step Free Surface Heteroepitaxy of 3C-SiC Layers on Patterned 4H/6H-SiC Mesas and Cantilevers
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew J.; Spry, David J.
2003-01-01
Most SiC devices are implemented in homoepitaxial films grown on 4H/6H-SiC wafers with surfaces 3 degrees to 8 degrees off-axis from the (0001) basal plane. This approach has not prevented many substrate crystal defects from propagating into SiC epilayers, and does not permit the realization of SiC heteropolytype devices. This presentation describes recent advances in SiC epitaxial growth that begun to overcome the above shortcomings for arrays of mesas patterned into on-axis 4H/6H-SiC wafers. First, we demonstrated that atomic-scale surface steps can be completely eliminated from 4H/6H-SiC mesas via on-axis homoepitaxial step-flow growth, forming (0001) basal plane surfaces (up to 0.4 mm x 0.4 mm) for larger than previously thought possible. Step-free surface areas were then extended by growth fo thin lateral cantilevers from the mesa tops. These lateral cantilevers enabled substrate defects to be reduced and relocated in homoepitaxial films in a manner not possible with off-axis SiC growth. Finally, growth of vastly improved 3C-SiC heterofilms was achieved on 4H/6H-SiC mesas using the recently develop step-free surface heteroepitaxy process. These epitaxial growth developments should enable improved homojunction and heterojunction silicon carbide prototype devices.
Lithium Circuit Test Section Design and Fabrication
Godfroy, Thomas; Garber, Anne; Martin, James
2006-01-20
The Early Flight Fission -- Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.
Lithium Circuit Test Section Design and Fabrication
NASA Astrophysics Data System (ADS)
Godfroy, Thomas; Garber, Anne; Martin, James
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper discusses the overall system design and build and the component testing findings.
Lithium Circuit Test Section Design and Fabrication
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Garber, Anne
2006-01-01
The Early Flight Fission - Test Facilities (EFF-TF) team has designed and built an actively pumped lithium flow circuit. Modifications were made to a circuit originally designed for NaK to enable the use of lithium that included application specific instrumentation and hardware. Component scale freeze/thaw tests were conducted to both gain experience with handling and behavior of lithium in solid and liquid form and to supply anchor data for a Generalized Fluid System Simulation Program (GFSSP) model that was modified to include the physics for freeze/thaw transitions. Void formation was investigated. The basic circuit components include: reactor segment, lithium to gas heat exchanger, electromagnetic (EM) liquid metal pump, load/drain reservoir, expansion reservoir, instrumentation, and trace heaters. This paper will discuss the overall system design and build and the component testing findings.
... best live chat Live Help Fact Sheets Share Lithium and Pregnancy Saturday, 20 September 2014 In every ... risk. This sheet talks about whether exposure to lithium may increase the risk for birth defects over ...
Lithium Battery Diaper Ulceration.
Maridet, Claire; Taïeb, Alain
2016-01-01
We report a case of lithium battery diaper ulceration in a 16-month-old girl. Gastrointestinal and ear, nose, and throat lesions after lithium battery ingestion have been reported, but skin involvement has not been reported to our knowledge.
Spatial pattern analysis for water quality in free-surface constructed wetland.
Mohammadpour, Reza; Shaharuddin, Syafiq; Chang, Chun Kiat; Zakaria, Nor Azazi; Ab Ghani, Aminuddin
2014-01-01
Free-surface constructed wetlands are known as a low-energy green technique to highly decrease a wide range of pollutants in wastewater and stormwater before discharge into natural water. In this study, two spatial analyses, principal factor analysis and hierarchical cluster analysis (HACA), were employed to interpret the effect of wetland on the water quality variables (WQVs) and to classify the wetland into groups with similar characteristics. Eleven WQVs were collected at the 17 sampling stations twice a month for 13 months. All sampling stations were classified by HACA into three clusters, with high, moderate, and low pollution areas. To improve the water quality, the performance of Cluster-III (micropool) is more significant than Cluster-I and Cluster-II. Implications of this study include potential savings of time and cost for long-term data monitoring purposes in the free-constructed wetland.
Pb-free surface-finishing on electronic components' terminals for Pb-free soldering assembly
Tanaka, Hitoshi; Tanimoto, Morimasa; Matsuda, Akira; Uno, Takeo; Kurihara, Masaaki; Shiga, Shoji
1999-11-01
Pb-free solderable surface finishing is essential to implement Pb-free solder assembly in order to meet with the growing demand of environmental consciousness to eliminate Pb from electronic products. Two types of widely applicable Pb-free surface finishing technologies are developed. One is the multilayer-system including Pd with Ni undercoat. Heat-resistance of Pd enables whole-surface-plating on to leadframe before IC-assembling process. The other is the double-layer-system with low-melting-point-materials, for example, thicker Sn underlayer and thinner Sn-Bi alloy overlayer, dilutes Sn-Bi alloy's defects of harmful reactivity along with substrate metal and mechanical brittleness with keeping its advantages of solder-wettability and no whisker.
High-Throughput Fabrication of Quality Nanofibers Using a Modified Free Surface Electrospinning
NASA Astrophysics Data System (ADS)
Shao, Zhongbiao; Yu, Liang; Xu, Lan; Wang, Mingdi
2017-07-01
Based on bubble electrospinning (BE), a modified free surface electrospinning (MFSE) using a cone-shaped air nozzle combined with a solution reservoir made of copper tubes was presented to increase the production of quality nanofibers. In the MFSE process, sodium dodecyl benzene sulfonates (SDBS) were added in the electrospun solution to generate bubbles on a liquid surface. The effects of applied voltage and generated bubbles on the morphology and production of nanofibers were investigated experimentally and theoretically. The theoretical analysis results of the electric field were in good agreement with the experimental data and showed that the quality and production of nanofibers were improved with the increase of applied voltage, and the generated bubbles would decrease the quality and production of nanofibers.
Free-surface molecular command systems for photoalignment of liquid crystalline materials.
Fukuhara, Kei; Nagano, Shusaku; Hara, Mitsuo; Seki, Takahiro
2014-01-01
The orientation of liquid crystal molecules is very sensitive towards contacting surfaces, and this phenomenon is critical during the fabrication of liquid crystal display panels, as well as optical and memory devices. To date, research has focused on designing and modifying solid surfaces. Here we report an approach to control the orientation of liquid crystals from the free (air) surface side: a skin layer at the free surface was prepared using a non-photoresponsive liquid crystalline polymer film by surface segregation or inkjet printing an azobenzene-containing liquid crystalline block copolymer. Both planar-planar and homoeotropic-planar mode patterns were readily generated. This strategy is applicable to various substrate systems, including inorganic substrates and flexible polymer films. These versatile processes require no modification of the substrate surface and are therefore expected to provide new opportunities for the fabrication of optical and mechanical devices based on liquid crystal alignment.
Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves
NASA Astrophysics Data System (ADS)
Issenmann, Bruno; Laroche, Claude; Falcon, Eric
2016-12-01
We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid.
Size dependence of the surface tension of a free surface of an isotropic fluid
NASA Astrophysics Data System (ADS)
Burian, Sergii; Isaiev, Mykola; Termentzidis, Konstantinos; Sysoev, Vladimir; Bulavin, Leonid
2017-06-01
We report on the size dependence of the surface tension of a free surface of an isotropic fluid. The size dependence of the surface tension is evaluated based on the Gibbs-Tolman-Koenig-Buff equation for positive and negative values of curvatures and the Tolman lengths. For all combinations of positive and negative signs of curvature and the Tolman length, we succeed to have a continuous function, avoiding the existing discontinuity at zero curvature (flat interfaces). As an example, a water droplet in the thermodynamical equilibrium with the vapor is analyzed in detail. The size dependence of the surface tension and the Tolman length are evaluated with the use of experimental data of the International Association for the Properties of Water and Steam. The evaluated Tolman length of our approach is in good agreement with molecular dynamics and experimental data.
Motion of free-surface of shock-compressed water on emergence of rarefaction
NASA Astrophysics Data System (ADS)
Menezes, V.; Hosseini, H.; Moosavi-Nejad, S.; Irimpan, K. J.; Akiyama, H.
2015-10-01
We experimentally evaluated the impulsive motion of free-surface of water on impingement of shock-waves of moderate strength. This physical process creates the initial acceleration in shock-wave based micro-fluidic devices, which have promising medical and drug/DNA delivery applications. The velocities of the water interfaces were measured through real-time high-temporal/spatial resolution visualizations. Based on modified Tait equation-of-state and the concept of Reimann-invariants, an analytical expression was deduced to calculate the particle velocity behind the unloading wave. The experiments and analyses confirm that the mass motion behind the shock-wave accelerates to very high velocities, a requirement for effective momentum delivery in micro-jet devices.
Free-surface molecular command systems for photoalignment of liquid crystalline materials
Fukuhara, Kei; Nagano, Shusaku; Hara, Mitsuo; Seki, Takahiro
2014-01-01
The orientation of liquid crystal molecules is very sensitive towards contacting surfaces, and this phenomenon is critical during the fabrication of liquid crystal display panels, as well as optical and memory devices. To date, research has focused on designing and modifying solid surfaces. Here we report an approach to control the orientation of liquid crystals from the free (air) surface side: a skin layer at the free surface was prepared using a non-photoresponsive liquid crystalline polymer film by surface segregation or inkjet printing an azobenzene-containing liquid crystalline block copolymer. Both planar-planar and homoeotropic-planar mode patterns were readily generated. This strategy is applicable to various substrate systems, including inorganic substrates and flexible polymer films. These versatile processes require no modification of the substrate surface and are therefore expected to provide new opportunities for the fabrication of optical and mechanical devices based on liquid crystal alignment. PMID:24534881
NASA Astrophysics Data System (ADS)
Zhang, Wei; Chen, Xiaofei
2006-10-01
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a `flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.
Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland.
Cameron, Kimberley; Madramootoo, Chandra; Crolla, Anna; Kinsley, Christopher
2003-07-01
This research project was initiated to refine the knowledge available on the treatment of rural municipal wastewater by constructed wetlands. To determine the treatment capacity of a constructed wetland system receiving municipal lagoon effluents, the wetland was monitored over one treatment season, from May 19 to November 3, 2000. The wetland system consisted of a three-cell free-surface wetland, phosphorus adsorption slag filters and a vegetated filter strip. Bimonthly water samples at the inlet and outlet of each component of the wetland system were analysed for biochemical oxygen demand, nitrate and nitrite, ammonia and ammonium, total Kjeldahl nitrogen (TKN), total suspended solids (TSS), total phosphorus (TP), ortho-phosphate (ortho-PO(4)), fecal coliforms (FCs) and Escherichia coli. The free-surface wetland cells treating the lagoon effluents achieved removals as follows: biochemical oxygen demand (34%), ammonia and ammonium (52%), TKN (37%), TSS (93%), TP (90%), ortho-PO(4) (82%), FCs (52%) and E. coli (58%). The wetland cells reduced total nitrogen, TP and biochemical oxygen demand to levels below the maximum permissible levels required for direct discharge to nearby receiving waters (TN<3.0 mg x L(-1), TP<0.3 mg x L(-1), BOD(5)<3.0 mg x L(-1)). The vegetated filter strip treating the effluents from the wetland cells achieved removals as follows: biochemical oxygen demand (18%), ammonia and ammonium (28%), TKN (11%), TSS (22%), TP (5%), FCs (28%) and E. coli (22%). It may therefore serve as an additional treatment stage further reducing the concentrations of these mentioned parameters. The slag filters reduced TP in the lagoon effluents by up to 99%, and, in this study, were concluded to be effective phosphorus adsorbers.
Sustained low-efficiency dialysis (SLED) for acute lithium intoxication
Fiaccadori, Enrico; Maggiore, Umberto; Parenti, Elisabetta; Greco, Paolo; Cabassi, Aderville
2008-01-01
Acute lithium intoxication may cause serious neurologic and cardiac manifestations, up to the patient's death. Owing to its low molecular weight, relatively small volume of distribution close to that of total body water, and its negligible protein binding, lithium can be efficiently removed by any extracorporeal modality of renal replacement therapy (RRT). However, the shift from the intracellular to the extracellular compartment, with the inherent rebound phenomenon after the end of RRT, might limit the efficacy of the conventional, short-lasting haemodialysis. There have been no published studies up to now concerning the use of sustained low-efficiency dialysis (SLED) in lithium intoxication. This report describes a woman with a voluntary acute lithium ingestion of 40 tablets of lithium carbonate (8.12 mEq lithium each). The lithium concentration increased up to 4.18 mEq/l about 24 h after admission, notwithstanding treatment with intravenous crystalloids and gastric lavage. She developed mental status changes, oliguria, hypotension and bradycardia. We started SLED (8 h) with a blood flow of 200 ml/min and countercurrent dialysate flow of 300 ml/min. Lithium serum levels decreased by 86% during treatment, and the patient fully awoke recovering a normal mental status within the first 4 h of treatment. SLED was completed safely within the prescribed time. After the end of treatment, the rebound of lithium concentration was unremarkable. Renal function fully recovered, and the patient was transferred into a psychiatric facility 3 days after admission. PMID:25983926
1985-02-01
Page 1. INVESTIGATION OF CHEMICAL, ELECTROCHEMICAL AND PARASITIC REACTIONS IN LITHIUM - THIONYL CHLORIDE CELLS ....... ................. 1 1.1 INTRODUCTION...OF LITHIUM - THIONYL CHLORIDE CELLS. ................ 56 1.4.1 Carbon Limited Overdischarge...............56 1.4.1.1 Background... LITHIUM THIONYL - CHLORIDE CELLS. .. ............ ...... 101 1.5.1 Background. ....... ............ .... 101 1.5.2 Microphotography
Goonan, Thomas G.
2012-01-01
Lithium has a number of uses but one of the most valuable is as a component of high energy-density rechargeable lithium-ion batteries. Because of concerns over carbon dioxide footprint and increasing hydrocarbon fuel cost (reduced supply), lithium may become even more important in large batteries for powering all-electric and hybrid vehicles. It would take 1.4 to 3.0 kilograms of lithium equivalent (7.5 to 16.0 kilograms of lithium carbonate) to support a 40-mile trip in an electric vehicle before requiring recharge. This could create a large demand for lithium. Estimates of future lithium demand vary, based on numerous variables. Some of those variables include the potential for recycling, widespread public acceptance of electric vehicles, or the possibility of incentives for converting to lithium-ion-powered engines. Increased electric usage could cause electricity prices to increase. Because of reduced demand, hydrocarbon fuel prices would likely decrease, making hydrocarbon fuel more desirable. In 2009, 13 percent of worldwide lithium reserves, expressed in terms of contained lithium, were reported to be within hard rock mineral deposits, and 87 percent, within brine deposits. Most of the lithium recovered from brine came from Chile, with smaller amounts from China, Argentina, and the United States. Chile also has lithium mineral reserves, as does Australia. Another source of lithium is from recycled batteries. When lithium-ion batteries begin to power vehicles, it is expected that battery recycling rates will increase because vehicle battery recycling systems can be used to produce new lithium-ion batteries.
The lithium vapor box divertor
Goldston, R. J.; Myers, R.; Schwartz, J.
2016-01-13
It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m^{-2}, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.
The lithium vapor box divertor
Goldston, R. J.; Myers, R.; Schwartz, J.
2016-01-13
It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Our recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m-2, implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al asmore » well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. Furthermore, at the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required in order to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma.« less
NASA Astrophysics Data System (ADS)
Le Guillou, M.; Moncoffre, N.; Toulhoat, N.; Pipon, Y.; Ammar, M. R.; Rouzaud, J. N.; Deldicque, D.
2016-03-01
This paper is a contribution to the study of the behavior of activation products produced in irradiated nuclear graphite, graphite being the moderator of the first French generation of CO2 cooled nuclear fission reactors. This paper is focused on the thermal release of Tritium, a major contributor to the initial activity, taking into account the role of the free surfaces (open pores and graphite surface). Two kinds of graphite were compared. On one hand, Highly Oriented Pyrolitic Graphite (HOPG), a model well graphitized graphite, and on the other hand, SLA2, a porous less graphitized nuclear graphite. Deuterium ion implantation at three different energies 70, 200 and 390 keV allows simulating the presence of Tritium at three different depths, corresponding respectively to projected ranges Rp of 0.75, 1.7 and 3.2 μm. The D isotopic tracing is performed thanks to the D(3He,p)4He nuclear reaction. The graphite structure is studied by Raman microspectrometry. Thermal annealing is performed in the temperature range 200-1200 °C up to 300 h annealing time. As observed in a previous study, the results show that the D release occurs according to three kinetic regimes: a rapid permeation through open pores, a transient regime corresponding to detrapping and diffusion of D located at low energy sites correlated to the edges of crystallites and finally a saturation regime attributed to detrapping of interstitial D located at high energy sites inside the crystallites. Below 600 °C, D release is negligible whatever the implantation depth and the graphite type. The present paper clearly puts forward that above 600 °C, the D release decreases at deeper implantation depths and strongly depends on the graphite structure. In HOPG where high energy sites are more abundant, the D release is less dependent on the surface proximity compared to SLA2. In SLA2, in which the low energy sites prevail, the D release curves are clearly shifted towards lower temperatures when D is located
Dynamics of electromechanical flow structures.
NASA Technical Reports Server (NTRS)
Jones, T. B., Jr.; Melcher, J. R.
1973-01-01
Free-surface gravity flows and capillary wicking provide examples of flow structures with fluid partially ducted at free surfaces by external forces. Wall-less electromechanical flow structures are developed which have a similar nature, but with polarization forces providing the orientation at free surfaces. Like their mechanical counterparts, these have the ability to ingest liquid or expel vapor through their walls. The structures consist of electrodes running in the flow direction z with slowly varying cross sections in a plane transverse to the flow. A formulation is given of the long-wave nonlinear (principal mode) dynamics, with use made of energy functions to represent a broad class of possible mechanical and electrical structure geometries.
Critical Velocities in Open Capillary Flow
NASA Technical Reports Server (NTRS)
Dreyer, Michael; Langbein, Dieter; Rath, Hans J.
1996-01-01
This paper describes the proposed research program on open capillary flow and the preliminary work performed theoretically and in drop tower experiments. The work focuses on the fundamental physical understanding of the flow through capillary bound geometries, where the circumference of the cross section of the flow path contains free surfaces. Examples for such a flow configuration are capillary vanes in surface tension tanks, flow along edges and corners and flow through liquid bridges. The geometries may be classified by their cross section areas, wetted circumferences and the radii of curvature of the free surfaces. In the streaming float zone the flow path is bound by a free surface only. The ribbon vane is a model for vane types used in surface tension tanks, where a structure in proximity to the tank wall forms a capillary gap. A groove is used in heat pipes for the transportation of the condensed working fluid to the heat source and a wedge may occur in a spaceborne experiment where fluid has to be transported by the means of surface tension. The research objectives are the determination of the maximum volume flux, the observation of the free surfaces and the liquid flow inside the flow path as well as the evaluation of the limiting capillary wave speed. The restriction of the maximum volume flux is due to convective forces (flow velocity exceeding the capillary wave speed) and/or viscous forces, i.e. the viscous head loss along the flow path must be compensated by the capillary pressure due to the curved free surface. Exceeding the maximum volume flux leads to the choking of the flow path, thus the free surface collapses and.gas ingestion occurs at the outlet. The means are ground-based experimental work with plateau tanks and in a drop tower, a sounding rocket flight, and theoretical analysis with integral balances as well as full three dimensional CFD solutions for flow with free surfaces.
The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
NASA Astrophysics Data System (ADS)
Li, Weiyang; Yao, Hongbin; Yan, Kai; Zheng, Guangyuan; Liang, Zheng; Chiang, Yet-Ming; Cui, Yi
2015-06-01
Lithium metal has shown great promise as an anode material for high-energy storage systems, owing to its high theoretical specific capacity and low negative electrochemical potential. Unfortunately, uncontrolled dendritic and mossy lithium growth, as well as electrolyte decomposition inherent in lithium metal-based batteries, cause safety issues and low Coulombic efficiency. Here we demonstrate that the growth of lithium dendrites can be suppressed by exploiting the reaction between lithium and lithium polysulfide, which has long been considered as a critical flaw in lithium-sulfur batteries. We show that a stable and uniform solid electrolyte interphase layer is formed due to a synergetic effect of both lithium polysulfide and lithium nitrate as additives in ether-based electrolyte, preventing dendrite growth and minimizing electrolyte decomposition. Our findings allow for re-evaluation of the reactions regarding lithium polysulfide, lithium nitrate and lithium metal, and provide insights into solving the problems associated with lithium metal anodes.
NASA Astrophysics Data System (ADS)
Pottier, Basile; Talini, Laurence; Frétigny, Christian
2012-02-01
We present a new optical method to measure the linear viscoelastic properties of materials, ranging from complex fluids to soft solids, within a large frequency range (about 0.1--10^4 Hz). The surface fluctuation specular reflection technique is based on the measurement of the thermal fluctuations of the free surfaces of materials at which a laser beam is specularly reflected. The propagation of the thermal surface waves depends on the surface tension, density, and complex viscoelastic modulus of the material. For known surface tension and density, we show that the frequency dependent elastic and loss moduli can be deduced from the fluctuation spectrum. Using a viscoelastic solid (a cross-linked PDMS), which linear viscoelastic properties are known in a large frequency range from rheometric measurements and the time--temperature superposition principle, we show that there is a good agreement between the rheological characterization provided by rheometric and fluctuation measurements. We also present measurements conducted with complex fluids that are supramolecular polymer solutions. The agreement with other low frequency and high frequency rheological measurements is again very good, and we discuss the sensitivity of the technique to surface viscoelasticity.
Effectiveness of microbubble removal in an airtrap with a free surface interface.
Keshavarzi, Gholamreza; Simmons, Anne; Yeoh, Guan; Barber, Tracie
2015-05-01
An end stage renal disease patient will undergo haemodialysis (HD) three or four times a week for four to five hours per session. Because of the chronic nature of the treatment, any minor imperfection in the extracorporeal system may become significant over time. Clinical studies have raised concerns relating to small microbubbles entering HD patients. These bubbles lead to further pathophysiological complications with the size of the bubble being a major factor. Microbubbles of different sizes can be generated throughout the extra-corporeal HD circuit. It is important to understand the possibility of these bubbles passing through the air trap or successfully being removed which indicates the performance of the air trap, the only mechanics of removing air bubbles. Chronic exposure to various sizes of microbubbles was analysed in detail for haemodialysis patients. However, smaller microbubbles are shown to be able to pass our modelled air trap. While studies have reported the presence of bubbles before and after the air trap, because these bubbles are only counted and not tracked, the performance of the air trap for removing different bubble sizes is not understood. Here, the performance of the air trap in filtering bubbles and the possibility of different bubble sizes passing through the air trap with the presence of the free surface interface have been evaluated. The modelled air trap is shown to be ineffective for filtering small micro bubbles. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Caruso, G.; Cristofano, L.; Nobili, M.; Vitale Di Maio, D.
2014-04-01
For the future development of Generation IV nuclear reactors, both safety and economic targets have to be achieved. In order to increase, at the same time, the power density generation and the safety features, a huge R&D effort is still required. Referring especially to Liquid Metal Cooled Fast Reactors, much attention is placed on Gas Entrainment (GE) phenomena, which could cause unlikely positive reactivity insertion accident. The GETS experimental facility (Gas Entrainment Test Section), especially aimed at studying the free surface vortices occurrence, has been built in the thermal-hydraulics laboratory of the DIAEE. The main purpose of this facility is to identify the most important parameters affecting the whirlpools formation and evolution. Experimental tests and preliminary observations have been performed. Different vortex behaviours related to different experimental conditions have been identified and presented in the present paper. 2D occurrence maps as function of different dimensionless groups (Reynolds, Froude and Weber numbers and H* = H/d ratio) have been defined. In the present paper, the results of a first experimental campaign, carried out with tap water, are discussed.
Resisting and pinning of a nanodrop by trenches on a hysteresis-free surface
NASA Astrophysics Data System (ADS)
Chang, Cheng-Chung; Wu, Cyuan-Jhang; Sheng, Yu-Jane; Tsao, Heng-Kwong
2016-10-01
The encounter of a nanodrop with a trench on a hysteresis-free surface is explored by many-body dissipative particle dynamics to show the effect of surface roughness on droplet wetting. A free nanodrop exhibits Brownian motion and the diffusivity decays exponentially with the liquid-solid contact area. In contrast, as the nanodrop sits on a trench, its random motion is constrained. Work must be done to overcome the energy barriers for the transition between free and trapped states. The potential energy landscape is thus constructed based on the force-displacement plot. It is shown that the trench acts as a hydrophobic blemish for capture but like a hydrophilic blemish for escape. A drop always breaks up after detachment from a hydrophilic trench. Therefore, the drop tends to bypass a small trench when it meets one. The macroscopic experiments are performed by fabricating liquid-infused surfaces with extremely low contact angle hysteresis. The experimental observations agree qualitatively with simulation outcomes.
Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities
Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen; ...
2017-03-08
Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 107/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find that meshmore » convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less
Stereo Refractive Imaging of Breaking Free-Surface Waves in the Surf Zone
NASA Astrophysics Data System (ADS)
Mandel, Tracy; Weitzman, Joel; Koseff, Jeffrey; Environmental Fluid Mechanics Laboratory Team
2014-11-01
Ocean waves drive the evolution of coastlines across the globe. Wave breaking suspends sediments, while wave run-up, run-down, and the undertow transport this sediment across the shore. Complex bathymetric features and natural biotic communities can influence all of these dynamics, and provide protection against erosion and flooding. However, our knowledge of the exact mechanisms by which this occurs, and how they can be modeled and parameterized, is limited. We have conducted a series of controlled laboratory experiments with the goal of elucidating these details. These have focused on quantifying the spatially-varying characteristics of breaking waves and developing more accurate techniques for measuring and predicting wave setup, setdown, and run-up. Using dynamic refraction stereo imaging, data on free-surface slope and height can be obtained over an entire plane. Wave evolution is thus obtained with high spatial precision. These surface features are compared with measures of instantaneous turbulence and mean currents within the water column. We then use this newly-developed ability to resolve three-dimensional surface features over a canopy of seagrass mimics, in order to validate theoretical formulations of wave-vegetation interactions in the surf zone.
Helium release in uranium dioxide in relation to grain boundaries and free surfaces
NASA Astrophysics Data System (ADS)
Martin, G.; Garcia, P.; Sabathier, C.; Carlot, G.; Sauvage, T.; Desgardin, P.; Raepsaet, C.; Khodja, H.
2010-06-01
Nuclear reaction analyses (NRA) based on the 3He( 2H, 4He) 1H reaction were previously performed to follow the evolution of implanted 3He in polycrystalline UO 2 samples. Experimental results pointed to an enhancement above 800 °C of the diffusion coefficient of helium over several microns in the vicinity of the grain boundaries, with respect to the diffusion coefficient within the grain. This was ascribed to the fact that grain boundaries are probably defect sinks which locally modify the defect concentrations. This study aims at demonstrating the particular effect of grain boundaries on helium migration. To this end, 3He implanted polycrystalline UO 2 samples were cracked then annealed at 900 °C. Helium migration in the vicinity of the grain boundaries and near the crack was investigated by means of NRA microanalyses. Helium depletion extends over far larger distances in the vicinity of the grain boundaries than near the crack. Experimental evidence has been collected of the particular effect of grain boundaries on helium migration, which do not act as free surfaces at which helium atoms are simply released.
Observation of free surface-induced bending upon nanopatterning of ultrathin strained silicon layer.
Moutanabbir, Oussama; Reiche, Manfred; Zakharov, Nikolai; Naumann, Falk; Petzold, Matthias
2011-01-28
We provide evidence of nanopatterning-induced bending of an ultrathin tensile strained silicon layer directly on oxide. This strained layer is achieved through the epitaxial growth of silicon on a Si(0.84)Ge(0.16) virtual substrate and subsequent transfer onto a SiO(2)-capped silicon substrate by combining hydrophilic wafer bonding and the ion-cut process. Using high resolution transmission electron microscopy, we found that the upper face of the strained silicon nanostructures fabricated from the obtained heterostructure using electron beam lithography and dry reactive ion etching displays a concave shape. This bending results from the free-surface-induced strain relaxation, which implies lattice out-of-plane expansion near the edges and concomitant contraction at the center. For a ∼ 110 nm × 400 nm × 20 nm nanostructure, the bending is associated with an angle of 1.5° between the [Formula: see text] vertical atomic planes at the edges of the ∼ 110 nm side. No bending is, however, observed at the strained Si/SiO(2) interface. This phenomenon cannot be explained by the classical Stoney's formula or related formulations developed for nanoscale thin films. Here we employed a continuum mechanical approach to describe these observations using three-dimensional numerical calculations of relaxation-induced lattice displacements.
Equilibrium segregation of sulfur to the free surface of single crystalline titanium
NASA Astrophysics Data System (ADS)
Cao, Z. X.
2001-09-01
Equilibrium segregation of sulfur to the free surface of single crystalline titanium from 560{°}C to 800{°}C was investigated using Auger electron spectroscopy (AES) measurements. To describe the concentration evolution in the sulfur overlayer, Fick's first law was modified by adding a local function df(x)/dx, to the concentration gradient to drive the segregation starting from an initially homogeneous distribution. The diffusion equation thus derived was solved for the case f(x) = asexp (-x/ds). It was found that the solution leads to an AES intensity evolution for segregants, IS(t) = IS∞(1- eαerfc((α)1/2)), α = Dt/ds2, which fits the experimental results extremely well. An exponentially decaying distribution of sulfur beneath the titanium surface at equilibrium was revealed by sputter depth profiling, which in turn justifies our modification to Fick's first law. Without referring to the detailed kinetics, an activation energy Ea = 718 meV/atom was determined by comparing the sulfur concentration evolution at different temperatures.
An analytical and numerical study of the nonlinear reflection at a stress-free surface
Romer, Anne Kim, Jin-Yeon; Jacobs, Laurence J.
2015-03-31
Implementation of the ultrasonic second harmonic generation has typically been restricted to simple setups such as through-transmission or Rayleigh surface waves. Recent research has evaluated the second harmonic waves generation in P- and SV- waves reflected from a stress-free surface to enable the single-sided interrogation of a specimen. This research considers the second harmonic generation in an aluminum specimen, which is analytically evaluated using an approach based on a perturbation method. Here, the model is chosen to mimic an experimental setup where the longitudinal wave is generated at oblique angle using a wedge transducer. Due to the mode conversion at the interface of the wedge and the specimen, it is necessary to evaluate longitudinal and shear waves, determining all second harmonic waves generated in the bulk and at the stress-free boundary. The theoretically developed model is then implemented in a commercial finite element code, COMSOL, using increasing fundamental wave amplitudes for different values of third order elastic constants. The results of this computational model verify the analytical approach and the proposed measurement setup, taking into account assumptions and approximations of the solution procedure. Furthermore, the computational model is used to draw important conclusions relevant to the experimental setup, including the need to avoid interaction with diffracted waves.
Results from the CDX-U Lithium Wall and NSTX Lithium Pallet Injection and Evaporation Experiments
Majeski, R; Kugel, H; Bell, M; Bell, R; Beiersdorfer, P; Bush, C; Doerner, R; Gates, D; Gray, T; Kaita, R; LeBlanc, B; Maingi, R; Mansfield, D; Menard, J; Mueller, D; Paul, S; Raman, R; Roquemore, A; Skinner, C; Sabbagh, S; Souskhanovskii, V; Spaleta, J; Stevenson, T; Timberlake, J; Zakharov, L
2006-10-05
significant increases in electron and ion temperature, neutron rate, confinement time, and edge flow velocity, and reductions in H-mode ELM frequency. For several days of operation after lithium coating, the ratio of oxygen to carbon emission was lower than with boronization.
Method of recycling lithium borate to lithium borohydride through diborane
Filby, Evan E.
1976-01-01
This invention provides a method for the recycling of lithium borate to lithium borohydride which can be reacted with water to generate hydrogen for utilization as a fuel. The lithium borate by-product of the hydrogen generation reaction is reacted with hydrogen chloride and water to produce boric acid and lithium chloride. The boric acid and lithium chloride are converted to lithium borohydride through a diborane intermediate to complete the recycle scheme.
NASA Astrophysics Data System (ADS)
Uddin, Jamal; Needham, David
2014-11-01
When a vertical rigid plate is uniformly accelerated from rest into an initially stationary layer of inviscid incompressible fluid, the free surface will undergo a deformation in the locality of the intersection point between the free surface and the plate. This deformation of the free surface will, in the early stages, cause a jet to rise up the plate. An understanding of the local structure of the free surface in the early stages of motion is vital in many situations and has been developed in detail by King & Needham (1994). In this work we consider the effects of introducing weak surface tension, characterized by the inverse Weber number, W, into the problem considered by King & Needham (1994). Our approach is based upon matched asymptotic expansions as W to 0. It is found that four asymptotic regions are needed to describe the problem. The three largest regions have analytical solutions whilst a numerical method based on finite differences is used to solve the time dependent harmonic boundary value problem in the last region. We also present some preliminary comparisons between experiments and theory.
NASA Astrophysics Data System (ADS)
Lust, Ethan; Flack, Karen; Luznik, Luksa
2014-11-01
Results from an experimental study on the effects of marine current turbine immersion depth from the free surface are presented. Measurements are performed with a 1/25 scale (diameter D = 0.8m) two bladed horizontal axis turbine towed in the large towing tank at the U.S. Naval Academy. Thrust and torque are measured using a dynamometer, mounted in line with the turbine shaft. Shaft rotation speed and blade position are measured using a shaft position indexing system. The tip speed ratio (TSR) is adjusted using a hysteresis brake which is attached to the output shaft. Two optical wave height sensors are used to measure the free surface elevation. The turbine is towed at 1.68 m/s, resulting in a 70% chord based Rec = 4 × 105. An Acoustic Doppler Velocimeter (ADV) is installed one turbine diameter upstream of the turbine rotation plane to characterize the inflow turbulence. Measurements are obtained at four relative blade tip immersion depths of z/D = 0.5, 0.4, 0.3, and 0.2 at a TSR value of 7 to identify the depth where free surface effects impact overall turbine performance. The overall average power and thrust coefficient are presented and compared to previously conducted baseline tests. The influence of wake expansion blockage on the turbine performance due to presence of the free surface at these immersion depths will also be discussed.
Far-field sound radiation of a submerged cylindrical shell at finite depth from the free surface.
Li, T Y; Miao, Y Y; Ye, W B; Zhu, X; Zhu, X M
2014-09-01
The far-field sound radiation behavior of a circular cylindrical shell submerged at finite depth from the free surface is studied. Based on the Flügge shell theory and the Helmholtz equation, the structure-acoustic coupling equation is established. An image method is applied so that the sound boundary condition of the free surface can be satisfied. Analytical expression of the far-field sound pressure is obtained using the stationary phase method and the Graf's addition theorem. In order to evaluate the effect of the submerged depth on sound radiation, the results of the submerged cylindrical shell at finite depth from the free surface are compared with those of the submerged cylindrical shell in the infinite fluid. The characteristics of the far-field sound pressure with the change of the depth are investigated. It is found that the submerged depth has a significant influence on the far-field sound pressure radiated from the submerged cylindrical shell due to the free surface effects. The work provides more understanding on the sound radiation properties of the submerged circular cylindrical shell without assuming infinite fluid field, which was commonly used in previous studies.
Seifter, A.; Furlanetto, M. R.; Holtkamp, D. B.; Obst, A. W.; Payton, J. R.; Stone, J. B.; Tabaka, L. J.; Grover, M.; Macrum, G. S.; Stevens, G. D.; Turley, W. D.; Swift, D. C.; Veeser, L. R.
2009-06-15
Equilibrium equation of state theory predicts that the free-surface release temperature of shock-loaded tin will show a plateau at 505 K in the stress range from 19.5 to 33.0 GPa, corresponding to the solid-liquid, mixed-phase region of tin. In this paper we report free-surface temperature measurements on shock-loaded tin from 15 to 31 GPa using multiwavelength optical pyrometry. The shock waves were generated by direct contact of detonating high explosive with a tin sample, and the stress in the sample was determined by free-surface velocity measurements using photon Doppler velocimetry. We measured the emitted thermal radiance in the near IR region at four wavelengths from 1.5 to 5.0 mum. Above 25 GPa the measured free-surface temperatures were higher than the predicted 505 K, and they increased with increasing stress. This deviation may be explained by hot spots and/or variations in surface emissivity, and it may indicate a weakness in the use of a simple analysis of multiwavelength pyrometry data for conditions, such as above the melt threshold, where hot spots or emissivity variations may be significant. We are continuing to study the discrepancy to determine its cause.
1985-12-31
SPILLED With dry rubber gloves. Rick up t.- lithium ingot and return to steel container and store under oil : label or tag , Keep away from moisture or...was in a 30% solids dispersion of mineral oil . Thus, the dispersion was purchased and the lithium metal was cleaned by extracting the mineral oil with... oil could be eliminated. Unfortunately, the manufacturer was unable to meet product specifications. Of the micronized lithium metal supplied to SwRI
Lithium purification technique
Keough, Robert F.; Meadows, George E.
1985-01-01
A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.
Lithium purification technique
Keough, R.F.; Meadows, G.E.
1984-01-10
A method for purifying liquid lithium to remove unwanted quantities of nitrogen or aluminum. The method involves precipitation of aluminum nitride by adding a reagent to the liquid lithium. The reagent will be either nitrogen or aluminum in a quantity adequate to react with the unwanted quantity of the impurity to form insoluble aluminum nitride. The aluminum nitride can be mechanically separated from the molten liquid lithium.
Mechanisms of free-surface breakup in vibration-induced liquid atomization
NASA Astrophysics Data System (ADS)
Vukasinovic, Bojan; Smith, Marc K.; Glezer, Ari
2007-01-01
The mechanisms of droplet formation that take place during vibration-induced drop atomization are investigated experimentally. Droplet ejection results from the breakup of transient liquid spikes that form following the localized collapse of free-surface waves. Breakup typically begins with capillary pinch-off of a droplet from the tip of the spike and can be followed by additional pinch-offs of satellite droplets if the corresponding capillary number is sufficiently small (e.g., in low-viscosity liquids). If the capillary number is increased (e.g., in viscous liquids), breakup first occurs near the base of the spike, with or without subsequent breakup of the detached, thread-like spike. The formation of these detached threads is governed by a breakup mechanism that is separated from the tip-dominated capillary pinch-off mechanism by an order of magnitude in terms of dimensionless driving frequency f*. The dependence of breakup time and unbroken spike length on fluid and driving parameters is established over a broad range of dimensionless driving frequencies (10-3
The reflection of low energy phonons at the free surface of liquid4He. I. Theory
NASA Astrophysics Data System (ADS)
Baddar, H.; Edwards, D. O.
1996-09-01
The scattering of a low energy phonon at the free surface of liquid4He at finite temperature is discussed in relation to the reflection measurements in the accompanying paper (II). If not specularly reflected, the phonon may be inelastically scattered, with the emission or absorption of a single ripplon, or it may be absorbed with the emission of two ripplons. The inelastic scattering produces deviations from ideal specular reflection that depend logarithmically on the angular sensitivity of the measurement. For the experiment described in II, the predicted deviations due to scattering and absorption are roughly equal and too small (˜5×10-4) to be measured. In addition, there should be a small broadening (less than 1 ° in angle) of the reflected image of the phonon source due to phonon decay in the bulk liquid. This was calculated from the curvature of the phonon spectrum measured by Rugar and Foster. Phonon decay also determines the distribution of the incident phonon beam with respect to energy. From the known decay rate, the average incident phonon energy in our experiment is calculated to be ˜0.5 K. We also discuss the attenuation of surface second sound due to the inelastic scattering and absorption of thermal phonons at the surface. We find that two ripplon absorption is the dominant effect. Below ˜0.7 K, the attenuation due to phonons is probably just small enough for pure ripplon surface sound to exist in a narrow range of low frequencies. To show this, we have recalculated the ripplon lifetime using the 3-ripplon interaction as recently revised by Roche et al. The results for the ripplon lifetime are displayed in a simple scaling format.
[Parkinsonism during lithium use].
Walrave, T R W M; Bulens, C
2009-01-01
Two patients with bipolar disorder had been treated for years with lithium without any complications but began to develop symptoms of rigidity and an altered gait, namely symptoms compatible with a diagnosis of Parkinsonism with an action tremor. In both patients lithium levels were within the therapeutic range. Medication-induced Parkinsonism occurs frequently in patients using antipsychotic medication, but is a rare complication in patients receiving long term treatment with lithium. The lithium dosage was reduced gradually and within a few months all neurological symptoms subsided completely.
Barr, R. D.; Galbraith, P. R.
1983-01-01
Some of lithium's effects on blood cell formation suggest that the element may be of value in treating hematologic disorders. Lithium enhances granulopoiesis and thereby induces neutrophilia. Two possible mechanisms of action are suggested: a direct action on the pluripotent stem cells, or an inhibition of the suppressor cells (thymus-dependent lymphocytes) that limit hematopoiesis. Lithium also inhibits erythropoiesis. Although most studies use concentrations at or above pharmacologic levels there is evidence that lithium plays a role in normal cell metabolism. PMID:6336655
Lithium nephrotoxicity revisited.
Grünfeld, Jean-Pierre; Rossier, Bernard C
2009-05-01
Lithium is widely used to treat bipolar disorder. Nephrogenic diabetes insipidus (NDI) is the most common adverse effect of lithium and occurs in up to 40% of patients. Renal lithium toxicity is characterized by increased water and sodium diuresis, which can result in mild dehydration, hyperchloremic metabolic acidosis and renal tubular acidosis. The concentrating defect and natriuretic effect develop within weeks of lithium initiation. After years of lithium exposure, full-blown nephropathy can develop, which is characterized by decreased glomerular filtration rate and chronic kidney disease. Here, we review the clinical and experimental evidence that the principal cell of the collecting duct is the primary target for the nephrotoxic effects of lithium, and that these effects are characterized by dysregulation of aquaporin 2. This dysregulation is believed to occur as a result of the accumulation of cytotoxic concentrations of lithium, which enters via the epithelial sodium channel (ENaC) on the apical membrane and leads to the inhibition of signaling pathways that involve glycogen synthase kinase type 3beta. Experimental and clinical evidence demonstrates the efficacy of the ENaC inhibitor amiloride for the treatment of lithium-induced NDI; however, whether this agent can prevent the long-term adverse effects of lithium is not yet known.
Large-n approach to thermodynamic Casimir effects in slabs with free surfaces.
Diehl, H W; Grüneberg, Daniel; Hasenbusch, Martin; Hucht, Alfred; Rutkevich, Sergei B; Schmidt, Felix M
2014-06-01
The classical n-vector ϕ{4} model with O(n) symmetrical Hamiltonian H is considered in a ∞{2}×L slab geometry bounded by a pair of parallel free surface planes at separation L. Standard quadratic boundary terms implying Robin boundary conditions are included in H. The temperature-dependent scaling functions of the excess free energy and the thermodynamic Casimir force are computed in the large-n limit for temperatures T at, above, and below the bulk critical temperature T_{c}. Their n=∞ limits can be expressed exactly in terms of the spectrum and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. This equation is solved by numerical means for two distinct discretized versions of the model: in the first ("model A"), only the coordinate z across the slab is discretized and the integrations over momenta conjugate to the lateral coordinates are regularized dimensionally; in the second ("model B"), a simple cubic lattice with periodic boundary conditions along the lateral directions is used. Renormalization-group ideas are invoked to show that, in addition to corrections to scaling ∝L{-1}, anomalous ones ∝L{-1}lnL should occur. They can be considerably decreased by taking an appropriate g→∞ (T_{c}→∞) limit of the ϕ{4} interaction constant g. Depending on the model A or B, they can be absorbed completely or to a large extent in an effective thickness L_{eff}=L+δL. Excellent data collapses and consistent high-precision results for both models are obtained. The approach to the low-temperature Goldstone values of the scaling functions is shown to involve logarithmic anomalies. The scaling functions exhibit all qualitative features seen in experiments on the thinning of wetting layers of {4}He and Monte Carlo simulations of XY models, including a pronounced minimum of the Casimir force below T_{c}. The results are in conformity with various analytically known exact properties of the scaling functions.
Large-n approach to thermodynamic Casimir effects in slabs with free surfaces
NASA Astrophysics Data System (ADS)
Diehl, H. W.; Grüneberg, Daniel; Hasenbusch, Martin; Hucht, Alfred; Rutkevich, Sergei B.; Schmidt, Felix M.
2014-06-01
The classical n-vector ϕ4 model with O (n) symmetrical Hamiltonian H is considered in a ∞2×L slab geometry bounded by a pair of parallel free surface planes at separation L. Standard quadratic boundary terms implying Robin boundary conditions are included in H. The temperature-dependent scaling functions of the excess free energy and the thermodynamic Casimir force are computed in the large-n limit for temperatures T at, above, and below the bulk critical temperature Tc. Their n =∞ limits can be expressed exactly in terms of the spectrum and eigenfunctions of a self-consistent one-dimensional Schrödinger equation. This equation is solved by numerical means for two distinct discretized versions of the model: in the first ("model A"), only the coordinate z across the slab is discretized and the integrations over momenta conjugate to the lateral coordinates are regularized dimensionally; in the second ("model B"), a simple cubic lattice with periodic boundary conditions along the lateral directions is used. Renormalization-group ideas are invoked to show that, in addition to corrections to scaling ∝L-1, anomalous ones ∝L-1lnL should occur. They can be considerably decreased by taking an appropriate g →∞ (Tc→∞) limit of the ϕ4 interaction constant g. Depending on the model A or B, they can be absorbed completely or to a large extent in an effective thickness Leff=L+δL. Excellent data collapses and consistent high-precision results for both models are obtained. The approach to the low-temperature Goldstone values of the scaling functions is shown to involve logarithmic anomalies. The scaling functions exhibit all qualitative features seen in experiments on the thinning of wetting layers of 4He and Monte Carlo simulations of XY models, including a pronounced minimum of the Casimir force below Tc. The results are in conformity with various analytically known exact properties of the scaling functions.
2007-10-01
LES degrades. increase in computational power in terms of hardware and software. Alleviating the cost of LES is an area of INTRODUCTION active research...intermittency discretization of advection term in the VOF equation, funcion J~, t whse aluetaks ethe 0 r 1 we employed a modified high resolution interface
Linear and nonlinear properties of reduced two-layer models for non-hydrostatic free-surface flow
NASA Astrophysics Data System (ADS)
Bai, Yefei; Cheung, Kwok Fai
2016-11-01
A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion properties for coastal wave transformation at the computational requirements of a one-layer model. We derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, and super- and sub-harmonics to understand the theoretical performance of this reduced model. With the layer interface near the bottom, the dispersion relation shows an extended applicable range into deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. These complementary characteristics allow identification of an optimal interface position for both linear wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests involving standing waves show the reduced model has smaller discretization errors in the dispersion relation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear properties derived from the governing equations. The good shoaling and nonlinear properties give rise to accurate waveforms in both cases, while dispersion errors from the governing equations and numerical schemes accumulate over time leading to phase shifts of the modeled waves.
Modelling of lithium erosion and transport in FTU lithium experiments
NASA Astrophysics Data System (ADS)
Ding, R.; Maddaluno, G.; Apicella, M. L.; Mazzitelli, G.; Pericoli Ridolfini, V.; Kirschner, A.; Chen, J. L.; Li, J. G.; Luo, G.-N.
2013-07-01
The ERO code has been used to simulate lithium erosion, transport and re-deposition from liquid lithium limiter experiments in FTU. Two different operational cases from LLL experiments with different plasma parameters and surface temperature are modelled. According to the effective lithium sputtering yields, for both cases the lithium erosion is mainly due to physical sputtering rather than evaporation. Furthermore, the modelled re-deposition fraction of evaporated lithium is much higher than that of sputtered lithium, which is due to the shorter ionisation mean free path of thermal lithium atoms. Therefore, the evaporation erosion effect can be neglected compared to physical sputtering when the surface temperature is below 450 °C. According to the simulations, most of the lithium impurities exist in the form of Li+, and the main plasma contamination by lithium ions is low because most of eroded lithium particles are not transported into the core plasma and stay outside of the LCFS.
Sethi, N.; Trivedi, J.K.; Sethi, B.B.
1987-01-01
SUMMARY Thirty patients of affective disorder who were on lithium for a year and thirty patients on antidepressant were studied in detail for renal functions. Our observation is that lithium therapy does not lead to any deterioration in kidney functions. The results are discussed. PMID:21927211
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2013-07-23
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2015-01-13
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Fiegler, K; Liechti, M E; Bodmer, M; Bruggisser, M
2009-06-24
We report a case of a 75-year-old male patient who presented to the emergency room with arterial hypotension and impaired vigilance. The patient was on lithium therapy due to mood disorder. One month earlier medication with a betablocker, a loop-diuretic and an ACE-inhibitor had been started due to heart failure. Findings at admission included renal insufficiency, pneumonia and a slightly increased serum level of lithium. Three days later his Glasgow Coma Scale Score was 7, he showed gaze deviation, increased muscle tonus and cloni. The patient fully recovered after volume substitution and normalization of his renal function. Diagnosis of chronic intoxication with lithium was made due to the clinical picture and after exclusion of neurological pathologies. The pharmacokinetic characteristics of lithium is described and the risk factors leading to lithium intoxication and treatment of intoxication are discussed.
Neuropsychologic effects of lithium discontinuation.
Kocsis, J H; Shaw, E D; Stokes, P E; Wilner, P; Elliot, A S; Sikes, C; Myers, B; Manevitz, A; Parides, M
1993-08-01
This study investigated the effects of blind lithium discontinuation and resumption on measures of cognition, creativity, and fine motor performance in 46 lithium-maintained euthymic outpatients. Scores on memory measures, tests of tapping speed, and associative productivity all improved significantly during the time off of lithium. In an effort to further explain these results, analyses were undertaken with six possible intervening variables: age, sex, lithium concentration in plasma, thyroid function, duration of lithium maintenance, and depressive symptoms. Significant group and interactive effects are reported and discussed. A multiple regression analysis suggested that lithium has a greater neuropsychologic effect in younger, less-depressed patients having higher lithium concentrations in plasma.
Jung, Joe; Longcope, Donald B.; Tabbara, Mazen R.
1999-05-03
A procedure has been developed to represent the loading on a penetrator and its motion during oblique penetration into geologic media. The penetrator is modeled with the explicit dynamics, finite element computer program PRONTO 3D and the coupled pressure on the penetrator is given in a new loading option based on a separate cavity expansion (CE) solution that accounts for the pressure-reduction from a nearby target free surface. The free-surface influ- ence distance is selected in a predictive manner by considering the pressure to expand a spherical cavity in a finite radius sphere of the target material. The CE/PRONTO 3D procedure allows a detailed description of the penetrator for predicting shock environments or structural failure dur- ing the entire penetration event and is sufficiently rapid to be used in design optimization. It has been evaluated by comparing its results with data from two field tests of a full-scale penetrator into frozen soil at an impact angles of 49.6 and 52.5 degrees from the horizontal. The measured penetrator rotations were 24 and 22 degrees, respectively. In the simulation, the rotation was21 degrees and predominately resulted from the pressure reduction of the free surface. Good agree- ment was also found for the penetration depth and axial and lateral acceleration at two locations in the penetrator.
NASA Astrophysics Data System (ADS)
Parmar, K.; Liu, X.; Duncan, J. H.
2013-11-01
The generation of droplets when air bubbles travel upwards from within a liquid and burst at a free surface is studied experimentally. The bubbles are generated in a glass water tank that is 0.91 m long and 0.46 m wide with a water depth of 0.5 m. The tank is equipped with an acrylic box at its bottom that creates the bubble field using filtered air injected through an array of 180 hypodermic needles (0.33 mm ID). Two different surface conditions are created by using clean water and a 0.4% aqueous solution of Triton X-100 surfactant. Measurements of the bubble diameters as they approach the free surface are obtained with diffuse light shadowgraph images. The range of bubble diameters studied is 2.885 mm to 3.301 mm for clean water and 2.369 mm to 3.014 mm for the surfactant solution. A laser-light high-speed cinematic shadowgraph system is employed to record and measure the diameters and motions of the droplets at the free surface. This system can measure droplets with diameters <= 50 μm. The results show a clear distinction between the droplet distributions obtained in clean water and the surfactant solution. A bimodal droplet distribution is observed for clean water with at least two dominating peaks. For the surfactant solution, a single distribution peak is seen. This work is supported by the National Science Foundation, Division of Ocean Sciences.
NASA Astrophysics Data System (ADS)
Lafferty, Nathan; Badreddine, Hassan; Niceno, Bojan; Prasser, Horst-Michael
2015-11-01
A parallelizable flood fill algorithm is developed for identifying and tracking closed regions of fluids, dispersed phases, in CFD simulations of multiphase flows. It is used in conjunction with a newly developed method, corrective interface tracking, for simulating finite size dispersed bubbly flows in which the bubbles are too small relative to the grid to be simulated accurately with interface tracking techniques and too large relative to the grid for Lagrangian particle tracking techniques. The latter situation arising if local bubble induced turbulence is resolved, or modeled with LES. With corrective interface tracking the governing equations are solved on a static Eulerian grid. A correcting force, derived from empirical correlation based hydrodynamic forces, is applied to the bubble which is then advected using interface tracking techniques. This method results in accurate fluid-gas two-way coupling, bubble shapes, and terminal rise velocities. The flood fill algorithm and corrective interface tracking technique are applied to an air/water simulation of multiple bubbles rising and merging with a free surface. They are then validated against the same simulation performed using only interface tracking with a much finer grid.
Lithium metal oxide electrodes for lithium batteries
Thackeray, Michael M.; Kim, Jeom-Soo; Johnson, Christopher S.
2008-01-01
An uncycled electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula Li.sub.(2+2x)/(2+x)M'.sub.2x/(2+x)M.sub.(2-2x)/(2+x)O.sub.2-.delta., in which 0.ltoreq.x<1 and .delta. is less than 0.2, and in which M is a non-lithium metal ion with an average trivalent oxidation state selected from two or more of the first row transition metals or lighter metal elements in the periodic table, and M' is one or more ions with an average tetravalent oxidation state selected from the first and second row transition metal elements and Sn. Methods of preconditioning the electrodes are disclosed as are electrochemical cells and batteries containing the electrodes.
Experimental study of the free surface velocity field in an asymmetrical confluence
NASA Astrophysics Data System (ADS)
Creelle, Stephan; Mignot, Emmanuel; Schindfessel, Laurent; De Mulder, Tom
2017-04-01
The hydrodynamic behavior of open channel confluences is highly complex because of the combination of different processes that interact with each other. To gain further insights in how the velocity uniformization between the upstream channels and the downstream channel is proceeding, experiments are performed in a large scale 90 degree angled concrete confluence flume with a chamfered rectangular cross-section and a width of 0.98m. The dimensions and lay-out of the flume are representative for a prototype scale confluence in e.g. drainage and irrigation systems. In this type of engineered channels with sharp corners the separation zone is very large and thus the velocity difference between the most contracted section and the separation zone is pronounced. With the help of surface particle tracking velocimetry the velocity field is recorded from upstream of the confluence to a significant distance downstream of the confluence. The resulting data allow to analyze the evolution of the incoming flows (with a developed velocity profile) that interact with the stagnation zone and each other, causing a shear layer between the two bulk flows. Close observation of the velocity field near the stagnation zone shows that there are actually two shear layers in the vicinity of the upstream corner. Furthermore, the data reveals that the shear layer observed more downstream between the two incoming flows is actually one of the two shear layers next to the stagnation zone that continues, while the other shear layer ceases to exist. The extensive measurement domain also allows to study the shear layer between the contracted section and the separation zone. The shear layers of the stagnation zone between the incoming flows and the one between the contracted flow and separation zone are localized and parameters such as the maximum gradient, velocity difference and width of the shear layer are calculated. Analysis of these data shows that the shear layer between the incoming flows
Sealed Lithium Inorganic Battery
1976-08-01
MuWrn , 1,ad iw..am m4 IdM.D to We"L406W) Inorganic Electrolyte lattery Carbon Cathode Evaluation Thionyl Chloride Gas Generation Lithium C ell sign...hardware surface to carry the reductIon of thionyl chloride when in contact with lithium (self discharge) and the corro,’ion of hardware materials... Lithium - Aluminum Chloride 10) AOSTSAC? (Cmawl/e o ade H .m.eewr W MWO, AV 600 nwe w) Stdies were continued of the effects of hardware materials on the
1990-12-01
lithium vapors generated with air formed an intense white flame that produced branched- chain condensation aerosol particles, of concentrations mg/im3...generated chain -aggregate lithium combustion aerosols in dry, COg-free air prior to reaction with 0, 0.10, 0.50, 1.0, 1.75, or 5.0% CO in air at a...In order to burn in gaseous chlorine or in bromine or iodine vapor, lithium needs to be heated. With iodine vapor, the reaction is accompanied by
Lithium and Ebstein's anomaly.
Sípek, A
1989-01-01
The article deals with Ebstein's anomaly, lithium and their relationship. Some studies suggest that lithium might be involved as a teratogen increasing the incidence of Ebstein's anomaly in the offspring of female patients with manio-depressive psychosis and lithium-administered during pregnancy. The second part of the article contains data on the incidence of Ebstein's anomaly in the Czech Socialist Republic between 1960 and 1985. The results indicate a steady rise in the incidence of this congenital malformation over the above period of time.
2015-03-06
Scientists at the Department of Energy’s Oak Ridge National Laboratory have captured the first real-time nanoscale images of lithium dendrite structures known to degrade lithium-ion batteries. The ORNL team’s electron microscopy could help researchers address long-standing issues related to battery performance and safety. Video shows annular dark-field scanning transmission electron microscopy imaging (ADF STEM) of lithium dendrite nucleation and growth from a glassy carbon working electrode and within a 1.2M LiPF6 EC:DM battery electrolyte.
Lithium metal oxide electrodes for lithium batteries
Thackeray, Michael M.; Johnson, Christopher S.; Amine, Khalil; Kang, Sun-Ho
2010-06-08
An uncycled preconditioned electrode for a non-aqueous lithium electrochemical cell including a lithium metal oxide having the formula xLi.sub.2-yH.sub.yO.xM'O.sub.2.(1-x)Li.sub.1-zH.sub.zMO.sub.2 in which 0
APPARATUS FOR THE PRODUCTION OF LITHIUM METAL
Baker, P.S.; Duncan, F.R.; Greene, H.B.
1961-08-22
Methods and apparatus for the production of high-purity lithium from lithium halides are described. The apparatus is provided for continuously contacting a molten lithium halide with molten barium, thereby forming lithium metal and a barium halide, establishing separate layers of these reaction products and unreacted barium and lithium halide, and continuously withdrawing lithium and barium halide from the reaction zone. (AEC)
Lithium Sulfuryl Chloride Battery.
Primary batteries , Electrochemistry, Ionic current, Electrolytes, Cathodes(Electrolytic cell), Anodes(Electrolytic cell), Thionyl chloride ...Phosphorus compounds, Electrical conductivity, Calibration, Solutions(Mixtures), Electrical resistance, Performance tests, Solvents, Lithium compounds
2014-08-05
This image from NASA Terra spacecraft shows the once-abandoned mining town of Silver Peak, Nevada, which began to thrive again when Foote Mineral Company began extracting lithium from brine below the floor of Clayton Valley in 1966.
Lithium drifted germanium system
NASA Technical Reports Server (NTRS)
Fjarlie, E. J.
1969-01-01
General characteristics of the lithium-drifted germanium photodiode-Dewar-preamplifier system and particular operating instructions for the device are given. Information is included on solving operational problems.
2014-01-01
Lithium, a drug used to treat bipolar disorders, has a variety of neuroprotective mechanisms, including autophagy regulation, in various neuropsychiatric conditions. In neurodegenerative diseases, lithium enhances degradation of aggregate-prone proteins, including mutated huntingtin, phosphorylated tau, and α-synuclein, and causes damaged mitochondria to degrade, while in a mouse model of cerebral ischemia and Alzheimer’s disease autophagy downregulation by lithium is observed. The signaling pathway of lithium as an autophagy enhancer might be associated with the mammalian target of rapamycin (mTOR)-independent pathway, which is involved in myo-inositol-1,4,5-trisphosphate (IP3) in Huntington’s disease and Parkinson’s disease. However, the mTOR-dependent pathway might be involved in inhibiting glycogen synthase kinase-3β (GSK3β) in other diseases. Lithium’s autophagy-enhancing property may contribute to the therapeutic benefit of patients with neuropsychiatric disorders. PMID:24738557
Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross
2014-11-04
The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.
Lithium battery management system
Dougherty, Thomas J [Waukesha, WI
2012-05-08
Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.
NASA Astrophysics Data System (ADS)
Vagnoni, Elena; Andolfatto, Loïc; Favrel, Arthur; Avellan, François
2016-11-01
The penetration of the electrical grid by intermittent renewable energy sources induces grid fluctuations which must be compensated in order to guarantee the stability of the grid. Hydropower plants can supply reactive power to ensure the grid stabilization by operating in condenser mode. In this operating mode, the turbine operates with the tail water depressed to let the runner spin in air to reduce the power consumption. Pressurized air is injected in the draft tube cone to maintain the water level below the runner and this induces air-water interaction phenomena which cause important power losses. Flow visualization and pressure fluctuation measurements are performed in a reduced scale physical model of a Francis turbine operating in condenser mode to investigate the dynamics of the air-water interaction in the draft tube cone which causes the sloshing motion of the free surface. An image post-processing method is developed, enabling a quantitative description of the sloshing motion. The latter depends on the Froude number. By increasing the value of the Froude number, the amplitude of the sloshing motion decreases, as well as the amplitude of the pressure fluctuations. The frequency of the sloshing motion corresponds to the first natural frequency of the water volume.
Tang, Suning; Chen, Bin; McKay, Christopher P; Navarro-Gonzálezv, Rafael; Wang, Alan X
2016-09-19
A significant technology challenge in planetary missions is the in situ detection of organics at the sub-part-per-million (ppm) level in soils. This article reports the organic compound detection in Mars-like soils at the sub-ppm level using an ultra-sensitive spectral sensing technique based on fluorescence-free surface-enhanced Raman scattering (SERS), which has a significantly improved sensitivity and reduced fluorescence noise. Raman spectral detection of ppm level organics in Antarctic Dry Valley and Mojave Desert soils have been obtained for the first time, which otherwise are not detected by other Raman spectral techniques.
NASA Astrophysics Data System (ADS)
Thielmann, M.; Kaus, B. J. P.; Popov, A. A.
2015-12-01
Numerical models of mantle convection typically employ a temperature- or pressure-dependent viscous or viscoplastic rheology and a free slip upper boundary condition. The Earth, however, has a stress-free rather than a free slip surface condition. In addition, with decreasing temperature, the viscosity of rocks increases, which might induce a change from viscous to elastic behaviour (depending on the timescale of deformation). Here, we study the effects of both a Maxwell viscoelastic rheology and a free surface upper boundary condition on viscoelastic convection with a strongly temperature dependent rheology. We particularly focus on the effect of elasticity on the stress state of the lithosphere. Results show that convection vigor and heat transport are not significantly altered by the upper boundary condition or by elasticity. However, the stress state of the lithosphere is significantly affected by both factors. If elasticity is unimportant, a free surface upper boundary condition results in significantly elevated surface stresses (which are up to two magnitudes larger than in the free slip case). Elasticity counteracts this effect and significantly reduces the surface stresses, but distributes stresses over a thicker layer than in the case of a purely viscous rheology. At Earth-like conditions, this effect is significant. While it is warranted to use a free slip upper boundary condition and neglecting elasticity when studying mantle convection and its effect on the thermal state of the Earth, both factors are significant when one wants to predict the stress state of the lithosphere and related questions. Additional 2-D simulations of a plume impinging on a constant thickness and constant viscosity lithosphere show that reasonable parameters might induce lithospheric stress levels that are on the order of a GPa or larger, for viscous free surface models, and that these stresses are several orders of magnitude larger than stresses that occur for free slip models
Zuo, G. Z.; Hu, J. S.; Maingi, R.; ...
2017-03-02
Here, a new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 1020 atom s–1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. The Li effluxmore » from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.« less
NASA Astrophysics Data System (ADS)
Zuo, G. Z.; Hu, J. S.; Maingi, R.; Ren, J.; Sun, Z.; Yang, Q. X.; Chen, Z. X.; Xu, H.; Tritz, K.; Zakharov, L. E.; Gentile, C.; Meng, X. C.; Huang, M.; Xu, W.; Chen, Y.; Wang, L.; Yan, N.; Mao, S. T.; Yang, Z. D.; Li, J. G.; EAST Team
2017-04-01
A new flowing liquid Li limiter (FLiLi) based on the concept of a thin flowing film has been successfully designed and tested in the EAST device in 2014. A bright Li radiative mantle at the plasma edge was observed during discharges using FLiLi, resulting from passive Li injection and transport in the scrape-off layer (SOL) plasma. Li particle efflux from the FLiLi surface into the plasma was estimated at >5 × 1020 atom s‑1, due to surface evaporation and sputtering, and accompanied with a few small Li droplets ~1 mm diameter that were ejected from FLiLi. The Li efflux from FLiLi was ionized by the SOL plasma and formed a Li radiation band that originated from the FLiLi surface, and then spread toroidally by SOL plasma flow. The Li radiative mantle appeared to partly isolate the plasma from the wall, reducing impurity release from the wall materials, and possibly leading to a modest improvement in confinement. In addition, strong Li radiation reduced the particle and heat fluxes impacting onto the divertor plate, with certain similarities to heat flux reduction and detachment onset via low-Z impurity injection.
Hydrogen Outgassing from Lithium Hydride
Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W
2006-04-20
Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.
Atmospheric corrosion of lithium electrodes
Johnson, C.J.
1981-10-01
Atmospheric corrosion of lithium during lithium-cell assembly and the dry storage of cells prior to electrolyte fill has been found to initiate lithium corrosion pits and to form corrosion products. Scanning Electron Microscopy (SEM) was used to investigate lithium pitting and the white floccullent corrosion products. Electron Spectroscopy for Chemical Analysis (ESCA) and Auger spectroscopy in combination with X-ray diffraction were used to characterize lithium surfaces. Lithium surfaces with corrosion products were found to be high in carbonate content indicating the presence of lithium carbonate. Lithium electrodes dry stored in unfilled batteries were found to contain high concentration of lithium flouride a possible corrosion product from gaseous materials from the carbon monofluoride cathode. Future investigations of the corrosion phenomena will emphasize the effect of the corrosion products on the electrolyte and ultimate battery performance. The need to protect lithium electrodes from atmospheric exposure is commonly recognized to minimize corrosion induced by reaction with water, oxygen, carbon dioxide or nitrogen (1). Manufacturing facilities customarily limit the relative humidity to less than two percent. Electrodes that have been manufactured for use in lithium cells are typically stored in dry-argon containers. In spite of these precautions, lithium has been found to corrode over a long time period due to residual gases or slow diffusion of the same into storage containers. The purpose of this investigation was to determine the nature of the lithium corrosion.
Interaction of a strong blast wave with a free surface. [at ocean surface
NASA Technical Reports Server (NTRS)
Falade, A.; Holt, M.
1978-01-01
When a point source explosion is initiated at the ocean surface, the shock propagated into the water is reflected at the surface as a centered expansion wave. The solution in the neighborhood of the interaction point is obtained by writing the equations of motion in the appropriate similarity variables and then changing the independent variables to polar coordinates based at the interaction point. From the zero-order solution of the resulting equations the slopes of boundaries at the interaction point are obtained. A first-order perturbation of this solution provides more accurate representation of the flow variables and the curvature of the shock surface near the interaction point.
Free-Surface and Contact Line Motion of Liquid in Microgravity
NASA Technical Reports Server (NTRS)
Schwartz, Leonard W.
1996-01-01
This project involves fundamental studies of the role of nonlinearity in determining the motion of liquid masses under the principal influences of surface tension, viscosity and inertia. Issues to be explored are relevant to aspects of terrestrial processes, as well as being immediately applicable to fluid management in a low-gravity environment. Specific issues include: (1) the mechanic's of liquid masses in large-amplitude motions, (2) the influence of bounding surfaces on the motion, and (3) the ability of such surfaces to control liquid motion by wetting forces, especially when they are augmented by various surface treatments. Mathematical techniques include asymptotic analysis of the governing equations, for problem simplification, and numerical simulation, using both boundary-element and finite-difference methods. The flow problem is divided into an 'outer' or inviscid potential-flow region and one or more inner, or viscous dominated, regions. Relevant to one inner region, the vicinity of the contact line, we discuss time-dependent simulation of slow droplet motion, on a surface of variable wettability, using the lubrication approximation. The simulation uses a disjoining pressure model and reproduces realistic wetting-dewetting behavior.
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.
2015-12-21
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; ...
2015-12-21
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Lastly, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.
2015-12-21
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Some recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. We utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Furthermore, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; ...
2015-12-21
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Some recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. We utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through themore » systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Furthermore, our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries.« less
Engineering Heteromaterials to Control Lithium Ion Transport Pathways
Liu, Yang; Vishniakou, Siarhei; Yoo, Jinkyoung; Dayeh, Shadi A.
2015-01-01
Safe and efficient operation of lithium ion batteries requires precisely directed flow of lithium ions and electrons to control the first directional volume changes in anode and cathode materials. Understanding and controlling the lithium ion transport in battery electrodes becomes crucial to the design of high performance and durable batteries. Recent work revealed that the chemical potential barriers encountered at the surfaces of heteromaterials play an important role in directing lithium ion transport at nanoscale. Here, we utilize in situ transmission electron microscopy to demonstrate that we can switch lithiation pathways from radial to axial to grain-by-grain lithiation through the systematic creation of heteromaterial combinations in the Si-Ge nanowire system. Our systematic studies show that engineered materials at nanoscale can overcome the intrinsic orientation-dependent lithiation, and open new pathways to aid in the development of compact, safe, and efficient batteries. PMID:26686655
A Novel Process for Recovering Valuable Materials from Spent Lithium-Ion Batteries
NASA Astrophysics Data System (ADS)
Dodbiba, Gjergj; Yamaji, Yuta; Murata, Kenji; Okaya, Katsunori; Shibayama, Atsushi; Fujita, Toyohisa
The demand for lithium-ion batteries has been increasing due to the increasing demand for laptop computers, cellular phones, automobiles, etc. The positive electrode of the lithium-ion secondary battery is mainly made of lithium oxides well as cobalt, nickel, manganese, etc. Thus, an effective recycling method not only would collect cobalt and lithium, but also would enable the separation of other materials from the spent batteries. In this work, a novel processing flow sheet is put forward and its efficiency is evaluated. The aim was to obtain pure fractions of various constituents.
US Navy lithium cell applications
NASA Technical Reports Server (NTRS)
Bowers, F. M.
1978-01-01
Applications of lithium systems that are already in the fleet are discussed. The approach that the Navy is taking in the control of the introduction of lithium batteries into the fleet is also discussed.
Lithium: for harnessing renewable energy
Bradley, Dwight; Jaskula, Brian W.
2014-01-01
Lithium, which has the chemical symbol Li and an atomic number of 3, is the first metal in the periodic table. Lithium has many uses, the most prominent being in batteries for cell phones, laptops, and electric and hybrid vehicles. Worldwide sources of lithium are broken down by ore-deposit type as follows: closed-basin brines, 58%; pegmatites and related granites, 26%; lithium-enriched clays, 7%; oilfield brines, 3%; geothermal brines, 3%; and lithium-enriched zeolites, 3% (2013 statistics). There are over 39 million tons of lithium resources worldwide. Of this resource, the USGS estimates there to be approximately 13 million tons of current economically recoverable lithium reserves. To help predict where future lithium supplies might be located, USGS scientists study how and where identified resources are concentrated in the Earth’s crust, and they use that knowledge to assess the likelihood that undiscovered resources also exist.
Rechargeable ambient temperature lithium cells
NASA Technical Reports Server (NTRS)
Holleck, G. L.
1980-01-01
The cycling performance of a secondary lithium cell with a 2-methyl THF lithium hectofluorarsenate electrolyte is discussed. Stripping efficiency, dendritization, passivation on standing, and discharge efficiency are considered.
Gilormini, P.; Teyssèdre, H.
2013-01-01
Measuring the relaxation time involved in the levelling of a free surface of a Newtonian fluid laid on a substrate can give access to material parameters. It is shown here how most favourable pattern geometries of the free surface and film thicknesses can be defined for the measures of viscosity and Navier slip length at the fluid–solid interface, respectively. Moreover, we put special emphasis on the conditions required to avoid shear thinning by controlling the maximum shear rate. For initially sinusoidal patterns with infinitesimal amplitudes, an analytical solution including slip at the fluid–solid interface is used, and numerical simulations based on the natural element method allow one to discuss the effect of finite amplitudes. This leads to the definition of a relevance domain for the analytical solution that avoids the need for numerical simulations in practical applications. It is also shown how these results can be applied to crenelated profiles, where Fourier series expansion can be used, but with caution. PMID:24353474