Science.gov

Sample records for frenkel defects

  1. One-Dimensional Poole-Frenkel Conduction in the Single Defect Limit.

    PubMed

    Pan, Deng; Fuller, Elliot J; Gül, O Tolga; Collins, Philip G

    2015-08-12

    A single point defect surrounded on either side by quasi-ballistic, semimetallic carbon nanotube is a nearly ideal system for investigating disorder in one-dimensional (1D) conductors and comparing experiment to theory. Here, individual single-walled nanotubes (SWNTs) are investigated before and after the incorporation of single point defects. Transport and local Kelvin Probe force microscopy independently demonstrate high-resistance depletion regions over 1.0 μm wide surrounding one point defect in semimetallic SWNTs. Transport measurements show that conductance through such wide depletion regions occurs via a modified, 1D version of Poole-Frenkel field-assisted emission. Given the breadth of theory dedicated to the possible effects of disorder in 1D systems, it is surprising that a Poole-Frenkel mechanism appears to describe defect scattering and resistance in this semimetallic system.

  2. Metastable Frenkel Pair Defect in Graphite: Source of Wigner Energy?

    NASA Astrophysics Data System (ADS)

    Ewels, C. P.; Telling, R. H.; El-Barbary, A. A.; Heggie, M. I.; Briddon, P. R.

    2003-07-01

    The atomic processes associated with energy storage and release in irradiated graphite have long been subject to untested speculation. We examine structures and recombination routes for interstitial-vacancy (I-V) pairs in graphite. Interaction results in the formation of a new metastable defect (an intimate I-V pair) or a Stone-Wales defect. The intimate I-V pair, although 2.9eV more stable than its isolated constituents, still has a formation energy of 10.8eV. The barrier to recombination to perfect graphite is calculated to be 1.3eV, consistent with the experimental first Wigner energy release peak at 1.38eV. We expect similar defects to form in carbon nanostructures such as nanotubes, nested fullerenes, and onions under irradiation.

  3. Frenkel-Defect-Mediated Chemical Ordering Transition in a Li-Mn-Ni Spinel Oxide.

    PubMed

    Ryoo, Hyewon; Bae, Hyung Bin; Kim, Young-Min; Kim, Jin-Gyu; Lee, Seongsu; Chung, Sung-Yoon

    2015-06-26

    Using spinel-type Li(Mn(1.5)Ni(0.5) )O4 with two different cations, Mn and Ni, in the oxygen octahedra as a model system, we show that a cation ordering transition takes place through the formation of Frenkel-type point defects. A series of experimental results based on atomic-scale observations and in situ powder diffractions along with ab initio calculations consistently support such defect-mediated transition behavior. In addition to providing a precise suggestion of the intermediate transient states and the resulting kinetic pathway during the transition between two phases, our findings emphasize the significant role of point defects in ordering transformation of complex oxides.

  4. A mechanism for Frenkel defect creation in amorphous SiO2 facilitated by electron injection.

    PubMed

    Gao, David Z; El-Sayed, Al-Moatasem; Shluger, Alexander L

    2016-12-16

    Using density functional theory (DFT) calculations we demonstrate how electron injection can facilitate the creation of Frenkel defects in amorphous (a)-SiO2. The precursor sites composed of wide O-Si-O bond angles in amorphous SiO2 act as deep electron traps and can accommodate up to two extra electrons. Trapping of two electrons at these intrinsic sites results in weakening of a Si-O bond and creates an efficient bond breaking pathway for producing neutral O vacancies and [Formula: see text] interstitial ions characterized by low transition barriers. The low barriers for the migration of [Formula: see text] ions of about 0.2 eV facilitate the separation of created defects. This mechanism may have important implications for our understanding of dielectric breakdown and resistance switching in a-SiO2 based electronic and memory devices.

  5. A mechanism for Frenkel defect creation in amorphous SiO2 facilitated by electron injection

    NASA Astrophysics Data System (ADS)

    Gao, David Z.; El-Sayed, Al-Moatasem; Shluger, Alexander L.

    2016-12-01

    Using density functional theory (DFT) calculations we demonstrate how electron injection can facilitate the creation of Frenkel defects in amorphous (a)-SiO2. The precursor sites composed of wide O-Si-O bond angles in amorphous SiO2 act as deep electron traps and can accommodate up to two extra electrons. Trapping of two electrons at these intrinsic sites results in weakening of a Si-O bond and creates an efficient bond breaking pathway for producing neutral O vacancies and {{{O}}}2- interstitial ions characterized by low transition barriers. The low barriers for the migration of {{{O}}}2- ions of about 0.2 eV facilitate the separation of created defects. This mechanism may have important implications for our understanding of dielectric breakdown and resistance switching in a-SiO2 based electronic and memory devices.

  6. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    NASA Astrophysics Data System (ADS)

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from ‑20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies.

  7. The role of Frenkel defect diffusion in dynamic annealing in ion-irradiated Si

    PubMed Central

    Wallace, J. B.; Aji, L. B. Bayu; Martin, A. A.; Shin, S. J.; Shao, L.; Kucheyev, S. O.

    2017-01-01

    The formation of stable radiation damage in crystalline solids often proceeds via complex dynamic annealing processes, involving migration and interaction of ballistically-generated point defects. The dominant dynamic annealing processes, however, remain unknown even for crystalline Si. Here, we use a pulsed ion beam method to study defect dynamics in Si bombarded in the temperature range from −20 to 140 °C with 500 keV Ar ions. Results reveal a defect relaxation time constant of ~10–0.2 ms, which decreases monotonically with increasing temperature. The dynamic annealing rate shows an Arrhenius dependence with two well-defined activation energies of 73 ± 5 meV and 420 ± 10 meV, below and above 60 °C, respectively. Rate theory modeling, bench-marked against this data, suggests a crucial role of both vacancy and interstitial diffusion, with the dynamic annealing rate limited by the migration and interaction of vacancies. PMID:28059109

  8. Revised role for the Poole--Frenkel effect in deep-level characterization

    SciTech Connect

    Buchwald, W.R.; Johnson, N.M.

    1988-07-15

    The Poole--Frenkel effect is commonly used to decide between donorlike and acceptorlike electronic character for deep-level defects in semiconductors. However, there exists at least one defect, the EL2 center in GaAs, which is experimentally established to be a deep donor and yet does not exhibit the classical Poole--Frenkel effect for thermal emission of electrons. In this communication it is proposed that the existence of another well-documented deep-level phenomenon can suppress the Poole--Frenkel effect. Namely, a thermally activated capture cross section, which identifies an energy barrier to carrier capture and is commonly ascribed to a multiphonon emission process, introduces additional mechanisms which can alter the predominance of the Coulombic potential of the emitted carrier so as to suppress the electric-field-induced barrier lowering. A simple one-dimensional model is analyzed to qualitatively illustrate the combined phenomena.

  9. Ground state energy of N Frenkel excitons

    NASA Astrophysics Data System (ADS)

    Pogosov, W.; Combescot, M.

    2009-03-01

    By using the composite many-body theory for Frenkel excitons we have recently developed, we here derive the ground state energy of N Frenkel excitons in the Born approximation through the Hamiltonian mean value in a state made of N identical Q = 0 excitons. While this quantity reads as a density expansion in the case of Wannier excitons, due to many-body effects induced by fermion exchanges between N composite particles, we show that the Hamiltonian mean value for N Frenkel excitons only contains a first order term in density, just as for elementary bosons. Such a simple result comes from a subtle balance, difficult to guess a priori, between fermion exchanges for two or more Frenkel excitons appearing in Coulomb term and the ones appearing in the N exciton normalization factor - the cancellation being exact within terms in 1/Ns where Ns is the number of atomic sites in the sample. This result could make us naively believe that, due to the tight binding approximation on which Frenkel excitons are based, these excitons are just bare elementary bosons while their composite nature definitely appears at various stages in the precise calculation of the Hamiltonian mean value.

  10. Poole-frenkel piezoconductive element and sensor

    DOEpatents

    Habermehl, Scott D.

    2004-08-03

    A new class of highly sensitive piezoconductive strain sensor elements and sensors has been invented. The new elements function under conditions such that electrical conductivity is dominated by Poole-Frenkel transport. A substantial piezoconductive effect appears in this regime, allowing the new sensors to exhibit sensitivity to applied strain as much as two orders of magnitude in excess of prior art sensors based on doped silicon.

  11. Frenkel line and solubility maximum in supercritical fluids.

    PubMed

    Yang, C; Brazhkin, V V; Dove, M T; Trachenko, K

    2015-01-01

    A new dynamic line, the Frenkel line, has recently been proposed to separate the supercritical state into rigid-liquid and nonrigid gaslike fluid. The location of the Frenkel line on the phase diagram is unknown for real fluids. Here we map the Frenkel line for three important systems: CO(2), H(2)O, and CH(4). This provides an important demarcation on the phase diagram of these systems, the demarcation that separates two distinct physical states with liquidlike and gaslike properties. We find that the Frenkel line can have a similar trend as the melting line above the critical pressure. Moreover, we discuss the relationship between unexplained solubility maxima and Frenkel line, and we propose that the Frenkel line corresponds to the optimal conditions for solubility.

  12. [Frenkel: one of the forerunners of neurorehabilitation?].

    PubMed

    Cano-de-la-Cuerda, R

    2016-07-16

    Neurorehabilitation is understood as the process intended to reduce the deficiency, limitation of activity and restriction of participation experienced by people as a result of a neurological diseases, and where the professionals involved in this field will aim to reduce the functional involvement degree of the patient. Due to the ignorance existed about the plastic capacity in the nervous system in humans, the scientific origins of neurological rehabilitation is relatively recent, which are located around the Second World War. However, there are signs that the neurologist Heinrich Sebastian Frenkel (1860-1931) was able to establish the basis of neurorehabilitation before that time. There are historical concerning regarding the work conducted and published by Frenkel that would support the hypothesis, based on the characteristics of their treatment employed and documented methodologies, that what he called 'Ubungstherapie' (neurological gymnastic), it could be considered as the basis of what we consider today as modern neurorehabilitation. This knowledge could have been used by many authors who introduced those experiences and lessons learned to the multiple therapeutic methods that emerged after, even the most innovative and technological, while the roots of neurorehabilitation could be found at the end of the 19th century.

  13. Plasmon-Frenkel-exciton in a clustered solid

    NASA Astrophysics Data System (ADS)

    Rotkin, Slava V.; Suris, Robert A.

    1998-08-01

    The standard theory of the Frenkel exciton (a small radius exciton) is applied to a fullerene 2D solid. It is the dipole collective electron excitation of a single cluster which forms the delocalized plasmon-Frenkel-exciton (PFE) in a crystal. The PFE retarded interaction is taken into account. We present transverse PFE-polariton dispersion curves along with the Coulomb problem solution for longitudinal excitation in the 2D plane.

  14. Cumulative approaches to track formation under swift heavy ion (SHI) irradiation: Phenomenological correlation with formation energies of Frenkel pairs

    NASA Astrophysics Data System (ADS)

    Crespillo, M. L.; Agulló-López, F.; Zucchiatti, A.

    2017-03-01

    An extensive survey for the formation energies of Frenkel pairs, as representative candidates for radiation-induced point defects, is presented and discussed in relation to the cumulative mechanisms (CM) of track formation in dielectric materials under swift heavy ion (SHI) irradiation. These mechanisms rely on the generation and accumulation of point defects during irradiation followed by collapse of the lattice once a threshold defect concentration is reached. The physical basis of those approaches has been discussed by Fecht as a defect-assisted transition to an amorphous phase. Although a first quantitative analysis of the CM model was previously performed for LiNbO3 crystals, we have, here, adopted a broader phenomenological approach. It explores the correlation between track formation thresholds and the energies for Frenkel pair formation for a broad range of materials. It is concluded that the threshold stopping powers can be roughly scaled with the energies required to generate a critical Frenkel pair concentration in the order of a few percent of the total atomic content. Finally, a comparison with the predictions of the thermal spike model is discussed within the analytical Szenes approximation.

  15. Structure and dynamics of the Frenkel-Kontorova dislocations in electroconvection in liquid crystals

    SciTech Connect

    Chuvyrov, A. N.; Scaldin, O. A. Delev, V. A.; Lebedev, Yu. A.; Batyrshin, E. S.

    2006-12-15

    The Frenkel-Kontorova instability is studied in a 1D lattice of domains formed during electroconvection in nematic liquid crystals twisted by {pi}/2. It is found that generation of defects by such instability can be observed in this model medium. Among other things, it is shown that several types of defects with singular and nonsingular cores, as well as with a extended core, are formed in the 1D domain structure above the electroconvective instability threshold. The extended cores of dislocations are dissociated into a line, and the entire structure is isomorphic to two partial dislocations spaced by a certain distance, which are not observed in free form. Defects with a nonsingular core (zero topological index) exist owing to spiral hydrodynamic flows in convective rolls and are not observed in layers with a homogeneous orientation of molecules. It is shown that the formation of both types of defects follows the scenario of decay of dislocations with extended cores via detachment of nonsingular defects (i.e., discretely); as a result, a dislocation with a singular core is left. 'Breather' defects, which are the result of periodic creation and annihilation of dislocations with a topological index of {+-}1, are also observed. The effect of defects on the transition from the 1D to 2D structures is considered.

  16. Albert W. Frenkel (1919-2015): photosynthesis research pioneer, much-loved teacher, and scholar.

    PubMed

    Govindjee; Frenkel, Susanna

    2015-06-01

    Albert W. Frenkel, a pioneer in photosynthesis research, and discoverer of photophosphorylation in photosynthetic bacteria, is remembered here by two of us: Govindjee (historical corner editor of photosynthesis research) and Susanna Frenkel (SF; Albert Frenkel's daughter, who provided most of the family information).

  17. Thermodynamic assessment of oxygen diffusion in non-stoichiometric UO2±x from experimental data and Frenkel pair modeling

    NASA Astrophysics Data System (ADS)

    Berthinier, C.; Rado, C.; Chatillon, C.; Hodaj, F.

    2013-02-01

    The self and chemical diffusion of oxygen in the non-stoichiometric domain of the UO2 compound is analyzed from the point of view of experimental determinations and modeling from Frenkel pair defects. The correlation between the self-diffusion and the chemical diffusion coefficients is analyzed using the Darken coefficient calculated from a thermodynamic description of the UO2±x phase. This description was obtained from an optimization of thermodynamic and phase diagram data and modeling with different point defects, including the Frenkel pair point defects. The proposed diffusion coefficients correspond to the 300-2300 K temperature range and to the full composition range of the non stoichiometric UO2 compound. These values will be used for the simulation of the oxidation and ignition of the uranium carbide in different oxygen atmospheres that starts at temperatures as low as 400 K.

  18. Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines.

    PubMed

    Fomin, Yu D; Ryzhov, V N; Tsiok, E N; Brazhkin, V V

    2015-02-01

    Supercritical fluids are widely used in a number of important technological applications, yet the theoretical progress in the field has been rather moderate. Fairly recently, a new understanding of the liquidlike and gaslike properties of supercritical fluids has come to the fore, particularly with the advent of the Widom and Frenkel lines that aim to demarcate different physical properties on the phase diagram. Here, we report the results of a computational study of supercritical carbon dioxide, one of the most important fluids in the chemical industry. We study the response functions of CO_{2} in the supercritical state and calculate the locations of their maxima (Widom lines). We also report the preliminary calculations of the Frenkel line, the line of crossover of microscopic dynamics of particles. Our insights are relevant to physical processes in the atmosphere of Venus and its evolution.

  19. Thermodynamic properties of supercritical carbon dioxide: Widom and Frenkel lines

    NASA Astrophysics Data System (ADS)

    Fomin, Yu. D.; Ryzhov, V. N.; Tsiok, E. N.; Brazhkin, V. V.

    2015-02-01

    Supercritical fluids are widely used in a number of important technological applications, yet the theoretical progress in the field has been rather moderate. Fairly recently, a new understanding of the liquidlike and gaslike properties of supercritical fluids has come to the fore, particularly with the advent of the Widom and Frenkel lines that aim to demarcate different physical properties on the phase diagram. Here, we report the results of a computational study of supercritical carbon dioxide, one of the most important fluids in the chemical industry. We study the response functions of CO2 in the supercritical state and calculate the locations of their maxima (Widom lines). We also report the preliminary calculations of the Frenkel line, the line of crossover of microscopic dynamics of particles. Our insights are relevant to physical processes in the atmosphere of Venus and its evolution.

  20. High-Temperature Expansions for Frenkel-Kontorova Model

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Mannari, I.; Ishii, T.

    1995-02-01

    Two high-temperature series expansions of the Frenkel-Kontorova (FK) model are investigated: the high-temperature approximation of Schneider-Stoll is extended to the FK model having the density ρ ≠ 1, and an alternative series expansion in terms of the modified Bessel function is examined. The first six-order terms for both expansions in free energy are explicitly obtained and compared with Ishii's approximation of the transfer-integral method. The specific heat based on the expansions is discussed by comparing with those of the transfer-integral method and Monte Carlo simulation.

  1. The ground state of the Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Babushkin, A. Yu.; Abkaryan, A. K.; Dobronets, B. S.; Krasikov, V. S.; Filonov, A. N.

    2016-09-01

    The continual approximation of the ground state of the discrete Frenkel-Kontorova model is tested using a symmetric algorithm of numerical simulation. A "kaleidoscope effect" is found, which means that the curves representing the dependences of the relative extension of an N-atom chain vary periodically with increasing N. Stairs of structural transitions for N ≫ 1 are analyzed by the channel selection method with the approximation N = ∞. Images of commensurable and incommensurable structures are constructed. The commensurable-incommensurable phase transitions are stepwise.

  2. First-principles study of Frenkel pair recombination in tungsten

    NASA Astrophysics Data System (ADS)

    Qin, Shi-Yao; Jin, Shuo; Li, Yu-Hao; Zhou, Hong-Bo; Zhang, Ying; Lu, Guang-Hong

    2017-02-01

    The recombination of one Frenkel pair in tungsten has been investigated through first-principles simulation. Two different recombination types have been identified: instantaneous and thermally activated. The small recombination barriers for thermally activated recombination cases indicate that recombination can occur easily with a slightly increased temperature. For both of the two recombination types, recombination occurs through the self-interstitial atom moving towards the vacancy. The recombination process can be direct or through replacement sequences, depending on the vertical distance between the vacancy and the <1 1 1> line of self-interstitial atom pair.

  3. Lubricated friction in Frenkel-Kontorova model between incommensurate surfaces

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Wang, Cang-Long; Duan, Wen-Shan; Chen, Jian-Min; Yang, Lei

    2015-01-01

    We study the superlubricity in the generalized Frenkel-Kontorova model. Each particle of the top layer is driven by external dc driving force Fext . When the ratios of the three inherent length scales of the system are chosen to be the Golden Mean (a / b = 233 / 144, c / a = 144 / 89), we find that there exists a critical interparticle interaction strength above which the static friction force Fsu of the top layer is zero. And Fsu could easily flow into the low friction with existing the lubricant layer.

  4. First-Principles Study of Defects in GaN

    DTIC Science & Technology

    2009-07-29

    energies and other properties of the Gai – VGa and Ni – VN Frenkel pairs in GaN. o Results on the binding energies and stabilities of Frenkel pairs as...Frenkel pair are interstitial Ga ( Gai ) and Ga vacancy (VGa). Gallium interstitial can occur in 3+, 2+, and 1+ charge states, depending on the Fermi...distance to the six Ga nearest neighbors are roughly the same (to within 0.15 Å). The defect level of Gai is found to lie in the upper part of the

  5. Lowest energy Frenkel and charge transfer exciton intermixing in one-dimensional copper phthalocyanine molecular lattice

    NASA Astrophysics Data System (ADS)

    Bondarev, I. V.; Popescu, A.; Younts, R. A.; Hoffman, B.; McAfee, T.; Dougherty, D. B.; Gundogdu, K.; Ade, H. W.

    2016-11-01

    We report the results of the combined experimental and theoretical studies of the low-lying exciton states in crystalline copper phthalocyanine. We derive the eigen energy spectrum for the two lowest intramolecular Frenkel excitons coupled to the intermolecular charge transfer exciton state and compare it with temperature dependent optical absorption spectra measured experimentally, to obtain the parameters of the Frenkel-charge-transfer exciton intermixing. The two Frenkel exciton states are spaced apart by 0.26 eV, and the charge transfer exciton state is 50 meV above the lowest Frenkel exciton. Both Frenkel excitons are strongly mixed with the charge transfer exciton, showing the coupling constant 0.17 eV which agrees with earlier experimental measurements. These results can be used for the proper interpretation of the physical properties of crystalline phthalocyanines.

  6. Swelling Mechanisms of UO2 Lattices with Defect Ingrowths

    PubMed Central

    Günay, Seçkin D.

    2015-01-01

    The swelling that occurs in uranium dioxide as a result of radiation-induced defect ingrowth is not fully understood. Experimental and theoretical groups have attempted to explain this phenomenon with various complex theories. In this study, experimental lattice expansion and lattice super saturation were accurately reproduced using a molecular dynamics simulation method. Based on their resemblance to experimental data, the simulation results presented here show that fission induces only oxygen Frenkel pairs while alpha particle irradiation results in both oxygen and uranium Frenkel pair defects. Moreover, in this work, defects are divided into two sub-groups, obstruction type defects and distortion type defects. It is shown that obstruction type Frenkel pairs are responsible for both fission- and alpha-particle-induced lattice swelling. Relative lattice expansion was found to vary linearly with the number of obstruction type uranium Frenkel defects. Additionally, at high concentrations, some of the obstruction type uranium Frenkel pairs formed diatomic and triatomic structures with oxygen ions in their octahedral cages, increasing the slope of the linear dependence. PMID:26244777

  7. Interview with Daan Frenkel, Boltzmann Medallist 2016 : Simulating soft matter through the lens of statistical mechanics.

    PubMed

    Frenkel, Daan; Louët, Sabine

    2016-06-01

    Daan Frenkel has been awarded the most important prize in the field of statistical mechanics, the 2016 Boltzmann Medal, named after the Austrian physicist and philosopher Ludwig Boltzmann. The award recognises Frenkel's seminal contributions to the statistical-mechanical understanding of the kinetics, self-assembly and phase behaviour of soft matter. The honour recognises Frenkel's highly creative large-scale simulations of soft matter capable of explaining the self-assembly of complex macromolecular systems, colloidal and biomolecular systems. Frenkel is Professor of Theoretical Chemistry at the University of Cambridge, UK and has been Editor in Chief of EPJE between 2010 and 2014. The award will be given to both Frenkel and his French colleague Yves Pomeau, during the StatPhys Conference on 20th July 2016 in Lyon, France. In this interview with Sabine Louët, Frenkel gives his views on statistical physics, which has become more relevant than ever for interdisciplinary research. He also offers some pearls of wisdom for the next generation Statistical Mechanics experts.

  8. [On the vestiges of Heinrich Frenkel (1860-1931)--Pioneer of neurorehabilitation. Annotation to the cover picture].

    PubMed

    Danek, A

    2004-04-01

    Heinrich Simon Frenkel or Frenkel-Heiden(1860-1931) is almost completely forgotten as a founder of neurorehabilitation and little is known about his life. Frenkel's main contribution, "The treatment of tabetic ataxia by meansof systematic exercise: An exposition of the principles and practice of compensatory movement treatment", was reprinted several times in English (1902, 1905, 1917). Frenkel exerted great influence among his contemporaries, including his direct student Otfrid Foerster (1873-1941) who became one of the most important neurologists and neurosurgeons of the 20th century. A floor mosaic, preserved in the historic building of the "Medizinische Poliklinik" in Munich, is an exact copy of the pattern of traces that Frenkel had published in 1900 for proprioceptive gait exercises in tabes dorsalis.

  9. Study of the Effect of Ellipsoidal Shape on the Kern and Frenkel Patch Model

    NASA Astrophysics Data System (ADS)

    Nguyen, Thienbao; Gunton, James; Rickman, Jeffrey

    In their work on the self-assembly of complex structures, Glotzer and Solomon (Nature Materials 6, 557 - 562 (2007)) identified both interaction and shape anisotropy as two of several means to build complex structures. Advances in fabricating materials and new insights into protein biology have revealed the importance of these types of interactions. The Kern and Frenkel (J. Chem. Phys. 118, 9882 (2003) model of hard spheres carrying interaction patches of various sizes has been used extensively to describe interaction anisotropies important in protein phase transitions. However their model did not also account for shape anisotropy. We studied the role of both shape and interaction anisotropy by applying N=2 and N=4 attractive Kern and Frenkel patches with an interaction range to hard ellipsoids with various aspect ratios and patch coverages. Following Kern and Frenkel, we studied the liquid-liquid phase separation of our particles using a Monte Carlo simulation. We found the critical temperatures for our model using the approximate law of rectilinear diameter and compared them with the original results of Kern and Frenkel. We found that the critical temperatures increased both with aspect ratio and percent coverage. G Harold and Leila Y Mathers Foundation.

  10. The Poole-Frenkel effect in 6H-SiC diode characteristics

    SciTech Connect

    Pelaz, L.; Orantes, J.L.; Vincente, J.; Bailon, L.A.; Barbolla, J. . Dept. de Electricidad y Electronica)

    1994-04-01

    The large bandgap of SiC makes the recombination mechanism the main process in determining the forward current in a large range of temperature. The authors have added the Poole-Frenkel effect to the conventional Shockley-Read-Hall (SRH) term of the numerical device simulator MEDICI. This paper shows the influence of this effect on SiC.

  11. Molecular Dynamics Simulation of Defect Production in Collision Cascades in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2005-01-01

    Defect production in collision cascades in zircon has been examined by molecular dynamics simulations using a partial charge model combined with the Ziegler-Biersack-Littmark potential. U, Zr, Si and O recoils with energies ranging from 250 eV to 5 keV were simulated in the NVE ensemble. To obtain good statistics, 5-10 cascades in randomly chosen directions were simulated for each ion and energy. The damage consists of mainly Si and O Frenkel pairs, a smaller number of Zr Frenkel pairs, and Zr on Si antisite defects. Defect production, interstitial clustering, ion beam mixing and Si-O-Si polymerization increase with PKA mass and energy.

  12. First-principles study of point defects in CePO4 monazite

    NASA Astrophysics Data System (ADS)

    Yi, Yong; Zhao, Xiaofeng; Teng, Yuancheng; Bi, Beng; Wang, Lili; Wu, Lang; Zhang, Kuibao

    2016-12-01

    CePO4 monazite is an important radiation-resistant material that may act as a potential minor actinides waste form. Here, we present the results of the calculations for the basic radiation defect modellings in CePO4 crystals, along with the examination of their defect formation energies and effect of the defect concentrations. This study focused on building a fully-relaxed CePO4 model with the step iterative optimization from the DFT-GGA calculations using the VASP and CASTEP databases. The results show that the Frenkel defect configuration resulting from the center interstitials has a lower energy when compared to two adjacent orthophosphate centers (the saddle point position). High formation energies were found for all the types of intrinsic Frenkel and vacancy defects. The formation energies conform to the following trend (given in the decreasing order of energy): Ce Frenkel (12.41 eV) > O Frenkel (11.02 eV) > Ce vacancy (9.09 eV) > O vacancy (6.69 eV). We observed almost no effect from the defect concentrations on the defect formation energies.

  13. Poole-Frenkel mobility field dependence in molecularly doped polymers revisited

    NASA Astrophysics Data System (ADS)

    Tyutnev, A. P.; Saenko, V. S.

    2017-02-01

    We have examined the Poole-Frenkel mobility field dependence in a molecularly doped polymer (MDP) both experimentally and theoretically trying to separate two physically different contributions to this phenomenon, one constituting a real physical effect and the other arising from the fact that the charge carrier transport in MDP is not fully equilibrated. The former is ascribed to the influence of an electric field on the transport process itself affecting at least one of the model parameters. The latter should be associated with the mobility field effect under conditions when neither model parameter is field sensitive. Numerical calculations have been used to achieve their deconvolution. On the experimental front, we relied on the time of flight technique specifically modified to suit this task. Both approaches show that the contribution of the second (operational) field effect in the investigated MDP is quite appreciable. This result is compared with the traditional interpretation of the Poole-Frenkel effect in molecularly doped polymers.

  14. Frenkel-like Wannier-Mott excitons in few-layer Pb I2

    NASA Astrophysics Data System (ADS)

    Toulouse, Alexis S.; Isaacoff, Benjamin P.; Shi, Guangsha; Matuchová, Marie; Kioupakis, Emmanouil; Merlin, Roberto

    2015-04-01

    Optical measurements and first-principles calculations of the band structure and exciton states in direct-gap bulk and few-layer Pb I2 indicate that the n =1 exciton is Frenkel-like in nature in that its energy exhibits a weak dependence on thickness down to atomic-length scales. Results reveal large increases in the gap and exciton binding energy with a decreasing number of layers and a transition of the fundamental gap, which becomes indirect for one and two monolayers. Calculated values are in reasonable agreement with a particle-in-a-box model relying on the Wannier-Mott theory of exciton formation. General arguments and existing data suggest that the Frenkel-like character of the lowest exciton is a universal feature of wide-gap layered semiconductors whose effective masses and dielectric constants give bulk Bohr radii that are on the order of the layer spacing.

  15. Controlling chaotic solitons in Frenkel-Kontorova chains by disordered driving forces.

    PubMed

    Chacón, Ricardo; Martínez, Pedro J

    2007-06-01

    We discuss a general mechanism explaining the taming effect of phase disorder in external forces on chaotic solitons in damped, driven, Frenkel-Kontorova chains. We deduce analytically an effective random equation of motion governing the dynamics of the soliton center of mass for which we obtain numerically the regions in the control parameter space where chaotic solitons are suppressed. We find that such predictions are in excellent agreement with results of computer simulations of the original Frenkel-Kontorova chains. We show theoretically how such a fundamental mechanism explains recent numerical results concerning extended chaos in arrays of coupled pendula [S. F. Brandt, Phys. Rev. Lett. 96, 034104 (2006)10.1103/PhysRevLett.96.034104].

  16. An analytic mapping of oligomer potential energy surfaces to an effective Frenkel model.

    PubMed

    Binder, Robert; Römer, Sarah; Wahl, Jan; Burghardt, Irene

    2014-07-07

    While the use of Frenkel-type models for semiconducting polymer assemblies and related molecular aggregates is well established, the direct parametrization of such models based on electronic structure data is attempted less frequently. In this work, we develop a systematic mapping procedure which is adapted to J-type and H-type homo-aggregate systems. The procedure is based upon the analytic solution of an inverse eigenvalue problem for an effective Frenkel Hamiltonian with nearest-neighbor couplings. Vibronic interactions are included for both site-local and site-correlated modes. For illustration, an application is presented to the excited-state ab initio potential energy surfaces (PESs) of an oligothiophene octamer. The procedure performs a pointwise mapping of the PESs of oligomers of arbitrary chain length n, provided that the electronic ground state and any two of the n lowest adiabatic states of the excitonic manifold of interest are known. These three states are reproduced exactly by the procedure while the remaining n - 2 states of the excitonic manifold can be predicted. Explicit conditions are derived permitting to verify whether a given data set is compatible with the effective Frenkel model under study.

  17. An analytic mapping of oligomer potential energy surfaces to an effective Frenkel model

    SciTech Connect

    Binder, Robert; Römer, Sarah E-mail: burghardt@chemie.uni-frankfurt.de; Wahl, Jan; Burghardt, Irene E-mail: burghardt@chemie.uni-frankfurt.de

    2014-07-07

    While the use of Frenkel-type models for semiconducting polymer assemblies and related molecular aggregates is well established, the direct parametrization of such models based on electronic structure data is attempted less frequently. In this work, we develop a systematic mapping procedure which is adapted to J-type and H-type homo-aggregate systems. The procedure is based upon the analytic solution of an inverse eigenvalue problem for an effective Frenkel Hamiltonian with nearest-neighbor couplings. Vibronic interactions are included for both site-local and site-correlated modes. For illustration, an application is presented to the excited-state ab initio potential energy surfaces (PESs) of an oligothiophene octamer. The procedure performs a pointwise mapping of the PESs of oligomers of arbitrary chain length n, provided that the electronic ground state and any two of the n lowest adiabatic states of the excitonic manifold of interest are known. These three states are reproduced exactly by the procedure while the remaining n − 2 states of the excitonic manifold can be predicted. Explicit conditions are derived permitting to verify whether a given data set is compatible with the effective Frenkel model under study.

  18. From simplicity to complexity: The Many-faceted Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Hu, Bambi

    2003-03-01

    The Frenkel-Kontorova (FK) model is an old model first proposed in 1938. It describes a chain of atoms connected by springs in the presence of an external potential. This deceptively simple model however exhibits very rich and complex behaviors. The FK model has found applications in many physical systems such as adsorbed monolayers, Josephson junctions, charge density waves, magnetic spirals, tribilogy and DNA. In this talk we will report our recent studies of the many aspects of the FK model: statics, dynamics, heat conduction, and quantum behavior.

  19. GENERAL: Application of Two-Dimensional Frenkel-Kontorova Model to Nanotribology

    NASA Astrophysics Data System (ADS)

    Wang, Cang-Long; Duan, Wen-Shan; Yang, Yang; Chen, Jian-Min

    2010-07-01

    The dry friction force between two contacting surface layers is studied. The upper layer is arranged on a two-dimensional square lattice and driven by an external driving force. The lower layer is approximated by a two-dimensional periodic substrate potential. This model, usually called two-dimensional Frenkel-Kontorova model, is applied to study the friction forces in this paper. The behaviors of different substrate potential strongly affect the static friction force. It is found that the system has strong anisotropic character. The possibility to obtain superlubricity is suggested.

  20. Investigation of superlubricity in a two-dimensional Frenkel-Kontorova model with square lattice symmetry

    NASA Astrophysics Data System (ADS)

    Wang, Cang-Long; Duan, Wen-Shan; Hong, Xue-Ren; Chen, Jian-Min

    2008-10-01

    A two-dimensional Frenkel-Kontorova model with a square symmetry substrate potential for a square lattice layer driven by an external driving force with an arbitrary direction α and an arbitrary misfit angle θ between upper and lower layers is presented in this paper. The effects of the system parameters have been investigated. The application of our results to the tribology is discussed and the dependence of the static friction force on the system parameters is studied. How to make the material with superlubricity is suggested.

  1. Many-body quantum dynamics by adiabatic path-integral molecular dynamics: Disordered Frenkel Kontorova models

    NASA Astrophysics Data System (ADS)

    Krajewski, Florian R.; Müser, Martin H.

    2005-07-01

    The spectral density of quantum mechanical Frenkel Kontorova chains moving in disordered, external potentials is investigated by means of path-integral molecular dynamics. If the second moment of the embedding potential is well defined (roughness exponent H=0), there is one regime in which the chain is pinned (large masses m of chain particles) and one in which it is unpinned (small m). If the embedding potential can be classified as a random walk on large length scales ( H=1/2), then the chain is always pinned irrespective of the value of m. For H=1/2, two phonon-like branches appear in the spectra.

  2. Theory of the J-band: From the Frenkel exciton to charge transfer

    NASA Astrophysics Data System (ADS)

    Egorov, Vladimir V.

    2009-08-01

    This review concerns the current status of the theory of formation of the so-called J-band (Jelley, Scheibe, 1936), an abnormally narrow, high-intensity, red-shifted optical absorption band arising from the aggregation of polymethine dyes. Two opposite approaches to explaining the physical nature of the J-band are given special attention. In the first of these, the old one based on Frenkel's statistical exciton model, the specific structure of the dye is considered irrelevant, and the J-band is explained by assuming that the quickly moving Frenkel exciton acts to average out the quasistatic disorder in electronic transition energies of molecules in the linear J-aggregate (Knapp, 1984). In the second approach, on the contrary, the specific structure of the dye (the existence of a quasilinear polymethine chain) is supposed to be very important. This new approach is based on a new theory of charge transfer. The explanation of the J-band here is that an elementary charge transfer along the J-aggregate's chromophore is dynamically pumped by the chaotic reorganization of nuclei in the nearby environment at a resonance between electronic and nuclear movements-when the motion of nuclei being reorganized is only weakly chaotic (Egorov, 2001).

  3. External pumping of hybrid nanostructures in microcavity with Frenkel and Wannier-Mott excitons

    NASA Astrophysics Data System (ADS)

    Dubovskiy, O. A.; Agranovich, V. M.

    2016-09-01

    The exciton-exciton interaction in hybrid nanostructures with resonating Frenkel and Wannier-Mott excitons was investigated in many publications. In microcavity the hybrid nanostructures can be exposed to different types of optical pumping, the most common one being pumping through one of the microcavity side. However, not investigated and thus never been discussed the hybrid excitons generation by pumping of confined quantum wells from the side of empty microcavity without nanostructures in a wave guided configuration. Here, we consider the hybrid excitations in cavity with organic and inorganic quantum wells and with different types of pumping from external source. The frequency dependence for intensity of excitations in hybrid structure is also investigated. The results may be used for search of most effective fluorescence and relaxation processes. The same approach may be used when both quantum wells are organic or inorganic.

  4. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach.

    PubMed

    Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver

    2017-02-28

    Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.

  5. Spectral densities for Frenkel exciton dynamics in molecular crystals: A TD-DFTB approach

    NASA Astrophysics Data System (ADS)

    Plötz, Per-Arno; Megow, Jörg; Niehaus, Thomas; Kühn, Oliver

    2017-02-01

    Effects of thermal fluctuations on the electronic excitation energies and intermonomeric Coulomb couplings are investigated for a perylene-tetracarboxylic-diimide crystal. To this end, time dependent density functional theory based tight binding (TD-DFTB) in the linear response formulation is used in combination with electronic ground state classical molecular dynamics. As a result, a parametrized Frenkel exciton Hamiltonian is obtained, with the effect of exciton-vibrational coupling being described by spectral densities. Employing dynamically defined normal modes, these spectral densities are analyzed in great detail, thus providing insight into the effect of specific intramolecular motions on excitation energies and Coulomb couplings. This distinguishes the present method from approaches using fixed transition densities. The efficiency by which intramolecular contributions to the spectral density can be calculated is a clear advantage of this method as compared with standard TD-DFT.

  6. Coherent structures in the ground state of the quantum Frenkel-Kontorova model

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N. Kirensky Institute of Physics, Research Educational Center for Nonlinear Processes at Krasnoyarsk Technical University, Theoretical Department at Krasnoyarsk State University, 660036, Krasnoyarsk ); Campbell, D.K. )

    1994-03-15

    We study the quantum ground state of the Frenkel-Kontorova model in the strongly nonlinear'' regime in which in the corresponding classical limit the coordinates of the atoms are distributed on Cantori.'' We identify (many) quasidegenerate configurations that contribute to the quantum ground state. When the characteristic quantum and classical energy scales are roughly equal (the intermediate'' quantum regime), we find, consistent with earlier numerical studies, that the standard map'' determining the coordinates in the classical ground state is renormalized to an effective sawtooth'' map, which determines the expectation values of the coordinates in the quantum ground state. We also discuss the dynamics of the model and estimate the characteristic time for various quantum tunneling effects.

  7. Friction phenomena in a two-dimensional Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Lin, Mai-Mai; Duan, Wen-Shan; Chen, Jian-Min

    2010-02-01

    By using the molecular dynamic simulation method with a fourth-order Runge-Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel-Kontorova (FK) model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the average velocity and the static friction force have been studied. It is found that not only the amplitude and frequency of ac-driven force, but also the direction of the external driving force and the misfit angle between two layers have some strong influences on the static friction force. It can be concluded that the superlubricity phenomenon appears easily with a larger ac amplitude and lower ac frequency for some special direction of the external force and misfit angle.

  8. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite

    NASA Astrophysics Data System (ADS)

    Hatch, Courtney D.; Greenaway, Ann L.; Christie, Matthew J.; Baltrusaitis, Jonas

    2014-04-01

    Fresh mineral aerosol has recently been found to be effective cloud condensation nuclei (CCN) and contribute to the number of cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on Na-montmorillonite and illite clay to determine empirical adsorption parameters that can be used in a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) that accounts for the effect of water adsorption on CCN activation. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98 ± 22 and 1.79 ± 0.11 for montmorillonite and 75 ± 17 and 1.77 ± 0.11 for illite, respectively. The AFHH and BFHH values obtained from water adsorption measurements differ from values reported previously determined by applying FHH-AT to CCN activation measurements. Differences in FHH adsorption parameters were attributed to different methods used to obtain them and the hydratable nature of the clays. FHH adsorption parameters determined from water adsorption measurements were then used to calculate the critical super-saturation (sc) for CCN activation using FHH-AT. The relationship between sc and the dry particle diameter (Ddry) gave CCN activation curve exponents (xFHH) of -0.61 and -0.64 for montmorillonite and illite, respectively. The xFHH values were slightly lower than reported previously for mineral aerosol. The lower exponent suggests that the CCN activity of hydratable clays is less sensitive to changes in Ddry and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. Despite the differences in AFHH, BFHH and xFHH, the FHH-AT derived CCN activities of montmorillonite and illite are quite similar to each other and in excellent agreement with experimental CCN measurements resulting from wet-generated clay aerosol

  9. Water adsorption constrained Frenkel-Halsey-Hill adsorption activation theory: Montmorillonite and illite clays

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Greenaway, A.; Christie, M. J.; Baltrusaitis, J.

    2013-12-01

    Recently, fresh, unprocessed mineral aerosol has been found to contribute to the number of available cloud condensation nuclei (CCN) and cloud droplets in the atmosphere due to the effect of water adsorption on CCN activation. The work described here uses experimental water adsorption measurements on montmorillonite and illite clay to determine empirical adsorption parameters for a recently derived theoretical framework (Frenkel-Halsey-Hill Activation Theory, FHH-AT) used to calculate CCN activities of clay minerals. Upon fitting the Frenkel-Halsey-Hill (FHH) adsorption model to experimental water adsorption measurements, we find FHH adsorption parameters, AFHH and BFHH, to be 98×22 and 1.79×0.11 for Na-montmorillonite and 75×17 and 1.77×0.11 for illite, respectively. The AFHH and BFHH values obtained for these clays are significantly different from FHH adsorption parameters derived from CCN activation measurements reported previously for similar clay minerals. Differences in FHH adsorption parameters were attributed to the different approaches used, the hydratable nature of the clays and the relative difficulty in measuring CCN activation of hydratable clays due to relatively long adsorption and desorption equilibration times. However, despite these differences, the calculated CCN activities of montmorillonite and illite are quite similar and are in excellent agreement with experimental CCN activation measurements reported previously for similar clays. The different FHH adsorption parameters, however, translate to lower sc-Ddry CCN activation curve exponents (xFHH = -0.61 and -0.64 for montmorillonite and illite, respectively) than have been reported previously. The lower exponent suggests that the CCN activity of hydratable clay aerosol is less sensitive to changes in dry particle diameter (Ddry) and the hygroscopicity parameter exhibits a broader variability with Ddry compared to more soluble aerosols. This study illustrates that FHH-AT using adsorption

  10. Interaction between water and defective silica surfaces

    SciTech Connect

    Chen Yunwen; Cheng Haiping

    2011-03-21

    We use the density functional theory method to study dry (1 x 1) {alpha}-quartz (0001) surfaces that have Frenkel-like defects such as oxygen vacancy and oxygen displacement. These defects have distinctively different effects on the water-silica interface depending on whether the adsorbent is a single water molecule, a cluster, or a thin film. The adsorption energies, bonding energies, and charge transfer or redistributions are analyzed, from which we find that the existence of a defect enhances the water molecule and cluster surface interaction by a large amount, but has little or even negative effect on water thin film-silica surface interaction. The origin of the weakening in film-surface systems is the collective hydrogen bonding that compromises the water-surface interaction in the process of optimizing the total energy. For clusters on surfaces, the lowest total energy states lower both the bonding energy and the adsorption energy.

  11. On the possibility of extending the Noro-Frenkel generalized law of correspondent states to nonisotropic patchy interactions.

    PubMed

    Foffi, Giuseppe; Sciortino, Francesco

    2007-08-23

    Colloidal systems (and protein solutions) are often characterized by attractive interactions whose ranges are much smaller than the particle size. When this is the case and the interaction is spherical, systems obey a generalized law of correspondent states (GLCS), first proposed by Noro and Frenkel (Noro, M. G.; Frenkel, D. J. Chem. Phys. 2000, 113, 2941). The thermodynamic properties become insensitive to the details of the potential, depending only on the value of the second virial coefficient B2 and the density rho. The GLCS does not generically hold for the case of nonspherical potentials. In this Letter, we suggest that when particles interact via short-ranged small-angular amplitude patchy interactions (so that the condition of only one bond per patch is fulfilled), it is still possible to generalize the GLCS close to the liquid-gas critical point.

  12. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    DOE PAGES

    Meng, Qingping; Wu, Lijun; Welch, David O.; ...

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  13. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    SciTech Connect

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.

  14. Impurity modes in Frenkel exciton systems with dipolar interactions and cubic symmetry.

    PubMed

    Avgin, I; Huber, D L

    2013-04-28

    We introduce a continuum model for impurity modes of Frenkel excitons in fully occupied face-centered and body-centered cubic lattices with dipole-dipole interactions and parallel moments. In the absence of impurities, the model reproduces the small-k behavior found in numerical calculations of dipolar lattice sums. The exciton densities of states near the upper and lower band edges are calculated and compared with the corresponding results for a random array of dipoles. The Green function obtained with the continuum model, together with a spherical approximation to the Brillouin zone, is used to determine the conditions for the formation of a localized exciton mode associated with a shift in the transition energy of a single chromophore. The dependence of the local mode energy on the magnitude of the shift is ascertained. The formation of impurity bands at high concentrations of perturbed sites is investigated using the coherent potential approximation. The contribution of the impurity bands to the optical absorption is calculated in the coherent potential approximation. The locations of the optical absorption peaks of the dipolar system are shown to depend on the direction of propagation of the light relative to the dipolar axis, a property that is maintained in the presence of short-range interactions.

  15. Experimental Study of Spectral Properties of a Frenkel-Kontorova System

    NASA Astrophysics Data System (ADS)

    Lucci, M.; Badoni, D.; Merlo, V.; Ottaviani, I.; Salina, G.; Cirillo, M.; Ustinov, A. V.; Winkler, D.

    2015-09-01

    We report on microwave emission from linear parallel arrays of underdamped Josephson junctions, which are described by the Frenkel-Kontorova (FK) model. Electromagnetic radiation is detected from the arrays when biased on current singularities (steps) appearing at voltages Vn=Φ0(n c ¯ /L ) , where Φ0=2.07 ×10-15 Wb is the magnetic flux quantum, and c ¯, L , and n are, respectively, the speed of light in the transmission line embedding the array, L its physical length, and n an integer. The radiation, detected at fundamental frequency c ¯ /2 L when biased on different singularities, indicates shuttling of bunched 2 π kinks (magnetic flux quanta). Resonance of flux-quanta motion with the small-amplitude oscillations induced in the arrays gives rise to fine structures in the radiation spectrum, which are interpreted on the basis of the FK model describing the resonance. The impact of our results on design and performances of new digital circuit families is discussed.

  16. Strain waves, earthquakes, slow earthquakes, and afterslip in the framework of the Frenkel-Kontorova model.

    PubMed

    Gershenzon, N I; Bykov, V G; Bambakidis, G

    2009-05-01

    The one-dimensional Frenkel-Kontorova (FK) model, well known from the theory of dislocations in crystal materials, is applied to the simulation of the process of nonelastic stress propagation along transform faults. Dynamic parameters of plate boundary earthquakes as well as slow earthquakes and afterslip are quantitatively described, including propagation velocity along the strike, plate boundary velocity during and after the strike, stress drop, displacement, extent of the rupture zone, and spatiotemporal distribution of stress and strain. The three fundamental speeds of plate movement, earthquake migration, and seismic waves are shown to be connected in framework of the continuum FK model. The magnitude of the strain wave velocity is a strong (almost exponential) function of accumulated stress or strain. It changes from a few km/s during earthquakes to a few dozen km per day, month, or year during afterslip and interearthquake periods. Results of the earthquake parameter calculation based on real data are in reasonable agreement with measured values. The distributions of aftershocks in this model are consistent with the Omori law for temporal distribution and a 1/r for the spatial distributions.

  17. Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!

    SciTech Connect

    Schroeder, Herbert

    2015-06-07

    In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current–electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current–electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by the applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F{sup 1/2}) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current–electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating

  18. Poole-Frenkel-effect as dominating current mechanism in thin oxide films—An illusion?!

    NASA Astrophysics Data System (ADS)

    Schroeder, Herbert

    2015-06-01

    In many of the publications, over 50 per year for the last five years, the Poole-Frenkel-effect (PFE) is identified or suggested as dominating current mechanism to explain measured current-electric field dependencies in metal-insulator-metal (MIM) thin film stacks. Very often, the insulating thin film is a metal oxide as this class of materials has many important applications, especially in information technology. In the overwhelming majority of the papers, the identification of the PFE as dominating current mechanism is made by the slope of the current-electric field curve in the so-called Poole-Frenkel plot, i.e., logarithm of current density, j, divided by the applied electric field, F, versus the square root of that field. This plot is suggested by the simplest current equation for the PFE, which comprises this proportionality (ln(j/F) vs. F1/2) leading to a straight line in this plot. Only one other parameter (except natural constants) may influence this slope: the optical dielectric constant of the insulating film. In order to identify the importance of the PFE simulation studies of the current through MIM stacks with thin insulating films were performed and the current-electric field curves without and with implementation of the PFE were compared. For the simulation, an advanced current model has been used combining electronic carrier injection/ejection currents at the interfaces, described by thermionic emission, with the carrier transport in the dielectric, described by drift and diffusion of electrons and holes in a wide band gap semiconductor. Besides the applied electric field (or voltage), many other important parameters have been varied: the density of the traps (with donor- and acceptor-like behavior); the zero-field energy level of the traps within the energy gap, this energy level is changed by the PFE (also called internal Schottky effect); the thickness of the dielectric film; the permittivity of the dielectric film simulating different oxide

  19. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    SciTech Connect

    Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng Chang, Yuan-Ching; Huang, Hao-Ping; Chen, Nai-Chuan

    2014-03-21

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.

  20. The role of point defects in PbS, PbSe and PbTe: a first principles study.

    PubMed

    Li, Wun-Fan; Fang, Chang-Ming; Dijkstra, Marjolein; van Huis, Marijn A

    2015-09-09

    Intrinsic defects are of central importance to many physical and chemical processes taking place in compound nanomaterials, such as photoluminescence, accommodation of off-stoichiometry and cation exchange. Here, the role of intrinsic defects in the above mentioned processes inside rock salt (RS) lead chalcogenide systems PbS, PbSe and PbTe (PbX) was studied systematically using first principles density functional theory. Vacancy, interstitial, Schottky and Frenkel defects were considered. Rock salt PbO was included for comparison. The studied physical properties include defect formation energy, local geometry relaxation, Bader charge analysis, and electronic structure. The defect formation energies show that monovacancy defects and Schottky defects are favoured over interstitial and Frenkel defects. Schottky dimers, where the cation vacancy and anion vacancy are adjacent to each other, have the lowest defect formation energies at 1.27 eV, 1.29 eV and 1.21 eV for PbS, PbSe and PbTe, respectively. Our results predict that a Pb monovacancy gives rise to a shallow acceptor state, while an X vacancy generates a deep donor state, and Schottky defects create donor-acceptor pairs inside the band gap. The surprisingly low formation energy of Schottky dimers suggests that they may play an important role in cation exchange processes, in contrast to the current notion that only single point defects migrate during cation exchange.

  1. Optical spectroscopy and system-bath interactions in molecular aggregates with full configuration interaction Frenkel exciton model

    NASA Astrophysics Data System (ADS)

    Seibt, Joachim; Sláma, Vladislav; Mančal, Tomáš

    2016-12-01

    Standard application of the Frenkel exciton model neglects resonance coupling between collective molecular aggregate states with different number of excitations. These inter-band coupling terms are, however, of the same magnitude as the intra-band coupling between singly excited states. We systematically derive the Frenkel exciton model from quantum chemical considerations, and identify it as a variant of the configuration interaction method. We discuss all non-negligible couplings between collective aggregate states, and provide compact formulae for their calculation. We calculate absorption spectra of molecular aggregate of carotenoids and identify significant band shifts as a result of inter-band coupling. The presence of inter-band coupling terms requires renormalization of the system-bath coupling with respect to standard formulation, but renormalization effects are found to be weak. We present detailed discussion of molecular dimer and calculate its time-resolved two-dimensional Fourier transformed spectra to find weak but noticeable effects of peak amplitude redistribution due to inter-band coupling.

  2. REVIEWS OF TOPICAL PROBLEMS: Theory of the J-band: from the Frenkel exciton to charge transfer

    NASA Astrophysics Data System (ADS)

    Egorov, V. V.; Alfimov, M. V.

    2007-10-01

    This review concerns the current status of the theory of formation of the so-called J-band (Jelley, Scheibe, 1936), an abnormally narrow, high-intensity, red-shifted optical absorption band arising from the aggregation of polymethine dyes. Two opposite approaches to explaining the physical nature of the J-band are given special attention. In the first of these, the old one based on Frenkel's statistical exciton model, the specific structure of the dye is considered irrelevant, and the J-band is explained by assuming that the quickly moving Frenkel exciton acts to average out the quasistatic disorder in electronic transition energies of molecules in the linear J-aggregate (Knapp, 1984). In the second approach, on the contrary, the specific structure of the dye (the existence of a quasilinear polymethine chain) is supposed to be very important. This new approach is based on a new theory of charge transfer. The explanation of the J-band here is that an elementary charge transfer along the J-aggregate's chromophore is dynamically pumped by the chaotic reorganization of nuclei in the nearby environment at a resonance between electronic and nuclear movements — when the motion of nuclei being reorganized is only weakly chaotic (Egorov, 2001).

  3. Birth Defects

    MedlinePlus

    ... how the body looks, works or both. Some birth defects like cleft lip or neural tube defects are structural problems that can be easy to see. To find others, like heart defects, doctors use special tests. Birth defects can vary from mild to severe. Some ...

  4. Point defects in thorium nitride: A first-principles study

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Llois, A. M.; Mosca, H. O.

    2016-11-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  5. Comment on "Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy"

    NASA Astrophysics Data System (ADS)

    Novaco, Anthony D.

    2015-11-01

    A recent publication [Q. Meng, L. Wu, D. O. Welch, and Y. Zhu, Phys. Rev. B 91, 224305 (2015), 10.1103/PhysRevB.91.224305] examines the quantum normal modes of the Frenkel-Kontorova chain. The authors compare their results to those of an older work [A. D. Novaco, Phys. Rev. B 22, 1645 (1980), 10.1103/PhysRevB.22.1645], attributing the differences to limitations in the numerical analysis of that 1980 paper. We show here that it is not numerical limitations that cause the differences between the two papers, and we argue that the cause of these differences resides with the approaches used in the modeling.

  6. The effect of ac-driven force on superlubricity in a two-dimensional Frenkel-Kontorova model

    NASA Astrophysics Data System (ADS)

    Lin, Mai-Mai

    2010-08-01

    By using the molecular dynamic simulation method with a fourth-order Runge-Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel-Kontorova model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the static friction force have been studied in detail. It was found that not only the amplitude and frequency of the ac-driven force, but also the direction of dc- and ac-driven forces and the misfit angle between two layers have a strong influence on the static friction force. This indicated that the phenomenon of superlubricity appears easily with larger ac amplitude and smaller ac frequency for some special direction of the external driving force and misfit angle.

  7. Modèle de diélectrique associant les effets Poole-Frenkel et Maxwell-Wagner

    NASA Astrophysics Data System (ADS)

    Pillonnet, Alain; Ongaro, Roger; Garoum, Mohammed

    1992-06-01

    The model presented here combines Poole-Frenkel (PF) and Maxwell-Wagner (MW) effects to determine the equivalent conductivity σ of a plane double-layered dielectric. PF effect is introduced first under its usual form (Boltzmann statistics), and then under a more general form (Fermi-Dirac statistics). The curves log (σ) versus the electric field (sqrt{F}) generally display one or two linear parts, with the low-field slopes always larger than the high-field ones. These slopes are dependent on the layer's thickness ration and may greatly differ from slopes associated with PF effect in an homogeneous dielectric. The computer simulations show that this behaviour results from the fact that the potential can dominate successively in each layer. Le modèle présenté associe les effets Poole-Frenkel (PF) et Maxwell-Wagner (MW) dans la détermination de la conductivité équivalente σ d'un diélectrique plan à deux couches. L'effet PF y est introduit sous sa forme usuelle (statistique de Boltzmann), puis sous une forme plus générale (statistique de Fermi-Dirac). Les courbes log σ en fonction du champ électrique (sqrt{F}) présentent généralement une ou deux parties linéaires, la pente en bas champs étant toujours supérieure à la pente en hauts champs. Ces pentes sont fonctions du rapport des épaisseurs des couches et peuvent différer beaucoup des pentes relevant de l'effet PF dans un diélectrique homogène. Les simulations numériques montrent que ce comportement résulte du fait que le potentiel peut être successivement prépondérant dans chacune des couches.

  8. First-Principles Study of Defects in GaN, AlN and Their Alloys

    DTIC Science & Technology

    2010-08-31

    studied the similar type of pairs in GaN, i.e. Gai -VGa. These types of defect complexes are called Frenkel pairs which are believed to form when the...defects have been carried out.[17-21] In our previous program, we studied the GaGa i V− pairs in GaN. We found that Gai can occur in 3+, 2+, and 1...charge states, depending on the Fermi energy of the sample. VGa can occur in 3−, 2−, 1−, and neutral charge states. Because Gai and VGa have

  9. Energetics of intrinsic point defects in ZrSiO{sub 4}

    SciTech Connect

    Pruneda, J.M.; Artacho, Emilio

    2005-03-01

    Using first principles calculations we have studied the formation energies, electron and hole affinities, and electronic levels of intrinsic point defects in zircon. The atomic structures of charged interstitials, vacancies, Frenkel pairs, and antisite defects are obtained. The limit of high concentration of point defects, relevant for the use of this material in nuclear waste immobilization, was studied with a variable lattice relaxation that can simulate the swelling induced by radiation damage. The limit of low concentration of defects is simulated with larger cells and fixed lattice parameters. Using known band offset values at the interface of zircon with silicon, we analyze the foreseeable effect of the defects on the electronic properties of zircon used as gate in metal-oxide-semiconductor devices.

  10. Trace Impurities and Radiation Defects in Optical Materials

    NASA Astrophysics Data System (ADS)

    Malovichko, Galina; Grachev, Valentin; Meyer, Martin; Munro, Mark; Pankratov, Vladimir

    2007-05-01

    Trace impurities and radiation defects lead to inevitable performance degradation of devices based on optical materials. The results of the Electron Paramagnetic Resonance (EPR) study of defects in as grown and irradiated single crystals are reported. Among investigated optical materials are LiNbO3, Li2B4O7, KTiOPO4 etc. Crystals from different vendors or grown by different ways have different concentrations of non-controlled impurities and, as a result, different physical properties, including radiation resistance. Intrinsic defects (vacancies and antisites), usually present in congruent non-stoichiometric crystals like lithium niobate and tantalate. Many EPR lines of non-controlled impurities were found in KTiOPO4 crystals. We found that dominating types of defects formed under visible, UV and gamma photon irradiation are centers created by defects trapped electron or hole. The neutron and high energy electron irradiation creates stable Frenkel pairs - interstitial ions and vacancies. Computer simulation of observed spectra allowed us to determine spectroscopic characteristics and models for more than dozen trace impurities and radiation defects. Obtained data about atomic defects can be used for a selection of materials suitable for various applications. To cite this abstract, use the following reference: http://meetings.aps.org/link/BAPS.2007.NWS07.B1.2

  11. First-principles study of point defects in thorium carbide

    NASA Astrophysics Data System (ADS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A. M.; Mosca, H. O.

    2014-11-01

    Thorium-based materials are currently being investigated in relation with their potential utilization in Generation-IV reactors as nuclear fuels. One of the most important issues to be studied is their behavior under irradiation. A first approach to this goal is the study of point defects. By means of first-principles calculations within the framework of density functional theory, we study the stability and formation energies of vacancies, interstitials and Frenkel pairs in thorium carbide. We find that C isolated vacancies are the most likely defects, while C interstitials are energetically favored as compared to Th ones. These kind of results for ThC, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically. For this reason, we compare with results on other compounds with the same NaCl-type structure.

  12. Coherent Dynamics of Mixed Frenkel and Charge-Transfer Excitons in Dinaphtho[2,3-b:2'3'-f]thieno[3,2-b]-thiophene Thin Films: The Importance of Hole Delocalization.

    PubMed

    Fujita, Takatoshi; Atahan-Evrenk, Sule; Sawaya, Nicolas P D; Aspuru-Guzik, Alán

    2016-04-07

    Charge-transfer states in organic semiconductors play crucial roles in processes such as singlet fission and exciton dissociation at donor/acceptor interfaces. Recently, a time-resolved spectroscopy study of dinaphtho[2,3-b:2'3'-f]thieno[3,2-b]-thiophene (DNTT) thin films provided evidence for the formation of mixed Frenkel and charge-transfer excitons after the photoexcitation. Here, we investigate optical properties and excitation dynamics of the DNTT thin films by combining ab initio calculations and a stochastic Schrödinger equation. Our theory predicts that the low-energy Frenkel exciton band consists of 8-47% CT character. The quantum dynamics simulations show coherent dynamics of Frenkel and CT states in 50 fs after the optical excitation. We demonstrate the role of charge delocalization and localization in the mixing of CT states with Frenkel excitons as well as the role of their decoherence.

  13. Quantum dynamics in the highly discrete, commensurate Frenkel Kontorova model: A path-integral molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Krajewski, Florian R.; Müser, Martin H.

    2005-03-01

    The commensurate Frenkel Kontorova (FK) model is studied using path-integral molecular dynamics (PIMD). We focus on the highly discrete case, in which the embedding potential has a much greater maximum curvature than the harmonic potential connecting two particles in the FK chain. When efficient sampling methods are used, the dynamical interpretation of adiabatic PIMD appears to represent quite accurately the true time correlation functions of this highly correlated many-body system. We have found that the discrete, quantum FK model shows different behavior than its continuum version. The spectral density does not show the characteristic ω-2Θ(ω-ωc) cusp of the continuum solution in the pinned phase (m>mc). We also identify a dynamical quantum hysteresis in addition to the regular classical hysteresis when an external force is applied to the FK chain. In the unpinned phase (m⩽mc), we find a linear response damping coefficient which is finite and only weakly dependent on temperature T at small values of T.

  14. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    SciTech Connect

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  15. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe

    DOE PAGES

    Nakashima, Kenichi; Stoller, Roger E.; Xu, Haixuan

    2015-01-01

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in neutron irradiated nuclear materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1:0a₀ to 3:3a₀ have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomicmore » level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a₀ by taking the average of the recombination distances from 80 simulation cases. This value agrees well with the experimental estimate. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.« less

  16. Recombination radius of a Frenkel pair and capture radius of a self-interstitial atom by vacancy clusters in bcc Fe.

    PubMed

    Nakashima, Kenichi; Stoller, Roger E; Xu, Haixuan

    2015-08-26

    The recombination radius of a Frenkel pair is a fundamental parameter for the object kinetic Monte Carlo (OKMC) and mean field rate theory (RT) methods that are used to investigate irradiation damage accumulation in irradiated materials. The recombination radius in bcc Fe has been studied both experimentally and numerically, however there is no general consensus about its value. The detailed atomistic processes of recombination also remain uncertain. Values from 1.0a0 to 3.3a0 have been employed as a recombination radius in previous studies using OKMC and RT. The recombination process of a Frenkel pair is investigated at the atomic level using the self-evolved atomistic kinetic Monte Carlo (SEAKMC) method in this paper. SEAKMC calculations reveal that a self-interstitial atom recombines with a vacancy in a spontaneous reaction from several nearby sites following characteristic pathways. The recombination radius of a Frenkel pair is estimated to be 2.26a0 by taking the average of the recombination distances from 80 simulation cases. In addition, we apply these procedures to the capture radius of a self-interstitial atom by a vacancy cluster. The capture radius is found to gradually increase with the size of the vacancy cluster. The fitting curve for the capture radius is obtained as a function of the number of vacancies in the cluster.

  17. Effect of radiation-induced emission of Schottky defects on the formation of colloids in alkali halides

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Vainshtein, D. I.; den Hartog, H. W.

    2003-10-01

    Formation of vacancy clusters in irradiated crystals is considered taking into account radiation-induced Schottky defect emission (RSDE) from extended defects. RSDE acts in the opposite direction compared with Frenkel pair production, and it results in the radiation-induced recovery processes. In the case of alkali halides, Schottky defects can be produced as a result of the interaction of extended defects with excitons , as has been suggested by Seitz in 1954. We consider a model that takes into account excitonic mechanisms for the creation of both Frenkel and Schottky defects, and which shows that although the contribution of the latter mechanism to the production of primary defects may be small, its role in the radiation-induced evolution of microstructure can be very significant. The model is applied to describe the evolution of sodium colloids and the formation of voids in NaCl, which is followed by a sudden fracture of the material, presenting a potential problem in rock salt-based nuclear waste repositories. The temperature, dose rate and dose dependence of colloid growth in NaCl doped with different types of impurities is analyzed. We have found that colloid growth may become negative below a threshold temperature (or above a threshold dose rate), or below a certain impurity concentration , which is determined by the RSDE, that depends strongly on the type and concentration of the impurities. The results obtained with the model are compared with experimental observations.

  18. Defect engineering of the electronic transport through cuprous oxide interlayers

    PubMed Central

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work. PMID:27256905

  19. Defect engineering of the electronic transport through cuprous oxide interlayers

    NASA Astrophysics Data System (ADS)

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-06-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  20. Molecular Dynamics Simulation of Point Defect Accumulation in 3C-SiC

    SciTech Connect

    Devanathan, Ram; Gao, Fei; Weber, William J.

    2004-04-05

    Defect accumulation in silicon carbide has been simulated by molecular dynamics using a Brenner-type potential connected smoothly to the Ziegler-Biersack-Littmark potential. Displacement damage in 3C-SiC, which is known to consist of point defects, vacancy and interstitial clusters and anti-site defects, was modelled by introducing random displacements in the Si or C sublattice. SiC was amorphized by Si displacements at a damage level corresponding to 0.15 displacements per atom (dpa) and by C displacements at 0.25 dpa. In both cases, the damage consists of Si and C Frenkel pairs as well as anti-site defects. The results provide evidence that SiC can be amorphized by displacing C atoms exclusively and suggest that short-range disorder provides the driving force for amorphization of SiC.

  1. Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

    SciTech Connect

    El-Atab, Nazek; Nayfeh, Ammar; Ozcan, Ayse; Alkis, Sabri; Okyay, Ali K.

    2014-01-06

    A low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔV{sub t}) vs. programming voltage is studied with and without the silicon nanoparticles. Applying −1 V for 5 s at the gate of the memory with nanoparticles results in a ΔV{sub t} of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (>10 yr). Without nanoparticles, at −1 V programming voltage, the ΔV{sub t} is negligible. In order to get ΔV{sub t} of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔV{sub t} vs. electric field across the tunnel oxide shows square root dependence at low fields (E < 1 MV/cm) and a square dependence at higher fields (E > 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields.

  2. Effect of intrinsic point defects on ferroelectric polarization behavior of SrTiO3

    NASA Astrophysics Data System (ADS)

    Klyukin, Konstantin; Alexandrov, Vitaly

    2017-01-01

    The effect of a variety of intrinsic defects and defect clusters in bulk and thin films of SrTiO3 on ferroelectric polarization and switching mechanisms is investigated by means of density-functional-theory based calculations and the Berry phase approach. Our results show that both the titanium TiSr•• and strontium SrTi'' antisite defects induce ferroelectric polarization in SrTiO3, with the TiSr•• defect causing a more pronounced spontaneous polarization and higher activation barriers of polarization reversal than SrTi''. The presence of oxygen vacancies bound to the antisite defects can either enhance or diminish polarization depending on the configuration of the defect pair, but it always leads to larger activation barriers of polarization switching as compared to the antisite defects with no oxygen vacancies. We also show that the magnitude of spontaneous polarization in SrTiO3 can be tuned by controlling the degree of Sr/Ti nonstroichiometry. Other intrinsic point defects such as Frenkel defect pairs and electron small polarons also contribute to the emergence of ferroelectric polarization in SrTiO3.

  3. Stabilization of primary mobile radiation defects in MgF2 crystals

    NASA Astrophysics Data System (ADS)

    Lisitsyn, V. M.; Lisitsyna, L. A.; Popov, A. I.; Kotomin, E. A.; Abuova, F. U.; Akilbekov, A.; Maier, J.

    2016-05-01

    Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.

  4. The Frenkel Kontorova Model

    NASA Astrophysics Data System (ADS)

    Floría, L. M.; Baesens, C.; Gómez-Gardeñes, J.

    In the preface to his monograph on the structure of Evolutionary Theory [1], the late professor Stephen Jay Gould attributes to the philosopher Immanuel Kant the following aphorism in Science Philosophy: "Percepts without concepts are blind; concepts without percepts are empty". Using with a bit of freedom these Kantian terms, one would say that a scientific model is a framework (or network) of interrelated concepts and percepts where experts build up scientific consistent explanations of a given set of observations. Good models are those which are both, conceptually simple and universal in their perceptions. Let us illustrate with examples the meaning of this statement.

  5. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  6. Monte Carlo Simulations of Defect Recovery within a 10 keV Collision Cascade in 3C-SiC

    SciTech Connect

    Rong, Zhouwen; Gao, Fei; Weber, William J.

    2007-11-26

    A kinetic lattice Monte Carlo (KLMC) model is developed to investigate the recovery and clustering of defects during annealing of a single 10 keV cascade in cubic silicon carbide. The 10 keV Si cascade is produced by molecular dynamics (MD), and a method of transferring the defects created by MD simulations to the KLMC model is developed. The KLMC model parameters are obtained from molecular dynamics simulations and ab initio calculations of defect migration, recombination and annihilation. The defects are annealed isothermally from 100 K to 1000 K in the KLMC model. Two distinct recovery stages for close Frenkel pairs are observed at about 200 and 550 K, and the growth of complex clusters is observed above 400 K. These simulation results are in good agreement with available experimental results.

  7. Displacement cascades and defects annealing in tungsten, Part I: Defect database from molecular dynamics simulations

    SciTech Connect

    Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.; Heinisch, Howard L.; Wirth, Brian D.; Kurtz, Richard J.

    2015-07-01

    Molecular dynamics simulations have been used to generate a comprehensive database of surviving defects due to displacement cascades in bulk tungsten. Twenty-one data points of primary knock-on atom (PKA) energies ranging from 100 eV (sub-threshold energy) to 100 keV (~780×Ed, where Ed = 128 eV is the average displacement threshold energy) have been completed at 300 K, 1025 K and 2050 K. Within this range of PKA energies, two regimes of power-law energy-dependence of the defect production are observed. A distinct power-law exponent characterizes the number of Frenkel pairs produced within each regime. The two regimes intersect at a transition energy which occurs at approximately 250×Ed. The transition energy also marks the onset of the formation of large self-interstitial atom (SIA) clusters (size 14 or more). The observed defect clustering behavior is asymmetric, with SIA clustering increasing with temperature, while the vacancy clustering decreases. This asymmetry increases with temperature such that at 2050 K (~0.5Tm) practically no large vacancy clusters are formed, meanwhile large SIA clusters appear in all simulations. The implication of such asymmetry on the long-term defect survival and damage accumulation is discussed. In addition, <100> {110} SIA loops are observed to form directly in the highest energy cascades, while vacancy <100> loops are observed to form at the lowest temperature and highest PKA energies, although the appearance of both the vacancy and SIA loops with Burgers vector of <100> type is relatively rare.

  8. Genetic sperm defects.

    PubMed

    Chenoweth, Peter J

    2005-08-01

    Genetic sperm defects are specific sperm defects, which have been shown to have a genetic mode of transmission. Such genetic linkage, either direct or indirect, has been associated with a number of sperm defects in different species, with this number increasing with improved diagnostic capabilities. A number of sperm defects, which have proven or suspected genetic modes of transmission are discussed herein, with particular emphasis on cattle. These include: 1. Acrosome defects (knobbed, ruffled and incomplete); 2. Head defects (abnormal condensation, decapitated, round head, rolled head, nuclear crest); 3. Midpiece abnormalities ("Dag" defect, "corkscrew" defect, "pseudo-droplet" defect); 4. Tail defects ("tail stump" defect, primary ciliary dyskinesia).

  9. Defect pair separation as the controlling step in homogeneous ice melting.

    PubMed

    Mochizuki, Kenji; Matsumoto, Masakazu; Ohmine, Iwao

    2013-06-20

    On being heated, ice melts into liquid water. Although in practice this process tends to be heterogeneous, it can occur homogeneously inside bulk ice. The thermally induced homogeneous melting of solids is fairly well understood, and involves the formation and growth of melting nuclei. But in the case of water, resilient hydrogen bonds render ice melting more complex. We know that the first defects appearing during homogeneous ice melting are pairs of five- and seven-membered rings, which appear and disappear repeatedly and randomly in space and time in the crystalline ice structure. However, the accumulation of these defects to form an aggregate is nearly additive in energy, and results in a steep free energy increase that suppresses further growth. Here we report molecular dynamics simulations of homogeneous ice melting that identify as a crucial first step not the formation but rather the spatial separation of a defect pair. We find that once it is separated, the defect pair--either an interstitial (I) and a vacancy (V) defect pair (a Frenkel pair), or an L and a D defect pair (a Bjerrum pair)--is entropically stabilized, or 'entangled'. In this state, defects with threefold hydrogen-bond coordination persist and grow, and thereby prepare the system for subsequent rapid melting.

  10. Interaction of defects and H in proton-irradiated GaN(Mg, H)

    SciTech Connect

    Myers, S.M.; Seager, C.H.

    2005-05-01

    Magnesium-doped, p-type GaN containing H was irradiated with MeV protons at room temperature and then annealed at a succession of increasing temperatures, with the behavior of defects and H in the material being followed through infrared absorption spectroscopy, nuclear-reaction analysis of the H, and photoluminescence. The results support the annihilation of Ga Frenkel pairs near room temperature, leaving the N interstitial and N vacancy to influence the elevated-temperature behavior. Multiple changes are observed with increasing temperature, ending with thermal release of the H above 700 deg. C. These effects are interpreted in terms of a succession of complexes involving Mg, the point defects, and H.

  11. Enhancing metal-insulator-insulator-metal tunnel diodes via defect enhanced direct tunneling

    SciTech Connect

    Alimardani, Nasir; Conley, John F.

    2014-08-25

    Metal-insulator-insulator-metal tunnel diodes with dissimilar work function electrodes and nanolaminate Al{sub 2}O{sub 3}-Ta{sub 2}O{sub 5} bilayer tunnel barriers deposited by atomic layer deposition are investigated. This combination of high and low electron affinity insulators, each with different dominant conduction mechanisms (tunneling and Frenkel-Poole emission), results in improved low voltage asymmetry and non-linearity of current versus voltage behavior. These improvements are due to defect enhanced direct tunneling in which electrons transport across the Ta{sub 2}O{sub 5} via defect based conduction before tunneling directly through the Al{sub 2}O{sub 3}, effectively narrowing the tunnel barrier. Conduction through the device is dominated by tunneling, and operation is relatively insensitive to temperature.

  12. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation

    DOE PAGES

    He, Mo -Rigen; Wang, Shuai; Jin, Ke; ...

    2016-07-25

    Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.

  13. On energy balance and the structure of radiated waves in kinetics of crystalline defects

    NASA Astrophysics Data System (ADS)

    Sharma, Basant Lal

    2016-11-01

    Traveling waves, with well-known closed form expressions, in the context of the defects kinetics in crystals are excavated further with respect to their inherent structure of oscillatory components. These are associated with, so called, Frenkel-Kontorova model with a piecewise quadratic substrate potential, corresponding to the symmetric as well as asymmetric energy wells of the substrate, displacive phase transitions in bistable chains, and brittle fracture in triangular lattice strips under mode III conditions. The paper demonstrates that the power expended theorem holds so that the sum of rate of working and the rate of total energy flux into a control strip moving steadily with the defect equals the rate of energy sinking into the defect, in the sense of N.F. Mott. In the conservative case of the Frenkel-Kontorova model with asymmetric energy wells, this leads to an alternative expression for the mobility in terms of the energy flux through radiated lattice waves. An application of the same to the case of martensitic phase boundary and a crack, propagating uniformly in bistable chains and triangular lattice strips, respectively, is also provided and the energy release is expressed in terms of the radiated energy flux directly. The equivalence between the well-known expressions and their alternative is established via an elementary identity, which is stated and proved in the paper as the zero lemma. An intimate connection between the three distinct types of defects is, thus, revealed in the framework of energy balance, via a structural similarity between the corresponding variants of the 'zero' lemma containing the information about radiated energy flux. An extension to the dissipative models, in the presence of linear viscous damping, is detailed and analog of the zero lemma is proved. The analysis is relevant to the dynamics of dislocations, brittle cracks, and martensitic phase boundaries, besides possible applications to analogous physical contexts which are

  14. Facts about Birth Defects

    MedlinePlus

    ... and Palate Clubfoot Craniosynostosis Down Syndrome Eye Defects Fetal Alcohol Syndrome Disorders Gastroschisis Heart Defects Coarctation of the Aorta ... grow and develop. For some birth defects, like fetal alcohol syndrome, we know the cause. But for most birth ...

  15. Atrial septal defect (ASD)

    MedlinePlus

    ... other heart defects of the ventricular septum and mitral valve . Secundum defects can be a single, small ... Sometimes, open-heart surgery may be needed to repair the defect. The type of surgery is more ...

  16. Single Ventricle Defects

    MedlinePlus

    ... Healthy Heart Function Common Types of Heart Defects - Aortic Valve Stenosis (AVS) - Atrial Septal Defect (ASD) - Coarctation of the Aorta (CoA) - Complete Atrioventricular Canal defect (CAVC) - d-Transposition ...

  17. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  18. Highly n -doped silicon: Deactivating defects of donors

    NASA Astrophysics Data System (ADS)

    Mueller, D. Christoph; Fichtner, Wolfgang

    2004-12-01

    We report insight into the deactivation mechanisms of group V donors in heavily doped silicon. Based on our ab initio calculations, we suggest a three step model for the donor deactivation. In highly n -type Si grown at low temperatures, in the absence of excess native point defects, the intrinsic limit to ne seems to rise in part by means of donor deactivating distortions of the silicon lattice in the proximity of two or more donor atoms that share close sites. Also, donor dimers play an important part in the deactivation at high doping concentrations. While the dimers constitute a stable or metastable inactive donor configuration, the lattice distortions lower the donor levels gradually below the impurity band in degenerate silicon. On the other hand, we find that, in general, none of the earlier proposed deactivating donor pair defects is stable at any position of the Fermi level. The lattice distortions may be viewed as a precursor to Frenkel pair generation and donor-vacancy clustering process (step 2) that account for deactivation at elevated temperature and longer annealing times. Ultimately, and most prominently in the case of the large Sb atoms, precipitation of the donor atoms may set in as the last step of the deactivation process chain.

  19. Off-stoichiometric defect clustering in irradiated oxides

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah; Allen, Todd; EL-Azab, Anter

    2017-04-01

    A cluster dynamics model describing the formation of vacancy and interstitial clusters in irradiated oxides has been developed. The model, which tracks the composition of the oxide matrix and the defect clusters, was applied to the early stage formation of voids and dislocation loops in UO2, and the effects of irradiation temperature and dose rate on the evolution of their densities and composition was investigated. The results show that Frenkel defects dominate the nucleation process in irradiated UO2. The results also show that oxygen vacancies drive vacancy clustering while the migration energy of uranium vacancies is a rate-limiting factor for the nucleation and growth of voids. In a stoichiometric UO2 under irradiation, off-stoichiometric vacancy clusters exist with a higher concentration of hyper-stoichiometric clusters. Similarly, off-stoichiometric interstitial clusters form with a higher concentration of hyper-stoichiometric clusters. The UO2 matrix was found to be hyper-stoichiometric due to the accumulation of uranium vacancies.

  20. Electrical characterization of defects introduced in n-Ge during electron beam deposition or exposure

    SciTech Connect

    Coelho, S. M. M.; Auret, F. D.; Janse van Rensburg, P. J.; Nel, J. M.

    2013-11-07

    Schottky barrier diodes prepared by electron beam deposition (EBD) on Sb-doped n-type Ge were characterized using deep level transient spectroscopy (DLTS). Pt EBD diodes manufactured with forming gas in the chamber had two defects, E{sub 0.28} and E{sub 0.31}, which were not previously observed after EBD. By shielding the samples mechanically during EBD, superior diodes were produced with no measureable deep levels, establishing that energetic ions created in the electron beam path were responsible for the majority of defects observed in the unshielded sample. Ge samples that were first exposed to the conditions of EBD, without metal deposition (called electron beam exposure herein), introduced a number of new defects not seen after EBD with only the E-center being common to both processes. Substantial differences were noted when these DLTS spectra were compared to those obtained using diodes irradiated by MeV electrons or alpha particles indicating that very different defect creation mechanisms are at play when too little energy is available to form Frenkel pairs. These observations suggest that when EBD ions and energetic particles collide with the sample surface, inducing intrinsic non-localised lattice excitations, they modify defects deeper in the semiconductor thus rendering them observable.

  1. Localized states in 1D Frenkel exciton systems: a comparison between infinite-range and nearest-neighbor transfer for normal and inverted bands.

    PubMed

    Avgin, I; Huber, D L

    2009-10-29

    We investigate localized states in one-dimensional Frenkel exciton systems that are created by a shift in the optical transition frequency of a single chromophore. In this paper, we focus on localized states lying below the exciton band that can act as exciton traps. A comparison is made between systems with infinite-range (r(-n), n = 2, 3, ...) transfer and those with nearest-neighbor (n = infinity) transfer. A distinction is also made between normal bands (minimum exciton energy at k = 0) and inverted bands (minimum energy at k = pi). The position of the localized state relative to the bottom of the band is calculated as a function of the shift in the single-chromophore transition frequency. The nature of the localized state is displayed in calculations of the participation ratio and the effective oscillator strength. Similarities and differences in localized states between normal and inverted band systems and between infinite-range and nearest-neighbor transfer are analyzed.

  2. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Oscillating Propagation of Kink in Nondissipative Frenkel-Kontorova Chain Due to External DC Force

    NASA Astrophysics Data System (ADS)

    Zeng, Shang-You; Tang, Yi; Ren, Xi-Mei; Zhao, De-Jiang

    2009-04-01

    We report the oscillating propagation of kink in a nondissipative Frenkel-Kontorova (FK) chain driven by external DC force, which is different from the usual propagation of localized modes with equal speed. When the kink moves in the opposite direction of the external DC force, the kink will be accelerated and the potential of the FK chain in the external force field is transformed to be the kinetic energy of the kink. If the kink reaches the boundary of the FK chain, the kink will be bounced back and moves in the opposite direction, then the kink will be decelerated gradually and the kinetic energy of the kink is transformed to be the potential of the FK chain in the external force field. If the speed of the kink reaches zero, the kink will move in the opposite direction again driven by the external DC force, and a new oscillating cycle begins. Simulation result demonstrates exactly the transformation between the kinetic energy of the kink and the potential of the FK chain in the external force field. The interesting energy exchange is induced by the special topology of kinks, and other localized modes, such as breathers and envelope solitons, have no the interesting phenomenon.

  3. From square-well to Janus: Improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model

    SciTech Connect

    Giacometti, Achille; Gögelein, Christoph; Lado, Fred; Sciortino, Francesco; Ferrari, Silvano

    2014-03-07

    Building upon past work on the phase diagram of Janus fluids [F. Sciortino, A. Giacometti, and G. Pastore, Phys. Rev. Lett. 103, 237801 (2009)], we perform a detailed study of integral equation theory of the Kern-Frenkel potential with coverage that is tuned from the isotropic square-well fluid to the Janus limit. An improved algorithm for the reference hypernetted-chain (RHNC) equation for this problem is implemented that significantly extends the range of applicability of RHNC. Results for both structure and thermodynamics are presented and compared with numerical simulations. Unlike previous attempts, this algorithm is shown to be stable down to the Janus limit, thus paving the way for analyzing the frustration mechanism characteristic of the gas-liquid transition in the Janus system. The results are also compared with Barker-Henderson thermodynamic perturbation theory on the same model. We then discuss the pros and cons of both approaches within a unified treatment. On balance, RHNC integral equation theory, even with an isotropic hard-sphere reference system, is found to be a good compromise between accuracy of the results, computational effort, and uniform quality to tackle self-assembly processes in patchy colloids of complex nature. Further improvement in RHNC however clearly requires an anisotropic reference bridge function.

  4. Solutions to Defect-Related Problems in Implanted Silicon by Controlled Injection of Vacancies by High-Energy Ion Irradiation

    SciTech Connect

    Duggan, J.L.; Holland, O.W.; Roth, E.

    1998-11-04

    Amorphization and a dual implant technique have been used to manipulate residual defects that persist following implantation and post-implant thermal treatments. Residual defects can often be attributed to ion-induced defect excesses. A defect is considered to be excess when it occurs in a localized region at a concentration greater than its complement. Sources of excess defects include spatially separated Frenkel pairs, excess interstitials resulting from the implanted atoms, and sputtering. Pre-amorphizing prior to dopant implantation has been proposed to eliminate dopant broadening due to ion channeling as well as dopant diffusion during subsequent annealing. However, transient-enhanced diffusion (TED) of implanted boron has been observed in pre-amorphized Si. The defects driving this enhanced boron diffusion are thought to be the extended interstitial-type defects that form below the amorphous-crystalline interface during implantation. A dual implantation process was applied in an attempt to reduce or eliminate this interfacial defect band. High-energy, ion implantation is known to inject a vacancy excess in this region. Vacancies were implanted at a concentration coincident with the excess interstitials below the a-c interface to promote recombination between the two defect species. Preliminary results indicate that a critical fluence, i.e., a sufficient vacancy concentration, will eliminate the interstitial defects. The effect of the reduction or elimination of these interfacial defects upon TED of boron will be discussed. Rutherford backscattering/channeling and cross section transmission electron microscopy analyses were used to characterize the defect structure within the implanted layer. Secondary ion mass spectroscopy was used to profile the dopant distributions.

  5. Carrier-induced transient defect mechanism for non-radiative recombination in InGaN light-emitting devices

    PubMed Central

    Bang, Junhyeok; Sun, Y. Y.; Song, Jung-Hoon; Zhang, S. B.

    2016-01-01

    Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. This NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited to InGaN-based light emitting devices. PMID:27075818

  6. Carrier-induced transient defect mechanism for non-radiative recombination in InGaN light-emitting devices

    DOE PAGES

    Bang, Junhyeok; Sun, Y. Y.; Song, Jung -Hoon; ...

    2016-04-14

    Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. As a result, this NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited tomore » InGaN-based light emitting devices.« less

  7. Carrier-induced transient defect mechanism for non-radiative recombination in InGaN light-emitting devices

    SciTech Connect

    Bang, Junhyeok; Sun, Y. Y.; Song, Jung -Hoon; Zhang, S. B.

    2016-04-14

    Non-radiative recombination (NRR) of excited carriers poses a serious challenge to optoelectronic device efficiency. Understanding the mechanism is thus crucial to defect physics and technological applications. Here, by using first-principles calculations, we propose a new NRR mechanism, where excited carriers recombine via a Frenkel-pair (FP) defect formation. While in the ground state the FP is high in energy and is unlikely to form, in the electronic excited states its formation is enabled by a strong electron-phonon coupling of the excited carriers. As a result, this NRR mechanism is expected to be general for wide-gap semiconductors, rather than being limited to InGaN-based light emitting devices.

  8. Formation and annihilation of intrinsic defects induced by electronic excitation in high-purity crystalline SiO{sub 2}

    SciTech Connect

    Kajihara, Koichi; Skuja, Linards; Hosono, Hideo

    2013-04-14

    Formation and thermal annihilation of intrinsic defects in {alpha}-quartz were examined using high-purity samples, while minimizing the contributions of reactions involving metallic impurities. Electronic excitation with {sup 60}Co {gamma}-rays was employed to avoid radiation-induced amorphization. The results clearly show that formation of oxygen vacancies (Si-Si bonds) as a result of decomposition of regular Si-O-Si bonds (Frenkel process) is the dominant intrinsic defect process. Compared with amorphous SiO{sub 2}, in {alpha}-quartz, the formation yield of Si-Si bonds is an order of magnitude smaller, the 7.6 eV optical absorption band is less broadened, and their thermal annihilation is complete at a lower temperature, around the {alpha}-{beta} quartz transition. In contrast, radiation-induced interstitial oxygen atoms practically do not form interstitial oxygen molecules.

  9. Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation

    SciTech Connect

    He, Mo -Rigen; Wang, Shuai; Jin, Ke; Bei, Hongbin; Yasuda, Kazuhiro; Matsumura, Syo; Higashida, Kenji; Robertson, Ian M.

    2016-07-25

    Defect production and growth in CrFeCoNi, a single-phase concentrated solid solution alloy, is characterized using in situ electron irradiation inside a transmission electron microscope operated at 400–1250 kV and 400 °C. All observed defects are interstitial-type, either elliptical Frank loops or polygonal (mostly rhombus) perfect loops. Both forms of loops in CrFeCoNi exhibit a sublinear power law of growth that is > 40 times slower than the linear defect growth in pure Ni. Lastly, this result shows how compositional complexity impacts the production of Frenkel pairs and the agglomeration of interstitials into loops, and, thus, enhances the radiation tolerance.

  10. Peculiarities of tunneling current in w-AlN/GaN(0001) two-barrier structures induced by deep-level defects

    NASA Astrophysics Data System (ADS)

    Grinyaev, S. N.; Razzhuvalov, A. N.

    2016-10-01

    The influence of deep-level defects localized in spacer layers on the tunneling current in a w-AlN/GaN (0001) double-barrier structure is studied. It is shown that the current value essentially depends on the nature and spatial distribution of defects. New effects (screening of built-in fields, negative feedback, fixing of current peaks at high temperature) and a new mechanism of formation of resonances and tunneling current hysteresis caused by deep centers are established. The results of calculation agree with a number of experimental data on the position and temperature dependence of the current peak. It is noted that the current bistability can be caused by multicharged deep centers localized near the heteroboundaries of a double-barrier structure. Due to the defects, electric field in the barriers can reach values, at which the Poole-Frenkel effect should be taken into account.

  11. Atrioventricular Canal Defect

    MedlinePlus

    ... al. Clinical manifestations, pathophysiology, and diagnosis of atrioventricular (AV) canal defects. http://www.uptodate.com/home. Accessed ... CE, et al. Management and outcome of atrioventricular (AV) canal defects. http://www.uptodate.com/home. Accessed ...

  12. Birth Defects (For Parents)

    MedlinePlus

    ... to create energy. Examples of metabolic defects include Tay-Sachs disease , a fatal disease that affects the central nervous ... called recessive inheritance and includes conditions such as Tay-Sachs disease and cystic fibrosis . A disease or defect also ...

  13. Topological defect lasers

    NASA Astrophysics Data System (ADS)

    Knitter, Sebastian; Fatt Liew, Seng; Xiong, Wen; Guy, Mikhael I.; Solomon, Glenn S.; Cao, Hui

    2016-01-01

    We introduce a topological defect to a regular photonic crystal defect cavity with anisotropic unit cell. Spatially localized resonances are formed and have high quality factor. Unlike the regular photonic crystal defect states, the localized resonances in the topological defect structures support powerflow vortices. Experimentally we realize lasing in the topological defect cavities with optical pumping. This work shows that the spatially inhomogeneous variation of the unit cell orientation adds another degree of freedom to the control of lasing modes, enabling the manipulation of the field pattern and energy flow landscape.

  14. Congenital defects of sheep.

    PubMed

    Dennis, S M

    1993-03-01

    With increasing incrimination of viruses, plants, and drugs as causes of ovine congenital defects, concerted efforts are required to identify environmental teratogens. Expanding knowledge of congenital defects requires studying as many defective lambs as possible; recording and documenting; detailed diagnostic examinations; genetic analyses and chromosomal examinations, whenever possible; and field investigations. Adopting standardized classification, terminology, and diagnostic procedures should improve descriptions, diagnoses, and interdisciplinary exchange of information. That, in turn, should improve our knowledge of and diagnosis of congenital defects of sheep in the future. Finally, veterinary clinicians and diagnosticians are encouraged to take an interest in congenital defects and teratology.

  15. Defect production in ceramics

    SciTech Connect

    Zinkle, S.J.; Kinoshita, C.

    1997-08-01

    A review is given of several important defect production and accumulation parameters for irradiated ceramics. Materials covered in this review include alumina, magnesia, spinel silicon carbide, silicon nitride, aluminum nitride and diamond. Whereas threshold displacement energies for many ceramics are known within a reasonable level of uncertainty (with notable exceptions being AIN and Si{sub 3}N{sub 4}), relatively little information exists on the equally important parameters of surviving defect fraction (defect production efficiency) and point defect migration energies for most ceramics. Very little fundamental displacement damage information is available for nitride ceramics. The role of subthreshold irradiation on defect migration and microstructural evolution is also briefly discussed.

  16. Postdevelopment defect evaluation

    NASA Astrophysics Data System (ADS)

    Miyahara, Osamu; Kiba, Yukio; Ono, Yuko

    2001-08-01

    Reduction of defects after development is a critical issue in photolithography. A special category of post development defects is the satellite defect which is located in large exposed areas generally in proximity to large unexposed regions of photoresist. We have investigated the formation of this defect type on ESCAP and ACETAL DUV resists with and without underlying organic BARCs, In this paper, we will present AFM and elemental analysis data to determine the origin of the satellite defect. Imaging was done on a full-field Nikon 248nm stepper and resist processing was completed on a TEL CLEAN TRACK ACT 8 track. Defect inspection and review were performed on a KLA-Tencor and Hitachi SEM respectively. Results indicate that the satellite defect is generated on both BARC and resist films and defect counts are dependent on the dark erosion. Elemental analysis indicates that the defects are composed of sulfur and nitrogen compounds. We suspect that the defect is formed as a result of a reaction between PAG, quencher and TMAH. This defect type is removed after a DIW re-rinse.

  17. Atomistic simulation of defects in alkaline-earth fluorohalide crystals

    NASA Astrophysics Data System (ADS)

    Baetzold, Roger C.

    1987-12-01

    Defect properties of BaFBr, BaFCl, and SrFCl were calculated using the atomistic simulation technique. Two-body potentials were developed starting from potentials in related crystals or calculated by the electron-gas method and then fit to minimize strain in the equilibrium structure. Agreement of calculated elastic, dielectric, and cohesive properties with available experimental and theoretical data was reasonable. Generally, Frenkel energies for the larger-size halogen ion were less than for the fluorine ion and less than the Schottky energy for the metal, fluoride, and other halide ions set. A Schottky energy for vacancies of the metal ion and two of the larger-size halide ions was small. Energies of formation of Vk and H centers were computed with the aid of thermodynamic cycles. The most stable Vk center forms on the halide ion site where the Madelung potential is most favorable for holes. H centers occupy off-center sites in these low-symmetry materials. Stable geometries are discussed.

  18. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System ECG (Electrocardiogram) Anesthesia - What to Expect Tetralogy of ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System Contact Us Print Resources Send to a friend ...

  19. Ventricular Septal Defect (For Parents)

    MedlinePlus

    ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System ECG (Electrocardiogram) Anesthesia - What to Expect Tetralogy of ... Atrial Septal Defect Ventricular Septal Defect Heart and Circulatory System Contact Us Print Resources Send to a Friend ...

  20. Evidence of local defects in the oxygen excess apatite La{sub 9.67}(SiO{sub 4}){sub 6}O{sub 2.5} from high resolution neutron powder diffraction

    SciTech Connect

    Guillot, Stephanie; Beaudet-Savignat, Sophie; Lambert, Sebastien; Vannier, Rose-Noelle; Roussel, Pascal; Porcher, Florence

    2009-12-15

    From neutron diffraction data collected at 3 K on a powder of La{sub 9.67}(SiO{sub 4}){sub 6}O{sub 2.5} composition and a careful examination of the average structure, a model was proposed to explain the oxygen over-stoichiometry in the apatite structure. This model leads to realistic distances to neighbouring atoms. Moreover, it accounts perfectly for the maximum oxygen content observed in these materials. Up to 0.5 oxygen atom located at the vicinity of the 2a site (0, 0, 1/4) would be shifted to a new interstitial position in the channel at (-0.01, 0.04, 0.06), creating a Frenkel defect, with the possibility of a maximum occupancy in this site equal to twice the Frenkel defect numbers. This structural model is in good agreement with the oxygen diffusion pathways recently proposed by Bechade et al. (2009) using computer modeling techniques. It supports preferred oxygen diffusion pathways via interstitial oxygen atoms and vacant sites along [0 0 1], close to the centre of the La(2)-O channels. - Graphical abstract legend: Structural defect position and possible conduction mechanism along the c-axis (representation of two adjacent unit-cells)

  1. Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er2O3.

    PubMed

    Huang, Bolong

    2016-05-11

    We investigated the mechanism of the intrinsic persistent luminescence of Er2O3 in the A-type lattice based on first-principles calculations. We found that the native point defects were engaged in mutual subtle interactions in the form of chemical reactions between different charge states. The release of energy related to lattice distortion facilitates the conversion of energy for electrons to be transported between the valence band and the trap levels or even between the deep trap levels so as to generate persistent luminescence. The defect transitions that take place along the zero-phonon line release energy to enable optical transitions, with the exact amount of negative effective correlation energy determined by the lattice distortions. Our calculations on the thermodynamic transition levels confirm that both the visible and NIR experimentally observed intrinsic persistent luminescence (phosphor or afterglow) are related to the thermodynamic transition levels of oxygen-related defects, and the thermodynamic transition levels within different charge states for these defects are independent of the chemical potentials of the given species. Lattice distortion defects such as anion Frenkel (a-Fr) pair defects play an important role in transporting O-related defects between different lattice sites. To obtain red persistent luminescence that matches the biological therapeutic window, it is suggested to increase the electron transition levels between high-coordinated O vacancies and related metastable a-Fr defects; a close-packed core-shell structure is required to quench low-coordinated O-related defects so as to reduce the green band luminescence. We further established a conversed chain reaction (CCR) model to interpret the energy conversion process of persistent luminescence in terms of the inter-reactions of native point defects between different charge states. It is advantageous to use the study of defect levels combined with formation energies to suggest limits

  2. Diabetes mellitus and birth defects

    PubMed Central

    Correa, Adolfo; Gilboa, Suzanne M.; Besser, Lilah M.; Botto, Lorenzo D.; Moore, Cynthia A.; Hobbs, Charlotte A.; Cleves, Mario A.; Riehle-Colarusso, Tiffany J.; Waller, D. Kim; Reece, E. Albert

    2016-01-01

    OBJECTIVE The purpose of this study was to examine associations between diabetes mellitus and 39 birth defects. STUDY DESIGN This was a multicenter case-control study of mothers of infants who were born with (n = 13,030) and without (n = 4895) birth defects in the National Birth Defects Prevention Study (1997–2003). RESULTS Pregestational diabetes mellitus (PGDM) was associated significantly with noncardiac defects (isolated, 7/23 defects; multiples, 13/23 defects) and cardiac defects (isolated, 11/16 defects; multiples, 8/16 defects). Adjusted odds ratios for PGDM and all isolated and multiple defects were 3.17 (95% CI, 2.20–4.99) and 8.62 (95% CI, 5.27–14.10), respectively. Gestational diabetes mellitus (GDM) was associated with fewer noncardiac defects (isolated, 3/23 defects; multiples, 3/23 defects) and cardiac defects (isolated, 3/16 defects; multiples, 2/16 defects). Odds ratios between GDM and all isolated and multiple defects were 1.42 (95% CI, 1.17–1.73) and 1.50 (95% CI, 1.13–2.00), respectively. These associations were limited generally to offspring of women with prepregnancy body mass index ≥25 kg/m2. CONCLUSION PGDM was associated with a wide range of birth defects; GDM was associated with a limited group of birth defects. PMID:18674752

  3. Defects in Calcite.

    DTIC Science & Technology

    1991-05-13

    AD-A245 645 A TRIDENT SCHOLAR PROJECT REPORT NO. 181 "DEFECTS IN CALCITE " DTTC %N FEB 5-1912 UNITED STATES NAVAL ACADEMY ANNAPOLIS, MARYLAND 92-02841...report; no. 181 (1991) "DEFECTS IN CALCITE " A Trident Scholar Project Report by Midshipman Anthony J. Kotarski, Class of 1991 U. S. Naval Academy Annapolis...REPORT TYPE AND DATES COVERED 13 May 1991 Final 1990/91 . TITLE AND SUBTITLE s. FUNDING NUMBERS DEFECTS IN CALCITE 6. AUTHOR(S) Anthony J. Kotarski 7

  4. Congenital Heart Defects

    MedlinePlus

    ... Treatment can include medicines, catheter procedures, surgery, and heart transplants. The treatment depends on the type of the defect, how severe it is, and a child's age, size, and general health. NIH: National Heart, Lung, and Blood Institute

  5. Ventricular Septal Defect (VSD)

    MedlinePlus

    ... specially sized mesh device to close the hole. Hybrid procedure. A hybrid procedure uses surgical and catheter-based techniques. Access ... clinicalkey.com. Accessed Sept. 15, 2014. Konetti NR. Hybrid muscular ventricular defect closure: Surgeon or physician. Indian ...

  6. Birth defects monitoring

    SciTech Connect

    Klingberg, M.A.; Papier, C.M.; Hart, J.

    1983-01-01

    Population monitoring of birth defects provides a means for detecting relative changes in their frequency. Many varied systems have been developed throughout the world since the thalidomide tragedy of the early 1960s. Although it is difficult to pinpoint specific teratogenic agents based on rises in rates of a particular defect or a constellation of defects, monitoring systems can provide clues for hypothesis testing in epidemiological investigations. International coordination of efforts in this area resulted in the founding of the International Clearinghouse for Birth Defects Monitoring Systems (ICBDMS) in 1974. In this paper we will describe the functions and basic requirements of monitoring systems in general, and look at the development and activities of the ICBDMS. A review of known and suspected environmental teratogenic agents (eg, chemical, habitual, biological, physical, and nutritional) is also presented.

  7. Point defects diagrams for pure and doped copper oxide Cu{sub 2{+-}{delta}}O in the temperature range of 873-1473 K

    SciTech Connect

    Stoklosa, A.

    2012-10-15

    Point defects diagrams for the Cu{sub 2{+-}{delta}}O, both pure and doped with M{sup 2+} metal ions with all the types of defects in the cation sublattice considered are presented in this work. The calculations of the diagrams were performed by a novel method. The calculations were based on the data from the results of the studies of the deviation from stoichiometry and the electrical conductivity in the temperature range of 873-1473 K. The values of {Delta}G{sup o} of the formation of Frenkel-type defects, of copper vacancies, and of interstitial copper atoms were determined and their temperature dependence. It was shown that character of the dependence of the sum of concentrations of electronic defects ([h{sup Bullet }]+b[e Prime ]) on p{sub O{sub 2}} is fully consistent with its dependence of the electrical conductivity. Their mobility ({mu}{sub e}/{mu}{sub h}=b), vary from 1300 to 30. The dope M{sup 2+} increases the concentration of electrons and shifts the minimum of electrical conductivity toward higher oxygen pressures. - Graphical abstract: This work presents point defects diagrams for the Cu{sub 2{+-}{delta}}O, with all the types of defects in the cation sublattice considered. Highlights: Black-Right-Pointing-Pointer The point defects diagrams. Copper oxide Cu{sub 2{+-}{delta}}O, for pure and M{sup 2+} doped. Black-Right-Pointing-Pointer The values of {Delta}G{sup o} of the formation of Frenkel-type defects were determined. Black-Right-Pointing-Pointer The values of {Delta}G{sup o} of the formation QUOTE QUOTE of singly-ionized copper vacancies were determined. Black-Right-Pointing-Pointer The values of {Delta}G{sup o} of the formation of electroneutral copper vacancies were determined. Black-Right-Pointing-Pointer The values of {Delta}G{sup o} of the formation and of interstitial copper atoms were determined.

  8. Birth Defects. Matrix No. 2.

    ERIC Educational Resources Information Center

    Brent, Robert L.

    This report discusses the magnitude of the problem of birth defects, outlines advances in the birth defects field in the past decade, and identifies those areas where research is needed for the prevention, treatment, and management of birth defects. The problem of birth defects has consumed a greater portion of our health care resources because of…

  9. Structural birth defects associated with neural tube defects in Hawai'i from 1986 until 2001.

    PubMed

    Forrester, Mathias B; Merz, Ruth D

    2007-09-01

    Using birth defects registry data, this study identified birth defects associated with anencephaly, spina bifida, and encephalocele. Musculoskeletal defects were associated with anencephaly; central nervous system defects, gastrointestinal atresia/stenosis, genitourinary system defects, and musculoskeletal system defects with spina bifida; and central nervous system defects, respiratory defects, oral clefts, genitourinary system defects, and musculoskeletal system defects with encephalocele.

  10. Wire insulation defect detector

    NASA Technical Reports Server (NTRS)

    Greulich, Owen R. (Inventor)

    2004-01-01

    Wiring defects are located by detecting a reflected signal that is developed when an arc occurs through the defect to a nearby ground. The time between the generation of the signal and the return of the reflected signal provides an indication of the distance of the arc (and therefore the defect) from the signal source. To ensure arcing, a signal is repeated at gradually increasing voltages while the wire being tested and a nearby ground are immersed in a conductive medium. In order to ensure that the arcing occurs at an identifiable time, the signal whose reflection is to be detected is always made to reach the highest potential yet seen by the system.

  11. Reconstruction of Mandibular Defects

    PubMed Central

    Chim, Harvey; Salgado, Christopher J.; Mardini, Samir; Chen, Hung-Chi

    2010-01-01

    Defects requiring reconstruction in the mandible are commonly encountered and may result from resection of benign or malignant lesions, trauma, or osteoradionecrosis. Mandibular defects can be classified according to location and extent, as well as involvement of mucosa, skin, and tongue. Vascularized bone flaps, in general, provide the best functional and aesthetic outcome, with the fibula flap remaining the gold standard for mandible reconstruction. In this review, we discuss classification and approach to reconstruction of mandibular defects. We also elaborate upon four commonly used free osteocutaneous flaps, inclusive of fibula, iliac crest, scapula, and radial forearm. Finally, we discuss indications and use of osseointegrated implants as well as recent advances in mandibular reconstruction. PMID:22550439

  12. Influence of in situ applied ultrasound during Si+ implantation in SiO2 on paramagnetic defect generation

    NASA Astrophysics Data System (ADS)

    Jivanescu, M.; Romanyuk, A.; Stesmans, A.

    2010-06-01

    Electron spin resonance (ESR) results are presented on the influence of in situ ultrasound treatment (UST) during implantation at 300 K of Si+ ions into thermal SiO2 on (100)Si before and after subsequent high-temperature (T) annealing (1100 °C) intended to promote the formation of embedded Si nanoparticles. The as-implanted state exhibits high densities of three prominent types of point defects, including the SiO2-specific S and E'γ O-vacancy type centers, and an unknown broad (≈20 G) signal at g≈2.0026 denoted IS. The high-intensity S signal shows demagnetization shape effects, pointing to a distribution of high local density of defects over a thin layer. UST is observed to effectuate a drastic reduction in S and E'γ centers, and elimination of IS beyond detection. This reveals a strong healing influence of in situ transferred ultrasound (US) energy on implantation-induced damage, here quantified and identified on atomic level in terms of mainly intrinsic paramagnetic point defects elimination, viz., Frenkel pair elimination, while all three initial signals disappear. Other types of defects surface after annealing of the non-US treated sample, including the SiO2-specific EX defect signal and Pb-type Si/SiO2 interface centers, the appearance of the latter providing direct ESR evidence for crystallization of the excess Si nanoparticles. The influence of the UST healing effect is kept up after subsequent annealing, now resulting in the absence of virtually all ESR-active centers. The drop in Pb-type centers below the detection level in the UST annealed sample indicates improvement of the nanocrystalline-Si/SiO2 interface quality. The combination of UST with high-T annealing emerges as a highly efficient means to eradicate ion implantation damage in terms of intrinsic point defects.

  13. Supersymmetric k-defects

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Trodden, Mark

    2016-04-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  14. Quantum computing with defects.

    PubMed

    Weber, J R; Koehl, W F; Varley, J B; Janotti, A; Buckley, B B; Van de Walle, C G; Awschalom, D D

    2010-05-11

    Identifying and designing physical systems for use as qubits, the basic units of quantum information, are critical steps in the development of a quantum computer. Among the possibilities in the solid state, a defect in diamond known as the nitrogen-vacancy (NV(-1)) center stands out for its robustness--its quantum state can be initialized, manipulated, and measured with high fidelity at room temperature. Here we describe how to systematically identify other deep center defects with similar quantum-mechanical properties. We present a list of physical criteria that these centers and their hosts should meet and explain how these requirements can be used in conjunction with electronic structure theory to intelligently sort through candidate defect systems. To illustrate these points in detail, we compare electronic structure calculations of the NV(-1) center in diamond with those of several deep centers in 4H silicon carbide (SiC). We then discuss the proposed criteria for similar defects in other tetrahedrally coordinated semiconductors.

  15. Defects in flexoelectric solids

    NASA Astrophysics Data System (ADS)

    Mao, Sheng; Purohit, Prashant K.

    2015-11-01

    A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since strain gradients are large near defects, we expect the flexoelectric effect to be prominent there and decay away at distances much larger than a flexoelectric length scale. Here, we quantify this expectation by computing displacement, stress and polarization fields near defects in flexoelectric solids. For point defects we recover some well known results from strain gradient elasticity and non-local piezoelectric theories, but with different length scales in the final expressions. For edge dislocations we show that the electric potential is a maximum in the vicinity of the dislocation core. We also estimate the polarized line charge density of an edge dislocation in an isotropic flexoelectric solid which is in agreement with some measurements in ice. We perform an asymptotic analysis of the crack tip fields in flexoelectric solids and show that our results share some features from solutions in strain gradient elasticity and piezoelectricity. We also compute the energy release rate for cracks using simple crack face boundary conditions and use them in classical criteria for crack growth to make predictions. Our analysis can serve as a starting point for more sophisticated analytic and computational treatments of defects in flexoelectric solids which are gaining increasing prominence in the field of nanoscience and nanotechnology.

  16. First-principles study on oxidation effects in uranium oxides and high-pressure high-temperature behavior of point defects in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Geng, Hua Y.; Song, Hong X.; Jin, K.; Xiang, S. K.; Wu, Q.

    2011-11-01

    Formation Gibbs free energy of point defects and oxygen clusters in uranium dioxide at high-pressure high-temperature conditions are calculated from first principles, using the LSDA+U approach for the electronic structure and the Debye model for the lattice vibrations. The phonon contribution on Frenkel pairs is found to be notable, whereas it is negligible for the Schottky defect. Hydrostatic compression changes the formation energies drastically, making defect concentrations depend more sensitively on pressure. Calculations show that, if no oxygen clusters are considered, uranium vacancy becomes predominant in overstoichiometric UO2 with the aid of the contribution from lattice vibrations, while compression favors oxygen defects and suppresses uranium vacancy greatly. At ambient pressure, however, the experimental observation of predominant oxygen defects in this regime can be reproduced only in a form of cuboctahedral clusters, underlining the importance of defect clustering in UO2+x. Making use of the point defect model, an equation of state for nonstoichiometric oxides is established, which is then applied to describe the shock Hugoniot of UO2+x. Furthermore, the oxidization and compression behavior of uranium monoxide, triuranium octoxide, uranium trioxide, and a series of defective UO2 at 0 K are investigated. The evolution of mechanical properties and electronic structures with an increase of the oxidation degree are analyzed, revealing the transition of the ground state of uranium oxides from metallic to Mott insulator and then to charge-transfer insulator due to the interplay of strongly correlated effects of 5f orbitals and the shift of electrons from uranium to oxygen atoms.

  17. Defect-dependent carrier transport behavior of polymer:ZnO composites/electrodeposited CdS/indium tin oxide devices

    SciTech Connect

    Lin, Yow-Jon You, C. F.

    2015-07-28

    Currents through the poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) and ZnO nanoparticles (PEDOT:PSS:ZnO)/CdS/indium tin oxide (ITO) hetero-structures are studied. The authors introduced the electrodeposition technique with sulfide treatment to improve the film quality of CdS. It is shown that sulfide treatment leads to a reduction in the number of donor-like defects (that is, sulfur vacancies and cadmium interstitials) in the CdS films, which leads to the conversion of carrier transport behavior from Poole-Frenkel emission to thermionic emission-diffusion for PEDOT:PSS:ZnO/CdS/ITO devices. A correlation is identified for providing a guide to control the current transport behavior of PEDOT:PSS:ZnO/CdS/ITO devices.

  18. Atrial Septal Defect (For Parents)

    MedlinePlus

    ... Defect Preparing Your Child for Surgery Heart and Circulatory System Anesthesia Basics Congenital Heart Defects Activity: The Heart ... EKG (Video) Going to the Hospital Your Heart & Circulatory System Quiz: Heart & Circulatory System EKG (Video) What's It ...

  19. Atrial Septal Defect (For Kids)

    MedlinePlus

    ... Dictionary of Medical Words En Español What Other Kids Are Reading Taking Care of Your Ears Taking ... an X-ray Atrial Septal Defect KidsHealth > For Kids > Atrial Septal Defect Print A A A What's ...

  20. Congenital heart defect - corrective surgery

    MedlinePlus

    ... repair; Tetralogy of Fallot repair; Coarctation of the aorta repair; Atrial septal defect repair; Ventricular septal defect ... the pulmonary valve and removing the thickened muscle (stenosis). Placing a patch on the right ventricle and ...

  1. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.

  2. Controversies in Parotid Defect Reconstruction.

    PubMed

    Tamplen, Matthew; Knott, P Daniel; Fritz, Michael A; Seth, Rahul

    2016-08-01

    Reconstruction of the parotid defect is a complex topic that encompasses restoration of both facial form and function. The reconstructive surgeon must consider facial contour, avoidance of Frey syndrome, skin coverage, tumor surveillance, potential adjuvant therapy, and facial reanimation when addressing parotid defects. With each defect there are several options within the reconstructive ladder, creating controversies regarding optimal management. This article describes surgical approaches to reconstruction of parotid defects, highlighting areas of controversy.

  3. Molecular defects in the chondrodysplasias

    SciTech Connect

    Rimoin, D.L.

    1996-05-03

    There has been a recent explosion of knowledge concerning the biochemical and molecular defects in the skeletal dysplasia. Through both the candidate gene approach and positional cloning, specific gene defects that produce the skeletal dysplasia have been identified and may be classified into several general categories: (1) qualitative or quantitative abnormalities in the structural proteins of cartilage; (2) inborn errors of cartilage metabolism; (3) defects in local regulators of cartilage growth; and (4) systemic defects influencing cartilage development. 35 refs., 1 tab.

  4. Composite Defect Significance.

    DTIC Science & Technology

    1982-07-13

    A12i 299 COMPOSITE DEFECT SIGNIFICANCE(U) MATERIALS SCIENCES 1/1 \\ CORP SPRING HOUSE PA S N CHATTERJEE ET AL. 13 JUL 82 MSC/TFR/1288/il87 NADC-80848...Directorate 30 Sensors & Avionics Technology Directorate 40 Communication & Navigation Technology Directorate 50 Software Computer Directorate 60 Aircraft ...instructions concerning commercial products herein do not constitute an endorsement by the Government nor do they convey or imply the license or right to use

  5. Defect mapping system

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities.

  6. Defect mapping system

    DOEpatents

    Sopori, B.L.

    1995-04-11

    Apparatus for detecting and mapping defects in the surfaces of polycrystalline materials in a manner that distinguishes dislocation pits from grain boundaries includes a laser for illuminating a wide spot on the surface of the material, a light integrating sphere with apertures for capturing light scattered by etched dislocation pits in an intermediate range away from specular reflection while allowing light scattered by etched grain boundaries in a near range from specular reflection to pass through, and optical detection devices for detecting and measuring intensities of the respective intermediate scattered light and near specular scattered light. A center blocking aperture or filter can be used to screen out specular reflected light, which would be reflected by nondefect portions of the polycrystalline material surface. An X-Y translation stage for mounting the polycrystalline material and signal processing and computer equipment accommodate rastor mapping, recording, and displaying of respective dislocation and grain boundary defect densities. A special etch procedure is included, which prepares the polycrystalline material surface to produce distinguishable intermediate and near specular light scattering in patterns that have statistical relevance to the dislocation and grain boundary defect densities. 20 figures.

  7. Study of lattice defect vibration

    NASA Technical Reports Server (NTRS)

    Elliott, R. J.

    1969-01-01

    Report on the vibrations of defects in crystals relates how defects, well localized in a crystal but interacting strongly with the other atoms, change the properties of a perfect crystal. The methods used to solve defect problems relate the properties of an imperfect lattice to the properties of a perfect lattice.

  8. Thermal properties of defective fullerene

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zheng, Dong-Qin; Zhong, Wei-Rong

    2016-09-01

    We have investigated the thermal conductivity of defective fullerene (C60) by using the nonequilibrium molecular dynamics (MD) method. It is found that the thermal conductivity of C60 with one defect is lower than the thermal conductivity of perfect C60. However, double defects in C60 have either positive or negative influence on the thermal conductivity, which depends on the positions of the defects. The phonon spectra of perfect and defective C60 are also provided to give corresponding supports. Our results can be extended to long C60 chains, which is helpful for the thermal management of C60.

  9. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH 3 NH 3 PbI 3

    DOE PAGES

    Ming, Wenmei; Chen, Shiyou; East China Normal Univ.; ...

    2016-10-13

    Methylammonium (MA) lead triiodide (MAPbI3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI3 (with respect to MAI and PbI2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI3. Furthermore, the calculated activation energy for ionic conductivity due to Vmore » $$+\\atop{1}$$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$$+\\atop{1}$$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$$+\\atop{1}$$ -I$$-\\atop{i}$$ and low diffusion barriers of V$$+\\atop{1}$$ and Image I$$-\\atop{i}$$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.« less

  10. Impact of defect occupation on conduction in amorphous Ge2Sb2Te5

    PubMed Central

    Kaes, Matthias; Salinga, Martin

    2016-01-01

    Storage concepts employing the resistance of phase-change memory (PRAM) have matured in recent years. Attempts to model the conduction in the amorphous state of phase-change materials dominating the resistance of PRAM devices commonly invoke a connection to the electronic density-of-states (DoS) of the active material in form of a “distance between trap states s”. Here, we point out that s depends on the occupation of defects and hence on temperature. To verify this, we numerically study how the occupation in the DoS of Ge2Sb2Te5 is affected by changes of temperature and illumination. Employing a charge-transport model based on the Poole-Frenkel effect, we correlate these changes to the field- and temperature-dependent current-voltage characteristics of lateral devices of amorphous Ge2Sb2Te5, measured in darkness and under illumination. In agreement with our calculations, we find a pronounced temperature-dependence of s. As the device-current depends exponentially on the value of s, accounting for its temperature-dependence has profound impact on device modeling. PMID:27526783

  11. [Congenital defects and incapacity].

    PubMed

    Jouve de la Barreda, Nicolás

    2009-01-01

    As a whole the congenital defects constitute an important section of the medical attention affecting near 3% of the population. A 15% of spontaneous abortions take place of which the greater frequency corresponds to the chromosome anomalies (25%) and the monogenic mutations (20%) and in a lesser extent to the effects of teratogenic agents. Between the genetic causes determining the congenital defects the mutations that affect genes acting in the early stages of development occupy a main place. These alterations can affect to homeotic genes or monogenic systems that act during the critical phases of the organogenesis. It seems evident that an alteration in the expression of a necessary gene for the appearance of a morphogenetic change constitutes the angular stone to understand resurging of a malformation or discapacity. In the last years has been demonstrated the importance of the teratogenic or environmental agents on the delicate internal physiological balance during the critical stages of the development. In this context must be included the inductive environmental factors inducing epigenetic modifications in the early stage of the development of the embryos produced by fertilization in vitro.

  12. Insights into stability, electronic properties, defect properties and Li ions migration of Na, Mg and Al-doped LiVPO4F for cathode materials of lithium ion batteries: A first-principles investigation

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Xu, Zhenming; Li, Jie; Chen, Jiangan; Liu, Qingsheng

    2016-07-01

    The effects of Na, Mg and Al doping on the structure, electronic property, defect property and Li ions migration of LiVPO4F were investigated by the first-principles method. Calculations show that the processes of forming Li0.875Na0.125VPO4F, α- and β-LiMg0.375V0.75PO4F, α- and β-LiAl0.125V0.875PO4F are all feasible. Na, Mg and Al doping significantly improve the electrical conductivity of LiVPO4F and simultaneously maintain their structural stability attributing to the reduction of band gaps through variations of V-3d spin up orbitals. Li vacancy defects of LiVPO4F are not ignorable, and vacancy defects with a lower activation energy for Li atom are far more likely to occur than Frenkel defects for Li and vacancy defects for other atoms. For pristine LiVPO4F, path D along [0.012 0 . 17 ̅ 0.572] direction is found to have the lowest activation energy of 0.418 eV, suggesting that anisotropic nature of Li ion conduction and LiVPO4F is a one-dimensional (1D)-ion conductor. The corresponding diffusion coefficient was estimated to be 2.82×10-9 cm2/s, which is in good agreement with those experimental values.

  13. Topological defects in extended inflation

    NASA Technical Reports Server (NTRS)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.

    1990-01-01

    The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.

  14. Who named the quantum defect?

    SciTech Connect

    Rau, A.R.P.; Inokuti, M.

    1997-08-01

    The notion of the quantum defect is important in atomic and molecular spectroscopy and also in unifying spectroscopy with collision theory. In the latter context, the quantum defect may be viewed as an ancestor of the phase shift. However, the origin of the term quantum defect does not seem to be explained in standard textbooks. It occurred in a 1921 paper by Schroedinger, preceding quantum mechanics, yet giving the correct meaning as an index of the short-range interactions with the core of an atom. The authors present the early history of the quantum-defect idea, and sketch its recent developments.

  15. Thermo-enhanced field emission from ZnO nanowires: Role of defects and application in a diode flat panel X-ray source

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Chen, Daokun; Chen, Wenqing; Chen, Yicong; Song, Xiaomeng; Zhan, Runze; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2017-03-01

    A thermo-enhanced field emission phenomenon was observed from ZnO nanowires. The field emission current increased by almost two orders of magnitude under a constant applied electric field, and the turn-on field decreased from 6.04 MV/m to 5.0 MV/m when the temperature increased from 323 to 723 K. The Poole-Frenkel electron excitation from the defect-induced trapping centers to the conduction band under high electric fields is believed to be the primary cause of the observed phenomenon. The experimental results fit well with the proposed physical model. The field emission from ZnO nanowires with different defect concentrations further confirmed the role of defects. Using the thermo-enhanced field emission phenomenon, a diode flat panel X-ray source was demonstrated, for which the energy and dose can be separately tuned. The thermo-enhanced field emission phenomenon observed from ZnO nanowires could be an effective way to realize a large area flat panel multi-energy X-ray source.

  16. Facts about Ventricular Septal Defect

    MedlinePlus

    ... Living With Heart Defects Data & Statistics Tracking & Research Articles & Key Findings Free Materials Multimedia and Tools Links to Other Websites Information For... Media Policy Makers Facts about Ventricular Septal Defect Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ...

  17. Congenital Heart Defects (For Parents)

    MedlinePlus

    ... of the heart or its surrounding structures, include: Aortic Stenosis In aortic stenosis, the aortic valve is stiffened and has a narrowed opening. ... actually a combination of four heart defects: pulmonary stenosis; a thickened ... septal defect); and an aorta that can receive blood from both the left ...

  18. Holographic Chern-Simons defects

    DOE PAGES

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; ...

    2016-06-28

    Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of themore » defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.« less

  19. Global topological k-defects

    SciTech Connect

    Babichev, E.

    2006-10-15

    We consider global topological defects in symmetry-breaking models with a noncanonical kinetic term. Apart from a mass parameter entering the potential, one additional dimensional parameter arises in such models - a kinetic mass. The properties of defects in these models are quite different from standard global domain walls, vortices, and monopoles, if their kinetic mass scale is smaller than their symmetry-breaking scale. In particular, depending on the concrete form of the kinetic term, the typical size of such a defect can be either much larger or much smaller than the size of a standard defect with the same potential term. The characteristic mass of a nonstandard defect, which might have been formed during a phase transition in the early universe, depends on both the temperature of a phase transition and the kinetic mass.

  20. Holographic Chern-Simons defects

    NASA Astrophysics Data System (ADS)

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-01

    We study SU( N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  1. Holographic Chern-Simons defects

    SciTech Connect

    Fujita, Mitsutoshi; Melby-Thompson, Charles M.; Meyer, René; Sugimoto, Shigeki

    2016-06-28

    Here, we study SU(N ) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity dual is given by the AdS soliton background with probe D7 branes attaching to the AdS boundary along the defects. We holographically renormalize the free energy of the defect system with sources, from which we obtain the correlation functions for certain operators naturally associated to these defects. We find interesting phase transitions when the separation of the defects as well as the temperature are varied. We also discuss some implications for the Fractional Quantum Hall Effect and for 2-dimensional QCD.

  2. Toward Intelligent Software Defect Detection

    NASA Technical Reports Server (NTRS)

    Benson, Markland J.

    2011-01-01

    Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.

  3. Antisite defects at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Chen, Hanghui; Millis, Andrew

    We use ab initio calculations to estimate formation energies of cation (transition metal) antisite defects at oxide interfaces and to understand the basic physical effects that drive or suppress the formation of these defects. We find that antisite defects are favored in systems with substantial charge transfer across the interface, while Jahn-Teller distortions and itinerant ferromagnetism can prevent antisite defects and help stabilize atomically sharp interfaces. Our results enable identification of classes of systems that are more and less susceptible to the formation of antisite defects and motivate a range of experimental studies and further theoretical calculations to further explicate the oxide interface systems. This research was supported by National Science Foundation under Grant No. DMR-1120296 (H. Chen) and DOE-ER-046169 (A. J. Millis).

  4. Holographic Experiments on Defects

    NASA Astrophysics Data System (ADS)

    Wapler, Matthias C.

    Using the AdS/CFT correspondence, we study the anisotropic charge transport properties of both supersymmetric and nonsupersymmetric matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional { N} = 4 SYM "heat bath." We focus on the cases of a finite external background magnetic field, finite net charge density and finite mass and their combinations. In this context, we also discuss the limitations due to operator mixing that appears in a few situations and that we ignore in our analysis. At high frequencies, we discover a spectrum of quasiparticle resonances due to the magnetic field and finite density and at small frequencies, we perform a Drude-like expansion around the DC limit. Both of these regimes display many generic features and some features that we attribute to strong coupling, such as a minimum DC conductivity and an unusual behavior of the "cyclotron" and plasmon frequencies, which become related to the resonances found in the conformal case in an earlier paper. We further study the hydrodynamic regime and the relaxation properties, from which the system displays a set of different possible transitions to the collisionless regime. The mass dependence can be cast in two regimes: a generic relativistic behavior dominated by the UV and a nonlinear hydrodynamic behavior dominated by the IR. In the massless case, we furthermore extend earlier results from the literature to find an interesting selfduality under a transformation of the conductivity and the exchange of density and magnetic field.

  5. First principles studies on the impact of point defects on the phase stability of (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solutions

    SciTech Connect

    Koller, C. M.; Koutná, N.; Ramm, J.; Kolozsvári, S.; Paulitsch, J.; Mayrhofer, P. H.; Holec, D.

    2016-02-15

    Density Functional Theory applying the generalised gradient approximation is used to study the phase stability of (Al{sub x}Cr{sub 1−x}){sub 2}O{sub 3} solid solutions in the context of physical vapour deposition (PVD). Our results show that the energy of formation for the hexagonal α phase is lower than for the metastable cubic γ and B1-like phases–independent of the Al content x. Even though this suggests higher stability of the α phase, its synthesis by physical vapour deposition is difficult for temperatures below 800 °C. Aluminium oxide and Al-rich oxides typically exhibit a multi-phased, cubic-dominated structure. Using a model system of (Al{sub 0.69}Cr{sub 0.31}){sub 2}O{sub 3} which experimentally yields larger fractions of the desired hexagonal α phase, we show that point defects strongly influence the energetic relationships. Since defects and in particular point defects, are unavoidably present in PVD coatings, they are important factors and can strongly influence the stability regions. We explicitly show that defects with low formation energies (e.g. metal Frenkel pairs) are strongly preferred in the cubic phases, hence a reasonable factor contributing to the observed thermodynamically anomalous phase composition.

  6. Biomaterials in periodontal osseous defects

    PubMed Central

    Lal, Nand; Dixit, Jaya

    2012-01-01

    Introduction Osseous defects in periodontal diseases require osseous grafts and guided tissue regeneration (GTR) using barrier membranes. The present study was undertaken with the objectives to clinically evaluate the osteogenic potential of hydroxyapatite (HA), cissus quadrangularis (CQ), and oxidized cellulose membrane (OCM) and compare with normal bone healing. Materials and Methods Twenty subjects with periodontitis in the age group ranging from 20 years to 40 years were selected from our outpatient department on the basis of presence of deep periodontal pockets, clinical probing depth ≥5 mm, vertical osseous defects obvious on radiograph and two- or three-walled involvement seen on surgical exposure. Infrabony defects were randomly divided into four groups on the basis of treatment to be executed, such that each group comprised 5 defects. Group I was control, II received HA, III received CQ and IV received OCM. Probing depth and attachment level were measured at regular months after surgery. Defects were re-exposed using crevicular incisions at 6 months. Results There was gradual reduction in the mean probing pocket depth in all groups, but highly significant in the site treated with HA. Gain in attachment level was higher in sites treated with HA, 3.2 mm at 6 months. Conclusion Hydroxyapatite and OCM showed good reduction in pocket depth, attachment level gain and osseous defect fill. Further study should be conducted by using a combination of HA and OCM in periodontal osseous defects with growth factors and stem cells. PMID:25756030

  7. Microtubule defects & Neurodegeneration.

    PubMed

    Baird, Fiona J; Bennett, Craig L

    2013-12-06

    One of the major challenges facing the long term survival of neurons is their requirement to maintain efficient axonal transport over long distances. In humans as large, long-lived vertebrates, the machinery maintaining neuronal transport must remain efficient despite the slow accumulation of cell damage during aging. Mutations in genes encoding proteins which function in the transport system feature prominently in neurologic disorders. Genes known to cause such disorders and showing traditional Mendelian inheritance have been more readily identified. It has been more difficult, however, to isolate factors underlying the complex genetics contributing to the more common idiopathic forms of neurodegenerative disease. At the heart of neuronal transport is the rail network or scaffolding provided by neuron specific microtubules (MTs). The importance of MT dynamics and stability is underscored by the critical role tau protein plays in MT-associated stabilization versus the dysfunction seen in Alzheimer's disease, frontotemporal dementia and other tauopathies. Another example of the requirement for tight regulation of MT dynamics is the need to maintain balanced levels of post-translational modification of key MT building-blocks such as α-tubulin. Tubulins require extensive polyglutamylation at their carboxyl-terminus as part of a novel post-translational modification mechanism to signal MT growth versus destabilization. Dramatically, knock-out of a gene encoding a deglutamylation family member causes an extremely rapid cell death of Purkinje cells in the ataxic mouse model, pcd. This review will examine a range of neurodegenerative conditions where current molecular understanding points to defects in the stability of MTs and axonal transport to emphasize the central role of MTs in neuron survival.

  8. Care and Treatment for Congenital Heart Defects

    MedlinePlus

    ... Physical Activity Recommendations for Heart Health • Tools & Resources Web Booklets on Congenital Heart Defects These online publications ... to you or your child’s defect and concerns. Web Booklet: Adults With Congenital Heart Defects Web Booklet: ...

  9. Reproduction and Survival After Cardiac Defect Repair

    ClinicalTrials.gov

    2016-02-17

    Cardiovascular Diseases; Heart Diseases; Defect, Congenital Heart; Aortic Valve Stenosis; Transposition of Great Vessels; Ductus Arteriosus, Patent; Heart Septal Defects, Atrial; Heart Septal Defects, Ventricular; Down Syndrome; Tetralogy of Fallot; Pulmonic Stenosis; Coarctation of Aorta

  10. Low quantum defect laser performance

    NASA Astrophysics Data System (ADS)

    Bowman, Steven R.

    2017-01-01

    Low quantum defect lasers are possible using near-resonant optical pumping. This paper examines the laser material performance as the quantum defect of the laser is reduced. A steady-state model is developed, which incorporates the relevant physical processes in these materials and predicts extraction efficiency and waste heat generation. As the laser quantum defect is reduced below a few percent, the impact of fluorescence cooling must be included in the analysis. The special case of a net zero quantum defect laser is examined in detail. This condition, referred to as the radiation balance laser (RBL), is shown to provide two orders of magnitude lower heat generation at the cost of roughly 10% loss in extraction efficiency. Numerical examples are presented with the host materials Yb:YAG and Yb:Silica. The general conditions, which yield optimal laser efficiency, are derived and explored.

  11. Congenital Heart Defects (For Parents)

    MedlinePlus

    ... heart, lungs, and blood vessels make up the circulatory system . The heart is the central pump of this ... Heart Defects Getting an EKG (Video) Your Heart & Circulatory System Heart Murmurs Mitral Valve Prolapse Movie: Heart & Circulatory ...

  12. Sequential detection of web defects

    DOEpatents

    Eichel, Paul H.; Sleefe, Gerard E.; Stalker, K. Terry; Yee, Amy A.

    2001-01-01

    A system for detecting defects on a moving web having a sequential series of identical frames uses an imaging device to form a real-time camera image of a frame and a comparitor to comparing elements of the camera image with corresponding elements of an image of an exemplar frame. The comparitor provides an acceptable indication if the pair of elements are determined to be statistically identical; and a defective indication if the pair of elements are determined to be statistically not identical. If the pair of elements is neither acceptable nor defective, the comparitor recursively compares the element of said exemplar frame with corresponding elements of other frames on said web until one of the acceptable or defective indications occur.

  13. Atrial Septal Defect (For Teens)

    MedlinePlus

    ... septal defect (pronounced: AY-tree-ul SEP-tul DEE-fekt), or ASD for short, is sometimes referred ... can be treated with cardiac catheterization (pronounced: CAR-dee-ack cath-uh-turr-ih-ZAY-shun), in ...

  14. Atrial Septal Defect (For Kids)

    MedlinePlus

    ... wall called the septum that normally separates the blue and red blood. In a person with an atrial septal defect, there's an opening in that wall. This hole in the wall lets oxygen-rich blood from ...

  15. Stable line defects in silicene

    NASA Astrophysics Data System (ADS)

    Ghosh, Dibyajyoti; Parida, Prakash; Pati, Swapan K.

    2015-11-01

    Line defects in two-dimensional (2D) materials greatly modulate various properties of their pristine form. Using ab initio molecular dynamics (AIMD) simulations, we investigate the structural reconstructions of different kinds of grain boundaries in the silicene sheets. It is evident that depending upon the presence of silicon adatoms and edge shape of grain boundaries (i.e., armchair or zigzag), stable extended line defects (ELDs) can be introduced in a controlled way. Further studies show the stability of these line-defects in silicene, grown on Ag(111) surface at room-temperature. Importantly, unlike most of the 2D sheet materials such as graphene and hexagonal boron nitride, 5-5-8 line defects modify the nonmagnetic semimetallic pristine silicene sheet to spin-polarized metal. As ferromagnetically ordered magnetic moments remain strongly localized at the line defect, a one-dimensional spin channel gets created in silicene. Interestingly, these spin channels are quite stable because, unlike the edge of nanoribbons, structural reconstruction or contamination cannot destroy the ordering of magnetic moments here. Zigzag silicene nanoribbons with a 5-5-8 line defect also exhibit various interesting electronic and magnetic properties depending upon their width as well as the nature of the magnetic coupling between edge and defect spin states. Upon incorporation of other ELDs, such as 4-4-4 and 4-8 defects, 2D sheets and nanoribbons of silicene show a nonmagnetic metallic or semiconducting ground state. Highlighting the controlled formation of ELDs and consequent emergence of technologically important properties in silicene, we propose new routes to realize silicene-based nanoelectronic and spintronic devices.

  16. Intrauterine infections and birth defects.

    PubMed

    Zheng, Xiao-Ying; Zhang, Ting; Wang, Yi-Fei; Xu, Chen; Chen, Gong; Xin, Ruo-Lei; Chen, Jia-Peng; Hu, Xu-Mei; Yang, Qing; Song, Xin-Ming; Pang, Li-Hua; Ji, Ying; Sun, Hong-Mei; Zhang, Lei; Liu, Ju-Fen; Guo, Yan-Ling; Zhang, Yan

    2004-12-01

    Intrauterine infection is an important cause of some birth defects worldwide. The most common pathogens include rubella virus, cytomegaloviurs, ureaplasma urealyticum, toxoplasma, etc. General information about these pathogens in epidemiology, consequence of birth defects, and the possible mechanisms in the progress of birth defects, and the interventions to prevent or treat these pathogens' infections are described. The infections caused by rubella virus, cytomegaloviurs, ureaplasma urealyticum, toxoplasma, etc. are common, yet they are proved to be fatal during the pregnant period, especially during the first trimester. These infections may cause sterility, abortion, stillbirth, low birth weight, and affect multiple organs that may induce loss of hearing and vision, even fetal deformity and the long-term effects. These pathogens' infections may influence the microenvironment of placenta, including levels of enzymes and cytokines, and affect chondriosome that may induce the progress of birth defect. Early diagnosis of infections during pregnancy should be strengthened. There are still many things to be settled, such as the molecular mechanisms of birth defects, the effective vaccines to certain pathogens. Birth defect researches in terms of etiology and the development of applicable and sensitive pathogen detection technology and methods are imperative.

  17. Topological defects from the multiverse

    SciTech Connect

    Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander

    2015-05-28

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  18. Topological defects from the multiverse

    SciTech Connect

    Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.

    2015-05-01

    Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.

  19. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH 3 NH 3 PbI 3

    SciTech Connect

    Ming, Wenmei; Chen, Shiyou; Du, Mao-Hua

    2016-10-13

    Methylammonium (MA) lead triiodide (MAPbI3) has recently emerged as a promising solar cell material. But, MAPbI3 is known to have chemical instability, i.e., MAPbI3 is prone to decomposition into MAI and PbI2 even at moderate temperatures (e.g. 330 K). Here, we show that the chemical instability, as reflected by the calculated negligible enthalpy of formation of MAPbI3 (with respect to MAI and PbI2), has an unusual and important consequence for defect properties, i.e., defect formation energies in low-carrier-density MAPbI3 are nearly independent of the chemical potentials of constituent elements and thus can be uniquely determined. This allows straightforward calculations of defect concentrations and the activation energy of ionic conductivity (the sum of the formation energy and the diffusion barrier of the charged mobile defect) in MAPbI3. Furthermore, the calculated activation energy for ionic conductivity due to V$+\\atop{1}$ diffusion is in excellent agreement with the experimental values, which demonstrates unambiguously that V$+\\atop{1}$ is the dominant diffusing defect and is responsible for the observed ion migration and device polarization in MAPbI3 solar cells. The calculated low formation energy of a Frenkel pair (V$+\\atop{1}$ -I$-\\atop{i}$ and low diffusion barriers of V$+\\atop{1}$ and Image I$-\\atop{i}$ suggest that the iodine ion migration and the resulting device polarization may occur even in single-crystal devices and grain-boundary-passivated polycrystalline thin film devices (which were previously suggested to be free from ion-migration-induced device polarization), leading to device degradation. Moreover, the device polarization due to the Frenkel pair (which has a relatively low concentration) may take a long time to develop and thus may avoid the appearance of the current–voltage hysteresis at typical scan rates.

  20. Defects formation and wave emitting from defects in excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni

    2016-05-01

    Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.

  1. Effective actions for bosonic topological defects

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1990-01-01

    A gauge field theory is considered which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way an effective action and effective equation of motion is derived for the defect in terms of the coordinates of the p-dimensional worldsurface defined by the history of the core of the defect.

  2. Photo-induced Defects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Redfield, David; Bube, Richard H.

    2006-03-01

    1. Introduction: metastable defects; 2. III-V compounds: DX2 and EL2 centers; 3. Other crystalline materials; 4. Hydrogenated amorphous silicon: properties of defects; 5. Hydrogenated amorphous silicon: photo-induced defect kinetics and processes; 6. Other amorphous semiconductors; 7. Photo-induced defect effects in devices; References; Index.

  3. Congenital heart defects and medical imaging.

    PubMed

    Gehin, Connie; Ragsdale, Lisa

    2013-01-01

    Radiologic technologists perform imaging studies that are useful in the diagnosis of congenital heart defects in infants and adults. These studies also help to monitor congenital heart defect repairs in adults. This article describes the development and functional anatomy of the heart, along with the epidemiology and anatomy of congenital heart defects. It also discusses the increasing population of adults who have congenital heart defects and the most effective modalities for diagnosing, evaluating, and monitoring congenital heart defects.

  4. Environmental causes of enamel defects.

    PubMed

    Brook, A H; Fearne, J M; Smith, J M

    1997-01-01

    A large number of causes of enamel defects, both environmental and genetic, have been described. However, many of these are derived from case histories and studies of individual conditions. What is needed now is a systematic investigation of the problem. The first requirement in exploring the aetiology further is the standardization of both the clinical diagnosis and the descriptive terminology. This has been provided by the Fédération Dentaire Internationale Developmental Defects of Enamel Index. Comparing studies using standardized methods, including this index, has highlighted areas for closer investigation. The total prevalence of enamel defects in a population needs to be established as a baseline for studies on aetiology. Sixty-eight per cent of 1518 school children in London have enamel defects in the permanent dentition, with 10.5% having 10 or more teeth affected and 14.6% having hypoplasia, i.e. missing enamel. These findings are in contrast to the 37% with hypoplasia found in a group of third to fifth century Romano-Britons from Dorset, England, suggesting further consideration of possible environmental and genetic differences between the two populations. An overall long-term study of dental development in low birth weight children has shown significantly more (P < 0.001) enamel defects related to major health problems during the neonatal period. By using standardized, reproducible criteria in prevalence studies to gain an overview of the problem and then studying specific groups or conditions, it is possible to identify general and specific factors in the aetiology of enamel defects and investigate further the varying role of genetic and environmental effects.

  5. Interface effects on calculated defect levels for oxide defects

    NASA Astrophysics Data System (ADS)

    Edwards, Arthur; Barnaby, Hugh; Schultz, Peter; Pineda, Andrew

    2014-03-01

    Density functional theory (DFT) has had impressive recent success predicting defect levels in insulators and semiconductors [Schultz and von Lillienfeld, 2009]. Such success requires care in accounting for long-range electrostatic effects. Recently, Komsa and Pasquarello have started to address this problem in systems with interfaces. We report a multiscale technique for calculating electrostatic energies for charged defects in oxide of the metal-oxide-silicon (MOS) system, but where account is taken of substrate doping density, oxide thickness, and gate bias. We use device modeling to calculate electric fields for a point charge a fixed distance from the interface, and used the field to numerically calculate the long-range electrostatic interactions. We find, for example, that defect levels in the oxide do depend on both the magnitude and the polarity the substrate doping density. Furthermore, below 20 Å, oxide thickness also has significant effects. So, transferring results directly from bulk calculations leads to inaccuracies up to 0.5 eV- half of the silicon band gap. We will present trends in defect levels as a function of device parameters. We show that these results explain previous experimental results, and we comment on their potential impact on models for NBTI. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under co.

  6. Defect chemistry of La{sub 2}Ni{sub 1{minus}x}M{sub x}O{sub 4} (M = Mn, Fe, Co, Cu): Relevance to catalytic behavior

    SciTech Connect

    Read, M.S.D.; Islam, M.S.; King, F.; Hancock, F.E.

    1999-03-04

    Atomistic computer simulation techniques are used to investigate the defect properties of the La{sub 2}Ni{sub 1{minus}x}M{sub x}O{sub 4} (M = Mn, Fe, Co, Cu) layered perovskite which are related to the mode of operation of the catalyst. The theoretical techniques are based upon efficient energy minimization procedures and Mott-Littleton methodology for accurate defect modeling. Effective ionic pairwise interatomic potentials correctly reproduce the tetragonal crystal structure. The formation energy of intrinsic atomic defects of the Schottky and Frenkel type are not particularly favorable. The oxidation of La{sub 2}NiO{sub 4+{delta}} was found to be an exothermic process with charge compensation occurring via hole formation preferentially on the Ni site. The highest solubility, for a range of dopants, is calculated for Sr and Ca, in accord with observation. Hole formation was most favorable for Mn > Fe > Co > Ni(undoped) > Cu, demonstrating that Mn and Fe enhance Ni(III) hole formation, which is believed to be an important factor in the observed catalytic activity.

  7. Defects in metals. [Positron annihilation spectroscopy

    SciTech Connect

    Siegel, R.W.

    1982-06-01

    The application of positron annihilation spectroscopy (PAS) to the study of defects in metals has led to increased knowledge on lattice-defect properties during the past decade in two areas: the determination of atomic defect properties, particularly those of monovacancies, and the monitoring and characterization of vacancy-like microstructure development during post-irradiation and post-quench annealing. The study of defects in metals by PAS is reviewed within the context of the other available techniques for defect studies. The strengths and weaknesses of PAS as a method for the characterization of defect microstructures are considered. The additional possibilities for using the positron as a localized probe of the atomic and electronic structures of atomic defects are discussed, based upon theoretical calculations of the annihilation characteristics of defect-trapped positrons and experimental observations. Finally, the present status and future potential of PAS as a tool for the study of defects in metals is considered. 71 references, 9 figures.

  8. Birth Defects Research and Tracking

    MedlinePlus

    ... support families affected by them. Read about the work taking place in each state » National Birth Defects Prevention Network (NBDPN) CDC supports and collaborates with the NBDPN. The NBDPN is a group of over 225 individuals working at the national, state, and local levels, who ...

  9. Genetic defects of iron transport.

    PubMed

    Bannerman, R M

    1976-09-01

    Five genetic traits in man and laboratory animals have major effects on iron transport. The heterogeneous condition, hemochromatosis, in some families appears to segregate as a Mendelian trait, and is associated with defective control of intestinal iron absorption. In the very rare human autosomal recessive trait, atransferrinemia, there is an almost total lack of transferrin and gross maldistribution of iron through the body. In mice, sex-linked anemia (an X-linked recessive trait) causes iron deficiency through defective iron absorption, at the "exit" step; a similar defect probably exists in placental iron transfer. In microcytic anemia of mice, an autosomal recessive trait, iron absorption is also impaired because of a defect of iron entry into cells, which is probably generalized. Belgrade rat anemia, less understood at present, also may involve a major disorder of iron metabolism. Study of these mutations has provided new knowledge of iron metabolism and its genetic control Their phenotypic interaction with nutritional factors, especially the form and quantity of iron in the diet, may provide new insights for the study of nutrition.

  10. Delamination initiated by a defect

    NASA Astrophysics Data System (ADS)

    Biel, A.; Toftegaard, H.

    2016-07-01

    Composite materials in wind turbines are mainly joined with adhesives. Adhesive joining is preferable since it distributes the stresses over a larger area. This study shows how a defect can influence the fracture behaviour of adhesively joined composite. Repeated experiments are performed using double cantilever beam specimens loaded with bending moments. The specimens consist of two 8 mm thick GFRP-laminates which are joined by a 3 mm thick epoxy adhesive. A thin foil close to one of the laminates is used to start the crack. For some of the specimens a defect is created by an initial load-unload operation. During this operation, a clamp is used in order to prevent crack propagation in the main direction. For the specimens without defect, the crack propagates in the middle of the adhesive layer. For the specimens with defect, the crack directly deviates into the laminate. After about 25 mm propagation in the laminate, the crack returns to the adhesive. Compared to the adhesive the fracture energy for the laminate is significantly higher.

  11. Photographic Screening for Eye Defects

    NASA Technical Reports Server (NTRS)

    Richardson, J.

    1985-01-01

    Images of retinas examined for characteristic patterns. Color photographs of retinas taken. Proper alinement of eye obtained by asking subject to gaze at light-emitting diode. "Red-eye" patterns in resulting color photographs examined by trained observers for signs of ocular defects. System used to check power of contact lenses and eyeglasses by taking photographs with these items in place.

  12. Facts about Atrial Septal Defect

    MedlinePlus

    ... Developmental Disabilities) be credited and notified in any public or private usage of this image. Close × Atrial Septal Defect The images are ... Developmental Disabilities) be credited and notified in any public or private usage of this image. Close Information For... ... Makers Language: English ...

  13. Screening Tests for Birth Defects

    MedlinePlus

    Member Login Join Pay Dues Follow us: Women's Health Care Physicians Contact Us My ACOG ACOG Departments Donate Shop Career Connection Home Resources & Publications Practice Management Education & Events Advocacy For Patients About ACOG Screening Tests for Birth Defects Home For Patients Search FAQs ...

  14. Facts about Congenital Heart Defects

    MedlinePlus

    ... into the heart, where a doctor can take measurements and pictures, do tests, or repair the problem. Sometimes the heart defect can’t be fully repaired, but these procedures can improve blood flow and the way the heart works. Causes The ...

  15. Birth Defects and Adolescent Pregnancies

    ERIC Educational Resources Information Center

    Walters, James

    1975-01-01

    Home economists who work with adolescents can help prepare them for responsible parenthood later in life by explaining the known causes of various birth defects; providing basic information about human genetics, prenatal nutrition, and drug and alcohol effects; and motivating adolescents to exercise increased responsibility in their sexual…

  16. Instabilities, defects, and defect ordering in an overdamped active nematic†

    PubMed Central

    Putzig, Elias; Redner, Gabriel S.; Baskaran, Arvind; Baskaran, Aparna

    2016-01-01

    We consider a phenomenological continuum theory for an extensile, overdamped active nematic liquid crystal, applicable in the dense regime. Constructed from general principles, the theory is universal, with parameters independent of any particular microscopic realization. We show that it exhibits two distinct instabilities, one of which arises due to shear forces, and the other due to active torques. Both lead to the proliferation of defects. We focus on the active torque bend instability and find three distinct nonequilibrium steady states including a defect-ordered nematic in which +12 disclinations develop polar ordering. We characterize the phenomenology of these phases and identify the relationship of this theoretical description to experimental realizations and other theoretical models of active nematics. PMID:26983376

  17. Defect-related properties of optical coatings

    NASA Astrophysics Data System (ADS)

    Cheng, Xinbin; Wang, Zhanshan

    2014-02-01

    Defects in optical coatings are a major factor degrading their performance. Based on the nature of defects, we classified them into two categories: visible defects and non-visible defects. Visible defects result from the replication of substrate imperfections or particulates within the coatings by subsequent layers and can increase scattering loss, produce critical errors in extreme ultraviolet lithography, weaken mechanical and environmental stability, and reduce laser damage resistance. Non-visible defects mainly involve a decrease in laser damage resistance but typically have no influence on other properties of optical coatings. In the case of widely used HfO2/SiO2 dielectric coatings, metallic Hf nano-clusters, off-stoichiometric HfO2 nano-clusters, or areas of high-density electronic defects have been postulated as possible sources for non-visible defects. The emphasis of this review is devoted to discussing localized defect-driven laser-induced damage (LID) in optical coatings used for nanosecond-scale pulsed laser applications, but consideration is also given to other properties of optical coatings such as scattering, environmental stability, etc. The low densities and diverse properties of defects make the systematic study of LID initiating from localized defects time-consuming and very challenging. Experimental and theoretical studies of localized defect-driven LID using artificial defects whose properties can be well controlled are highlighted.

  18. Engaging Hill-Sachs Defects

    PubMed Central

    Burns, David; Chahal, Jaskarndip; Shahrokhi, Shahram; Henry, Patrick; Wasserstein, David; Whyne, Cari; Theodoropoulos, John S.; Ogilvie-Harris, Darrell; Dwyer, Tim

    2016-01-01

    Objectives: Anatomic studies have demonstrated that bipolar glenoid and humeral bone loss have a cumulative impact on shoulder instability, and that these defects may engage in functional positions depending on their size, location, and orientation, potentially resulting in failure of stabilization procedures. Determining which lesions pose a risk for engagement remains a challenge, with arthroscopic assessment and Itoi’s 3DCT based glenoid track method being the accepted approaches at this time. The purpose of this study was to investigate the interaction of humeral and glenoid bone defects on shoulder engagement in a cadaveric model. Two alternative approaches to predicting engagement were evaluated; 1) CT scanning the shoulder in abduction and external rotation 2) measurement of Bankart lesion width and a novel parameter, the intact anterior articular angle (IAAA), on conventional 2D multi-plane reformats. The results of these two approaches were compared to the results obtained using Itoi’s glenoid track method for predicting engagement. Methods: Hill-Sachs and Bony Bankart defects of varying size were created in 12 cadaveric upper limbs, producing 45 bipolar defect combinations. The shoulders were assessed for engagement using cone beam CT in various positions of function, from 30 to 90 degrees of both abduction and external rotation. The humeral and glenoid defects were characterized by measurement of their size, location, and orientation. Diagnostic performance measures for predicting engagement were calculated for both the abduction external rotation scan and 2D IAAA approaches using the glenoid track method as reference standard. Results: Engagement was predicted by Itoi’s glenoid track method in 24 of 45 specimens (53%). The abduction external rotation CT scan performed at 60 degrees of glenohumeral abduction (corresponding to 90 degrees of abduction relative to the trunk) and 90 degrees of external rotation predicted engagement accurately in 43 of

  19. Living with a Congenital Heart Defect

    MedlinePlus

    ... if antibiotics are recommended for him or her. Arrhythmia Arrhythmia is a problem with how the heart beats. ... people with a heart defect can have an arrhythmia associated with their heart defect or as a ...

  20. 7 CFR 51.2659 - Condition defects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards for Grades for Sweet Cherries 1 Definitions § 51.2659 Condition defects. Condition defects means... soft cherries and such factors as pitting, shriveling, sunken areas, brown discoloration and...

  1. Automatic classification of blank substrate defects

    NASA Astrophysics Data System (ADS)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  2. Cooperation and Defection in Ghetto

    NASA Astrophysics Data System (ADS)

    Kułakowski, Krzysztof

    We consider ghetto as a community of people ruled against their will by an external power. Members of the community feel that their laws are broken. However, attempts to leave ghetto makes their situation worse. We discuss the relation of the ghetto inhabitants to the ruling power in context of their needs, organized according to the Maslow hierarchy. Decisions how to satisfy successive needs are undertaken in cooperation with or defection the ruling power. This issue allows to construct the tree of decisions and to adopt the pruning technique from the game theory. Dynamics of decisions can be described within the formalism of fundamental equations. The result is that the strategy of defection is stabilized by the estimated payoff.

  3. Why Search for Congenital Defects?

    PubMed Central

    Collins, John F.

    1966-01-01

    The causation of congenital malformation is receiving increased study. In Canada, epidemiologic surveys are being planned, based upon the institution of Provincial Registries to which physicians and other agencies will voluntarily report cases coming to their attention. The literature in regard to prevalence studies of congenital cardiac defects in school children is reviewed. Over the past 25 years, studies employing the proposed technique demonstrated a rising trend, from 1.4 per 1000 to 2.6 per 1000. By contrast, specific surveys for congenital cardiac defect carried out by expert personnel using radiographs and electrocardiographs, resulted in essentially uniform rates, approximating 5 to 6 per 1000. It is concluded that the latter is a superior technique of epidemiologic survey over the “Central Registry” method, and should command a due proportion of health resources directed towards congenital malformation research. PMID:5914837

  4. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  5. Reconstructive options for periocular defects.

    PubMed

    Jewett, B S; Shockley, W W

    2001-06-01

    Reconstruction of the periorbital area following skin cancer excision requires a thorough knowledge of orbital anatomy and eyelid function. Reconstructive procedures should maintain the function of periorbital structures while attempting to achieve optimal cosmesis. Generally, eyelid reconstruction can be considered in terms of the thickness and overall size of the defect. Both the anterior and posterior lamella should be restored, and at least one of these layers needs to be vascularized. The integrity of the canthal tendons should also be addressed. If severed, the tendons should be attached to bony landmarks in order to recreate the proper curvature of the eyelid against the globe. Finally, defects involving the lacrimal system should be assessed and properly reconstituted.

  6. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  7. Point defect mechanisms in diffusion and interdiffusion in mercury cadmium telluride

    NASA Astrophysics Data System (ADS)

    Gleixner, Stacy Holander

    Mercury cadmium telluride (HgCdTe) is a variable bandgap semiconductor that can be tuned to different energies by altering the HgTe/CdTe ratio. Photodiodes are fabricated in Hgsb{0.7}Cdsb{0.3}Te and Hgsb{0.8}Cdsb{0.2}Te to detect infrared radiation in the 3-5 and 8-14 mum ranges, which correspond to windows in the atmospheric absorption spectrum. In this work, numerical and analytical models are developed to simulate p-n junction formation and stability in Hgsb{0.8}Cdsb{0.2}Te photodiodes and Hgsb{(1-x)}CdsbxTe/Hgsb{(1-y)}CdsbyTe double layer heterojunctions. The models are based on the fundamental physics of the diffusion and interaction of point defects and dopants. The simulation tools developed can be used to reduce the time and expense required to fabricate HgCdTe devices. In the processing of Hgsb{0.8}Cdsb{0.2}Te photodiodes, excess Hg interstitials annihilate vacancies and exchange places with substitutional dopant atoms (generating mobile dopant interstitials). A grown-in donor is revealed in the region exposed to excess interstitials. To simulate this, numerical models are developed which solve partial differential equations for the diffusion and interaction of Hg interstitials, vacancies, dopant interstitials, and dopant substitutional atoms. Hg interstitials and vacancies are coupled through Frenkel generation/recombination. The Hg point defects are coupled to the dopant through the Frank-Turnbull and kick-out mechanisms by which Hg interstitials and vacancies mediate exchanges of the dopant atom on and off the cation sub-lattice. The models developed are used to study junction formation and stability in ion implanted, Au doped Hgsb{0.8}Cdsb{0.2}Te. Interdiffusion occurs in Hgsb(1-x)CdsbxTe/Hgsb(1-y)CdsbyTe double layer heterojunctions due to gradients in composition at the junction. Models are derived which simulate this by solving for the diffusion and interaction of Hg and Cd substitutional and interstitial atoms. The models are used to understand

  8. Inspection of lithographic mask blanks for defects

    DOEpatents

    Sommargren, Gary E.

    2001-01-01

    A visible light method for detecting sub-100 nm size defects on mask blanks used for lithography. By using optical heterodyne techniques, detection of the scattered light can be significantly enhanced as compared to standard intensity detection methods. The invention is useful in the inspection of super-polished surfaces for isolated surface defects or particulate contamination and in the inspection of lithographic mask or reticle blanks for surface defects or bulk defects or for surface particulate contamination.

  9. Confining crack propagation in defective graphene.

    PubMed

    López-Polín, Guillermo; Gómez-Herrero, Julio; Gómez-Navarro, Cristina

    2015-03-11

    Crack propagation in graphene is essential to understand mechanical failure in 2D materials. We report a systematic study of crack propagation in graphene as a function of defect content. Nanoindentations and subsequent images of graphene membranes with controlled induced defects show that while tears in pristine graphene span microns length, crack propagation is strongly reduced in the presence of defects. Accordingly, graphene oxide exhibits minor crack propagation. Our work suggests controlled defect creation as an approach to avoid catastrophic failure in graphene.

  10. Sinus Venosus Atrial Septal Defect

    DTIC Science & Technology

    2010-04-01

    chest CT was performed to evaluate for pulmonary embolism (figure 2). The chest radiograph (figure 1) demonstrates increased central pulmonary ...Fig. 5 Sinus venosus defect at birth . The shaded area in purple represents the sinus venosum. The anomalous right pulmonary venous anatomy...department (ED) with chest pain and an ankle fracture after being hit by a car while riding a horse. Chest imaging noted enlarged central pulmonary

  11. Visual field defects in onchocerciasis.

    PubMed Central

    Thylefors, B; Tønjum, A M

    1978-01-01

    Lesions in the posterior segment of the eye in onchocerciasis may give visual field defects, but so far no detailed investigation has been done to determine the functional visual loss. Examination of the visual fields in 18 selected cases of onchocerciasis by means of a tangent screen test revealed important visual field defects associated with lesions in the posterior segment of the eye. Involvement of the optic nerve seemed to be important, giving rise to severely constricted visual fields. Cases of postneuritic optic atrophy showed a very uniform pattern of almost completely constricted visual fields, with only 5 to 10 degree central rest spared. Papillitis gave a similar severe constriction of the visual fields. The pattern of visual fields associated with optic neuropathy in onchocerciasis indicates that a progressive lesion of the optic nerve from the periphery may be responsible for the loss of vision. The visual field defects in onchocerciasis constitute a serious handicap, which must be taken into consideration when estimating the socioeconomic importance of the disease. Images PMID:678499

  12. Photonic crystals with topological defects

    NASA Astrophysics Data System (ADS)

    Liew, Seng Fatt; Knitter, Sebastian; Xiong, Wen; Cao, Hui

    2015-02-01

    We introduce topological defects to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to a residual photonic band gap in the local density of optical states. However, the band-edge modes are strongly modified by the spatial variation of the ellipse orientation. The Γ -X band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The Γ -M band-edge mode has the energy flux circulating around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states, which are dominated by either clockwise or counterclockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, enabling the creation of a diversified field pattern and energy flow landscape.

  13. Method for mask repair using defect compensation

    DOEpatents

    Sweeney, Donald W.; Ray-Chaudhuri, Avijit K.

    2001-01-01

    A method for repair of amplitude and/or phase defects in lithographic masks. The method involves modifying or altering a portion of the absorber pattern on the surface of the mask blank proximate to the mask defect to compensate for the local disturbance (amplitude or phase) of the optical field due to the defect.

  14. Templates Aid Removal Of Defects From Castings

    NASA Technical Reports Server (NTRS)

    Hendrickson, Robert G.

    1992-01-01

    Templates used to correlate defects in castings with local wall thicknesses. Placed on part to be inspected after coated with penetrant dye. Positions of colored spots (indicative of defects) noted. Ultrasonic inspector measures thickness of wall at unacceptable defects only - overall inspection not necessary.

  15. Electroneutral intrinsic point defects in cadmium chalcogenides

    SciTech Connect

    Kharif, Ya.L.; Kudryashov, N.I.; Strunilina, T.A.

    1987-12-01

    Low-mobility electrically neutral intrinsic point defects were observed in cadmium chalcogenides. It was shown that the concentration of these defects is proportional to the cadmium vapor pressure to the 1/3 power at a constant temperature, and a mechanism for the formation of these defects were proposed.

  16. 7 CFR 51.2659 - Condition defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture... Standards for Grades for Sweet Cherries 1 Definitions § 51.2659 Condition defects. Condition defects means... soft cherries and such factors as pitting, shriveling, sunken areas, brown discoloration and...

  17. Second workshop role of point defects/defect complexes in silicon device fabrication

    SciTech Connect

    Not Available

    1992-01-01

    Abstracts are presented of 24 papers, arranged under the following session/panel headings: defects and impurities in commercial photovoltaic Si substrates, point defects and point defect processes, impurity gettering for Si solar cells, gettering in Si solar cells, and passivation of impurities and defects.

  18. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    SciTech Connect

    Sun, Xiao-Yu; Wu, RunNi; Xia, Re; Chu, Xi-Hua; Xu, Yuan-Jie

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decrease the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.

  19. The defect variance of random spherical harmonics

    NASA Astrophysics Data System (ADS)

    Marinucci, Domenico; Wigman, Igor

    2011-09-01

    The defect of a function f:M\\rightarrow {R} is defined as the difference between the measure of the positive and negative regions. In this paper, we begin the analysis of the distribution of defect of random Gaussian spherical harmonics. By an easy argument, the defect is non-trivial only for even degree and the expected value always vanishes. Our principal result is evaluating the defect variance, asymptotically in the high-frequency limit. As other geometric functionals of random eigenfunctions, the defect may be used as a tool to probe the statistical properties of spherical random fields, a topic of great interest for modern cosmological data analysis.

  20. ENDEAVOUR to understand EUV buried defect printability

    NASA Astrophysics Data System (ADS)

    Seki, Kazunori; Isogawa, Takeshi; Kagawa, Masayuki; Akima, Shinji; Kodera, Yutaka; Badger, Karen; Qi, Zhengqing J.; Lawliss, Mark; Rankin, Jed; Bonam, Ravi

    2015-07-01

    NAP-PD (Native Acting Phase - Programmed Defects), otherwise known as buried program defects, with attributes very similar to native defects, are successfully fabricated using a high accuracy overlay technique. The defect detectability and visibility are analyzed with conventional phase contrast blank inspection @193 nm wavelength, pattern inspection @193 nm wavelength and SEM. The mask is also printed on wafer and printability is discussed. Finally, the inspection sensitivity and wafer printability are compared, leading to the observation that the current blank and pattern inspection sensitivity is not enough to detect all of the printable defects.

  1. Defect disorder in UO{sub 2}

    SciTech Connect

    Hassan, A.-R.; El-Azab, Anter; Yablinsky, Clarissa; Allen, T.

    2013-08-15

    A defect disorder model has been developed to determine equilibrium off-stoichiometry and its spatial variations in UO{sub 2} crystals. The model gives the concentrations of atomic defects and electronic carriers as functions of oxygen partial pressure and temperature in the bulk and near crystal surfaces subject to an oxygen environment. Energetic parameters from published density functional theory calculations have been integrated into the defect disorder model for an accurate determination of the defect density and off-stoichiometry. The ionosorption theory has been used to couple the oxygen environment with the defect state in the crystal as we solved for the defect disorder near crystal surfaces. Contrary to the common belief that hyper-stoichiometry of UO{sub 2} is dominated by oxygen interstitials, the current model predicts that this regime is rather dominated by uranium vacancies. The model predictions also show that, in the presence of surfaces, the point defect concentrations vary by orders of magnitude in the subsurface region relative to the bulk region. Highlights: • Defect disorder in bulk UO2+x is modeled in terms of temperature and oxygen pressure. • The densities of atomic defects and electronic charge carriers are determined. • The model is extended to study the heterogeneity of defect density near crystal surfaces. • The surface effect is modeled using ionosorption theory. • The dominant defect type and off-stoichiometry profile near surface are found.

  2. Resist process optimization for further defect reduction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Iseki, Tomohiro; Marumoto, Hiroshi; Takayanagi, Koji; Yoshida, Yuichi; Uemura, Ryouichi; Yoshihara, Kosuke

    2012-03-01

    Defect reduction has become one of the most important technical challenges in device mass-production. Knowing that resist processing on a clean track strongly impacts defect formation in many cases, we have been trying to improve the track process to enhance customer yield. For example, residual type defect and pattern collapse are strongly related to process parameters in developer, and we have reported new develop and rinse methods in the previous papers. Also, we have reported the optimization method of filtration condition to reduce bridge type defects, which are mainly caused by foreign substances such as gels in resist. Even though we have contributed resist caused defect reduction in past studies, defect reduction requirements continue to be very important. In this paper, we will introduce further process improvements in terms of resist defect reduction, including the latest experimental data.

  3. 7 CFR 42.106 - Classifying and recording defects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are...

  4. 7 CFR 42.106 - Classifying and recording defects.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are...

  5. 7 CFR 42.106 - Classifying and recording defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are...

  6. 7 CFR 42.106 - Classifying and recording defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... container is scored only once for these two defects since the rust condition can be attributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are...

  7. 7 CFR 42.106 - Classifying and recording defects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... container is scored only once for these two defects since the rust condition can be atributed to the leak... “leaker” (a critical defect) and not as “pitted rust” (a major defect). (2) Unrelated defects are...

  8. Atomic Approaches to Defect Thermochemistry

    DTIC Science & Technology

    1992-04-30

    ATOMIC APPROACHES TO DEFECT THERMOCHEMISTRY (AFOSR-89-0309) for period 1 April 1989 to 31 March 1992 Submitted by Professor James A. Van Vechten and...could be very much less. Thus, the GaAs lattice is indeed found to be stiff. Positron annihilation experiments (17) also teach us that GaAs samples...to be less for Si than for Ge. Experience with chemical trends of bond strengths, as well as the empirical literature, teach us that the H bond

  9. Posttraumatic cortical defect of femur.

    PubMed

    Nadarajah, Jeyaseelan; Srivastava, Deep N; Malhotra, Rajesh; Palaniswamy, Aravindh

    2013-01-01

    Posttraumatic cortical defect of bone is a rare entity which occurs in a maturing skeleton following green stick or torus fracture. Most of the cases are asymptomatic and they are detected incidentally on radiograph. These lesions usually require no treatment. However, the appearance of these lesions can mimic various pathological conditions affecting bone. Knowledge about this entity is important as it avoids unnecessary investigations. We present this case as the occurrence of this entity in femur is very rare and the child was symptomatic.

  10. Defect engineering in Multinary Semiconductors

    NASA Astrophysics Data System (ADS)

    Radautsan, S. I.

    1993-12-01

    The last two decades have shown a rapid increase both in our knowledge of the multinary compounds and their applications in engineering. The remarkable scientific leaders from different countries Prof. N.A.Goryunova, M.Rodot, A. Rabenau, E. Parthe, P. Manca, K. Matsumoto, C. Schwab, R. Tomlinson, J. Woolley, W.T. Kim, T. Irie, A. Zunger, N. Joshi, E. Sato et al. made their valuable contribution to the problems of the classification,crystal chemistry,growing processes and characterizations of multinary compounds [1-3]. Most of them were technologically difficult and as a result it was very hard to obtain the crystals with reproducible parameters. It was therefore obvious the well coordinated efforts in the field of chemistry,physics and electronics to be required. In this paper we review some of the major original results to get the defective compounds suitable for fundamental research and electronic applications. The main attention is paid to such effects as non-stoichiometry, order-disorder phase transitions as well as to non-equilibrium treatment by employing different methods of the defect engineering.

  11. Long term simulation of point defect cluster size distributions from atomic displacement cascades in Fe70Cr20Ni10

    NASA Astrophysics Data System (ADS)

    Souidi, A.; Hou, M.; Becquart, C. S.; Domain, C.; De Backer, A.

    2015-06-01

    We have used an Object Kinetic Monte Carlo (OKMC) model to simulate the long term evolution of the primary damage in Fe70Cr20Ni10 alloys. The mean number of Frenkel pairs created by different Primary Knocked on Atoms (PKA) was estimated by Molecular Dynamics using a ternary EAM potential developed in the framework of the PERFORM-60 European project. This number was then used to obtain the vacancy-interstitial recombination distance required in the calculation of displacement cascades in the Binary Collision Approximation (BCA) with code MARLOWE (Robinson, 1989). The BCA cascades have been generated in the 10-100 keV range with the MARLOWE code and two different screened Coulomb potentials, namely, the Molière approximation to the Thomas-Fermi potential and the so-called "Universal" potential by Ziegler, Biersack and Littmark (ZBL). These cascades have been used as input to the OKMC code LAKIMOCA (Domain et al., 2004), with a set of parameters for describing the mobility of point defect clusters based on ab initio calculations and experimental data. The cluster size distributions have been estimated for irradiation doses of 0.1 and 1 dpa, and a dose rate of 10-7 dpa/s at 600 K. We demonstrate that, like in the case of BCC iron, cluster size distributions in the long term are independent of the cascade energy and that the recursive cascade model suggested for BCC iron in Souidi et al. (2011) also applies to FCC Fe70Cr20Ni10. The results also show that the influence of the BCA potential is sizeable but the qualitative correspondence in the predicted long term evolution is excellent.

  12. Effects of in-cascade defect clustering on near-term defect evolution

    SciTech Connect

    Heinisch, H.L.

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.

  13. Altering graphene line defect properties using chemistry

    NASA Astrophysics Data System (ADS)

    Vasudevan, Smitha; White, Carter; Gunlycke, Daniel

    2012-02-01

    First-principles calculations are presented of a fundamental topological line defect in graphene that was observed and reported in Nature Nanotech. 5, 326 (2010). These calculations show that atoms and smaller molecules can bind covalently to the surface in the vicinity of the graphene line defect. It is also shown that the chemistry at the line defect has a strong effect on its electronic and magnetic properties, e.g. the ferromagnetically aligned moments along the line defect can be quenched by some adsorbates. The strong effect of the adsorbates on the line defect properties can be understood by examining how these adsorbates affect the boundary-localized states in the vicinity of the Fermi level. We also expect that the line defect chemistry will significantly affect the scattering properties of incident low-energy particles approaching it from graphene.

  14. Congenital defects of the ruminant nervous system.

    PubMed

    Washburn, Kevin E; Streeter, Robert N

    2004-07-01

    Abnormalities of the nervous system are common occurrences among congenital defects and have been reported in most ruminant species. From a clinical standpoint, the signs of such defects create difficulty in arriving at an antemortem etiology through historical and physical examination alone. By first localizing clinical signs to their point of origin in the nervous system, however, a narrower differential list can be generated so that the clinician can pursue a definitive diagnosis. This article categorizes defects of the ruminant nervous system by location of salient clinical signs into dysfunction of one of more of the following regions: cerebrum, cerebellum,and spinal cord. A brief review of some of the more recognized etiologies of these defects is also provided. It is important to make every attempt to determine the cause of nervous system defects because of the impact that an inherited condition would have on a breeding program and for prevention of defects caused by infectious or toxic teratogen exposure.

  15. Primordial inhomogeneities from massive defects during inflation

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  16. Defect-Engineered Metal–Organic Frameworks

    PubMed Central

    Fang, Zhenlan; Bueken, Bart; De Vos, Dirk E; Fischer, Roland A

    2015-01-01

    Defect engineering in metal–organic frameworks (MOFs) is an exciting concept for tailoring material properties, which opens up novel opportunities not only in sorption and catalysis, but also in controlling more challenging physical characteristics such as band gap as well as magnetic and electrical/conductive properties. It is challenging to structurally characterize the inherent or intentionally created defects of various types, and there have so far been few efforts to comprehensively discuss these issues. Based on selected reports spanning the last decades, this Review closes that gap by providing both a concise overview of defects in MOFs, or more broadly coordination network compounds (CNCs), including their classification and characterization, together with the (potential) applications of defective CNCs/MOFs. Moreover, we will highlight important aspects of “defect-engineering” concepts applied for CNCs, also in comparison with relevant solid materials such as zeolites or COFs. Finally, we discuss the future potential of defect-engineered CNCs. PMID:26036179

  17. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  18. Processed-induced defects in EFG ribbons

    NASA Technical Reports Server (NTRS)

    Cunningham, B.; Ast, D. G.

    1982-01-01

    The defect structure of processed edge defined film-fed growth (EFG) silicon ribbons was studied using a variety of electron microscopic techniques. Comparison between the present results and previous studies on as-grown ribbons has shown that solar cell processing introduces additional defects into the ribbons. The creation of point defects during high temperature phosphorus diffusion induces dislocation climb, resulting in the formation of dislocation helices in the diffused layer.

  19. Defect Characterization Using Two-Dimensional Arrays

    NASA Astrophysics Data System (ADS)

    Velichko, A.; Wilcox, P. D.

    2011-06-01

    2D arrays are able to `view' a given defect from a range of angles leading to the possibility of obtaining richer characterization detail than possible with 1D arrays. In this paper a quantitative comparison of 2D arrays with different element layouts is performed. A technique for extracting the scattering matrix of a defect from the raw 2D array data is also presented. The method is tested on experimental data for characterization of various volumetric defects.

  20. Detection of tanker defects with infrared thermography

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.

    1980-01-01

    Infrared scanning technique for finding defects in secondary barrier of liquid natural gas (LNG) tank has been successfully tested on ship under construction at Newport News Shipbuilding and Dry Dock Company. Technique determines defects with minimal expenditure of time and manpower. Tests could be repeated during life of tanker and make more complicated testing unnecessary. Tests also confirmed that tank did not have any major defects, and tank was certified.

  1. Defect interactions within a group of subcascades

    SciTech Connect

    Heinisch, H.L.

    1996-10-01

    The evolution of the defect distributions within high energy cascades that contain multiple subcascades is studied as a function of temperature for cascades in copper. Low energy cascades generated with molecular dynamics are placed in close proximity to simulate the arrangement of subcascades within a high energy event, then the ALSOME code follows the evolution of the cascade damage during short term annealing. The intersubcascade defect interactions during the annealing stage are found to be minimal. However, no conclusions regarding effects of subcascades on defect production should be drawn until intersubcascade defect interactions during the quenching stage are examined.

  2. Multimode model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.; Gregory, E.

    2016-02-01

    A newly-initiated research program for model-based defect characterization in CFRP composites is summarized. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing delamination and porosity. Forward predictions of measurement response are presented, as well as examples of model-based inversion of measured data for the estimation of defect parameters.

  3. Reconstruction of Small Soft Tissue Nasal Defects

    PubMed Central

    Wolfswinkel, Erik M.; Weathers, William M.; Cheng, David; Thornton, James F.

    2013-01-01

    Nasal defect repair has been one of the more challenging areas of reconstructive surgery due to the lack of uniform nasal skin thickness and complex contours. Currently, algorithms for medium to large nasal soft tissue defects have been well defined by various authors. Small defects, arbitrarily defined as 1 cm or less, still present significant challenges. In this article, the authors examine the options available to repair small soft tissue nasal defects and the appropriate situations in which each method is best suited. PMID:24872751

  4. Defect reduction through Lean methodology

    NASA Astrophysics Data System (ADS)

    Purdy, Kathleen; Kindt, Louis; Densmore, Jim; Benson, Craig; Zhou, Nancy; Leonard, John; Whiteside, Cynthia; Nolan, Robert; Shanks, David

    2010-09-01

    Lean manufacturing is a systematic method of identifying and eliminating waste. Use of Lean manufacturing techniques at the IBM photomask manufacturing facility has increased efficiency and productivity of the photomask process. Tools, such as, value stream mapping, 5S and structured problem solving are widely used today. In this paper we describe a step-by-step Lean technique used to systematically decrease defects resulting in reduced material costs, inspection costs and cycle time. The method used consists of an 8-step approach commonly referred to as the 8D problem solving process. This process allowed us to identify both prominent issues as well as more subtle problems requiring in depth investigation. The methodology used is flexible and can be applied to numerous situations. Advantages to Lean methodology are also discussed.

  5. Electricity generation from defective tomatoes.

    PubMed

    Shrestha, Namita; Fogg, Alex; Wilder, Joseph; Franco, Daniel; Komisar, Simeon; Gadhamshetty, Venkataramana

    2016-12-01

    The United States faces a significant burden in treating 0.61billionkg of defective tomatoes (culls) every year. We present a proof-of-concept for generating electricity from culled tomatoes in microbial-electrochemical systems (MESs). This study delineates impedance behavior of the culled tomatoes in MESs and compares its impedance spectra with that of soluble substrates (dextrose, acetate, and wastewater). A series of AC and DC diagnostic tests have revealed the superior performance of the culled tomatoes compared to the pure substrates. Cyclic voltammetry results have indicated the active role of indigenous, diffusible redox-active pigments in the culled tomatoes on overall electricity production. Electrochemical impedance spectroscopy results have elucidated the role of peel and seed on the oxidation behavior of the culled tomatoes.

  6. Topological conformal defects with tensor networks

    NASA Astrophysics Data System (ADS)

    Hauru, Markus; Evenbly, Glen; Ho, Wen Wei; Gaiotto, Davide; Vidal, Guifre

    2016-09-01

    The critical two-dimensional classical Ising model on the square lattice has two topological conformal defects: the Z2 symmetry defect Dɛ and the Kramers-Wannier duality defect Dσ. These two defects implement antiperiodic boundary conditions and a more exotic form of twisted boundary conditions, respectively. On the torus, the partition function ZD of the critical Ising model in the presence of a topological conformal defect D is expressed in terms of the scaling dimensions Δα and conformal spins sα of a distinct set of primary fields (and their descendants, or conformal towers) of the Ising conformal field theory. This characteristic conformal data {Δα,sα}D can be extracted from the eigenvalue spectrum of a transfer matrix MD for the partition function ZD. In this paper, we investigate the use of tensor network techniques to both represent and coarse grain the partition functions ZDɛand ZD σ of the critical Ising model with either a symmetry defect Dɛ or a duality defect Dσ. We also explain how to coarse grain the corresponding transfer matrices MDɛand MD σ, from which we can extract accurate numerical estimates of {Δα,sα}Dɛ and {Δα,sα}Dσ. Two key ingredients of our approach are (i) coarse graining of the defect D , which applies to any (i.e., not just topological) conformal defect and yields a set of associated scaling dimensions Δα, and (ii) construction and coarse graining of a generalized translation operator using a local unitary transformation that moves the defect, which only exist for topological conformal defects and yields the corresponding conformal spins sα.

  7. Sizing Dye-Penetrant Indications Of Defects

    NASA Technical Reports Server (NTRS)

    Molina, Orlando G.

    1988-01-01

    Sizes of cracks and holes viewed through borescope measured. Reference chart makes it possible to estimate sizes of borescope-observed defects on inner walls of tubes or otherwise hidden. Used both for round defects like pits or pores and for elongated ones like cracks.

  8. 7 CFR 52.780 - Defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Cherries 1 Factors of Quality § 52.780 Defects. (a) General. The factor of defects refers to the degree of freedom from harmless extraneous material, mutilated cherries, and cherries blemished by scab, hail injury, discoloration, scar tissue, or by other means. (1) Cherry means a whole cherry, whether or not pitted,...

  9. Folic acid and birth defect prevention

    MedlinePlus

    ... Women who have had a baby with a neural tube defect may need a higher dose of folic acid. If you have had a baby with a neural tube defect, you should take 400 micrograms of folic acid every day, even when you are not planning ...

  10. Simple intrinsic defects in InAs :

    SciTech Connect

    Schultz, Peter Andrew

    2013-03-01

    This Report presents numerical tables summarizing properties of intrinsic defects in indium arsenide, InAs, as computed by density functional theory using semi-local density functionals, intended for use as reference tables for a defect physics package in device models.

  11. Impurity Role In Mechanically Induced Defects

    SciTech Connect

    Howell, R.H.; Asoka-Kumar, P.; Hartley, J.; Sterne, P.

    2000-02-25

    An improved understanding of dislocation dynamics and interactions is an outstanding problem in the multi scale modeling of materials properties, and is the current focus of major theoretical efforts world wide. We have developed experimental and theoretical tools that will enable us to measure and calculate quantities defined by the defect structure. Unique to the measurements is a new spectroscopy that determines the detailed elemental composition at the defect site. The measurements are based on positron annihilation spectroscopy performed with a 3 MeV positron beam [1]. Positron annihilation spectroscopy is highly sensitive to dislocations and associated defects and can provide unique elements of the defect size and structure. Performing this spectroscopy with a highly penetrating positron beam enables flexibility in sample handling. Experiments on fatigued and stressed samples have been done and in situ measurement capabilities have been developed. We have recently performed significant upgrades to the accelerator operation and novel new experiments have been performed [2-4] To relate the spectrographic results and the detailed structure of a defect requires detailed calculations. Measurements are coupled with calculated results based on a description of positions of atoms at the defect. This gives an atomistic view of dislocations and associated defects including impurity interactions. Our ability to probe impurity interactions is a unique contribution to defect understanding not easily addressed by other atomistic spectroscopies.

  12. Point Defect Structure of Cr203

    DTIC Science & Technology

    1987-10-01

    11 2.2.5 Effects of Impurities on Defect Equilibria .................. 14 2.3 Electrical Conductivity...both cationic vacancies and interstitials ........................................ 15 2.4 The impurity effect on the defect structure of a P-type...25 2.7 Seebeck effect of a semiconductor ................................................ 27 2.8 Oxygen partial pressure

  13. Quantum defect analysis of HD photoionization

    SciTech Connect

    Du, N.Y.; Greene, C.H.

    1986-11-15

    A multichannel quantum defect calculation is shown to reproduce most observed features in several portions of the HD photoabsorption spectrum. The rovibrational frame transformation theory of Atabek, Dill, and Jungen is reformulated in terms of a quantum defect matrix. The calculation accounts for spectral regions far from dissociation thresholds despite its neglect of g--u mixing.

  14. 7 CFR 51.2720 - Minor defects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Shelled Runner Type Peanuts Definitions § 51.2720 Minor defects. Minor defects means that the... which is dark brown, dark gray, dark blue or black and covers more than one-fourth of the surface; (b) Flesh discoloration which is darker than a light yellow color or consists of more than a slight...

  15. 7 CFR 51.2762 - Minor defects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards for Shelled Virginia Type Peanuts Definitions § 51.2762 Minor defects. Minor defects means that... discoloration which is dark brown, dark gray, dark blue or black and covers more than one-fourth of the surface; (b) Flesh discoloration which is darker than a light yellow color or consists of more than a...

  16. Orbital dystopia due to orbital roof defect.

    PubMed

    Rha, Eun Young; Joo, Hong Sil; Byeon, Jun Hee

    2013-01-01

    We performed a retrospective review of patients who presented with delayed dystopia as a consequence of an orbital roof defect due to fractures and nontraumatic causes to search for a correlation between orbital roof defect size and surgical indications for the treatment thereof. Retrospective analyses were performed in 7 patients, all of whom presented with delayed dystopia due to orbital roof defects, between January 2001 and June 2011. The causes of orbital roof defects were displaced orbital roof fractures (5 cases), tumor (1 case), and congenital sphenoid dysplasia (1 case). All 7 patients had initially been treated conservatively and later presented with significant dystopia. The sizes of the defects were calculated on computed tomographic scans. Among the 7 patients, aspiration of cerebrospinal fluid, which caused ocular symptoms, in 1 patient with minimal displaced orbital roof and reconstruction with calvarial bone, titanium micromesh, or Medpor in 6 other patients were performed. The minimal size of the orbital roof in patients who underwent orbital roof reconstruction was 1.2 cm (defect height) x 1.0 cm (defect length), 0.94 cm(2). For all patients with orbital dystopia, displacement of the globe was corrected without any complications, regardless of whether the patient was evaluated grossly or by radiology. In this retrospective study, continuous monitoring of clinical signs and active surgical management should be considered for cases in which an orbital roof defect is detected, even if no definite symptoms are noted, to prevent delayed sequelae.

  17. 9 CFR 91.30 - Defective fittings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Defective fittings. 91.30 Section 91... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.30 Defective fittings. If previously used fittings aboard an ocean vessel are employed, any portion thereof found by the inspector to...

  18. Defect complexes in semiconductors and insulators

    NASA Astrophysics Data System (ADS)

    Raebiger, Hannes

    2010-03-01

    The interaction of isolated defects and impurities (concentration upto ˜10^18 cm-3) is usually rationalized as that of point charges in a dielectric medium, but as defect concentrations are in the order of atomic percent (˜10^21 cm-3), the statistical probability for two or more defects to sit on neighboring sites, forming a cluster or complex, becomes significant [1]. The formation of such clusters changes the local chemical environment, which in turn affects the electronic (and optical and magnetic) properties of the constituent defects non-trivially. To understand these changes, I study a variety of bound defect complexes in wide-gap semiconductors, composed of both deep and shallow defects, focusing on the shifting of the gap levels caused by defect--defect chemical interactions. First the electronic structure is calculated from first principles calculations, and then I will outline a simple theory that describes the level shifts due to cluster formation qualitatively and semi-quantitatively in terms local atomic shielding constants derived from local charge self-regulation [2].[4pt] [1] R. Behringer, J. Chem. Phys. 29, 537 (1958).[0pt] [2] H. Raebiger, S. Lany, and A. Zunger, Nature 453, 763 (2008).

  19. Biomaterials for reconstruction of cranial defects

    NASA Astrophysics Data System (ADS)

    Song, Tao; Qiu, Zhi-Ye; Cui, Fu-Zhai

    2015-12-01

    Reconstruction of cranial defect is commonly performed in neurosurgical operations. Many materials have been employed for repairing cranial defects. In this paper, materials used for cranioplasty, including autografts, allografts, and synthetic biomaterials are comprehensively reviewed. This paper also gives future perspective of the materials and development trend of manufacturing process for cranioplasty implants.

  20. 7 CFR 52.780 - Defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Defects. (a) General. The factor of defects refers to the degree of freedom from harmless extraneous... given a score of 24 to 26 points. Canned red tart pitted cherries that fall into this classification may... red tart pitted cherries that fall into this classification shall not be graded above U.S. Grade...

  1. Line defects and (framed) BPS quivers

    NASA Astrophysics Data System (ADS)

    Cirafici, Michele

    2013-11-01

    The BPS spectrum of certain = 2 supersymmetric field theories can be determined algebraically by studying the representation theory of BPS quivers. We introduce methods based on BPS quivers to study line defects. The presence of a line defect opens up a new BPS sector: framed BPS states can be bound to the defect. The defect can be geometrically described in terms of laminations on a curve. To a lamination we associate certain elements of the Leavitt path algebra of the BPS quiver and use them to compute the framed BPS spectrum. We also provide an alternative characterization of line defects by introducing framed BPS quivers. Using the theory of (quantum) cluster algebras, we derive an algorithm to compute the framed BPS spectra of new defects from known ones. Line defects are generated from a framed BPS quiver by applying certain sequences of mutation operations. Framed BPS quivers also behave nicely under a set of "cut and join" rules, which can be used to study how = 2 systems with defects couple to produce more complicated ones. We illustrate our formalism with several examples.

  2. Topological defect dynamics in operando battery nanoparticles

    NASA Astrophysics Data System (ADS)

    Ulvestad, Andrew; Meng, Shirley; Shpyrko, Oleg

    2015-03-01

    Topological defects are ubiquitous in physics and manifest themselves as magnetic monopoles in quantum field theories and crystallographic imperfections in condensed matter systems. In the latter, the defect properties determine many of the material's properties and as such represent substantial novel opportunities for design and optimization of desired functionalities through deliberate defect engineering and manipulation. However, this approach of ``defect choreography'' currently suffers from the lack of suitable nanoscale probes to track buried single defects in-situ and in-operando. Here we report 3D imaging of single edge dislocations and their motion in an individual nanoparticle under operando conditions in a Lithium ion battery. We further observe the dislocation act as a nucleation point during the structural phase transformation. We find that the region near the dislocation enters a negative Poisson's ratio, or auxetic, regime at high voltage. Dislocation imaging is thus a powerful nanotechnology and it opens a new, powerful avenue for facilitating improvement of nanostructured devices.

  3. Native point defects in GaSb

    SciTech Connect

    Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J.

    2014-10-14

    We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

  4. Wavenumber and Defect Distributions in Undulation Chaos

    NASA Astrophysics Data System (ADS)

    Daniels, Karen E.; Bodenschatz, Eberhard

    2000-11-01

    We report experimental results on thermally driven convection in a large aspect ratio inclined layer with a fluid of Prandtl number σ ≈ 1. Very close to the onset of convection for inclination angles between 20 and 70 degrees, we find the defect turbulent state of undulation chaos (Daniels, Plapp, and Bodenschatz. Phys. Rev. Lett. 84:5320). We characterize this state by determining the defect locations and the wavenumber distribution. A snapshot of the pattern, as well as its wavenumber distribution, can be well-reconstructed from a perfect underlying undulation pattern and the phase field given by the point defects. The defect density distribution shows a crossover from a Poisson to a squared Poisson distribution. By measuring the creation, annihilation, inflow, and outflow rates of defects we can quantitatively explain this behavior. This work is supported by the National Science Foundation DMR-0072077.

  5. Point defects at the ice (0001) surface.

    PubMed

    Watkins, Matthew; VandeVondele, Joost; Slater, Ben

    2010-07-13

    Using density functional theory we investigate whether intrinsic defects in ice surface segregate. We predict that hydronium, hydroxide, and the Bjerrum L- and D-defects are all more stable at the surface. However, the energetic cost to create a D-defect at the surface and migrate it into the bulk crystal is smaller than its bulk formation energy. Absolute and relative segregation energies are sensitive to the surface structure of ice, especially the spatial distribution of protons associated with dangling hydrogen bonds. It is found that the basal plane surface of hexagonal ice increases the bulk concentration of Bjerrum defects, strongly favoring D-defects over L-defects. Dangling protons associated with undercoordinated water molecules are preferentially injected into the crystal bulk as Bjerrum D-defects, leading to a surface dipole that attracts hydronium ions. Aside from the disparity in segregation energies for the Bjerrum defects, we find the interactions between defect species to be very finely balanced; surface segregation energies for hydronium and hydroxide species and trapping energies of these ionic species with Bjerrum defects are equal within the accuracy of our calculations. The mobility of the ionic hydronium and hydroxide species is greatly reduced at the surface in comparison to the bulk due to surface sites with high trapping affinities. We suggest that, in pure ice samples, the surface of ice will have an acidic character due to the presence of hydronium ions. This may be important in understanding the reactivity of ice particulates in the upper atmosphere and at the boundary layer.

  6. The role of point defects and defect complexes in silicon device processing. Summary report and papers

    SciTech Connect

    Sopori, B.; Tan, T.Y.

    1994-08-01

    This report is the summary of the third workshop on the role of point defects and defect complexes in silicon device processing. The workshop was organized: (1) to discuss recent progress in the material quality produced by photovoltaic Si manufacturers, (2) to foster the understanding of point defect issues in Si device processing, (3) to review the effects of inhomogeneities on large- area solar cell performance, (4) to discuss how to improve Si solar cell processing, and (5) to develop a new understanding of gettering, defect passivation, and defect annihilation. Separate abstract were prepared for the individual papers, for the database.

  7. Epidemiology of neural tube defects.

    PubMed

    Frey, Lauren; Hauser, W Allen

    2003-01-01

    Neural tube defects (NTDs)-malformations secondary to abnormal neural tube closure between the third and fourth weeks of gestational age-have a complex and imperfectly understood etiology in which both genetic and environmental factors appear to be involved. A number of specific chromosomal or single-gene disorders, presumably not affected by environmental influences, are associated with the development of NTDs, but such syndromal cases account for a small proportion of NTDs in live-born infants. Analysis of recurrence patterns within families and of twin-concordance data provides evidence of a genetic influence in nonsyndromal cases, but factors such as socioeconomic status and geographic area (independent of race or ethnicity) are also associated with variations in the incidence of NTDs. The prevalence at birth of both anencephaly and spina bifida has decreased, but the advent of antenatal diagnosis and elective termination of affected pregnancies has undermined the reliability of birth prevalence rate as an estimate of incidence. Some occupational and other exposures, including maternal use of antiepileptic drugs (AEDs), are associated with increased risk for NTDs. Among women who have had an NTD-affected pregnancy, recurrence risk is markedly higher than the risk for a first NTD-affected pregnancy in the general population. There is strong evidence, overall, for a protective effect of adequate folate consumption. In some high-risk groups, however, such as women taking AEDs, folate supplementation has not been proven to reduce NTD risk.

  8. Interleukin-6 Stimulates Defective Angiogenesis.

    PubMed

    Gopinathan, Ganga; Milagre, Carla; Pearce, Oliver M T; Reynolds, Louise E; Hodivala-Dilke, Kairbaan; Leinster, David A; Zhong, Haihong; Hollingsworth, Robert E; Thompson, Richard; Whiteford, James R; Balkwill, Frances

    2015-08-01

    The cytokine IL6 has a number of tumor-promoting activities in human and experimental cancers, but its potential as an angiogenic agent has not been fully investigated. Here, we show that IL6 can directly induce vessel sprouting in the ex vivo aortic ring model, as well as endothelial cell proliferation and migration, with similar potency to VEGF. However, IL6-stimulated aortic ring vessel sprouts had defective pericyte coverage compared with VEGF-stimulated vessels. The mechanism of IL6 action on pericytes involved stimulation of the Notch ligand Jagged1 as well as angiopoietin2 (Ang2). When peritoneal xenografts of ovarian cancer were treated with an anti-IL6 antibody, pericyte coverage of vessels was restored. In addition, in human ovarian cancer biopsies, there was an association between levels of IL6 mRNA, Jagged1, and Ang2. Our findings have implications for the use of cancer therapies that target VEGF or IL6 and for understanding abnormal angiogenesis in cancers, chronic inflammatory disease, and stroke.

  9. DIVAS: an integrated networked system for mask defect dispositioning and defect management

    NASA Astrophysics Data System (ADS)

    Munir, Saghir; Bald, Dan; Tolani, Vikram; Ghadiali, Firoz

    2003-06-01

    Mask quality is a prime concern to the Intel Mask Operation (IMO) and the Intel wafer fabrication customers. Extreme concern is taken to inspect and repair all defects before shipment. Given that the classification and repair of defects detected by inspection systems is labor intensive, the procedure is prone to human error. Futhermore, since operators manually disposition hundreds of defects each day, it is virtually impossible to eliminate all misclassifications. Due to diffraction effects, not all defects resolve on a wafer. Hence, a defect that an operator may classify as 'real' may indeed be 'lithographically insignifincant'. Conversely an operator may miss a defect that prints, causing a serious reduction in product yield. The DIVAS (Defect, Inspection, Viewing, Archiving and Simulation) system has been described previously and was developed to address these manual classification issues. This paper outlines the fully automated system deployed in a production environment.

  10. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  11. Exploring atomic defects in molybdenum disulphide monolayers

    PubMed Central

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment–theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 1013 cm−2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices. PMID:25695374

  12. Robust defect segmentation in woven fabrics

    SciTech Connect

    Sari-Sarraf, H.; Goddard, J.S. Jr.

    1997-12-01

    This paper describes a robust segmentation algorithm for the detection and localization of woven fabric defects. The essence of the presented segmentation algorithm is the localization of those events (i.e., defects) in the input images that disrupt the global homogeneity of the background texture. To this end, preprocessing modules, based on the wavelet transform and edge fusion, are employed with the objective of attenuating the background texture and accentuating the defects. Then, texture features are utilized to measure the global homogeneity of the output images. If these images are deemed to be globally nonhomogeneous (i.e., defects are present), a local roughness measure is used to localize the defects. The utility of this algorithm can be extended beyond the specific application in this work, that is, defect segmentation in woven fabrics. Indeed, in a general sense, this algorithm can be used to detect and to localize anomalies that reside in images characterized by ordered texture. The efficacy of this algorithm has been tested thoroughly under realistic conditions and as a part of an on-line fabric inspection system. Using over 3700 images of fabrics, containing 26 different types of defects, the overall detection rate of this approach was 89% with a localization accuracy of less than 0.2 inches and a false alarm rate of 2.5%.

  13. Defects and impurities in mercuric iodine processing

    SciTech Connect

    van Scyoc, J.M.; James, R.B.; Schlesinger, T.E.; Gilbert, T.S.

    1996-03-01

    In the fabrication of mercuric iodide HgI{sub 2} room temperature radiation detectors, as in any semiconductor process, the quality of the final device is very sensitive to the impurities and defects present. Each process step can change the effects of existing defects, reduce the number of defects, or introduce new defects. In HgI{sub 2} detectors these defects act as trapping and recombination centers, thereby degrading immediate performance and leading to unstable devices. In this work we characterized some of the defects believed to strongly affect detector operation. Specifically, we studied impurities that are known to be present in typical HgI{sub 2} materials. Leakage current measurements were used to study the introduction and characteristics of these impurities, as such experiments reveal the mobile nature of these defects. In particular, we found that copper, which acts as a hole trap, introduces a positively charged center that diffuses and drifts readily in typical device environments. These measurements suggest that Cu, and related impurities like silver, may be one of the leading causes of HgI{sub 2} detector failures.

  14. Platelet rich fibrin in jaw defects

    NASA Astrophysics Data System (ADS)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  15. Geometric defects in quantum Hall states

    NASA Astrophysics Data System (ADS)

    Gromov, Andrey

    2016-08-01

    We describe a geometric (or gravitational) analog of the Laughlin quasiholes in fractional quantum Hall states. Analogously to the quasiholes, these defects can be constructed by an insertion of an appropriate vertex operator into the conformal block representation of a trial wave function; however, unlike the quasiholes these defects are extrinsic and do not correspond to true excitations of the quantum fluid. We construct a wave function in the presence of such defects and explain how to assign an electric charge and a spin to each defect and calculate the adiabatic, non-Abelian statistics of the defects. The defects turn out to be equivalent to the genons in that their adiabatic exchange statistics can be described in terms of representations of the mapping class group of an appropriate higher genus Riemann surface. We present a general construction that, in principle, makes it possible to calculate the statistics of Zn genons for any "parent" topological phase. We illustrate the construction on the example of the Laughlin state and perform an explicit calculation of the braiding matrices. In addition to non-Abelian statistics, geometric defects possess a universal Abelian overall phase, determined by the gravitational anomaly.

  16. Defects and metrology of ultrathin resist films

    NASA Astrophysics Data System (ADS)

    Okoroanyanwu, Uzodinma; Cobb, Jonathan L.; Dentinger, Paul M.; Henderson, Craig C.; Rao, Veena; Monahan, Kevin M.; Luo, David; Pike, Christopher

    2000-06-01

    Defectivity in spin-coated, but unpatterned ultrathin resist (UTR) films (defectivity will present an issue in EUV (13.4-nm) and 157-nm lithographic technologies. These are the lithographic regimes where absorption issues mandate the use of ultrathin resists. Four resist samples formulated from the same Shipley UV6 polymer batch and having the same polymer molecular weight properties but different viscosities, were spin-coated at spin speeds ranging from 1000 to 5000 RPM on a production-grade track in a Class 1 pilot line facility. Defect inspection was carried out with KLA SP1/TBI tool, while defect review was carried out with JEOL 7515 SEM tool and KLA Ultrapointe Confocal Review Station (CRS) Microscope. The results obtained are related to the physical properties of the resist polymers, as well as to spin coating parameters. Also, the results of the defect inspection, review, characterization, and pareto are compared to those obtained on baseline thick resists (>= 3500 Angstrom) processed under similar condition as the ultra-thin resists. The results show that for a well-optimized coating process and within the thickness range explored (800 - 4200 Angstrom), there is no discernible dependence of defectivity on film thickness of the particular resists studied and on spin speed. Also assessed is the capability of the current metrology toolset for inspecting, reviewing, and classifying the various types of defects in UTR films.

  17. Rail Defect Detection Using Ultrasonic Surface Waves

    NASA Astrophysics Data System (ADS)

    Edwards, R. S.; Jian, X.; Fan, Y.; Dixon, S.

    2006-03-01

    Current testing of the rail network is limited in terms of both speed of testing and accuracy of detecting surface defects such as gauge corner cracking. By using ultrasonic surface waves generated and detected in a pitch-catch manner we can detect such defects with a much higher accuracy. We use electro-magnetic acoustic transducers (EMATs) to generate and detect the ultrasound. These have the advantage of being non-contact and require no couplant. It is not sufficient to merely detect the presence of a defect; hence accurate calibration of the system is required. We present measurements on calibration samples giving the response of the system to defects of different depths. Further experiments have been performed on rail samples containing real and manufactured defects, both longitudinal and transverse. Using the change in signal amplitude and frequency content we are able to give a depth and position for these defects, and these are compared with more established measurement methods. An enhancement of the signal when the receive EMAT is close to the defect is also discussed.

  18. Management of extensive frontal cranioplasty defects.

    PubMed

    Hatamleh, Muhanad M; Cartmill, Maria; Watson, Jason

    2013-11-01

    Cranioplasty is a medical technique to correct cranial bone defects. Depending on the size and location of the defect, a bone substitute can be used to replace the missing bone. Frontal bone defects are important to patients in terms of cosmetics because they are visible. Advances in computer design allow the production of customized implants with improved cosmetic and functional results. This report describes hybrid optimization of three-dimensional technological methods along with traditional methods toward the manufacture of deep-buried titanium implants, restoring frontal skull defects for 4 patients. A three-dimensional model was produced from the computed tomographic scan data of 3 patients using an in-house three-dimensional printer. A new approach was followed in treating the fourth patient. The defect was restored using preoperative scan before cranioplasty. These data were transported digitally into the defect skull to recreate the bone contour required, and a three-dimensional model was produced from the "new" digital model using the three-dimensional printer. Defect areas of the patients were large and measured 101.21 × 123.35 (vertical × horizontal) in average (mm). Conventional wax-up of the defect was carried to restore normal conformity. A titanium sheet (0.5 mm) was swaged into the desired shape; however, convexity of the defect area makes titanium swaging challenging, especially at the deep lateral undercuts. Making side flanges at reasonable lengths made it easy to swage without creasing. Three-dimensional models aided to produce accurately fitting plates. Finally, the sequential method of using both digital and manual procedures is a low-cost, reliable, accurate, and reproducible method.

  19. Defects in liquid crystal nematic shells

    NASA Astrophysics Data System (ADS)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  20. Defect-free switchable phase grating.

    PubMed

    Lester, Garry A; Coulston, Stephen J; Strudwick, Adrian M

    2006-01-01

    Liquid-crystal-filled polymer structure devices offer a very low cost switchable spatial phase modulator. The phase profile set by the polymer structure may be varied or switched on/off with an applied field. Defects have been observed in some devices giving rise to spurious diffraction peaks. Computational modeling of the liquid-crystal director profile suggests that these defects might be suppressed if the dimensions of the liquid-crystal region are small. Experimental measurements confirm that this approach is effective in controlling the defects. This provides a route to fabrication of low-cost switchable complex diffractive devices.

  1. Rational defect introduction in silicon nanowires.

    PubMed

    Shin, Naechul; Chi, Miaofang; Howe, Jane Y; Filler, Michael A

    2013-05-08

    The controlled introduction of planar defects, particularly twin boundaries and stacking faults, in group IV nanowires remains challenging despite the prevalence of these structural features in other nanowire systems (e.g., II-VI and III-V). Here we demonstrate how user-programmable changes to precursor pressure and growth temperature can rationally generate both transverse twin boundaries and angled stacking faults during the growth of <111> oriented Si nanowires. We leverage this new capability to demonstrate prototype defect superstructures. These findings yield important insight into the mechanism of defect generation in semiconductor nanowires and suggest new routes to engineer the properties of this ubiquitous semiconductor.

  2. Phenol dissociation on pristine and defective graphene

    NASA Astrophysics Data System (ADS)

    Widjaja, Hantarto; Oluwoye, Ibukun; Altarawneh, Mohammednoor; Hamra, A. A. B.; Lim, H. N.; Huang, N. M.; Yin, Chun-Yang; Jiang, Zhong-Tao

    2017-03-01

    Phenol (C6H5O‒H) dissociation on both pristine and defective graphene sheets in terms of associated enthalpic requirements of the reaction channels was investigated. Here, we considered three common types of defective graphene, namely, Stone-Wales, monovacancy and divacancy configurations. Theoretical results demonstrate that, graphene with monovacancy creates C atoms with dangling bond (unpaired valence electron), which remains particularly useful for spontaneous dissociation of phenol into phenoxy (C6H5O) and hydrogen (H) atom. The reactions studied herein appear barrierless with reaction exothermicity as high as 2.2 eV. Our study offers fundamental insights into another potential application of defective graphene sheets.

  3. Defect-tolerant extreme ultraviolet nanoscale printing.

    PubMed

    Urbanski, L; Isoyan, A; Stein, A; Rocca, J J; Menoni, C S; Marconi, M C

    2012-09-01

    We present a defect-free lithography method for printing periodic features with nanoscale resolution using coherent extreme ultraviolet light. This technique is based on the self-imaging effect known as the Talbot effect, which is produced when coherent light is diffracted by a periodic mask. We present a numerical simulation and an experimental verification of the method with a compact extreme ultraviolet laser. Furthermore, we explore the extent of defect tolerance by testing masks with different defect layouts. The experimental results are in good agreement with theoretical calculations.

  4. Model based defect characterization in composites

    NASA Astrophysics Data System (ADS)

    Roberts, R.; Holland, S.

    2017-02-01

    Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of the interaction of NDE probing energy fields (ultrasound and thermography), to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of performance-critical defect properties from analysis of measured NDE signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, with application in this paper focusing on ultrasound. A companion paper in these proceedings summarizes corresponding activity in thermography. Inversion of ultrasound data is demonstrated showing the quantitative extraction of damage properties.

  5. New Guidelines Reaffirm Prenatal Folic Acid to Curb Birth Defects

    MedlinePlus

    ... that folic acid supplements reduce the risk of neural tube defects. As it advised in 2009, the independent ... acid to prevent these potentially fatal birth defects. Neural tube defects occur when the brain or spinal cord ...

  6. Genetics Home Reference: congenital bile acid synthesis defect type 1

    MedlinePlus

    ... bile acid synthesis defect type 1 congenital bile acid synthesis defect type 1 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 1 is a disorder characterized ...

  7. Genetics Home Reference: congenital bile acid synthesis defect type 2

    MedlinePlus

    ... bile acid synthesis defect type 2 congenital bile acid synthesis defect type 2 Enable Javascript to view ... PDF Open All Close All Description Congenital bile acid synthesis defect type 2 is a disorder characterized ...

  8. ILT based defect simulation of inspection images accurately predicts mask defect printability on wafer

    NASA Astrophysics Data System (ADS)

    Deep, Prakash; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2016-05-01

    At advanced technology nodes mask complexity has been increased because of large-scale use of resolution enhancement technologies (RET) which includes Optical Proximity Correction (OPC), Inverse Lithography Technology (ILT) and Source Mask Optimization (SMO). The number of defects detected during inspection of such mask increased drastically and differentiation of critical and non-critical defects are more challenging, complex and time consuming. Because of significant defectivity of EUVL masks and non-availability of actinic inspection, it is important and also challenging to predict the criticality of defects for printability on wafer. This is one of the significant barriers for the adoption of EUVL for semiconductor manufacturing. Techniques to decide criticality of defects from images captured using non actinic inspection images is desired till actinic inspection is not available. High resolution inspection of photomask images detects many defects which are used for process and mask qualification. Repairing all defects is not practical and probably not required, however it's imperative to know which defects are severe enough to impact wafer before repair. Additionally, wafer printability check is always desired after repairing a defect. AIMSTM review is the industry standard for this, however doing AIMSTM review for all defects is expensive and very time consuming. Fast, accurate and an economical mechanism is desired which can predict defect printability on wafer accurately and quickly from images captured using high resolution inspection machine. Predicting defect printability from such images is challenging due to the fact that the high resolution images do not correlate with actual mask contours. The challenge is increased due to use of different optical condition during inspection other than actual scanner condition, and defects found in such images do not have correlation with actual impact on wafer. Our automated defect simulation tool predicts

  9. Oral telangiectatic granuloma with an intrabony defect

    PubMed Central

    Rathore, Akanksha; Jadhav, Tanya; Kulloli, Anita; Singh, Archana

    2015-01-01

    Oral telangiectatic granuloma is a benign hyperplastic lesion occurring in response to trauma or chronic irritation in the oral cavity. The characteristic histological appearance comprises of typical granulation tissue with a proliferation of small thin-walled blood vessels in the loose connective tissue. We describe a case of a 36-year-old female who had a swelling in the left maxillary region which was associated with the intrabony defect. An internal bevel gingivectomy was performed, and the histopathological report was suggestive of telangiectatic granuloma. The intrabony defect was managed with the placement of platelet rich fibrin plug in the defect. A follow-up at 6 months showed no recurrence and no loss in the width of keratinized tissue. The aim of this case is to highlight the rare association of intrabony defect with telangiectatic granuloma and the need for histopathological diagnosis in such lesions. PMID:26941527

  10. 47 CFR 25.112 - Defective applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... application requests authority to operate a space station in a frequency band that is not allocated...) Applications for space station authority found defective under paragraph (a)(3) of this section will not...

  11. 47 CFR 25.112 - Defective applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... application requests authority to operate a space station in a frequency band that is not allocated...) Applications for space station authority found defective under paragraph (a)(3) of this section will not...

  12. 47 CFR 25.112 - Defective applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... application requests authority to operate a space station in a frequency band that is not allocated...) Applications for space station authority found defective under paragraph (a)(3) of this section will not...

  13. 16 CFR 1115.4 - Defect.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how- ever, is necessary if the knife is to function adequately. The knife does not contain a defect...

  14. 16 CFR 1115.4 - Defect.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... example, a knife has a sharp blade and is capable of seriously injuring someone. This very sharpness, how- ever, is necessary if the knife is to function adequately. The knife does not contain a defect...

  15. Defect trapping in ABC block copolymers

    NASA Astrophysics Data System (ADS)

    Corte, Laurent; Yamauchi, Kazuhiro; Court, Francois; Cloitre, Michel; Hashimoto, Takeji; Leibler, Ludwik

    2004-03-01

    Equilibrium morphologies in molten ABC triblock terpolymers are much more difficult to attain than in AB diblocks. In practice, it is important to know whether and how synthesis conditions influence the morphology and properties of copolymer materials. It is also relevant to understand the mechanisms of defect formation and annihilation. Indeed, a potential use of copolymers in new applications such as lithography highly depends on the ability to produce regular structures with no or few defects. We show that even the simplest lamellar structures exhibit high sensitivity to preparation conditions and that strongly trapped structural defects inherent to ABC triblock architecture cannot be removed by long annealing. Annealing can induce a transition from a lamellar structure in which A and C blocks are mixed to a lamellar structure where A, B and C are segregated. We propose reorganization mechanisms that are at the origin of some characteristic defects.

  16. National Birth Defects Prevention Study (NBDPS)

    MedlinePlus

    ... were taking multivitamins before their pregnancy. [ Read Summary ] Air Pollution and Congenital Heart Defects Many pregnant women, especially ... research is needed to learn what levels of air pollution affect an unborn baby. [ Read Summary ] The Potential ...

  17. When Your Baby Has a Birth Defect

    MedlinePlus

    ... or a heart defect ) or functional/developmental (like Down syndrome , deafness, or a metabolic disorder like phenylketonuria). Some ... in the baby, which can cause problems like Down syndrome and Turner syndrome . amniocentesis and chorionic villi sampling. ...

  18. When Your Baby Has a Birth Defect

    MedlinePlus

    ... as heart defects, cleft lip and palate, or cerebral palsy. Still, you may find yourself being both the ... the NICU Gene Therapy and Children Down Syndrome Cerebral Palsy Spina Bifida Prenatal Genetic Counseling What Is a ...

  19. Phase measurements of EUV mask defects

    DOE PAGES

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; ...

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than themore » conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.« less

  20. Phase measurements of EUV mask defects

    SciTech Connect

    Claus, Rene A.; Wang, Yow-Gwo; Wojdyla, Antoine; Benk, Markus P.; Goldberg, Kenneth A.; Neureuther, Andrew R.; Naulleau, Patrick P.; Waller, Laura

    2015-02-22

    Extreme Ultraviolet (EUV) Lithography mask defects were examined on the actinic mask imaging system, SHARP, at Lawrence Berkeley National Laboratory. Also, a quantitative phase retrieval algorithm based on the Weak Object Transfer Function was applied to the measured through-focus aerial images to examine the amplitude and phase of the defects. The accuracy of the algorithm was demonstrated by comparing the results of measurements using a phase contrast zone plate and a standard zone plate. Using partially coherent illumination to measure frequencies that would otherwise fall outside the numerical aperture (NA), it was shown that some defects are smaller than the conventional resolution of the microscope. We found that the programmed defects of various sizes were measured and shown to have both an amplitude and a phase component that the algorithm is able to recover.

  1. Molecular Mechanisms of Midfacial Developmental Defects

    PubMed Central

    Suzuki, Akiko; Sangani, Dhruvee R.; Ansari, Afreen; Iwata, Junichi

    2015-01-01

    The morphogenesis of midfacial processes requires the coordination of a variety of cellular functions of both mesenchymal and epithelial cells to develop complex structures. Any failure or delay in midfacial development as well as any abnormal fusion of the medial and lateral nasal and maxillary prominences will result in developmental defects in the midface with a varying degree of severity, including cleft, hypoplasia, and midline expansion. In spite of the advances in human genome sequencing technology, the causes of nearly 70 percent of all birth defects, which include midfacial development defects, remain unknown. Recent studies in animal models have highlighted the importance of specific signaling cascades and genetic-environmental interactions in the development of the midfacial region. This review will summarize the current understanding of the morphogenetic processes and molecular mechanisms underlying midfacial birth defects based on mouse models with midfacial developmental abnormalities. PMID:26562615

  2. Residual Defect Density in Random Disks Deposits

    PubMed Central

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A. C.

    2015-01-01

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 109 particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed. PMID:26235809

  3. Living with a Congenital Heart Defect

    MedlinePlus

    ... well the heart’s chambers and valves are working. Health Insurance and Employment Adults who have congenital heart defects ... carefully consider how changing jobs will affect their health insurance coverage. Some health plans have waiting periods or ...

  4. Defect properties of ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Stehr, J. E.; Devika, M.; Reddy, N. Koteeswara; Tu, C. W.; Chen, W. M.; Buyanova, I. A.

    2014-02-01

    In this work we examined optical and defect properties of as-grown and Ni-coated ZnO nanowires (NWs) grown by rapid thermal chemical vapor deposition by means of optically detected magnetic resonance (ODMR). Several grown-in defects are revealed by monitoring visible photoluminescence (PL) emissions and are attributed to Zn vacancies, O vacancies, a shallow (but not effective mass) donor and exchange-coupled pairs of a Zn vacancy and a Zn interstitial. It is also found that the same ODMR signals are detected in the as-grown and Ni-coated NWs, indicating that metal coatings does not significantly affect formation of the aforementioned defects and that the observed defects are located in the bulk of the NWs.

  5. Microcephaly and Other Birth Defects: Zika

    MedlinePlus

    ... ol Português Recommend on Facebook Tweet Share Compartir Zika and Microcephaly Microcephaly is a birth defect in ... pregnancy or has stopped growing after birth. Congenital Zika Syndrome Congenital Zika syndrome is a pattern of ...

  6. Nanoparticle Solubility in Liquid Crystalline Defects

    NASA Astrophysics Data System (ADS)

    Whitmer, Jonathan K.; Armas-Perez, Julio C.; Joshi, Abhijeet A.; Roberts, Tyler F.; de Pablo, Juan J.

    2013-03-01

    Liquid crystalline materials often incorporate regions (defects) where the orientational ordering present in the bulk phase is disrupted. These include point hedgehogs, line disclinations, and domain boundaries. Recently, it has been shown that defects will accumulate impurities such as small molecules, monomer subunits or nanoparticles. Such an effect is thought to be due to the alleviation of elastic stresses within the bulk phase, or to a solubility gap between a nematic phase and the isotropic defect core. This presents opportunities for encapsulation and sequestration of molecular species, in addition to the formation of novel structures within a nematic phase through polymerization and nanoparticle self-assembly. Here, we examine the solubility of nanoparticles within a coarse-grained liquid crystalline phase and demonstrate the effects of nanoparticle size and surface interactions in determining sequestration into defect regions.

  7. Holographic entanglement entropy of surface defects

    NASA Astrophysics Data System (ADS)

    Gentle, Simon A.; Gutperle, Michael; Marasinou, Chrysostomos

    2016-04-01

    We calculate the holographic entanglement entropy in type IIB supergravity solutions that are dual to half-BPS disorder-type surface defects in N=4 supersymmetric Yang-Mills theory. The entanglement entropy is calculated for a ball-shaped region bisected by a surface defect. Using the bubbling supergravity solutions we also compute the expectation value of the defect operator. Combining our result with the previously-calculated one-point function of the stress tensor in the presence of the defect, we adapt the calculation of Lewkowycz and Maldacena [1] to obtain a second expression for the entanglement entropy. Our two expressions agree up to an additional term, whose possible origin and significance is discussed.

  8. Five Facts about Congenital Heart Defects

    MedlinePlus

    ... Features Five Facts about Congenital Heart Defects Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir ... Folic Acid : Helping to Ensure a Healthy Pregnancy. ( English or Spanish ) Ten Tips to Prevent Infections during ...

  9. Exploration of defect structures on graphene.

    PubMed

    Yu, Shansheng; Zheng, Weitao

    2013-02-01

    For graphene obtained by chemical vapor deposition, there are large amount of defects in the crystalline structures. The carbon atoms from the feedstock can attack the graphene surface in annealing process, which may be one of the reasons affecting the structure of graphene. In order to explore some defect structures on graphene, we investigate the adsorption of carbon adatoms and vacancies on graphene using first-principles calculations. It is demonstrated that the adatoms can form strong covalent bonds with the graphene and the C-C dimmer adsorption may be the most prolific defect model. The C adatom can even fill simple vacancy of graphene. Our numerical simulations also show that the defect structures can lead to the splitting of the mid-gap peak of perfect graphene in the electronic structures. It is suggested that its conductivity would be lower than that of the perfect graphene, which can explain the low mobility of the charge carriers in some experiments.

  10. Genetic Counseling for Congenital Heart Defects

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Genetic Counseling for Congenital Heart Defects Updated:Oct 26, ... person with congenital heart disease considers having children. Genetic counseling can help answer these questions and address ...

  11. Pulmonary complications of abdominal wall defects.

    PubMed

    Panitch, Howard B

    2015-01-01

    The abdominal wall is an integral component of the chest wall. Defects in the ventral abdominal wall alter respiratory mechanics and can impair diaphragm function. Congenital abdominal wall defects also are associated with abnormalities in lung growth and development that lead to pulmonary hypoplasia, pulmonary hypertension, and alterations in thoracic cage formation. Although infants with ventral abdominal wall defects can experience life-threatening pulmonary complications, older children typically experience a more benign respiratory course. Studies of lung and chest wall function in older children and adolescents with congenital abdominal wall defects are few; such investigations could provide strategies for improved respiratory performance, avoidance of respiratory morbidity, and enhanced exercise ability for these children.

  12. This Issue: Correlates of a Defective School.

    ERIC Educational Resources Information Center

    Gilman, David Alan

    1992-01-01

    Describes correlates of defective schools: perks for very few; faulty communication; adult-centered programs; special interest group indulgence; poor professional relationships; personnel warehousing; incompetent consultants; literal interpretation of technicalities; imperial leadership; intimate relationships among personnel; incoherent…

  13. Epidemiology of neural tube defects

    PubMed Central

    Seidahmed, Mohammed Z.; Abdelbasit, Omar B.; Shaheed, Meeralebbae M.; Alhussein, Khalid A.; Miqdad, Abeer M.; Khalil, Mohamed I.; Al-Enazy, Naif M.; Salih, Mustafa A.

    2014-01-01

    Objectives: To find the prevalence of neural tube defects (NTDs), and compare the findings with local and international data, and highlight the important role of folic acid supplementation and flour fortification with folic acid in preventing NTDs. Methods: This is a retrospective study of data retrieved from the medical records of live newborn infants admitted to the Neonatal Intensive Care Unit (NICU), Security Forces Hospital (SFH), Riyadh, Saudi Arabia with NTDs spanning 14 years (1996-2009). All pregnant women on their first antenatal visit to the primary care clinic were prescribed folic acid 0.5 mg daily, or 5 mg if there is a family history of NTD. The pre-fortification prevalence is compared to post-fortification, before and after excluding syndromic, genetic, and chromosomal causes. The results were compared with reports from other parts of Saudi Arabia and internationally, through a literature search using MEDLINE. Results: The prevalence of NTDs during the period was 1.2 per 1000 live births. The pre-fortification of flour with folic acid prevalence was 1.46 per 1000 live births. The post-fortification prevalence was 1.05 (p=0.103). After excluding syndromic, genetic, and chromosomal causes from calculation of the prevalence, there was a significant reduction in the prevalence, from 1.46 to 0.81 per 1000 live births (p=0.0088). Syndromic, genetic, and chromosomal causes were identified in 20 cases (19.4%). Only 2% of mothers received preconception folic acid, and only 10% of them received it during the first 4 weeks of gestation. Conclusion: Despite the implementation of fortification of flour with folic acid since 2001, the prevalence of NTDs in the Kingdom of Saudi Arabia is still high. This is due to the impact of genetic, syndromic, and chromosomal causes of NTD not preventable by folic acid. Other factors like unplanned pregnancy and lack of awareness of the role of folic acid in preventing nonsyndromic causes, play a significant role. PMID

  14. Defects and Transport in Lithium Niobium Trioxide

    NASA Astrophysics Data System (ADS)

    Mehta, Apurva

    1990-01-01

    This dissertation presents work done on characterizing the defects and transport properties of congruent LiNbO _3. The focus of the study is the high temperature (800^circC to 1000^circC) equilibrium defect structure. The majority defects are described in terms of the 'LiNbO_3-ilmenite' defect model previously presented (26). Here the emphasis is placed on quantifying the defect concentrations. Congruent LiNbO_3 is highly nonstoichiometric. The large concentration of ionic defects present are mobile and contribute to electrical conduction. The ionic conduction was separated from the total conduction using defect chemistry and the transference number thus obtained was checked against the transference number obtained in a galvanic cell measurement. LiNbO_3 is an insulator (band gap = 4 eV). Hence one assumes that almost all of the conduction electrons are created by reduction. The degree of oxygen nonstoichiometry, a measure of the extent of chemical reduction, and the electron concentrations, were quantified as a function of oxygen partial pressure and the temperature by coulometric titration. The nonstoichiometry thus obtained was compared with nonstoichiometry obtained by TGA measurements. By fixing the phase composition of the sample in a buffered system, a set of constant composition measurements could be undertaken. These constant composition measurements were used to obtain the enthalpy of formation of conduction electrons, 1.95 eV, and the hopping energy for their motion at elevated temperatures, 0.55 eV, independently. The sum of the two energies was obtained by measuring the temperature dependence of the electronic conduction. The sum of the energies was found to be in excellent agreement with the energy obtained from equilibrium conduction. In conclusion, a quantitative and self-consistent picture of defects and their migration in LiNbO _3 was obtained.

  15. Defect structure of web silicon ribbon

    NASA Technical Reports Server (NTRS)

    Cunningham, B.; Strunk, H.; Ast, D.

    1980-01-01

    The results of a preliminary study of two dendritic web samples are presented. The structure and electrical activity of the defects in the silicon webs were studied. Optical microscopy of chemically etched specimens was used to determine dislocation densities. Samples were mechanically polished, then Secco etched for approximately 5 minutes. High voltage transmission electron microscopy was used to characterize the crystallographic nature of the defects.

  16. Corrosion of surface defects in fine wires.

    PubMed

    Rentler, R M; Greene, N D

    1975-11-01

    Defects were observed on the surfaces of various fine diameter wires commonly used in biomedical applications. These surface irregularities were viewed at high magnifications using a scanning electron microscope which has a much greater depth of field than normal light microscopy. Defects include scratches, pits, and crevices, which are the result of commercial wire drawing practices. Corrosion test results show that imperfections can serve as sites for localized corrosion attack which could lead to premature failures.

  17. INNOVATIVE EDDY CURRENT PROBE FOR MICRO DEFECTS

    SciTech Connect

    Santos, Telmo G.; Vilaca, Pedro; Quintino, Luisa; Santos, Jorge dos; Rosado, Luis

    2010-02-22

    This paper reports the development of an innovative eddy current (EC) probe, and its application to micro-defects on the root of the Friction Stir Welding (FSW). The new EC probe presents innovative concept issues, allowing 3D induced current in the material, and a lift-off independence. Validation experiments were performed on aluminium alloys processed by FSW. The results clearly show that the new EC probe is able to detect and sizing surface defects about 60 microns depth.

  18. Neutron-induced defects in optical fibers

    SciTech Connect

    Rizzolo, S.; Morana, A.; Boukenter, A.; Ouerdane, Y.; Girard, S.; Cannas, M.; Boscaino, R.; Bauer, S.; Perisse, J.; Mace, J-R.; Nacir, B.

    2014-10-21

    We present a study on 0.8 MeV neutron-induced defects up to fluences of 10{sup 17} n/cm{sup 2} in fluorine doped optical fibers by using electron paramagnetic resonance, optical absorption and confocal micro-luminescence techniques. Our results allow to address the microscopic mechanisms leading to the generation of Silica-related point-defects such as E', H(I), POR and NBOH Centers.

  19. EUV actinic defect inspection and defect printability at the sub-32 nm half pitch

    SciTech Connect

    Huh, Sungmin; Kearney, Patrick; Wurm, Stefan; Goodwin, Frank; Han, Hakseung; Goldberg, Kenneth; Mochi, Iacopp; Gullikson, Eric M.

    2009-08-01

    Extreme ultraviolet (EUV) mask blanks with embedded phase defects were inspected with a reticle actinic inspection tool (AIT) and the Lasertec M7360. The Lasertec M7360, operated at SEMA TECH's Mask Blank Development Center (MBDC) in Albany, NY, has a sensitivity to multilayer defects down to 40-45 nm, which is not likely sufficient for mask blank development below the 32 nm half-pitch node. Phase defect printability was simulated to calculate the required defect sensitivity for a next generation blank inspection tool to support reticle development for the sub-32 nm half-pitch technology node. Defect mitigation technology is proposed to take advantage of mask blanks with some defects. This technology will reduce the cost of ownership of EUV mask blanks. This paper will also discuss the kind of infrastructure that will be required for the development and mass production stages.

  20. Reduction in Defect Content of ODS Alloys

    SciTech Connect

    Ritherdon, J

    2001-05-15

    The work detailed within this report is a continuation of earlier work carried out under contract number 1DX-SY382V. The earlier work comprises a literature review of the sources and types of defects found principally in Fe-based ODS alloys as well as experimental work designed to identify defects in the prototype ODS-Fe{sub 3}Al alloy, deduce their origins and to recommend methods of defect reduction. The present work is an extension of the experimental work already reported and concentrates on means of reduction of defects already identified rather than the search for new defect types. This report also includes results gathered during powder separation trials, conducted by the University of Groningen, Netherlands and coordinated by the University of Liverpool, involving the separation of different metallic powders in terms of their differing densities. The scope and objectives of the present work were laid out in the technical proposal ''Reduction in Defect Content in ODS Alloys-III''. All the work proposed in the ''Statement of Work'' section of the technical proposal has been carried out and all work extra to the ''Statement of Work'' falls within the context of an ODS-Fe{sub 3}Al alloy of improved overall quality and potential creep performance in the consolidated form. The outturn of the experimental work performed is reported in the following sections.

  1. Quality metrics for product defectiveness at KCD

    SciTech Connect

    Grice, J.V.

    1993-07-01

    Metrics are discussed for measuring and tracking product defectiveness at AlliedSignal Inc., Kansas City Division (KCD). Three new metrics, the metric (percent defective) that preceded the new metrics, and several alternatives are described. The new metrics, Percent Parts Accepted, Percent Parts Accepted Trouble Free, and Defects Per Million Observations, (denoted by PPA, PATF, and DPMO, respectively) were implemented for KCD-manufactured product and purchased material in November 1992. These metrics replace the percent defective metric that had been used for several years. The PPA and PATF metrics primarily measure quality performance while DPMO measures the effects of continuous improvement activities. The new metrics measure product quality in terms of product defectiveness observed only during the inspection process. The metrics were originally developed for purchased product and were adapted to manufactured product to provide a consistent set of metrics plant- wide. The new metrics provide a meaningful tool to measure the quantity of product defectiveness in terms of the customer`s requirements and expectations for quality. Many valid metrics are available and all will have deficiencies. These three metrics are among the least sensitive to problems and are easily understood. They will serve as good management tools for KCD in the foreseeable future until new flexible data systems and reporting procedures can be implemented that can provide more detailed and accurate metric computations.

  2. Nonequilibrium occupancy of tail states and defects in a-Si:H: Implications for defect structure

    NASA Astrophysics Data System (ADS)

    Schumm, G.; Jackson, W. B.; Street, R. A.

    1993-11-01

    A detailed investigation of the electron and hole occupancy of tail states in undoped amorphous silicon (a-Si:H) as well as changes in the dangling-bond occupancy as a function of excitation intensity was carried out using light-induced electron-spin-resonance (LESR) measurements. For very thick films the band-tail electron and hole densities are not proportional. Over a wide range of excitation conditions the excess hole density is constant, suggesting the presence of charged defects with a density that is 5-10 times larger than the neutral defect density in annealed or as-grown a-Si:H. Light soaking increases mainly the neutral defect density. The dependence of the excess hole density on film thickness and absorption profiles indicates that this effect is a bulk property, which may be masked in thinner films by the comparatively high interface defect density. Model calculations of nonequilibrium occupation statistics confirm the experimental results. For a defect distribution that includes charged defects, the calculations suggest a very small positive LESR signature of the dangling bond, in spite of the high density of charged defects in the material, as a necessary consequence of the asymmetries observed between electron and hole capture rates and tail-state distributions. The calculations demonstrate that the lack of this signature does not imply a defect structure that contains predominantly neutral defects.

  3. Automated defect review of the wafer bevel with a defect review scanning electron microscope

    NASA Astrophysics Data System (ADS)

    McGarvey, Steve; Kanezawa, Masakazu

    2009-03-01

    One of the few remaining bastions of non-regulated Integrated Circuit defectivity is the wafer bevel. Recent internal Integrated Circuit Manufacturing studies have suggested that the edge bevel may be responsible for as much as a two to three percent yield loss during a defect excursion on the manufacturing line and a one to two percent yield loss during ongoing wafer manufacturing. A new generation of defect inspection equipment has been introduced to the Research and Development, Integrated Circuit, MEM's and Si wafer manufacturing markets that has imparted the ability for the end equipment user to detect defects located on the bevel of the wafer. The inherent weakness of the current batch of wafer bevel inspection equipment is the lack of automatic discrete defect classification data into multiple, significant classification bins and the lack of discrete elemental analysis data. Root cause analysis is based on minimal discrete defect analysis as a surrogate for a statistically valid sampling of defects from the bevel. This paper provides a study of the methods employed with a Hitachi RS-5500EQEQ Defect Review Scanning Electron Microscope (DRSEM) to automatically capture high resolution/high magnification images and collect elemental analysis on a statistically valid sample of the discrete defects that were located by a bevel inspection system.

  4. Comparison of defects identified through Minnesota's Birth Defects Information System And Vital Records, 2006-2008.

    PubMed

    Banerjee, Emily; Zabel, Erik; Alexander, Bruce

    2012-01-01

    The purpose of this study was to examine the differences in birth defects identified through passive and active surveillance systems in Hennepin and Ramsey counties in Minnesota, 2006-2008. This was done by comparing birth defects identified on birth certificates through the Minnesota Department of Health's Office of the State Registrar's Birth and Death Registry (vital records) with those identified by the Minnesota Department of Health's Birth Defects Information System (BDIS), an active birth defects surveillance system. The study population included 73,059 babies born to residents of Hennepin and Ramsey counties. There were 1,882 babies that either vital records and/or BDIS identified as having 1 or more birth defects. Cases identified by BDIS were then linked with matching birth certificates found in the vital records database. Using BDIS as the gold standard, it was observed that the vital records database had an overall underreporting rate of 89% when all broad groups of defects were compared, and 72% when 11 specific defects tracked by both registries were compared. The sensitivity and positive predictive values of vital records to identify cases were also compared using BDIS as the gold standard, and demonstrated low sensitivities for most of the 11 comparable defects (range: 0% for tracheoesophageal fistula to 80% for anencephalus). These observations indicate that BDIS has significantly improved the quality of birth defects surveillance in Minnesota.

  5. USE OF BIOCERAMICS IN FILLING BONE DEFECTS

    PubMed Central

    Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales

    2015-01-01

    Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576

  6. Point-defect-mediated dehydrogenation of alane

    NASA Astrophysics Data System (ADS)

    Ismer, Lars

    2011-03-01

    For the engineering of better hydrogen storage materials a systematic understanding of their hydrogen sorption kinetics is crucial. Theoretical studies on metal hydrides have indicated that in many cases point defects control mass transport and hence hydrogen uptake and release. Manipulating point-defect concentrations thus allows control over hydrogen sorption kinetics, opening up new engineering strategies. However, in some cases the relevance of kinetic limitations due to point defects is still under debate; kinetic inhibition of hydrogen sorption has also been attributed to surface effects, e.g. oxide layers or low recombination rates. We present a systematic analysis of the dehydrogenation kinetics of alane (AlH3), one of the prime candidate materials for hydrogen storage. Using hybrid-density functional calculations we determine the concentrations and mobilities of point defects and their complexes. Kinetic Monte Carlo simulations are used to describe the full dehydrogenation reaction. We show that under dehydrogenation conditions charged hydrogen vacancy defects form in the crystal, which have a strong tendency towards clustering. The vacancy clusters denote local nuclei of Al phase, and the growth of these nuclei eventually drives the AlH3/Al transformation. However, the low concentration of vacancy defects limits the transport of hydrogen across the bulk, and hence acts as the rate-limiting part of the process. The dehydrogenation is therefore essentially inactive at room temperature, explaining why AlH3 is metastable for years, even though it is thermodynamically unstable. Our derived activation energy and dehydrogenation curves are in excellent agreement with the experimental data, providing evidence for the relevance of bulk point-defect kinetics. Work performed in collaboration with A. Janotti and C. G. Van de Walle, and supported by DOE.

  7. Decision making in reconstruction of defects of the eyelid.

    PubMed

    Ferguson, Noor M; Mathijssen, Irene M J; Hofer, Stefan O P; Mureau, Marc A M

    2011-02-01

    We present three patients with major defects of the eyelid who subsequently had them reconstructed. They included a defect of the lateral upper lid, a defect of the medial upper and lower lids, and a defect of the medial lower lid, cheek, and nose.

  8. Structure Defect Property Relationships in Binary Intermetallics

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Ding, Hong; Chen, Wei; Persson, Kristin; Canning, Andrew; Haranczyk, Maciej; Asta, Mark

    2015-03-01

    Ordered intermetallics are light weight materials with technologically useful high temperature properties such as creep resistance. Knowledge of constitutional and thermal defects is required to understand these properties. Vacancies and antisites are the dominant defects in the intermetallics and their concentrations and formation enthalpies could be computed by using first principles density functional theory and thermodynamic formalisms such as dilute solution method. Previously many properties of the intermetallics such as melting temperatures and formation enthalpies were statistically analyzed for large number of intermetallics using structure maps and data mining approaches. We undertook a similar exercise to establish the dependence of the defect properties in binary intermetallics on the underlying structural and chemical composition. For more than 200 binary intermetallics comprising of AB, AB2 and AB3 structures, we computed the concentrations and formation enthalpies of vacancies and antisites in a small range of stoichiometries deviating from ideal stoichiometry. The calculated defect properties were datamined to gain predictive capabilities of defect properties as well as to classify the intermetallics for their suitability in high-T applications. Supported by the US DOE under Contract No. DEAC02-05CH11231 under the Materials Project Center grant (Award No. EDCBEE).

  9. Imprinting defects on human chromosome 15.

    PubMed

    Horsthemke, B; Buiting, K

    2006-01-01

    The Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are two distinct neurogenetic diseases that are caused by the loss of function of imprinted genes on the proximal long arm of human chromosome 15. In a few percent of patients with PWS and AS, the disease is due to aberrant imprinting and gene silencing. In patients with PWS and an imprinting defect, the paternal chromosome carries a maternal imprint. In patients with AS and an imprinting defect, the maternal chromosome carries a paternal imprint. Imprinting defects offer a unique opportunity to identify some of the factors and mechanisms involved in imprint erasure, resetting and maintenance. In approximately 10% of cases the imprinting defects are caused by a microdeletion affecting the 5' end of the SNURF-SNRPN locus. These deletions define the 15q imprinting center (IC), which regulates imprinting in the whole domain. These findings have been confirmed and extended in knock-out and transgenic mice. In the majority of patients with an imprinting defect, the incorrect imprint has arisen without a DNA sequence change, possibly as the result of stochastic errors of the imprinting process or the effect of exogenous factors.

  10. Ultrasonic NDE Simulation for Composite Manufacturing Defects

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    The increased use of composites in aerospace components is expected to continue into the future. The large scale use of composites in aerospace necessitates the development of composite-appropriate nondestructive evaluation (NDE) methods to quantitatively characterize defects in as-manufactured parts and damage incurred during or post manufacturing. Ultrasonic techniques are one of the most common approaches for defect/damage detection in composite materials. One key technical challenge area included in NASA's Advanced Composite's Project is to develop optimized rapid inspection methods for composite materials. Common manufacturing defects in carbon fiber reinforced polymer (CFRP) composites include fiber waviness (in-plane and out-of-plane), porosity, and disbonds; among others. This paper is an overview of ongoing work to develop ultrasonic wavefield based methods for characterizing manufacturing waviness defects. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with in-plane fiber waviness (also known as marcelling). Wavefield data processing methods are applied to the simulation data to explore possible routes for quantitative defect characterization.

  11. Robust detection of defects in imaging arrays

    NASA Astrophysics Data System (ADS)

    Dudas, Jozsef; Jung, Cory; Chapman, Glenn H.; Koren, Zahava; Koren, Israel

    2006-01-01

    As digital imagers continue to increase in size and pixel density, the detection of faults in the field becomes critical to delivering high quality output. Traditional schemes for defect detection utilize specialized hardware at the time of manufacture and are impractical for use in the field, while previously proposed software-based approaches tend to lead to quality-degrading false positive diagnoses. This paper presents an algorithm that utilizes statistical information extracted from a sequence of normally captured images to identify the location and type of defective pixels. Building on previous research, this algorithm utilizes data local to each pixel and Bayesian statistics to more accurately infer the likelihood of each defect, which successfully improves the detection time. Several defect types are considered, including pixels with one-half of the typical sensitivity and permanently stuck pixels. Monte Carlo simulations have shown that for defect densities of up to 0.5%, 50 ordinary images are sufficient to accurately identify all faults without falsely diagnosing good pixels as faulty. Testing also indicates that the algorithm can be extended to higher resolution imagers and to those with noisy stuck pixels, with only minimal cost to performance.

  12. Efficient Co-Replication of Defective Novirhabdovirus

    PubMed Central

    Rouxel, Ronan N.; Mérour, Emilie; Biacchesi, Stéphane; Brémont, Michel

    2016-01-01

    We have generated defective Viral Hemorrhagic Septicemia Viruses (VHSV) which express either the green fluorescent protein (GFP) or a far-red fluorescent protein (mKate) by replacing the genes encoding the nucleoprotein N or the polymerase-associated P protein. To recover viable defective viruses, rVHSV-ΔN-Red and rVHSV-ΔP-Green, fish cells were co-transfected with both deleted cDNA VHSV genomes, together with plasmids expressing N, P and L of the RNA-dependent RNA polymerase. After one passage of the transfected cell supernatant, red and green cell foci were observed. Viral titer reached 107 PFU/mL after three passages. Infected cells were always red and green with the very rare event of single red or green cell foci appearing. To clarify our understanding of how such defective viruses could be so efficiently propagated, we investigated whether (i) a recombination event between both defective genomes had occurred, (ii) whether both genomes were co-encapsidated in a single viral particle, and (iii) whether both defective viruses were always replicated together through a complementation phenomenon or even as conglomerate. To address these hypotheses, genome and viral particles have been fully characterized and, thus, allowing us to conclude that rVHSV-ΔN-Red and rVHSV-ΔP-Green are independent viral particles which could propagate only by simultaneously infecting the same cells. PMID:26959049

  13. High purith low defect FZ silicon

    NASA Technical Reports Server (NTRS)

    Kimura, H.; Robertson, G.

    1985-01-01

    The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.

  14. Role of point defects/defect complexes in silicon device processing. Book of abstracts, fourth workshop

    SciTech Connect

    Not Available

    1994-06-01

    The 41 abstracts are arranged into 6 sessions: impurities and defects in commercial substrates: their sources, effects on material yield, and material quality; impurity gettering in silicon: limits and manufacturability of impurity gettering and in silicon solar cells; impurity/defect passivation; new concepts in silicon growth: improved initial quality and thin films; and silicon solar cell design opportunities.

  15. Determining the critical size of EUV mask substrate defects

    SciTech Connect

    Goldberg, Kenneth A.; Gullikson, Eric M.; Han, Hakseung; Cho, Wonil; Jeon, Chan-Uk; Wurm, Stefan

    2008-05-26

    Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure tools. SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images from exposed wafers. In this paper, a comprehensive understanding of substrate defect printability will be presented and printability specifications of EUV mask substrate defects will be discussed.

  16. Determining the Critcial Size of EUV Mask Substrate Defects

    SciTech Connect

    Mccall, Monnikue M; Han, Hakseung; Cho, Wonil; Goldberg, Kenneth; Gullikson, Eric; Jeon, Chan-Uk; Wurm, Stefan

    2008-02-28

    Determining the printability of substrate defects beneath the extreme ultraviolet (EUV) reflecting multilayer stack is an important issue in EUVL lithography. Several simulation studies have been performed in the past to determine the tolerable defect size on EUV mask blank substrates but the industry still has no exact specification based on real printability tests. Therefore, it is imperative to experimentally determine the printability of small defects on a mask blanks that are caused by substrate defects using direct printing of programmed substrate defect in an EUV exposure tool. SEMATECH fabricated bump type program defect masks using standard electron beam lithography and performed printing tests with the masks using an EUV exposure tool. Defect images were also captured using SEMATECH's Berkeley Actinic Imaging Tool in order to compare aerial defect images with secondary electron microscope images from exposed wafers. In this paper, a comprehensive understanding of substrate defect printability will be presented and printability specifications of EUV mask substrate defects will be discussed.

  17. Laterality defects in the national birth defects prevention study 1998-2007 birth prevalence and descriptive epidemiology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little is known epidemiologically about laterality defects. Using data from the National Birth Defects Prevention Study (NBDPS), a large multi-site case-control study of birth defects, we analyzed prevalence and selected characteristics in children born with laterality defects born from 1998 to 2007...

  18. Point defect reduction in wide bandgap semiconductors by defect quasi Fermi level control

    NASA Astrophysics Data System (ADS)

    Reddy, P.; Hoffmann, M. P.; Kaess, F.; Bryan, Z.; Bryan, I.; Bobea, M.; Klump, A.; Tweedie, J.; Kirste, R.; Mita, S.; Gerhold, M.; Collazo, R.; Sitar, Z.

    2016-11-01

    A theoretical framework for a general approach to reduce point defect density in materials via control of defect quasi Fermi level (dQFL) is presented. The control of dQFL is achieved via excess minority carrier generation. General guidelines for controlling dQFL that lead to a significant reduction in compensating point defects in any doped material is proposed. The framework introduces and incorporates the effects of various factors that control the efficacy of the defect reduction process such as defect level, defect formation energy, bandgap, and excess minority carrier density. Modified formation energy diagrams are proposed, which illustrate the effect of the quasi Fermi level control on the defect formation energies. These formation energy diagrams provide powerful tools to determine the feasibility and requirements to produce the desired reduction in specified point defects. An experimental study of the effect of excess minority carriers on point defect incorporation in GaN and AlGaN shows an excellent quantitative agreement with the theoretical predictions. Illumination at energies larger than the bandgap is employed as a means to generate excess minority carriers. The case studies with CN in Si doped GaN, H and VN in Mg doped GaN and VM-2ON in Si doped Al0.65Ga0.35N revealed a significant reduction in impurities in agreement with the proposed theory. Since compensating point defects control the material performance (this is particularly challenging in wide and ultra wide bandgap materials), dQFL control is a highly promising technique with wide scope and may be utilized to improve the properties of various materials systems and performance of devices based upon them.

  19. Birth defects in pregestational diabetes: Defect range, glycemic threshold and pathogenesis.

    PubMed

    Gabbay-Benziv, Rinat; Reece, E Albert; Wang, Fang; Yang, Peixin

    2015-04-15

    Currently, 60 million women of reproductive age (18-44 years old) worldwide, and approximately 3 million American women have diabetes mellitus, and it has been estimated that this number will double by 2030. Pregestational diabetes mellitus (PGD) is a significant public health problem that increases the risk for structural birth defects affecting both maternal and neonatal pregnancy outcome. The most common types of human structural birth defects associated with PGD are congenital heart defects and central nervous system defects. However, diabetes can induce birth defects in any other fetal organ. In general, the rate of birth defects increases linearly with the degree of maternal hyperglycemia, which is the major factor that mediates teratogenicity of PGD. Stringent prenatal care and glycemic control are effective means to reduce birth defects in PGD pregnancies, but cannot reduce the incidence of birth defects to the rate of that is seen in the nondiabetic population. Studies in animal models have revealed that PGD induces oxidative stress, which activates cellular stress signalling leading to dysregulation of gene expression and excess apoptosis in the target organs, including the neural tube and embryonic heart. Activation of the apoptosis signal-regulating kinase 1 (ASK1)-forkhead transcription factor 3a (FoxO3a)-caspase 8 pathway causes apoptosis in the developing neural tube leading to neural tube defects (NTDs). ASK1 activates the c-Jun-N-Terminal kinase 1/2 (JNK1/2), which leads to activation of the unfolded protein response and endoplasmic reticulum (ER) stress. Deletion of the ASK1 gene, the JNK1 gene, or the JNK2 gene, or inhibition of ER stress by 4-Phenylbutyric acid abrogates diabetes-induced apoptosis and reduces the formation of NTDs. Antioxidants, such as thioredoxin, which inhibits the ASK1-FoxO3a-caspase 8 pathway or ER stress inhibitors, may prevent PGD-induced birth defects.

  20. Global defect topology in nematic liquid crystals

    PubMed Central

    Machon, Thomas

    2016-01-01

    We give the global homotopy classification of nematic textures for a general domain with weak anchoring boundary conditions and arbitrary defect set in terms of twisted cohomology, and give an explicit computation for the case of knotted and linked defects in R3, showing that the distinct homotopy classes have a 1–1 correspondence with the first homology group of the branched double cover, branched over the disclination loops. We show further that the subset of those classes corresponding to elements of order 2 in this group has representatives that are planar and characterize the obstruction for other classes in terms of merons. The planar textures are a feature of the global defect topology that is not reflected in any local characterization. Finally, we describe how the global classification relates to recent experiments on nematic droplets and how elements of order 4 relate to the presence of τ lines in cholesterics. PMID:27493576

  1. Osteochondral defects in the ankle: why painful?

    PubMed

    van Dijk, C Niek; Reilingh, Mikel L; Zengerink, Maartje; van Bergen, Christiaan J A

    2010-05-01

    Osteochondral defects of the ankle can either heal and remain asymptomatic or progress to deep ankle pain on weight bearing and formation of subchondral bone cysts. The development of a symptomatic OD depends on various factors, including the damage and insufficient repair of the subchondral bone plate. The ankle joint has a high congruency. During loading, compressed cartilage forces its water into the microfractured subchondral bone, leading to a localized high increased flow and pressure of fluid in the subchondral bone. This will result in local osteolysis and can explain the slow development of a subchondral cyst. The pain does not arise from the cartilage lesion, but is most probably caused by repetitive high fluid pressure during walking, which results in stimulation of the highly innervated subchondral bone underneath the cartilage defect. Understanding the natural history of osteochondral defects could lead to the development of strategies for preventing progressive joint damage.

  2. Defect engineering of ZnO

    NASA Astrophysics Data System (ADS)

    Weber, M. H.; Selim, F. A.; Solodovnikov, D.; Lynn, K. G.

    2008-10-01

    The defect responsible for the transparent to red color change of nominally undoped ZnO bulk single crystals is investigated. Upon annealing in the presence of metallic Zn as reported by Halliburton et al. and also Ti and Zr a native defect forms with an energy level about 0.7 eV below the conduction band. This change is reversible upon annealing in oxygen. Optical transmission data along with positron depth profiles and annealing studies are combined to identify the defect as oxygen vacancies. Vacancy clustering occurs at about 500 °C if isolated zinc and oxygen vacancies. In the absence of zinc vacancies, clusters form at about 800 °C.

  3. Global defect topology in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.

    2016-07-01

    We give the global homotopy classification of nematic textures for a general domain with weak anchoring boundary conditions and arbitrary defect set in terms of twisted cohomology, and give an explicit computation for the case of knotted and linked defects in R3, showing that the distinct homotopy classes have a 1-1 correspondence with the first homology group of the branched double cover, branched over the disclination loops. We show further that the subset of those classes corresponding to elements of order 2 in this group has representatives that are planar and characterize the obstruction for other classes in terms of merons. The planar textures are a feature of the global defect topology that is not reflected in any local characterization. Finally, we describe how the global classification relates to recent experiments on nematic droplets and how elements of order 4 relate to the presence of τ lines in cholesterics.

  4. Preliminary work on the quantum defect measurements

    NASA Astrophysics Data System (ADS)

    Hutcherson, Lindsay; Sanders, Justin; Han, Jianing

    2016-05-01

    Van der Waals interactions are generally studied in physics, chemistry, biology, and other fields of science. In order to fine-tune van der Waals interactions, the atomic energy levels need to be known very accurately. That is, we must accurately determine the quantum defects. Quantum defects of 85Rb have been recently measured, and the quantum defects of 87Rb have also been measured for nS and nD states with the resolution of 1 MHz. this experiment will focus on the P, F, and G states, which are higher angular momentum states and more sensitive to electric fields. These states are crucial for collisions, which may lead to some of the interesting phenomena in ultracold atoms, such as ultracold plasma. In this presentation, a progress report will be given on this project. The authors would like to acknowledge the travel Grants from DDOE and the University of South Alabama.

  5. Congenital varicella associated with multiple defects

    PubMed Central

    McKendry, J. B. J.; Bailey, J. D.

    1973-01-01

    Only two previous reports in the medical literature record the association of multiple congenital defects in the baby and varicella in the mother during the first trimester of pregnancy. The case is reported of a female infant born to a mother who contracted varicella in the 11th week of pregnancy. The infant was premature, small for dates, and had skin and localized muscular defects and respiratory difficulty. Subsequently she was found to be retarded. She failed to thrive and was subject to frequent infections. Further investigation revealed a unilateral diaphragmatic weakness, scoliosis and abnormalities of the ocular fundi. Several non-febrile seizures occurred. A pneumoencephalogram revealed dilated ventricles. She died at 20 months of age following a seizure. Consideration of maternal infections, especially viral, occurring early in pregnancy, augmented by antibody studies in the newborn and mother should be part of the investigation of multiple congenital defects in the newborn. PMID:4682642

  6. Defects and degeneracies in supersymmetry protected phases

    NASA Astrophysics Data System (ADS)

    Fokkema, Thessa; Schoutens, Kareljan

    2015-08-01

    We analyse a class of 1D lattice models, known as \\text{M}k models, which are characterised by an order-k clustering of spin-less fermions and by N}=2 lattice supersymmetry. Our main result is the identification of a class of (bulk or edge) defects, that are in one-to-one correspondence with so-called spin fields in a corresponding {Z}k parafermion CFT. In the gapped regime, injecting such defects leads to ground-state degeneracies that are protected by the supersymmetry. The defects, which are closely analogous to quasi-holes over the fermonic Read-Rezayi quantum Hall states, display characteristic fusion rules, which are of Ising type for k = 2 and of Fibonacci type for k = 3.

  7. [Nonoperative management of rotator cuff defects].

    PubMed

    Heers, H; Heers, G

    2007-09-01

    Rotator cuff defects are common disorders of the shoulder. Although the outcome of surgical treatment of rotator cuff tears is well documented in the literature, less is known about the efficacy of physical therapy for symptomatic rotator cuff tears. Clear therapeutic standards are still missing. This article presents the nonoperative treatment options as well as a literature review. The results of most studies show that patients with rotator cuff defects do benefit from both physical therapy and simple home exercises independent from the size of the defect. However, due to the heterogeneity of outcome measures used, it is difficult to compare the results published. There is still a need for well-planned randomised controlled studies investigating the efficacy of exercise in the management of rotator cuff tears.

  8. Partial atrioventricular canal defect in a dog.

    PubMed

    Santamarina, G; Espino, L; Vila, M; Suarez, M L

    2002-01-01

    A case of a partial atrial canal defect is described in a nine-month-old female English setter. The patient had a large ostium primum atrial septal defect and a concurrent malformation of the mitral valve. Electrocardiographic and radiographic findings were suggestive of marked enlargement of the right heart and pulmonary overcirculation. Definitive diagnosis and assessment of the haemodynamic consequences were made using echocardiography. The magnitude of the left-to-right intracardiac shunt was estimated by measuring the pulmonary to systemic flow ratio (Qp/Qs) from Doppler-derived pulmonary and aortic blood flow. The results of this report suggest that dogs with a partial atrioventricular canal defect and concurrent mild mitral regurgitation may exhibit no clinical signs during the first years of life, even in cases with a Qp/Qs ratio of greater than 2.

  9. Trapping of drops by wetting defects

    PubMed Central

    't Mannetje, Dieter; Ghosh, Somnath; Lagraauw, Rudy; Otten, Simon; Pit, Arjen; Berendsen, Christian; Zeegers, Jos; van den Ende, Dirk; Mugele, Frieder

    2014-01-01

    Controlling the motion of drops on solid surfaces is crucial in many natural phenomena and technological processes including the collection and removal of rain drops, cleaning technology and heat exchangers. Topographic and chemical heterogeneities on solid surfaces give rise to pinning forces that can capture and steer drops in desired directions. Here we determine general physical conditions required for capturing sliding drops on an inclined plane that is equipped with electrically tunable wetting defects. By mapping the drop dynamics on the one-dimensional motion of a point mass, we demonstrate that the trapping process is controlled by two dimensionless parameters, the trapping strength measured in units of the driving force and the ratio between a viscous and an inertial time scale. Complementary experiments involving superhydrophobic surfaces with wetting defects demonstrate the general applicability of the concept. Moreover, we show that electrically tunable defects can be used to guide sliding drops along actively switchable tracks—with potential applications in microfluidics. PMID:24721935

  10. Air pollution and congenital heart defects.

    PubMed

    Agay-Shay, Keren; Friger, Michael; Linn, Shai; Peled, Ammatzia; Amitai, Yona; Peretz, Chava

    2013-07-01

    Environmental factors such as ambient air pollution have been associated with congenital heart defects. The aim of this study was to investigate the association between gestational exposure to air pollution and the risk of congenital heart defects. We conducted a registry-based cohort study with a total of 135,527 live- and still-births in the Tel-Aviv region during 2000-2006. We used a Geographic Information System-based spatiotemporal approach with weekly inverse distance weighting modeling to evaluate associations between gestational exposure to ambient air pollution during weeks 3-8 of pregnancy and the risk for congenital heart defects. The following pollutants were studied: carbon monoxide, nitrogen-dioxide, ozone, sulfur-dioxide and particulate matter with aerodynamic diameter smaller than 10 μm and 2.5 μm (PM10, PM2.5 respectively). Logistic models, adjusted for socio-demographic covariates were used to evaluate the associations. We found that maternal exposure to increased concentrations of PM10 was associated with multiple congenital heart defects (adjusted OR 1.05, 95% CI: 1.01 to 1.10 for 10 μg/m(3) increment). An inverse association was observed between concentrations of PM2.5 and isolated patent ductus arteriosus (adjusted OR 0.78, 95% CI: 0.68 to 0.91 for 5 µg/m(3) increment). Sensitivity analyses showed that results were consistent. Generally there were no evidence for an association between gaseous air pollutants and congenital heart defects.Our results for PM10 and congenital heart defects confirm results from previous studies. The results for PM2.5 need further investigations.

  11. Defects in Carbon-Based Materials

    NASA Astrophysics Data System (ADS)

    Duscher, Gerd

    2013-03-01

    Two distinctly different carbon based semiconducting materials were investigated as to how point defects can influence the electric properties. SiC is a high power electronic material with high bulk mobility. The interface between SiC and SiO2 is generally considered to be the cause for the reduced mobility of SiC devices compared to bulk SiC. We investigated this interface with atomic resolution Z-contrast and electron energy-loss spectroscopy. We come to the conclusion that the previously observed interface layer is due to the miscut and does not exhibit any stoichiometric change. The structure of the interface which is limiting the device performance is caused by the steps and facets at the interface introduced by the miscut. We observed a high number of carbon in the oxide right next to the interface. Aberration corrected transmission electron microscopy enabled the investigation of the atomic structure of this highly stepped interface and the impact of geometry and chemistry on the electronic properties of this material. Graphene is an emerging electronic material also with high mobility. We investigated the defects and dopants in graphene were investigated. We observed point and extended defects in this 2D material. Due to the clear observation of all atoms involved, this material can serve as a model material to study point defects directly. We observe a electronegativity doping of substitutional Si. We observed a remarkable resistance to oxidation of a variety of point defects of elements that readily oxidize in normal circumstances. Boron and nitrogen doped graphene was investigated and the exact nature of the dopant sites and interactions will be shown. Generally speaking modern electron microscopy can directly visualize the full atomic structures in geometrically simple materials like graphene. The knowledge of point defects can be the basis to understand the electronic property structure relationship of structurally complex materials like SiC.

  12. Toward defect guard-banding of EUV exposures by full chip optical wafer inspection of EUV mask defect adders

    NASA Astrophysics Data System (ADS)

    Halle, Scott D.; Meli, Luciana; Delancey, Robert; Vemareddy, Kaushik; Crispo, Gary; Bonam, Ravi; Burkhardt, Martin; Corliss, Daniel

    2015-03-01

    The detection of EUV mask adder defects has been investigated with an optical wafer defect inspection system employing a methodology termed Die-to-"golden" Virtual Reference Die (D2VRD). Both opaque and clear type mask absorber programmed defects were inspected and characterized over a range of defect sizes, down to (4x mask) 40 nm. The D2VRD inspection system was capable of identifying the corresponding wafer print defects down to the limit of the defect printability threshold at approximately 30 nm (1x wafer). The efficacy of the D2VRD scheme on full chip wafer inspection to suppress random process defects and identify real mask defects is demonstrated. Using defect repeater analysis and patch image classification of both the reference die and the scanned die enables the unambiguous identification of mask adder defects.

  13. GaN: Defect and Device Issues

    SciTech Connect

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  14. Defect dynamics in crystalline buckled membranes

    NASA Astrophysics Data System (ADS)

    Pezzutti, Aldo D.; Vega, Daniel A.

    2011-07-01

    We study the dynamics of defect annihilation in flexible crystalline membranes suffering a symmetry-breaking phase transition. The kinetic process leading the system toward equilibrium is described through a Brazovskii-Helfrich-Canham Hamiltonian. In membranes, a negative disclination has a larger energy than a positive disclination. Here we show that this energetic asymmetry does not only affect equilibrium properties, like the Kosterlitz-Thouless transition temperature, but also plays a fundamental role in the dynamic of defects. Both unbinding of dislocations and Carraro-Nelson “antiferromagnetic” interactions between disclinations slow down the dynamics below the Lifshitz-Safran regime observed in flat hexagonal systems.

  15. Dirac oscillator interacting with a topological defect

    SciTech Connect

    Carvalho, J.; Furtado, C.; Moraes, F.

    2011-09-15

    In this work we study the interaction problem of a Dirac oscillator with gravitational fields produced by topological defects. The energy levels of the relativistic oscillator in the cosmic string and in the cosmic dislocation space-times are sensible to curvature and torsion associated to these defects and are important evidence of the influence of the topology on this system. In the presence of a localized magnetic field the energy levels acquire a term associated with the Aharonov-Bohm effect. We obtain the eigenfunctions and eigenvalues and see that in the nonrelativistic limit some results known in standard quantum mechanics are reached.

  16. Maximizing results in reconstruction of cheek defects.

    PubMed

    Mureau, Marc A M; Hofer, Stefan O P

    2009-07-01

    The face is exceedingly important, as it is the medium through which individuals interact with the rest of society. Reconstruction of cheek defects after trauma or surgery is a continuing challenge for surgeons who wish to reliably restore facial function and appearance. Important in aesthetic facial reconstruction are the aesthetic unit principles, by which the face can be divided in central facial units (nose, lips, eyelids) and peripheral facial units (cheeks, forehead, chin). This article summarizes established options for reconstruction of cheek defects and provides an overview of several modifications as well as tips and tricks to avoid complications and maximize aesthetic results.

  17. Interaction between a drifting spiral and defects

    SciTech Connect

    Zou, X.; Levine, H. ); Kessler, D.A. )

    1993-02-01

    Spiral waves, a type of reentrant excitation,'' are believed to be associated with the most dangerous cardiac arrhythmias, including ventricular tachycardia and fibrillation. Recent experimental findings have implicated defective regions as a means of trapping spirals which would otherwise drift and (eventually) disappear. Here, we model the myocardium as a simple excitable medium and study via simulation the interaction between a drifting spiral and one or more such defects. We interpret our results in terms of a criterion for the transition between trapped and untrapped drifting spirals.

  18. Automatic leather inspection of defective patterns

    NASA Astrophysics Data System (ADS)

    Tafuri, Maria; Branca, Antonella; Attolico, Giovanni; Distante, Arcangelo; Delaney, William

    1996-02-01

    Constant and consistent quality levels in the manufacturing industry increasingly require automatic inspection. This paper describes a vision system for leather inspection based upon visual textural properties of the material surface. As visual appearances of both leather and defects exhibit a wide range of variations due to original skin characteristics, curing processes and defect causes, location and classification of defective areas become hard tasks. This paper describes a method for separating the oriented structures of defects from normal leather, a background not homogeneous in color, thickness, brightness and finally in wrinkledness. The first step requires the evaluation of the orientation field from the image of the leather. Such a field associates to each point of the image a 2D vector having as direction the dominant local orientation of gradient vectors and the length proportional to their coherence evaluated in a neighborhood of fixed size. The second step analyzes such a vector flow field by projecting it on a set of basis vectors (elementary texture vectors) spanning the vector space where the vector fields associated to the defects can be defined. The coefficients of these projections are the parameters by means of which both detection and classification can be performed. Since the set of basis vectors is neither orthogonal nor complete, the projection requires the definition of a global optimization criteria that has been chosen to be the minimum difference between the original flow field and the vector field obtained as a linear combination of the basis vectors using the estimated coefficients. This optimization step is performed through a neural network initialized to recognize a limited number of patterns (corresponding to the basis vectors). This second step estimates the parameter vector in each point of the original image. Both leather without defects and defects can be characterized in terms of coefficient vectors making it possible to

  19. Defect Detection Using a Scanning Laser Source

    NASA Astrophysics Data System (ADS)

    Burrows, S. E.; Dixon, S.

    2011-06-01

    Surface breaking defects are identified using a scanning laser source. A Q-switched Nd-YAG laser is used as a non-contact source of ultrasound and an electromagnetic acoustic transducer (EMAT) employed as detector. For a thin plate, an increase in frequency content of the received wave is observed when the laser spot is situated directly over the defect. Time-frequency analysis using a Wigner transform has enabled individual Lamb wave modes to be identified, while propagation of Lamb waves through aluminium sheet is studied by finite element analysis.

  20. The hematopoietic defect in PNH is not due to defective stroma, but is due to defective progenitor cells.

    PubMed

    Nishimura, Jun-ichi; Ware, Russell E; Burnette, Angela; Pendleton, Andrew L; Kitano, Kiyoshi; Hirota, Toshiyuki; Machii, Takashi; Kitani, Teruo; Smith, Clay A; Rosse, Wendell F

    2002-01-01

    Although paroxysmal nocturnal hemoglobinuria (PNH) is often associated with aplastic anemia (AA), the nature of the pathogenetic link between PNH and AA remains unclear. Moreover, the PIG-A mutation appears to be necessary but not sufficient for the development of PNH, suggesting other factors are involved. The ability of PNH marrow cells to form in vitro hematopoietic colonies and the ability of PNH marrow to generate stroma that could support hematopoiesis of normal or PNH marrow in cross culture were investigated. PNH marrow from both post-Ficoll and post-lineage depleted hematopoietic progenitor cells grew similarly significantly fewer colonies than normal marrow. Sorting of CD59(+) and CD59(-) CD34(+) CD38(-) cells from patients with PNH showed similarly impaired clonogenic efficiency, indicating that the hematopoietic defect in PNH does not directly relate to GPI-anchored protein expression. PNH marrow readily grew stroma similar to marrow from normal donors. Cross culture experiments revealed that PNH stroma appears to function normally in vitro; it can support growth of normal marrow cells as well as normal stroma does, but neither PNH nor normal stroma could support the growth of PNH marrow cells. The hematopoietic defect in PNH is not due to defective stroma, but is due to defective progenitor cell growth related to additional unknown factors.

  1. Construction of Radial Defect Models in Rabbits to Determine the Critical Size Defects

    PubMed Central

    Zhang, Xin-Chao; Gui, Ke-Ke; Xiong, Min; Yin, Wang-Ping; Yuan, Feng-Lai; Cai, Guo-Ping

    2016-01-01

    Many studies aimed at investigating bone repair have been conducted through animal models in recent years. However, limitations do exist in these models due to varying regeneration potential among different animal species. Even using the same animal, big differences exist in the size of critical size defects (CSD) involving the same region. This study aimed to investigate the standardization of radial bone defect models in rabbits and further establish more reliable CSD data. A total of 40 6-month-old New Zealand white rabbits of clean grade totaling 80 radial bones were prepared for bone defect models, according to the principle of randomization. Five different sizes (1.0, 1.2, 1.4, 1.7 and 2.0 cm) of complete periosteal defects were introduced under anesthesia. At 12 weeks postoperatively, with the gradual increase in defect size, the grades of bone growth were significantly decreased in all 5 groups. X-ray, CT scans and H&E staining of the 1.4, 1.7, and 2.0-cm groups showed lower grades of bone growth than that of the 1.0 and 1.2-cm groups respectively (P < 0.05). Using rabbit radial defect model involving 6-month-old healthy New Zealand white rabbits, this study indicates that in order to be critical sized, defects must be greater than 1.4 cm. PMID:26731011

  2. Accurate defect die placement and nuisance defect reduction for reticle die-to-die inspections

    NASA Astrophysics Data System (ADS)

    Wen, Vincent; Huang, L. R.; Lin, C. J.; Tseng, Y. N.; Huang, W. H.; Tuo, Laurent C.; Wylie, Mark; Chen, Ellison; Wang, Elvik; Glasser, Joshua; Kelkar, Amrish; Wu, David

    2015-10-01

    Die-to-die reticle inspections are among the simplest and most sensitive reticle inspections because of the use of an identical-design neighboring-die for the reference image. However, this inspection mode can have two key disadvantages: (1) The location of the defect is indeterminate because it is unclear to the inspector whether the test or reference image is defective; and (2) nuisance and false defects from mask manufacturing noise and tool optical variation can limit the usable sensitivity. The use of a new sequencing approach for a die-to-die inspection can resolve these issues without any additional scan time, without sacrifice in sensitivity requirement, and with a manageable increase in computation load. In this paper we explore another approach for die-to-die inspections using a new method of defect processing and sequencing. Utilizing die-to-die double arbitration during defect detection has been proven through extensive testing to generate accurate placement of the defect in the correct die to ensure efficient defect disposition at the AIMS step. The use of this method maintained the required inspection sensitivity for mask quality as verified with programmed-defectmask qualification and then further validated with production masks comparing the current inspection approach to the new method. Furthermore, this approach can significantly reduce the total number of defects that need to be reviewed by essentially eliminating the nuisance and false defects that can result from a die-to-die inspection. This "double-win" will significantly reduce the effort in classifying a die-to-die inspection result and will lead to improved cycle times.

  3. Defect mode properties of two-dimensional plasma-filled defective metallic photonic crystal

    SciTech Connect

    Fu, T.; Yang, Z.; Tang, X.; Shi, Z.; Lan, F.

    2014-01-15

    This paper studies the frequency and amplitude properties of a defect mode which is only in a plasma-filled metallic photonic crystal with defect layer. Results show that the frequency almost has no change and the amplitude declines gradually with the growth of the number of the layers. The frequency of the defect mode not only can be modulated by filling ratio but also can be tuned by plasma density without modifying the structure. The amplitude can be modified by plasma angular frequency as well. These characteristics provide a foundation to design tunable filters, high power millimeter devices.

  4. Defects of the Glycinergic Synapse in Zebrafish.

    PubMed

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish.

  5. Descriptions of positron defect analysis capabilities

    SciTech Connect

    Howell, R.H.

    1994-10-01

    A series of descriptive papers and graphics appropriate for distribution to potential collaborators has been assembled. These describe the capabilities for defect analysis using positron annihilation spectroscopy. The application of positrons to problems in the polymer and semiconductor industries is addressed.

  6. 47 CFR 25.112 - Defective applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Defective applications. 25.112 Section 25.112 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... of answers to questions, informational showings, internal inconsistencies, execution, or...

  7. 47 CFR 25.112 - Defective applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Defective applications. 25.112 Section 25.112 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS... of answers to questions, informational showings, internal inconsistencies, execution, or...

  8. 16 CFR 1115.4 - Defect.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... with, its design. In addition, the design of and the materials used in a consumer product may also... accordance with its design and specifications, if the design presents a risk of injury to the public. A design defect may also be present if the risk of injury occurs as a result of the operation or use of...

  9. 16 CFR 1115.4 - Defect.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... with, its design. In addition, the design of and the materials used in a consumer product may also... accordance with its design and specifications, if the design presents a risk of injury to the public. A design defect may also be present if the risk of injury occurs as a result of the operation or use of...

  10. 16 CFR 1115.4 - Defect.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... with, its design. In addition, the design of and the materials used in a consumer product may also... accordance with its design and specifications, if the design presents a risk of injury to the public. A design defect may also be present if the risk of injury occurs as a result of the operation or use of...

  11. Defect-free ultrahigh flux asymmetric membranes

    DOEpatents

    Pinnau, Ingo; Koros, William J.

    1990-01-01

    Defect-free, ultrahigh flux integrally-skinned asymmetric membranes having extremely thin surface layers (<0.2 .mu.m) comprised of glassy polymers are disclosed. The membranes are formed by casting an appropriate drope followed by forced convective evaporation of solvent to obtain a dry phase separated asymmetrical structure. The structure is then washed in a precipitation liquid and dried.

  12. Genetics Home Reference: abdominal wall defect

    MedlinePlus

    ... Aug;6(4):232-6. Citation on PubMed Islam S. Clinical care outcomes in abdominal wall defects. Curr ... Site Map Customer Support Selection Criteria for Links USA.gov Copyright Privacy Accessibility FOIA Viewers & Players U.S. ...

  13. 7 CFR 51.2659 - Condition defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Condition defects. 51.2659 Section 51.2659 Agriculture..., CERTIFICATION, AND STANDARDS) United States Standards for Grades for Sweet Cherries 1 Definitions § 51.2659...; including, but not limited to decayed or soft cherries and such factors as pitting, shriveling, sunken...

  14. Beta environmental fine structure characterization of defects

    NASA Astrophysics Data System (ADS)

    Benedek, G.; Fiorini, E.; Giuliani, A.; Milani, P.; Monfardini, A.; Nucciotti, A.; Prandoni, M. L.; Sancrotti, M.

    1999-04-01

    The fine structure of beta emission (BEFS) due to the interference with the scattered waves from neighboring atoms, analogous to EXAFS, is known to produce oscillations in the Kurie plot. Here we suggest the use of BEFS for characterizing the lattice environment of β-emitting defects located at a distance from the crystal surface not exceeding the mean free path of β-electrons. Examples of defective structures in semiconductors whose atomic arrangement could be conveniently studied with BEFS are tritium-passivated dangling bonds, β-radioactive ions implanted in the crystal lattice or segregated at extended defects such as dislocations, grain boundaries or radiation damage. Also 14C-doped diamond-like materials and other exotic carbon forms, as well as the atomic environment of ions in metal alloys could be good candidate for BEFS. In this work we have calculated the fractional BEFS modulation for 187Re in its ordinary hcp crystal lattice for which experimental data by Cosulich et al. are available. The good correspondence between theory and experiment permits to conclude that BEFS experiments at low temperature are accessible to the present bolometric detection techniques and can provide an expedient method, as compared to EXAFS, for an accurate structural assessment of extended defects in solids.

  15. Defect characterization of silicon dendritic web ribbons

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.

    1985-01-01

    Progress made in the study of defect characterization of silicon dendritic web ribbon is presented. Chemical etching is used combined with optical microscopy, as well as the electron beam induced current (EBIC) technique. Thermal annealing effect on carrier lifetime is examined.

  16. 30 CFR 56.7002 - Equipment defects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Equipment defects. 56.7002 Section 56.7002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary...

  17. 30 CFR 56.7002 - Equipment defects.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Equipment defects. 56.7002 Section 56.7002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary...

  18. 30 CFR 56.7002 - Equipment defects.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Equipment defects. 56.7002 Section 56.7002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary...

  19. 30 CFR 56.7002 - Equipment defects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Equipment defects. 56.7002 Section 56.7002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary...

  20. 30 CFR 56.7002 - Equipment defects.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Equipment defects. 56.7002 Section 56.7002 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary...

  1. 49 CFR 213.113 - Defective rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... depression is visible on the rail head only, the sagging or drooping is also visible in the head/web fillet... unbalanced wheel, wheel slipping, or similar causes. (6) Defective weld means a field or plant weld... regularity and thus do not include corrugations, and have no apparent localized cause such as a weld...

  2. Oil defect detection of electrowetting display

    NASA Astrophysics Data System (ADS)

    Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang

    2015-08-01

    In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.

  3. 7 CFR 52.3761 - Defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Canned Ripe Olives 1 Product..., blemishes, wrinkles, mutilated olives, and from any other defects which affect the appearance or edibility... ripe type or green-ripe olives which may or may not penetrate into the flesh. Olives or pieces...

  4. 7 CFR 52.3761 - Defects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTAIN OTHER PROCESSED FOOD PRODUCTS 1 United States Standards for Grades of Canned Ripe Olives 1 Product..., blemishes, wrinkles, mutilated olives, and from any other defects which affect the appearance or edibility... ripe type or green-ripe olives which may or may not penetrate into the flesh. Olives or pieces...

  5. Electrochemical Implications of Defects in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Hall, Jonathan Peter

    The electrochemical behavior of carbon nanotubes (CNTs) containing both intrinsic and extrinsically introduced defects has been investigated through the study of bamboo and hollow multi-walled CNT morphologies. The controlled addition of argon, hydrogen, and chlorine ions in addition to atomic hydrogen and magnesium vapor was used for varying the charge and type of extrinsic defects. To quantify changes in the CNTs upon treatment, Raman spectroscopy and electrochemical techniques were employed. It was indicated from Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and chronopotentiometric experiments that the electrochemical response of hollow type CNTs could be tailored more significantly compared to bamboo type CNTs, which have innately high reactive site densities and are less amenable to modification. Total defect density and edge-plane-like defect concentrations monitored through Raman spectroscopy were used to correlate changes in the electrochemical response of the CNT electrodes as a function of treatment. The implementation of CNT electrodes in a prototypical electrolytic capacitor device was then explored and characterized. Dependencies on source current and redox couple concentration were evaluated, as well as changes in the total capacitance as a function of treatment. Cyclability studies were also performed as a function of source current magnitude to evaluate the longevity of the faradaic currents which typically decrease over time in other similar capacitors. This thesis then concludes with an overall summary of the themes and findings of the research presented in this work.

  6. Optical defect modes in chiral liquid crystals

    SciTech Connect

    Belyakov, V. A.; Semenov, S. V.

    2011-04-15

    An analytic approach to the theory of optical defect modes in chiral liquid crystals (CLCs) is developed. The analytic study is facilitated by the choice of the problem parameters. Specifically, an isotropic layer (with the dielectric susceptibility equal to the average CLC dielectric susceptibility) sandwiched between two CLC layers is studied. The chosen model allows eliminating the polarization mixing and reducing the corresponding equations to the equations for light of diffracting polarization only. The dispersion equation relating the defect mode (DM) frequency to the isotropic layer thickness and an analytic expression for the field distribution in the DM structure are obtained and the corresponding dependences are plotted for some values of the DM structure parameters. Analytic expressions for the transmission and reflection coefficients of the DM structure (CLC-defect layer-CLC) are presented and analyzed for nonabsorbing, absorbing, and amplifying CLCs. The anomalously strong light absorption effect at the DM frequency is revealed. The limit case of infinitely thick CLC layers is considered in detail. It is shown that for distributed feedback lasing in a defect structure, adjusting the lasing frequency to the DM frequency results in a significant decrease in the lasing threshold. The DM dispersion equations are solved numerically for typical values of the relevant parameters. Our approach helps clarify the physics of the optical DMs in CLCs and completely agrees with the corresponding results of the previous numerical investigations.

  7. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective couplers. 215.123 Section 215.123 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System §...

  8. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective wheel. 215.103 Section 215.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension...

  9. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective wheel. 215.103 Section 215.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension...

  10. 49 CFR 215.105 - Defective axle.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective axle. 215.105 Section 215.105 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension...

  11. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective wheel. 215.103 Section 215.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension...

  12. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective couplers. 215.123 Section 215.123 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System §...

  13. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Defective couplers. 215.123 Section 215.123 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System §...

  14. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Defective wheel. 215.103 Section 215.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension...

  15. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Defective couplers. 215.123 Section 215.123 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System §...

  16. 49 CFR 215.103 - Defective wheel.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Defective wheel. 215.103 Section 215.103 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension...

  17. 49 CFR 215.123 - Defective couplers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Defective couplers. 215.123 Section 215.123 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Draft System §...

  18. Opioid Use and Neural Tube Defects

    MedlinePlus

    ... Evaluate Pregnancy exposureS (to start in 2014). These studies work to identify risk factors for birth defects and ... some medications taken during pregnancy. Technical expertise : CDC works ... to help conduct studies on the effects of medication use during pregnancy ...

  19. Reconstruction of complex abdominal wall defects.

    PubMed

    Leppäniemi, A; Tukiainen, E

    2013-01-01

    Complex abdominal wall defects refer to situations where simple ventral hernia repair is not feasible because the defect is very large, there is a concomitant infection or failed previous re-pair attempt, or if there is not enough original skin to cover the repair. Usually a complex abdominal wall repair is preceded by a period of temporary abdominal closure where the short-term aims include closure of the catabolic drain, protection of the viscera and preventing fistula formation, preventing bowel adherence to the abdominal wall, and enabling future fascial and skin closure. Currently the best way to achieve these goals is the vacuum- and mesh-mediated fascial traction method achieving close to 90% fascial closure rates. The long-term aims of an abdominal closure following a planned hernia strategy include intact skin cover, fascial closure at midline (if possible), good functional outcome with innervated abdominal musculature, no pain and good cosmetic result. The main methods of abdominal wall reconstruction include the use of prosthetic (mesh) or autologous material (tissue flaps). In patients with original skin cover over the fascial defect (simple ventral hernia), the most commonly used method is hernia repair with an artificial mesh. For more complex defects, our first choice of reconstruction is the component separation technique, sometimes combined with a mesh. In contaminated fields where component separation alone is not feasible, a combination with a biological mesh can be used. In large defects with grafted skin, a free TFL flap is the best option, sometimes reinforced with a mesh and enhanced with components separation.

  20. Thermographic Imaging of Defects in Anisotropic Composites

    NASA Technical Reports Server (NTRS)

    Plotnikov, Y. A.; Winfree, W. P.

    2000-01-01

    Composite materials are of increasing interest to the aerospace industry as a result of their weight versus performance characteristics. One of the disadvantages of composites is the high cost of fabrication and post inspection with conventional ultrasonic scanning systems. The high cost of inspection is driven by the need for scanning systems which can follow large curve surfaces. Additionally, either large water tanks or water squirters are required to couple the ultrasonics into the part. Thermographic techniques offer significant advantages over conventional ultrasonics by not requiring physical coupling between the part and sensor. The thermographic system can easily inspect large curved surface without requiring a surface following scanner. However, implementation of Thermal Nondestructive Evaluations (TNDE) for flaw detection in composite materials and structures requires determining its limit. Advanced algorithms have been developed to enable locating and sizing defects in carbon fiber reinforced plastic (CFRP). Thermal Tomography is a very promising method for visualizing the size and location of defects in materials such as CFRP. However, further investigations are required to determine its capabilities for inspection of thick composites. In present work we have studied influence of the anisotropy on the reconstructed image of a defect generated by an inversion technique. The composite material is considered as homogeneous with macro properties: thermal conductivity K, specific heat c, and density rho. The simulation process involves two sequential steps: solving the three dimensional transient heat diffusion equation for a sample with a defect, then estimating the defect location and size from the surface spatial and temporal thermal distributions (inverse problem), calculated from the simulations.

  1. Automatic classification and accurate size measurement of blank mask defects

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    A blank mask and its preparation stages, such as cleaning or resist coating, play an important role in the eventual yield obtained by using it. Blank mask defects' impact analysis directly depends on the amount of available information such as the number of defects observed, their accurate locations and sizes. Mask usability qualification at the start of the preparation process, is crudely based on number of defects. Similarly, defect information such as size is sought to estimate eventual defect printability on the wafer. Tracking of defect characteristics, specifically size and shape, across multiple stages, can further be indicative of process related information such as cleaning or coating process efficiencies. At the first level, inspection machines address the requirement of defect characterization by detecting and reporting relevant defect information. The analysis of this information though is still largely a manual process. With advancing technology nodes and reducing half-pitch sizes, a large number of defects are observed; and the detailed knowledge associated, make manual defect review process an arduous task, in addition to adding sensitivity to human errors. Cases where defect information reported by inspection machine is not sufficient, mask shops rely on other tools. Use of CDSEM tools is one such option. However, these additional steps translate into increased costs. Calibre NxDAT based MDPAutoClassify tool provides an automated software alternative to the manual defect review process. Working on defect images generated by inspection machines, the tool extracts and reports additional information such as defect location, useful for defect avoidance[4][5]; defect size, useful in estimating defect printability; and, defect nature e.g. particle, scratch, resist void, etc., useful for process monitoring. The tool makes use of smart and elaborate post-processing algorithms to achieve this. Their elaborateness is a consequence of the variety and

  2. CDC Grand Rounds: Understanding the Causes of Major Birth Defects - Steps to Prevention.

    PubMed

    Simeone, Regina M; Feldkamp, Marcia L; Reefhuis, Jennita; Mitchell, Allen A; Gilboa, Suzanne M; Honein, Margaret A; Iskander, John

    2015-10-09

    Major birth defects (birth defects) are defined as structural abnormalities, present at birth, with surgical, medical, or cosmetic importance. Each year in the United States, 3% of live births (approximately 120,000 infants) have an identifiable structural birth defect. Examples of birth defects include neural tube defects, such as spina bifida; orofacial clefts; abdominal wall defects, such as gastroschisis; and congenital heart defects, such as hypoplastic left heart syndrome. Collectively, congenital heart defects are the most common birth defects (27%), followed by musculoskeletal defects (18%), genitourinary defects (15%), orofacial defects (5%), and neural tube defects (2%).

  3. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    PubMed Central

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    2016-01-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n−1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n−1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors. PMID:27364139

  4. Traffic jam in the primitive streak: the role of defective mesoderm migration in birth defects.

    PubMed

    Herion, Nils J; Salbaum, J Michael; Kappen, Claudia

    2014-08-01

    Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.

  5. Charge storage in oxygen deficient phases of TiO2: defect Physics without defects

    NASA Astrophysics Data System (ADS)

    Padilha, A. C. M.; Raebiger, H.; Rocha, A. R.; Dalpian, G. M.

    2016-07-01

    Defects in semiconductors can exhibit multiple charge states, which can be used for charge storage applications. Here we consider such charge storage in a series of oxygen deficient phases of TiO2, known as Magnéli phases. These Magnéli phases (TinO2n-1) present well-defined crystalline structures, i.e., their deviation from stoichiometry is accommodated by changes in space group as opposed to point defects. We show that these phases exhibit intermediate bands with an electronic quadruple donor transitions akin to interstitial Ti defect levels in rutile TiO2. Thus, the Magnéli phases behave as if they contained a very large pseudo-defect density: ½ per formula unit TinO2n-1. Depending on the Fermi Energy the whole material will become charged. These crystals are natural charge storage materials with a storage capacity that rivals the best known supercapacitors.

  6. Prevalence of birth defects in Korean livebirths, 2005-2006.

    PubMed

    Kim, Min-A; Yee, Nan Hee; Choi, Jeong Soo; Choi, Jung Yun; Seo, Kyung

    2012-10-01

    We investigated the livebirths prevalence and occurrence pattern of birth defects in Korea. After the survey on birth defects was done in 2,348 medical institutions around the nation, the birth defect prevalence of livebirths in 2005-2006 was calculated. This study was based on the medical insurance claims database of the National Health Insurance Corporation. The number of livebirths in Korea was 883,184 from 2005-2006, and 25,335 cases of birth defects were notified to our study, equivalent to a prevalence of 286.9 per 10,000 livebirths. Anomalies of the circulatory system were the most common defects, accounting for 43.4% of birth defects with a prevalence of 124.5 per 10,000 livebirths. It was followed by the musculoskeletal system anomalies, the digestive system anomalies, and the urinary system anomalies. The five major birth defects based on the ranking of prevalence were atrial septal defect, ventricular septal defect, hydronephrosis, patent ductus arteriosus, and cleft lip/palate. Birth defects in livebirths were associated with a high proportion of low birthweight, prematurity, multiple births and advanced maternal age. The prevalence of birth defects in Korea is similar to or lower than those reported in developed countries. Our study suggests baseline data to explain the current status of birth defects and to establish a registry system of birth defects in Korea.

  7. Welding fabrication defects in two offshore steel jacket structures

    SciTech Connect

    Thurlbeck, S.D.; Stacey, A.; Sharp, J.V.; Nichols, N.W.

    1996-12-01

    The results of a survey of welding fabrication defects in two North Sea jacket structures fabricated in the mid 1980`s and the early 1990`s are presented in this paper. The results were used to assess the general defectiveness of the two structures. Information was collected from the initial fabrication inspections and the post-repair inspections. The defects were classified as reportable defects, which remain unrepaired, and repairable defects, which are repaired and re-inspected. The data showed that the defects were exclusively embedded defects or root defects which were detected by ultrasonic and radiographic methods respectively. No surface breaking defects were reported from the magnetic particle inspections. The data were used to determine incidence rates, expressed in terms of the length of defective weld, distributions of defect sizes and the number of defective welds. The results can be used in the consideration of fabrication inspection capability and construction standards, as well as to obtain a measure of the level of reportable defects which remain un-repaired in a steel jacket.

  8. Computational mask defect review for contamination and haze inspections

    NASA Astrophysics Data System (ADS)

    Morgan, Paul; Rost, Daniel; Price, Daniel; Corcoran, Noel; Satake, Masaki; Hu, Peter; Peng, Danping; Yonenaga, Dean; Tolani, Vikram; Wolf, Yulian; Shah, Pinkesh

    2013-09-01

    As optical lithography continues to extend into sub-0.35 k1 regime, mask defect inspection and subsequent review has become tremendously challenging, and indeed the largest component to mask manufacturing cost. The routine use of various resolution enhancement techniques (RET) have resulted in complex mask patterns, which together with the need to detect even smaller defects due to higher MEEFs, now requires an inspection engineer to use combination of inspection modes. This is achieved in 193nm AeraTM mask inspection systems wherein masks are not only inspected at their scanner equivalent aerial exposure conditions, but also at higher Numerical Aperture resolution, and special reflected-light, and single-die contamination modes, providing better coverage over all available patterns, and defect types. Once the required defects are detected by the inspection system, comprehensively reviewing and dispositioning each defect then becomes the Achilles heel of the overall mask inspection process. Traditionally, defects have been reviewed manually by an operator, which makes the process error-prone especially given the low-contrast in the convoluted aerial images. Such manual review also limits the quality and quantity of classifications in terms of the different types of characterization and number of defects that can practically be reviewed by a person. In some ways, such manual classification limits the capability of the inspection tool itself from being setup to detect smaller defects since it often results in many more defects that need to be then manually reviewed. Paper 8681-109 at SPIE Advanced Lithography 2013 discussed an innovative approach to actinic mask defect review using computational technology, and focused on Die-to-Die transmitted aerial and high-resolution inspections. In this approach, every defect is characterized in two different ways, viz., quantitatively in terms of its print impact on wafer, and qualitatively in terms of its nature and origin in

  9. 7 CFR 51.2280 - Tolerances for grade defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... on the basis of weight. (b) In order to allow for variations, other than for color and size, incident... in Table I: Table I Grade Tolerances for grade defects Total defects Serious damage Very serious... serious damage). Color Requirements...

  10. Learning Issues Common in Kids with Heart Defects

    MedlinePlus

    ... Health and Human Services. More Health News on: Child Development Congenital Heart Defects Recent Health News Related MedlinePlus Health Topics Child Development Congenital Heart Defects About MedlinePlus Site Map FAQs ...

  11. Research Infusion Collaboration: Finding Defect Patterns in Reused Code

    NASA Technical Reports Server (NTRS)

    Lutz, Robyn R.; Morgan, Scott; Do, Tuan; Mikulski, Carmen; Berg Strain, Martha; Rockwell, Steve; Wilkinson, Belinda

    2004-01-01

    The 'Finding Defect Patterns in Reused Code' Research Infusion Collaboration was performed by Jet Propulsion Laboratory/Caltech under Contract 104-07-02.679 102 197 08.14.4. This final report describes the collaboration and documents the findings, including lessons learned.The research infusion collaboration characterized, using Orthogonal Defect Classification, defect reports for code that will be reused in mission-critical software on Deep Space Network Antenna controllers. Code reuse is estimated to be 90%, so it is important to identify systemic defects, or patterns, prior to reuse of this code. The work also identified ways to avoid certain types of defects and to test more efficiently.The primary objectives of the project were:to analyze defect patterns of the code to be reused based on the defects'Orthogonal Defect Classification (ODC)and to achieve a successful infusion of ODC to a project.

  12. Tailorable reflection of surface plasmons in defect engineered graphene

    NASA Astrophysics Data System (ADS)

    Luo, Weiwei; Cai, Wei; Wu, Wei; Xiang, Yinxiao; Ren, Mengxin; Zhang, Xinzheng; Xu, Jingjun

    2016-12-01

    The electrical, optical, mechanical and thermal properties of graphene can be significantly altered by defects, thus engineering the defects in graphene is promising for applications in functionalized materials and nanoscale devices. Here the propagations of surface plasmon waves near graphene defect boundaries created by ion beams are studied. Specifically, plasmon reflections are observed near the induced defect boundaries for the first time, which implies that ion-irradiation induced defects act as efficient scattering centers for the plasmonic waves, just like the native grain boundaries. Moreover, engineering the defects with varied ion doses results in tailorable plasmon reflection properties due to changed defect degrees. The controllable plasmon reflections near ion induced defect boundaries open up a new avenue for plasmon wave engineering.

  13. Zika-Linked Birth Defects Surge in Colombia: CDC

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_162464.html Zika-Linked Birth Defects Surge in Colombia: CDC Study ... born with devastating birth defects linked to the Zika virus is no longer confined to Brazil, a ...

  14. An analysis of defect densities found during software inspections

    NASA Technical Reports Server (NTRS)

    Kelly, John C.; Sherif, Joseph S.; Hops, Jonathan

    1990-01-01

    Software inspection is a technical evaluation process for finding and removing defects in requirements, design, code, and tests. Detailed data was collected during the first three years of experience at JPL on 203 inspections. Statistics are discussed for this set of inspections. Included, on a per inspection basis, are averages of: staff time expended, pages covered, major defects found, minor defects found, and inspection team size. Analysis of variance showed a significantly higher density of defects during requirements inspections. It was also observed, that the defect densities found decreased exponentially as the work products approached the coding phase. Increasing the pace of the inspection meeting decreased the density of defects found. This relationship was observed to hold for both major and minor defect densities, although it was more pronounced for minor defects. Guidelines are provided for conducting successful software inspections based upon three years of JPL experience.

  15. Are There Disorders or Conditions Associated with Neural Tube Defects?

    MedlinePlus

    ... Are there disorders or conditions associated with neural tube defects? Skip sharing on social media links Share this: Page Content Infants born with neural tube defects that are not immediately fatal may have ...

  16. Transport on a lattice with dynamical defects.

    PubMed

    Turci, Francesco; Parmeggiani, Andrea; Pitard, Estelle; Romano, M Carmen; Ciandrini, Luca

    2013-01-01

    Many transport processes in nature take place on substrates, often considered as unidimensional lanes. These unidimensional substrates are typically nonstatic: Affected by a fluctuating environment, they can undergo conformational changes. This is particularly true in biological cells, where the state of the substrate is often coupled to the active motion of macromolecular complexes, such as motor proteins on microtubules or ribosomes on mRNAs, causing new interesting phenomena. Inspired by biological processes such as protein synthesis by ribosomes and motor protein transport, we introduce the concept of localized dynamical sites coupled to a driven lattice gas dynamics. We investigate the phenomenology of transport in the presence of dynamical defects and find a regime characterized by an intermittent current and subject to severe finite-size effects. Our results demonstrate the impact of the regulatory role of the dynamical defects in transport not only in biology but also in more general contexts.

  17. Defective Reduction in Automotive Headlining Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Rittichai, Saranya; Chutima, Parames

    2016-05-01

    In an automobile parts manufacturing company, currently the headlining process has a lot of wastes resulting in a high cost of quality per year. In this paper, the Six Sigma method is used to reduce the defects in the headlining process. Cause-and-effect matrix and failure mode and effect analysis (FMEA) were adopted to screen the factors that affect the quality of headlining. The 2k-1 fractional factorials design was also use to determine the potential preliminary root causes. The full factorial experiments was conducted to identify appropriate settings of the significant factors. The result showed that the process can reduce the defects of headlining from 12.21% to 6.95%

  18. Graphene Growth and Defects on Ni(111)

    NASA Astrophysics Data System (ADS)

    Batzill, Matthias; Lahiri, Jayeeta

    2011-03-01

    Using scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES) we have investigated the growth of graphene on Ni(111) surfaces by carbon segregation from the bulk. We reveal two distinct growth modes for graphene growth. Between 480 and 650 C graphene forms on clean Ni(111) and below 480 C graphene grows by an in-plane conversion of a surface carbide phase. This is the first time that graphene formation is observed by transformation of a surface carbide. STM indicates that a lattice-matched, one-dimensional in-plane domain boundary between graphene and the carbide forms and graphene grows by replacing Ni-atoms with carbon at this interface. In addition to the growth of graphene we will also briefly discuss atomic-scale defects that can be synthesized in Ni-supported graphene. In particular we emphasize the formation of an extended line-defect with metallic properties.

  19. Photopsia and a temporal visual field defect.

    PubMed

    Marsiglia, Marcela; Odel, Jeffery G; Rudich, Danielle S; Tsang, Stephen H; Plant, Gordon T

    2016-01-01

    A 30-year-old woman presented with intermittent photopsia, a temporal visual field defect below the horizontal in her left eye, and flu-like symptoms. Slit-lamp and fundus examinations were unremarkable. Humphrey 30-2 threshold perimetry and 120-point screening visual field demonstrated blind spot enlargement of the left eye and a normal field in the right eye. Fundus autofluorescence, optical coherence tomography of the macula, full-field electroretinogram, electrooculogram, and multifocal electroretinogram were normal. Swept-source optical coherence tomography scan of the left optic nerve showed an intact outer retina, a remarkably thinned nerve fiber layer nasally, and peripapillary vitreous traction. Goldmann kinetic perimetry revealed a sector-shaped dense defect breaking out from the blind spot to the temporal periphery just below the horizontal in the left eye. The patient had nasal hypoplasia of the optic nerve and peripapillary vitreous traction.

  20. Transmissive optomechanical platforms with engineered spatial defects

    NASA Astrophysics Data System (ADS)

    Tignone, Edoardo; Pupillo, Guido; Genes, Claudiu

    2014-11-01

    Linear optomechanical photon-phonon couplings in the membrane-in-the-middle setup can be enhanced by taking a multielement approach as it was recently shown [A. Xuereb, C. Genes, and A. Dantan, Phys. Rev. Lett. 109, 223601 (2012), 10.1103/PhysRevLett.109.223601]. The particular example considered consists of a periodic array of membranes embedded in a high-finesse optical cavity and operating in the transmissive regime, i.e., around resonances of the compound cavity-membrane system. Here we propose further improvements in such a setup by breaking the translational invariance of the array, i.e., by considering quasiperiodic arrays with engineered quadratic spatial defects in the membrane positions. The localization of light modes induced by the defect combined with the access of the aforementioned transmissive regime window can lead to additional enhancement of the strength of both linear and quadratic optomechanical couplings.

  1. Nanoscale defect detection by heterodyne interferometry

    SciTech Connect

    Lin Haoshan; Li Yuhe; Wang Dongsheng; Tong Xiaolei; Liu Mei

    2009-03-10

    We construct an instrument that facilitates the measurement of nanoscale defects. It is based on heterodyne interferometry with phase measurement that utilizes a polarizing beam splitter to form a measuring signal and an oscillating cantilever tip that acts as a scanning probe to get the measurement values of sample topography. The dependence of the tip displacement on the variation of tip-sample distance and the comb scanning of the sample topography are investigated by experiments. The results prove that the tip displacement increases and is enough to be discriminated in various positions where the sample is approached. The system has been successfully utilized to measure the defect characterization by measuring the pitch of the standard sample. The results also show that the heterodyne system has good repeatability, a large measurement range, and high accuracy, with a measurement stability of 0.5 nm.

  2. Complete corrosion inhibition through graphene defect passivation.

    PubMed

    Hsieh, Ya-Ping; Hofmann, Mario; Chang, Kai-Wen; Jhu, Jian Gang; Li, Yuan-Yao; Chen, Kuang Yao; Yang, Chang Chung; Chang, Wen-Sheng; Chen, Li-Chyong

    2014-01-28

    Graphene is expected to enable superior corrosion protection due to its impermeability and chemical inertness. Previous reports, however, demonstrate limited corrosion inhibition and even corrosion enhancement of graphene on metal surfaces. To enable the reliable and complete passivation, the origin of the low inhibition efficiency of graphene was investigated. Combining electrochemical and morphological characterization techniques, nanometer-sized structural defects in chemical vapor deposition grown graphene were found to be the cause for the limited passivation effect. Extremely fast mass transport on the order of meters per second both across and parallel to graphene layers results in an inhibition efficiency of only ∼50% for Cu covered with up to three graphene layers. Through selective passivation of the defects by atomic layer deposition (ALD) an enhanced corrosion protection of more than 99% was achieved, which compares favorably with commercial corrosion protection methods.

  3. Masking mediated print defect visibility predictor

    NASA Astrophysics Data System (ADS)

    Jing, Xiaochen; Nachlieli, Hila; Shaked, Doron; Shiffman, Smadar; Allebach, Jan P.

    2012-01-01

    Banding is a well-known artifact produced by printing systems. It usually appears as lines perpendicular to the process direction of the print. Therefore, banding is an important print quality issue which has been analyzed and assessed by many researchers. However, little literature has focused on the study of the masking effect of content for this kind of print quality issue. Compared with other image and print quality research, our work is focused on the print quality of typical documents printed on a digital commercial printing press. In this paper, we propose a Masking Mediated Print Defect Visibility Predictor (MMPDVP) to predict the visibility of defects in the presence of customer content. The parameters of the algorithm are trained from ground-truth images that have been marked by subjects. The MMPDVP could help the press operator decide whether the print quality is acceptable for specific customer requirements. Ultimately, this model can be used to optimize the print-shop workflow.

  4. Vorticity, defects and correlations in active turbulence

    PubMed Central

    Thampi, Sumesh P.; Golestanian, Ramin; Yeomans, Julia M.

    2014-01-01

    We describe a numerical investigation of a continuum model of an active nematic, concentrating on the regime of active turbulence. Results are presented for the effect of three parameters, activity, elastic constant and rotational diffusion constant, on the order parameter and flow fields. Defects and distortions in the director field act as sources of vorticity, and thus vorticity is strongly correlated to the director field. In particular, the characteristic length of decay of vorticity and order parameter correlations is controlled by the defect density. By contrast, the decay of velocity correlations is determined by a balance between activity and dissipation. We highlight the role of microscopic flow generation mechanisms in determining the flow patterns and characteristic scales of active turbulence and contrast the behaviour of extensile and contractile active nematics. PMID:25332382

  5. Nonlinear ultrasonic scanning to detect material defects

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1998-01-01

    A method and system are provided to detect defects in a material. Waves of known frequency(ies) are mixed at an interaction zone in the material. As a result, at least one of a difference wave and a sum wave are generated in the interaction zone. The difference wave occurs at a difference frequency and the sum wave occurs at a sum frequency. The amplitude of at least one nonlinear signal based on the sum and/or difference waves is then measured. The nonlinear signal is defined as the amplitude of one of the difference wave and sum wave relative to the product of the amplitude of the surface waves. The amplitude of the nonlinear signal is an indication of defects (e.g., dislocation dipole density) in the interaction zone.

  6. Lattice Strain Defects in a Ceria Nanolayer

    PubMed Central

    2016-01-01

    An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu–O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state. PMID:26988695

  7. Topological Point Defects in Relaxor Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Nahas, Y.; Prokhorenko, S.; Kornev, I.; Bellaiche, L.

    2016-03-01

    First-principles-based effective Hamiltonian simulations are used to reveal the hidden connection between topological defects (hedgehogs and antihedgehogs) and relaxor behavior. Such defects are discovered to predominantly lie at the border of polar nanoregions in both Ba (Zr0.5 Ti0.5 )O3 (BZT) and Pb (Sc0.5 Nb0.5 )O3 (PSN) systems, and the temperature dependency of their density allows us to distinguish between noncanonical (PSN) and canonical (BZT) relaxor behaviors (via the presence or absence of a crossing of a percolation threshold). This density also possesses an inflection point at precisely the temperature for which the dielectric response peaks. Moreover, hedgehogs and antihedgehogs are found to be mobile excitations, and the dynamical nature of their annihilation is demonstrated (using simple hydrodynamical arguments) to follows laws, such as those of Vogel-Fulcher and Arrhenius, that are characteristic of dipolar relaxation kinetics of relaxor ferroelectrics.

  8. Biomimetic biphasic scaffolds for osteochondral defect repair

    PubMed Central

    Li, Xuezhou; Ding, Jianxun; Wang, Jincheng; Zhuang, Xiuli; Chen, Xuesi

    2015-01-01

    The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed. Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues. For osteochondral reconstruction, one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone. Therefore, the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm. A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers, or the ones loading with growth factors, cells, or both of them make great progresses in osteochondral defect repair. In this review, the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed, as well as the prospect is predicted. PMID:26816644

  9. Defective twin boundaries in nanotwinned metals.

    PubMed

    Wang, Y Morris; Sansoz, Frederic; LaGrange, Thomas; Ott, Ryan T; Marian, Jaime; Barbee, Troy W; Hamza, Alex V

    2013-08-01

    Coherent twin boundaries (CTBs) are widely described, both theoretically and experimentally, as perfect interfaces that play a significant role in a variety of materials. Although the ability of CTBs in strengthening, maintaining the ductility and minimizing the electron scattering is well documented, most of our understanding of the origin of these properties relies on perfect-interface assumptions. Here we report experiments and simulations demonstrating that as-grown CTBs in nanotwinned copper are inherently defective with kink-like steps and curvature, and that these imperfections consist of incoherent segments and partial dislocations. We further show that these defects play a crucial role in the deformation mechanisms and mechanical behaviour of nanotwinned copper. Our findings offer a view of the structure of CTBs that is largely different from that in the literature, and underscore the significance of imperfections in nanotwin-strengthened materials.

  10. Vorticity, defects and correlations in active turbulence.

    PubMed

    Thampi, Sumesh P; Golestanian, Ramin; Yeomans, Julia M

    2014-11-28

    We describe a numerical investigation of a continuum model of an active nematic, concentrating on the regime of active turbulence. Results are presented for the effect of three parameters, activity, elastic constant and rotational diffusion constant, on the order parameter and flow fields. Defects and distortions in the director field act as sources of vorticity, and thus vorticity is strongly correlated to the director field. In particular, the characteristic length of decay of vorticity and order parameter correlations is controlled by the defect density. By contrast, the decay of velocity correlations is determined by a balance between activity and dissipation. We highlight the role of microscopic flow generation mechanisms in determining the flow patterns and characteristic scales of active turbulence and contrast the behaviour of extensile and contractile active nematics.

  11. Restricted Defect Dynamics in Colloidal Peanut Crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Lee, Stephanie; John, Bettina; Wolfgang, Angie; Liddell, Chekesha; Escobedo, Fernando; Cohen, Itai

    2008-03-01

    We report that monolayers of hard peanut-shaped colloidal particles consisting of two connected spherical lobes order into a crystalline phase at high area fractions. In this ``lobe-close-packed'' (LCP) crystal, the peanut particle lobes occupy triangular lattice sites, much like close-packed spheres, while the connections between lobe pairs are randomly oriented, uniformly populating the three crystalline directions of the underlying lattice. Using optical microscopy, we directly observe defect nucleation and dynamics in sheared LCP crystals. We find that many particle configurations form obstacles blocking dislocation glide. Consequently, in stark contrast to colloidal monolayers of close-packed spheres, single dislocation pair nucleation is not the only significant energetic barrier to relieving an imposed shear strain. Dislocation propagation beyond such obstructions can proceed only through additional mechanisms such as dislocation reactions. We discuss the implications of such restricted defect mobility for the plasticity of LCP crystals.

  12. Restricted Defect Dynamics in Colloidal Peanut Crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Lee, Stephanie; John, Bettina; Wolfgang, Angie; Liddell, Chakesha; Escobedo, Fernando; Cohen, Itai

    2008-03-01

    We report that monolayers of hard peanut-shaped colloidal particles consisting of two connected spherical lobes order into a crystalline phase at high area fractions. In this ``lobe- close-packed'' (LCP) crystal, the peanut particle lobes occupy triangular lattice sites, much like close-packed spheres, while the connections between lobe pairs are randomly oriented, uniformly populating the three crystalline directions of the underlying lattice. Using optical microscopy, we directly observe defect nucleation and dynamics in sheared LCP crystals. We find that many particle configurations form obstacles blocking dislocation glide. Consequently, in stark contrast to colloidal monolayers of close-packed spheres, single dislocation pair nucleation is not the only significant energetic barrier to relieving an imposed shear strain. Dislocation propagation beyond such obstructions can proceed only through additional mechanisms such as dislocation reactions. We discuss the implications of such restricted defect mobility for the plasticity of LCP crystals.

  13. Birth defects: Risk factors and consequences.

    PubMed

    Oliveira, Camila Ive Ferreira; Fett-Conte, Agnes Cristina

    2013-06-01

    Birth defects (BDs) or congenital anomalies include all structural and functional alterations in embryonic or fetal development resulting from genetic, environmental or unknown causes, which result in physical and/or mental impairment. BDs occur in about 3% of newborn babies and in most cases of pregnancy loss. BDs are a very complex and heterogeneous group of single or multiple changes that, in most cases, are of unknown etiology. Among the risk factors are advanced maternal and paternal ages, parental consanguinity, teratogenic agents such as infectious agents and drugs, and poor nutrition, in particular folic acid deficiency. One of the consequences of these defects is the high death rate within the first year of life. Information on BDs is becoming increasingly more important throughout the world so that preventive measures can be taken. Knowledge of BDs enables the development of therapeutic and preventive strategies besides adequate genetic counseling.

  14. Defect structure of EFG silicon ribbon

    NASA Technical Reports Server (NTRS)

    Strunk, H.; Cunningham, B.; Ast, D.

    1980-01-01

    The defect structure of EFG ribbons was studied using EBIC, TEM and HVEM. By imaging the same areas in EBIC and HVEM, a direct correlation between the crystallographic nature of defects and their electrical properties was obtained. (1) Partial dislocations at coherent twin boundaries may or may not be electrically active. Since no microprecipitates were observed at these dislocations it is likely that the different electrical activity is a consequence of the different dislocation core structures. (2) 2nd order twin joins were observed which followed the same direction as the coherent first order twins normally associated with EFG ribbons. These 2nd order twin joins are in all cases strongly electrically active. EFG ribbons contain high concentrations of carbon. Since no evidence of precipitation was found with TEM it is suggested that the carbon may be incorporated into the higher order twin boundaries now known to exist in EFG ribbons.

  15. Skin barrier defects in atopic dermatitis.

    PubMed

    Agrawal, Rachana; Woodfolk, Judith A

    2014-05-01

    Atopic dermatitis (AD) is a chronic inflammatory skin condition with complex etiology that is dependent upon interactions between the host and the environment. Acute skin lesions exhibit the features of a Th2-driven inflammatory disorder, and many patients are highly atopic. The skin barrier plays key roles in immune surveillance and homeostasis, and in preventing penetration of microbial products and allergens. Defects that compromise the structural integrity or else the immune function of the skin barrier play a pivotal role in the pathogenesis of AD. This article provides an overview of the array of molecular building blocks that are essential to maintaining healthy skin. The basis for structural defects in the skin is discussed in relation to AD, with an emphasis on filaggrin and its genetic underpinnings. Aspects of innate immunity, including the role of antimicrobial peptides and proteases, are also discussed.

  16. Lattice Strain Defects in a Ceria Nanolayer.

    PubMed

    Ma, Liying; Doudin, Nassar; Surnev, Svetlozar; Barcaro, Giovanni; Sementa, Luca; Fortunelli, Alessandro; Netzer, Falko P

    2016-04-07

    An ultrathin two-dimensional CeO2 (ceria) phase on a Cu(110) surface has been fabricated and fully characterized by high-resolution scanning tunneling microscopy, photoelectron spectroscopy, and density functional theory. The atomic lattice structure of the ceria/Cu(110) system is revealed as a hexagonal CeO2(111)-type monolayer separated from the Cu(110) surface by a partly disordered Cu-O intercalated buffer layer. The epitaxial coupling of the two-dimensional ceria overlayer to the Cu(110)-O surface leads to a nanoscopic stripe pattern, which creates defect regions of quasi-periodic lattice distortions. The symmetry and lattice mismatch at the interface is clarified to be responsible for the topographic stripe geometry and the related anisotropic strain defect regions at the ceria surface. This ceria monolayer is in a fully oxidized and thermodynamically stable state.

  17. Transport on a lattice with dynamical defects

    NASA Astrophysics Data System (ADS)

    Turci, Francesco; Parmeggiani, Andrea; Pitard, Estelle; Romano, M. Carmen; Ciandrini, Luca

    2013-01-01

    Many transport processes in nature take place on substrates, often considered as unidimensional lanes. These unidimensional substrates are typically nonstatic: Affected by a fluctuating environment, they can undergo conformational changes. This is particularly true in biological cells, where the state of the substrate is often coupled to the active motion of macromolecular complexes, such as motor proteins on microtubules or ribosomes on mRNAs, causing new interesting phenomena. Inspired by biological processes such as protein synthesis by ribosomes and motor protein transport, we introduce the concept of localized dynamical sites coupled to a driven lattice gas dynamics. We investigate the phenomenology of transport in the presence of dynamical defects and find a regime characterized by an intermittent current and subject to severe finite-size effects. Our results demonstrate the impact of the regulatory role of the dynamical defects in transport not only in biology but also in more general contexts.

  18. Excess Oxygen Defects in Layered Cuprates

    DOE R&D Accomplishments Database

    Lightfoot, P.; Pei, S. Y.; Jorgensen, J. D.; Manthiram, A.; Tang, X. X.; Goodenough, J. B.

    1990-09-01

    Neutron powder diffraction has been used to study the oxygen defect chemistry of two non-superconducting layered cuprates, La{sub 1. 25}Dy{sub 0.75}Cu{sub 3.75}F{sub 0.5}, having a T{sup {asterisk}}- related structure, and La{sub 1.85}Sr{sub 1.15}Cu{sub 2}O{sub 6.25}, having a structure related to that of the newly discovered double-layer superconductor La{sub 2-x}Sr{sub x}CaCu{sub 2}O{sub 6}. The role played by oxygen defects in determining the superconducting properties of layered cuprates is discussed.

  19. Automated Diagnosis and Classification of Steam Generator Tube Defects

    SciTech Connect

    Dr. Gabe V. Garcia

    2004-10-01

    A major cause of failure in nuclear steam generators is tube degradation. Tube defects are divided into seven categories, one of which is intergranular attack/stress corrosion cracking (IGA/SCC). Defects of this type usually begin on the outer surface of the tubes and propagate both inward and laterally. In many cases these defects occur at or near the tube support plates. Several different methods exist for the nondestructive evaluation of nuclear steam generator tubes for defect characterization.

  20. Phonons, defects and optical damage in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.

    1986-04-01

    Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.

  1. Genetic defects in common variable immunodeficiency

    PubMed Central

    Kopecký, O; Lukešová, Š

    2007-01-01

    Common variable immunodeficiency (CVID) is the most frequent clinically manifested primary immunodeficiency. According to clinical and laboratory findings, CVID is a heterogeneous group of diseases. Recently, the defects of molecules regulating activation and terminal differentiation of B lymphocytes have been described in some patients with CVID. In this study, we show the overview of deficiencies of inducible costimulator, transmembrane activator and calcium-modulator and cytophilin ligand interactor, CD19 molecules, their genetic basis, pathogenesis and clinical manifestations. PMID:17627754

  2. Ventricular Septal Defect from Takotsubo Syndrome

    PubMed Central

    Caplow, Julie; Quatromoni, Neha

    2016-01-01

    Takotsubo Syndrome is a transient condition characterized by left ventricular systolic dysfunction with apical akinesis/dyskinesis and ballooning. Although the prognosis with medical management is excellent in most cases, rare cases of serious complications can occur. We present here a case of a 71-year-old woman presenting with acute decompensated heart failure with initial findings consistent with a myocardial infarction, who was found instead to have an acute ventricular septal defect as a complication of Takotsubo Syndrome. PMID:27563471

  3. Vision Algorithms Catch Defects in Screen Displays

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Andrew Watson, a senior scientist at Ames Research Center, developed a tool called the Spatial Standard Observer (SSO), which models human vision for use in robotic applications. Redmond, Washington-based Radiant Zemax LLC licensed the technology from NASA and combined it with its imaging colorimeter system, creating a powerful tool that high-volume manufacturers of flat-panel displays use to catch defects in screens.

  4. Metastable light induced defects in pentacene

    SciTech Connect

    Liguori, R.; Aprano, S.; Rubino, A.

    2014-02-21

    In this study we analyzed one of the environmental factors that could affect organic materials. Pentacene thin film samples were fabricated and the degradation of their electrical characteristics was measured when the devices were exposed to ultraviolet light irradiation. The results have been reported in terms of a trap density model, which provides a description of the dynamics of light induced electrically active defects in an organic semiconductor.

  5. Positron studies of defected metals, metallic surfaces

    SciTech Connect

    Bansil, A.

    1991-01-01

    Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-[Tc] superconductors, in particular, (i) momentum density and positron experiments, (ii) angle-resolved photoemission intensities, (iii) effects of disorder and substitutions in the high-[Tc]'s.

  6. Octagonal Defects at Carbon Nanotube Junctions

    PubMed Central

    Jaskólski, W.; Pelc, M.; Chico, Leonor; Ayuela, A.

    2013-01-01

    We investigate knee-shaped junctions of semiconductor zigzag carbon nanotubes. Two dissimilar octagons appear at such junctions; one of them can reconstruct into a pair of pentagons. The junction with two octagons presents two degenerate localized states at Fermi energy (EF). The reconstructed junction has only one state near EF, indicating that these localized states are related to the octagonal defects. The inclusion of Coulomb interaction splits the localized states in the junction with two octagons, yielding an antiferromagnetic system. PMID:24089604

  7. Defect Depth Measurement Using White Light Interferometry

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The objectives of the White Light Interferometry project are the following: (1) Demonstrate a small hand-held instrument capable of performing inspections of identified defects on Orbiter outer pane window surfaces. (2) Build and field-test a prototype device using miniaturized optical components. (3) Modify the instrument based on field testing and begin the conversion of the unit to become a certified shop-aid.

  8. Defects of the Glycinergic Synapse in Zebrafish

    PubMed Central

    Ogino, Kazutoyo; Hirata, Hiromi

    2016-01-01

    Glycine mediates fast inhibitory synaptic transmission. Physiological importance of the glycinergic synapse is well established in the brainstem and the spinal cord. In humans, the loss of glycinergic function in the spinal cord and brainstem leads to hyperekplexia, which is characterized by an excess startle reflex to sudden acoustic or tactile stimulation. In addition, glycinergic synapses in this region are also involved in the regulation of respiration and locomotion, and in the nociceptive processing. The importance of the glycinergic synapse is conserved across vertebrate species. A teleost fish, the zebrafish, offers several advantages as a vertebrate model for research of glycinergic synapse. Mutagenesis screens in zebrafish have isolated two motor defective mutants that have pathogenic mutations in glycinergic synaptic transmission: bandoneon (beo) and shocked (sho). Beo mutants have a loss-of-function mutation of glycine receptor (GlyR) β-subunit b, alternatively, sho mutant is a glycinergic transporter 1 (GlyT1) defective mutant. These mutants are useful animal models for understanding of glycinergic synaptic transmission and for identification of novel therapeutic agents for human diseases arising from defect in glycinergic transmission, such as hyperekplexia or glycine encephalopathy. Recent advances in techniques for genome editing and for imaging and manipulating of a molecule or a physiological process make zebrafish more attractive model. In this review, we describe the glycinergic defective zebrafish mutants and the technical advances in both forward and reverse genetic approaches as well as in vivo visualization and manipulation approaches for the study of the glycinergic synapse in zebrafish. PMID:27445686

  9. Genetics and development of neural tube defects.

    PubMed

    Copp, Andrew J; Greene, Nicholas D E

    2010-01-01

    Congenital defects of neural tube closure (neural tube defects; NTDs) are among the commonest and most severe disorders of the fetus and newborn. Disturbance of any of the sequential events of embryonic neurulation produce NTDs, with the phenotype (eg anencephaly, spina bifida) varying depending on the region of neural tube that remains open. While mutation of > 200 genes is known to cause NTDs in mice, the pattern of occurrence in humans suggests a multifactorial polygenic or oligogenic aetiology. This emphasizes the importance of gene-gene and gene-environment interactions in the origins of these defects. A number of cell biological functions are essential for neural tube closure, with defects of the cytoskeleton, cell cycle and molecular regulation of cell viability prominent among the mouse NTD mutants. Many transcriptional regulators and proteins that affect chromatin structure are also required for neural tube closure, although the downstream molecular pathways regulated by these proteins is unknown. Some key signalling pathways for NTDs have been identified: over-activation of sonic hedgehog signalling and loss of function in the planar cell polarity (non-canonical Wnt) pathway are potent causes of NTD, with requirements also for retinoid and inositol signalling. Folic acid supplementation is an effective method for primary prevention of a proportion of NTDs in both humans and mice, although the embryonic mechanism of folate action remains unclear. Folic acid-resistant cases can be prevented by inositol supplementation in mice, raising the possibility that this could lead to an additional preventive strategy for human NTDs in future.

  10. The Platelet Function Defect of Cardiopulmonary Bypass.

    DTIC Science & Technology

    1992-11-24

    fibrinolytic and coagulation systems occur during CPB,1 a platelet function defect is generally considered to be the primary CPB-induced hemostatic...platelets.39 OKM5 (provided by Dr. Patricia Rao, Ortho Diagnostic Systems , Raritan, NJ) is directed against platelet membrane GPIV.40 Flow Cytometric...22 after degranulation.7-14-16-18 Utilizing washed platelet systems , Nieuwenhuis et al.14 found a modest increase during CPB of the platelet

  11. Disclinations, dislocations, and continuous defects: A reappraisal

    NASA Astrophysics Data System (ADS)

    Kleman, M.; Friedel, J.

    2008-01-01

    Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.

  12. Atomistic simulation on indented defects in silicon.

    PubMed

    Trandinh, Long; Cheon, Seong Sik; Kang, Woojong

    2013-12-01

    Silicon is known as one of the widely used materials in electronic fields for its excellent semiconductive characteristics. However, these characteristics are vulnerable to internal defects, which randomly exist in any materials. In the present study, defects in single crystalline silicon thin film were investigated by atomistic simulation of nano-indentation at zero temperature. The Tersoff potential and the spherical indenter were applied to the model of silicon. The symmetric axis parameter method is novelly proposed to identify defects in the diamond cubic structure. Under the nanoindentation condition, the ring slip appears close to the indentation region on the free surface and propagates along with [110]/(111). The dislocation is initiated closely to the ring slip and emitted on the (111) plane by the dissociation into two partial dislocations. It was found that the symmetric axis parameter method successfully separated the perfect dislocations, the partial dislocations and the stacking fault from perfect structure, i.e., diamond cubic structure, even though it was not able to distinguish between glide set and shuffle set dislocations.

  13. Reconstructive Surgery of Auricular Defects: An Overview

    PubMed Central

    Ebrahimi, Ali; Kazemi, Alireza; Rasouli, Hamid Reza; Kazemi, Maryam; Kalantar Motamedi, Mohammad Hosein

    2015-01-01

    Context: Despite the ongoing advances in surgical procedures and promising progress in bioengineering techniques, auricular reconstruction remains a significant challenge in plastic surgery. There are different causes for acquired auricular defects, including trauma, tumor ablation and burns. The management options for upper, middle and lower third auricular defects are briefly reviewed in the current paper. Evidence Acquisition: Original research papers investigating the plastic surgeons, otolaryngologists and maxillofacial surgeons in approaching the complicated issue of auricular reconstruction published from January 1995 to December 2014 were aggregated and used in the current study. Results: Utilizing autologous stem cell populations to treat craniofacial defects is a promising field of ongoing investigations. Studies show that cartilage stem/progenitor cells (CSPCs) are highly chondrogenic and can produce elastic reconstructive material with long-term tissue restoration. Conclusions: Auricular reconstruction surgery is a challenging plastic procedure that requires great expertise and expert knowledge of the various techniques available. Novel techniques in the fields of reconstructive bioengineering and regenerative medicine are promising but further research is required before widespread clinical application. PMID:26839867

  14. Defect reduction methodologies: pellicle yield improvement

    NASA Astrophysics Data System (ADS)

    Daugherty, Susan V.

    1993-03-01

    The pelliclization process at Intel during the first half of 1991 was not in control. Weekly process yield was trending downward, and the range of the weekly yield during that time frame was greater than 40%. A focused effort in process yield improvement, that started in the second half of 1991 and continued through 1992, brought process yield up an average of 20%, and reduced the range of the process yield to 20 - 25%. This paper discusses the continuous process improvement guidelines that are being followed to reduce variations/defects in the pelliclization process. Teamwork tools, such as Pareto charts, fishbone diagrams, and simple experiments, prioritize efforts and help find the root cause of the defects. Best known methods (BKM), monitors, PMs, and excursion control aid in the elimination and prevention of defects. Monitoring progress and repeating the whole procedure are the final two guidelines. The benefits from the use of the continuous process improvement guidelines and tools can be seen in examples of the actions, impacts, and results for the last half of 1991 and the first half of 1992.

  15. Selection against genetic defects in semen donors.

    PubMed

    Smith, P E

    1984-08-01

    Artificial insemination donor selection requires predicting which men are likely to beget the healthiest offspring. Methods are developed for calculating the "offspring excess recurrence risk", delta R, for an anomaly in the offspring of an afflicted father. Mainly from published family survey and population data delta R is computed for 38 disorders. From a small survey a value for the with-treatment "affliction burden", Bt, is assigned to each anomaly. For each disorder the "offspring excess burden expectation" is delta RBt. Defects such as cataract, hereditary Parkinson disease, psoriasis, seropositive rheumatoid arthritis, and schizophrenia have such a high delta RBt that they are individually sufficient cause for rejecting a donor candidate. A candidate may be rejected because of a combination of lesser defects with sigma delta RBt exceeding an acceptable limit. A limit should also be placed on Bt, because the affliction burden for Tay-Sachs disease or cystic fibrosis is intolerable, however infrequent. Most of the important hereditary defects are late onset, and for the older donor the opportunity to select more directly against late-onset disorders offsets the added risk of newly-arising gene mutations. The most careful donor selection cannot completely eliminate the risk of a child inheriting some disorder, but selection can reduce the average total burden by as much as 17%.

  16. Isospin of topological defects in Dirac systems

    NASA Astrophysics Data System (ADS)

    Herbut, Igor F.

    2012-02-01

    We study the Dirac quasiparticles in d-dimensional lattice systems of electrons in the presence of domain walls (d=1), vortices (d=2), or hedgehogs (d=3) of superconducting and/or insulating, order parameters, which appear as mass terms in the Dirac equation. Such topological defects have been known to carry nontrivial quantum numbers, such as charge and spin. Here we discuss their additional internal degree of freedom: irrespective of the dimensionality of space and the nature of orders that support the defect, an extra mass order parameter is found to emerge in their core. Six linearly independent local orders, which close two mutually commuting three-dimensional Clifford algebras, are proven to be in general possible. We show how the particle-hole symmetry restricts the defects to always carry the quantum numbers of a single effective isospin 1/2, quite independently of the values of their electric charge or true spin. Examples of this new degree of freedom in graphene and on surfaces of topological insulators are discussed.

  17. Hall conductance in graphene with point defects.

    PubMed

    İslamoğlu, S; Oktel, M Ö; Gülseren, O

    2013-02-06

    We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by considering a dilute but regular array of point defects incorporated into the graphene lattice. We extend our calculations to include next nearest neighbor hopping, which breaks the bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the rest of the lattice result in gradual disappearance of the high conductance value plateaus. For such impurities, especially for vacancies which are decoupled from the lattice, strong modification of the Hall conductance occurs near the E = 0 eV line, as impurity states are highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall conductance plateaus at the extremum values of the spectrum, signifying separate impurity bands. Hall conductance values within the original spectrum are not strongly modified.

  18. Defect Tolerance in Methylammonium Lead Triiodide Perovskite

    SciTech Connect

    Steirer, K. Xerxes; Schulz, Philip; Teeter, Glenn; Stevanovic, Vladan; Yang, Mengjin; Zhu, Kai; Berry, Joseph J.

    2016-08-12

    Photovoltaic applications of perovskite semiconductor material systems have generated considerable interest in part because of predictions that primary defect energy levels reside outside the bandgap. We present experimental evidence that this enabling material property is present in the halide-lead perovskite, CH3NH3PbI3 (MAPbI3), consistent with theoretical predictions. By performing X-ray photoemission spectroscopy, we induce and track dynamic chemical and electronic transformations in the perovskite. These data show compositional changes that begin immediately with exposure to X-ray irradiation, whereas the predominant electronic structure of the thin film on compact TiO2 appears tolerant to the formation of compensating defect pairs of VI and VMA and for a large range of I/Pb ratios. Changing film composition is correlated with a shift of the valence-band maximum only as the halide-lead ratio drops below 2.5. This delay is attributed to the invariance of MAPbI3 electronic structure to distributed defects that can significantly transform the electronic density of states only when in high concentrations.

  19. Ketone body metabolism and its defects.

    PubMed

    Fukao, Toshiyuki; Mitchell, Grant; Sass, Jörn Oliver; Hori, Tomohiro; Orii, Kenji; Aoyama, Yuka

    2014-07-01

    Acetoacetate (AcAc) and 3-hydroxybutyrate (3HB), the two main ketone bodies of humans, are important vectors of energy transport from the liver to extrahepatic tissues, especially during fasting, when glucose supply is low. Blood total ketone body (TKB) levels should be evaluated in the context of clinical history, such as fasting time and ketogenic stresses. Blood TKB should also be evaluated in parallel with blood glucose and free fatty acids (FFA). The FFA/TKB ratio is especially useful for evaluation of ketone body metabolism. Defects in ketogenesis include mitochondrial HMG-CoA synthase (mHS) deficiency and HMG-CoA lyase (HL) deficiency. mHS deficiency should be considered in non-ketotic hypoglycemia if a fatty acid beta-oxidation defect is suspected, but cannot be confirmed. Patients with HL deficiency can develop hypoglycemic crises and neurological symptoms even in adolescents and adults. Succinyl-CoA-3-oxoacid CoA transferase (SCOT) deficiency and beta-ketothiolase (T2) deficiency are two defects in ketolysis. Permanent ketosis is pathognomonic for SCOT deficiency. However, patients with "mild" SCOT mutations may have nonketotic periods. T2-deficient patients with "mild" mutations may have normal blood acylcarnitine profiles even in ketoacidotic crises. T2 deficient patients cannot be detected in a reliable manner by newborn screening using acylcarnitines. We review recent data on clinical presentation, metabolite profiles and the course of these diseases in adults, including in pregnancy.

  20. [Nephrolithiasis: metabolic defects and terapeutic implications].

    PubMed

    Tasca, Andrea; Ammendola, Ciro

    2014-01-01

    Over the past 10 years, major progress has been made in the knowledge of urinary lithogenesis, including the potential pathogenetic role of Randall's plaques and renal tubular crystal retention. Urine supersaturation is the driving force of this process and can be induced by some risk factors, including low urine volume, high urinary excretion of calcium oxalate and uric acid and low urinary excretion of citrate. Primary hypercalciuria can be due to intestinal overabsorption renal leak and bone reabsorption of calcium. Prophilaxis is mainly conducted with thiazides and low calcium diet which is indicated only in the intestinal form. Primary hyperoxaluria is treated with pyridoxine and may require in the severe forms simultaneous renal and liver transplantation. Enteric hyperoxaluria is secondary to fatty acids malabsorption and requires diet, oral calcium and cholestiramine. Hyperuricosuria is caused by diet endogenous overproduction, mainly due to enzymatic defects or high renal excretion of uric acid. Urine alkalinization with K or K and Mg citrate can prevent stone formation even in idiopathic uric acid nephrolithiasis, in which a defect of urine acidification is supposed to be the main abnormality, and in hypocitraturic patients. Cystinuria is a rare inherited defect with an intense clinical impact. It can be classified in three forms and urinary stone formation is the role. Increased solubility and conversion of cystine in a more soluble form are the main goals of the prophylaxis which includes K citrate and thiol agents administration. Tiopronin is preferred to D-penicillamine due to its lower side effects.

  1. 30 CFR 57.10003 - Correction of defects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Correction of defects. 57.10003 Section 57.10003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... § 57.10003 Correction of defects. Any hazardous defects shall be corrected before the equipment is used....

  2. 30 CFR 57.10003 - Correction of defects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Correction of defects. 57.10003 Section 57.10003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... § 57.10003 Correction of defects. Any hazardous defects shall be corrected before the equipment is used....

  3. 30 CFR 56.10003 - Correction of defects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Correction of defects. 56.10003 Section 56.10003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... § 56.10003 Correction of defects. Any hazardous defects shall be corrected before the equipment is used....

  4. 30 CFR 56.10003 - Correction of defects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Correction of defects. 56.10003 Section 56.10003 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... § 56.10003 Correction of defects. Any hazardous defects shall be corrected before the equipment is used....

  5. 7 CFR 51.2280 - Tolerances for grade defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Tolerances for grade defects. 51.2280 Section 51.2280... STANDARDS) United States Standards for Shelled English Walnuts (Juglans Regia) Tolerances for Grade Defects § 51.2280 Tolerances for grade defects. (a) All percentages shall be claculated on the basis of...

  6. 7 CFR 51.494c - Condition defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Condition defects. 51.494c Section 51.494c Agriculture... Standards for Grades of Cantaloups 1 Definitions § 51.494c Condition defects. Condition defects means... soft cantaloups and such factors as liquid in the seed cavity, surface mold, sunken areas, fresh...

  7. Toward defect-free fabrication of extreme ultraviolet photomasks

    NASA Astrophysics Data System (ADS)

    Qi, Zhengqing John; Rankin, Jed H.; Lawliss, Mark; Badger, Karen D.; Turley, Christina

    2016-04-01

    Defect-free fabrication of extreme ultraviolet (EUV) masks relies on the appropriate detection of native defects and subsequent strategies for their elimination. Commercial unavailability of actinic mask-blank inspection systems motivates the identification of an optical inspection methodology most suitable for finding relevant EUV blank defects. Studies showed that 193-nm wavelength inspection found the greatest number of printable defects as compared with rival higher-wavelength systems, establishing deep ultraviolet inspections as the blank defectivity baseline for subsequent mitigation strategies. Next, defect avoidance via pattern shifting was explored using representative 7-nm node metal/contact layer designs and 193-nm mask-blank inspection results. It was found that a significant percentage of native defects could be avoided only when the design was limited to active patterns (i.e., layouts without dummy fill). Total pattern-defect overlap remained ≤5 when metal layer blanks were chosen from the top 35% least defective substrates, while the majority of blanks remained suitable for contacts layers due to a lower active pattern density. Finally, nanomachining was used to address remaining native/multilayer defects. Native catastrophic defects were shown to recover 40% to 70% of target critical dimension after nanomachining, demonstrating the enormous potential for compensating multilayer defects.

  8. Positron-annihilation study of radiation defects in sodium azide

    SciTech Connect

    Etin, G.I.; Ryabykh, S.M.

    1987-07-01

    Annihilation-photon angular correlation has been used to examine radiation defects in sodium azide capable of trapping positrons. The calculated and measured characteristics have been determined for various defects, including micropores filled by radiolytic nitrogen. The positron annihilation rates have been determined for the regions around radiation defects.

  9. 33 CFR 179.11 - Defects determined by the Commandant.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Defects determined by the Commandant. 179.11 Section 179.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY DEFECT NOTIFICATION § 179.11 Defects determined by the Commandant....

  10. 33 CFR 179.05 - Manufacturer discovered defects.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Manufacturer discovered defects. 179.05 Section 179.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY DEFECT NOTIFICATION § 179.05 Manufacturer discovered defects. Each...

  11. 33 CFR 179.11 - Defects determined by the Commandant.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Defects determined by the Commandant. 179.11 Section 179.11 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY DEFECT NOTIFICATION § 179.11 Defects determined by the Commandant....

  12. 33 CFR 179.05 - Manufacturer discovered defects.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Manufacturer discovered defects. 179.05 Section 179.05 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY DEFECT NOTIFICATION § 179.05 Manufacturer discovered defects. Each...

  13. NIL defect performance toward high volume mass production

    NASA Astrophysics Data System (ADS)

    Hatano, Masayuki; Kobayashi, Kei; Kashiwagi, Hiroyuki; Tokue, Hiroshi; Kono, Takuya; Tetsuro, Nakasugi; Choi, Eun Hyuk; Jung, Wooyung

    2016-03-01

    A low cost alternative lithographic technology is desired to meet with the decreasing feature size of semiconductor devices. Nanoimprint lithography (NIL) is one of the candidates for alternative lithographic technologies. NIL has advantages such as good resolution, critical dimension (CD) uniformity and smaller line edge roughness (LER). 4 On the other hand, NIL involves some risks. Defectivity is the most critical issue in NIL. The progress in the defect reduction on templates shows great improvement recently. In other words, the defect reduction of the NIIL process is a key to apply NIL to mass production. In this paper, we describe the evaluation results of the defect performance of NIL using an up-to-date tool, Canon FPA-1100 NZ2, and discuss the future potential of NIL in terms of defectivity. The impact of various kinds defects, such as the non-filling defect, plug defect, line collapse, and defects on replica templates are discussed. We found that non-fill defects under the resist pattern cause line collapse. It is important to prevent line collapse. From these analyses based on actual NIL defect data on long-run stability, we will show the way to reduce defects and the possibility of NIL in device high volume mass production. For the past one year, we have been are collaborating with SK Hynix to bring this promising technology into mainstream manufacturing. This work is the result of this collaboration.

  14. Defect stability in thorium monocarbide: An ab initio study

    NASA Astrophysics Data System (ADS)

    Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping

    2015-09-01

    The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).

  15. Maternal intake of vitamin E and birth defects, National Birth Defects Prevention Study, 1997–2005

    PubMed Central

    Gilboa, Suzanne M.; Lee, Kyung A.; Cogswell, Mary E.; Traven, Flavia K.; Botto, Lorenzo D.; Riehle-Colarusso, Tiffany; Correa, Adolfo; Boyle, Coleen A.

    2015-01-01

    Background In a recent study, high maternal periconceptional intake of vitamin E was found to be associated with risk of congenital heart defects (CHDs). To explore this association further, we investigated the association between total daily vitamin E intake and selected birth defects. Methods We analyzed data from 4,525 controls and 8,665 cases from the 1997–2005 National Birth Defects Prevention Study. We categorized estimated periconceptional energy-adjusted total daily vitamin E intake from diet and supplements into quartiles (referent, lowest quartile). Associations between quartiles of energy-adjusted vitamin E intake and selected birth defects were adjusted for demographic, lifestyle, and nutritional factors. Results We observed a statistically significant association with the third quartile of vitamin E intake (OR 1.17; 95% CI 1.01 – 1.35) and all CHDs combined. Among CHD sub-types, we observed associations with left ventricular outflow tract obstruction defects, and its sub-type, coarctation of the aorta and the third quartile of vitamin E intake. Among defects other than CHDs, we observed associations between anorectal atresia and the third quartile of vitamin E intake (OR 1.66; 95% CI 1.01 – 2.72) and hypospadias and the fourth quartile of vitamin E intake (OR 1.42; 95% CI 1.09 – 1.87). Conclusions Selected quartiles of energy-adjusted estimated total daily vitamin E intake were associated with selected birth defects. However, because these few associations did not exhibit exposure-response patterns consistent with increasing risk associated with increasing intake of vitamin E, further studies are warranted to corroborate our findings. PMID:24740457

  16. Electronic absorption of Frenkel excitons in topologically disordered systems

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth S.

    1986-10-01

    A self-consistent effective medium theory of the electronic absorption spectra of tightly bound dipolar excitons in simple fluids is developed within the adiabatic picture. The theoretical approach is based on the isomorphism between the path-integral formulation of quantum theory and classical statistical mechanics and is an extension of previous work [D. Chandler, K. S. Schweizer, and P. G. Wolynes, Phys. Rev. Lett. 49, 1100 (1982)]. The consequences of fluid structural disorder on resonant excitation transfer and the statistical fluctuations of single molecule energy levels are simultaneously treated. Detailed numerical calculations are performed to establish the dependence of the absorption spectrum on fluid density, short range order, and the relative magnitude of the resonant transfer vs the single site disorder. The density dependence of the spectral features are found to be a sensitive function of fluid structure and the relative strength of the localizing vs the delocalizing interactions. By comparing the liquid state results with the corresponding crystalline solid behavior, the consequences of topological disorder on the exciton spectrum are identified. The relevance of the theoretical predictions to spectroscopic probes of exciton delocalization in molecular liquids and glasses is discussed.

  17. A single-molecule approach to ZnO defect studies: Single photons and single defects

    NASA Astrophysics Data System (ADS)

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-01

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ˜560-720 nm and typically exhibits two broad spectral peaks separated by ˜150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  18. A single-molecule approach to ZnO defect studies: Single photons and single defects

    SciTech Connect

    Jungwirth, N. R.; Pai, Y. Y.; Chang, H. S.; MacQuarrie, E. R.; Nguyen, K. X.; Fuchs, G. D.

    2014-07-28

    Investigations that probe defects one at a time offer a unique opportunity to observe properties and dynamics that are washed out of ensemble measurements. Here, we present confocal fluorescence measurements of individual defects in ZnO nanoparticles and sputtered films that are excited with sub-bandgap energy light. Photon correlation measurements yield both antibunching and bunching, indicative of single-photon emission from isolated defects that possess a metastable shelving state. The single-photon emission is in the range of ∼560–720 nm and typically exhibits two broad spectral peaks separated by ∼150 meV. The excited state lifetimes range from 1 to 13 ns, consistent with the finite-size and surface effects of nanoparticles and small grains. We also observe discrete jumps in the fluorescence intensity between a bright state and a dark state. The dwell times in each state are exponentially distributed and the average dwell time in the bright (dark) state does (may) depend on the power of the exciting laser. Taken together, our measurements demonstrate the utility of a single-molecule approach to semiconductor defect studies and highlight ZnO as a potential host material for single-defect based applications.

  19. Defects in Silicene: Vacancy Clusters, Extended Line Defects, and Di-adatoms

    PubMed Central

    Li, Shuang; Wu, Yifeng; Tu, Yi; Wang, Yonghui; Jiang, Tong; Liu, Wei; Zhao, Yonghao

    2015-01-01

    Defects are almost inevitable during the fabrication process, and their existence strongly affects thermodynamic and (opto)electronic properties of two-dimensional materials. Very recent experiments have provided clear evidence for the presence of larger multi-vacancies in silicene, but their structure, stability, and formation mechanism remain largely unexplored. Here, we present a detailed theoretical study of silicene monolayer containing three types of defects: vacancy clusters, extended line defects (ELDs), and di-adatoms. First-principles calculations, along with ab initio molecular dynamics simulations, revealed the coalescence tendency of small defects and formation of highly stable vacancy clusters. The 5|8|5 ELD – the most favorable extended defect in both graphene and silicene sheets – is found to be easier to form in the latter case due to the mixed sp2/sp3 hybridization of silicon. In addition, hybrid functional calculations that contain part of the Hatree-Fock exchange energy demonstrated that the introduction of single and double silicon adatoms significantly enhances the stability of the system, and provides an effective approach on tuning the magnetic moment and band gap of silicene. PMID:25619941

  20. Defect reduction and defect stability in IMEC's 14nm half-pitch chemo-epitaxy DSA flow

    NASA Astrophysics Data System (ADS)

    Gronheid, Roel; Rincon Delgadillo, Paulina; Pathangi, Hari; Van den Heuvel, Dieter; Parnell, Doni; Chan, Boon Teik; Lee, Yu-Tsung; Van Look, Lieve; Cao, Yi; Her, YoungJun; Lin, Guanyang; Harukawa, Ryota; Nagaswami, Venkat; D'Urzo, Lucia; Somervell, Mark; Nealey, Paul

    2014-03-01

    Directed Self-Assembly (DSA) of Block Co-Polymers (BCP) has become an intense field of study as a potential patterning solution for future generation devices. The most critical challenges that need to be understood and controlled include pattern placement accuracy, achieving low defectivity in DSA patterns and how to make chip designs DSA-friendly. The DSA program at imec includes efforts on these three major topics. Specifically, in this paper the progress in DSA defectivity within the imec program will be discussed. In previous work, defectivity levels of ~560 defects/cm2 were reported and the root causes for these defects were identified, which included particle sources, material interactions and pre-pattern imperfections. The specific efforts that have been undertaken to reduce defectivity in the line/space chemoepitaxy DSA flow that is used for the imec defectivity studies are discussed. Specifically, control of neutral layer material and improved filtration during the block co-polymer manufacturing have enabled a significant reduction in the defect performance. In parallel, efforts have been ongoing to enhance the defect inspection capabilities and allow a high capture rate of the small defects. It is demonstrated that transfer of the polystyrene patterns into the underlying substrate is critical for detecting the DSA-relevant defect modes including microbridges and small dislocations. Such pattern transfer enhances the inspection sensitivity by ~10x. Further improvement through process optimization allows for substantial defectivity reduction.

  1. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  2. Defect depth measurement of carbon fiber reinforced polymers by thermography

    NASA Astrophysics Data System (ADS)

    Chen, Terry Y.; Chen, Jian-Lun

    2016-01-01

    Carbon fiber reinforced polymers has been widely used in all kind of the industries. However the internal defects can result in the change of material or mechanical properties, and cause safety problem. In this study, step-heating thermography is employed to measure the time series temperature distribution of composite plate. The principle of heat conduction in a flat plate with defect inside is introduced. A temperature separation criterion to determine the depth of defect inside the specimen is obtained experimentally. Applying this criterion to CFRP specimens with embedded defects, the depth of embedded defect in CFRP can be determined quite well from the time series thermograms obtained experimentally.

  3. Role of Defects on Regioselectivity of Nano Pristine Graphene.

    PubMed

    Kudur Jayaprakash, Gururaj; Casillas, Norberto; Astudillo-Sánchez, Pablo D; Flores-Moreno, Roberto

    2016-11-17

    Here analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp(2)-hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity. In contrast, common carbon atoms at reconstructed polygons in Stone-Wales and double vacancy graphene display large reactivity variations. The improved reactivity and the regioselectivity at defected graphene is correlated to structural changes that caused carbon-carbon bond length variations at defected zones.

  4. Analysis of Stoichiometry-Related Defects in Group III - Nitrides

    DTIC Science & Technology

    2003-12-31

    defect determination 05 2.1 In-situ Defect Determination: DRS 05 2.2 Overview: Reproducible LT-GaAs growth 08 2.3 Ultrahigh-doped epilayers and their...Low temperature growth of GaAs and defect determination 2.1 In-situ Defect Determination: DRS In an effort to develop the use of common measurement...systems for the evaluation of the defect population in MBE grown III-V epilayers we applied in-situ diffuse reflectance spectroscopy ( DRS ) to monitor

  5. Phase synchronization and topological defects in inhomogeneous media.

    PubMed

    Davidsen, Jörn; Kapral, Raymond

    2002-11-01

    The influence of topological defects on phase synchronization and phase coherence in two-dimensional arrays of locally coupled, nonidentical, chaotic oscillators is investigated. The motion of topological defects leads to a breakdown of phase synchronization in the vicinities of the defects; however, the system is much more phase coherent as long as the coupling between the oscillators is strong enough to prohibit the continuous dynamical creation and annihilation of defects. The generic occurrence of topological defects in two and higher dimensions implies that the concept of phase synchronization has to be modified for these systems.

  6. Investigation of UFO defect on DUV CAR and BARC process

    NASA Astrophysics Data System (ADS)

    Yet, Siew Ing; Ko, Bong Sang; Lee, Soo Man; May, Mike

    2004-05-01

    Photo process defect reduction is one of the most important factors to improve the process stability and yield in sub-0.18um DUV process. In this paper, a new approach to minimize the Deep-UV (DUV) Chemically Amplified Resist (CAR) and Bottom Anti-Reflective Coating (BARC) induced defect known as UFO (UnidentiFied Object) defect will be introduced. These defects have mild surface topography difference on BARC; it only exists on the wide exposed area where there is no photoresist pattern. In this test, Nikon KrF Stepper & Scanner and TEL Clean track were used. Investigation was carried out on the defect formulation on both Acetal and ESCAP type of photoresist while elemental analysis was done by Atomic Force Microscope (AFM) & Auger Electron Spectroscopy (AES). Result indicated that both BARC and photoresist induce this UFO defect; total defect quantity is related with Post Exposure Bake (PEB) condition. Based on the elemental analysis and process-split test, we can conclude that this defect is caused by lack of acid amount and low diffusivity which is related to PAG (Photo Acid Generator) and TAG (Thermal Acid Generator) in KrF photoresist and BARC material. By optimizing photoresist bake condition, this UFO defect as well as other related defect such as Satellite defect could be eliminated.

  7. Local defect resonance for sensitive non-destructive testing

    NASA Astrophysics Data System (ADS)

    Adebahr, W.; Solodov, I.; Rahammer, M.; Gulnizkij, N.; Kreutzbruck, M.

    2016-02-01

    Ultrasonic wave-defect interaction is a background of ultrasound activated techniques for imaging and non-destructive testing (NDT) of materials and industrial components. The interaction, primarily, results in acoustic response of a defect which provides attenuation and scattering of ultrasound used as an indicator of defects in conventional ultrasonic NDT. The derivative ultrasonic-induced effects include e.g. nonlinear, thermal, acousto-optic, etc. responses also applied for NDT and defect imaging. These secondary effects are normally relatively inefficient so that the corresponding NDT techniques require an elevated acoustic power and stand out from conventional ultrasonic NDT counterparts for their specific instrumentation particularly adapted to high-power ultrasonic. In this paper, a consistent way to enhance ultrasonic, optical and thermal defect responses and thus to reduce an ultrasonic power required is suggested by using selective ultrasonic activation of defects based on the concept of local defect resonance (LDR). A strong increase in vibration amplitude at LDR enables to reliably detect and visualize the defect as soon as the driving ultrasonic frequency is matched to the LDR frequency. This also provides a high frequency selectivity of the LDR-based imaging, i.e. an opportunity of detecting a certain defect among a multitude of other defects in material. Some examples are shown how to use LDR in non-destructive testing techniques, like vibrometry, ultrasonic thermography and shearography in order to enhance the sensitivity of defect visualization.

  8. The role of point defects and defect complexes in silicon device processing. Summary report and papers

    SciTech Connect

    Sopori, B.; Tan, T.Y.

    1994-08-01

    This report is a summary of a workshop hold on August 24--26, 1992. Session 1 of the conference discussed characteristics of various commercial photovoltaic silicon substrates, the nature of impurities and defects in them, and how they are related to the material growth. Session 2 on point defects reviewed the capabilities of theoretical approaches to determine equilibrium structure of defects in the silicon lattice arising from transitional metal impurities and hydrogen. Session 3 was devoted to a discussion of the surface photovoltaic method for characterizing bulk wafer lifetimes, and to detailed studies on the effectiveness of various gettering operations on reducing the deleterious effects of transition metals. Papers presented at the conference are also included in this summary report.

  9. Native defects in Tl6SI4: Density functional calculations

    NASA Astrophysics Data System (ADS)

    Shi, Hongliang; Du, Mao-Hua

    2015-05-01

    Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges and large static dielectric constant, which provides effective screening of charged defects and impurities.

  10. Promoting cooperation through fast response to defection in spatial games

    NASA Astrophysics Data System (ADS)

    Wang, Xu-Wen; Jiang, Luo-Luo; Nie, Sen; Chen, Shi-Ming; Wang, Bing-Hong

    2016-10-01

    Recent experimental research has revealed that the cooperation in dynamic social networks, has significant scope for enhancement because individuals in a social system break the links with defective neighbours. To investigate how the length of defection tolerance affects the cooperation of prisoner’s dilemma game in dynamic ring networks, we study evolution of breaking and rewiring operations for social interaction as a response to the defection strategy. Defection tolerance is measured in terms of the time length that an individual tolerates a defector who continuously adopts the defective strategy. The results show that the dynamic nature of human social networks plays an essential role in promoting cooperation. Interestingly, there exists a critical value of the temptation to defect, below which the system is entirely dominated by cooperators, and a lower value of defection tolerance induces a larger threshold of temptation.

  11. Annealing ambient controlled deep defect formation in InP

    NASA Astrophysics Data System (ADS)

    Zhao, Y. W.; Dong, Z. Y.; Duan, M. L.; Sun, W. R.; Zeng, Y. P.; Sun, N. F.; Sun, T. N.

    2004-07-01

    Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while InP annealed in iron phosphide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.

  12. Concentration of constitutional and thermal defects in UAl4

    NASA Astrophysics Data System (ADS)

    Gargano, P. H.; Kniznik, L.; Alonso, P. R.; Forti, M. D.; Rubiolo, G. H.

    2016-09-01

    The point defect structure of intermetallic compound oI20 UAl4 is investigated using a combination of the statistical mechanical Wagner-Schottky model and first-principles calculations within a projector augmented wave pseudopotential method in conjunction with the generalized gradient approximation. The formation energies of eight point defects were calculated taking into account the four sublattices. The point defect concentrations are calculated as function of temperature and deviation from stoichiometry. Our results show that the aluminum antisite is the constitutional point defect on the Al-rich side. At this off-stoichiometric side the dominant thermal defect is an interbranch defect where four constitutional antisite aluminum atoms are replaced by five uranium vacancies. The point defect effective formation energies are obtained and these results allow us to identify the antistructure bridge mechanism as the most probable for the diffusion for Al atoms in the Al-rich UAl4 intermetallic compound.

  13. Native defects in Tl6SI4: Density functional calculations

    DOE PAGES

    Shi, Hongliang; Du, Mao -Hua

    2015-05-05

    In this study, Tl6SI4 is a promising room-temperature semiconductor radiation detection material. Here, we report density functional calculations of native defects and dielectric properties of Tl6SI4. Formation energies and defect levels of native point defects and defect complexes are calculated. Donor-acceptor defect complexes are shown to be abundant in Tl6SI4. High resistivity can be obtained by Fermi level pinning by native donor and acceptor defects. Deep donors that are detrimental to electron transport are identified and methods to mitigate such problem are discussed. Furthermore, we show that mixed ionic-covalent character of Tl6SI4 gives rise to enhanced Born effective charges andmore » large static dielectric constant, which provides effective screening of charged defects and impurities.« less

  14. Controlling Defect Strutures of 8CB by SI Microchannels

    NASA Astrophysics Data System (ADS)

    Pfohl, T.; Li, Y.; Safinya, C. R.; Choi, M. C.; Kim, M. W.; Wen, Z.

    2001-03-01

    We studied the defect structures of smectic 8CB confined in lithographically patterned Si microchannels. Selective surface modifications were carried out to control the wetting contrast of channel surfaces. The 8CB samples were injected at room temperature into the channels and defect structures were observed by polarized microscopy. As a function of decreasing channel depth and width, we observed a systematic transition from spherulitic to focal conic defect textures. The defects become spatially ordered at certain optimal channel width and depth, giving rise to unexpected periodic patterns. Surface modifications appeared to have a large effect on the type of defects as well as the size of the defects. The control of the defect structures by the Si microstructures opens up the possibility of many technological applications including templating and optical switches. (Work supported by NSF-DMR-9972246, NSF-DMR-0076357, ONR-N00014-00-1-0214, UC-Biotech 99-14, and CULAR 99-216)

  15. Ion-Beam-Induced Defects and Defect Interactions in Perovskite-Structure Titanates

    SciTech Connect

    Boatner, L.A.; Jiang, W.; Meldrum, A.; Thevuthasan, S.; Weber, W.J.; Williford, R.E.

    1999-08-23

    Ion-beam irradiation of perovskite structures results in the production and accumulation of defects. Below a critical temperature, irradiation also leads to a crystalline-to-amorphous transformation. The critical temperature for amorphization under 800 keV Kr{sup +} ion irradiation is 425,440 and 550 K for SrTiO{sub 3}, CaTiO{sub 3} and BaTiO{sub 3}, respectively. The results of ion-channeling studies on SrTiO{sub 3} irradiated with 1.0 MeV Au{sup 2+} ions suggest that the crystalline-to-amorphous transformation is dominated by the accumulation and interaction of irradiation-induced defects. In SiTiO{sub 3} irradiated with He{sup +} and 0{sup +} ions at 180 K, isochronal annealing studies indicate that there is significant recovery of defects on both the oxygen and cation sublattices between 200 and 400 K. These results suggest that defect recovery processes may control the kinetics of amorphization. A fit of the direct-impact/defect-stimulated model to the data for SrTiO{sub 3} suggests that the kinetics of amorphization are controlled by both a nearly athermal irradiation-assisted recovery process with an activation energy of 0.1 plus or minus 0.05 eV and a thermal defect recovery process with an activation energy of 0.6 plus or minus 0.1 eV. In SrTi0{sub 3} implanted with 40 keV H{sup +} to 5.0 x 10{sup 16} and 1.0 x 10{sup 17} ions/cm{sup 2}, annealing at 470 K increases the backscattering yield from Sr and Ti and is mostly likely due to the coalescence of H{sub 2} into bubble nuclei. Annealing at 570 K and higher results in the formation of blisters or large cleaved areas.

  16. Neural tube defects: pathogenesis and folate metabolism.

    PubMed

    Pulikkunnel, Scaria T; Thomas, S V

    2005-02-01

    Neural tube defects (NTDs) are a group of congenital malformations with worldwide distribution and complex aetio-pathogenesis. Animal studies indicate that there may be four sites of initiation of neural tube closure (NTC). Selective involvement of these sites may lead to defects varying from anencephaly to spina bifida. The NTC involves formation of medial and dorsolateral hinge points, convergent extension and a zipper release process. Proliferation and migration of neuroectodermal cells and its morphological changes brought about by microfilaments and other cytoskeletal proteins mediate NTC. Genetic, nutritional and teratogenic mechanisms have been implicated in the pathogenesis of NTDs. Folate is an important component in one carbon metabolism that provides active moieties for synthesis of nucleic acids and proteins. Several gene defects affecting enzymes and proteins involved in transport and metabolism of folate have been associated with NTDs. It may be possible in future, to identify individuals at higher risk of NTDs by genetic studies. Epidemiological and clinical studies have shown that dietary supplementation or food fortification with folic acid would reduce the incidence of NTDs. The protective effect of folic acid may be by overcoming these metabolic blocks through unidentified mechanisms. Genetic and biochemical studies on foetal cells may supplement currently available prenatal tests to diagnose NTDs. Antiepileptic drugs (AEDs), particularly valproate and carbamazepine have been shown to increase the risk of NTDs by possibly increasing the oxidative stress and deranging the folate metabolism. Accordingly, it is recommended that all women taking AEDs may use 1-5 mg folic acid daily in the pre conception period and through pregnancy.

  17. Exploring the multiverse with topological defects

    NASA Astrophysics Data System (ADS)

    Zhang, Jun

    Inflationary cosmology suggests a nontrivial spacetime structure on scales beyond our observable universe, the multiverse. Based on the observation that topological defects and vacuum bubbles can spontaneously nucleate in a de Sitter like inflating space, we explore two different aspects of the multiverse model in this thesis. Hence the main body of this study consists of two parts. In the first part, we investigate domain walls and cosmic strings that may nucleate in the false vacuum. If we live in a bubble universe surrounded by the false vacuum, as suggested by the eternal inflationary multiverse model, the nucleating defects could collide with our bubble universe, and leave potentially observable signals. We investigate different kinds of collisions and their consequences. We suggest such collisions generically result in signals such as radiation and gravitational waves or the defects themselves or a combination of both propagating into our bubble, and therefore provide a new approach to searching for the multiverse. In the second part, we study the fate of domain walls and vacuum bubbles that could nucleate in the slow roll inflation. We show that, depending on their sizes, these objects will form either black holes or wormholes after inflation. We study the spacetime structure of the resulting wormholes. Our analysis indicates the presence of domain walls and vacuum bubbles in the slow roll inflation has significant effects on the global structure of our universe, that is by forming wormholes, it can lead to the picture of a multiverse. We also calculate the mass spectrum of the resulting black holes and wormholes under certain assumptions. We argue that the observation of a population of black holes with such mass spectrum could be considered as evidence of the existence of both inflation and multiverse.

  18. Aging and defective lymphoid cell activation.

    PubMed

    Coffman, F D; Cohen, S

    1989-01-01

    Activation of lymphocytes for proliferation is a crucial process in the immune response. Age-related deficiencies in this cellular response strongly correlate with deficiencies in the immune system response, with concomitant increase in disease severity and mortality. Defects associated with the transmission of the initial activation signal and with IL-2 production contribute to the depressed response, but defects in the IL-2 response mechanism also play important roles. A major factor in this area is the inability of the nuclei of these cells to respond to the intracellular factor ADR, which plays a crucial role in the initiation of DNA replication. These cells produce normal levels of ADR; thus, either the nuclei cannot bind ADR in a productive manner or the defect lies beyond the point of ADR binding, perhaps in one of the other proteins of the initiation complex. An interesting contrast to the age-related failure of nuclei to respond to ADR is the failure of neoplastic nuclei to respond to the ADR inhibitor. This inhibitor, found in the cytoplasm of quiescent cells, suppresses both the activation of quiescent nuclei by ADR and the ongoing DNA synthesis in isolated nuclei from activated cells. Nuclei from spontaneous proliferating cell lines were not affected by this inhibitor, which may be an important factor in the uncontrolled growth seen in neoplastic cells. The investigation of ADR has given hints that perhaps two of the fundamental questions in biology, namely why some cells don't proliferate and why some others won't stop proliferating, may be two sides of the same coin.

  19. Impact of curvature on topological defects

    NASA Astrophysics Data System (ADS)

    Mesarec, L.; Góźdź, W.; Iglič, A.; Kralj, S.

    2017-01-01

    We analyze the impact of extrinsic and intrinsic curvature on positions of topological defects (TDs) in two-dimensional (2D) nematic films. We demonstrate that both these curvature contributions are commonly present and are expected to be weighted by comparable elastic constants. A simple Landau-de Gennes approach in terms of tensor nematic order parameter is used to numerically demonstrate impact of the curvatures on position of TDs on 2D ellipsoidal nematic shells. In particular, in oblate ellipsoids the extrinsic and intrinsic elastic terms enforce conflicting tendencies to positions of TDs.

  20. Method of identifying defective particle coatings

    DOEpatents

    Cohen, Mark E.; Whiting, Carlton D.

    1986-01-01

    A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.