Sample records for frequencies physics-based cloud

  1. G-band atmospheric radars: new frontiers in cloud physics

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.

    2014-01-01

    Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud-scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G-band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G-band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

  2. G band atmospheric radars: new frontiers in cloud physics

    NASA Astrophysics Data System (ADS)

    Battaglia, A.; Westbrook, C. D.; Kneifel, S.; Kollias, P.; Humpage, N.; Löhnert, U.; Tyynelä, J.; Petty, G. W.

    2014-06-01

    Clouds and associated precipitation are the largest source of uncertainty in current weather and future climate simulations. Observations of the microphysical, dynamical and radiative processes that act at cloud scales are needed to improve our understanding of clouds. The rapid expansion of ground-based super-sites and the availability of continuous profiling and scanning multi-frequency radar observations at 35 and 94 GHz have significantly improved our ability to probe the internal structure of clouds in high temporal-spatial resolution, and to retrieve quantitative cloud and precipitation properties. However, there are still gaps in our ability to probe clouds due to large uncertainties in the retrievals. The present work discusses the potential of G band (frequency between 110 and 300 GHz) Doppler radars in combination with lower frequencies to further improve the retrievals of microphysical properties. Our results show that, thanks to a larger dynamic range in dual-wavelength reflectivity, dual-wavelength attenuation and dual-wavelength Doppler velocity (with respect to a Rayleigh reference), the inclusion of frequencies in the G band can significantly improve current profiling capabilities in three key areas: boundary layer clouds, cirrus and mid-level ice clouds, and precipitating snow.

  3. Study and Application on Cloud Covered Rate for Agroclimatical Distribution Using In Guangxi Based on Modis Data

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhong, Shiquan; Sun, Han; Tan, Zongkun; Li, Zheng; Ding, Meihua

    Based on analyzing of the physical characteristics of cloud and importance of cloud in agricultural production and national economy, cloud is a very important climatic resources such as temperature, precipitation and solar radiation. Cloud plays a very important role in agricultural climate division .This paper analyzes methods of cloud detection based on MODIS data in China and Abroad . The results suggest that Quanjun He method is suitable to detect cloud in Guangxi. State chart of cloud cover in Guangxi is imaged by using Quanjun He method .We find out the approach of calculating cloud covered rate by using the frequency spectrum analysis. At last, the Guangxi is obtained. Taking Rongxian County Guangxi as an example, this article analyze the preliminary application of cloud covered rate in distribution of Rong Shaddock pomelo . Analysis results indicate that cloud covered rate is closely related to quality of Rong Shaddock pomelo.

  4. Physical Characteristics of Arctic Clouds from Ground-based Remote-sensing with a Polarized Micro-Pulse Lidar and a 95-GHz Cloud Radar in Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Shiobara, M.; Takano, T.; Okamoto, H.; Yabuki, M.

    2015-12-01

    Clouds and aerosols are key elements having a potential to change climate by their radiative effects on the energy balance in the global climate system. In the Arctic, we have been continuing ground-based remote-sensing measurements for clouds and aerosols using a sky-radiometer, a micro-pulse lidar (MPL) and an all-sky camera in Ny-Ålesund (78.9N, 11.9E), Svalbard since early 2000's. In addition to such regular operations, several new measurements have been performed with a polarization MPL since August 2013, a 95GHz Doppler cloud radar since September 2013, and a dual frequency microwave radiometer since June 2014. An intensive field experiment for cloud-aerosol-radiation interaction study named A-CARE (PI: J. Ukita) was conducted for water clouds in the period of 23 June - 13 July 2014 and for mixed phase clouds in the period of 30 March - 23 April 2015 in Ny-Alesund. The experiment consisted of ground-based remote-sensing and in-situ cloud microphysics measurements. In this paper, preliminary results from these remote-sensing measurements will be presented, particularly in regard to physical characteristics of Arctic clouds based on radar-lidar collocated observation in Ny-Ålesund.

  5. Sound, infrasound, and sonic boom absorption by atmospheric clouds.

    PubMed

    Baudoin, Michaël; Coulouvrat, François; Thomas, Jean-Louis

    2011-09-01

    This study quantifies the influence of atmospheric clouds on propagation of sound and infrasound, based on an existing model [Gubaidulin and Nigmatulin, Int. J. Multiphase Flow 26, 207-228 (2000)]. Clouds are considered as a dilute and polydisperse suspension of liquid water droplets within a mixture of dry air and water vapor, both considered as perfect gases. The model is limited to low and medium altitude clouds, with a small ice content. Four physical mechanisms are taken into account: viscoinertial effects, heat transfer, water phase changes (evaporation and condensation), and vapor diffusion. Physical properties of atmospheric clouds (altitude, thickness, water content and droplet size distribution) are collected, along with values of the thermodynamical coefficients. Different types of clouds have been selected. Quantitative evaluation shows that, for low audible and infrasound frequencies, absorption within clouds is several orders of magnitude larger than classical absorption. The importance of phase changes and vapor diffusion is outlined. Finally, numerical simulations for nonlinear propagation of sonic booms indicate that, for thick clouds, attenuation can lead to a very large decay of the boom at the ground level. © 2011 Acoustical Society of America

  6. Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    DOE PAGES

    Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano; ...

    2017-08-11

    Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less

  7. Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano

    Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less

  8. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Wang, Yuzhao; Wang, Qianqian; Li, Zhanqing; Wang, Zhien; Liu, Dong

    2014-06-01

    This paper introduces a new algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization processing technique is first used to inhibit the impact of increasing noise with distance. The value distribution equalization method which reduces the magnitude of signal variations with distance is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds or aerosols. This method can separate clouds and aerosols with high accuracy, although differentiation between aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared with the existing Atmospheric Radiation Measurement program lidar-based cloud product, the new method appears more reliable and detects more clouds with high bases. The algorithm is applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu sites. At the SGP site, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring and shows bimodal vertical distributions with maximum occurrences at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. The dominant clouds are stratiform in winter and convective in summer. By contrast, the cloud frequency at the Taihu site shows no clear seasonal variation and the maximum occurrence is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at the SGP site. A seasonal analysis of cloud base occurrence frequency suggests that stratiform clouds dominate at the Taihu site.

  9. A New Cloud and Aerosol Layer Detection Method Based on Micropulse Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhao, C.; Wang, Y.; Li, Z.; Wang, Z.; Liu, D.

    2014-12-01

    A new algorithm is developed to detect aerosols and clouds based on micropulse lidar (MPL) measurements. In this method, a semi-discretization processing (SDP) technique is first used to inhibit the impact of increasing noise with distance, then a value distribution equalization (VDE) method is introduced to reduce the magnitude of signal variations with distance. Combined with empirical threshold values, clouds and aerosols are detected and separated. This method can detect clouds and aerosols with high accuracy, although classification of aerosols and clouds is sensitive to the thresholds selected. Compared with the existing Atmospheric Radiation Measurement (ARM) program lidar-based cloud product, the new method detects more high clouds. The algorithm was applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu site. At SGP, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring, and shows bi-modal vertical distributions with maximum frequency at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. By contrast, the cloud frequency at Taihu shows no clear seasonal variation and the maximum frequency is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at SGP.

  10. A physics-based model for the ionization of samarium by the MOSC chemical releases in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul A.; Siefring, Carl L.; Briczinski, Stanley J.; Viggiano, Albert; Caton, Ronald G.; Pedersen, Todd R.; Holmes, Jeffrey M.; Ard, Shaun; Shuman, Nicholas; Groves, Keith M.

    2017-05-01

    Atomic samarium has been injected into the neutral atmosphere for production of electron clouds that modify the ionosphere. These electron clouds may be used as high-frequency radio wave reflectors or for control of the electrodynamics of the F region. A self-consistent model for the photochemical reactions of Samarium vapor cloud released into the upper atmosphere has been developed and compared with the Metal Oxide Space Cloud (MOSC) experimental observations. The release initially produces a dense plasma cloud that that is rapidly reduced by dissociative recombination and diffusive expansion. The spectral emissions from the release cover the ultraviolet to the near infrared band with contributions from solar fluorescence of the atomic, molecular, and ionized components of the artificial density cloud. Barium releases in sunlight are more efficient than Samarium releases in sunlight for production of dense ionization clouds. Samarium may be of interest for nighttime releases but the artificial electron cloud is limited by recombination with the samarium oxide ion.

  11. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning, is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types. At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.5C lower limit for the equilibrium global climate sensitivity to a doubling of CO2 which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.

  12. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds in the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Wolf, Audrey B.

    1999-01-01

    Satellite observations of low-level clouds have challenged the assumption that adiabatic liquid water content combined with constant physical thickness will lead to a negative cloud optics feedback in a decadal climate change. We explore the reasons for the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurement Program Cloud and Radiation Testbed site in the Southern Great Plains of the United States. We find that low cloud liquid water path is approximately invariant with temperature in winter but decreases strongly with temperature in summer, consistent with the satellite inferences at this latitude. This behavior occurs because liquid water content shows no detectable temperature dependence while cloud physical thickness decreases with warming. Thinning of clouds with warming is observed on seasonal, synoptic, and diurnal time scales; it is most obvious in the warm sectors of baroclinic waves. Although cloud top is observed to slightly descend with warming, the primary cause of thinning is the ascent of cloud base due to the reduction in surface relative humidity and the concomitant increase in the lifting condensation level of surface air. Low cloud liquid water path is not observed to be a continuous function of temperature. Rather, the behavior we observe is best explained as a transition in the frequency of occurrence of different boundary layer types: At cold temperatures, a mixture of stratified and convective boundary layers is observed, leading to a broad distribution of liquid water path values, while at warm temperatures, only convective boundary layers with small liquid water paths, some of them decoupled, are observed. Our results, combined with the earlier satellite inferences, imply that the commonly quoted 1.50 C lower limit for the equilibrium global climate sensitivity to a doubling of CO2, which is based on models with near-adiabatic liquid water behavior and constant physical thickness, should be revised upward.

  13. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar withmore » Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.« less

  14. An ARM data-oriented diagnostics package to evaluate the climate model simulation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xie, S.

    2016-12-01

    A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.

  15. A Melting Layer Model for Passive/Active Microwave Remote Sensing Applications. Part 2; Simulation of TRMM Observations

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Bauer, Peter; Kummerow, Christian D.; Tao, Wei-Kuo

    2000-01-01

    The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.

  16. Physical Retrievals of Over-Ocean Rain Rate from Multichannel Microwave Imagery. Part 1; Theoretical Characteristics of Normalized Polarization and Scattering Indices

    NASA Technical Reports Server (NTRS)

    Petty, G. W.

    1994-01-01

    Microwave rain rate retrieval algorithms have most often been formulated in terms of the raw brightness temperatures observed by one or more channels of a satellite radiometer. Taken individually, single-channel brightness temperatures generally represent a near-arbitrary combination of positive contributions due to liquid water emission and negative contributions due to scattering by ice and/or visibility of the radiometrically cold ocean surface. Unfortunately, for a given rain rate, emission by liquid water below the freezing level and scattering by ice particles above the freezing level are rather loosely coupled in both a physical and statistical sense. Furthermore, microwave brightness temperatures may vary significantly (approx. 30-70 K) in response to geophysical parameters other than liquid water and precipitation. Because of these complications, physical algorithms which attempt to directly invert observed brightness temperatures have typically relied on the iterative adjustment of detailed micro-physical profiles or cloud models, guided by explicit forward microwave radiative transfer calculations. In support of an effort to develop a significantly simpler and more efficient inversion-type rain rate algorithm, the physical information content of two linear transformations of single-frequency, dual-polarization brightness temperatures is studied: the normalized polarization difference P of Petty and Katsaros (1990, 1992), which is intended as a measure of footprint-averaged rain cloud transmittance for a given frequency; and a scattering index S (similar to the polarization corrected temperature of Spencer et al.,1989) which is sensitive almost exclusively to ice. A reverse Monte Carlo radiative transfer model is used to elucidate the qualitative response of these physically distinct single-frequency indices to idealized 3-dimensional rain clouds and to demonstrate their advantages over raw brightness temperatures both as stand-alone indices of precipitation activity and as primary variables in physical, multichannel rain rate retrieval schemes. As a byproduct of the present analysis, it is shown that conventional plane-parallel analyses of the well-known foot-print-filling problem for emission-based algorithms may in some cases give seriously misleading results.

  17. Artificial ionospheric modification: The Metal Oxide Space Cloud experiment

    NASA Astrophysics Data System (ADS)

    Caton, Ronald G.; Pedersen, Todd R.; Groves, Keith M.; Hines, Jack; Cannon, Paul S.; Jackson-Booth, Natasha; Parris, Richard T.; Holmes, Jeffrey M.; Su, Yi-Jiun; Mishin, Evgeny V.; Roddy, Patrick A.; Viggiano, Albert A.; Shuman, Nicholas S.; Ard, Shaun G.; Bernhardt, Paul A.; Siefring, Carl L.; Retterer, John; Kudeki, Erhan; Reyes, Pablo M.

    2017-05-01

    Clouds of vaporized samarium (Sm) were released during sounding rocket flights from the Reagan Test Site, Kwajalein Atoll in May 2013 as part of the Metal Oxide Space Cloud (MOSC) experiment. A network of ground-based sensors observed the resulting clouds from five locations in the Republic of the Marshall Islands. Of primary interest was an examination of the extent to which a tailored radio frequency (RF) propagation environment could be generated through artificial ionospheric modification. The MOSC experiment consisted of launches near dusk on two separate evenings each releasing 6 kg of Sm vapor at altitudes near 170 km and 180 km. Localized plasma clouds were generated through a combination of photoionization and chemi-ionization (Sm + O → SmO+ + e-) processes producing signatures visible in optical sensors, incoherent scatter radar, and in high-frequency (HF) diagnostics. Here we present an overview of the experiment payloads, document the flight characteristics, and describe the experimental measurements conducted throughout the 2 week launch window. Multi-instrument analysis including incoherent scatter observations, HF soundings, RF beacon measurements, and optical data provided the opportunity for a comprehensive characterization of the physical, spectral, and plasma density composition of the artificial plasma clouds as a function of space and time. A series of companion papers submitted along with this experimental overview provide more detail on the individual elements for interested readers.

  18. Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick

    2006-01-01

    Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow in the cloud for 166, and 183 plus or minus 7 GHz for the heavy and medium snow rates. For submm-wave channels, there is no contribution from the surface because these channels cannot probe through clouds, nor normal water vapor amounts in clear air regions. This work is extremely valuable in physically-based retrieval algorithm development research.

  19. Characteristics of cloud occurrence using ceilometer measurements and its relationship to precipitation over Seoul

    NASA Astrophysics Data System (ADS)

    Lee, Sanghee; Hwang, Seung-On; Kim, Jhoon; Ahn, Myoung-Hwan

    2018-03-01

    Clouds are an important component of the atmosphere that affects both climate and weather, however, their contributions can be very difficult to determine. Ceilometer measurements can provide high resolution information on atmospheric conditions such as cloud base height (CBH) and vertical frequency of cloud occurrence (CVF). This study presents the first comprehensive analysis of CBH and CVF derived using Vaisala CL51 ceilometers at two urban stations in Seoul, Korea, during a three-year period from January 2014 to December 2016. The average frequency of cloud occurrence detected by the ceilometers is 54.3%. It is found that the CL51 is better able to capture CBH as compared to another ceilometer CL31 at a nearby meteorological station because it could detect high clouds more accurately. Frequency distributions for CBH up to 13,000 m providing detailed vertical features with 500-m interval show 55% of CBHs below 2 km for aggregated CBHs. A bimodal frequency distribution was observed for three-layers CBHs. A monthly variation of CVF reveals that frequency concentration of lower clouds is found in summer and winter, and higher clouds more often detected in spring and autumn. Monthly distribution features of cloud occurrence and precipitation are depending on seasons and it might be easy to define their relationship due to higher degree of variability of precipitation than cloud occurrence. However, a fluctuation of cloud occurrence frequency in summer is similar to precipitation in trend, whereas clouds in winter are relatively frequent but precipitation is not accompanied. In addition, recent decrease of summer precipitation could be mostly explained by a decrease of cloud occurrence. Anomalous precipitation recorded sometimes is considerably related to corresponding cloud occurrence. The diurnal and daily variations of CBH and CVF from ceilometer observations and the analysis of microwave radiometer measurements for two typical cloudiness cases are also reviewed in parallel. This analysis in finer temporal scale exhibits that utilization of ground-based observations together could help to analyze the cloud behaviors.

  20. Can We Use Single-Column Models for Understanding the Boundary Layer Cloud-Climate Feedback?

    NASA Astrophysics Data System (ADS)

    Dal Gesso, S.; Neggers, R. A. J.

    2018-02-01

    This study explores how to drive Single-Column Models (SCMs) with existing data sets of General Circulation Model (GCM) outputs, with the aim of studying the boundary layer cloud response to climate change in the marine subtropical trade wind regime. The EC-EARTH SCM is driven with the large-scale tendencies and boundary conditions as derived from two different data sets, consisting of high-frequency outputs of GCM simulations. SCM simulations are performed near Barbados Cloud Observatory in the dry season (January-April), when fair-weather cumulus is the dominant low-cloud regime. This climate regime is characterized by a near equilibrium in the free troposphere between the long-wave radiative cooling and the large-scale advection of warm air. In the SCM, this equilibrium is ensured by scaling the monthly mean dynamical tendency of temperature and humidity such that it balances that of the model physics in the free troposphere. In this setup, the high-frequency variability in the forcing is maintained, and the boundary layer physics acts freely. This technique yields representative cloud amount and structure in the SCM for the current climate. Furthermore, the cloud response to a sea surface warming of 4 K as produced by the SCM is consistent with that of the forcing GCM.

  1. A Method for Obtaining High Frequency, Global, IR-Based Convective Cloud Tops for Studies of the TTL

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Ueyama, Rei; Jensen, Eric; Schoeberl, Mark

    2017-01-01

    Models of varying complexity that simulate water vapor and clouds in the Tropical Tropopause Layer (TTL) show that including convection directly is essential to properly simulating the water vapor and cloud distribution. In boreal winter, for example, simulations without convection yield a water vapor distribution that is too uniform with longitude, as well as minimal cloud distributions. Two things are important for convective simulations. First, it is important to get the convective cloud top potential temperature correctly, since unrealistically high values (reaching above the cold point tropopause too frequently) will cause excessive hydration of the stratosphere. Second, one must capture the time variation as well, since hydration by convection depends on the local relative humidity (temperature), which has substantial variation on synoptic time scales in the TTL. This paper describes a method for obtaining high frequency (3-hourly) global convective cloud top distributions which can be used in trajectory models. The method uses rainfall thresholds, standard IR brightness temperatures, meteorological temperature analyses, and physically realistic and documented corrections IR brightness temperature corrections to derive cloud top altitudes and potential temperatures. The cloud top altitudes compare well with combined CLOUDSAT and CALIPSO data, both in time-averaged overall vertical and horizontal distributions and in individual cases (correlations of .65-.7). An important finding is that there is significant uncertainty (nearly .5 km) in evaluating the statistical distribution of convective cloud tops even using lidar. Deep convection whose tops are in regions of high relative humidity (such as much of the TTL), will cause clouds to form above the actual convection. It is often difficult to distinguish these clouds from the actual convective cloud due to the uncertainties of evaluating ice water content from lidar measurements. Comparison with models show that calculated cloud top altitudes are generally higher than those calculated by global analyses (e.g., MERRA). Interannual variability in the distribution of convective cloud top altitudes is also investigated.

  2. Optical heterodyne accelerometry: passively stabilized, fully balanced velocity interferometer system for any reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttler, William T.; Lamoreaux, Steven K.

    2010-08-10

    We formalize the physics of an optical heterodyne accelerometer that allows measurement of low and high velocities from material surfaces under high strain. The proposed apparatus incorporates currently common optical velocimetry techniques used in shock physics, with interferometric techniques developed to self-stabilize and passively balance interferometers in quantum cryptography. The result is a robust telecom-fiber-based velocimetry system insensitive to modal and frequency dispersion that should work well in the presence of decoherent scattering processes, such as from ejecta clouds and shocked surfaces.

  3. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    NASA Technical Reports Server (NTRS)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.

  4. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.

    PubMed

    Fahim, Muhammad; Lee, Sungyoung; Yoon, Yongik

    2014-01-01

    Current generation smartphone can be seen as one of the most ubiquitous device for physical activity recognition. In this paper we proposed a physical activity recognizer to provide u-healthcare services in a cost effective manner by utilizing cloud computing infrastructure. Our model is comprised on embedded triaxial accelerometer of the smartphone to sense the body movements and a cloud server to store and process the sensory data for numerous kind of services. We compute the time and frequency domain features over the raw signals and evaluate different machine learning algorithms to identify an accurate activity recognition model for four kinds of physical activities (i.e., walking, running, cycling and hopping). During our experiments we found Support Vector Machine (SVM) algorithm outperforms for the aforementioned physical activities as compared to its counterparts. Furthermore, we also explain how smartphone application and cloud server communicate with each other.

  5. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  6. Physical retrieval of precipitation water contents from Special Sensor Microwave/Imager (SSM/I) data. Part 1: A cloud ensemble/radiative parameterization for sensor response (report version)

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Raymond, William H.

    1990-01-01

    The physical retrieval of geophysical parameters based upon remotely sensed data requires a sensor response model which relates the upwelling radiances that the sensor observes to the parameters to be retrieved. In the retrieval of precipitation water contents from satellite passive microwave observations, the sensor response model has two basic components. First, a description of the radiative transfer of microwaves through a precipitating atmosphere must be considered, because it is necessary to establish the physical relationship between precipitation water content and upwelling microwave brightness temperature. Also the spatial response of the satellite microwave sensor (or antenna pattern) must be included in the description of sensor response, since precipitation and the associated brightness temperature field can vary over a typical microwave sensor resolution footprint. A 'population' of convective cells, as well as stratiform clouds, are simulated using a computationally-efficient multi-cylinder cloud model. Ensembles of clouds selected at random from the population, distributed over a 25 km x 25 km model domain, serve as the basis for radiative transfer calculations of upwelling brightness temperatures at the SSM/I frequencies. Sensor spatial response is treated explicitly by convolving the upwelling brightness temperature by the domain-integrated SSM/I antenna patterns. The sensor response model is utilized in precipitation water content retrievals.

  7. A second look at the CloudSat/TRMM intersect data

    NASA Astrophysics Data System (ADS)

    Haddad, Z.; Kuo, K.; Smith, E. A.; Kiang, D.; Turk, F. J.

    2010-12-01

    The original objective motivating the creation of the CloudSat+TRMM intersect products (by E.A. Smith, K.-S. Kuo et al) was to provide new opportunities in research related to precipitating clouds. The data products consist of near-coincident CloudSat Cloud Profiling Radar calibrated 94-GHz reflectivity factors and detection flag, sampled every 240 m in elevation, and the TRMM Precipitation Radar calibrated 13.8-GHz reflectivity factors, attenuation-adjusted reflectivity factors and rain rate estimates, sampled every 250 m in elevation, in the TRMM beam whose footprint encompasses the CloudSat beam footprint. Because retrieving precipitation distributions from single-frequency radar measurements is a very under-constrained proposition, we decided to restrict our analyses to CloudSat data that were taken within 3 minutes of a TRMM pass. We ended up with over 5000 beams of nearly simultaneous observations of precipitation, and proceeded in two different ways: 1) we attempted to perform retrievals based on simultaneous radar reflectivity measurements at Ku and W bands. At low precipitation rates, the Ku-band radar does not detect much of the rain. At higher precipitation rates, the W-band radar incurs high attenuation, and this makes “Hitschfeld-Bordan” retrievals (from the top of the column down toward the surface) diverge because of numerical instability. The main question for this portion of the analysis was to determine if these two extremes are indeed extremes that still afford us a significant number of “in-between” cases, on which we can apply a careful dual-frequency retrieval algorithm; 2) we also attempted to quantify the ability of the Ku-band measurements to provide complementary information to the W-band estimates outside their overlap region, and vice versa. Specifically, instead of looking at the admittedly small vertical region where both radars detect precipitation and where their measurements are unambiguously related to the underlying physics (unaffected by multiple scattering), we considered the TRMM estimates in the rain below the freezing level, and tried to infer the joint behavior of the overlying CloudSat measurements above the freezing level as a function of the rain - and, conversely, we considered the vertical variability of the CloudSat estimates in the above-freezing region, and derived the joint behavior of the TRMM measurements in the rain as a function of the CloudSat estimates. The results are compiled in databases that should allow users of less-sensitive lower-frequency radars to infer some quantitative information about the storm structure above the precipitating core in the absence of higher-frequency measurements, just as it will allow users of too-sensitive higher-frequency radars to infer some quantitative information about the precipitation closer to the surface in the absence of lower-frequency measurements.

  8. Sporadic E movement followed with a pencil beam high frequency radar

    NASA Astrophysics Data System (ADS)

    From, W. R.

    1983-12-01

    Several types of sporadic E are observed using the 5.80 and 3.84-MHz Bribie Island pencil-beam high-frequency radar. Blanketing Es takes the form of large flat sheets with ripples in them. Non-blanketing Es is observed to be small clouds that drift across the field of view (40 deg). There is continuous gradation of sporadic E structure between these extremes. There are at least four different physical means by which sporadic E clouds may apparently move. It is concluded that non-blanketing sporadic E consists of separate clouds which follow the movement of the constructive interference between internal gravity waves rather than being blown by the background wind.

  9. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud

    PubMed Central

    Dinh, Thanh; Kim, Younghan

    2016-01-01

    This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud. PMID:27367689

  10. An Efficient Interactive Model for On-Demand Sensing-As-A-Servicesof Sensor-Cloud.

    PubMed

    Dinh, Thanh; Kim, Younghan

    2016-06-28

    This paper proposes an efficient interactive model for the sensor-cloud to enable the sensor-cloud to efficiently provide on-demand sensing services for multiple applications with different requirements at the same time. The interactive model is designed for both the cloud and sensor nodes to optimize the resource consumption of physical sensors, as well as the bandwidth consumption of sensing traffic. In the model, the sensor-cloud plays a key role in aggregating application requests to minimize the workloads required for constrained physical nodes while guaranteeing that the requirements of all applications are satisfied. Physical sensor nodes perform their sensing under the guidance of the sensor-cloud. Based on the interactions with the sensor-cloud, physical sensor nodes adapt their scheduling accordingly to minimize their energy consumption. Comprehensive experimental results show that our proposed system achieves a significant improvement in terms of the energy consumption of physical sensors, the bandwidth consumption from the sink node to the sensor-cloud, the packet delivery latency, reliability and scalability, compared to current approaches. Based on the obtained results, we discuss the economical benefits and how the proposed system enables a win-win model in the sensor-cloud.

  11. Retrieval of effective cloud field parameters from radiometric data

    NASA Astrophysics Data System (ADS)

    Paulescu, Marius; Badescu, Viorel; Brabec, Marek

    2017-06-01

    Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.

  12. Regional and vertical distribution of semitransparent cirrus clouds over the tropical Indian region derived from CALIPSO data

    NASA Astrophysics Data System (ADS)

    Meenu, S.; Rajeev, K.; Parameswaran, K.

    2011-08-01

    Monthly mean spatial and vertical distributions of the frequency of occurrence (FSTC) of semitransparent cirrus (STC) and their physical and optical properties over the Indian region are investigated using multiyear CALIPSO data. Over the Bay of Bengal (BoB), FSTC above the lapse-rate tropopause is >30% during the summer monsoon season, most of which has optical depth <0.03. Based on spatial variations of the observed STC properties away from deep convective regions, we propose that the presence of high-altitude clouds below STCs over the BoB and Indian regions during summer monsoon reduces dissipation of STCs, resulting in their longer lifetime (˜1-2 days).

  13. Infrared and far-infrared transition frequencies for the CH2 radical. [in interstellar gas clouds

    NASA Technical Reports Server (NTRS)

    Sears, T. J.; Mckellar, A. R. W.; Bunker, P. R.; Evenson, K. M.; Brown, J. M.

    1984-01-01

    A list of frequencies and intensities for transitions of CH2 in the middle and far infrared regions is presented which should aid in the detection of CH2 and provide valuable information on the local physical and chemical environment. Results are presented for frequency, vacuum wavelength, and line strength for rotational transition frequencies and for the transition frequencies of the v(2) band.

  14. The thin border between cloud and aerosol: Sensitivity of several ground based observation techniques

    NASA Astrophysics Data System (ADS)

    Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison

    2017-11-01

    Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.

  15. Measurement Comparisons Towards Improving the Understanding of Aerosol-Cloud Processing

    NASA Astrophysics Data System (ADS)

    Noble, Stephen R.

    Cloud processing of aerosol is an aerosol-cloud interaction that is not heavily researched but could have implications on climate. The three types of cloud processing are chemical processing, collision and coalescence processing, and Brownian capture of interstitial particles. All types improve cloud condensation nuclei (CCN) in size or hygroscopicity (kappa). These improved CCN affect subsequent clouds. This dissertation focuses on measurement comparisons to improve our observations and understanding of aerosol-cloud processing. Particle size distributions measured at the continental Southern Great Plains (SGP) site were compared with ground based measurements of cloud fraction (CF) and cloud base altitude (CBA). Particle size distributions were described by a new objective shape parameter to define bimodality rather than an old subjective one. Cloudy conditions at SGP were found to be correlated with lagged shape parameter. Horizontal wind speed and regional CF explained 42%+ of this lag time. Many of these surface particle size distributions were influenced by aerosol-cloud processing. Thus, cloud processing may be more widespread with more implications than previously thought. Particle size distributions measured during two aircraft field campaigns (MArine Stratus/stratocumulus Experiment; MASE; and Ice in Cloud Experiment-Tropical; ICE-T) were compared to CCN distributions. Tuning particle size to critical supersaturation revealed hygroscopicity expressed as ? when the distributions were overlain. Distributions near cumulus clouds (ICE-T) had a higher frequency of the same ?s (48% in ICE-T to 42% in MASE) between the accumulation (processed) and Aitken (unprocessed) modes. This suggested physical processing domination in ICE-T. More MASE (stratus cloud) kappa differences between modes pointed to chemical cloud processing. Chemistry measurements made in MASE showed increases in sulfates and nitrates with distributions that were more processed. This supported chemical cloud processing in MASE. This new method to determine kappa provides the needed information without interrupting ambient measurements. MODIS derived cloud optical thickness (COT), cloud liquid water path (LWP), and cloud effective radius (re) were compared to the same in situ derived variables from cloud probe measurements of two stratus/stratocumulus cloud campaigns (MASE and Physics Of Stratocumulus Tops; POST). In situ data were from complete vertical cloud penetrations, while MODIS data were from pixels along the aircraft penetration path. Comparisons were well correlated except that MODIS LWP (14-36%) and re (20-30%) were biased high. The LWP bias was from re bias and was not improved by using the vertically stratified assumption. MODIS re bias was almost removed when compared to cloud top maximum in situ re, but, that does not describe re for the full depth of the cloud. COT is validated by in situ COT. High correlations suggest that MODIS variables are useful in self-comparisons such as gradient changes in stratus cloud re during aerosol-cloud processing.

  16. Physical Validation of GPM Retrieval Algorithms Over Land: An Overview of the Mid-Latitude Continental Convective Clouds Experiment (MC3E)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Jensen, Michael P.

    2011-01-01

    The joint NASA Global Precipitation Measurement (GPM) -- DOE Atmospheric Radiation Measurement (ARM) Midlatitude Continental Convective Clouds Experiment (MC3E) was conducted from April 22-June 6, 2011, centered on the DOE-ARM Southern Great Plains Central Facility site in northern Oklahoma. GPM field campaign objectives focused on the collection of airborne and ground-based measurements of warm-season continental precipitation processes to support refinement of GPM retrieval algorithm physics over land, and to improve the fidelity of coupled cloud resolving and land-surface satellite simulator models. DOE ARM objectives were synergistically focused on relating observations of cloud microphysics and the surrounding environment to feedbacks on convective system dynamics, an effort driven by the need to better represent those interactions in numerical modeling frameworks. More specific topics addressed by MC3E include ice processes and ice characteristics as coupled to precipitation at the surface and radiometer signals measured in space, the correlation properties of rainfall and drop size distributions and impacts on dual-frequency radar retrieval algorithms, the transition of cloud water to rain water (e.g., autoconversion processes) and the vertical distribution of cloud water in precipitating clouds, and vertical draft structure statistics in cumulus convection. The MC3E observational strategy relied on NASA ER-2 high-altitude airborne multi-frequency radar (HIWRAP Ka-Ku band) and radiometer (AMPR, CoSMIR; 10-183 GHz) sampling (a GPM "proxy") over an atmospheric column being simultaneously profiled in situ by the University of North Dakota Citation microphysics aircraft, an array of ground-based multi-frequency scanning polarimetric radars (DOE Ka-W, X and C-band; NASA D3R Ka-Ku and NPOL S-bands) and wind-profilers (S/UHF bands), supported by a dense network of over 20 disdrometers and rain gauges, all nested in the coverage of a six-station mesoscale rawinsonde network. As an exploratory effort to examine land-surface emissivity impacts on retrieval algorithms, and to demonstrate airborne soil moisture retrieval capabilities, the University of Tennessee Space Institute Piper aircraft carrying the MAPIR L-band radiometer was also flown during the latter half of the experiment in coordination with the ER-2. The observational strategy provided a means to sample the atmospheric column in a redundant framework that enables inter-calibration and constraint of measured and retrieved precipitation characteristics such as particle size distributions, or water contents- all within the umbrella of "proxy" satellite measurements (i.e., the ER-2). Complimenting the precipitation sampling framework, frequent and coincident launches of atmospheric soundings (e.g., 4-8/day) then provided a much larger mesoscale view of the thermodynamic and winds environment, a data set useful for initializing cloud models. The datasets collected represent a variety cloud and precipitation types including isolated cumulus clouds, severe thunderstorms, mesoscale convective systems, and widespread regions of light to moderate stratiform precipitation. We will present the MC3E experiment design, an overview of operations, and a summary of preliminary results.

  17. Mapping low-frequency carbon radio recombination lines towards Cassiopeia A at 340, 148, 54, and 43 MHz

    NASA Astrophysics Data System (ADS)

    Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.

    2018-04-01

    Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.

  18. On localization attacks against cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Ge, Linqiang; Yu, Wei; Sistani, Mohammad Ali

    2013-05-01

    One of the key characteristics of cloud computing is the device and location independence that enables the user to access systems regardless of their location. Because cloud computing is heavily based on sharing resource, it is vulnerable to cyber attacks. In this paper, we investigate a localization attack that enables the adversary to leverage central processing unit (CPU) resources to localize the physical location of server used by victims. By increasing and reducing CPU usage through the malicious virtual machine (VM), the response time from the victim VM will increase and decrease correspondingly. In this way, by embedding the probing signal into the CPU usage and correlating the same pattern in the response time from the victim VM, the adversary can find the location of victim VM. To determine attack accuracy, we investigate features in both the time and frequency domains. We conduct both theoretical and experimental study to demonstrate the effectiveness of such an attack.

  19. Cloud and convection frequencies over the southeast United States as related to small-scale geographic features

    NASA Technical Reports Server (NTRS)

    Gibson, Harold M.; Vonder Haar, Thomas H.

    1990-01-01

    Based on relatively high spatial and temporal resolution satelite data collected at 0700 CST and at each hour from 1000 CST to 1700 CST during the summer of 1986, cloud and convection variations over the area from Mississippi east to Georgia and from the Gulf of Mexico north to Tennessee are discussed. The data analyses show an average maximum cloud frequency over the land areas at 1400 local time and a maximum of deep convection one hour later. Both cloudiness and deep convection are found to be at a maximum during the nocturnal hours over the Gulf of Mexico. Cloud frequency shows a strong relationship to small terrain features. Small fresh water bodies have cloud minima relative to the surroundings in the afternoon hours. Higher, steep terrain shows cloud maxima and the adjacent lower terrain exhibits afternoon cloud minima due to a divergence of mountain breeze caused by the valley.

  20. Statistical Analyses of Satellite Cloud Object Data from CERES. Part II; Tropical Convective Cloud Objects During 1998 El Nino and Validation of the Fixed Anvil Temperature Hypothesis

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce a.; Parker, Lindsay; Lin, Bing; Eitzen, Zachary A.; Branson, Mark

    2006-01-01

    Characteristics of tropical deep convective cloud objects observed over the tropical Pacific during January-August 1998 are examined using the Tropical Rainfall Measuring Mission/ Clouds and the Earth s Radiant Energy System single scanner footprint (SSF) data. These characteristics include the frequencies of occurrence and statistical distributions of cloud physical properties. Their variations with cloud-object size, sea surface temperature (SST), and satellite precessing cycle are analyzed in detail. A cloud object is defined as a contiguous patch of the Earth composed of satellite footprints within a single dominant cloud-system type. It is found that statistical distributions of cloud physical properties are significantly different among three size categories of cloud objects with equivalent diameters of 100 - 150 km (small), 150 - 300 km (medium), and > 300 km (large), respectively, except for the distributions of ice particle size. The distributions for the larger-size category of cloud objects are more skewed towards high SSTs, high cloud tops, low cloud-top temperature, large ice water path, high cloud optical depth, low outgoing longwave (LW) radiation, and high albedo than the smaller-size category. As SST varied from one satellite precessing cycle to another, the changes in macrophysical properties of cloud objects over the entire tropical Pacific were small for the large-size category of cloud objects, relative to those of the small- and medium-size categories. This result suggests that the fixed anvil temperature hypothesis of Hartmann and Larson may be valid for the large-size category. Combining with the result that a higher percentage of the large-size category of cloud objects occurs during higher SST subperiods, this implies that macrophysical properties of cloud objects would be less sensitive to further warming of the climate. On the other hand, when cloud objects are classified according to SSTs where large-scale dynamics plays important roles, statistical characteristics of cloud microphysical properties, optical depth and albedo are not sensitive to the SST, but those of cloud macrophysical properties are strongly dependent upon the SST. Frequency distributions of vertical velocity from the European Center for Medium-range Weather Forecasts model that is matched to each cloud object are used to interpret some of the findings in this study.

  1. Summertime Coincident Observations of Ice Water Path in the Visible/Near-IR, Radar, and Microwave Frequencies

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna V.; Robertson, Franklin R.; Atkinson, Robert J.

    2008-01-01

    Accurate representation of the physical and radiative properties of clouds in climate models continues to be a challenge. At present, both remote sensing observations and modeling of microphysical properties of clouds rely heavily on parameterizations or assumptions on particle size distribution (PSD) and cloud phase. In this study, we compare Ice Water Path (IWP), an important physical and radiative property that provides the amount of ice present in a cloud column, using measurements obtained via three different retrieval strategies. The datasets we use in this study include Visible/Near-IR IWP from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flying aboard the Aqua satellite, Radar-only IWP from the CloudSat instrument operating at 94 GHz, and NOAA/NESDIS operational IWP from the 89 and 157 GHz channels of the Microwave Humidity Sounder (MHS) instrument flying aboard the NOAA-18 satellite. In the Visible/Near-IR, IWP is derived from observations of optical thickness and effective radius. CloudSat IWP is determined from measurements of cloud backscatter and assumed PSD. MHS IWP retrievals depend on scattering measurements at two different, non-water absorbing channels, 89 and 157 GHz. In order to compare IWP obtained from these different techniques and collected at different vertical and horizontal resolutions, we examine summertime cases in the tropics (30S - 30N) when all 3 satellites are within 4 minutes of each other (approximately 1500 km). All measurements are then gridded to a common 15 km x 15 km box determined by MHS. In a grid box comparison, we find CloudSat to report the highest IWP followed by MODIS, followed by MHS. In a statistical comparison, probability density distributions show MHS with the highest frequencies at IWP of 100-1000 g/m(exp 2) and CloudSat with the longest tail reporting IWP of several thousands g/m(exp 2). For IWP greater than 30 g/m(exp 2), MODIS is consistently higher than CloudSat, and it is higher at the lower IWPs but lower at the higher IWPs that overlap with MHS. Some of these differences can be attributed to the limitations of the measuring techniques themselves, but some can result from the assumptions made in the algorithms that generate the IWP product. We investigate this issue by creating categories based on various conditions such as cloud type, precipitation presence, underlying liquid water content, and surface type (land vs. ocean) and by comparing the performance of the IWP products under each condition.

  2. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2018-04-01

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

  3. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less

  4. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin

    2017-11-01

    Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of trade-cumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of trade-cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

  5. EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation

    NASA Astrophysics Data System (ADS)

    Bony, Sandrine; Stevens, Bjorn; Ament, Felix; Bigorre, Sebastien; Chazette, Patrick; Crewell, Susanne; Delanoë, Julien; Emanuel, Kerry; Farrell, David; Flamant, Cyrille; Gross, Silke; Hirsch, Lutz; Karstensen, Johannes; Mayer, Bernhard; Nuijens, Louise; Ruppert, James H.; Sandu, Irina; Siebesma, Pier; Speich, Sabrina; Szczap, Frédéric; Totems, Julien; Vogel, Raphaela; Wendisch, Manfred; Wirth, Martin

    Trade-wind cumuli constitute the cloud type with the highest frequency of occurrence on Earth, and it has been shown that their sensitivity to changing environmental conditions will critically influence the magnitude and pace of future global warming. Research over the last decade has pointed out the importance of the interplay between clouds, convection and circulation in controling this sensitivity. Numerical models represent this interplay in diverse ways, which translates into different responses of tradecumuli to climate perturbations. Climate models predict that the area covered by shallow cumuli at cloud base is very sensitive to changes in environmental conditions, while process models suggest the opposite. To understand and resolve this contradiction, we propose to organize a field campaign aimed at quantifying the physical properties of tradecumuli (e.g., cloud fraction and water content) as a function of the large-scale environment. Beyond a better understanding of clouds-circulation coupling processes, the campaign will provide a reference data set that may be used as a benchmark for advancing the modelling and the satellite remote sensing of clouds and circulation. It will also be an opportunity for complementary investigations such as evaluating model convective parameterizations or studying the role of ocean mesoscale eddies in air-sea interactions and convective organization.

  6. Microwave Ground-Based Retrievals of Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    NASA Astrophysics Data System (ADS)

    Cadeddu, M. P.; Marchand, R.; Orlandi, E.; Turner, D. D.; Mech, M.

    2016-12-01

    The retrieval of liquid water path (LWP) during drizzle and rain from ground-based microwave radiometers presents several challenges that have not been entirely solved. Ground-based microwave radiometers have been traditionally used to retrieve cloud LWP assuming non-precipitating conditions. Yet retrieval of liquid water path under light rain and possibly the partition of total liquid water path among cloud and rain are very important to study cloud properties because the presence of drizzle affects for example the cloud's lifetime. Improving the LWP retrieval during drizzle and possibly partitioning cloud and rain LWP is therefore highly desirable. In precipitating clouds the raindrop's size is of the same order of magnitude of the wavelength sampled by the instrument and the effects of hydrometeor's scattering can't be neglected. In this paper we model the effect of scattering hydrometeors on radiometric brightness temperatures commonly used in LWP retrievals and develop a physical retrieval to derive precipitable water vapor (PWV), total LWP, and the fraction of cloud and rain liquid water (Cf) from microwave brightness temperatures at three commonly used frequencies. The retrieval is first applied to a set of synthetic measurements and is then used to retrieve PWV, LWP, and Cf in two drizzling cases at the Atmospheric Radiation Measurement (ARM) Program Eastern North Atlantic (ENA) site. Results show that there is useful information in the microwave brightness temperatures that can be used to reduce LWP retrieval uncertainty during light rain and can open the path for a better integration of active and passive sensors. The effect of raindrops on the radiometer's lens is examined with the help of a digital camera and experimental data. A possible way to account for raindrop deposition on the instrument's lens is suggested.

  7. A Satellite Infrared Technique for Diurnal Rainfall Variability Studies

    NASA Technical Reports Server (NTRS)

    Anagnostou, Emmanouil

    1998-01-01

    Reliable information on the distribution of precipitation at high temporal resolution (

  8. Ground-based observations of aerosol-cloud interactions in the North East of the United States

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.

    2015-12-01

    Five years ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplet effective radius (Re) and cloud droplet number concentration (Nd). A higher frequency of clouds with small Re (<7µm) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading (AOD>0.5). The five-year data are screened for summer boundary layer clouds only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter≤2.5µm (PM2.5) value. Evidence of aerosol indirect effect on cloud microphysics is found where for the polluted cases the mean (and median) values of Nd distributions were elevated while the mean (and median) values of Re were decreased as compared to those for the clean cases under various LWP ranges. Relatively, the aerosol indirect effects on modifying cloud microphysical properties are found more significant with large LWP than with small LWP.

  9. An Automated Cloud-edge Detection Algorithm Using Cloud Physics and Radar Data

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.; Grainger, Cedric A.

    2003-01-01

    An automated cloud edge detection algorithm was developed and extensively tested. The algorithm uses in-situ cloud physics data measured by a research aircraft coupled with ground-based weather radar measurements to determine whether the aircraft is in or out of cloud. Cloud edges are determined when the in/out state changes, subject to a hysteresis constraint. The hysteresis constraint prevents isolated transient cloud puffs or data dropouts from being identified as cloud boundaries. The algorithm was verified by detailed manual examination of the data set in comparison to the results from application of the automated algorithm.

  10. Frequency and morphology of tropical tropopause layer cirrus from CALIPSO observations: Are isolated cirrus different from those connected to deep convection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; McFarlane, Sally A.

    2010-09-16

    Tropical Tropopause Layer cirrus (TTLC) profiles identified from CALIPSO LIDAR measurements are grouped into cloud objects and classified according to whether or not they are connected to deep convection. TTLC objects connected to deep convection are optically and physically thicker than isolated objects, consistent with what would be expected if connected objects were formed from convective detrainment and isolated objects formed in situ. In the tropics (±20 Latitude), 36% of TTLC profiles are classified as connected to deep convection, 43% as isolated, and the remaining 21% are part of lower, thicker cirrus clouds. Regions with higher occurence of deep convectionmore » also have higher occurrence of TTLC, and a greater percentage of those TTLC are connected to deep convection. Cloud top heights of both isolated and connected clouds are distributed similarly with respect to the height of the cold point tropopause. No difference in thickness or optical depth was found between TTLC above deep convection or above clear sky, though both cloud base and top heights are higher over deep convection than over clear sky.« less

  11. A Ten-Year Global Record of Absorbing Aerosols Above Clouds from OMI's Near-UV Observations

    NASA Technical Reports Server (NTRS)

    Jethva, Hiren; Torres, Omar; Ahn, Changwoo

    2016-01-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong 'color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  12. Geo-spatial distribution of cloud cover and influence of cloud induced attenuation and noise temperature on satellite signal propagation over Nigeria

    NASA Astrophysics Data System (ADS)

    Ojo, Joseph Sunday

    2017-05-01

    The study of the influence of cloud cover on satellite propagation links is becoming more demanding due to the requirement of larger bandwidth for different satellite applications. Cloud attenuation is one of the major factors to consider for optimum performance of Ka/V and other higher frequency bands. In this paper, the geo-spatial distribution of cloud coverage over some chosen stations in Nigeria has been considered. The substantial scale spatial dispersion of cloud cover based on synoptic meteorological data and the possible impact on satellite communication links at higher frequency bands was also investigated. The investigation was based on 5 years (2008-2012) achieved cloud cover data collected by the Nigerian Meteorological Agency (NIMET) Federal Ministry of Aviation, Oshodi Lagos over four synoptic hours of the day covering day and night. The performances of satellite signals as they traverse through the cloud and cloud noise temperature at different seasons and over different hours of days at Ku/W-bands frequency are also examined. The overall result shows that the additional total atmospheric noise temperature due to the clear air effect and the noise temperature from the cloud reduces the signal-to-noise ratio of the satellite receiver systems, leading to more signal loss and if not adequately taken care of may lead to significant outage. The present results will be useful for Earth-space link budgeting, especially for the proposed multi-sensors communication satellite systems in Nigeria.

  13. Realistic natural atmospheric phenomena and weather effects for interactive virtual environments

    NASA Astrophysics Data System (ADS)

    McLoughlin, Leigh

    Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..

  14. Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors.

    PubMed

    Stierstorfer, Karl

    2018-01-01

    To find a simple model for the frequency-dependent detective quantum efficiency (DQE) of photon-counting detectors in the low flux limit. Formula for the spatial cross-talk, the noise power spectrum and the DQE of a photon-counting detector working at a given threshold are derived. Parameters are probabilities for types of events like single counts in the central pixel, double counts in the central pixel and a neighboring pixel or single count in a neighboring pixel only. These probabilities can be derived in a simple model by extensive use of Monte Carlo techniques: The Monte Carlo x-ray propagation program MOCASSIM is used to simulate the energy deposition from the x-rays in the detector material. A simple charge cloud model using Gaussian clouds of fixed width is used for the propagation of the electric charge generated by the primary interactions. Both stages are combined in a Monte Carlo simulation randomizing the location of impact which finally produces the required probabilities. The parameters of the charge cloud model are fitted to the spectral response to a polychromatic spectrum measured with our prototype detector. Based on the Monte Carlo model, the DQE of photon-counting detectors as a function of spatial frequency is calculated for various pixel sizes, photon energies, and thresholds. The frequency-dependent DQE of a photon-counting detector in the low flux limit can be described with an equation containing only a small set of probabilities as input. Estimates for the probabilities can be derived from a simple model of the detector physics. © 2017 American Association of Physicists in Medicine.

  15. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    NASA Astrophysics Data System (ADS)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for subvisible cirrus clouds a bimodal distribution with a secondary peak at about 44 sr was found suggesting a mixed composition. A dependence of the lidar ratio with cloud temperature (altitude) was not found, indicating that the clouds are vertically well mixed. The frequency of occurrence of cirrus clouds classified as subvisible (τ < 0. 03) were 41.6 %, whilst 37.8 % were thin cirrus (0. 03 < τ < 0. 3) and 20.5 % opaque cirrus (τ > 0. 3). Hence, in central Amazonia not only a high frequency of cirrus clouds occurs, but also a large fraction of subvisible cirrus clouds. This high frequency of subvisible cirrus clouds may contaminate aerosol optical depth measured by sun photometers and satellite sensors to an unknown extent.

  16. Evaluation of NCAR CAM5 Simulated Marine Boundary Layer Cloud Properties Using a Combination of Satellite and Surface Observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Song, H.; Wang, M.; Ghan, S. J.; Dong, X.

    2016-12-01

    he main objective of this study is to systematically evaluate the MBL cloud properties simulated in CAM5 family models using a combination of satellite-based CloudSat/MODIS observations and ground-based observations from the ARM Azores site, with a special focus on MBL cloud microphysics and warm rain process. First, we will present a global evaluation based on satellite observations and retrievals. We will compare global cloud properties (e.g., cloud fraction, cloud vertical structure, cloud CER, COT, and LWP, as well as drizzle frequency and intensity diagnosed using the CAM5-COSP instrumental simulators) simulated in the CAM5 models with the collocated CloudSat and MODIS observations. We will also present some preliminary results from a regional evaluation based mainly on ground observations from ARM Azores site. We will compare MBL cloud properties simulated in CAM5 models over the ARM Azores site with collocated satellite (MODIS and CloudSat) and ground-based observations from the ARM site.

  17. Application of the CERES Flux-by-Cloud Type Simulator to GCM Output

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary; Su, Wenying; Xu, Kuan-Man; Loeb, Norman G.; Sun, Moguo; Doelling, David R.; Bodas-Salcedo, Alejandro

    2016-01-01

    The CERES Flux By CloudType data product produces CERES top-of-atmosphere (TOA) fluxes by region and cloud type. Here, the cloud types are defined by cloud optical depth (t) and cloud top pressure (pc), with bins similar to those used by ISCCP (International Satellite Cloud Climatology Project). This data product has the potential to be a powerful tool for the evaluation of the clouds produced by climate models by helping to identify which physical parameterizations have problems (e.g., boundary-layer parameterizations, convective clouds, processes that affect surface albedo). Also, when the flux-by-cloud type and frequency of cloud types are simultaneously used to evaluate a model, the results can determine whether an unrealistically large or small occurrence of a given cloud type has an important radiative impact for a given region. A simulator of the flux-by-cloud type product has been applied to three-hourly data from the year 2008 from the UK Met Office HadGEM2-A model using the Langley Fu-Lour radiative transfer model to obtain TOA SW and LW fluxes.

  18. A Global, Decadal, Quantitative Record of Absorbing Aerosols above Cloud Using OMI's Near-UV Observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2016-12-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes of the aerosol-cloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regions of the world. Contrary to the known cooling effects of these aerosols in cloud-free scenario over dark surface, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing (warming) at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud directly depends on the aerosol loading, microphysical and optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of above-cloud aerosol optical depth (ACAOD) of absorbing aerosols retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. Physically based on the strong `color ratio' effect in the near-UV caused by the spectral absorption of aerosols above cloud, the algorithm, formally named as OMACA, retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. Here, we present the algorithm architecture and results from an 11-year global record (2005-2015) including global climatology of frequency of occurrence and ACAOD. The theoretical uncertainty analysis and planned validation activities using measurements from upcoming field campaigns are also discussed.

  19. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  20. Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.

    1995-01-01

    To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant introduced in this paper is the 'variance coupled model,' which redistributes LWP using the local standard deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two- parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to demonstrate both the strengths and weaknesses of these models.

  1. Comparison of Cirrus-Cloud Characteristics as Estimated by CALIPSO Space Borne Observations and Ground-Based Lidar Datasets from the inland station Gadanki (13.5 0 N, 79.2 0 E).

    NASA Astrophysics Data System (ADS)

    Vasudevan Nair, Krishnakumar

    Global distribution of cirrus derived from space borne observation has been very elaborately reported by Wang et al., 1996 Mergenthaler et al., 1999, Clark, 2005. But with the arrival of CALIOP on board the CALIPSO mission has improved cirrus reporting and the study on their microphysical properties (Dessler, 2009). Indian Ocean and Indian continent is one of the regions where cirrus occurrence is maximum particularly during the monsoon periods. Most of the study that has reported from this region are derived from the Gadanki ground based station (13.5 0 N, 79.2 0 E). The primary objective of this work is to compare the physical properties of cirrus observed by the ground based and space borne lidar system with respect to the station Gadanki. The current observation is based on the product version 3 data from CALIPSO during the period 2007 to 2010 .This data consist of layer data with horizontal resolution of 5km and a vertical resolution of 300m Both day and night observations are considered for the study. Clouds with optical depth less than 1 and altitude above 8km are only taken in the study to make sure all the observed clouds are cirrus in nature. As clouds with optical depth less than 1 is considered clouds of sub visual, thin and dense clouds are in study Accuracy of the derived cirrus characteristics increases with CAD score. Low CAD score means the accuracy is less or the confidence level in the determined characteristics is less. Clouds with CAD score in the range 70-100 are taken for the study. Since the CALIPSO observations are available continuously along the sub satellite track with a repeat cycle of 16 days. For each orbit cycle the observation track is separated by 1.6 o in longitude. The satellite exactly repeats in a particular point once in 16 days. So in order to get more data grid size of at least 50 and 10 is needed to include more data. In this study the distribution of averaged physical properties inside the grid 50 N to 20 0 N and 60 0 E to 85 0 E is studied. The physical properties of the grid 13.50N and 79.20E is compared with the ground based observation of the same station. .The CALIPSO data with respect to a small grid is few and proper comparison cannot be done. In order to accommodate more cloud data a larger grid is selected. With a larger grid cloud characteristics can be studied in and around the station with a larger perspective. The Fig 6.2 to Fig 6.5 shows the monthly distribution of back scattering ratio. The montly mean back scattering ratio was studied for the period of observation. The back scattering ratio gives the cloud distribution picture. The observation is done for a period of 3 years (2007 to 2010). The year 2007 is a period of less cloud activity. The cloud activity increases as the winter periods starts. It was seen that the frequency of cloud observation increases in the latitude range 10 - 150 N in the month of December 2007. The study also shows that the cloud depolarisation and cloud base altitude measurement shows much similarity, but there is huge variation between the cloud optical depth obtained from CALIPSO measurement and the ground based lidar measurements. This variation is may be due to the multiple scattering algorithms employed by CALIOP measurement. The ground based measurement generally had negligible multiple scattering effects. This was substantiated by measuring the multiple scattering effects in the previous chapter and it was found that cloud events in 2009 had negligible multiple scattering effect. The study also shows that some cirrus event were not detected by CALIPSO .Days with no cloud events in CALIPSO data have shown cloud events by ground based observation. The work also substantiates the following findings • It was found that during the south west monsoon periods there is a large cirrus cloud distribution over the southern Indian land masses. This distribution of optically and geometrically thick clouds was also observed from the station using the ground based lidar. • The north east monsoon periods had optical thick clouds hugging the coast line. This was observed with the ground based lidar also. It was possible to confirm that similar clouds are seen throughout the western coast line. • The summer had large cloud formation in the Arabian Sea. It was also found that the land masses near to the seas had large cirrus presence. These cirrus clouds were of high altitude and optical depth. • The study also predicts some local convection around Srilanka, which keeps cirrus out of Srilanka during the monsoon period. The monsoon period is the period where active cirrus formation is seen in the inland station and over the Indian Ocean region.

  2. APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Killius, N.; Gesell, G.

    2015-04-01

    The cloud processing scheme APOLLO (Avhrr Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. While building upon the physical principles having served well in the original APOLLO a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is not performed as a binary yes/no decision based on these physical principals but is expressed as cloud probability for each satellite pixel. Consequently the outcome of the algorithm can be tuned from clear confident to cloud confident depending on the purpose. The probabilistic approach allows to retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for the application with large amounts of historical satellite data. Thus the radiative transfer solution is approximated by the same two stream approach which also had been used for the original APOLLO. This allows the algorithm to be robust enough for being applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e. within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from on NOAA-18 are presented.

  3. Evaluation of multi-layer cloud detection based on MODIS CO2-slicing algorithm with CALIPSO-CloudSat measurements.

    NASA Astrophysics Data System (ADS)

    Viudez-Mora, A.; Kato, S.; Smith, W. L., Jr.; Chang, F. L.

    2016-12-01

    Knowledge of the vertical cloud distribution is important for a variety of climate and weather applications. The cloud overlapping variations greatly influence the atmospheric heating/cooling rates, with implications for the surface-troposphere radiative balance, global circulation and precipitation. Additionally, an accurate knowledge of the multi-layer cloud distribution in real-time can be used in applications such safety condition for aviation through storms and adverse weather conditions. In this study, we evaluate a multi-layered cloud algorithm (Chang et al. 2005) based on MODIS measurements aboard Aqua satellite (MCF). This algorithm uses the CO2-slicing technique combined with cloud properties determined from VIS, IR and NIR channels to locate high thin clouds over low-level clouds, and retrieve the τ of each layer. We use CALIPSO (Winker et. al, 2010) and CloudSat (Stephens et. al, 2002) (CLCS) derived cloud vertical profiles included in the C3M data product (Kato et al. 2010) to evaluate MCF derived multi-layer cloud properties. We focus on 2 layer overlapping and 1-layer clouds identified by the active sensors and investigate how well these systems are identified by the MODIS multi-layer technique. The results show that for these multi-layered clouds identified by CLCS, the MCF correctly identifies about 83% of the cases as multi-layer. However, it is found that the upper CTH is underestimated by about 2.6±0.4 km, because the CO2-slicing technique is not as sensitive to the cloud physical top as the CLCS. The lower CTH agree better with differences found to be about 1.2±0.5 km. Another outstanding issue for the MCF approach is the large number of multi-layer false alarms that occur in single-layer conditions. References: Chang, F.-L., and Z. Li, 2005: A new method for detection of cirrus overlapping water clouds and determination of their optical properties. J. Atmos. Sci., 62. Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115. Stephens, G. L., et al. (2002), The CloudSat mission and A-Train, Bull. Am. Meteorol. Soc., 83. Winker, D. M., et al., 2010: The CALIPSO Mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91.

  4. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    NASA Astrophysics Data System (ADS)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  5. APOLLO_NG - a probabilistic interpretation of the APOLLO legacy for AVHRR heritage channels

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Killius, N.; Gesell, G.

    2015-10-01

    The cloud processing scheme APOLLO (AVHRR Processing scheme Over cLouds, Land and Ocean) has been in use for cloud detection and cloud property retrieval since the late 1980s. The physics of the APOLLO scheme still build the backbone of a range of cloud detection algorithms for AVHRR (Advanced Very High Resolution Radiometer) heritage instruments. The APOLLO_NG (APOLLO_NextGeneration) cloud processing scheme is a probabilistic interpretation of the original APOLLO method. It builds upon the physical principles that have served well in the original APOLLO scheme. Nevertheless, a couple of additional variables have been introduced in APOLLO_NG. Cloud detection is no longer performed as a binary yes/no decision based on these physical principles. It is rather expressed as cloud probability for each satellite pixel. Consequently, the outcome of the algorithm can be tuned from being sure to reliably identify clear pixels to conditions of reliably identifying definitely cloudy pixels, depending on the purpose. The probabilistic approach allows retrieving not only the cloud properties (optical depth, effective radius, cloud top temperature and cloud water path) but also their uncertainties. APOLLO_NG is designed as a standalone cloud retrieval method robust enough for operational near-realtime use and for application to large amounts of historical satellite data. The radiative transfer solution is approximated by the same two-stream approach which also had been used for the original APOLLO. This allows the algorithm to be applied to a wide range of sensors without the necessity of sensor-specific tuning. Moreover it allows for online calculation of the radiative transfer (i.e., within the retrieval algorithm) giving rise to a detailed probabilistic treatment of cloud variables. This study presents the algorithm for cloud detection and cloud property retrieval together with the physical principles from the APOLLO legacy it is based on. Furthermore a couple of example results from NOAA-18 are presented.

  6. Using Word Clouds to Develop Proactive Learners

    ERIC Educational Resources Information Center

    Miley, Frances; Read, Andrew

    2011-01-01

    This article examines student responses to a technique for summarizing electronically available information based on word frequency. Students used this technique to create word clouds, using those word clouds to enhance personal and small group study. This is a qualitative study. Small focus groups were used to obtain student feedback. Feedback…

  7. Cloud Climatology for Land Stations Worldwide, 1971-2009 (NDP-026D)

    DOE Data Explorer

    Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington; Eastman, R. [University of Washington

    2012-08-01

    Surface synoptic weather reports for 39 years have been processed to provide a climatology of clouds for each of over 5000 land-based weather stations with long periods of record both day and night. For each station, this digital archive includes: multi-year annual, seasonal and monthly averages for day and night separately; seasonal and monthly averages by year; averages for eight times per day; and analyses of the first harmonic for the annual and diurnal cycles. Averages are given for total cloud cover, clear-sky frequency, and 9 cloud types: 5 in the low level (fog, St, Sc, Cu, Cb), 3 in the middle level (Ns, As, Ac) and one in the high level (all cirriform clouds combined). Cloud amounts and frequencies of occurrence are given for all types. In addition, non-overlapped amounts are given for middle and high cloud types, and average base heights are given for low cloud types. Nighttime averages were obtained by using only those reports that met an "illuminance criterion" (i.e., made under adequate moonlight or twilight), thus making possible the determination of diurnal cycles and nighttime trends for cloud types.The authors have also produced an online, gridded atlas of the cloud observations contained in NDP-026D. The Online Cloud Atlas containing NDP-026D data is available via the University of Washington.

  8. Simulations of the effects of water vapor, cloud liquid water, and ice on AMSU moisture channel brightness temperatures

    NASA Technical Reports Server (NTRS)

    Muller, Bradley M.; Fuelberg, Henry E.; Xiang, Xuwu

    1994-01-01

    Radiative transfer simulations are performed to determine how water vapor and nonprecipitating cloud liquid water and ice particles within typical midlatitude atmospheres affect brightness temperatures T(sub B)'s of moisture sounding channels used in the Advanced Microwave Sounding Unit (AMSU) and AMSU-like instruments. The purpose is to promote a general understanding of passive top-of-atmosphere T(sub B)'s for window frequencies at 23.8, 89.0, and 157.0 GHz, and water vapor frequencies at 176.31, 180.31, and 182.31 GHz by documenting specific examples. This is accomplished through detailed analyses of T(sub B)'s for idealized atmospheres, mostly representing temperate conditions over land. Cloud effects are considered in terms of five basic properties: droplet size distribution, phase, liquid or ice water content, altitude, and thickness. Effects on T(sub B) of changing surface emissivity also are addressed. The brightness temperature contribution functions are presented as an aid to physically interpreting AMSU T(sub B)'s. Both liquid and ice clouds impact the T(sub B)'s in a variety of ways. The T(sub B)'s at 23.8 and 89 GHz are more strongly affected by altostratus liquid clouds than by cirrus clouds for equivalent water paths. In contrast, channels near 157 and 183 GHz are more strongly affected by ice clouds. Higher clouds have a greater impact on 157- and 183-GHz T(sub B)'s than do lower clouds. Clouds depress T(sub B)'s of the higher-frequency channels by suppressing, but not necessarily obscuring, radiance contributions from below. Thus, T(sub B)'s are less closely associated with cloud-top temperatures than are IR radiometric temperatures. Water vapor alone accounts for up to 89% of the total attenuation by a midtropospheric liquid cloud for channels near 183 GHz. The Rayleigh approximation is found to be adequate for typical droplet size distributions; however, Mie scattering effects from liquid droplets become important for droplet size distribution functions with modal radii greater than 20 micrometers near 157 and 183 GHz, and greater than 30-40 micrometers at 89 GHz. This is due mainly to the relatively small concentrations of droplets much larger than the mode radius. Orographic clouds and tropical cumuli have been observed to contain droplet size distributions with mode radii in the 30-40 micrometers range. Thus, as new instruments bridge the gap between microwave and infrared to frequencies even higher than 183 GHz, radiative transfer modelers are cautioned to explicitly address scattering characteristics of such clouds.

  9. The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Protat, A.; Delanoë, J.; May, P. T.; Haynes, J.; Jakob, C.; O'Connor, E.; Pope, M.; Wheeler, M. C.

    2011-08-01

    The high complexity of cloud parameterizations now held in models puts more pressure on observational studies to provide useful means to evaluate them. One approach to the problem put forth in the modelling community is to evaluate under what atmospheric conditions the parameterizations fail to simulate the cloud properties and under what conditions they do a good job. It is the ambition of this paper to characterize the variability of the statistical properties of tropical ice clouds in different tropical "regimes" recently identified in the literature to aid the development of better process-oriented parameterizations in models. For this purpose, the statistical properties of non-precipitating tropical ice clouds over Darwin, Australia are characterized using ground-based radar-lidar observations from the Atmospheric Radiation Measurement (ARM) Program. The ice cloud properties analysed are the frequency of ice cloud occurrence, the morphological properties (cloud top height and thickness), and the microphysical and radiative properties (ice water content, visible extinction, effective radius, and total concentration). The variability of these tropical ice cloud properties is then studied as a function of the large-scale cloud regimes derived from the International Satellite Cloud Climatology Project (ISCCP), the amplitude and phase of the Madden-Julian Oscillation (MJO), and the large-scale atmospheric regime as derived from a long-term record of radiosonde observations over Darwin. The vertical variability of ice cloud occurrence and microphysical properties is largest in all regimes (1.5 order of magnitude for ice water content and extinction, a factor 3 in effective radius, and three orders of magnitude in concentration, typically). 98 % of ice clouds in our dataset are characterized by either a small cloud fraction (smaller than 0.3) or a very large cloud fraction (larger than 0.9). In the ice part of the troposphere three distinct layers characterized by different statistically-dominant microphysical processes are identified. The variability of the ice cloud properties as a function of the large-scale atmospheric regime, cloud regime, and MJO phase is large, producing mean differences of up to a factor 8 in the frequency of ice cloud occurrence between large-scale atmospheric regimes and mean differences of a factor 2 typically in all microphysical properties. Finally, the diurnal cycle of the frequency of occurrence of ice clouds is also very different between regimes and MJO phases, with diurnal amplitudes of the vertically-integrated frequency of ice cloud occurrence ranging from as low as 0.2 (weak diurnal amplitude) to values in excess of 2.0 (very large diurnal amplitude). Modellers should now use these results to check if their model cloud parameterizations are capable of translating a given atmospheric forcing into the correct statistical ice cloud properties.

  10. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  11. A new NASA/MSFC mission analysis global cloud cover data base

    NASA Technical Reports Server (NTRS)

    Brown, S. C.; Jeffries, W. R., III

    1985-01-01

    A global cloud cover data set, derived from the USAF 3D NEPH Analysis, was developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter - total sky cover - separated in time by 3 or 6 hr intervals and in space by approximately 50 n.mi. Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover. The data are arranged in both quarterly and monthly formats. The data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere from 1972 through 1977 less 1976. For the Southern Hemisphere, there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added. To validate the data base, the percent frequency of or = 0.3 and or = 0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement. Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere. The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. No adjustments are required to account for cloud continuity.

  12. 23 Years of Cloud Statistics Using HIRS Over Australia

    NASA Astrophysics Data System (ADS)

    Chedzey, H. C.; Menzel, W. P.; Lynch, M. J.; McGann, B. T.

    2004-05-01

    Clouds are an integral factor in the Earth's water and radiation budgets. Observations and improvements to the accuracy of measurements of cloud properties are crucial in supporting global climate change studies. Regional studies are also of interest and analysis of regional climate variability provides an insight into local weather systems. HIRS is the High-Resolution Infrared Radiation Sounder aboard polar orbiting satellites operated by NOAA (National Oceanographic and Atmospheric Administration). An archive of HIRS data obtained between 1979 (NOAA-5) through to 2001 (NOAA-16) was made available by CIMSS (Cooperative Institute for Meteorological Satellite Studies) at the University of Wisconsin-Madison. The data is obtained from near nadir and frequencies of observations are converted into percentages based on total number of observations for each 1 by 1 degree cell. An assessment of cloud frequency percentages for a region including areas of the Indian Ocean and Australia (0\\deg - 60\\deg S; 80\\deg E - 170\\deg E) will be presented. Climate variability and possible associations with future work to be conducted into cloud frequency and rainfall of North West Cloud Bands using MODIS data will also be covered.

  13. Probing and monitoring aerosol and atmospheric clouds with an electro-optic oscillator.

    PubMed

    Arnon, S; Kopeika, N S

    1996-09-20

    Monitoring, probing, and sensing characteristics of aerosol clouds is difficult and complicated. Probing the characteristics of aerosols is most useful in the chemical and microelectronic industry for processing control of aerosols and emulsion, decreasing bit error rate in adaptive optical communication systems, and in acquiring data for atmospheric science and environment quality. We present a new mathematical and optical engineering model for monitoring characteristics of aerosol clouds. The model includes the temporal transfer function of aerosol clouds as a variable parameter in an electro-optic oscillator. The frequency of the oscillator changes according to changes in the characteristics of the clouds (density, size distribution, physical thickness, the medium and the particulate refractive indices, and spatial distribution). It is possible to measure only one free characteristic at a given time. An example of a practical system for monitoring the density of aerosol clouds is given. The frequency of the oscillator changes from 1.25 to 0.43 MHz for changes in aerosol density from 2000 to 3000 particulates cm(-3). The advantages of this new method compared with the transmissometer methods are (a) no necessity for line-of-sight measurement geometry, (b) accurate measurement of high optical thickness media is possible, (c) under certain conditions measurements can include characteristics of aerosol clouds related to light scatter that cannot be or are difficult to measure with a transmissometer, and (d) the cloud bandwidth for free space optical communication is directly measurable.

  14. Cloud Properties Derived from Surface-Based Near-Infrared Spectral Transmission

    NASA Technical Reports Server (NTRS)

    Pilewskie, Peter; Twomey, S.; Gore, Warren J. Y. (Technical Monitor)

    1996-01-01

    Surface based near-infrared cloud spectral transmission measurements from a recent precipitation/cloud physics field study are used to determine cloud physical properties and relate them to other remote sensing and in situ measurements. Asymptotic formulae provide an effective means of closely approximating the qualitative and quantitative behavior of transmission computed by more laborious detailed methods. Relationships derived from asymptotic formulae are applied to measured transmission spectra to test objectively the internal consistency of data sets acquired during the field program and they confirmed the quality of the measurements. These relationships appear to be very useful in themselves, not merely as a quality control measure, but also a potentially valuable remote-sensing technique in its own right. Additional benefits from this analysis have been the separation of condensed water (cloud) transmission and water vapor transmission and the development of a method to derive cloud liquid water content.

  15. Effects of cumulus entrainment and multiple cloud types on a January global climate model simulation

    NASA Technical Reports Server (NTRS)

    Yao, Mao-Sung; Del Genio, Anthony D.

    1989-01-01

    An improved version of the GISS Model II cumulus parameterization designed for long-term climate integrations is used to study the effects of entrainment and multiple cloud types on the January climate simulation. Instead of prescribing convective mass as a fixed fraction of the cloud base grid-box mass, it is calculated based on the closure assumption that the cumulus convection restores the atmosphere to a neutral moist convective state at cloud base. This change alone significantly improves the distribution of precipitation, convective mass exchanges, and frequencies in the January climate. The vertical structure of the tropical atmosphere exhibits quasi-equilibrium behavior when this closure is used, even though there is no explicit constraint applied above cloud base.

  16. Overview of MPLNET Version 3 Cloud Detection

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Campbell, James; Welton, Ellsworth J.; Stewart, Sebastian A.; Haftings, Phillip

    2016-01-01

    The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights.

  17. Clouds vertical properties over the Northern Hemisphere monsoon regions from CloudSat-CALIPSO measurements

    NASA Astrophysics Data System (ADS)

    Das, Subrata Kumar; Golhait, R. B.; Uma, K. N.

    2017-01-01

    The CloudSat spaceborne radar and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) space-borne lidar measurements, provide opportunities to understand the intriguing behavior of the vertical structure of monsoon clouds. The combined CloudSat-CALIPSO data products have been used for the summer season (June-August) of 2006-2010 to present the statistics of cloud macrophysical (such as cloud occurrence frequency, distribution of cloud top and base heights, geometrical thickness and cloud types base on occurrence height), and microphysical (such as ice water content, ice water path, and ice effective radius) properties of the Northern Hemisphere (NH) monsoon region. The monsoon regions considered in this work are the North American (NAM), North African (NAF), Indian (IND), East Asian (EAS), and Western North Pacific (WNP). The total cloud fraction over the IND (mostly multiple-layered cloud) appeared to be more frequent as compared to the other monsoon regions. Three distinctive modes of cloud top height distribution are observed over all the monsoon regions. The high-level cloud fraction is comparatively high over the WNP and IND. The ice water content and ice water path over the IND are maximum compared to the other monsoon regions. We found that the ice water content has little variations over the NAM, NAF, IND, and WNP as compared to their macrophysical properties and thus give an impression that the regional differences in dynamics and thermodynamics properties primarily cause changes in the cloud frequency or coverage and only secondary in the cloud ice properties. The background atmospheric dynamics using wind and relative humidity from the ERA-Interim reanalysis data have also been investigated which helps in understanding the variability of the cloud properties over the different monsoon regions.

  18. Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds

    DOE PAGES

    Yang, Fan; Luke, Edward P.; Kollias, Pavlos; ...

    2018-04-20

    Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less

  19. Scaling of drizzle virga depth with cloud thickness for marine stratocumulus clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Luke, Edward P.; Kollias, Pavlos

    Drizzle plays a crucial role in cloud lifetime and radiation properties of marine stratocumulus clouds. Understanding where drizzle exists in the sub-cloud layer, which depends on drizzle virga depth, can help us better understand where below-cloud scavenging and evaporative cooling and moisturizing occur. In this study, we examine the statistical properties of drizzle frequency and virga depth of marine stratocumulus based on unique ground-based remote sensing data. Results show that marine stratocumulus clouds are drizzling nearly all the time. In addition, we derive a simple scaling analysis between drizzle virga thickness and cloud thickness. Our analytical expression agrees with themore » observational data reasonable well, which suggests that our formula provides a simple parameterization for drizzle virga of stratocumulus clouds suitable for use in other models.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom, R. K.; Sivaraman, C.; Shippert, T. R.

    Accurate height-resolved measurements of higher-order statistical moments of vertical velocity fluctuations are crucial for improved understanding of turbulent mixing and diffusion, convective initiation, and cloud life cycles. The Atmospheric Radiation Measurement (ARM) Climate Research Facility operates coherent Doppler lidar systems at several sites around the globe. These instruments provide measurements of clear-air vertical velocity profiles in the lower troposphere with a nominal temporal resolution of 1 sec and height resolution of 30 m. The purpose of the Doppler lidar vertical velocity statistics (DLWSTATS) value-added product (VAP) is to produce height- and time-resolved estimates of vertical velocity variance, skewness, and kurtosismore » from these raw measurements. The VAP also produces estimates of cloud properties, including cloud-base height (CBH), cloud frequency, cloud-base vertical velocity, and cloud-base updraft fraction.« less

  1. Reconciling CloudSat and GPM Estimates of Falling Snow

    NASA Technical Reports Server (NTRS)

    Munchak, S. Joseph; Jackson, Gail Skofronick; Kulie, Mark; Wood, Norm; Miliani, Lisa

    2017-01-01

    Satellite-based estimates of falling snow have been provided by CloudSat (launched in 2006) and the Global Precipitation Measurement (GPM) core satellite (launched in 2014). The CloudSat estimates are derived from W-band radar measurements whereas the GPM estimates are derived from its scanning Ku- and Ka-band Dual-Frequency Precipitation Radar (DPR) and 13-channel microwave imager (GMI). Each platform has advantages and disadvantages: CloudSat has higher resolution (approximately 1.5 km) and much better sensitivity (-28 dBZ), but poorer sampling (nadir-only and daytime-only since 2011) and the reflectivity-snowfall (Z-S) relationship is poorly constrained with single-frequency measurements. Meanwhile, DPR suffers from relatively poor resolution (5 km) and sensitivity (approximately 13 dBZ), but has cross-track scanning capability to cover a 245-km swath. Additionally, where Ku and Ka measurements are available, the conversion of reflectivity to snowfall rate is better-constrained than with a single frequency.

  2. Cloud Thickness from Offbeam Returns (THOR) Validation Campaign on NASA's P3B Over the ARM/SGP

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; Kolasinski, J.; McGill, M.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Physical thickness of a cloud layer, sometimes multiple cloud layers, is a crucial controller of solar heating of the Earth- atmosphere system, which drives the convective processes that produce storm systems. Yet clouds of average optical thickness are opaque to conventional lidar, so their thickness is well estimated only by combining a lidar above and another below cloud, or a radar and lidar on the same side, dual facilities not widely available. Here we report initial observations of a new airborne multiple field of view lidar, capable of determining physical thickness of cloud layers from time signatures of off-beam returns from a I kHz micropulse lidar at 540 rim. For a single layer, the time delay of light returning from the outer diffuse halo of light surrounding the beam entry point, relative to the time delay at beam center, determines the cloud physical thickness. The delay combined with the pulse stretch gives the optical thickness. This halo method requires cloud optical thickness exceeding 2, and improves with cloud thickness, thus complimenting conventional lidar, which cannot penetrate thick clouds. Results are presented from March 25, 2002, when THOR flew a butterfly pattern over the ARM site at 8.3 km, above a thin ice cloud at 5 km, and a thick boundary-layer stratus deck with top at 1.3 km, as shown by THOR channel 1, and a base at about 0.3 km as shown by the ground-based MPL. Additional information is included in the original extended abstract.

  3. Evaluation of Cirrus Cloud Simulations using ARM Data-Development of Case Study Data Set

    NASA Technical Reports Server (NTRS)

    Starr, David OC.; Demoz, Belay; Wang, Yansen; Lin, Ruei-Fong; Lare, Andrew; Mace, Jay; Poellot, Michael; Sassen, Kenneth; Brown, Philip

    2002-01-01

    Cloud-resolving models (CRMs) are being increasingly used to develop parametric treatments of clouds and related processes for use in global climate models (GCMs). CRMs represent the integrated knowledge of the physical processes acting to determine cloud system lifecycle and are well matched to typical observational data in terms of physical parameters/measurables and scale-resolved physical processes. Thus, they are suitable for direct comparison to field observations for model validation and improvement. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. The objective is to compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. Progress is assessing cloud and other environmental conditions will be described. Results of preliminary simulations using a regional cloud system model (MM5) and a CRM will be discussed. Focal science questions for the model comparison are strongly based on results of the idealized GCSS WG2 cirrus cloud model comparison projects (Idealized Cirrus Cloud Model Comparison Project and Cirrus Parcel Model Comparison Project), which will also be briefly summarized.

  4. MODIS Cloud Products Derived from Terra and Aqua During CRYSTAL-FACE

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Riedi, J. C.; Ackerman, S. A.; Menzel, W. P.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS), developed as part of the Earth Observing System (EOS) and launched on Terra in December 1999 and Aqua in May 2002, is designed to meet the scientific needs for satellite remote sensing of clouds, aerosols, water vapor, and land and ocean surface properties. During the CRYSTAL-FACE experiment, numerous aircraft coordinated both in situ and remote sensing observations with the Terra and Aqua spacecraft. In this paper we will emphasize the optical, microphysical, and physical properties of both liquid water and ice clouds obtained from an analysis of the satellite observations over Florida and the Gulf of Mexico during July 2002. We will present the frequency distribution of liquid water and ice cloud microphysical properties throughout the region, separating the results over land and ocean. Probability distributions of effective radius and cloud optical thickness will also be shown.

  5. Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salgado, F.; Morabito, L. K.; Oonk, J. B. R.

    In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less

  6. Many-body interferometry of magnetic polaron dynamics

    NASA Astrophysics Data System (ADS)

    Ashida, Yuto; Schmidt, Richard; Tarruell, Leticia; Demler, Eugene

    2018-02-01

    The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed-matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and analyze a platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.

  7. Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations

    NASA Astrophysics Data System (ADS)

    Rusli, Stephanie P.; Donovan, David P.; Russchenberg, Herman W. J.

    2017-12-01

    Despite the importance of radar reflectivity (Z) measurements in the retrieval of liquid water cloud properties, it remains nontrivial to interpret Z due to the possible presence of drizzle droplets within the clouds. So far, there has been no published work that utilizes Z to identify the presence of drizzle above the cloud base in an optimized and a physically consistent manner. In this work, we develop a retrieval technique that exploits the synergy of different remote sensing systems to carry out this task and to subsequently profile the microphysical properties of the cloud and drizzle in a unified framework. This is accomplished by using ground-based measurements of Z, lidar attenuated backscatter below as well as above the cloud base, and microwave brightness temperatures. Fast physical forward models coupled to cloud and drizzle structure parameterization are used in an optimal-estimation-type framework in order to retrieve the best estimate for the cloud and drizzle property profiles. The cloud retrieval is first evaluated using synthetic signals generated from large-eddy simulation (LES) output to verify the forward models used in the retrieval procedure and the vertical parameterization of the liquid water content (LWC). From this exercise it is found that, on average, the cloud properties can be retrieved within 5 % of the mean truth. The full cloud-drizzle retrieval method is then applied to a selected ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign dataset collected in Cabauw, the Netherlands. An assessment of the retrieval products is performed using three independent methods from the literature; each was specifically developed to retrieve only the cloud properties, the drizzle properties below the cloud base, or the drizzle fraction within the cloud. One-to-one comparisons, taking into account the uncertainties or limitations of each retrieval, show that our results are consistent with what is derived using the three independent methods.

  8. How to assess the impact of a physical parameterization in simulations of moist convection?

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech

    2017-04-01

    A numerical model capable in simulating moist convection (e.g., cloud-resolving model or large-eddy simulation model) consists of a fluid flow solver combined with required representations (i.e., parameterizations) of physical processes. The later typically include cloud microphysics, radiative transfer, and unresolved turbulent transport. Traditional approaches to investigate impacts of such parameterizations on convective dynamics involve parallel simulations with different parameterization schemes or with different scheme parameters. Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between the physics and dynamics. For instance, changing the cloud microphysics typically leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is difficult. This presentation will present a novel modeling methodology, the piggybacking, that allows studying the impact of a physical parameterization on cloud dynamics with confidence. The focus will be on the impact of cloud microphysics parameterization. Specific examples of the piggybacking approach will include simulations concerning the hypothesized deep convection invigoration in polluted environments, the validity of the saturation adjustment in modeling condensation in moist convection, and separation of physical impacts from statistical uncertainty in simulations applying particle-based Lagrangian microphysics, the super-droplet method.

  9. If Frisch is true - impacts of varying beam width, resolution, frequency combinations and beam overlap when retrieving liquid water content profiles

    NASA Astrophysics Data System (ADS)

    Küchler, N.; Kneifel, S.; Kollias, P.; Loehnert, U.

    2017-12-01

    Cumulus and stratocumulus clouds strongly affect the Earth's radiation budget and are a major uncertainty source in weather and climate prediction models. To improve and evaluate models, a comprehensive understanding of cloud processes is necessary and references are needed. Therefore active and passive microwave remote sensing of clouds can be used to derive cloud properties such as liquid water path and liquid water content (LWC), which can serve as a reference for model evaluation. However, both the measurements and the assumptions when retrieving physical quantities from the measurements involve uncertainty sources. Frisch et al. (1998) combined radar and radiometer observations to derive LWC profiles. Assuming their assumptions are correct, there will be still uncertainties regarding the measurement setup. We investigate how varying beam width, temporal and vertical resolutions, frequency combinations, and beam overlap of and between the two instruments influence the retrieval of LWC profiles. Especially, we discuss the benefit of combining vertically, high resolved radar and radiometer measurements using the same antenna, i.e. having ideal beam overlap. Frisch, A. S., G. Feingold, C. W. Fairall, T. Uttal, and J. B. Snider, 1998: On cloud radar and microwave radiometer measurements of stratus cloud liquid water profiles. J. Geophys. Res.: Atmos., 103 (18), 23 195-23 197, doi:0148-0227/98/98JD-01827509.00.

  10. Statistical Analyses of Satellite Cloud Object Data From CERES. Part 4; Boundary-layer Cloud Objects During 1998 El Nino

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Wong, Takmeng; Wielicki, Bruce A.; Parker, Lindsay

    2006-01-01

    Three boundary-layer cloud object types, stratus, stratocumulus and cumulus, that occurred over the Pacific Ocean during January-August 1998, are identified from the CERES (Clouds and the Earth s Radiant Energy System) single scanner footprint (SSF) data from the TRMM (Tropical Rainfall Measuring Mission) satellite. This study emphasizes the differences and similarities in the characteristics of each cloud-object type between the tropical and subtropical regions and among different size categories and among small geographic areas. Both the frequencies of occurrence and statistical distributions of cloud physical properties are analyzed. In terms of frequencies of occurrence, stratocumulus clouds dominate the entire boundary layer cloud population in all regions and among all size categories. Stratus clouds are more prevalent in the subtropics and near the coastal regions, while cumulus clouds are relatively prevalent over open ocean and the equatorial regions, particularly, within the small size categories. The largest size category of stratus cloud objects occurs more frequently in the subtropics than in the tropics and has much larger average size than its cumulus and stratocumulus counterparts. Each of the three cloud object types exhibits small differences in statistical distributions of cloud optical depth, liquid water path, TOA albedo and perhaps cloud-top height, but large differences in those of cloud-top temperature and OLR between the tropics and subtropics. Differences in the sea surface temperature (SST) distributions between the tropics and subtropics influence some of the cloud macrophysical properties, but cloud microphysical properties and albedo for each cloud object type are likely determined by (local) boundary-layer dynamics and structures. Systematic variations of cloud optical depth, TOA albedo, cloud-top height, OLR and SST with cloud object sizes are pronounced for the stratocumulus and stratus types, which are related to systematic variations of the strength of inversion with cloud object sizes, produced by large-scale subsidence. The differences in cloud macrophysical properties over small regions are significantly larger than those of cloud microphysical properties and TOA albedo, suggesting a greater control of (local) large-scale dynamics and other factors on cloud object properties. When the three cloud object types are combined, the relative population among the three types is the most important factor for determining the cloud object properties in a Pacific transect where the transition of boundary-layer cloud types takes place.

  11. Remote sensing of atmospheric particulates: Technological innovation and physical limitations in applications to short-range weather prediction

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kropfil, R.; Hallett, J.

    1984-01-01

    Techniques for remote sensing of particles, from cloud droplet to hailstone size, using optical and microwave frequencies are reviewed. The inherent variability of atmospheric particulates is examined to delineate conditions when the signal can give information to be effectively utilized in a forecasting context. The physical limitations resulting from the phase, size, orientation and concentration variability of the particulates are assessed.

  12. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  13. The Characteristics of Ice Cloud Properties in China Derived from DARDAR data

    NASA Astrophysics Data System (ADS)

    Lin, T.; Zheng, Y.

    2017-12-01

    Ice clouds play an important role in modulating the Earth radiation budget and global hydrological cycle.Thus,study the properties of ice clouds has the vital significance on the interaction between the atmospheric models,cloud,radiation and climate .The world has explore the combination of two or several kinds of sensor data to solve the complementary strengths and error reduction to improve accuracy of ice cloud at the present , but for China ,has be lack of research on combination sensor data to analysis properties of ice cloud.To reach a wider range of ice cloud, a combination of the CloudSat radar and the CALIPSO lidar is used to derive ice cloud properties. These products include the radar/lidar product (DARDAR) developed at the University of Reading.The China probability distribution of ice cloud occurrence frequency, ice water path, ice water content and ice cloud effective radius were presented based on DARDAR data from 2012 to 2016,the distribution and vertical sturctures was discussed.The results indicate that the ice cloud occurrence frequency distribution takes on ascend trend in the last 4 years and has obvious seasonal variation, the high concentration area in the northeastern part of the Tibetan Plateau,ice cloud occurrence frequency is relatively high in northwest area.the increased of ice cloud occurrence frequency play an integral role of the climate warming in these four years; the general trend for the ice water path is southeast area bigger than northwest area, in winter the IWP is the smallest, biggest in summer; the IWC is the biggest in summer, and the vertical height distribution higher than other seasons; ice cloud effective radius and ice water content had similar trend..There were slight declines in ice cloud effective radius with increase height of China,in the summer ice effective radius is generally larger.The ice cloud impact Earth radiation via their albedo an greenhouse effects, that is, cooling the Earth by reflecting solar incident radiation and at the same time.Thus,thorough research of the characteristics of ice cloud properties can explain the complicated relationship between ice cloud and global warming,and this kind of data analysis can comprehend the climate effect of mainland China .

  14. From large-eddy simulation to multi-UAVs sampling of shallow cumulus clouds

    NASA Astrophysics Data System (ADS)

    Lamraoui, Fayçal; Roberts, Greg; Burnet, Frédéric

    2016-04-01

    In-situ sampling of clouds that can provide simultaneous measurements at satisfying spatio-temporal resolutions to capture 3D small scale physical processes continues to present challenges. This project (SKYSCANNER) aims at bringing together cloud sampling strategies using a swarm of unmanned aerial vehicles (UAVs) based on Large-eddy simulation (LES). The multi-UAV-based field campaigns with a personalized sampling strategy for individual clouds and cloud fields will significantly improve the understanding of the unresolved cloud physical processes. An extensive set of LES experiments for case studies from ARM-SGP site have been performed using MesoNH model at high resolutions down to 10 m. The carried out simulations led to establishing a macroscopic model that quantifies the interrelationship between micro- and macrophysical properties of shallow convective clouds. Both the geometry and evolution of individual clouds are critical to multi-UAV cloud sampling and path planning. The preliminary findings of the current project reveal several linear relationships that associate many cloud geometric parameters to cloud related meteorological variables. In addition, the horizontal wind speed indicates a proportional impact on cloud number concentration as well as triggering and prolonging the occurrence of cumulus clouds. In the framework of the joint collaboration that involves a Multidisciplinary Team (including institutes specializing in aviation, robotics and atmospheric science), this model will be a reference point for multi-UAVs sampling strategies and path planning.

  15. A physically-based retrieval of cloud liquid water from SSM/I measurements

    NASA Technical Reports Server (NTRS)

    Greenwald, Thomas J.; Stephens, Graeme L.; Vonder Haar, Thomas H.

    1992-01-01

    A simple physical scheme is proposed for retrieving cloud liquid water over the ice-free global oceans from Special Sensor Microwave/Imager (SSM/I) observations. Details of the microwave retrieval scheme are discussed, and the microwave-derived liquid water amounts are compared with the ground radiometer and AVHRR-derived liquid water for stratocumulus clouds off the coast of California. Global distributions of the liquid water path derived by the method proposed here are presented.

  16. Morphological diagnostics of star formation in molecular clouds

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher Norris

    Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.

  17. MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms.

    PubMed

    Allen, Steven P; Hernandez-Garcia, Luis; Cain, Charles A; Hall, Timothy L

    2016-11-01

    To demonstrate that MR sequences can detect individual histotripsy bubble clouds formed inside intact tissues. A line-scan and an EPI sequence were sensitized to histotripsy by inserting a bipolar gradient whose lobes bracketed the lifespan of a histotripsy bubble cloud. Using a 7 Tesla, small-bore scanner, these sequences monitored histotripsy clouds formed in an agar phantom and in vitro porcine liver and brain. The bipolar gradients were adjusted to apply phase with k-space frequencies of 10, 300 or 400 cm -1 . Acoustic pressure amplitude was also varied. Cavitation was simultaneously monitored using a passive cavitation detection system. Each image captured local signal loss specific to an individual bubble cloud. In the agar phantom, this signal loss appeared only when the transducer output exceeded the cavitation threshold pressure. In tissues, bubble clouds were immediately detected when the gradients created phase with k-space frequencies of 300 and 400 cm -1 . When the gradients created phase with a k-space frequency of 10 cm -1 , individual bubble clouds were not detectable until many acoustic pulses had been applied to the tissue. Cavitation-sensitive MR-sequences can detect single histotripsy bubble clouds formed in biologic tissue. Detection is influenced by the sensitizing gradients and treatment history. Magn Reson Med 76:1486-1493, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  18. Mapping the Distribution of Cloud Forests Using MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Douglas, M. W.; Mejia, J.; Murillo, J.; Orozco, R.

    2007-05-01

    Tropical cloud forests - those forests that are frequently immersed in clouds or otherwise very humid, are extremely difficult to map from the ground, and are not easily distinguished in satellite imagery from other forest types, but they have a very different flora and fauna than lowland rainforest. Cloud forests, although found in many parts of the tropics, have a very restricted vertical extent and thus are also restricted horizontally. As a result, they are subject to both human disturbance (coffee growing for example) and the effects of possible climate change. Motivated by a desire to seek meteorological explanations for the distribution of cloud forests, we have begun to map cloudiness using MODIS Terra and Aqua visible imagery. This imagery, at ~1030 LT and 1330 LT, is an approximation for mid-day cloudiness. In tropical regions the amount of mid-day cloudiness strongly controls the shortwave radiation and thus the potential for evaporation (and aridity). We have mapped cloudiness using a simple algorithm that distinguishes between the cloud-free background brightness and the generally more reflective clouds to separate clouds from the underlying background. A major advantage of MODIS imagery over many other sources of satellite imagery is its high spatial resolution (~250m). This, coupled with precisely navigated images, means that detailed maps of cloudiness can be produced. The cloudiness maps can then be related to the underlying topography to further refine the location of the cloud forests. An advantage of this technique is that we are mapping the potential cloud forest, based on cloudiness, rather than the actual cloud forest, which are commonly based on forest estimates from satellite and digital elevation data. We do not derive precipitation, only estimates of daytime cloudiness. Although only a few years of MODIS imagery has been used in our studies, we will show that this is sufficient to describe the climatology of cloudiness with acceptable accuracy for its intended purposes. Even periods as short as one month are sufficient for depicting the location of most cloud forest environments. However, we are proceeding to distinguish different characteristics of cloud forests, depending on the overall frequency of cloudiness, the seasonality of cloudiness, and the interannual variability of cloudiness. These results should be useful to those seeking to describe relationships between the physical characteristics of the cloud forests and their biological environment.

  19. Multi-service small-cell cloud wired/wireless access network based on tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Zhou, Kun; Yang, Liu; Pan, Lei; Liao, Zhen-wan; Zhang, Qiang

    2015-11-01

    In this paper, we demonstrate a novel multi-service wired/wireless integrated access architecture of cloud radio access network (C-RAN) based on radio-over-fiber passive optical network (RoF-PON) system, which utilizes scalable multiple- frequency millimeter-wave (MF-MMW) generation based on tunable optical frequency comb (TOFC). In the baseband unit (BBU) pool, the generated optical comb lines are modulated into wired, RoF and WiFi/WiMAX signals, respectively. The multi-frequency RoF signals are generated by beating the optical comb line pairs in the small cell. The WiFi/WiMAX signals are demodulated after passing through the band pass filter (BPF) and band stop filter (BSF), respectively, whereas the wired signal can be received directly. The feasibility and scalability of the proposed multi-service wired/wireless integrated C-RAN are confirmed by the simulations.

  20. Impact of Arctic sea-ice retreat on the recent change in cloud-base height during autumn

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inoue, J.; Kodama, Y.; Overland, J. E.

    2012-12-01

    Cloud-base observations over the ice-free Chukchi and Beaufort Seas in autumn were conducted using a shipboard ceilometer and radiosondes during the 1999-2010 cruises of the Japanese R/V Mirai. To understand the recent change in cloud base height over the Arctic Ocean, these cloud-base height data were compared with the observation data under ice-covered situation during SHEBA (the Surface Heat Budget of the Arctic Ocean project in 1998). Our ice-free results showed a 30 % decrease (increase) in the frequency of low clouds with a ceiling below (above) 500 m. Temperature profiles revealed that the boundary layer was well developed over the ice-free ocean in the 2000s, whereas a stable layer dominated during the ice-covered period in 1998. The change in surface boundary conditions likely resulted in the difference in cloud-base height, although it had little impact on air temperatures in the mid- and upper troposphere. Data from the 2010 R/V Mirai cruise were investigated in detail in terms of air-sea temperature difference. This suggests that stratus cloud over the sea ice has been replaced as stratocumulus clouds with low cloud fraction due to the decrease in static stability induced by the sea-ice retreat. The relationship between cloud-base height and air-sea temperature difference (SST-Ts) was analyzed in detail using special section data during 2010 cruise data. Stratus clouds near the sea surface were predominant under a warm advection situation, whereas stratocumulus clouds with a cloud-free layer were significant under a cold advection situation. The threshold temperature difference between sea surface and air temperatures for distinguishing the dominant cloud types was 3 K. Anomalous upward turbulent heat fluxes associated with the sea-ice retreat have likely contributed to warming of the lower troposphere. Frequency distribution of the cloud-base height (km) detected by a ceilometer/lidar (black bars) and radiosondes (gray bars), and profiles of potential temperature (K) for (a) ice-free cases (R/V Mirai during September) and (b) ice-covered case (SHEBA during September 1998). (c) Vertical profiles of air temperature from 1000 hPa to 150 hPa (solid lines: observations north of 75°N, and dashed lines: the ERA-Interim reanalysis over 75-82.5°N, 150-170°W). Green, blue, and red lines denote profiles derived from observations by NP stations (the 1980s), SHEBA (1998), and the R/V Mirai (the 2000s), respectively. (d) Temperature trend calculated by the ERA-Interim reanalysis over the area.

  1. An investigation of cloud base height in Chiang Mai

    NASA Astrophysics Data System (ADS)

    Peengam, S.; Tohsing, K.

    2017-09-01

    Clouds play very important role in the variation of surface solar radiation and rain formation. To understand this role, it is necessary to know the physical and geometrical of properties of cloud. However, clouds vary with location and time, which lead to a difficulty to obtain their properties. In this work, a ceilometer was installed at a station of the Royal Rainmaking and Agricultural Aviation Department in Chiang Mai (17.80° N, 98.43° E) in order to measure cloud base height. The cloud base height data from this instrument were compared with those obtained from LiDAR, a more sophisticated instrument installed at the same site. It was found that the cloud base height from both instruments was in reasonable agreement, with root mean square difference (RMSD) and mean bias difference (MBD) of 19.21% and 1.58%, respectively. Afterward, a six-month period (August, 2016-January, 2017) of data from the ceilometer was analyzed. The results show that mean cloud base height during this period is 1.5 km, meaning that most clouds are in the category of low-level cloud.

  2. Surface Layer Flux Processes During Cloud Intermittency and Advection above a Middle Rio Grande Riparian Forest, New Mexico

    NASA Astrophysics Data System (ADS)

    Cleverly, J. R.; Prueger, J.; Cooper, D. I.; Hipps, L.; Eichinger, W.

    2002-12-01

    An intensive field campaign was undertaken to bring together state-of-the-art methodologies for investigating surface layer physical characteristics over a desert riparian forest. Three-dimensional sonic eddy covariance (3SEC), LIDAR, SODAR, Radiosonde, one-dimensional propeller eddy covariance (1PEC), heat dissipation sap flux, and leaf gas exchange were simultaneously in use 13 -- 21 June 1999 at Bosque del Apache National Wildlife Refuge (NWR) in New Mexico. A one hour period of intense advection was identified by /line{v} >> 0 and /line{u} = 0, indicating that wind direction was transverse to the riparian corridor. The period of highest /line{v} was 1400 h on 20 June; this hour experienced intermittent cloud cover and enhanced mesoscale forcing of surface fluxes. High-frequency (20 Hz) time series of u, v, w, q, θ , and T were collected for spectral, cospectral, and wavelet analyses. These time series analyses illustrate scales at which processes co-occur. At high frequencies (> 0.015 Hz), /line{T' q'} > 0, and (KH)/ (KW) = 1. At low frequencies, however, /line{T' q'} < 0, and (KH)/(KW) !=q 1. Under these transient conditions, frequencies below 0.015 Hz are associated with advection. While power cospectra are useful in associating processes at certain frequencies, further analysis must be performed to determine whether such examples of aphasia are localized to transient events or constant through time. Continuous wavelet transformation (CWT) sacrifices localization in frequency space for localization in time. Mother wavelets were evaluated, and Daubechies order 10 wavelet was found to reduce red noise and leakage near the spectral gap. The spectral gap is a frequency domain between synoptic and turbulent scales. Low frequency turbulent structures near the spectral gap in the time series of /line{T' q'}, /line{w' T'}, and /line{w' q'} followed a perturbation--relaxation pattern to cloud cover. Further cloud cover in the same hour did not produce the low frequency variation associated with mesoscale forcing. Two dimensional vertical LIDAR scans of eddy structure explains the observed frequency response patterns. Insight into the temporal progression of homeostatic processes in the surface layer will provide resources for water managers to better predict ET.

  3. Statistical thermodynamics and the size distributions of tropical convective clouds.

    NASA Astrophysics Data System (ADS)

    Garrett, T. J.; Glenn, I. B.; Krueger, S. K.; Ferlay, N.

    2017-12-01

    Parameterizations for sub-grid cloud dynamics are commonly developed by using fine scale modeling or measurements to explicitly resolve the mechanistic details of clouds to the best extent possible, and then to formulating these behaviors cloud state for use within a coarser grid. A second is to invoke physical intuition and some very general theoretical principles from equilibrium statistical thermodynamics. This second approach is quite widely used elsewhere in the atmospheric sciences: for example to explain the heat capacity of air, blackbody radiation, or even the density profile or air in the atmosphere. Here we describe how entrainment and detrainment across cloud perimeters is limited by the amount of available air and the range of moist static energy in the atmosphere, and that constrains cloud perimeter distributions to a power law with a -1 exponent along isentropes and to a Boltzmann distribution across isentropes. Further, the total cloud perimeter density in a cloud field is directly tied to the buoyancy frequency of the column. These simple results are shown to be reproduced within a complex dynamic simulation of a tropical convective cloud field and in passive satellite observations of cloud 3D structures. The implication is that equilibrium tropical cloud structures can be inferred from the bulk thermodynamic structure of the atmosphere without having to analyze computationally expensive dynamic simulations.

  4. Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. I - Model description. II - Results and analysis

    NASA Technical Reports Server (NTRS)

    Mugnai, Alberto; Smith, Eric A.

    1988-01-01

    The impact of time-dependent cloud microphysical structure on the transfer to space of passive microwave radiation is studied at several frequencies across the EHF and lower SHF portions of the microwave spectrum. The feasibility of using multichannel passive-microwave retrieval techniques to estimate precipitation from space-based platforms is examined. The model is described, and the results are assessed in conjunction with a Nimbus-7 SMMR case study of precipitation in an intense tropical Pacific storm. It is concluded that the effects of cloud liquid water content must be considered to obtain a realistic estimation and distribution of rainrates.

  5. Multifrequency survey of the intergalactic cloud in the M96 group

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Skrutskie, M. F.; Hacking, Perry B.; Young, Judith S.; Dickman, Robert L.

    1989-01-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial.

  6. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    NASA Technical Reports Server (NTRS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  7. Algorithm for Automated Detection of Edges of Clouds

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2006-01-01

    An algorithm processes cloud-physics data gathered in situ by an aircraft, along with reflectivity data gathered by ground-based radar, to determine whether the aircraft is inside or outside a cloud at a given time. A cloud edge is deemed to be detected when the in/out state changes, subject to a hysteresis constraint. Such determinations are important in continuing research on relationships among lightning, electric charges in clouds, and decay of electric fields with distance from cloud edges.

  8. Lidar Observations of the Optical Properties and 3-Dimensional Structure of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.

    1996-01-01

    The scientific research conducted under this grant have been reported in a series of journal articles, dissertations, and conference proceedings. This report consists of a compilation of these publications in the following areas: development and operation of a High Spectral Resolution Lidar, cloud physics and cloud formation, mesoscale observations of cloud phenomena, ground-based and satellite cloud cover observations, impact of volcanic aerosols on cloud formation, visible and infrared radiative relationships as measured by satellites and lidar, and scattering cross sections.

  9. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review.

    PubMed

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-01-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.

  10. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    NASA Astrophysics Data System (ADS)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    2017-11-01

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and high-resolution modeling on large domains are discussed.

  11. Mechanisms and Model Diversity of Trade-Wind Shallow Cumulus Cloud Feedbacks: A Review

    NASA Astrophysics Data System (ADS)

    Vial, Jessica; Bony, Sandrine; Stevens, Bjorn; Vogel, Raphaela

    Shallow cumulus clouds in the trade-wind regions are at the heart of the long standing uncertainty in climate sensitivity estimates. In current climate models, cloud feedbacks are strongly influenced by cloud-base cloud amount in the trades. Therefore, understanding the key factors controlling cloudiness near cloud-base in shallow convective regimes has emerged as an important topic of investigation. We review physical understanding of these key controlling factors and discuss the value of the different approaches that have been developed so far, based on global and high-resolution model experimentations and process-oriented analyses across a range of models and for observations. The trade-wind cloud feedbacks appear to depend on two important aspects: (1) how cloudiness near cloud-base is controlled by the local interplay between turbulent, convective and radiative processes; (2) how these processes interact with their surrounding environment and are influenced by mesoscale organization. Our synthesis of studies that have explored these aspects suggests that the large diversity of model responses is related to fundamental differences in how the processes controlling trade cumulus operate in models, notably, whether they are parameterized or resolved. In models with parameterized convection, cloudiness near cloud-base is very sensitive to the vigor of convective mixing in response to changes in environmental conditions. This is in contrast with results from high-resolution models, which suggest that cloudiness near cloud-base is nearly invariant with warming and independent of large-scale environmental changes. Uncertainties are difficult to narrow using current observations, as the trade cumulus variability and its relation to large-scale environmental factors strongly depend on the time and/or spatial scales at which the mechanisms are evaluated. New opportunities for testing physical understanding of the factors controlling shallow cumulus cloud responses using observations and highresolution modeling on large domains are discussed.

  12. Evaluation of WRF physical parameterizations against ARM/ASR Observations in the post-cold-frontal region to improve low-level clouds representation in CAM5

    NASA Astrophysics Data System (ADS)

    Lamraoui, F.; Booth, J. F.; Naud, C. M.

    2017-12-01

    The representation of subgrid-scale processes of low-level marine clouds located in the post-cold-frontal region poses a serious challenge for climate models. More precisely, the boundary layer parameterizations are predominantly designed for individual regimes that can evolve gradually over time and does not accommodate the cold front passage that can overly modify the boundary layer rapidly. Also, the microphysics schemes respond differently to the quick development of the boundary layer schemes, especially under unstable conditions. To improve the understanding of cloud physics in the post-cold frontal region, the present study focuses on exploring the relationship between cloud properties, the local processes and large-scale conditions. In order to address these questions, we explore the WRF sensitivity to the interaction between various combinations of the boundary layer and microphysics parameterizations, including the Community Atmospheric Model version 5 (CAM5) physical package in a perturbed physics ensemble. Then, we evaluate these simulations against ground-based ARM observations over the Azores. The WRF-based simulations demonstrate particular sensitivities of the marine cold front passage and the associated post-cold frontal clouds to the domain size, the resolution and the physical parameterizations. First, it is found that in multiple different case studies the model cannot generate the cold front passage when the domain size is larger than 3000 km2. Instead, the modeled cold front stalls, which shows the importance of properly capturing the synoptic scale conditions. The simulation reveals persistent delay in capturing the cold front passage and also an underestimated duration of the post-cold-frontal conditions. Analysis of the perturbed physics ensemble shows that changing the microphysics scheme leads to larger differences in the modeled clouds than changing the boundary layer scheme. The in-cloud heating tendencies are analyzed to explain this sensitivity.

  13. Arctic boundary layer properties and its influence on cloud occurrence frequency, phase and structure in autumn season

    NASA Astrophysics Data System (ADS)

    Qiu, S.; Dong, X.; Xi, B.

    2017-12-01

    In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it increases from 20-90% as PBL RH value increases from 50-100%, with R2 values of 0.85-0.95. Liquid-only cloud occurrence frequency has little relationship with PBL RH values, while it increases from 1% to 20% as PBL specific humidity increases from 0-5 g/kg, with R2 values of 0.6-0.85.

  14. How might Australian rainforest cloud interception respond to climate change?

    NASA Astrophysics Data System (ADS)

    Wallace, Jim; McJannet, Dave

    2013-02-01

    SummaryThe lower and upper montane rainforests in northern Queensland receive significant amounts of cloud interception that affect both in situ canopy wetness and downstream runoff. Cloud interception contributes 5-30% of the annual water input to the canopy and this increases to 40-70% of the monthly water input during the dry season. This occult water is therefore an important input to the canopy, sustaining the epiphytes, mosses and other species that depend on wet canopy conditions. The potential effect of climate change on cloud interception was examined using the relationship between cloud interception and cloud frequency derived from measurements made at four different rainforest locations. Any given change in cloud frequency produces a greater change in cloud interception and this 'amplification' increases from 1.1 to 1.7 as cloud frequency increases from 5% to 70%. This means that any changes in cloud frequency will have the greatest relative effects at the higher altitude sites where cloud interception is greatest. As cloud frequency is also a major factor affecting canopy wetness, any given change in cloud frequency will therefore have a greater impact on canopy wetness at the higher altitude sites. These changes in wetness duration will augment those due to changes in rainfall and may have important implications for the fauna and flora that depend on wet canopy conditions. We also found that the Australian rainforests may be more efficient (by ˜50% on average) in intercepting cloud water than American coniferous forests, which may be due to differences in canopy structure and exposure at the different sites.

  15. IR/THz Double Resonance Spectroscopy Approach for Remote Chemical Detection at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Tanner, Elizabeth A.; Phillips, Dane J.; De Lucia, Frank C.; Everitt, Henry O.

    2013-06-01

    A remote sensing methodology based on infrared/terahertz (IR/THz) double resonance (DR) spectroscopy is shown to overcome limitations traditionally associated with either IR or THz spectroscopic approaches for detecting trace gases in an atmosphere. The applicability of IR/THz DR spectroscopy is explored by estimating the IR and THz power requirements for detecting a 100 part-per-million-meter cloud of methyl fluoride, methyl chloride, or methyl bromide at ranges up to 1km in three atmospheric windows below 0.3 THz. These prototypical molecules are used to ascertain the dependence of the DR signal-to-noise ratio on IR and THz beam power. A line-tunable CO_2 laser with 100 ps pulse duration generates a DR signature in four rotational transitions on a time scale commensurate with collisional relaxations caused by atmospheric N_2 and O_2. A continuous wave THz beam is frequency tuned to probe one of these rotational transitions so that laser-induced absorption variations in the analyte cloud are detected as temporal power fluctuations synchronized with the laser pulses. A combination of molecule-specific physics and scenario-dependent atmospheric conditions are used to predict the signal-to-noise ratio (SNR) for detecting an analyte as a function of cloud column density. A methodology is presented by which the optimal IR/THz pump/probe frequencies are identified. These estimates show the potential for low concentration chemical detection in a challenging atmospheric scenario with currently available or near term hardware components.

  16. A Physically Based Algorithm for Non-Blackbody Correction of Cloud-Top Temperature and Application to Convection Study

    NASA Technical Reports Server (NTRS)

    Wang, Chunpeng; Lou, Zhengzhao Johnny; Chen, Xiuhong; Zeng, Xiping; Tao, Wei-Kuo; Huang, Xianglei

    2014-01-01

    Cloud-top temperature (CTT) is an important parameter for convective clouds and is usually different from the 11-micrometers brightness temperature due to non-blackbody effects. This paper presents an algorithm for estimating convective CTT by using simultaneous passive [Moderate Resolution Imaging Spectroradiometer (MODIS)] and active [CloudSat 1 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] measurements of clouds to correct for the non-blackbody effect. To do this, a weighting function of the MODIS 11-micrometers band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat and CALIPSO retrievals and temperature and humidity profiles based on ECMWF analyses into a radiation transfer model.Among 16 837 tropical deep convective clouds observed by CloudSat in 2008, the averaged effective emission level (EEL) of the 11-mm channel is located at optical depth; approximately 0.72, with a standard deviation of 0.3. The distance between the EEL and cloud-top height determined by CloudSat is shown to be related to a parameter called cloud-top fuzziness (CTF), defined as the vertical separation between 230 and 10 dBZ of CloudSat radar reflectivity. On the basis of these findings a relationship is then developed between the CTF and the difference between MODIS 11-micrometers brightness temperature and physical CTT, the latter being the non-blackbody correction of CTT. Correction of the non-blackbody effect of CTT is applied to analyze convective cloud-top buoyancy. With this correction, about 70% of the convective cores observed by CloudSat in the height range of 6-10 km have positive buoyancy near cloud top, meaning clouds are still growing vertically, although their final fate cannot be determined by snapshot observations.

  17. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    NASA Astrophysics Data System (ADS)

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-06-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ˜ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ˜ 200-600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.

  18. Analyzing cloud base at local and regional scales to understand tropical montane cloud forest vulnerability to climate change

    USGS Publications Warehouse

    Van Beusekom, Ashley E.; González, Grizelle; Scholl, Martha A.

    2017-01-01

    The degree to which cloud immersion provides water in addition to rainfall, suppresses transpiration, and sustains tropical montane cloud forests (TMCFs) during rainless periods is not well understood. Climate and land use changes represent a threat to these forests if cloud base altitude rises as a result of regional warming or deforestation. To establish a baseline for quantifying future changes in cloud base, we installed a ceilometer at 100 m altitude in the forest upwind of the TMCF that occupies an altitude range from ∼ 600 m to the peaks at 1100 m in the Luquillo Mountains of eastern Puerto Rico. Airport Automated Surface Observing System (ASOS) ceilometer data, radiosonde data, and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite data were obtained to investigate seasonal cloud base dynamics, altitude of the trade-wind inversion (TWI), and typical cloud thickness for the surrounding Caribbean region. Cloud base is rarely quantified near mountains, so these results represent a first look at seasonal and diurnal cloud base dynamics for the TMCF. From May 2013 to August 2016, cloud base was lowest during the midsummer dry season, and cloud bases were lower than the mountaintops as often in the winter dry season as in the wet seasons. The lowest cloud bases most frequently occurred at higher elevation than 600 m, from 740 to 964 m. The Luquillo forest low cloud base altitudes were higher than six other sites in the Caribbean by ∼ 200–600 m, highlighting the importance of site selection to measure topographic influence on cloud height. Proximity to the oceanic cloud system where shallow cumulus clouds are seasonally invariant in altitude and cover, along with local trade-wind orographic lifting and cloud formation, may explain the dry season low clouds. The results indicate that climate change threats to low-elevation TMCFs are not limited to the dry season; changes in synoptic-scale weather patterns that increase frequency of drought periods during the wet seasons (periods of higher cloud base) may also impact ecosystem health.

  19. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Loehnert, U.; Maahn, M.

    2015-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.

  20. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.

    2014-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual-frequency measurement using only reflectivity and mean Doppler velocity. Eventually, the errors and uncertainties of the retrieved ice cloud parameters are investigated for the various retrieval configurations.

  1. A method for quantifying cloud immersion in a tropical mountain forest using time-lapse photography

    USGS Publications Warehouse

    Bassiouni, Maoya; Scholl, Martha A.; Torres-Sanchez, Angel J.; Murphy, Sheila F.

    2017-01-01

    Quantifying the frequency, duration, and elevation range of fog or cloud immersion is essential to estimate cloud water deposition in water budgets and to understand the ecohydrology of cloud forests. The goal of this study was to develop a low-cost and high spatial-coverage method to detect occurrence of cloud immersion within a mountain cloud forest by using time-lapse photography. Trail cameras and temperature/relative humidity sensors were deployed at five sites covering the elevation range from the assumed lifting condensation level to the mountain peaks in the Luquillo Mountains of Puerto Rico. Cloud-sensitive image characteristics (contrast, the coefficient of variation and the entropy of pixel luminance, and image colorfulness) were used with a k-means clustering approach to accurately detect cloud-immersed conditions in a time series of images from March 2014 to May 2016. Images provided hydrologically meaningful cloud-immersion information while temperature-relative humidity data were used to refine the image analysis using dew point information and provided temperature gradients along the elevation transect. Validation of the image processing method with human-judgment based classification generally indicated greater than 90% accuracy. Cloud-immersion frequency averaged 80% at sites above 900 m during nighttime hours and 49% during daytime hours, and was consistent with diurnal patterns of cloud immersion measured in a previous study. Results for the 617 m site demonstrated that cloud immersion in the Luquillo Mountains rarely occurs at the previously-reported cloud base elevation of about 600 m (11% during nighttime hours and 5% during daytime hours). The framework presented in this paper will be used to monitor at a low cost and high spatial resolution the long-term variability of cloud-immersion patterns in the Luquillo Mountains, and can be applied to ecohydrology research at other cloud-forest sites or in coastal ecosystems with advective sea fog.

  2. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    NASA Technical Reports Server (NTRS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  3. Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2

    NASA Technical Reports Server (NTRS)

    Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.

    2003-01-01

    Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.

  4. New Developments for Physically-based Falling Snow Retrievals over Land in Preparation for GPM

    NASA Technical Reports Server (NTRS)

    Jackson, Gail S.; Tokay, Ali; Kramer, Anne W.; Hudak, David

    2008-01-01

    The NASA Global Precipitation Measurement mission (GPM) concept centers on deploying a Core spacecraft carrying a dual-frequency precipitation radar and a microwave radiometric imager with channels from 10 to 183 GHz to serve as a precipitation physics observatory and a calibration reference to unify a constellation of dedicated and operational passive microwave sensors. Because of the extended orbit of the Core (plus or minus 65 deg) and the enhanced dual frequency radar and high frequency radiometer, GPM will be able to sense falling snow precipitation and light rain over land. Accordingly, GPM has partnered with the Canadian CloudSat/CALIPSO Validation Project (C3VP) to obtain observations to provide one of several important ground-based validation data sets around which the falling snow models and retrieval algorithms can be further developed and tested. In this work we compare and correlate the long time series (Nov.'06 - March '07) measurements of precipitation rate from parsivels to the passive (89, 150, 183 plus or minus 1, plus or minus 3, plus or minus 7 GHz) observations of NOAA's AMSU-B radiometer. We separate the comparisons into categories of no precipitation, liquid rain and falling snow precipitation. We found that there are similar TBs (especially at 89 and 150 GHz) for cases with falling snow and for non-precipitating cases. The comparisons indicate that surface emissivity contributions to the satellite observed TB over land can add uncertainty in detecting and estimating falling snow. The newest results show that by computing brightness temperatures based on CARE radiosonde data and a rough estimate of surface emissivity show that the cloud ice scattering signal in the AMSU-B data is detected. That is the differences in computed TB and AMSU-B TB for precipitating and non-precipitating cases are unique such that the precipitating and non-precipitating cases can be identified. These results require that the radiosonde releases are within an hour of the AMSU-B data. Forest fraction, snow cover, and measured emissivities were combined to calculate the surface emissivities.

  5. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans.

    PubMed

    Cho, Hyoun-Myoung; Zhang, Zhibo; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S; Di Girolamo, Larry; C-Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E

    2015-05-16

    Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius ( r e ) and optical thickness ( τ ) by projecting observed cloud reflectances onto a precomputed look-up table (LUT). When observations fall outside of the LUT, the retrieval is considered "failed" because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the " r e too large" failure accounting for 60%-85% of all failed retrievals. The rest is mostly due to the " r e too small" or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun-satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study.

  6. Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans

    PubMed Central

    Cho, Hyoun‐Myoung; Meyer, Kerry; Lebsock, Matthew; Platnick, Steven; Ackerman, Andrew S.; Di Girolamo, Larry; C.‐Labonnote, Laurent; Cornet, Céline; Riedi, Jerome; Holz, Robert E.

    2015-01-01

    Abstract Moderate Resolution Imaging Spectroradiometer (MODIS) retrieves cloud droplet effective radius (r e) and optical thickness (τ) by projecting observed cloud reflectances onto a precomputed look‐up table (LUT). When observations fall outside of the LUT, the retrieval is considered “failed” because no combination of τ and r e within the LUT can explain the observed cloud reflectances. In this study, the frequency and potential causes of failed MODIS retrievals for marine liquid phase (MLP) clouds are analyzed based on 1 year of Aqua MODIS Collection 6 products and collocated CALIOP and CloudSat observations. The retrieval based on the 0.86 µm and 2.1 µm MODIS channel combination has an overall failure rate of about 16% (10% for the 0.86 µm and 3.7 µm combination). The failure rates are lower over stratocumulus regimes and higher over the broken trade wind cumulus regimes. The leading type of failure is the “r e too large” failure accounting for 60%–85% of all failed retrievals. The rest is mostly due to the “r e too small” or τ retrieval failures. Enhanced retrieval failure rates are found when MLP cloud pixels are partially cloudy or have high subpixel inhomogeneity, are located at special Sun‐satellite viewing geometries such as sunglint, large viewing or solar zenith angles, or cloudbow and glory angles, or are subject to cloud masking, cloud overlapping, and/or cloud phase retrieval issues. The majority (more than 84%) of failed retrievals along the CALIPSO track can be attributed to at least one or more of these potential reasons. The collocated CloudSat radar reflectivity observations reveal that the remaining failed retrievals are often precipitating. It remains an open question whether the extremely large r e values observed in these clouds are the consequence of true cloud microphysics or still due to artifacts not included in this study. PMID:27656330

  7. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign measurements and satellite retrievals to evaluate the simulated micro- and macro- physical properties of ice clouds in the four GCMs.

  8. Integration of cloud-based storage in BES III computing environment

    NASA Astrophysics Data System (ADS)

    Wang, L.; Hernandez, F.; Deng, Z.

    2014-06-01

    We present an on-going work that aims to evaluate the suitability of cloud-based storage as a supplement to the Lustre file system for storing experimental data for the BES III physics experiment and as a backend for storing files belonging to individual members of the collaboration. In particular, we discuss our findings regarding the support of cloud-based storage in the software stack of the experiment. We report on our development work that improves the support of CERN' s ROOT data analysis framework and allows efficient remote access to data through several cloud storage protocols. We also present our efforts providing the experiment with efficient command line tools for navigating and interacting with cloud storage-based data repositories both from interactive sessions and grid jobs.

  9. A-Train Based Observational Metrics for Model Evaluation in Extratropical Cyclones

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Booth, James F.; Del Genio, Anthony D.; van den Heever, Susan C.; Posselt, Derek J.

    2015-01-01

    Extratropical cyclones contribute most of the precipitation in the midlatitudes, i.e. up to 70 during winter in the northern hemisphere, and can generate flooding, extreme winds, blizzards and have large socio-economic impacts. As such, it is important that general circulation models (GCMs) accurately represent these systems so their evolution in a warming climate can be understood. However, there are still uncertainties on whether warming will increase their frequency of occurrence, their intensity and how much rain or snow they bring. Part of the issue is that models have trouble representing their strength, but models also have biases in the amount of clouds and precipitation they produce. This is caused by potential issues in various aspects of the models: convection, boundary layer, and cloud scheme to only mention a few. In order to pinpoint which aspects of the models need improvement for a better representation of extratropical cyclone precipitation and cloudiness, we will present A-train based observational metrics: cyclone-centered, warm and cold frontal composites of cloud amount and type, precipitation rate and frequency of occurrence. Using the same method to extract similar fields from the model, we will present an evaluation of the GISS-ModelE2 and the IPSL-LMDZ-5B models, based on their AR5 and more recent versions. The AR5 version of the GISS model underestimates cloud cover in extratropical cyclones while the IPSL AR5 version overestimates it. In addition, we will show how the observed CloudSat-CALIPSO cloud vertical distribution across cold fronts changes with moisture amount and cyclone strength, and test if the two models successfully represent these changes. We will also show how CloudSat-CALIPSO derived cloud type (i.e. convective vs. stratiform) evolves across warm fronts as cyclones age, and again how this is represented in the models. Our third process-based analysis concerns cumulus clouds in the post-cold frontal region and how their amount relates to the stability of the boundary layer. This test uses Aqua cloud and vertical atmospheric profiles and when applied to the model output can help assess the accuracy of the convection, boundary layer and cloud scheme.

  10. Collaborative Research: Cloudiness transitions within shallow marine clouds near the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mechem, David B.; de Szoeke, Simon P.; Yuter, Sandra E.

    Marine stratocumulus clouds are low, persistent, liquid phase clouds that cover large areas and play a significant role in moderating the climate by reflecting large quantities of incoming solar radiation. The deficiencies in simulating these clouds in global climate models are widely recognized. Much of the uncertainty arises from sub-grid scale variability in the cloud albedo that is not accurately parameterized in climate models. The Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP–MBL) observational campaign and the ongoing ARM site measurements on Graciosa Island in the Azores aim to sample the Northeast Atlantic low cloud regime. These datamore » represent, the longest continuous research quality cloud radar/lidar/radiometer/aerosol data set of open-ocean shallow marine clouds in existence. Data coverage from CAP–MBL and the series of cruises to the southeast Pacific culminating in VOCALS will both be of sufficient length to contrast the two low cloud regimes and explore the joint variability of clouds in response to several environmental factors implicated in cloudiness transitions. Our research seeks to better understand cloud system processes in an underexplored but climatologically important maritime region. Our primary goal is an improved physical understanding of low marine clouds on temporal scales of hours to days. It is well understood that aerosols, synoptic-scale forcing, surface fluxes, mesoscale dynamics, and cloud microphysics all play a role in cloudiness transitions. However, the relative importance of each mechanism as a function of different environmental conditions is unknown. To better understand cloud forcing and response, we are documenting the joint variability of observed environmental factors and associated cloud characteristics. In order to narrow the realm of likely parameter ranges, we assess the relative importance of parameter conditions based primarily on two criteria: how often the condition occurs (frequency) and to what degree varying that condition within its typically observed range affects cloud characteristics (magnitude of impact given the condition). In this manner we will be able to address the relative importance of individual factors within a multivariate range of environmental conditions. We will determine the relative roles of the thermodynamic, aerosol, and synoptic environmental factors on low cloud and drizzle formation and lifetime.« less

  11. Clouds in GEOS-5

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio; Rienecker, Michele; Suarez, Max; Norris, Peter

    2007-01-01

    The GEOS-5 atmospheric model is being developed as a weather-and-climate capable model. It must perform well in assimilation mode as well as in weather and climate simulations and forecasts and in coupled chemistry-climate simulations. In developing GEOS-5, attention has focused on the representation of moist processes. The moist physics package uses a single phase prognostic condensate and a prognostic cloud fraction. Two separate cloud types are distinguished by their source: "anvil" cloud originates in detraining convection, and large-scale cloud originates in a PDF-based condensation calculation. Ice and liquid phases for each cloud type are considered. Once created, condensate and fraction from the anvil and statistical cloud types experience the same loss processes: evaporation of condensate and fraction, auto-conversion of liquid or mixed phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. The convective parameterization scheme is the Relaxed Arakawa-Schubert, or RAS, scheme. Satellite data are used to evaluate the performance of the moist physics packages and help in their tuning. In addition, analysis of and comparisons to cloud-resolving models such as the Goddard Cumulus Ensemble model are used to help improve the PDFs used in the moist physics. The presentation will show some of our evaluations including precipitation diagnostics.

  12. THOR: Cloud Thickness from Off beam Lidar Returns

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  13. Dichroic Filter for Separating W-Band and Ka-Band

    NASA Technical Reports Server (NTRS)

    Epp, Larry W.; Durden, Stephen L.; Jamnejad, Vahraz; Long, Ezra M.; Sosnowski, John B.; Higuera, Raymond J.; Chen, Jacqueline C.

    2012-01-01

    The proposed Aerosol/Cloud/Ecosystems (ACEs) mission development would advance cloud profiling radar from that used in CloudSat by adding a 35-GHz (Ka-band) channel to the 94-GHz (W-band) channel used in CloudSat. In order to illuminate a single antenna, and use CloudSat-like quasi-optical transmission lines, a spatial diplexer is needed to add the Ka-band channel. A dichroic filter separates Ka-band from W-band by employing advances in electrical discharge machining (EDM) and mode-matching analysis techniques developed and validated for designing dichroics for the Deep Space Network (DSN), to develop a preliminary design that both met the requirements of frequency separation and mechanical strength. First, a mechanical prototype was built using an approximately 102-micron-diameter EDM process, and tolerances of the hole dimensions, wall thickness, radius, and dichroic filter thickness measured. The prototype validated the manufacturing needed to design a dichroic filter for a higher-frequency usage than previously used in the DSN. The initial design was based on a Ka-band design, but thicker walls are required for mechanical rigidity than one obtains by simply scaling the Ka-band dichroic filter. The resulting trade of hole dimensions for mechanical rigidity (wall thickness) required electrical redesign of the hole dimensions. Updates to existing codes in the linear solver decreased the analysis time using mode-matching, enabling the electrical design to be realized quickly. This work is applicable to missions and instruments that seek to extend W-band cloud profiling measurements to other frequencies. By demonstrating a dichroic filter that passes W-band, but reflects a lower frequency, this opens up the development of instruments that both compare to and enhance CloudSat.

  14. Ground-based cloud classification by learning stable local binary patterns

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Shi, Cunzhao; Wang, Chunheng; Xiao, Baihua

    2018-07-01

    Feature selection and extraction is the first step in implementing pattern classification. The same is true for ground-based cloud classification. Histogram features based on local binary patterns (LBPs) are widely used to classify texture images. However, the conventional uniform LBP approach cannot capture all the dominant patterns in cloud texture images, thereby resulting in low classification performance. In this study, a robust feature extraction method by learning stable LBPs is proposed based on the averaged ranks of the occurrence frequencies of all rotation invariant patterns defined in the LBPs of cloud images. The proposed method is validated with a ground-based cloud classification database comprising five cloud types. Experimental results demonstrate that the proposed method achieves significantly higher classification accuracy than the uniform LBP, local texture patterns (LTP), dominant LBP (DLBP), completed LBP (CLTP) and salient LBP (SaLBP) methods in this cloud image database and under different noise conditions. And the performance of the proposed method is comparable with that of the popular deep convolutional neural network (DCNN) method, but with less computation complexity. Furthermore, the proposed method also achieves superior performance on an independent test data set.

  15. Physical attributes of some clouds amid a forest ecosystem's trees

    USGS Publications Warehouse

    DeFelice, Thomas P.

    2002-01-01

    Cloud or fog water collected by forest canopies of any elevation could represent significant sources of required moisture and nutrients for forest ecosystems, human consumption, and as an alternative source of water for agriculture and domestic use. The physical characteristics of fogs and other clouds have been well studied, and this information can be useful to water balance or canopy–cloud interaction model verification and to calibration or training of satellite-borne sensors to recognize atmospheric attributes, such as optical thickness, albedo, and cloud properties. These studies have taken place above-canopy or within canopy clearings and rarely amid the canopy. Simultaneous physical and chemical characteristics of clouds amid and above the trees of a mountain forest, located about 3.3 km southwest of Mt. Mitchell, NC, were collected between 13 and 22 June 1993. This paper summarizes the physical characteristics of the cloud portions amid the trees. The characteristic cloud amid the trees (including cloud and precipitation periods) contained 250 droplet/cm3 with a mean diameter of 9.5 μm and liquid water content (LWC) of 0.11 g m−3. The cloud droplets exhibited a bimodal distribution with modes at about 2 and 8 μm and a mean diameter near 5 μm during precipitation-free periods, whereas the concurrent above-canopy cloud droplets had a unimodal distribution with a mode near 6 μm and a mean diameter of 6 μm. The horizontal cloud water flux is nonlinearly related to the rate of collection onto that surface amid the trees, especially for the Atmospheric Sciences Research Center (ASRC) sampling device, whereas it is linear when the forward scattering spectrometer probe (FSSP) are is used. These findings suggest that statements about the effects clouds have on surfaces they encounter, which are based on above-canopy or canopy-clearing data, can be misleading, if not erroneous.

  16. CERES Featured Articles

    Atmospheric Science Data Center

    2017-02-01

    ... physical properties, which scientists will match in time and space with CERES ... Space-based Observations of the Earth  - Thermal radiation emitted from the ... The cloud data include the height and area of clouds, the liquid water they contain, and ...   ...

  17. The Potentials of Using Cloud Computing in Schools: A Systematic Literature Review

    ERIC Educational Resources Information Center

    Hartmann, Simon Birk; Braae, Lotte Qulleq Nygaard; Pedersen, Sine; Khalid, Md. Saifuddin

    2017-01-01

    Cloud Computing (CC) refers to the physical structure of a communications network, where data is stored in large data centers and can be accessed anywhere, at any time, and from different devices. This systematic literature review identifies and categorizes the potential and barriers of cloud-based teaching in schools from an international…

  18. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  19. SU-E-P-05: Electronic Brachytherapy: A Physics Perspective On Field Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, S; Ayyalasomayajula, S; Lee, S

    2015-06-15

    Purpose: We want to summarize our experience implementing a successful program of electronic brachytherapy at several dermatology clinics with the help of a cloud based software to help us define the key program parameters and capture physics QA aspects. Optimally developed software helps the physicist in peer review and qualify the physical parameters. Methods: Using the XOFT™ Axxent™ electronic brachytherapy system in conjunction with a cloud-based software, a process was setup to capture and record treatments. It was implemented initially at about 10 sites in California. For dosimetric purposes, the software facilitated storage of the physics parameters of surface applicatorsmore » used in treatment and other source calibration parameters. In addition, the patient prescription, pathology and other setup considerations were input by radiation oncologist and the therapist. This facilitated physics planning of the treatment parameters and also independent check of the dwell time. From 2013–2014, nearly1500 such calculation were completed by a group of physicists. A total of 800 patients with multiple lesions have been treated successfully during this period. The treatment log files have been uploaded and documented in the software which facilitated physics peer review of treatments per the standards in place by AAPM and ACR. Results: The program model was implemented successfully at multiple sites. The cloud based software allowed for proper peer review and compliance of the program at 10 clinical sites. Dosimtery was done on 800 patients and executed in a timely fashion to suit the clinical needs. Accumulated physics data in the software from the clinics allows for robust analysis and future development. Conclusion: Electronic brachytherapy implementation experience from a quality assurance perspective was greatly enhanced by using a cloud based software. The comprehensive database will pave the way for future developments to yield superior physics outcomes.« less

  20. A Prototype Physical Database for Passive Microwave Retrievals of Precipitation over the US Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ringerud, S.; Kummerow, C. D.; Peters-Lidard, C. D.

    2015-01-01

    An accurate understanding of the instantaneous, dynamic land surface emissivity is necessary for a physically based, multi-channel passive microwave precipitation retrieval scheme over land. In an effort to assess the feasibility of the physical approach for land surfaces, a semi-empirical emissivity model is applied for calculation of the surface component in a test area of the US Southern Great Plains. A physical emissivity model, using land surface model data as input, is used to calculate emissivity at the 10GHz frequency, combining contributions from the underlying soil and vegetation layers, including the dielectric and roughness effects of each medium. An empirical technique is then applied, based upon a robust set of observed channel covariances, extending the emissivity calculations to all channels. For calculation of the hydrometeor contribution, reflectivity profiles from the Tropical Rainfall Measurement Mission Precipitation Radar (TRMM PR) are utilized along with coincident brightness temperatures (Tbs) from the TRMM Microwave Imager (TMI), and cloud-resolving model profiles. Ice profiles are modified to be consistent with the higher frequency microwave Tbs. Resulting modeled top of the atmosphere Tbs show correlations to observations of 0.9, biases of 1K or less, root-mean-square errors on the order of 5K, and improved agreement over the use of climatological emissivity values. The synthesis of these models and data sets leads to the creation of a simple prototype Tb database that includes both dynamic surface and atmospheric information physically consistent with the land surface model, emissivity model, and atmospheric information.

  1. Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    We take advantage of ISCCP simulator data available for many models that participated in CMIP5, in order to introduce a framework for comparing model cloud output with corresponding ISCCP observations based on the cloud regime (CR) concept. Simplified global CRs are employed derived from the co-variations of three variables, namely cloud optical thickness, cloud top pressure and cloud fraction ( τ, p c , CF). Following evaluation criteria established in a companion paper of ours (Jin et al. 2016), we assess model cloud simulation performance based on how well the simplified CRs are simulated in terms of similarity of centroids, global values and map correlations of relative-frequency-of-occurrence, and long-term total cloud amounts. Mirroring prior results, modeled clouds tend to be too optically thick and not as extensive as in observations. CRs with high-altitude clouds from storm activity are not as well simulated here compared to the previous study, but other regimes containing near-overcast low clouds show improvement. Models that have performed well in the companion paper against CRs defined by joint τ- p c histograms distinguish themselves again here, but improvements for previously underperforming models are also seen. Averaging across models does not yield a drastically better picture, except for cloud geographical locations. Cloud evaluation with simplified regimes seems thus more forgiving than that using histogram-based CRs while still strict enough to reveal model weaknesses.

  2. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term ofmore » condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.« less

  3. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  4. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    NASA Technical Reports Server (NTRS)

    Hence, Deanna A.; Houze, Robert A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6 8 and 1 3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  5. Vertical Structures of Anvil Clouds of Tropical Mesoscale Convective Systems Observed by CloudSat

    NASA Technical Reports Server (NTRS)

    Yuan, J.; Houze, R. A., Jr.; Heymsfield, A.

    2011-01-01

    A global study of the vertical structures of the clouds of tropical mesoscale convective systems (MCSs) has been carried out with data from the CloudSat Cloud Profiling Radar. Tropical MCSs are found to be dominated by cloud-top heights greater than 10 km. Secondary cloud layers sometimes occur in MCSs, but outside their primary raining cores. The secondary layers have tops at 6--8 and 1--3 km. High-topped clouds extend outward from raining cores of MCSs to form anvil clouds. Closest to the raining cores, the anvils tend to have broader distributions of reflectivity at all levels, with the modal values at higher reflectivity in their lower levels. Portions of anvil clouds far away from the raining core are thin and have narrow frequency distributions of reflectivity at all levels with overall weaker values. This difference likely reflects ice particle fallout and therefore cloud age. Reflectivity histograms of MCS anvil clouds vary little across the tropics, except that (i) in continental MCS anvils, broader distributions of reflectivity occur at the uppermost levels in the portions closest to active raining areas; (ii) the frequency of occurrence of stronger reflectivity in the upper part of anvils decreases faster with increasing distance in continental MCSs; and (iii) narrower-peaked ridges are prominent in reflectivity histograms of thick anvil clouds close to the raining areas of connected MCSs (superclusters). These global results are consistent with observations at ground sites and aircraft data. They present a comprehensive test dataset for models aiming to simulate process-based upper-level cloud structure around the tropics.

  6. Monitoring Snow Using Geostationary Satellite Retrievals During the SAAWSO Project

    NASA Astrophysics Data System (ADS)

    Rabin, Robert M.; Gultepe, Ismail; Kuligowski, Robert J.; Heidinger, Andrew K.

    2016-09-01

    The SAAWSO (Satellite Applications for Arctic Weather and SAR (Search And Rescue) Operations) field programs were conducted by Environment Canada near St. Johns, NL and Goose Bay, NL in the winters of 2012-13 and 2013-14, respectively. The goals of these programs were to validate satellite-based nowcasting products, including snow amount, wind intensity, and cloud physical parameters (e.g., cloud cover), over northern latitudes with potential applications to Search And Rescue (SAR) operations. Ground-based in situ sensors and remote sensing platforms were used to measure microphysical properties of precipitation, clouds and fog, radiation, temperature, moisture and wind profiles. Multi-spectral infrared observations obtained from Geostationary Operational Environmental Satellite (GOES)-13 provided estimates of cloud top temperature and height, phase (water, ice), hydrometer size, extinction, optical depth, and horizontal wind patterns at 15 min intervals. In this work, a technique developed for identifying clouds capable of producing high snowfall rates and incorporating wind information from the satellite observations is described. The cloud top physical properties retrieved from operational satellite observations are validated using measurements obtained from the ground-based in situ and remote sensing platforms collected during two precipitation events: a blizzard heavy snow storm case and a moderate snow event. The retrieved snow precipitation rates are found to be comparable to those of ground-based platform measurements in the heavy snow event.

  7. Climatic Implications of the Observed Temperature Dependence of the Liquid Water Path of Low Clouds

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony

    1999-01-01

    The uncertainty in the global climate sensitivity to an equilibrium doubling of carbon dioxide is often stated to be 1.5-4.5 K, largely due to uncertainties in cloud feedbacks. The lower end of this range is based on the assumption or prediction in some GCMs that cloud liquid water behaves adiabatically, thus implying that cloud optical thickness will increase in a warming climate if the physical thickness of clouds is invariant. Satellite observations of low-level cloud optical thickness and liquid water path have challenged this assumption, however, at low and middle latitudes. We attempt to explain the satellite results using four years of surface remote sensing data from the Atmospheric Radiation Measurements (ARM) Cloud And Radiation Testbed (CART) site in the Southern Great Plains. We find that low cloud liquid water path is insensitive to temperature in winter but strongly decreases with temperature in summer. The latter occurs because surface relative humidity decreases with warming, causing cloud base to rise and clouds to geometrically thin. Meanwhile, inferred liquid water contents hardly vary with temperature, suggesting entrainment depletion. Physically, the temperature dependence appears to represent a transition from higher probabilities of stratified boundary layers at cold temperatures to a higher incidence of convective boundary layers at warm temperatures. The combination of our results and the earlier satellite findings imply that the minimum climate sensitivity should be revised upward from 1.5 K.

  8. Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis.

    PubMed

    Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin

    2015-01-01

    Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard's Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments.

  9. Trust-Enhanced Cloud Service Selection Model Based on QoS Analysis

    PubMed Central

    Pan, Yuchen; Ding, Shuai; Fan, Wenjuan; Li, Jing; Yang, Shanlin

    2015-01-01

    Cloud computing technology plays a very important role in many areas, such as in the construction and development of the smart city. Meanwhile, numerous cloud services appear on the cloud-based platform. Therefore how to how to select trustworthy cloud services remains a significant problem in such platforms, and extensively investigated owing to the ever-growing needs of users. However, trust relationship in social network has not been taken into account in existing methods of cloud service selection and recommendation. In this paper, we propose a cloud service selection model based on the trust-enhanced similarity. Firstly, the direct, indirect, and hybrid trust degrees are measured based on the interaction frequencies among users. Secondly, we estimate the overall similarity by combining the experience usability measured based on Jaccard’s Coefficient and the numerical distance computed by Pearson Correlation Coefficient. Then through using the trust degree to modify the basic similarity, we obtain a trust-enhanced similarity. Finally, we utilize the trust-enhanced similarity to find similar trusted neighbors and predict the missing QoS values as the basis of cloud service selection and recommendation. The experimental results show that our approach is able to obtain optimal results via adjusting parameters and exhibits high effectiveness. The cloud services ranking by our model also have better QoS properties than other methods in the comparison experiments. PMID:26606388

  10. Behavior of predicted convective clouds and precipitation in the high-resolution Unified Model over the Indian summer monsoon region

    NASA Astrophysics Data System (ADS)

    Jayakumar, A.; Sethunadh, Jisesh; Rakhi, R.; Arulalan, T.; Mohandas, Saji; Iyengar, Gopal R.; Rajagopal, E. N.

    2017-05-01

    National Centre for Medium Range Weather Forecasting high-resolution regional convective-scale Unified Model with latest tropical science settings is used to evaluate vertical structure of cloud and precipitation over two prominent monsoon regions: Western Ghats (WG) and Monsoon Core Zone (MCZ). Model radar reflectivity generated using Cloud Feedback Model Intercomparison Project Observation Simulator Package along with CloudSat profiling radar reflectivity is sampled for an active synoptic situation based on a new method using Budyko's index of turbulence (BT). Regime classification based on BT-precipitation relationship is more predominant during the active monsoon period when convective-scale model's resolution increases from 4 km to 1.5 km. Model predicted precipitation and vertical distribution of hydrometeors are found to be generally in agreement with Global Precipitation Measurement products and BT-based CloudSat observation, respectively. Frequency of occurrence of radar reflectivity from model implies that the low-level clouds below freezing level is underestimated compared to the observations over both regions. In addition, high-level clouds in the model predictions are much lesser over WG than MCZ.

  11. Microwave and infrared simulations of an intense convective system and comparison with aircraft observations

    NASA Technical Reports Server (NTRS)

    Prasad, N.; Yeh, Hwa-Young M.; Adler, Robert F.; Tao, Wei-Kuo

    1995-01-01

    A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the Millimeter-wave Imaging Radiometer aircraft instrument to be flown in the near future. All three of these frequencies are able to discriminate the convective and anvil portions of the system, providing useful information similar to that from the frequencies below 183 GHz but with potentially enhanced spatial resolution from a satellite platform. In thin clouds, the dominant effect of water vapor is seen at 174, 340, and 400 GHz. In thick cloudy areas, the scattering effect is dominant at 90 and 220 GHz, while the overlaying water vapor can attenuate at 174, 340, and 400 GHz. All frequencies (90-400 GHz) show strong signatures in the core.

  12. Long-term observation of aerosol-cloud relationships in the Mid-Atlantic of the United States

    NASA Astrophysics Data System (ADS)

    Li, S.; Joseph, E.; Min, Q.; Yin, B.

    2014-07-01

    Long-term ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplets effective radius (Re) and cloud droplets number concentration (Nd). A higher frequency of clouds with large COD (> 20) and small Re (< 7 m) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading. The five-year data are screened for summer months only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter ≤ 2.5 m (PM2.5) value. Evidence of aerosol indirect effect is found where for polluted cases the mean and median values of COD and Nd distributions were elevated while the mean and median values of Re were decreased. Further reinforcing this conclusion is the result that the mean and median values of LWP distributions did not show prominent difference between clean and polluted cases, this implies that differences between the two cases of influential factors on cloud properties were relatively controlled. Moreover aerosol indirect effects were found insignificant when LWP was small but significant when LWP was large through the analysis of sensitivity of Nd to LWP under different aerosol loading and the measurements of aerosol size distribution.

  13. The Cloud Top Distribution and Diurnal Variation of Clouds Over East Asia: Preliminary Results From Advanced Himawari Imager

    NASA Astrophysics Data System (ADS)

    Chen, Dandan; Guo, Jianping; Wang, Hongqing; Li, Jian; Min, Min; Zhao, Wenhui; Yao, Dan

    2018-04-01

    Clouds, as one of the most uncertain factors in climate system, have been intensively studied as satellites with advanced instruments emerged in recent years. However, few studies examine the vertical distributions of cloud top and their temporal variations over East Asia based on geostationary satellite data. In this study, the vertical structures of cloud top and its diurnal variations in summer of 2016 are analyzed using the Advanced Himawari Imager/Himawari-8 cloud products. Results show that clouds occur most frequently over the southern Tibetan Plateau and the Bay of Bengal. We find a steep gradient of cloud occurrence frequency extending from southwest to northeast China and low-value centers over the eastern Pacific and the Inner Mongolia Plateau. The vertical structures of cloud top are highly dependent on latitude, in addition to the nonnegligible roles of both terrain and land-sea thermal contrast. In terms of the diurnal cycle, clouds tend to occur more often in the afternoon, peaking around 1700 local time over land and ocean. The amplitude of cloud diurnal variation over ocean is much smaller than that over land, and complex terrain tends to be linked to larger amplitude. In vertical, the diurnal cycle of cloud frequency exhibits bimodal pattern over both land and ocean. The high-level peaks occur at almost the same altitude over land and ocean. In contrast, the low-level peaks over ocean mainly reside in the boundary layer, much lower than those over land, which could be indicative of the frequent occurrence of marine boundary layer clouds.

  14. Electric Field Magnitude and Radar Reflectivity as a Function of Distance from Cloud Edge

    NASA Technical Reports Server (NTRS)

    Ward, Jennifer G.; Merceret, Francis J.

    2004-01-01

    The results of analyses of data collected during a field investigation of thunderstorm anvil and debris clouds are reported. Statistics of the magnitude of the electric field are determined as a function of distance from cloud edge. Statistics of radar reflectivity near cloud edge are also determined. Both analyses use in-situ airborne field mill and cloud physics data coupled with ground-based radar measurements obtained in east-central Florida during the summer convective season. Electric fields outside of anvil and debris clouds averaged less than 3 kV/m. The average radar reflectivity at the cloud edge ranged between 0 and 5 dBZ.

  15. Literature Review of Cloud Based E-learning Adoption by Students: State of the Art and Direction for Future Work

    NASA Astrophysics Data System (ADS)

    Hassan Kayali, Mohammad; Safie, Nurhizam; Mukhtar, Muriati

    2016-11-01

    Cloud computing is a new paradigm shift in information technology. Most of the studies in the cloud are business related while the studies in cloud based e-learning are few. The field is still in its infancy and researchers have used several adoption theories to discover the dimensions of this field. The purpose of this paper is to review and integrate the literature to understand the current situation of the cloud based e-learning adoption. A total of 312 articles were extracted from Science direct, emerald, and IEEE. Screening processes were applied to select only the articles that are related to the cloud based e-learning. A total of 231 removed because they are related to business organization. Next, a total of 63 articles were removed because they are technical articles. A total of 18 articles were included in this paper. A frequency analysis was conducted on the paper to identify the most frequent factors, theories, statistical software, respondents, and countries of the studies. The findings showed that usefulness and ease of use are the most frequent factors. TAM is the most prevalent adoption theories in the literature. The mean of the respondents in the reviewed studies is 377 and Malaysia is the most researched countries in terms of cloud based e-learning. Studies of cloud based e-learning are few and more empirical studies are needed.

  16. Modification of the continuous flow diffusion chamber for use in zero-gravity. [atmospheric cloud physics lab

    NASA Technical Reports Server (NTRS)

    Keyser, G.

    1978-01-01

    The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.

  17. Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development

    NASA Astrophysics Data System (ADS)

    Albrecht, Rachel I.; Morales, Carlos A.; Silva Dias, Maria A. F.

    2011-04-01

    This study investigated the physical processes involved in the development of thunderstorms over southwestern Amazon by hypothesizing causalities for the observed cloud-to-ground lightning variability and the local environmental characteristics. Southwestern Amazon experiences every year a large variety of environmental factors, such as the gradual increase in atmospheric moisture, extremely high pollution due to biomass burning, and intense deforestation, which directly affects cloud development by differential surface energy partition. In the end of the dry period it was observed higher percentages of positive cloud-to-ground (+CG) lightning due to a relative increase in +CG dominated thunderstorms (positive thunderstorms). Positive (negative) thunderstorms initiated preferentially over deforested (forest) areas with higher (lower) cloud base heights, shallower (deeper) warm cloud depths, and higher (lower) convective potential available energy. These features characterized the positive (negative) thunderstorms as deeper (relatively shallower) clouds, stronger (relatively weaker) updrafts with enhanced (decreased) mixed and cold vertically integrated liquid. No significant difference between thunderstorms (negative and positive) and nonthunderstorms were observed in terms of atmospheric pollution, once the atmosphere was overwhelmed by pollution leading to an updraft-limited regime. However, in the wet season both negative and positive thunderstorms occurred during periods of relatively higher aerosol concentration and differentiated size distributions, suggesting an aerosol-limited regime where cloud electrification could be dependent on the aerosol concentration to suppress the warm and enhance the ice phase. The suggested causalities are consistent with the invoked hypotheses, but they are not observed facts; they are just hypotheses based on plausible physical mechanisms.

  18. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  19. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    NASA Astrophysics Data System (ADS)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  20. Parsivel Disdrometer Support for MAGIC Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos; Bartholomew, Mary Jane

    2016-06-01

    In the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s second Mobile Facility (AMF2) was deployed on the Horizon Lines cargo ship Spirit traversing a route between Los Angeles, California and Honolulu, Hawaii for one full year. The transect for this deployment was chosen specifically because it crosses the stratocumulus-to-cumulus transition of the North-East Pacific, a region of great climatic interest and a close approximation to the transect used for several focused model intercomparison efforts. The cloud type and cover along this transect vary from lowmore » marine stratocumulus with high areal coverage near the California coast to isolated shallow cumulus with much lower areal coverage in the trade wind regime near Hawaii. The low marine stratocumulus decks, with their high albedo, exert a major influence on the shortwave radiation budget in the ocean environment, and thus provide an extremely important forcing of Earth’s climate. The trade cumulus clouds play a large role in the global surface evaporation and also in Earth’s albedo. One of the important science drivers of the MAGIC campaign was to measure the properties of clouds and precipitation, specifically cloud type, fractional coverage, base height, physical thickness, liquid water path (LWP), optical depth, and drizzle and precipitation frequency, amount, and extent. Retrievals of cloud and precipitation properties during the MAGIC campaign relied critically on the calibration of the AMF2 radar systems. For MAGIC this included the KAZR and M-WACR, both fixed zenith-pointing systems, and the 1290 MHz beam steerable wind profiler.« less

  1. A statistical retrieval of cloud parameters for the millimeter wave Ice Cloud Imager on board MetOp-SG

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Wang, Die; Aires, Filipe; Jimenez, Carlos

    2017-04-01

    The meteorological observations from satellites in the microwave domain are currently limited to below 190 GHz. However, the next generation of European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) Polar System-Second Generation-EPS-SG will carry an instrument, the Ice Cloud Imager (ICI), with frequencies up to 664 GHz, to improve the characterization of the cloud frozen phase. In this paper, a statistical retrieval of cloud parameters for ICI is developed, trained on a synthetic database derived from the coupling of a mesoscale cloud model and radiative transfer calculations. The hydrometeor profiles simulated with the Weather Research and Forecasting model (WRF) for twelve diverse European mid-latitude situations are used to simulate the brightness temperatures with the Atmospheric Radiative Transfer Simulator (ARTS) to prepare the retrieval database. The WRF+ARTS simulations have been compared to the Special Sensor Microwave Imager/Sounder (SSMIS) observations up to 190 GHz: this successful evaluation gives us confidence in the simulations at the ICI channels from 183 to 664 GHz. Statistical analyses have been performed on this simulated retrieval database, showing that it is not only physically realistic but also statistically satisfactory for retrieval purposes. A first Neural Network (NN) classifier is used to detect the cloud presence. A second NN is developed to retrieve the liquid and ice integrated cloud quantities over sea and land separately. The detection and retrieval of the hydrometeor quantities (i.e., ice, snow, graupel, rain, and liquid cloud) are performed with ICI-only, and with ICI combined with observations from the MicroWave Imager (MWI, with frequencies from 19 to 190 GHz, also on board MetOp-SG). The ICI channels have been optimized for the detection and quantification of the cloud frozen phases: adding the MWI channels improves the performance of the vertically integrated hydrometeor contents, especially for the cloud liquid phases. The relative error for the retrieved integrated frozen water content (FWP, i.e., ice+snow+graupel) is below 40% for 0.1kg/m2 < FWP < 0.5kg/m2 and below 20% for FWP > 0.5 kg/m2.

  2. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part I; Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike

    2005-01-01

    A record of single-layer and overcast low cloud (stratus) properties has been generated using approximately 4000 hours of data collected from January 1997 to December 2002 at the Atmospheric Radiation Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid-phase and liquid-dominant, mixed-phase, low cloud macrophysical, microphysical, and radiative properties including cloud-base and -top heights and temperatures, and cloud physical thickness derived from a ground-based radar and lidar pair, and rawinsonde sounding; cloud liquid water path (LWP) and content (LWC), and cloud-droplet effective radius (r(sub e)) and number concentration (N) derived from the macrophysical properties and radiometer data; and cloud optical depth (tau), effective solar transmission (gamma), and cloud/top-of-atmosphere albedos (R(sub cldy)/R(sub TOA)) derived from Eppley precision spectral pyranometer measurements. The cloud properties were analyzed in terms of their seasonal, monthly, and hourly variations. In general, more stratus clouds occur during winter and spring than in summer. Cloud-layer altitudes and physical thicknesses were higher and greater in summer than in winter with averaged physical thicknesses of 0.85 km and 0.73 km for day and night, respectively. The seasonal variations of LWP, LWC, N. tau, R(sub cldy), and R(sub TOA) basically follow the same pattern with maxima and minima during winter and summer, respectively. There is no significant variation in mean r(sub e), however, despite a summertime peak in aerosol loading, Although a considerable degree of variability exists, the 6-yr average values of LWP, LWC, r(sub e), N, tau, gamma, R(sub cldy) and R(sub TOA) are 150 gm(exp -2) (138), 0.245 gm(exp -3) (0.268), 8.7 micrometers (8.5), 213 cm(exp -3) (238), 26.8 (24.8), 0.331, 0.672, 0.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has been developed from this study. The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.

  3. Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach

    NASA Astrophysics Data System (ADS)

    Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg

    2016-03-01

    The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.

  4. Precipitation-generated oscillations in open cellular cloud fields.

    PubMed

    Feingold, Graham; Koren, Ilan; Wang, Hailong; Xue, Huiwen; Brewer, Wm Alan

    2010-08-12

    Cloud fields adopt many different patterns that can have a profound effect on the amount of sunlight reflected back to space, with important implications for the Earth's climate. These cloud patterns can be observed in satellite images of the Earth and often exhibit distinct cell-like structures associated with organized convection at scales of tens of kilometres. Recent evidence has shown that atmospheric aerosol particles-through their influence on precipitation formation-help to determine whether cloud fields take on closed (more reflective) or open (less reflective) cellular patterns. The physical mechanisms controlling the formation and evolution of these cells, however, are still poorly understood, limiting our ability to simulate realistically the effects of clouds on global reflectance. Here we use satellite imagery and numerical models to show how precipitating clouds produce an open cellular cloud pattern that oscillates between different, weakly stable states. The oscillations are a result of precipitation causing downward motion and outflow from clouds that were previously positively buoyant. The evaporating precipitation drives air down to the Earth's surface, where it diverges and collides with the outflows of neighbouring precipitating cells. These colliding outflows form surface convergence zones and new cloud formation. In turn, the newly formed clouds produce precipitation and new colliding outflow patterns that are displaced from the previous ones. As successive cycles of this kind unfold, convergence zones alternate with divergence zones and new cloud patterns emerge to replace old ones. The result is an oscillating, self-organized system with a characteristic cell size and precipitation frequency.

  5. Application of Seasonal CRM Integrations to Develop Statistics and Improved GCM Parameterization of Subgrid Cloud-Radiation Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaoqing Wu; Xin-Zhong Liang; Sunwook Park

    2007-01-23

    The works supported by this ARM project lay the solid foundation for improving the parameterization of subgrid cloud-radiation interactions in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and concurrent ARM observations to produce long-term, consistent cloud and radiative property datasets at the cloud scale (Wu et al. 2006, 2007). With these datasets, we have investigated the mesoscale enhancement of cloud systems on surface heat fluxes (Wu and Guimond 2006), quantified the effects of cloud horizontal inhomogeneity and vertical overlap on the domain-averaged radiative fluxes (Wu and Liang 2005), and subsequently validatedmore » and improved the physically-based mosaic treatment of subgrid cloud-radiation interactions (Liang and Wu 2005). We have implemented the mosaic treatment into the CCM3. The 5-year (1979-1983) AMIP-type simulation showed significant impacts of subgrid cloud-radiation interaction on the climate simulations (Wu and Liang 2005). We have actively participated in CRM intercomparisons that foster the identification and physical understanding of common errors in cloud-scale modeling (Xie et al. 2005; Xu et al. 2005, Grabowski et al. 2005).« less

  6. Encourage Students to Read through the Use of Data Visualization

    ERIC Educational Resources Information Center

    Bandeen, Heather M.; Sawin, Jason E.

    2012-01-01

    Instructors are always looking for new ways to engage students in reading assignments. The authors present a few techniques that rely on a web-based data visualization tool called Wordle (wordle.net). Wordle creates word frequency representations called word clouds. The larger a word appears within a cloud, the more frequently it occurs within a…

  7. Cloud and Sun-Glint Statistics Derived from GOES and MODIS Observations Over the Intra-Americas Sea for GEO-CAPE Mission Planning

    NASA Technical Reports Server (NTRS)

    Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.

    2017-01-01

    Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (N(sub cf)) for solar zenith angle Theta(sub 0) less than 80 degrees was estimated for each 0.1 degree location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day [Ns(sub sg)] was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest N(sub cf) (less than 2.4) in all climatological months, and highest N(sub cf) was observed in the Gulf of Mexico (GoM) and Caribbean (greater than 4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Temperature maximum). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are greater than 10 degrees higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.

  8. Cloud and Sun-glint statistics derived from GOES and MODIS observations over the Intra-Americas Sea for GEO-CAPE mission planning

    NASA Astrophysics Data System (ADS)

    Feng, Lian; Hu, Chuanmin; Barnes, Brian B.; Mannino, Antonio; Heidinger, Andrew K.; Strabala, Kathleen; Iraci, Laura T.

    2017-02-01

    Knowledge of cloud cover, frequency, and duration is not only important to study cloud dynamics, but also critical in determining when and where to take ocean measurements from geostationary orbits such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission due to the challenges in achieving complete hemispheric coverage of coastal oceans, estuaries, and inland waters at hourly frequency. Using GOES hourly measurements at 4 km nadir resolution between 2006 and 2011, the number of cloud-free hourly observations per day (Ncf) for solar zenith angle θo < 80° was estimated for each 0.1° location of the Intra-Americas Sea. The number of Sun-glint-affected hourly observations per day (Nsg) was also calculated based on the planned GEO-CAPE observation geometry and realistic wind speed. High-latitude and equatorial oceans showed the lowest Ncf (<2.4) in all climatological months, and highest Ncf was observed in the Gulf of Mexico (GoM) and Caribbean (>4.5). Different regions showed differences in seasonality of cloud-free conditions and also showed differences in the hour of a day at which the satellite observations would have the maximal cloud-free and glint-free probability (Tmax). Cloud cover from Moderate Resolution Imaging Spectroradiometer (MODIS) 1 km measurements are >10% higher than those from the MODIS 250 m measurements, supporting ocean color missions at subkilometer resolutions to enhance both spatial coverage and temporal frequency. These findings provide valuable information for GEO-CAPE mission planning to maximize its science value through minimizing the impacts of clouds and Sun glint.

  9. A 10-Year Climatology of Cloud Cover and Vertical Distribution Derived from Both Surface and GOES Observations Over the DOE ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Xi, Baike; Dong, Xiquan; Minnis, P.; Khaiyer, M.

    2010-01-01

    Analysis of a decade of ARM radar-lidar and GOES observations at the SGP site reveal that 0.5 and 4-hr averages of the surface cloud fraction correspond closely to 0.5deg and 2.5deg averages of GOES cloudiness, respectively. The long-term averaged surface and GOES cloud fractions agree to within 0.5%. Cloud frequency increases and cloud amount decreases as the temporal and spatial averaging scales increase. Clouds occurred most often during winter and spring. Single-layered clouds account for 61.5% of the total cloud frequency. There are distinct bimodal vertical distributions of clouds with a lower peak around 1 km and an upper one that varies from 7.5 to 10.8 km between winter and summer, respectively. The frequency of occurrence for nighttime GOES high-cloud tops agree well with the surface observations, but are underestimated during the day.

  10. IoT-based flood embankments monitoring system

    NASA Astrophysics Data System (ADS)

    Michta, E.; Szulim, R.; Sojka-Piotrowska, A.; Piotrowski, K.

    2017-08-01

    In the paper a concept of flood embankments monitoring system based on using Internet of Things approach and Cloud Computing technologies will be presented. The proposed system consists of sensors, IoT nodes, Gateways and Cloud based services. Nodes communicates with the sensors measuring certain physical parameters describing the state of the embankments and communicates with the Gateways. Gateways are specialized active devices responsible for direct communication with the nodes, collecting sensor data, preprocess the data, applying local rules and communicate with the Cloud Services using communication API delivered by cloud services providers. Architecture of all of the system components will be proposed consisting IoT devices functionalities description, their communication model, software modules and services bases on using a public cloud computing platform like Microsoft Azure will be proposed. The most important aspects of maintaining the communication in a secure way will be shown.

  11. A cloud and radiation model-based algorithm for rainfall retrieval from SSM/I multispectral microwave measurements

    NASA Technical Reports Server (NTRS)

    Xiang, Xuwu; Smith, Eric A.; Tripoli, Gregory J.

    1992-01-01

    A hybrid statistical-physical retrieval scheme is explored which combines a statistical approach with an approach based on the development of cloud-radiation models designed to simulate precipitating atmospheres. The algorithm employs the detailed microphysical information from a cloud model as input to a radiative transfer model which generates a cloud-radiation model database. Statistical procedures are then invoked to objectively generate an initial guess composite profile data set from the database. The retrieval algorithm has been tested for a tropical typhoon case using Special Sensor Microwave/Imager (SSM/I) data and has shown satisfactory results.

  12. Changes in cloud properties over East Asia deduced from the CLARA-A2 satellite data record

    NASA Astrophysics Data System (ADS)

    Benas, Nikos; Fokke Meirink, Jan; Hollmann, Rainer; Karlsson, Karl-Göran; Stengel, Martin

    2017-04-01

    Studies on cloud properties and processes, and their role in the Earth's changing climate, have advanced during the past decades. A significant part of this advance was enabled by satellite measurements, which offer global and continuous monitoring. Lately, a new satellite-based cloud data record was released: the CM SAF cLoud, Albedo and surface RAdiation dataset from AVHRR data - second edition (CLARA-A2) includes high resolution cloud macro- and micro-physical properties derived from the AVHRR instruments on board NOAA and MetOp polar orbiters. Based on this data record, an analysis of cloud property changes over East Asia during the 12-year period 2004-2015 was performed. Significant changes were found in both optical and geometric cloud properties, including increases in cloud liquid water path and top height. The Cloud Droplet Number Concentration (CDNC) was specifically studied in order to gain further insight into possible connections between aerosol and cloud processes. To this end, aerosol and cloud observations from MODIS, covering the same area and period, were included in the analysis.

  13. Cloud cover archiving on a global scale - A discussion of principles

    NASA Technical Reports Server (NTRS)

    Henderson-Sellers, A.; Hughes, N. A.; Wilson, M.

    1981-01-01

    Monitoring of climatic variability and climate modeling both require a reliable global cloud data set. Examination is made of the temporal and spatial variability of cloudiness in light of recommendations made by GARP in 1975 (and updated by JOC in 1978 and 1980) for cloud data archiving. An examination of the methods of comparing cloud cover frequency curves suggests that the use of the beta distribution not only facilitates objective comparison, but also reduces overall storage requirements. A specific study of the only current global cloud climatology (the U.S. Air Force's 3-dimensional nephanalysis) over the United Kingdom indicates that discussion of methods of validating satellite-based data sets is urgently required.

  14. A Fog Computing Based Cyber-Physical System for the Automation of Pipe-Related Tasks in the Industry 4.0 Shipyard.

    PubMed

    Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Díaz-Bouza, Manuel A

    2018-06-17

    Pipes are one of the key elements in the construction of ships, which usually contain between 15,000 and 40,000 of them. This huge number, as well as the variety of processes that may be performed on a pipe, require rigorous identification, quality assessment and traceability. Traditionally, such tasks have been carried out by using manual procedures and following documentation on paper, which slows down the production processes and reduces the output of a pipe workshop. This article presents a system that allows for identifying and tracking the pipes of a ship through their construction cycle. For such a purpose, a fog computing architecture is proposed to extend cloud computing to the edge of the shipyard network. The system has been developed jointly by Navantia, one of the largest shipbuilders in the world, and the University of A Coruña (Spain), through a project that makes use of some of the latest Industry 4.0 technologies. Specifically, a Cyber-Physical System (CPS) is described, which uses active Radio Frequency Identification (RFID) tags to track pipes and detect relevant events. Furthermore, the CPS has been integrated and tested in conjunction with Siemens’ Manufacturing Execution System (MES) (Simatic IT). The experiments performed on the CPS show that, in the selected real-world scenarios, fog gateways respond faster than the tested cloud server, being such gateways are also able to process successfully more samples under high-load situations. In addition, under regular loads, fog gateways react between five and 481 times faster than the alternative cloud approach.

  15. Rocket exhaust ground cloud/atmospheric interactions

    NASA Technical Reports Server (NTRS)

    Hwang, B.; Gould, R. K.

    1978-01-01

    An attempt to identify and minimize the uncertainties and potential inaccuracies of the NASA Multilayer Diffusion Model (MDM) is performed using data from selected Titan 3 launches. The study is based on detailed parametric calculations using the MDM code and a comparative study of several other diffusion models, the NASA measurements, and the MDM. The results are discussed and evaluated. In addition, the physical/chemical processes taking place during the rocket cloud rise are analyzed. The exhaust properties and the deluge water effects are evaluated. A time-dependent model for two aerosol coagulations is developed and documented. Calculations using this model for dry deposition during cloud rise are made. A simple model for calculating physical properties such as temperature and air mass entrainment during cloud rise is also developed and incorporated with the aerosol model.

  16. Radar sensitivity and antenna scan pattern study for a satellite-based Radar Wind Sounder (RAWS)

    NASA Technical Reports Server (NTRS)

    Stuart, Michael A.

    1992-01-01

    Modeling global atmospheric circulations and forecasting the weather would improve greatly if worldwide information on winds aloft were available. Recognition of this led to the inclusion of the LAser Wind Sounder (LAWS) system to measure Doppler shifts from aerosols in the planned for Earth Observation System (EOS). However, gaps will exist in LAWS coverage where heavy clouds are present. The RAdar Wind Sensor (RAWS) is an instrument that could fill these gaps by measuring Doppler shifts from clouds and rain. Previous studies conducted at the University of Kansas show RAWS as a feasible instrument. This thesis pertains to the signal-to-noise ratio (SNR) sensitivity, transmit waveform, and limitations to the antenna scan pattern of the RAWS system. A dop-size distribution model is selected and applied to the radar range equation for the sensitivity analysis. Six frequencies are used in computing the SNR for several cloud types to determine the optimal transmit frequency. the results show the use of two frequencies, one higher (94 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) to obtain sensitivity for thinner cloud, and a lower frequency (24 GHz) for better penetration in rain, provide ample SNR. The waveform design supports covariance estimation processing. This estimator eliminates the Doppler ambiguities compounded by the selection of such high transmit frequencies, while providing an estimate of the mean frequency. the unambiguous range and velocity computation shows them to be within acceptable limits. The design goal for the RAWS system is to limit the wind-speed error to less than 1 ms(exp -1). Due to linear dependence between vectors for a three-vector scan pattern, a reasonable wind-speed error is unattainable. Only the two-vector scan pattern falls within the wind-error limits for azimuth angles between 16 deg to 70 deg. However, this scan only allows two components of the wind to be determined. As a result, a technique is then shown, based on the Z-R-V relationships, that permit the vertical component (i.e., rain) to be computed. Thus the horizontal wind components may be obtained form the covariance estimator and the vertical component from the reflectivity factor. Finally, a new candidate system is introduced which summarizes the parameters taken from previous RAWS studies, or those modified in this thesis.

  17. Using Observations from GPM and CloudSat to Produce a Climatology of Precipitation over the Ocean

    NASA Astrophysics Data System (ADS)

    Hayden, L.; Liu, C.

    2017-12-01

    Satellite based instruments are essential to the observation of precipitation at a global scale, especially over remote oceanic regions. Each instrument has its own strengths and limitations when it comes to accurately determining the rate of precipitation occurring at the surface. By using the complementary strengths of two satellite based instruments, we attempt to produce a more complete climatology of global oceanic precipitation. The Global Precipitation Measurement (GPM) Core Osbervatory's Dual-frequency Precipitation Radar (DPR) is capable of measuring precipitation producing radar reflectivity above 12 dBZ [Hamada and Takayabu 2016]. The CloudSat satellite's Cloud Profiling Radar (CPR) uses higher frequency C band (94 GHz) radiation, and is therefore capable of measuring precipitation occurring at low precipitation rates which are not detected by the GPM DPR. The precipitation estimates derived by the two satellites are combined and the results are examined. CloudSat data from July 2006 to December 2010 are used. GPM data from March 2014 through May 2016 are used. Since the two datasets do not temporally overlap, this study is conducted from a climatological standpoint. The average occurrence for different precipitation rates is calculated for both satellites. To produce the combined dataset, the precipitation from CloudSat are used for the low precipitation rates while CloudSat precipitation amount is greater than that from GPM DPR, until GPM DPR precipitation amount is higher than that from CloudSat, at which precipitation rate data from the GPM are used. By combining the two datasets, we discuss the seasonal and geo-graphical distribution of weak precipitation detected by CloudSat that is beyond the sensitivity of GPM DPR. We also hope to gain a more complete picture of the precipitation that occurs over oceanic regions.

  18. The next generation balloon-borne large aperture submillimeter telescope (BLAST-TNG)

    NASA Astrophysics Data System (ADS)

    Dober, Bradley Jerald

    Large areas of astrophysics, such as precision cosmology, have benefited greatly from large maps and datasets, yielded by telescopes of ever-increasing number and ability. However, due to the unique challenges posed by submillimeter polarimetry, the study of molecular cloud dynamics and star formation remain stunted. Previously, polarimetry data was limited to a few vectors on only the brightest areas of molecular clouds. This made drawing statistically-driven conclusions a daunting task. However, the successful flight of the Balloon-born Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) generated maps with thousands of independent polarization measurements of molecular clouds, and ushered in a new era of empirical modeling of molecular cloud dynamics. Now that the potential benefits from large-scale maps of magnetic fields in molecular clouds had been identified, a successor that would truly unlock the secrets must be born. The Next Generation Balloon-borne Large Aperture Submillimeter Telescope (BLAST-TNG), the successor to BLASTPol, has the ability to make larger and more detailed maps of magnetic fields in molecular clouds. It will push the field of star formation into a statistics-driven, empirical realm. With these large, detailed datasets, astronomers will be able to find new relationships between the dust dynamics and the magnetic fields. The field will surge to a new level of understanding. One of the key enabling technologies of BLAST-TNG is its three arrays of polarization-sensitive Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are superconducting RLC circuits with a resonant frequency that shifts proportionally to the amount of incident radiation. The key feature of MKIDs is that thousands of detectors, each with their own unique resonant frequency, can be coupled to the same readout line. This technology will be able to drive the production of large-scale monolithic arrays, containing tens or hundreds of thousands of detectors, resulting in an ever-increasing rate of scientific progress. The current limiting factor that determines how many MKIDs can be placed on the same readout line is the bandwidth and processing limitations of the readout hardware. BLAST-TNG has pushed this technology forward by implementing the first Reconfigurable Open-Architecture Computing Hardware (ROACH2) based readout system. This has significantly raised the processing abilities of the MKID readout electronics, enabling over 1000 MKIDs to be read out on a single line. It is also the first ever ROACH (1 or 2) based system to ever be flown on a long duration balloon (LDB) payload. This thesis documents the first-ever deployment of MKIDs on a balloon payload. This is a significant technological step towards an MKID-based satellite payload. This thesis overviews the balloon payload, details the underlying detector physics, catalogs the detector and full-scale array development, and ends with the room-temperature readout electronics.

  19. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2018-01-01

    One of the proposed concepts for mitigating the warming effect of increasing greenhouse gases is seeding cirrus cloud with ice nuclei (IN) in order to reduce the lifetime and coverage of cold cirrus that have a net warming impact on the earth's surface. Global model simulations of the net impact of changing upper tropospheric IN have given widely disparate results, partly as a result of poor understanding of ice nucleation processes in the current atmosphere, and partly as a result of poor representation of these processes in global models. Here, we present detailed process-model simulations of tropical tropopause layer (TTL) transport and cirrus formation with ice nuclei properties based on recent laboratory nucleation experiments and field measurements of aerosol composition. The model is used to assess the sensitivity of TTL cirrus occurrence frequency and microphysical properties to the abundance and efficacy of ice nuclei. The simulated cloud properties compared with recent high-altitude aircraft measurements of TTL cirrus and ice supersaturation. We find that abundant effective IN (either from glassy organic aerosols or crystalline ammonium sulfate with concentrations greater than about 100/L) prevent the occurrences of large ice concentration and large ice supersaturations, both of which are clearly indicated by the in situ observations. We find that concentrations of effective ice nuclei larger than about 50/L can drive significant changes in cirrus microphysical properties and occurrence frequency. However, the cloud occurrence frequency can either increase or decrease, depending on the efficacy and abundance of IN added to the TTL. We suggest that our lack of information about ice nuclei properties in the current atmosphere, as well as uncertainties in ice nucleation processes and their representations in global models, preclude meaningful estimates of climate impacts associated with addition of ice nuclei in the upper troposphere. We will briefly discuss the key field measurements needed to constrain ice nucleation processes.

  20. Cloud-ECG for real time ECG monitoring and analysis.

    PubMed

    Xia, Henian; Asif, Irfan; Zhao, Xiaopeng

    2013-06-01

    Recent advances in mobile technology and cloud computing have inspired numerous designs of cloud-based health care services and devices. Within the cloud system, medical data can be collected and transmitted automatically to medical professionals from anywhere and feedback can be returned to patients through the network. In this article, we developed a cloud-based system for clients with mobile devices or web browsers. Specially, we aim to address the issues regarding the usefulness of the ECG data collected from patients themselves. Algorithms for ECG enhancement, ECG quality evaluation and ECG parameters extraction were implemented in the system. The system was demonstrated by a use case, in which ECG data was uploaded to the web server from a mobile phone at a certain frequency and analysis was performed in real time using the server. The system has been proven to be functional, accurate and efficient. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. The UAE Rainfall Enhancement Assessment Program: Implications of Thermodynamic Profiles on the Development of Precipitation in Convective Clouds over the Oman Mountains

    NASA Astrophysics Data System (ADS)

    Breed, D.; Bruintjes, R.; Jensen, T.; Salazar, V.; Fowler, T.

    2005-12-01

    During the winter and summer seasons of 2001 and 2002, data were collected to assess the efficacy of cloud seeding to enhance precipitation in the United Arab Emirates (UAE). The results of the feasibility study concluded: 1) that winter clouds in the UAE rarely produced conditions amenable to hygroscopic cloud seeding; 2) that summer convective clouds developed often enough, particularly over the Oman Mountains (e.g., the Hajar Mountains along the eastern UAE border and into Oman) to justify a randomized seeding experiment; 3) that collecting quantitative radar observations continues to be a complex but essential part of evaluating a cloud seeding experiment; 4) that successful flight operations would require solving several logistical issues; and 5) that several scientific questions would need to be studied in order to fully evaluate the efficacy and feasibility of hygroscopic cloud seeding, including cloud physical responses, radar-derived rainfall estimates as related to rainfall at the ground, and hydrological impacts. Based on these results, the UAE program proceeded through the design and implemention of a randomized hygroscopic cloud seeding experiment during the summer seasons to statistically quantify the potential for cloud seeding to enhance rainfall, specifically over the UAE and Oman Mountains, while collecting concurrent and separate physical measurements to support the statistical results and provide substantiation for the physical hypothesis. The randomized seeding experiment was carried out over the summers of 2003 and 2004, and a total of 134 cases were treated over the two summer seasons, of which 96 met the analysis criteria established in the experimental design of the program. The statistical evaluation of these cases yielded largely inconclusive results. Evidence will show that the thermodynamic profile had a large influence on storm characteristics and on precipitation development. This in turn provided a confounding factor in the conduct of the seeding experiment, particularly in the lateness of treatment in the storm cycle. The prevalence of capping inversions and the sensitivity of clouds to the level of the inversions as well as to wind shear will be shown using several data sets (soundings, aircraft, radar, numerical models). Concurrent physical measurements with the randomized experiment provided new insights into the physical processes of precipitation that developed in summertime convective clouds over the UAE that in turn helped in the interpretation of the statistical results.

  2. Cloud-property retrieval using merged HIRS and AVHRR data

    NASA Technical Reports Server (NTRS)

    Baum, Bryan A.; Wielicki, Bruce A.; Minnis, Patrick; Parker, Lindsay

    1992-01-01

    A technique is developed that uses a multispectral, multiresolution method to improve the overall retrieval of mid- to high-level cloud properties by combining HIRS sounding channel data with higher spatial resolution AVHRR radiometric data collocated with the HIRS footprint. Cirrus cloud radiative and physical properties are determined using satellite data, surface-based measurements provided by rawinsondes and lidar, and aircraft-based lidar data collected during the First International Satellite Cloud Climatology Program Regional Experiment in Wisconsin during the months of October and November 1986. HIRS cloud-height retrievals are compared to ground-based lidar and aircraft lidar when possible. Retrieved cloud heights are found to have close agreement with lidar for thin cloud, but are higher than lidar for optically thick cloud. The results of the reflectance-emittance relationships derived are compared to theoretical scattering model results for both water-droplet spheres and randomly oriented hexagonal ice crystals. It is found that the assumption of 10-micron water droplets is inadequate to describe the reflectance-emittance relationship for the ice clouds seen here. Use of this assumption would lead to lower cloud heights using the ISCCP approach. The theoretical results show that use of hexagonal ice crystal phase functions could lead to much improved results for cloud retrieval algorithms using a bispectral approach.

  3. multi-dimensional Cloud-aERosol Exploratory Study using RPAS (mCERES): Bottom-up and top-down closure of aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Calmer, Radiance; Sanchez, Kevin; Cayez, Grégoire; Nicoll, Kerianne; Hashimshoni, Eyal; Rosenfeld, Daniel; Ansmann, Albert; Sciare, Jean; Ovadneite, Jurgita; Bronz, Murat; Hattenberger, Gautier; Preissler, Jana; Buehl, Johannes; Ceburnis, Darius; O'Dowd, Colin

    2016-04-01

    Clouds are omnipresent in earth's atmosphere and constitute an important role in regulating the radiative budget of the planet. However, the response of clouds to climate change remains uncertain, in particular, with respect to aerosol-cloud interactions and feedback mechanisms between the biosphere and atmosphere. Aerosol-cloud interactions and their feedbacks are the main themes of the European project FP7 BACCHUS (Impact of Biogenic versus Anthropogenic Emissions on Clouds and Climate: towards a Holistic Understanding). The National Center for Meteorological Research (CNRM-GAME, Toulouse, France) conducted airborne experiments in Cyprus and Ireland in March and August 2015 respectively to link ground-based and satellite observations. Multiple RPAS (remotely piloted aircraft systems) were instrumented for a specific scientific focus to characterize the vertical distribution of aerosol, cloud microphysical properties, radiative fluxes, 3D wind vectors and meteorological state parameters. Flights below and within clouds were coordinated with satellite overpasses to perform 'top-down' closure of cloud micro-physical properties. Measurements of cloud condensation nuclei spectra at the ground-based site have been used to determine cloud microphyical properties using wind vectors and meteorological parameters measured by the RPAS at cloud base. These derived cloud properties have been validated by in-situ RPAS measurements in the cloud and compared to those derived by the Suomi-NPP satellite. In addition, RPAS profiles in Cyprus observed the layers of dust originating from the Arabian Peninsula and the Sahara Desert. These profiles generally show a well-mixed boundary layer and compare well with ground-based LIDAR observations.

  4. Comparison of GOES Cloud Classification Algorithms Employing Explicit and Implicit Physics

    NASA Technical Reports Server (NTRS)

    Bankert, Richard L.; Mitrescu, Cristian; Miller, Steven D.; Wade, Robert H.

    2009-01-01

    Cloud-type classification based on multispectral satellite imagery data has been widely researched and demonstrated to be useful for distinguishing a variety of classes using a wide range of methods. The research described here is a comparison of the classifier output from two very different algorithms applied to Geostationary Operational Environmental Satellite (GOES) data over the course of one year. The first algorithm employs spectral channel thresholding and additional physically based tests. The second algorithm was developed through a supervised learning method with characteristic features of expertly labeled image samples used as training data for a 1-nearest-neighbor classification. The latter's ability to identify classes is also based in physics, but those relationships are embedded implicitly within the algorithm. A pixel-to-pixel comparison analysis was done for hourly daytime scenes within a region in the northeastern Pacific Ocean. Considerable agreement was found in this analysis, with many of the mismatches or disagreements providing insight to the strengths and limitations of each classifier. Depending upon user needs, a rule-based or other postprocessing system that combines the output from the two algorithms could provide the most reliable cloud-type classification.

  5. [Porting Radiotherapy Software of Varian to Cloud Platform].

    PubMed

    Zou, Lian; Zhang, Weisha; Liu, Xiangxiang; Xie, Zhao; Xie, Yaoqin

    2017-09-30

    To develop a low-cost private cloud platform of radiotherapy software. First, a private cloud platform which was based on OpenStack and the virtual GPU hardware was builded. Then on the private cloud platform, all the Varian radiotherapy software modules were installed to the virtual machine, and the corresponding function configuration was completed. Finally the software on the cloud was able to be accessed by virtual desktop client. The function test results of the cloud workstation show that a cloud workstation is equivalent to an isolated physical workstation, and any clients on the LAN can use the cloud workstation smoothly. The cloud platform transplantation in this study is economical and practical. The project not only improves the utilization rates of radiotherapy software, but also makes it possible that the cloud computing technology can expand its applications to the field of radiation oncology.

  6. Evaluation on penetration rate of cloud for incoming solar radiation using geostationary satellite data

    NASA Astrophysics Data System (ADS)

    Yeom, Jong-Min; Han, Kyung-Soo; Kim, Jae-Jin

    2012-05-01

    Solar surface insolation (SSI) represents how much solar radiance reaches the Earth's surface in a specified area and is an important parameter in various fields such as surface energy research, meteorology, and climate change. This study calculates insolation using Multi-functional Transport Satellite (MTSAT-1R) data with a simplified cloud factor over Northeast Asia. For SSI retrieval from the geostationary satellite data, the physical model of Kawamura is modified to improve insolation estimation by considering various atmospheric constituents, such as Rayleigh scattering, water vapor, ozone, aerosols, and clouds. For more accurate atmospheric parameterization, satellite-based atmospheric constituents are used instead of constant values when estimating insolation. Cloud effects are a key problem in insolation estimation because of their complicated optical characteristics and high temporal and spatial variation. The accuracy of insolation data from satellites depends on how well cloud attenuation as a function of geostationary channels and angle can be inferred. This study uses a simplified cloud factor that depends on the reflectance and solar zenith angle. Empirical criteria to select reference data for fitting to the ground station data are applied to suggest simplified cloud factor methods. Insolation estimated using the cloud factor is compared with results of the unmodified physical model and with observations by ground-based pyranometers located in the Korean peninsula. The modified model results show far better agreement with ground truth data compared to estimates using the conventional method under overcast conditions.

  7. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  8. Alabama Ground Operations during the Deep Convective Clouds and Chemistry Experiment

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Blakeslee, Richard; Koshak, William; Bain, Lamont; Rogers, Ryan; Kozlowski, Danielle; Sherrer, Adam; Saari, Matt; Bigelbach, Brandon; Scott, Mariana; hide

    2013-01-01

    The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity soundings were obtained with the UAHuntsville mobile sounding unit and the Redstone Arsenal (QAG) morning sounding.

  9. The cloud services innovation platform- enabling service-based environmental modelling using infrastructure-as-a-service cloud computing

    USDA-ARS?s Scientific Manuscript database

    Service oriented architectures allow modelling engines to be hosted over the Internet abstracting physical hardware configuration and software deployments from model users. Many existing environmental models are deployed as desktop applications running on user's personal computers (PCs). Migration ...

  10. Climatology and Formation of Tropical Midlevel Clouds at the Darwin ARM Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; McFarlane, Sally A.; Comstock, Jennifer M.

    A 4-yr climatology of midlevel clouds is presented from vertically pointing cloud lidar and radar measurements at the Atmospheric Radiation Measurement Program (ARM) site at Darwin, Australia. Few studies exist of tropical midlevel clouds using a dataset of this length. Seventy percent of clouds with top heights between 4 and 8 km are less than 2 km thick. These thin layer clouds have a peak in cloud-top temperature around the melting level (0°C) and also a second peak around -12.5°C. The diurnal frequency of thin clouds is highest during the night and reaches a minimum around noon, consistent with variationmore » caused by solar heating. Using a 1.5-yr subset of the observations, the authors found that thin clouds have a high probability of containing supercooled liquid water at low temperatures: ~20% of clouds at -30°C, ~50% of clouds at -20°C, and ~65% of clouds at -10°C contain supercooled liquid water. The authors hypothesize that thin midlevel clouds formed at the melting level are formed differently during active and break monsoon periods and test this over three monsoon seasons. A greater frequency of thin midlevel clouds are likely formed by increased condensation following the latent cooling of melting during active monsoon periods when stratiform precipitation is most frequent. This is supported by the high percentage (65%) of midlevel clouds with preceding stratiform precipitation and the high frequency of stable layers slightly warmer than 0°C. In the break monsoon, a distinct peak in the frequency of stable layers at 0°C matches the peak in thin midlevel cloudiness, consistent with detrainment from convection.« less

  11. Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin

    NASA Technical Reports Server (NTRS)

    Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.

    2005-01-01

    About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.

  12. ARM Data-Oriented Metrics and Diagnostics Package for Climate Model Evaluation Value-Added Product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chengzhu; Xie, Shaocheng

    A Python-based metrics and diagnostics package is currently being developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Infrastructure Team at Lawrence Livermore National Laboratory (LLNL) to facilitate the use of long-term, high-frequency measurements from the ARM Facility in evaluating the regional climate simulation of clouds, radiation, and precipitation. This metrics and diagnostics package computes climatological means of targeted climate model simulation and generates tables and plots for comparing the model simulation with ARM observational data. The Coupled Model Intercomparison Project (CMIP) model data sets are also included in the package to enable model intercomparison as demonstratedmore » in Zhang et al. (2017). The mean of the CMIP model can serve as a reference for individual models. Basic performance metrics are computed to measure the accuracy of mean state and variability of climate models. The evaluated physical quantities include cloud fraction, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, and radiative fluxes, with plan to extend to more fields, such as aerosol and microphysics properties. Process-oriented diagnostics focusing on individual cloud- and precipitation-related phenomena are also being developed for the evaluation and development of specific model physical parameterizations. The version 1.0 package is designed based on data collected at ARM’s Southern Great Plains (SGP) Research Facility, with the plan to extend to other ARM sites. The metrics and diagnostics package is currently built upon standard Python libraries and additional Python packages developed by DOE (such as CDMS and CDAT). The ARM metrics and diagnostic package is available publicly with the hope that it can serve as an easy entry point for climate modelers to compare their models with ARM data. In this report, we first present the input data, which constitutes the core content of the metrics and diagnostics package in section 2, and a user's guide documenting the workflow/structure of the version 1.0 codes, and including step-by-step instruction for running the package in section 3.« less

  13. The HIRLAM fast radiation scheme for mesoscale numerical weather prediction models

    NASA Astrophysics Data System (ADS)

    Rontu, Laura; Gleeson, Emily; Räisänen, Petri; Pagh Nielsen, Kristian; Savijärvi, Hannu; Hansen Sass, Bent

    2017-07-01

    This paper provides an overview of the HLRADIA shortwave (SW) and longwave (LW) broadband radiation schemes used in the HIRLAM numerical weather prediction (NWP) model and available in the HARMONIE-AROME mesoscale NWP model. The advantage of broadband, over spectral, schemes is that they can be called more frequently within the model, without compromising on computational efficiency. In mesoscale models fast interactions between clouds and radiation and the surface and radiation can be of greater importance than accounting for the spectral details of clear-sky radiation; thus calling the routines more frequently can be of greater benefit than the deterioration due to loss of spectral details. Fast but physically based radiation parametrizations are expected to be valuable for high-resolution ensemble forecasting, because as well as the speed of their execution, they may provide realistic physical perturbations. Results from single-column diagnostic experiments based on CIRC benchmark cases and an evaluation of 10 years of radiation output from the FMI operational archive of HIRLAM forecasts indicate that HLRADIA performs sufficiently well with respect to the clear-sky downwelling SW and longwave LW fluxes at the surface. In general, HLRADIA tends to overestimate surface fluxes, with the exception of LW fluxes under cold and dry conditions. The most obvious overestimation of the surface SW flux was seen in the cloudy cases in the 10-year comparison; this bias may be related to using a cloud inhomogeneity correction, which was too large. According to the CIRC comparisons, the outgoing LW and SW fluxes at the top of atmosphere are mostly overestimated by HLRADIA and the net LW flux is underestimated above clouds. The absorption of SW radiation by the atmosphere seems to be underestimated and LW absorption seems to be overestimated. Despite these issues, the overall results are satisfying and work on the improvement of HLRADIA for the use in HARMONIE-AROME NWP system is ongoing. In a HARMONIE-AROME 3-D forecast experiment we have shown that the frequency of the call for the radiation parametrization and choice of the parametrization scheme makes a difference to the surface radiation fluxes and changes the spatial distribution of the vertically integrated cloud cover and precipitation.

  14. Multi-Objective Approach for Energy-Aware Workflow Scheduling in Cloud Computing Environments

    PubMed Central

    Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach. PMID:24319361

  15. Multi-objective approach for energy-aware workflow scheduling in cloud computing environments.

    PubMed

    Yassa, Sonia; Chelouah, Rachid; Kadima, Hubert; Granado, Bertrand

    2013-01-01

    We address the problem of scheduling workflow applications on heterogeneous computing systems like cloud computing infrastructures. In general, the cloud workflow scheduling is a complex optimization problem which requires considering different criteria so as to meet a large number of QoS (Quality of Service) requirements. Traditional research in workflow scheduling mainly focuses on the optimization constrained by time or cost without paying attention to energy consumption. The main contribution of this study is to propose a new approach for multi-objective workflow scheduling in clouds, and present the hybrid PSO algorithm to optimize the scheduling performance. Our method is based on the Dynamic Voltage and Frequency Scaling (DVFS) technique to minimize energy consumption. This technique allows processors to operate in different voltage supply levels by sacrificing clock frequencies. This multiple voltage involves a compromise between the quality of schedules and energy. Simulation results on synthetic and real-world scientific applications highlight the robust performance of the proposed approach.

  16. A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete; hide

    2016-01-01

    Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.

  17. Scanning ARM Cloud Radar Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and Northmore » Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.« less

  18. Absorption Properties of Supercooled Liquid Water between 31 and 225 GHz: Evaluation of Absorption Models Using Ground-Based Observations

    DOE PAGES

    Kneifel, Stefan; Redl, Stephanie; Orlandi, Emiliano; ...

    2014-04-10

    Microwave radiometers (MWR) are commonly used to quantify the amount of supercooled liquid water (SLW) in clouds; however, the accuracy of the SLW retrievals is limited by the poor knowledge of the SLW dielectric properties at microwave frequencies. Six liquid water permittivity models were compared with ground-based MWR observations between 31 and 225 GHz from sites in Greenland, the German Alps, and a low-mountain site; average cloud temperatures of observed thin cloud layers range from 0° to –33°C. A recently published method to derive ratios of liquid water opacity from different frequencies was employed in this analysis. These ratios aremore » independent of liquid water path and equal to the ratio of αL at those frequencies that can be directly compared with the permittivity model predictions. The observed opacity ratios from all sites show highly consistent results that are generally within the range of model predictions; however, none of the models are able to approximate the observations over the entire frequency and temperature range. Findings in earlier published studies were used to select one specific model as a reference model for αL at 90 GHz; together with the observed opacity ratios, the temperature dependence of αL at 31.4, 52.28, 150, and 225 GHz was derived. The results reveal that two models fit the opacity ratio data better than the other four models, with one of the two models fitting the data better for frequencies below 90 GHz and the other for higher frequencies. Furthermore, these findings are relevant for SLW retrievals and radiative transfer in the 31–225-GHz frequency region.« less

  19. Giant molecular cloud scaling relations: the role of the cloud definition

    NASA Astrophysics Data System (ADS)

    Khoperskov, S. A.; Vasiliev, E. O.; Ladeyschikov, D. A.; Sobolev, A. M.; Khoperskov, A. V.

    2016-01-01

    We investigate the physical properties of molecular clouds in disc galaxies with different morphologies: a galaxy without prominent structure, a spiral barred galaxy and a galaxy with flocculent structure. Our N-body/hydrodynamical simulations take into account non-equilibrium H2 and CO chemical kinetics, self-gravity, star formation and feedback processes. For the simulated galaxies, the scaling relations of giant molecular clouds, or so-called Larson's relations, are studied for two types of cloud definition (or extraction method): the first is based on total column density position-position (PP) data sets and the second is indicated by the CO (1-0) line emission used in position-position-velocity (PPV) data. We find that the cloud populations obtained using both cloud extraction methods generally have similar physical parameters, except that for the CO data the mass spectrum of clouds has a tail with low-mass objects M ˜ 103-104 M⊙. Owing toa varying column density threshold, the power-law indices in the scaling relations are significantly changed. In contrast, the relations are invariant to the CO brightness temperature threshold. Finally, we find that the mass spectra of clouds for PPV data are almost insensitive to the galactic morphology, whereas the spectra for PP data demonstrate significant variation.

  20. Scaling analysis of cloud and rain water in marine stratocumulus and implications for scale-aware microphysical parameterizations

    NASA Astrophysics Data System (ADS)

    Witte, M.; Morrison, H.; Jensen, J. B.; Bansemer, A.; Gettelman, A.

    2017-12-01

    The spatial covariance of cloud and rain water (or in simpler terms, small and large drops, respectively) is an important quantity for accurate prediction of the accretion rate in bulk microphysical parameterizations that account for subgrid variability using assumed probability density functions (pdfs). Past diagnoses of this covariance from remote sensing, in situ measurements and large eddy simulation output have implicitly assumed that the magnitude of the covariance is insensitive to grain size (i.e. horizontal resolution) and averaging length, but this is not the case because both cloud and rain water exhibit scale invariance across a wide range of scales - from tens of centimeters to tens of kilometers in the case of cloud water, a range that we will show is primarily limited by instrumentation and sampling issues. Since the individual variances systematically vary as a function of spatial scale, it should be expected that the covariance follows a similar relationship. In this study, we quantify the scaling properties of cloud and rain water content and their covariability from high frequency in situ aircraft measurements of marine stratocumulus taken over the southeastern Pacific Ocean aboard the NSF/NCAR C-130 during the VOCALS-REx field experiment of October-November 2008. First we confirm that cloud and rain water scale in distinct manners, indicating that there is a statistically and potentially physically significant difference in the spatial structure of the two fields. Next, we demonstrate that the covariance is a strong function of spatial scale, which implies important caveats regarding the ability of limited-area models with domains smaller than a few tens of kilometers across to accurately reproduce the spatial organization of precipitation. Finally, we present preliminary work on the development of a scale-aware parameterization of cloud-rain water subgrid covariability based in multifractal analysis intended for application in large-scale model microphysics schemes.

  1. Peltier-based cloud chamber

    NASA Astrophysics Data System (ADS)

    Nar, Sevda Yeliz; Cakir, Altan

    2018-02-01

    Particles produced by nuclear decay, cosmic radiation and reactions can be identified through various methods. One of these methods that has been effective in the last century is the cloud chamber. The chamber makes visible cosmic particles that we are exposed to radiation per second. Diffusion cloud chamber is a kind of cloud chamber that is cooled by dry ice. This traditional model has some application difficulties. In this work, Peltier-based cloud chamber cooled by thermoelectric modules is studied. The new model provided uniformly cooled base of the chamber, moreover, it has longer lifetime than the traditional chamber in terms of observation time. This gain has reduced the costs which spent each time for cosmic particle observation. The chamber is an easy-to-use system according to traditional diffusion cloud chamber. The new model is portable, easier to make, and can be used in the nuclear physics experiments. In addition, it would be very useful to observe Muons which are the direct evidence for Lorentz contraction and time expansion predicted by Einsteins special relativity principle.

  2. Relationship between macroscopic and microphysical properties for mixed-phase and ice clouds over the Southern Ocean in ORCAS campaign

    NASA Astrophysics Data System (ADS)

    Diao, M.; Jensen, J. B.

    2017-12-01

    Mixed-phase and ice clouds play very important roles in regulating the atmospheric radiation over the Southern Ocean. Previously, in-situ observations over this remote region are limited, and a few of the available observation-based analyses mainly focused on the cloud microphysical properties. The relationship between macroscopic and microphysical properties for both mixed-phase and ice clouds have not been thoroughly investigated based on in-situ observations. In this work, the aircraft-based observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) field campaign (Jan - Feb 2016) will be used to analyze the cloud macroscopic properties on the microscale to mesoscale, including the distributions of cloud chord length, the patchiness of clouds, and the spatial ratios of adjacent cloud segments in mixed phase and pure ice phase. In addition, these macroscopic properties will be analyzed in relation to the relative humidity (RH) background, such as the average and maximum RH inside clouds, as well as the probability density function (PDF) of in-cloud RH. We found that the clouds with larger horizontal scales are often associated with larger magnitudes of average and maximum in-cloud RH values. In addition, when decomposing the contributions from the spatial variabilities of water vapor and temperature to the variability of RH, the water vapor heterogeneities are found to have the most dominant impact on RH variability. Sensitivities of the cloud macroscopic and microphysical properties to the horizontal resolutions of the observations will be shown, including the impacts on the patchiness of clouds, cloud fraction, frequencies of ice supersaturation, and the PDFs of RH. These sensitivity analyses will provide useful information on the comparisons among multi-scale observations and simulations.

  3. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  4. Assessment of marine boundary layer cloud simulations in the CAM with CLUBB and updated microphysics scheme based on ARM observations from the Azores

    DOE PAGES

    Zheng, Xue; Klein, S. A.; Ma, H. -Y.; ...

    2016-07-19

    To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less

  5. An energy balance climate model with cloud feedbacks

    NASA Technical Reports Server (NTRS)

    Roads, J. O.; Vallis, G. K.

    1984-01-01

    The present two-level global climate model, which is based on the atmosphere-surface energy balance, includes physically based parameterizations for the exchange of heat and moisture across latitude belts and between the surface and the atmosphere, precipitation and cloud formation, and solar and IR radiation. The model field predictions obtained encompass surface and atmospheric temperature, precipitation, relative humidity, and cloudiness. In the model integrations presented, it is noted that cloudiness is generally constant with changing temperature at low latitudes. High altitude cloudiness increases with temperature, although the cloud feedback effect on the radiation field remains small because of compensating effects on thermal and solar radiation. The net global feedback by the cloud field is negative, but small.

  6. Statistical analysis of multivariate atmospheric variables. [cloud cover

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.

    1979-01-01

    Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.

  7. Analysis of the Metal Oxide Space Clouds (MOSC) HF Propagation Environment

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.; Selzer, L.

    2015-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the high frequency (HF) propagation environment. It can be achieved through injections of aerosols, chemicals or radio (RF) signals into the ionosphere. The Metal Oxide Space Clouds (MOSC) experiment was undertaken in April/May 2013 to investigate chemical AIM. Two sounding rockets were launched from the Kwajalein Atoll (part of the Marshall Islands) and each released a cloud of vaporized samarium (Sm). The samarium created a localized plasma cloud, with increased electron density, which formed an additional ionospheric layer. The ionospheric effects were measured by a wide range of ground based instrumentation which included a network of high frequency (HF) sounders. Chirp transmissions were made from three atolls and received at five sites within the Marshall Islands. One of the receive sites consisted of an 18 antenna phased array, which was used for direction finding. The ionograms have shown that as well as generating a new layer the clouds created anomalous RF propagation paths, which interact with both the cloud and the F-layer, resulting in 'ghost traces'. To fully understand the propagation environment a 3D numerical ray trace has been undertaken, using a variety of background ionospheric and cloud models, to find the paths through the electron density grid for a given fan of elevation and azimuth firing angles. Synthetic ionograms were then produced using the ratio of ray path length to speed of light as an estimation of the delay between transmission and observation for a given frequency of radio wave. This paper reports on the latest analysis of the MOSC propagation environment, comparing theory with observations, to further understanding of AIM.

  8. Cloud Statistics for NASA Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Wylie, Donald P.

    1999-01-01

    The Principal Investigator participated in two field experiments and developed a global data set on cirrus cloud frequency and optical depth to aid the development of numerical models of climate. Four papers were published under this grant. The accomplishments are summarized: (1) In SUCCESS (SUbsonic aircraft: Contrail & Cloud Effects Special Study) the Principal Investigator aided weather forecasters in the start of the field program. A paper also was published on the clouds studied in SUCCESS and the use of the satellite stereographic technique to distinguish cloud forms and heights of clouds. (2) In SHEBA (Surface Heat Budget in the Arctic) FIRE/ACE (Arctic Cloud Experiment) the Principal Investigator provided daily weather and cloud forecasts for four research aircraft crews, NASA's ER-2, UCAR's C-130, University of Washington's Convert 580, and the Canadian Atmospheric Environment Service's Convert 580. Approximately 105 forecasts were written. The Principal Investigator also made daily weather summaries with calculations of air trajectories for 54 flight days in the experiment. The trajectories show where the air sampled during the flights came from and will be used in future publications to discuss the origin and history of the air and clouds sampled by the aircraft. A paper discussing how well the FIRE/ACE data represent normal climatic conditions in the arctic is being prepared. (3) The Principal Investigator's web page became the source of information for weather forecasting by the scientists on the SHEBA ship. (4) Global Cirrus frequency and optical depth is a continuing analysis of global cloud cover and frequency distribution are being made from the NOAA polar orbiting weather satellites. This analysis is sensitive to cirrus clouds because of the radiative channels used. During this grant three papers were published which describe cloud frequencies, their optical properties and compare the Wisconsin FM Cloud Analysis to other global cloud data such as the International Satellite Cloud Climatology Program (ISCCP) and the Stratospheric Aerosol and Gas Experiment (SAGE). A summary of eight years of HIRS data will be published in late 1998. Important information from this study are: 1) cirrus clouds cover most of the earth, 2) they are found about 40% of the time globally, 3) in the tropics cirrus cloud frequencies are even higher, from 80-100%, 4) there is slight evidence that cirnis cloud cover is increasing in the northern hemisphere at about 0.5% per year, and 5) cirrus clouds have an average infrared transmittance of about 40% of the terrestrial radiation. (5) Global Cloud Frequency Statistics published on the Principal Investigator's web page have been used in the planning of the future CRYSTAL experiment and have been used for refinements of a global numerical model operated at the Colorado State University.

  9. An automated cirrus classification

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias

    2018-05-01

    Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.

  10. A Comparison of Potential IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements From Space

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Ismail, Syed

    2014-01-01

    Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) Decadal Survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column-mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different carrier based modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, and Binary Phase Shift Keying (BPSK). Techniques are investigated that reduce or eliminate sidelobes. These techniques have excellent auto-correlation properties while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space. A comparison of various properties such as signal to noise ratio (SNR) and time-bandwidth product are discussed.

  11. Application verification research of cloud computing technology in the field of real time aerospace experiment

    NASA Astrophysics Data System (ADS)

    Wan, Junwei; Chen, Hongyan; Zhao, Jing

    2017-08-01

    According to the requirements of real-time, reliability and safety for aerospace experiment, the single center cloud computing technology application verification platform is constructed. At the IAAS level, the feasibility of the cloud computing technology be applied to the field of aerospace experiment is tested and verified. Based on the analysis of the test results, a preliminary conclusion is obtained: Cloud computing platform can be applied to the aerospace experiment computing intensive business. For I/O intensive business, it is recommended to use the traditional physical machine.

  12. Modeling the Virtual Machine Launching Overhead under Fermicloud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzoglio, Gabriele; Wu, Hao; Ren, Shangping

    FermiCloud is a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows. The Cloud Bursting module of the FermiCloud enables the FermiCloud, when more computational resources are needed, to automatically launch virtual machines to available resources such as public clouds. One of the main challenges in developing the cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on FermiCloud’s system operational data, the VM launching overhead is not a constant. It varies with physical resourcemore » (CPU, memory, I/O device) utilization at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launch overhead reference model is needed. The paper is to develop a VM launch overhead reference model based on operational data we have obtained on FermiCloud and uses the reference model to guide the cloud bursting process.« less

  13. Assessing Coupled Social Ecological Flood Vulnerability from Uttarakhand, India, to the State of New York with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Schwarz, B.

    2014-12-01

    This talk describes the development of a web application to predict and communicate vulnerability to floods given publicly available data, disaster science, and geotech cloud capabilities. The proof of concept in Google Earth Engine API with initial testing on case studies in New York and Utterakhand India demonstrates the potential of highly parallelized cloud computing to model socio-ecological disaster vulnerability at high spatial and temporal resolution and in near real time. Cloud computing facilitates statistical modeling with variables derived from large public social and ecological data sets, including census data, nighttime lights (NTL), and World Pop to derive social parameters together with elevation, satellite imagery, rainfall, and observed flood data from Dartmouth Flood Observatory to derive biophysical parameters. While more traditional, physically based hydrological models that rely on flow algorithms and numerical methods are currently unavailable in parallelized computing platforms like Google Earth Engine, there is high potential to explore "data driven" modeling that trades physics for statistics in a parallelized environment. A data driven approach to flood modeling with geographically weighted logistic regression has been initially tested on Hurricane Irene in southeastern New York. Comparison of model results with observed flood data reveals a 97% accuracy of the model to predict flooded pixels. Testing on multiple storms is required to further validate this initial promising approach. A statistical social-ecological flood model that could produce rapid vulnerability assessments to predict who might require immediate evacuation and where could serve as an early warning. This type of early warning system would be especially relevant in data poor places lacking the computing power, high resolution data such as LiDar and stream gauges, or hydrologic expertise to run physically based models in real time. As the data-driven model presented relies on globally available data, the only real time data input required would be typical data from a weather service, e.g. precipitation or coarse resolution flood prediction. However, model uncertainty will vary locally depending upon the resolution and frequency of observed flood and socio-economic damage impact data.

  14. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, I.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

  15. Planck 2015 results: XXVIII. The Planck Catalogue of Galactic cold clumps

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-09-20

    Here, we present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combinedmore » with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.« less

  16. Phenomenology tools on cloud infrastructures using OpenStack

    NASA Astrophysics Data System (ADS)

    Campos, I.; Fernández-del-Castillo, E.; Heinemeyer, S.; Lopez-Garcia, A.; Pahlen, F.; Borges, G.

    2013-04-01

    We present a new environment for computations in particle physics phenomenology employing recent developments in cloud computing. On this environment users can create and manage "virtual" machines on which the phenomenology codes/tools can be deployed easily in an automated way. We analyze the performance of this environment based on "virtual" machines versus the utilization of physical hardware. In this way we provide a qualitative result for the influence of the host operating system on the performance of a representative set of applications for phenomenology calculations.

  17. [Cii] emission from L1630 in the Orion B molecular cloud.

    PubMed

    Pabst, C H M; Goicoechea, J R; Teyssier, D; Berné, O; Ochsendorf, B B; Wolfire, M G; Higgins, R D; Riquelme, D; Risacher, C; Pety, J; Le Petit, F; Roueff, E; Bron, E; Tielens, A G G M

    2017-10-01

    L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system σ Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes. Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. Our goal is to relate the [Cii] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. The [Cii] 158 μ m line emission of L1630 around the Horsehead Nebula, an area of 12' × 17', was observed using the upgraded German Receiver for Astronomy at Terahertz Frequencies (upGREAT) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Of the [Cii] emission from the mapped area 95%, 13 L ⊙ , originates from the molecular cloud; the adjacent Hii region contributes only 5%, that is, 1 L ⊙ . From comparison with other data (CO(1-0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of n H ∼ 3 · 10 3 cm -3 , with surface layers, including the Horsehead Nebula, having a density of up to n H ∼ 4 · 10 4 cm -3 . The temperature of the surface gas is T ∼ 100 K. The average [Cii] cooling efficiency within the molecular cloud is 1.3 · 10 -2 . The fraction of the mass of the molecular cloud within the studied area that is traced by [Cii] is only 8%. Our PDR models are able to reproduce the FIR-[Cii] correlations and also the CO(1-0)-[Cii] correlations. Finally, we compare our results on the heating efficiency of the gas with theoretical studies of photoelectric heating by PAHs, clusters of PAHs, and very small grains, and find the heating efficiency to be lower than theoretically predicted, a continuation of the trend set by other observations. In L1630 only a small fraction of the gas mass is traced by [Cii]. Most of the [Cii] emission in the mapped area stems from PDR surfaces. The layered edge-on structure of the molecular cloud and limitations in spatial resolution put constraints on our ability to relate different tracers to each other and to the physical conditions. From our study, we conclude that the relation between [Cii] emission and physical conditions is likely to be more complicated than often assumed. The theoretical heating efficiency is higher than the one we calculate from the observed [Cii] emission in the L1630 molecular cloud.

  18. [Cii] emission from L1630 in the Orion B molecular cloud

    PubMed Central

    Pabst, C. H. M.; Goicoechea, J. R.; Teyssier, D.; Berné, O.; Ochsendorf, B. B.; Wolfire, M. G.; Higgins, R. D.; Riquelme, D.; Risacher, C.; Pety, J.; Le Petit, F.; Roueff, E.; Bron, E.; Tielens, A. G. G. M.

    2017-01-01

    Context L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system σ Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes. Aims Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. Our goal is to relate the [Cii] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. Methods The [Cii] 158 μm line emission of L1630 around the Horsehead Nebula, an area of 12′ × 17′, was observed using the upgraded German Receiver for Astronomy at Terahertz Frequencies (upGREAT) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results Of the [Cii] emission from the mapped area 95%, 13 L⊙, originates from the molecular cloud; the adjacent Hii region contributes only 5%, that is, 1 L⊙. From comparison with other data (CO(1-0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of nH ∼ 3 · 103 cm−3, with surface layers, including the Horsehead Nebula, having a density of up to nH ∼ 4 · 104 cm−3. The temperature of the surface gas is T ∼ 100 K. The average [Cii] cooling efficiency within the molecular cloud is 1.3 · 10−2. The fraction of the mass of the molecular cloud within the studied area that is traced by [Cii] is only 8%. Our PDR models are able to reproduce the FIR-[Cii] correlations and also the CO(1-0)-[Cii] correlations. Finally, we compare our results on the heating efficiency of the gas with theoretical studies of photoelectric heating by PAHs, clusters of PAHs, and very small grains, and find the heating efficiency to be lower than theoretically predicted, a continuation of the trend set by other observations. Conclusions In L1630 only a small fraction of the gas mass is traced by [Cii]. Most of the [Cii] emission in the mapped area stems from PDR surfaces. The layered edge-on structure of the molecular cloud and limitations in spatial resolution put constraints on our ability to relate different tracers to each other and to the physical conditions. From our study, we conclude that the relation between [Cii] emission and physical conditions is likely to be more complicated than often assumed. The theoretical heating efficiency is higher than the one we calculate from the observed [Cii] emission in the L1630 molecular cloud. PMID:28989177

  19. Quantitative Measures of Immersion in Cloud and the Biogeography of Cloud Forests

    NASA Technical Reports Server (NTRS)

    Lawton, R. O.; Nair, U. S.; Ray, D.; Regmi, A.; Pounds, J. A.; Welch, R. M.

    2010-01-01

    Sites described as tropical montane cloud forests differ greatly, in part because observers tend to differ in their opinion as to what constitutes frequent and prolonged immersion in cloud. This definitional difficulty interferes with hydrologic analyses, assessments of environmental impacts on ecosystems, and biogeographical analyses of cloud forest communities and species. Quantitative measurements of cloud immersion can be obtained on site, but the observations are necessarily spatially limited, although well-placed observers can examine 10 50 km of a mountain range under rainless conditions. Regional analyses, however, require observations at a broader scale. This chapter discusses remote sensing and modeling approaches that can provide quantitative measures of the spatiotemporal patterns of cloud cover and cloud immersion in tropical mountain ranges. These approaches integrate remote sensing tools of various spatial resolutions and frequencies of observation, digital elevation models, regional atmospheric models, and ground-based observations to provide measures of cloud cover, cloud base height, and the intersection of cloud and terrain. This combined approach was applied to the Monteverde region of northern Costa Rica to illustrate how the proportion of time the forest is immersed in cloud may vary spatially and temporally. The observed spatial variation was largely due to patterns of airflow over the mountains. The temporal variation reflected the diurnal rise and fall of the orographic cloud base, which was influenced in turn by synoptic weather conditions, the seasonal movement of the Intertropical Convergence Zone and the north-easterly trade winds. Knowledge of the proportion of the time that sites are immersed in clouds should facilitate ecological comparisons and biogeographical analyses, as well as land use planning and hydrologic assessments in areas where intensive on-site work is not feasible.

  20. The role of mountain precipitation as a drought buffer in Puerto Rico: Assessing natural systems' resilience to change

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Clark, K. E.; Van Beusekom, A.; Shanley, J. B.; Torres-Sanchez, A.; Murphy, S. F.; Gonzalez, G.

    2017-12-01

    Like many island and coastal areas, the Luquillo Mountains of Puerto Rico receive orographic precipitation (rain and cloud water), maintaining headwater streamflow and allowing diverse forest ecosystems to thrive. Although rainfall from regional-scale convective systems is greater in volume, multiple lines of evidence (stable isotope tracers; precipitation amount, frequency, and intensity; cloud immersion; regional cloud dynamics; weather analysis) show that trade-wind orographic precipitation contributes significantly to streamflow, soil water, and shallow groundwater. Ceilometer data and time-lapse photography of cloud-immersed conditions at the mountain indicated a seasonally invariant, sustained overnight regime of cloud water precipitation, in addition to the abundant rainfall in the mountains. Rising ocean temperatures and a warming tropical climate lead to questions about persistence of the trade-wind associated orographic precipitation and the resilience of similar mountain ecosystems to change. Projections for Caribbean climate change include amplification of trade winds; less frequent, more intense large convective systems; and a warming ocean. These may have opposing effects on mountain precipitation, increasing uncertainty about processes that mitigate drought. Field studies provide insights regarding these questions. Ceilometer and satellite observations showed cloud base is higher over the mountains than in the surrounding Caribbean region; with the trade-wind inversion cap, further rise in cloud base may produce shallower clouds and reduced precipitation. We analyzed the February-October 2015 drought, characterized by strong El Niño conditions, an absence of tropical storm systems, and reduced convection in easterly waves. Combined δ2H, δ18O and d-excess signatures of streamflow indicated precipitation was derived from shallow convective systems, trade-wind showers and cloud water. During severe drought on the island, streamflow-sustaining rainfall at the mountain station at 640 m persisted, albeit with 19% lower frequency and 52% fewer large (>10 mm) rain events than the 20-year average. Clearly, resilience of the mountain forest ecosystem and of streamflow to drought periods depends on orographic precipitation.

  1. Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India

    NASA Astrophysics Data System (ADS)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-12-01

    Sixteen-year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from 7 and a half years (June 2006-December 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and the differences in sampling frequencies. Nearly 50-55 % of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect a higher number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. The mid-cloud altitude of sub-visible cirrus clouds is found to be increasing at the rate of 41 ± 21 m year-1. Statistically significant decrease in optical thickness of sub-visible and thick cirrus clouds is observed. Also, the fraction of sub-visible cirrus cloud is found to have increased by 9 % in the last 16 years (1998 to 2013). This increase is mainly compensated by a 7 % decrease in thin cirrus cloud fraction. This has implications for the temperature and water vapour budget in the tropical tropopause layer.

  2. Climatological Data for Clouds Over the Globe from Surface Observations (1988) (NDP-026)

    DOE Data Explorer

    Hahn, Carole J. [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Warren, Stephen G. [Department of Atmospheric Sciences, University of Washington, Seattle, Washington; London, Julius [Department of Astrophysical, Planetary, and Atmospheric Sciences, University of Colorado, Boulder, CO; Jenne, Ray L. [National Center for Atmospheric Research, Boulder, CO (United States); Chervin, Robert M. [National Center for Atmospheric Research, Boulder, CO (United States)

    1988-01-01

    With some data from as early as 1930, global long-term monthly and/or seasonal total cloud cover, cloud type amounts and frequencies of occurrence, low cloud base heights, harmonic analyses of annual and diurnal cycles, interannual variations and trends, and cloud type co-occurrences have been compiled and presented in two atlases (Warren et al. 1988, 1990). These data were derived from land and ship synoptic weather reports from the "SPOT" archive of the Fleet Numerical Oceanography Center (FNOC) and from Release 1 of the Comprehensive Ocean-Atmosphere Data Set (COADS) for the years 1930-1979. The data are in 12 files (one containing latitude, longitude, land-fraction, and number of land stations for grid boxes; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for land; four containing total cloud, cloud types, harmonic analyses, and interannual variations and trends for oceans; one containing first cloud analyses for the first year of the GARP Global Experiment (FGGE); one containing cloud-type co-occurrences for land and oceans; and one containing a FORTRAN program to read and produce maps).

  3. Web-based CERES Clouds QC Property Viewing Tool

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Chu, C.; Sun-Mack, S.; Chen, Y.; Heckert, E.; Minnis, P.

    2014-12-01

    This presentation will display the capabilities of a web-based CERES cloud property viewer. Terra data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool. A laptop will hopefully be available to allow conference attendees to try navigating the tool.

  4. Determination of cloud fields from analysis of HIRS2/MSU sounding data. [20 channel infrared and 4 channel microwave atmospheric sounders

    NASA Technical Reports Server (NTRS)

    Susskind, J.; Reuter, D.

    1986-01-01

    IR and microwave remote sensing data collected with the HIRS2 and MSU sensors on the NOAA polar-orbiting satellites were evaluated for their effectiveness as bases for determining the cloud cover and cloud physical characteristics. Techniques employed to adjust for day-night alterations in the radiance fields are described, along with computational procedures applied to compare scene pixel values with reference values for clear skies. Sample results are provided for the mean cloud coverage detected over South America and Africa June 1979, with attention given to concurrent surface pressure and cloud top pressure values.

  5. Cloud fraction, layer, and direction of movement results from sky cameras during the FIRE IFO, Coffeyville, Kansas, experiment for the period Nov. 12 through Dec. 9, 1991

    NASA Technical Reports Server (NTRS)

    Purgold, Gerald C.; Wheeler, Robert J.; Whitlock, Charles H.

    1992-01-01

    Tables and figures are presented which show local site observations of cloud fractions, the number of cloud layers, direction of movement, and precipitation data collected during the FIRE (First ISCCP Regional Experiment) Phase 2 Cirrus Intensive Field Observations (IFO) conducted in Coffeyville, Kansas during November and December, 1991. Selected data are also presented at the times of the TIROS Operational Vertical Sounder (TOVS) satellite overpass. Several major scientific projects have used surface-based observations of clouds to compare directly with those being observed from satellites. Characterizing the physical properties of clouds is extremely useful in obtaining a more accurate analysis of the effect of clouds and their movements on weather and climate. It is the purpose of this paper to report data collected during the FIRE Phase 2 IFO experiment and to provide a brief history of such a surface-based system and the technical information required for recording local cloud parameters.

  6. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations andmore » subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Ren, Shangping; Garzoglio, Gabriele

    Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One of the main challenges in developing a cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching overheadmore » is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained on FermiCloud. Second, we apply the developed reference model on FermiCloud and compare calculated VM launching overhead values based on the model with measured overhead values on FermiCloud. Our empirical results on FermiCloud indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.« less

  8. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service.

    PubMed

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee; Yoo, Sooyoung

    2015-04-01

    To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs.

  9. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    NASA Astrophysics Data System (ADS)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  10. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    NASA Astrophysics Data System (ADS)

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; Li, J.-L. F.

    2015-08-01

    In this study, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPL measurements are 1.0 km and 0.6 km, respectively, with the largest difference ( 1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. This result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.

  11. Characterizing Arctic mixed-phase cloud structure and its relationship with humidity and temperature inversion using ARM NSA observations

    DOE PAGES

    Qiu, Shaoyue; Dong, Xiquan; Xi, Baike; ...

    2015-07-20

    In this work, the characteristics of the Arctic mixed-phase cloud (AMC) have been investigated using data collected at the Atmospheric Radiation Measurement North Slope Alaska site from October 2006 to September 2009. AMC has an annual occurrence frequency of 42.3%, which includes 18.7% of single-layered AMCs and 23.6% for multiple layers. Two cloud base heights (CBHs) are defined from ceilometer and micropulse lidar (MPL) measurements. For single-layered AMC, the ceilometer-derived CBH represents the base of the liquid-dominant layer near the cloud top, while MPL-derived CBH represents base of the lower ice-dominant layer. The annual mean CBHs from ceilometer and MPLmore » measurements are 1.0 km and 0.6 km, respectively, with the largest difference (~1.0 km) occurring from December to March and the smallest difference in September. The humidity inversion occurrence decreases with increasing humidity inversion intensity (stronger in summer than in winter). During the winter months, AMC occurrences increase from 15% to 35% when the inversion intensity increases from 0.1 to 0.9 g/kg. On the contrary, despite a higher frequency of strong humidity inversion in summer, AMC occurrences are nearly invariant for different inversion intensities. On average, humidity and temperature inversion frequencies of occurrence above an AMC are 5 and 8 times, respectively, as high as those below an AMC. The strong inversion occurrences for both humidity and temperature above an AMC provide the moisture sources from above for the formation and maintenance of AMCs. In conclusion, this result helps to reconcile the persistency of AMCs even when the Arctic surface is covered by snow and ice.« less

  12. Analysis of actinic flux profiles measured from an ozonesonde balloon

    NASA Astrophysics Data System (ADS)

    Wang, P.; Allaart, M.; Knap, W. H.; Stammes, P.

    2015-04-01

    A green light sensor has been developed at KNMI to measure actinic flux profiles using an ozonesonde balloon. In total, 63 launches with ascending and descending profiles were performed between 2006 and 2010. The measured uncalibrated actinic flux profiles are analysed using the Doubling-Adding KNMI (DAK) radiative transfer model. Values of the cloud optical thickness (COT) along the flight track were taken from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) Cloud Physical Properties (CPP) product. The impact of clouds on the actinic flux profile is evaluated on the basis of the cloud modification factor (CMF) at the cloud top and cloud base, which is the ratio between the actinic fluxes for cloudy and clear-sky scenes. The impact of clouds on the actinic flux is clearly detected: the largest enhancement occurs at the cloud top due to multiple scattering. The actinic flux decreases almost linearly from cloud top to cloud base. Above the cloud top the actinic flux also increases compared to clear-sky scenes. We find that clouds can increase the actinic flux to 2.3 times the clear-sky value at cloud top and decrease it to about 0.05 at cloud base. The relationship between CMF and COT agrees well with DAK simulations, except for a few outliers. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost. It is worth further developing the instrument and launching it together with atmospheric chemistry composition sensors.

  13. Computer simulations of ions in radio-frequency traps

    NASA Technical Reports Server (NTRS)

    Williams, A.; Prestage, J. D.; Maleki, L.; Djomehri, J.; Harabetian, E.

    1990-01-01

    The motion of ions in a trapped-ion frequency standard affects the stability of the standard. In order to study the motion and structures of large ion clouds in a radio-frequency (RF) trap, a computer simulation of the system that incorporates the effect of thermal excitation of the ions was developed. Results are presented from the simulation for cloud sizes up to 512 ions, emphasizing cloud structures in the low-temperature regime.

  14. Multi-Sensor Investigation of a Regional High-Arctic Cloudy Event

    NASA Astrophysics Data System (ADS)

    Ivanescu, L.; O'Neill, N. T.; Blanchet, J. P.; Baibakov, K.; Chaubey, J. P.; Perro, C. W.; Duck, T. J.

    2014-12-01

    A regional high-Arctic cloud event observed in March, 2011 at the PEARL Observatory, near the Eureka Weather Station (80°N, 86°W), was investigated with a view to better understanding cloud formation mechanisms during the Polar night. We analysed the temporal cloud evolution with a suite of nighttime, ground-based remote sensing (RS) instruments, supplemented by radiosonde profiles and surface weather measurements. The RS suite included Raman lidar, cloud radar, a star-photometer and microwave-radiometers. In order to estimate the spatial extent and vertical variability of the cloud mass, we employed satellite-based lidar (CALIPSO) and radar (CloudSat) profiles in the regional neighbourhood of Eureka (at a latitude of 80°N, Eureka benefits from a high frequency of CALIPSO and CloudSat overpasses). The ground-based and satellite-based observations provide quantitative measurements of extensive (bulk) properties (cloud and aerosol optical depths), and intensive (per particle properties) such as aerosol and cloud particle size as well as shape, density and aggregation phase of the cloud particulates. All observations were then compared with the upper atmosphere NCEP/NCAR reanalyses in order to understand better the synoptic context of the cloud mass dynamics as a function of key meteorological parameters such as upper air temperature and water vapor circulation. Preliminary results indicated the presence of a particular type of thin ice cloud (TIC-2) associated with a deep and stable atmospheric low. A classification into small and large ice crystal size (< 40 μm and > 40 μm, respectively), identifies the clouds as TIC-1 or TIC-2. This classification is hypothesized to be associated with the nature of the aerosols (non-anthropogenic versus anthropogenic) serving as ice nuclei in their formation. Such a distinction has important implications on the initiation of precipitation, removal rate of the cloud particles and, in consequence, the radiative forcing properties on a regional basis.

  15. Zero-gravity cloud physics.

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.; Vaughan, W. W.

    1972-01-01

    The first results of an ongoing preliminary-concept and detailed-feasibility study of a zero-gravity earth-orbital cloud physics research facility are reviewed. Current planning and thinking are being shaped by two major conclusions of this study: (1) there is a strong requirement for and it is feasible to achieve important and significant research in a zero-gravity cloud physics facility; and (2) some very important experiments can be accomplished with 'off-the-shelf' type hardware by astronauts who have no cloud-physics background; the most complicated experiments may require sophisticated observation and motion subsystems and the astronaut may need graduate level cloud physics training; there is a large number of experiments whose complexity varies between these two extremes.

  16. New insight of Arctic cloud parameterization from regional climate model simulations, satellite-based, and drifting station data

    NASA Astrophysics Data System (ADS)

    Klaus, D.; Dethloff, K.; Dorn, W.; Rinke, A.; Wu, D. L.

    2016-05-01

    Cloud observations from the CloudSat and CALIPSO satellites helped to explain the reduced total cloud cover (Ctot) in the atmospheric regional climate model HIRHAM5 with modified cloud physics. Arctic climate conditions are found to be better reproduced with (1) a more efficient Bergeron-Findeisen process and (2) a more generalized subgrid-scale variability of total water content. As a result, the annual cycle of Ctot is improved over sea ice, associated with an almost 14% smaller area average than in the control simulation. The modified cloud scheme reduces the Ctot bias with respect to the satellite observations. Except for autumn, the cloud reduction over sea ice improves low-level temperature profiles compared to drifting station data. The HIRHAM5 sensitivity study highlights the need for improving accuracy of low-level (<700 m) cloud observations, as these clouds exert a strong impact on the near-surface climate.

  17. A New Cloud Architecture of Virtual Trusted Platform Modules

    NASA Astrophysics Data System (ADS)

    Liu, Dongxi; Lee, Jack; Jang, Julian; Nepal, Surya; Zic, John

    We propose and implement a cloud architecture of virtual Trusted Platform Modules (TPMs) to improve the usability of TPMs. In this architecture, virtual TPMs can be obtained from the TPM cloud on demand. Hence, the TPM functionality is available for applications that do not have physical TPMs in their local platforms. Moreover, the TPM cloud allows users to access their keys and data in the same virtual TPM even if they move to untrusted platforms. The TPM cloud is easy to access for applications in different languages since cloud computing delivers services in standard protocols. The functionality of the TPM cloud is demonstrated by applying it to implement the Needham-Schroeder public-key protocol for web authentications, such that the strong security provided by TPMs is integrated into high level applications. The chain of trust based on the TPM cloud is discussed and the security properties of the virtual TPMs in the cloud is analyzed.

  18. Life in the clouds: are tropical montane cloud forests responding to changes in climate?

    PubMed

    Hu, Jia; Riveros-Iregui, Diego A

    2016-04-01

    The humid tropics represent only one example of the many places worldwide where anthropogenic disturbance and climate change are quickly affecting the feedbacks between water and trees. In this article, we address the need for a more long-term perspective on the effects of climate change on tropical montane cloud forests (TMCF) in order to fully assess the combined vulnerability and long-term response of tropical trees to changes in precipitation regimes, including cloud immersion. We first review the ecophysiological benefits that cloud water interception offers to trees in TMCF and then examine current climatological evidence that suggests changes in cloud base height and impending changes in cloud immersion for TMCF. Finally, we propose an experimental approach to examine the long-term dynamics of tropical trees in TMCF in response to environmental conditions on decade-to-century time scales. This information is important to assess the vulnerability and long-term response of TMCF to changes in cloud cover and fog frequency and duration.

  19. Interannual variability of high ice cloud properties over the tropics

    NASA Astrophysics Data System (ADS)

    Tamura, S.; Iwabuchi, H.

    2015-12-01

    The El Niño/Southern Oscillation (ENSO) affects atmospheric conditions and cloud physical properties such as cloud fraction (CF) and cloud top height (CTH). However, an impact of the ENSO on physical properties in high-ice cloud is not well known. Therefore, this study attempts to reveal relationship between variability of ice cloud physical properties and ENSO. Ice clouds are inferred with the multiband IR method in this study. Ice clouds are categorized in terms of cloud optical thickness (COT) as thin (0.1< COT <0.3), opaque (0.3< COT <3.6), thick (3.6< COT <11), and deep convective (DC) (11< COT) clouds, and relationship between ENSO and interannual variability of cloud physical properties is investigated for each category during the period from January 2003 to December 2014. The deseasonalized anomalies of CF and CTH in all categories correlate well with Niño3.4 index, with positive anomaly over the eastern Pacific and negative anomaly over the western Pacific during El Niño condition. However, the global distribution of these correlation coefficients is different by cloud categories. For example, CF of DC correlates well with Niño3.4 index over the convergence zone, while, that of thin cloud shows high correlation extending to high latitude from convergence zone, suggesting a connection with cloud formation. The global distributions of average rate of change differ by cloud category, because the different associate with ENSO and gradual trend toward La Niña condition had occurred over the analysis period. In this conference, detailed results and relationship between variability of cloud physical properties and atmospheric conditions will be shown.

  20. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications

    NASA Astrophysics Data System (ADS)

    Zhu, Zhe

    2017-08-01

    The free and open access to all archived Landsat images in 2008 has completely changed the way of using Landsat data. Many novel change detection algorithms based on Landsat time series have been developed We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications. We observed the trend that the more recent the study, the higher the frequency of Landsat time series used. We reviewed a series of image preprocessing steps, including atmospheric correction, cloud and cloud shadow detection, and composite/fusion/metrics techniques. We divided all change detection algorithms into six categories, including thresholding, differencing, segmentation, trajectory classification, statistical boundary, and regression. Within each category, six major characteristics of different algorithms, such as frequency, change index, univariate/multivariate, online/offline, abrupt/gradual change, and sub-pixel/pixel/spatial were analyzed. Moreover, some of the widely-used change detection algorithms were also discussed. Finally, we reviewed different change detection applications by dividing these applications into two categories, change target and change agent detection.

  1. Design and deployment of an elastic network test-bed in IHEP data center based on SDN

    NASA Astrophysics Data System (ADS)

    Zeng, Shan; Qi, Fazhi; Chen, Gang

    2017-10-01

    High energy physics experiments produce huge amounts of raw data, while because of the sharing characteristics of the network resources, there is no guarantee of the available bandwidth for each experiment which may cause link congestion problems. On the other side, with the development of cloud computing technologies, IHEP have established a cloud platform based on OpenStack which can ensure the flexibility of the computing and storage resources, and more and more computing applications have been deployed on virtual machines established by OpenStack. However, under the traditional network architecture, network capability can’t be required elastically, which becomes the bottleneck of restricting the flexible application of cloud computing. In order to solve the above problems, we propose an elastic cloud data center network architecture based on SDN, and we also design a high performance controller cluster based on OpenDaylight. In the end, we present our current test results.

  2. The early stages of massive star formation: tracing the physical and chemical conditions in hot cores

    NASA Astrophysics Data System (ADS)

    Calcutt, Hannah

    2015-04-01

    Molecules are essential to the formation of stars, by allowing radiation to escape the cloud and cooling to occur. Over 180 molecules have been detected in interstellar environments, ranging from comets to interstellar clouds. Their spectra are useful probes of the conditions in which these molecules form. Comparison of rest frequencies to observed frequencies can provide information about the velocity of gas and indicate physical structures. The density, temperature, and excitation conditions of gas can be determined directly from the spectra of molecules. Furthermore, by taking a chemical inventory of a particular object, one can gain an understanding of the chemical processes occurring within a cloud. The class of molecules known as complex molecules (>6 atoms), are of particular interest when probing the conditions in massive starforming environments, as they are observed to trace a more compact region than smaller molecules. This thesis details the work of my PhD, to explore how complex molecules can be used to trace the physical and chemical conditions in hot cores (HCs), one of the earliest stages of massive star formation. This work combines both the observations and chemical modelling of several different massive star-forming regions. We identify molecular transitions observed in the spectra of these regions, and calculate column densities and rotation temperatures of these molecules (Chapters 2 and 3). In Chapter 4, we chemically model the HCs, and perform a comparison between observational column densities and chemical modelling column densities. In Chapter 5, we look at the abundance ratio of three isomers, acetic acid, glycolaldehyde, and methyl formate, to ascertain whether this ratio can be used as an indicator of HC evolution. Finally, we explore the chemistry of the HC IRAS 17233-3606, to identify emission features in the spectra, and determine column densities and rotation temperatures of the detected molecules.

  3. Exact dynamics of a one dimensional Bose gas in a periodic time-dependent harmonic trap

    NASA Astrophysics Data System (ADS)

    Scopa, Stefano; Unterberger, Jéremie; Karevski, Dragi

    2018-05-01

    We study the unitary dynamics of a 1D gas of hard-core bosons trapped into a harmonic potential which varies periodically in time with frequency . Such periodic systems can be classified into orbits of different monodromies corresponding to two different physical situations, namely the case in which the bosonic cloud remains stable during the time-evolution and the case where it turns out to be unstable. In the present work we derive in the large particle number limit exact results for the stroboscopic evolution of the energy and particle densities in both physical situations.

  4. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  5. Interstellar clouds - From a dynamical perspective on their chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, S. S.

    1985-01-01

    The possibility is examined that in the course of its dynamical evolution, a single mass of interstellar gas would exhibit properties of diffuse clouds, dense clouds and finally also of clouds perturbed by shocks or intense UV or X-ray radiation generated by a star of its own creation. This concept provides a common thread through the bewildering diversity of physical and chemical compositional properties shown by interstellar clouds. From this perspective, instead of being static objects, interstellar clouds are possibly incessantly evolving from initially diffuse to later dense state and then to star formation which ultimately restructures or disperses the remaining cloud material to begin the whole evolutionary process once again. Based on a simplified study of interstellar chemistry from a dynamical perspective, the ideas are presented as an heuristic: to encourage thought on the future direction of molecular astrophysics and the need to consider the chemical behavior of interstellar clouds in conjunction with, rather than in isolation from, their dynamical behavior. A physical basis must be sought for the semiempirical temperature formula which has been given a critical role in the collapse of diffuse clouds. Self-shielding effects in the chemistry of CO were neglected and this drawback should be removed; the ability of the model to explain the fractional abundances of more complex molecules, such as cyanopolyynes, should be examined.

  6. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Zhang, X.; Gong, S.

    2015-12-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under CMA chemical weather modeling system GRAPES/CUACE. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) is fed online interactively into a two-moment cloud scheme (WDM6) and a convective parameterization to drive the cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred. The results show that interactive aerosols with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content and cloud droplet number concentrations while decrease the mean diameter of cloud droplets with varying magnitudes of the changes in each case and region. These interactive micro-physical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24% to 48% enhancements of TS scoring for 6-h precipitation in almost all regions. The interactive aerosols with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3°C.

  7. Observations of frequency shift associated with schooling fish

    NASA Astrophysics Data System (ADS)

    Diachok, Orest

    2003-04-01

    The number of sardines per school, N, is nominally 10000 and the separation between sardines in school, s, is nominally 1 fish length, L.s is much smaller than the wavelength at f (the resonance frequency of individuals), which suggests that schools may exhibit acoustic properties of bubble clouds. Long-term, broadband transmission loss measurements at a shallow-water site in the Gulf of Lion revealed absorption lines due to dispersed sardines at 1.3 kHz at 20 m at night and 2.7 kHz at 65 m at dawn. Temporal changes in observed values of f were consistent with concurrent echo sounder observations of the vertical migration of sardines, and theoretical computations based on laboratory measurements of swim bladder dimensions. The measured resonance frequency of sardines in schools during daytime, 1.7 kHz at 65 m, was 0.6f at the same depth at dawn. The observed frequency shift is consistent with a hybrid model of the fundamental resonance frequency of a bubble cloud, which is based on theories developed by Feuillade, Nero, and Love (1996) and dAgostino and Brennan (1988), and s=0.8 L and N=5000 fish per school. [Work supported by ONR.

  8. Global Distribution and Vertical Structure of Clouds Revealed by CALIPSO

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Minnis, P.; Winker, D.; Huang, J.; Sun-Mack, S.; Ayers, K.

    2007-12-01

    Understanding the effects of clouds on Earth's radiation balance, especially on longwave fluxes within the atmosphere, depends on having accurate knowledge of cloud vertical location within the atmosphere. The Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite mission provides the opportunity to measure the vertical distribution of clouds at a greater detail than ever before possible. The CALIPSO cloud layer products from June 2006 to June 2007 are analyzed to determine the occurrence frequency and thickness of clouds as functions of time, latitude, and altitude. In particular, the latitude-longitude and vertical distributions of single- and multi-layer clouds and the latitudinal movement of cloud cover with the changing seasons are examined. The seasonal variablities of cloud frequency and geometric thickness are also analyzed and compared with similar quantities derived from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) using the Clouds and the Earth's Radiant Energy System (CERES) cloud retrieval algorithms. The comparisons provide an estimate of the errors in cloud fraction, top height, and thickness incurred by passive algorithms.

  9. Study on the high-frequency laser measurement of slot surface difference

    NASA Astrophysics Data System (ADS)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  10. Photolysis frequency and cloud dynamics during DC3 and SEAC4RS

    NASA Astrophysics Data System (ADS)

    Hall, S. R.; Ullmann, K.; Madronich, S.; Hair, J. W.; Butler, C. F.; Fenn, M. A.

    2013-12-01

    Cloud shading plays a critical role in extending the lifetime of short-lived chemical species. During convection, photochemistry is reduced such that short-lived species may be transported from the boundary layer to the upper troposphere/ lower stratosphere. In the anvil outflow, shading continues within and below the cloud. However, near the highly scattering cloud top, the chemistry is greatly accelerated. In this rapidly evolving environment, accurate photolysis frequencies are required to study photochemical evolution of the complex composition. During the Deep Convective Clouds and Chemistry (DC3, 2012) and the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, 2013) campaigns, photolysis frequencies were determined by measurement of spectrally resolved actinic flux by the Charge-coupled device Actinic Flux Spectroradiometer (CAFS) on the NASA DC-8 and the HIAPER Airborne Radiation Package (HARP) on the NCAR G-V aircraft. Vertical flight profiles allowed in situ characterization of the radiation environment. Input of geometrical cloud characteristics into the Tropospheric Ultraviolet and Visible (TUV) Radiation was used to constrain cloud optical depths for more spatially and temporally stable conditions.

  11. 3D Radiative Aspects of the Increased Aerosol Optical Depth Near Clouds

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Wen, Guoyong; Remer, Lorraine; Cahalan, Robert; Coakley, Jim

    2007-01-01

    To characterize aerosol-cloud interactions it is important to correctly retrieve aerosol optical depth in the vicinity of clouds. It is well reported in the literature that aerosol optical depth increases with cloud cover. Part of the increase comes from real physics as humidification; another part, however, comes from 3D cloud effects in the remote sensing retrievals. In many cases it is hard to say whether the retrieved increased values of aerosol optical depth are remote sensing artifacts or real. In the presentation, we will discuss how the 3D cloud affects can be mitigated. We will demonstrate a simple model that can assess the enhanced illumination of cloud-free columns in the vicinity of clouds. This model is based on the assumption that the enhancement in the cloud-free column radiance comes from the enhanced Rayleigh scattering due to presence of surrounding clouds. A stochastic cloud model of broken cloudiness is used to simulate the upward flux.

  12. A physically based algorithm for non-blackbody correction of the cloud top temperature for the convective clouds

    NASA Astrophysics Data System (ADS)

    Wang, C.; Luo, Z. J.; Chen, X.; Zeng, X.; Tao, W.; Huang, X.

    2012-12-01

    Cloud top temperature is a key parameter to retrieval in the remote sensing of convective clouds. Passive remote sensing cannot directly measure the temperature at the cloud tops. Here we explore a synergistic way of estimating cloud top temperature by making use of the simultaneous passive and active remote sensing of clouds (in this case, CloudSat and MODIS). Weighting function of the MODIS 11μm band is explicitly calculated by feeding cloud hydrometer profiles from CloudSat retrievals and temperature and humidity profiles based on ECMWF ERA-interim reanalysis into a radiation transfer model. Among 19,699 tropical deep convective clouds observed by the CloudSat in 2008, the averaged effective emission level (EEL, where the weighting function attains its maximum) is at optical depth 0.91 with a standard deviation of 0.33. Furthermore, the vertical gradient of CloudSat radar reflectivity, an indicator of the fuzziness of convective cloud top, is linearly proportional to, d_{CTH-EEL}, the distance between the EEL of 11μm channel and cloud top height (CTH) determined by the CloudSat when d_{CTH-EEL}<0.6km. Beyond 0.6km, the distance has little sensitivity to the vertical gradient of CloudSat radar reflectivity. Based on these findings, we derive a formula between the fuzziness in the cloud top region, which is measurable by CloudSat, and the MODIS 11μm brightness temperature assuming that the difference between effective emission temperature and the 11μm brightness temperature is proportional to the cloud top fuzziness. This formula is verified using the simulated deep convective cloud profiles by the Goddard Cumulus Ensemble model. We further discuss the application of this formula in estimating cloud top buoyancy as well as the error characteristics of the radiative calculation within such deep-convective clouds.

  13. Assessing the Suitability of the ClOud Reflection Algorithm (CORA) in Modelling the Evolution of an Artificial Plasma Cloud in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Jackson-Booth, N.

    2016-12-01

    Artificial Ionospheric Modification (AIM) attempts to modify the ionosphere in order to alter the propagation environment. It can be achieved through injecting the ionosphere with aerosols, chemicals or radio signals. The effects of any such release can be detected through the deployment of sensors, including ground based high frequency (HF) sounders. During the Metal Oxide Space Clouds (MOSC) experiment (undertaken in April/May 2013 in the Kwajalein Atoll, part of the Marshall Islands) several oblique ionograms were recorded from a ground based HF system. These ionograms were collected over multiple geometries and allowed the effects on the HF propagation environment to be understood. These ionograms have subsequently been used in the ClOud Reflection Algorithm (CORA) to attempt to model the evolution of the cloud following release. This paper describes the latest validation results from CORA, both from testing against ionograms, but also other independent models of cloud evolution from MOSC. For all testing the various cloud models (including that generated by CORA) were incorporated into a background ionosphere through which a 3D numerical ray trace was run to produce synthetic ionograms that could be compared with the ionograms recorded during MOSC.

  14. An Eight-Month Sample of Marine Stratocumulus Cloud Fraction, Albedo, and Integrated Liquid Water.

    NASA Astrophysics Data System (ADS)

    Fairall, C. W.; Hare, J. E.; Snider, J. B.

    1990-08-01

    As part of the First International Satellite Cloud Climatology Regional Experiment (FIRE), a surface meteorology and shortwave/longwave irradiance station was operated in a marine stratocumulus regime on the northwest tip of San Nicolas island off the coast of Southern California. Measurements were taken from March through October 1987, including a FIRE Intensive Field Operation (IFO) held in July. Algorithms were developed to use the longwave irradiance data to estimate fractional cloudiness and to use the shortwave irradiance to estimate cloud albedo and integrated cloud liquid water content. Cloud base height is estimated from computations of the lifting condensation level. The algorithms are tested against direct measurements made during the IFO; a 30% adjustment was made to the liquid water parameterization. The algorithms are then applied to the entire database. The stratocumulus clouds over the island are found to have a cloud base height of about 400 m, an integrated liquid water content of 75 gm2, a fractional cloudiness of 0.95, and an albedo of 0.55. Integrated liquid water content rarely exceeds 350 g m2 and albedo rarely exceeds 0.90 for stratocumulus clouds. Over the summer months, the average cloud fraction shows a maximum at sunrise of 0.74 and a minimum at sunset of 0.41. Over the same period, the average cloud albedo shows a maximum of 0.61 at sunrise and a minimum of 0.31 a few hours after local noon (although the estimate is more uncertain because of the extreme solar zenith angle). The use of joint frequency distributions of fractional cloudiness with solar transmittance or cloud base height to classify cloud types appears to be useful.

  15. Changes in the type of precipitation and associated cloud types in Eastern Romania (1961-2008)

    NASA Astrophysics Data System (ADS)

    Manea, Ancuta; Birsan, Marius-Victor; Tudorache, George; Cărbunaru, Felicia

    2016-03-01

    Recent climate change is characterized (among other things) by changes in the frequency of some meteorological phenomena. This paper deals with the long-term changes in various precipitation types, and the connection between their variability and cloud type frequencies, at 11 meteorological stations from Eastern Romania over 1961-2008. These stations were selected with respect to data record completeness for all considered variables (weather phenomena and cloud type). The meteorological variables involved in the present study are: monthly number of days with rain, snowfall, snow showers, rain and snow (sleet), sleet showers and monthly frequency of the Cumulonimbus, Nimbostratus and Stratus clouds. Our results show that all stations present statistically significant decreasing trends in the number of days with rain in the warm period of the year. Changes in the frequency of days for each precipitation type show statistically significant decreasing trends for non-convective (stratiform) precipitation - rain, drizzle, sleet and snowfall -, while the frequencies of rain shower and snow shower (convective precipitation) are increasing. Cloud types show decreasing trends for Nimbostratus and Stratus, and increasing trends for Cumulonimbus.

  16. Optical fibre multi-parameter sensing with secure cloud based signal capture and processing

    NASA Astrophysics Data System (ADS)

    Newe, Thomas; O'Connell, Eoin; Meere, Damien; Yuan, Hongwei; Leen, Gabriel; O'Keeffe, Sinead; Lewis, Elfed

    2016-05-01

    Recent advancements in cloud computing technologies in the context of optical and optical fibre based systems are reported. The proliferation of real time and multi-channel based sensor systems represents significant growth in data volume. This coupled with a growing need for security presents many challenges and presents a huge opportunity for an evolutionary step in the widespread application of these sensing technologies. A tiered infrastructural system approach is adopted that is designed to facilitate the delivery of Optical Fibre-based "SENsing as a Service- SENaaS". Within this infrastructure, novel optical sensing platforms, deployed within different environments, are interfaced with a Cloud-based backbone infrastructure which facilitates the secure collection, storage and analysis of real-time data. Feedback systems, which harness this data to affect a change within the monitored location/environment/condition, are also discussed. The cloud based system presented here can also be used with chemical and physical sensors that require real-time data analysis, processing and feedback.

  17. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 whenmore » the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.« less

  18. An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments

    PubMed Central

    Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L.; de Carvalho, Carlos Giovanni N.; Mendes, Douglas Lopes de S.; Costa, Valney da Gama

    2018-01-01

    Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user’s queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios. PMID:29495406

  19. An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments.

    PubMed

    Lemos, Marcus Vinícius de S; Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L; de Carvalho, Carlos Giovanni N; Mendes, Douglas Lopes de S; Costa, Valney da Gama

    2018-02-26

    Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user's queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user's queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.

  20. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  1. Evaluation of Cloud Physical Properties of ECMWF Analysis and Re-Analysis (ERA-40 and ERA Interim) against CERES Tropical Deep Convective Cloud Object Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2008-01-01

    This study presents an approach that converts the vertical profiles of grid-averaged cloud properties from large-scale models to probability density functions (pdfs) of subgrid-cell cloud physical properties measured at satellite footprints. Cloud physical and radiative properties, rather than just cloud and precipitation occurrences, of assimilated cloud systems by the European Center for Medium-range Weather Forecasts (ECMWF) operational analysis (EOA) and ECMWF Re-Analyses (ERA-40 and ERA Interim) are validated against those obtained from Earth Observing System satellite cloud object data for January-August 1998 and March 2000 periods. These properties include ice water path (IWP), cloud-top height and temperature, cloud optical depth and solar and infrared radiative fluxes. Each cloud object, a contiguous region with similar cloud physical properties, is temporally and spatially matched with EOA and ERA-40 data. Results indicate that most pdfs of EOA and ERA-40 cloud physical and radiative properties agree with those of satellite observations of the tropical deep convective cloud-object type for the January-August 1998 period. There are, however, significant discrepancies in selected ranges of the cloud property pdfs such as the upper range of EOA cloud top height. A major discrepancy is that the dependence of the pdfs on the cloud object size for both EOA and ERA-40 is not as strong as in the observations. Modifications to the cloud parameterization in ECMWF that occurred in October 1999 eliminate the clouds near the tropopause but shift power of the pdf to lower cloud-top heights and greatly reduce the ranges of IWP and cloud optical depth pdfs. These features persist in ERA-40 due to the use of the same cloud parameterizations. The downgrade of data assimilation technique and the lack of snow water content information in ERA-40, not the coarser horizontal grid resolution, are also responsible for the disagreements with observed pdfs of cloud physical properties although the detection rates of cloud object occurrence are improved for small size categories. A possible improvement to the convective parameterization is to introduce a stronger dependence of updraft penetration heights with grid-cell dynamics. These conclusions will be rechecked using the ERA Interim data, due to recent changes in the ECMWF convective parameterization (Bechtold et al. 2004, 2008). Results from the ERA Interim will be presented at the meeting.

  2. Microphysical and macrophysical characteristics of ice and mixed-phase clouds compared between in-situ observations from the NSF ORCAS campaign and the NCAR Community Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; D'Alessandro, J.; Wu, C.; Liu, X.; Jensen, J. B.

    2016-12-01

    Large spatial coverage of ice and mixed-phase clouds is frequently observed in the higher latitudinal regions, especially over the Arctic and Antarctica. However, because the microphysical properties in the ice and mixed-phase clouds are highly variable in space, major challenges still remain in understanding the characteristics of ice and mixed-phase clouds on the microscale, as well as representing the sub-grid scale variabilities of relative humidity in the General Circulation Models. In this work, we use the in-situ, airborne observations from the NSF O2/N2 Ratio and CO2 Airborne Southern Ocean (ORCAS) Study (January - February 2016) to analyze the microphysical and macrophysical characteristics of ice and mixed-phase clouds over the Southern Ocean. A total of 18 flights onboard the NSF Gulfstream-V research aircraft are used to quantify the cloud properties and relative humidity distributions at various temperatures, pressures and aerosol background. New QC/QA water vapor data of the Vertical Cavity Surface Emitting Laser based on the laboratory calibration in summer 2016 will be presented. The statistical distributions of cloud microphysical properties and relative humidity with respect to ice (RHi) derived from in-situ observations will be compared with the NCAR Community Atmospheric Model Version 5 (CAM5). The horizontal extent of ice and mixed-phase clouds, and their formation and evolution will be derived based on the method of Diao et al. (2013). The occurrence frequency of ice supersaturation (i.e., RHi > 100%) will be examined in relation to various chemical tracers (i.e., O3 and CO) and total aerosol number concentrations (e.g., aerosols > 0.1 μm and > 0.5 μm) at clear-sky and in-cloud conditions. We will quantify whether these characteristics of ISS are scale-dependent from the microscale to the mesoscale. Overall, our work will evaluate the spatial variabilities of RHi inside/outside of ice and mixed-phase clouds, the frequency and magnitude of ice supersaturation, as well as the correlations between ice water content and liquid water content in the CAM5 simulations.

  3. Characteristics of middle and upper tropospheric clouds as deduced from rawinsonde data

    NASA Technical Reports Server (NTRS)

    Starr, D. D. O.; Cox, S. K.

    1982-01-01

    The static environment of middle and upper tropospheric clouds is characterized. Computed relative humidity with respect to ice is used to diagnose the presence of cloud layer. The deduced seasonal mean cloud cover estimates based on this technique are shown to be reasonable. The cases are stratified by season and pressure thickness, and the dry static stability, vertical wind speed shear, and Richardson number are computed for three layers for each case. Mean values for each parameter are presented for each stratification and layer. The relative frequency of occurrence of various structures is presented for each stratification. The observed values of each parameter and the observed structure of each parameter are quite variable. Structures corresponding to any of a number of different conceptual models may be found. Moist adiabatic conditions are not commonly observed and the stratification based on thickness yields substantially different results for each group.

  4. StatisticAl Characteristics of Cloud over Beijing, China Obtained FRom Ka band Doppler Radar Observation

    NASA Astrophysics Data System (ADS)

    LIU, J.; Bi, Y.; Duan, S.; Lu, D.

    2017-12-01

    It is well-known that cloud characteristics, such as top and base heights and their layering structure of micro-physical parameters, spatial coverage and temporal duration are very important factors influencing both radiation budget and its vertical partitioning as well as hydrological cycle through precipitation data. Also, cloud structure and their statistical distribution and typical values will have respective characteristics with geographical and seasonal variation. Ka band radar is a powerful tool to obtain above parameters around the world, such as ARM cloud radar at the Oklahoma US, Since 2006, Cloudsat is one of NASA's A-Train satellite constellation, continuously observe the cloud structure with global coverage, but only twice a day it monitor clouds over same local site at same local time.By using IAP Ka band Doppler radar which has been operating continuously since early 2013 over the roof of IAP building in Beijing, we obtained the statistical characteristic of clouds, including cloud layering, cloud top and base heights, as well as the thickness of each cloud layer and their distribution, and were analyzed monthly and seasonal and diurnal variation, statistical analysis of cloud reflectivity profiles is also made. The analysis covers both non-precipitating clouds and precipitating clouds. Also, some preliminary comparison of the results with Cloudsat/Calipso products for same period and same area are made.

  5. Silicon photonics cloud (SiCloud)

    NASA Astrophysics Data System (ADS)

    DeVore, Peter T. S.; Jiang, Yunshan; Lynch, Michael; Miyatake, Taira; Carmona, Christopher; Chan, Andrew C.; Muniam, Kuhan; Jalali, Bahram

    2015-02-01

    We present SiCloud (Silicon Photonics Cloud), the first free, instructional web-based research and education tool for silicon photonics. SiCloud's vision is to provide a host of instructional and research web-based tools. Such interactive learning tools enhance traditional teaching methods by extending access to a very large audience, resulting in very high impact. Interactive tools engage the brain in a way different from merely reading, and so enhance and reinforce the learning experience. Understanding silicon photonics is challenging as the topic involves a wide range of disciplines, including material science, semiconductor physics, electronics and waveguide optics. This web-based calculator is an interactive analysis tool for optical properties of silicon and related material (SiO2, Si3N4, Al2O3, etc.). It is designed to be a one stop resource for students, researchers and design engineers. The first and most basic aspect of Silicon Photonics is the Material Parameters, which provides the foundation for the Device, Sub-System and System levels. SiCloud includes the common dielectrics and semiconductors for waveguide core, cladding, and photodetection, as well as metals for electrical contacts. SiCloud is a work in progress and its capability is being expanded. SiCloud is being developed at UCLA with funding from the National Science Foundation's Center for Integrated Access Networks (CIAN) Engineering Research Center.

  6. Assessment of the NPOESS/VIIRS Nighttime Infrared Cloud Optical Properties Algorithms

    NASA Astrophysics Data System (ADS)

    Wong, E.; Ou, S. C.

    2008-12-01

    In this paper we will describe two NPOESS VIIRS IR algorithms used to retrieve microphysical properties for water and ice clouds during nighttime conditions. Both algorithms employ four VIIRS IR channels: M12 (3.7 μm), M14 (8.55 μm), M15 (10.7 μm) and M16 (12 μm). The physical basis for the two algorithms is similar in that while the Cloud Top Temperature (CTT) is derived from M14 and M16 for ice clouds the Cloud Optical Thickness (COT) and Cloud Effective Particle Size (CEPS) are derived from M12 and M15. The two algorithms depart in the different radiative transfer parameterization equations used for ice and water clouds. Both the VIIRS nighttime IR algorithms and the CERES split-window method employ the 3.7 μm and 10.7 μm bands for cloud optical properties retrievals, apparently based on similar physical principles but with different implementations. It is reasonable to expect that the VIIRS and CERES IR algorithms produce comparable performance and similar limitations. To demonstrate the VIIRS nighttime IR algorithm performance, we will select a number of test cases using NASA MODIS L1b radiance products as proxy input data for VIIRS. The VIIRS retrieved COT and CEPS will then be compared to cloud products available from the MODIS, NASA CALIPSO, CloudSat and CERES sensors. For the MODIS product, the nighttime cloud emissivity will serve as an indirect comparison to VIIRS COT. For the CALIPSO and CloudSat products, the layered COT will be used for direct comparison. Finally, the CERES products will provide direct comparison with COT as well as CEPS. This study can only provide a qualitative assessment of the VIIRS IR algorithms due to the large uncertainties in these cloud products.

  7. Microphysics in the Multi-Scale Modeling Systems with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.

    2011-01-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.

  8. On the role of density and attenuation in three-dimensional multiparameter viscoacoustic VTI frequency-domain FWI: an OBC case study from the North Sea

    NASA Astrophysics Data System (ADS)

    Operto, S.; Miniussi, A.

    2018-06-01

    3-D frequency-domain full waveform inversion (FWI) is applied on North Sea wide-azimuth ocean-bottom cable data at low frequencies (≤10 Hz) to jointly update vertical wave speed, density and quality factor Q in the viscoacoustic VTI approximation. We assess whether density and Q should be viewed as proxy to absorb artefacts resulting from approximate wave physics or are valuable for interpretation in the presence of soft sediments and gas cloud. FWI is performed in the frequency domain to account for attenuation easily. Multiparameter frequency-domain FWI is efficiently performed with a few discrete frequencies following a multiscale frequency continuation. However, grouping a few frequencies during each multiscale step is necessary to mitigate acquisition footprint and match dispersive shallow guided waves. Q and density absorb a significant part of the acquisition footprint hence cleaning the velocity model from this pollution. Low Q perturbations correlate with low-velocity zones associated with soft sediments and gas cloud. However, the amplitudes of the Q perturbations show significant variations when the inversion tuning is modified. This dispersion in the Q reconstructions is however not passed on the velocity parameter suggesting that cross-talks between first-order kinematic and second-order dynamic parameters are limited. The density model shows a good match with a well log at shallow depths. Moreover, the impedance built a posteriori from the FWI velocity and density models shows a well-focused image with however local differences with the velocity model near the sea bed where density might have absorbed elastic effects. The FWI models are finally assessed against time-domain synthetic seismogram modelling performed with the same frequency-domain modelling engine used for FWI.

  9. Radiative Effect of Clouds on Tropospheric Chemistry in a Global Three-Dimensional Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko; hide

    2006-01-01

    Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the vertical reduces the impact of clouds on photochemistry but does not significantly change our results with respect to the modest global average effect.

  10. ISCCP Cloud Properties Associated with Standard Cloud Types Identified in Individual Surface Observations

    NASA Technical Reports Server (NTRS)

    Hahn, Carole J.; Rossow, William B.; Warren, Stephen G.

    1999-01-01

    Individual surface weather observations from land stations and ships are compared with individual cloud retrievals of the International Satellite Cloud Climatology Project (ISCCP), Stage C1, for an 8-year period (1983-1991) to relate cloud optical thicknesses and cloud-top pressures obtained from satellite data to the standard cloud types reported in visual observations from the surface. Each surface report is matched to the corresponding ISCCP-C1 report for the time of observation for the 280x280-km grid-box containing that observation. Classes of the surface reports are identified in which a particular cloud type was reported present, either alone or in combination with other clouds. For each class, cloud amounts from both surface and C1 data, base heights from surface data, and the frequency-distributions of cloud-top pressure (p(sub c) and optical thickness (tau) from C1 data are averaged over 15-degree latitude zones, for land and ocean separately, for 3-month seasons. The frequency distribution of p(sub c) and tau is plotted for each of the surface-defined cloud types occurring both alone and with other clouds. The average cloud-top pressures within a grid-box do not always correspond well with values expected for a reported cloud type, particularly for the higher clouds Ci, Ac, and Cb. In many cases this is because the satellites also detect clouds within the grid-box that are outside the field of view of the surface observer. The highest average cloud tops are found for the most extensive cloud type, Ns, averaging 7 km globally and reaching 9 km in the ITCZ. Ns also has the greatest average retrieved optical thickness, tau approximately equal 20. Cumulonimbus clouds may actually attain far greater heights and depths, but do not fill the grid-box. The tau-p(sub c) distributions show features that distinguish the high, middle, and low clouds reported by the surface observers. However, the distribution patterns for the individual low cloud types (Cu, Sc, St) occurring alone overlap to such an extent that it is not possible to distinguish these cloud types from each other on the basis of tau-p(sub c) values alone. Other cloud types whose tau-p(sub c) distributions are indistinguishable are Cb, Ns, and thick As. However, the tau-p(sub c) distribution patterns for the different low cloud types are nevertheless distinguishable when all occurrences of a low cloud type are included, indicating that the different low types differ in their probabilities of co-occurrence with middle and high clouds.

  11. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  12. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions.

    PubMed

    Wilson, Adam M; Jetz, Walter

    2016-03-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.

  13. Determination of Cloud Base Height, Wind Velocity, and Short-Range Cloud Structure Using Multiple Sky Imagers Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Dong; Schwartz, Stephen E.; Yu, Dantong

    Clouds are a central focus of the U.S. Department of Energy (DOE)’s Atmospheric System Research (ASR) program and Atmospheric Radiation Measurement (ARM) Climate Research Facility, and more broadly are the subject of much investigation because of their important effects on atmospheric radiation and, through feedbacks, on climate sensitivity. Significant progress has been made by moving from a vertically pointing (“soda-straw”) to a three-dimensional (3D) view of clouds by investing in scanning cloud radars through the American Recovery and Reinvestment Act of 2009. Yet, because of the physical nature of radars, there are key gaps in ARM's cloud observational capabilities. Formore » example, cloud radars often fail to detect small shallow cumulus and thin cirrus clouds that are nonetheless radiatively important. Furthermore, it takes five to twenty minutes for a cloud radar to complete a 3D volume scan and clouds can evolve substantially during this period. Ground-based stereo-imaging is a promising technique to complement existing ARM cloud observation capabilities. It enables the estimation of cloud coverage, height, horizontal motion, morphology, and spatial arrangement over an extended area of up to 30 by 30 km at refresh rates greater than 1 Hz (Peng et al. 2015). With fine spatial and temporal resolution of modern sky cameras, the stereo-imaging technique allows for the tracking of a small cumulus cloud or a thin cirrus cloud that cannot be detected by a cloud radar. With support from the DOE SunShot Initiative, the Principal Investigator (PI)’s team at Brookhaven National Laboratory (BNL) has developed some initial capability for cloud tracking using multiple distinctly located hemispheric cameras (Peng et al. 2015). To validate the ground-based cloud stereo-imaging technique, the cloud stereo-imaging field campaign was conducted at the ARM Facility’s Southern Great Plains (SGP) site in Oklahoma from July 15 to December 24. As shown in Figure 1, the cloud stereo-imaging system consisted of two inexpensive high-definition (HD) hemispheric cameras (each cost less than $1,500) and ARM’s Total Sky Imager (TSI). Together with other co-located ARM instrumentation, the campaign provides a promising opportunity to validate stereo-imaging-based cloud base height and, more importantly, to examine the feasibility of cloud thickness retrieval for low-view-angle clouds.« less

  14. [C II] emission from L1630 in the Orion B molecular cloud

    NASA Astrophysics Data System (ADS)

    Pabst, C. H. M.; Goicoechea, J. R.; Teyssier, D.; Berné, O.; Ochsendorf, B. B.; Wolfire, M. G.; Higgins, R. D.; Riquelme, D.; Risacher, C.; Pety, J.; Le Petit, F.; Roueff, E.; Bron, E.; Tielens, A. G. G. M.

    2017-10-01

    Context. L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system σ Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes. Aims: Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. Our goal is to relate the [C II] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. Methods: The [C II] 158 μm line emission of L1630 around the Horsehead Nebula, an area of 12' × 17', was observed using the upgraded German Receiver for Astronomy at Terahertz Frequencies (upGREAT) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results: Of the [C II] emission from the mapped area 95%, 13 L⊙, originates from the molecular cloud; the adjacent H II region contributes only 5%, that is, 1 L⊙. From comparison with other data (CO (1 - 0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of nH 3 × 103 cm-3, with surface layers, including the Horsehead Nebula, having a density of up to nH 4 × 104 cm-3. The temperature of the surface gas is T 100 K. The average [C II] cooling efficiency within the molecular cloud is 1.3 × 10-2. The fraction of the mass of the molecular cloud within the studied area that is traced by [C II] is only 8%. Our PDR models are able to reproduce the FIR-[C II] correlations and also the CO (1 - 0)-[C II] correlations. Finally, we compare our results on the heating efficiency of the gas with theoretical studies of photoelectric heating by PAHs, clusters of PAHs, and very small grains, and find the heating efficiency to be lower than theoretically predicted, a continuation of the trend set by other observations. Conclusions: In L1630 only a small fraction of the gas mass is traced by [C II]. Most of the [C II] emission in the mapped area stems from PDR surfaces. The layered edge-on structure of the molecular cloud and limitations in spatial resolution put constraints on our ability to relate different tracers to each other and to the physical conditions. From our study, we conclude that the relation between [C II] emission and physical conditions is likely to be more complicated than often assumed. The theoretical heating efficiency is higher than the one we calculate from the observed [C II] emission in the L1630 molecular cloud.

  15. Architecture Design of Healthcare Software-as-a-Service Platform for Cloud-Based Clinical Decision Support Service

    PubMed Central

    Oh, Sungyoung; Cha, Jieun; Ji, Myungkyu; Kang, Hyekyung; Kim, Seok; Heo, Eunyoung; Han, Jong Soo; Kang, Hyunggoo; Chae, Hoseok; Hwang, Hee

    2015-01-01

    Objectives To design a cloud computing-based Healthcare Software-as-a-Service (SaaS) Platform (HSP) for delivering healthcare information services with low cost, high clinical value, and high usability. Methods We analyzed the architecture requirements of an HSP, including the interface, business services, cloud SaaS, quality attributes, privacy and security, and multi-lingual capacity. For cloud-based SaaS services, we focused on Clinical Decision Service (CDS) content services, basic functional services, and mobile services. Microsoft's Azure cloud computing for Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) was used. Results The functional and software views of an HSP were designed in a layered architecture. External systems can be interfaced with the HSP using SOAP and REST/JSON. The multi-tenancy model of the HSP was designed as a shared database, with a separate schema for each tenant through a single application, although healthcare data can be physically located on a cloud or in a hospital, depending on regulations. The CDS services were categorized into rule-based services for medications, alert registration services, and knowledge services. Conclusions We expect that cloud-based HSPs will allow small and mid-sized hospitals, in addition to large-sized hospitals, to adopt information infrastructures and health information technology with low system operation and maintenance costs. PMID:25995962

  16. Performance evaluation of multi-stratum resources optimization with network functions virtualization for cloud-based radio over optical fiber networks.

    PubMed

    Yang, Hui; He, Yongqi; Zhang, Jie; Ji, Yuefeng; Bai, Wei; Lee, Young

    2016-04-18

    Cloud radio access network (C-RAN) has become a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing using cloud BBUs. In our previous work, we implemented cross stratum optimization of optical network and application stratums resources that allows to accommodate the services in optical networks. In view of this, this study extends to consider the multiple dimensional resources optimization of radio, optical and BBU processing in 5G age. We propose a novel multi-stratum resources optimization (MSRO) architecture with network functions virtualization for cloud-based radio over optical fiber networks (C-RoFN) using software defined control. A global evaluation scheme (GES) for MSRO in C-RoFN is introduced based on the proposed architecture. The MSRO can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical and BBU resources effectively to maximize radio coverage. The efficiency and feasibility of the proposed architecture are experimentally demonstrated on OpenFlow-based enhanced SDN testbed. The performance of GES under heavy traffic load scenario is also quantitatively evaluated based on MSRO architecture in terms of resource occupation rate and path provisioning latency, compared with other provisioning scheme.

  17. Improving Representation of Tropical Cloud Overlap in GCMs Based on Cloud-Resolving Model Data

    NASA Astrophysics Data System (ADS)

    Jing, Xianwen; Zhang, Hua; Satoh, Masaki; Zhao, Shuyun

    2018-04-01

    The decorrelation length ( L cf) has been widely used to describe the behavior of vertical overlap of clouds in general circulation models (GCMs); however, it has been a challenge to associate L cf with the large-scale meteorological conditions during cloud evolution. This study explored the relationship between L cf and the strength of atmospheric convection in the tropics based on output from a global cloud-resolving model. L cf tends to increase with vertical velocity in the mid-troposphere ( w 500) at locations of ascent, but shows little or no dependency on w 500 at locations of descent. A representation of L cf as a function of vertical velocity is obtained, with a linear regression in ascending regions and a constant value in descending regions. This simple and dynamic-related representation of L cf leads to a significant improvement in simulation of both cloud cover and radiation fields compared with traditional overlap treatments. This work presents a physically justifiable approach to depicting cloud overlap in the tropics in GCMs.

  18. A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Pixel-to-pixel comparisons

    NASA Astrophysics Data System (ADS)

    Yi, Bingqi; Rapp, Anita D.; Yang, Ping; Baum, Bryan A.; King, Michael D.

    2017-04-01

    We compare differences in ice and liquid water cloud physical and optical properties between Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (C6) and collection 5.1 (C51). The C6 cloud products changed significantly due to improved calibration, improvements based on comparisons with the Cloud-Aerosol Lidar with Orthogonal Polarization, treatment of subpixel liquid water clouds, introduction of a roughened ice habit for C6 rather than the use of smooth ice particles in C51, and more. The MODIS cloud products form a long-term data set for analysis, modeling, and various purposes. Thus, it is important to understand the impact of the changes. Two cases are considered for C6 to C51 comparisons. Case 1 considers pixels with valid cloud retrievals in both C6 and C51, while case 2 compares all valid cloud retrievals in each collection. One year (2012) of level-2 MODIS cloud products are examined, including cloud effective radius (CER), optical thickness (COT), water path, cloud top pressure (CTP), cloud top temperature, and cloud fraction. Large C6-C51 differences are found in the ice CER (regionally, as large as 15 μm) and COT (decrease in annual average by approximately 25%). Liquid water clouds have higher CTP in marine stratocumulus regions in C6 but lower CTP globally (-5 hPa), and there are 66% more valid pixels in C6 (case 2) due to the treatment of pixels with subpixel clouds. Simulated total cloud radiative signatures from C51 and C6 are compared to Clouds and the Earth's Radiant Energy System Energy Balanced And Filled (EBAF) product. The C6 CREs compare more closely with the EBAF than the C51 counterparts.

  19. H31G-1596: DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    NASA Technical Reports Server (NTRS)

    Kalia, Subodh; Ganguly, Sangram; Li, Shuang; Nemani, Ramakrishna R.

    2017-01-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remote sensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud shadow mask from geostationary satellite data is critical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds,which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classify cloudshadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoderdecoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multispectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  20. Spatial Variability of Surface Irradiance Measurements at the Manus ARM Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riihimaki, Laura D.; Long, Charles N.

    2014-05-16

    The location of the Atmospheric Radiation Measurement (ARM) site on Manus island in Papua New Guinea was chosen because it is very close the coast, in a geographically at, near-sea level area of the island, minimizing the impact of local island effects on the meteorology of the measurements [Ackerman et al., 1999]. In this study, we confirm that the Manus site is in deed less impacted by the island meteorology than slightly inland by comparing over a year of broadband surface irradiance and ceilometer measurements and derived quantities at the standard Manus site and a second location 7 km awaymore » as part of the AMIE-Manus campaign. The two sites show statistically similar distributions of irradiance and other derived quantities for all wind directions except easterly winds, when the inland site is down wind from the standard Manus site. Under easterly wind conditions, which occur 17% of the time, there is a higher occurrence of cloudiness at the down wind site likely do to land heating and orographic effects. This increased cloudiness is caused by shallow, broken clouds often with bases around 700 m in altitude. While the central Manus site consistently measures a frequency of occurrence of low clouds (cloud base height less than 1200 m) about 25+4% regardless of wind direction, the AMIE site has higher frequencies of low clouds (38%) when winds are from the east. This increase in low, locally produced clouds causes an additional -20 W/m2 shortwave surface cloud radiative effect at the AMIE site in easterly conditions than in other meteorological conditions that exhibit better agreement between the two sites.« less

  1. The Diurnal Cycle of Clouds and Precipitation at the ARM SGP Site: An Atmospheric State-Based Analysis and Error Decomposition of a Multiscale Modeling Framework Simulation

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Marchand, Roger; Fu, Qiang

    2017-12-01

    Long-term reflectivity data collected by a millimeter cloud radar at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are used to examine the diurnal cycle of clouds and precipitation and are compared with the diurnal cycle simulated by a Multiscale Modeling Framework (MMF) climate model. The study uses a set of atmospheric states that were created specifically for the SGP and for the purpose of investigating under what synoptic conditions models compare well with observations on a statistical basis (rather than using case studies or seasonal or longer time scale averaging). Differences in the annual mean diurnal cycle between observations and the MMF are decomposed into differences due to the relative frequency of states, the daily mean vertical profile of hydrometeor occurrence, and the (normalized) diurnal variation of hydrometeors in each state. Here the hydrometeors are classified as cloud or precipitation based solely on the reflectivity observed by a millimeter radar or generated by a radar simulator. The results show that the MMF does not capture the diurnal variation of low clouds well in any of the states but does a reasonable job capturing the diurnal variations of high clouds and precipitation in some states. In particular, the diurnal variations in states that occur during summer are reasonably captured by the MMF, while the diurnal variations in states that occur during the transition seasons (spring and fall) are not well captured. Overall, the errors in the annual composite are due primarily to errors in the daily mean of hydrometeor occurrence (rather than diurnal variations), but errors in the state frequency (that is, the distribution of weather states in the model) also play a significant role.

  2. SAGE III L2 Monthly Cloud Presence Data (Binary)

    Atmospheric Science Data Center

    2016-06-14

    ... degrees South Spatial Resolution:  1 km vertical Temporal Coverage:  02/27/2002 - 12/31/2005 ... Parameters:  Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution Order Data:  Search and ...

  3. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  4. Improving Scene Classifications with Combined Active/Passive Measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Rodier, S.; Vaughan, M.; McGill, M.

    The uncertainties in cloud and aerosol physical properties derived from passive instruments such as MODIS are not insignificant And the uncertainty increases when the optical depths decrease Lidar observations do much better for the thin clouds and aerosols Unfortunately space-based lidar measurements such as the one onboard CALIPSO satellites are limited to nadir view only and thus have limited spatial coverage To produce climatologically meaningful thin cloud and aerosol data products it is necessary to combine the spatial coverage of MODIS with the highly sensitive CALIPSO lidar measurements Can we improving the quality of cloud and aerosol remote sensing data products by extending the knowledge about thin clouds and aerosols learned from CALIPSO-type of lidar measurements to a larger portion of the off-nadir MODIS-like multi-spectral pixels To answer the question we studied the collocated Cloud Physics Lidar CPL with Modis-Airborne-Simulation MAS observations and established an effective data fusion technique that will be applied in the combined CALIPSO MODIS cloud aerosol product algorithms This technique performs k-mean and Kohonen self-organized map cluster analysis on the entire swath of MAS data as well as on the combined CPL MAS data at the nadir track Interestingly the clusters generated from the two approaches are almost identical It indicates that the MAS multi-spectral data may have already captured most of the cloud and aerosol scene types such as cloud ice water phase multi-layer information aerosols

  5. HAMP - the microwave package on the High Altitude and LOng range research aircraft (HALO)

    NASA Astrophysics Data System (ADS)

    Mech, M.; Orlandi, E.; Crewell, S.; Ament, F.; Hirsch, L.; Hagen, M.; Peters, G.; Stevens, B.

    2014-12-01

    An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir-looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential, synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud-resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a root-mean-square error reduced by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km, which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining a better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  6. HAMP - the microwave package on the High Altitude and LOng range research aircraft HALO

    NASA Astrophysics Data System (ADS)

    Mech, M.; Orlandi, E.; Crewell, S.; Ament, F.; Hirsch, L.; Hagen, M.; Peters, G.; Stevens, B.

    2014-05-01

    An advanced package of microwave remote sensing instrumentation has been developed for the operation on the new German High Altitude LOng range research aircraft (HALO). The HALO Microwave Package, HAMP, consists of two nadir looking instruments: a cloud radar at 36 GHz and a suite of passive microwave radiometers with 26 frequencies in different bands between 22.24 and 183.31 ± 12.5 GHz. We present a description of HAMP's instrumentation together with an illustration of its potential. To demonstrate this potential synthetic measurements for the implemented passive microwave frequencies and the cloud radar based on cloud resolving and radiative transfer model calculations were performed. These illustrate the advantage of HAMP's chosen frequency coverage, which allows for improved detection of hydrometeors both via the emission and scattering of radiation. Regression algorithms compare HAMP retrieval with standard satellite instruments from polar orbiters and show its advantages particularly for the lower atmosphere with a reduced root mean square error by 5 and 15% for temperature and humidity, respectively. HAMP's main advantage is the high spatial resolution of about 1 km which is illustrated by first measurements from test flights. Together these qualities make it an exciting tool for gaining better understanding of cloud processes, testing retrieval algorithms, defining future satellite instrument specifications, and validating platforms after they have been placed in orbit.

  7. Contemplating Synergistic Algorithms for the NASA ACE Mission

    NASA Technical Reports Server (NTRS)

    Mace, Gerald G.; Starr, David O.; Marchand, Roger; Ackerman, Steven A.; Platnick, Steven E.; Fridlind, Ann; Cooper, Steven; Vane, Deborah G.; Stephens, Graeme L.

    2013-01-01

    ACE is a proposed Tier 2 NASA Decadal Survey mission that will focus on clouds, aerosols, and precipitation as well as ocean ecosystems. The primary objective of the clouds component of this mission is to advance our ability to predict changes to the Earth's hydrological cycle and energy balance in response to climate forcings by generating observational constraints on future science questions, especially those associated with the effects of aerosol on clouds and precipitation. ACE will continue and extend the measurement heritage that began with the A-Train and that will continue through Earthcare. ACE planning efforts have identified several data streams that can contribute significantly to characterizing the properties of clouds and precipitation and the physical processes that force these properties. These include dual frequency Doppler radar, high spectral resolution lidar, polarimetric visible imagers, passive microwave and submillimeter wave radiometry. While all these data streams are technologically feasible, their total cost is substantial and likely prohibitive. It is, therefore, necessary to critically evaluate their contributions to the ACE science goals. We have begun developing algorithms to explore this trade space. Specifically, we will describe our early exploratory algorithms that take as input the set of potential ACE-like data streams and evaluate critically to what extent each data stream influences the error in a specific cloud quantity retrieval.

  8. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text.

    PubMed

    Baroukh, Caroline; Jenkins, Sherry L; Dannenfelser, Ruth; Ma'ayan, Avi

    2011-10-13

    Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications.

  9. Genes2WordCloud: a quick way to identify biological themes from gene lists and free text

    PubMed Central

    2011-01-01

    Background Word-clouds recently emerged on the web as a solution for quickly summarizing text by maximizing the display of most relevant terms about a specific topic in the minimum amount of space. As biologists are faced with the daunting amount of new research data commonly presented in textual formats, word-clouds can be used to summarize and represent biological and/or biomedical content for various applications. Results Genes2WordCloud is a web application that enables users to quickly identify biological themes from gene lists and research relevant text by constructing and displaying word-clouds. It provides users with several different options and ideas for the sources that can be used to generate a word-cloud. Different options for rendering and coloring the word-clouds give users the flexibility to quickly generate customized word-clouds of their choice. Methods Genes2WordCloud is a word-cloud generator and a word-cloud viewer that is based on WordCram implemented using Java, Processing, AJAX, mySQL, and PHP. Text is fetched from several sources and then processed to extract the most relevant terms with their computed weights based on word frequencies. Genes2WordCloud is freely available for use online; it is open source software and is available for installation on any web-site along with supporting documentation at http://www.maayanlab.net/G2W. Conclusions Genes2WordCloud provides a useful way to summarize and visualize large amounts of textual biological data or to find biological themes from several different sources. The open source availability of the software enables users to implement customized word-clouds on their own web-sites and desktop applications. PMID:21995939

  10. SAGE III L2 Monthly Cloud Presence Data (HDF-EOS)

    Atmospheric Science Data Center

    2016-06-14

    ... degrees South Spatial Resolution:  1 km vertical Temporal Coverage:  02/27/2002 - 12/31/2005 ... Parameters:  Cloud Amount/Frequency Cloud Height Cloud Vertical Distribution Order Data:  Search and ...

  11. Multichannel scanning radiometer for remote sensing cloud physical parameters

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Kyle, H. L.; Blaine, L. R.; Smith, J.; Clem, T. D.

    1981-01-01

    A multichannel scanning radiometer developed for remote observation of cloud physical properties is described. Consisting of six channels in the near infrared and one channel in the thermal infrared, the instrument can observe cloud physical parameters such as optical thickness, thermodynamic phase, cloud top altitude, and cloud top temperature. Measurement accuracy is quantified through flight tests on the NASA CV-990 and the NASA WB-57F, and is found to be limited by the harsh environment of the aircraft at flight altitude. The electronics, data system, and calibration of the instrument are also discussed.

  12. Cross layer optimization for cloud-based radio over optical fiber networks

    NASA Astrophysics Data System (ADS)

    Shao, Sujie; Guo, Shaoyong; Qiu, Xuesong; Yang, Hui; Meng, Luoming

    2016-07-01

    To adapt the 5G communication, the cloud radio access network is a paradigm introduced by operators which aggregates all base stations computational resources into a cloud BBU pool. The interaction between RRH and BBU or resource schedule among BBUs in cloud have become more frequent and complex with the development of system scale and user requirement. It can promote the networking demand among RRHs and BBUs, and force to form elastic optical fiber switching and networking. In such network, multiple stratum resources of radio, optical and BBU processing unit have interweaved with each other. In this paper, we propose a novel multiple stratum optimization (MSO) architecture for cloud-based radio over optical fiber networks (C-RoFN) with software defined networking. Additionally, a global evaluation strategy (GES) is introduced in the proposed architecture. MSO can enhance the responsiveness to end-to-end user demands and globally optimize radio frequency, optical spectrum and BBU processing resources effectively to maximize radio coverage. The feasibility and efficiency of the proposed architecture with GES strategy are experimentally verified on OpenFlow-enabled testbed in terms of resource occupation and path provisioning latency.

  13. The impact of gravity waves and cloud nucleation threshold on stratospheric water and tropical tropospheric cloud fraction

    NASA Astrophysics Data System (ADS)

    Schoeberl, Mark; Dessler, Andrew; Ye, Hao; Wang, Tao; Avery, Melody; Jensen, Eric

    2016-08-01

    Using the Modern Era Retrospective-Analysis for Research and Applications (MERRA) and MERRA-2 reanalysis winds, temperatures, and anvil cloud ice, we explore the impact of varying the cloud nucleation threshold relative humidity (RH) and high-frequency gravity waves on stratospheric water vapor (H2O) and upper tropical tropopause cloud fraction (TCF). Our model results are compared to 2008/2009 winter TCF derived from Cloud-Aerosol Lidar with Orthogonal Polarization and H2O observations from the Microwave Limb Sounder (MLS). The RH threshold affects both model H2O and TCF, while high-frequency gravity waves mostly impact TCF. Adjusting the nucleation RH and the amplitude of high-frequency gravity waves allows us to tune the model to observations. Reasonable observational agreement is obtained with a nucleation threshold between 130% and 150% RH consistent with airborne observations. For the MERRA reanalysis, we lower the tropopause temperature by 0.5 K roughly consistent with GPS radio occultation measurements and include ~0.1 K high-frequency gravity wave temperature oscillations in order to match TCF and H2O observations. For MERRA-2 we do not need to adjust the tropopause temperature nor add gravity waves, because there are sufficient high-frequency temperature oscillations already present in the MERRA-2 reanalysis to reproduce the observed TCF.

  14. Comparison of Cell Regeneration Mechanisms Between Isolated Cb Clouds Moving Along A Valley and Over Flat Terrain

    NASA Astrophysics Data System (ADS)

    Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.

    Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.

  15. Quantifying the impact of anthropogenic pollution on cloud properties derived from ground based remote sensors at the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Maahn, M.; Acquistapace, C.; de Boer, G.; Cox, C.; Feingold, G.; Marke, T.; Williams, C. R.

    2017-12-01

    When acting as cloud condensation nuclei (CCN) or ice nucleating particles (INPs), aerosols have a strong potential to influence cloud properties. In particular, they can impact the number, size, and phase of cloud particles and potentially cloud lifetime through aerosol indirect and semi-direct effects. In polar regions, these effects are of great importance for the radiation budget due to the shortwave albedo and longwave emissivity of mixed-phase clouds. The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program operates two super sites equipped with state of the art ground-based remote sensing instruments in northern Alaska. The sites are both coastal and are highly correlated with respect to large scale synoptic patterns. While the site at Utqiaġvik (formerly known as Barrow) generally represents a relatively pristine Arctic environment lacking significant anthropogenic sources, the site at Oliktok Point, approximately 250 km to the east, is surrounded by the Prudhoe Bay Oil Field, which is the largest oil field in North America. Based on aircraft measurement, the authors recently showed that differences in the properties of liquid clouds properties between the sites can be attributed to local emissions associated with the industrial activities in the Prudhoe Bay region (Maahn et al. 2017, ACPD). However, aircraft measurements do not provide a representative sample of cloud properties due to temporal limitations in the amount of data. In order to investigate how frequently and to what extent liquid cloud properties and processes are modified, we use ground based remote sensing observations such as e.g., cloud radar, Doppler lidar, and microwave radiometer obtained continuously at the two sites. In this way, we are able to quantify inter-site differences with respect to cloud drizzle production, liquid water path, frequency of cloud occurrence, and cloud radiative properties. Turbulence and the coupling of clouds to the boundary layer is investigated in order to infer the potential role of locally emitted aerosols in modulating the observed differences.

  16. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  17. MWR3C physical retrievals of precipitable water vapor and cloud liquid water path

    DOE Data Explorer

    Cadeddu, Maria

    2016-10-12

    The data set contains physical retrievals of PWV and cloud LWP retrieved from MWR3C measurements during the MAGIC campaign. Additional data used in the retrieval process include radiosondes and ceilometer. The retrieval is based on an optimal estimation technique that starts from a first guess and iteratively repeats the forward model calculations until a predefined convergence criterion is satisfied. The first guess is a vector of [PWV,LWP] from the neural network retrieval fields in the netcdf file. When convergence is achieved the 'a posteriori' covariance is computed and its square root is expressed in the file as the retrieval 1-sigma uncertainty. The closest radiosonde profile is used for the radiative transfer calculations and ceilometer data are used to constrain the cloud base height. The RMS error between the brightness temperatures is computed at the last iterations as a consistency check and is written in the last column of the output file.

  18. Cloud Microphysics Parameterization in a Shallow Cumulus Cloud Simulated by a Largrangian Cloud Model

    NASA Astrophysics Data System (ADS)

    Oh, D.; Noh, Y.; Hoffmann, F.; Raasch, S.

    2017-12-01

    Lagrangian cloud model (LCM) is a fundamentally new approach of cloud simulation, in which the flow field is simulated by large eddy simulation and droplets are treated as Lagrangian particles undergoing cloud microphysics. LCM enables us to investigate raindrop formation and examine the parameterization of cloud microphysics directly by tracking the history of individual Lagrangian droplets simulated by LCM. Analysis of the magnitude of raindrop formation and the background physical conditions at the moment at which every Lagrangian droplet grows from cloud droplets to raindrops in a shallow cumulus cloud reveals how and under which condition raindrops are formed. It also provides information how autoconversion and accretion appear and evolve within a cloud, and how they are affected by various factors such as cloud water mixing ratio, rain water mixing ratio, aerosol concentration, drop size distribution, and dissipation rate. Based on these results, the parameterizations of autoconversion and accretion, such as Kessler (1969), Tripoli and Cotton (1980), Beheng (1994), and Kharioutdonov and Kogan (2000), are examined, and the modifications to improve the parameterizations are proposed.

  19. Daytime Cirrus Cloud Top-of-Atmosphere Radiative Forcing Properties at a Midlatitude Site and their Global Consequence

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Lolli, Simone; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2016-01-01

    One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.070.67 W m(exp -2) in sample-relative terms, which reduces to 0.030.27 W m(exp -2) in absolute terms after normalizing to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud under sampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth of less than or equal to 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualize how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, David; Erfani, Ehsan; Garnier, Anne

    This project has evolved during its execution, and what follows are the key project findings. This project has arguably provided the first global view of how cirrus cloud (defined as having cloud base temperature T < 235 K) nucleation physics (evaluated through satellite retrievals of ice particle number concentration Ni, effective diameter De and ice water content IWC) evolves with the seasons for a given temperature, latitude zone and surface type (e.g. ocean vs. land), based on a new satellite remote sensing method developed for this project. The retrieval method is unique in that it is very sensitive to themore » small ice crystals that govern the number concentration Ni, allowing Ni to be retrieved. The method currently samples single-layer cirrus clouds having visible optical depth ranging from about 0.3 to 3.0, using co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. Retrievals of Ni are primarily used to estimate the cirrus cloud formation mechanism; that is, either homo- or heterogeneous ice nucleation (henceforth hom and het). This is possible since, in general, hom produces more than an order of magnitude more ice crystals than does het. Thus the retrievals provide insight on how these mechanisms change with the seasons for a given latitude zone or region, based on the years 2008 and 2013. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower, and it is lowest in the tropics. Thus, the microphysical properties of cirrus clouds in the Polar Regions are much different than they are in the tropics; something unknown prior to this study. Moreover, the frequency of cirrus cloud occurrence in the Polar Regions varies strongly with season, peaking during winter in the Arctic and during spring in the Antarctic. Considering these seasonal changes in microphysics and inferred cloud coverage, this leads us to speculate that the buildup of Arctic cirrus during winter may significantly contribute to tropospheric heating in that region, possibly affecting winter jet-stream dynamics and mid-latitude weather patterns through the thermal-wind balance relationship. This cirrus cloud research provides essential guidance for realistically representing cirrus clouds in climate models; guidance previously unavailable. For example, mid-latitude hom cirrus were widespread during winter over or nearby mountainous terrain, evidently due to mountain-induced waves that produce strong updrafts at cirrus cloud levels. The treatment of turbulent mountain stress and gravity waves will likely need to be improved in climate models in order to adequately represent cirrus clouds outside the tropics. Another goal of this project was to develop a ground-based 94-GHz radar retrieval for winter snowstorms, based on (1) an improved analytical framework describing the interaction of radiation from radar with snowfall and (2) the development of a steady-state snow growth model that predicts the height-evolution of the ice particle size distribution through ice particle growth by vapor diffusion, aggregation and riming (i.e. the growth of snow through collisions with supercooled cloud droplets). Although activities (1) and (2) were completed, there was insufficient time to test and finalize the radar retrieval scheme. However, activity (2) provided a new method for relating ice particle mass “m” and projected area “A” to the ice particle maximum dimension “D”. The ice cloud microphysical processes (which determine ice cloud radiative properties) in climate models are parameterized in terms of these m-D and A-D relationships. By improving these relationships, the ice cloud radiative properties in Community Atmosphere Model version 5, or CAM5 (an atmosphere global climate model, or GCM) were improved. Student funding from the University of Nevada, Reno, was combined with funds from this project to conduct some basic research on the mechanism of the North American monsoon, or NAM. Federal research on the NAM has dwindled since 2006, but atmospheric soundings taken during research vessel cruises in the Gulf of California (GC) during the North American Monsoon Experiment (NAME) were used to reveal a likely mechanism that explains the relationship between an intrusion of tropical warm water into the GC during late spring-early summer and the onset of relatively heavy NAM rainfall in northwest Mexico and the southwestern United States. These soundings, combined with reanalysis data, satellite sea surface temperatures and satellite measurements of outgoing longwave radiation were used to develop and provide evidence for a planetary-scale NAM mechanism. As far as we know, no other physical explanation has been offered for the spring-summer evolution of the NAM system.« less

  1. Communication Systems through Artificial Earth Satellites (Selected Pages)

    DTIC Science & Technology

    1987-02-05

    A. The speaking currents of this subscriber from equipment AP come through AC only into the two-wire circuit, but also are branched/ shunted to AY, and...distribution of cloud cover. The evaluation, based on the statistic study of clouds [3.3) and rains of South England, at A=50 at the frequency of 4 GHz... Studies of conditions for passage of radio waves through disturbed ionosphere showed [3.16] that aurorae polares increase speed of fadings and are

  2. Sensitivity of a cloud parameterization package in the National Center for Atmospheric Research Community Climate Model

    NASA Astrophysics Data System (ADS)

    Kao, C.-Y. J.; Smith, W. S.

    1999-05-01

    A physically based cloud parameterization package, which includes the Arakawa-Schubert (AS) scheme for subgrid-scale convective clouds and the Sundqvist (SUN) scheme for nonconvective grid-scale layered clouds (hereafter referred to as the SUNAS cloud package), is incorporated into the National Center for Atmospheric Research (NCAR) Community Climate Model, Version 2 (CCM2). The AS scheme is used for a more reasonable heating distribution due to convective clouds and their associated precipitation. The SUN scheme allows for the prognostic computation of cloud water so that the cloud optical properties are more physically determined for shortwave and longwave radiation calculations. In addition, the formation of anvil-like clouds from deep convective systems is able to be simulated with the SUNAS package. A 10-year simulation spanning the period from 1980 to 1989 is conducted, and the effect of the cloud package on the January climate is assessed by comparing it with various available data sets and the National Center for Environmental Protection/NCAR reanalysis. Strengths and deficiencies of both the SUN and AS methods are identified and discussed. The AS scheme improves some aspects of the model dynamics and precipitation, especially with respect to the Pacific North America (PNA) pattern. CCM2's tendency to produce a westward bias of the 500 mbar stationary wave (time-averaged zonal anomalies) in the PNA sector is remedied apparently because of a less "locked-in" heating pattern in the tropics. The additional degree of freedom added by the prognostic calculation of cloud water in the SUN scheme produces interesting results in the modeled cloud and radiation fields compared with data. In general, too little cloud water forms in the tropics, while excessive cloud cover and cloud liquid water are simulated in midlatitudes. This results in a somewhat degraded simulation of the radiation budget. The overall simulated precipitation by the SUNAS package is, however, substantially improved over the original CCM2.

  3. Study on Diagnosing Three Dimensional Cloud Region

    NASA Astrophysics Data System (ADS)

    Cai, M., Jr.; Zhou, Y., Sr.

    2017-12-01

    Cloud mask and relative humidity (RH) provided by Cloudsat products from 2007 to 2008 are statistical analyzed to get RH Threshold between cloud and clear sky and its variation with height. A diagnosis method is proposed based on reanalysis data and applied to three-dimensional cloud field diagnosis of a real case. Diagnostic cloud field was compared to satellite, radar and other cloud precipitation observation. Main results are as follows. 1.Cloud region where cloud mask is bigger than 20 has a good space and time corresponding to the high value relative humidity region, which is provide by ECWMF AUX product. Statistical analysis of the RH frequency distribution within and outside cloud indicated that, distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of 100%. Local atmospheric environment affects the RH distribution outside cloud, which leads to TH distribution vary in different region or different height. 2. RH threshold and its vertical distribution used for cloud diagnostic was analyzed from Threat Score method. The method is applied to a three dimension cloud diagnosis case study based on NCEP reanalysis data and th diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground. It is found that, RH gradient is very big around cloud region and diagnosed cloud area by RH threshold method is relatively stable. Diagnostic cloud area has a good corresponding to updraft region. The cloud and clear sky distribution corresponds to satellite the TBB observations overall. Diagnostic cloud depth, or sum cloud layers distribution consists with optical thickness and precipitation on ground better. The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly. Diagnostic cloud distribution correspond to cloud observations on ground very well. 3. The method is improved by changing the vertical interval from altitude to temperature. The result shows that, the five factors , including TS score for clear sky, empty forecast, missed forecast, and especially TS score for cloud region and the accurate rate increased obviously. So, the RH threshold and its vertical distribution with temperature is better than with altitude. More tests and comparision should be done to assess the diagnosis method.

  4. A New Approach to Integrate Internet-of-Things and Software-as-a-Service Model for Logistic Systems: A Case Study

    PubMed Central

    Chen, Shang-Liang; Chen, Yun-Yao; Hsu, Chiang

    2014-01-01

    Cloud computing is changing the ways software is developed and managed in enterprises, which is changing the way of doing business in that dynamically scalable and virtualized resources are regarded as services over the Internet. Traditional manufacturing systems such as supply chain management (SCM), customer relationship management (CRM), and enterprise resource planning (ERP) are often developed case by case. However, effective collaboration between different systems, platforms, programming languages, and interfaces has been suggested by researchers. In cloud-computing-based systems, distributed resources are encapsulated into cloud services and centrally managed, which allows high automation, flexibility, fast provision, and ease of integration at low cost. The integration between physical resources and cloud services can be improved by combining Internet of things (IoT) technology and Software-as-a-Service (SaaS) technology. This study proposes a new approach for developing cloud-based manufacturing systems based on a four-layer SaaS model. There are three main contributions of this paper: (1) enterprises can develop their own cloud-based logistic management information systems based on the approach proposed in this paper; (2) a case study based on literature reviews with experimental results is proposed to verify that the system performance is remarkable; (3) challenges encountered and feedback collected from T Company in the case study are discussed in this paper for the purpose of enterprise deployment. PMID:24686728

  5. A new approach to integrate Internet-of-things and software-as-a-service model for logistic systems: a case study.

    PubMed

    Chen, Shang-Liang; Chen, Yun-Yao; Hsu, Chiang

    2014-03-28

    Cloud computing is changing the ways software is developed and managed in enterprises, which is changing the way of doing business in that dynamically scalable and virtualized resources are regarded as services over the Internet. Traditional manufacturing systems such as supply chain management (SCM), customer relationship management (CRM), and enterprise resource planning (ERP) are often developed case by case. However, effective collaboration between different systems, platforms, programming languages, and interfaces has been suggested by researchers. In cloud-computing-based systems, distributed resources are encapsulated into cloud services and centrally managed, which allows high automation, flexibility, fast provision, and ease of integration at low cost. The integration between physical resources and cloud services can be improved by combining Internet of things (IoT) technology and Software-as-a-Service (SaaS) technology. This study proposes a new approach for developing cloud-based manufacturing systems based on a four-layer SaaS model. There are three main contributions of this paper: (1) enterprises can develop their own cloud-based logistic management information systems based on the approach proposed in this paper; (2) a case study based on literature reviews with experimental results is proposed to verify that the system performance is remarkable; (3) challenges encountered and feedback collected from T Company in the case study are discussed in this paper for the purpose of enterprise deployment.

  6. Line-of-sight extrapolation noise in dust polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poh, Jason; Dodelson, Scott

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g., 350 GHz) is due solely to dust and then extrapolate the signal down to lower frequency (e.g., 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typicalmore » Galactic thermal dust temperatures of about 20K, these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r < 0.0015 .« less

  7. Physical View of Cloud Seeding

    ERIC Educational Resources Information Center

    Tribus, Myron

    1970-01-01

    Reviews experimental data on various aspects of climate control. Includes a discussion of (1) the physics of cloud seeding, (2) the applications of cloud seeding, and (3) the role of statistics in the field of weather modification. Bibliography. (LC)

  8. The Geo Data Portal an Example Physical and Application Architecture Demonstrating the Power of the "Cloud" Concept.

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Booth, N.; Walker, J.; Kunicki, T.

    2012-12-01

    The U.S. Geological Survey Center for Integrated Data Analytics (CIDA), in holding with the President's Digital Government Strategy and the Department of Interior's IT Transformation initiative, has evolved its data center and application architecture toward the "cloud" paradigm. In this case, "cloud" refers to a goal of developing services that may be distributed to infrastructure anywhere on the Internet. This transition has taken place across the entire data management spectrum from data center location to physical hardware configuration to software design and implementation. In CIDA's case, physical hardware resides in Madison at the Wisconsin Water Science Center, in South Dakota at the Earth Resources Observation and Science Center (EROS), and in the near future at a DOI approved commercial vendor. Tasks normally conducted on desktop-based GIS software with local copies of data in proprietary formats are now done using browser-based interfaces to web processing services drawing on a network of standard data-source web services. Organizations are gaining economies of scale through data center consolidation and the creation of private cloud services as well as taking advantage of the commoditization of data processing services. Leveraging open standards for data and data management take advantage of this commoditization and provide the means to reliably build distributed service based systems. This presentation will use CIDA's experience as an illustration of the benefits and hurdles of moving to the cloud. Replicating, reformatting, and processing large data sets, such as downscaled climate projections, traditionally present a substantial challenge to environmental science researchers who need access to data subsets and derived products. The USGS Geo Data Portal (GDP) project uses cloud concepts to help earth system scientists' access subsets, spatial summaries, and derivatives of commonly needed very large data. The GDP project has developed a reusable architecture and advanced processing services that currently accesses archives hosted at Lawrence Livermore National Lab, Oregon State University, the University Corporation for Atmospheric Research, and the U.S. Geological Survey, among others. Several examples of how the GDP project uses cloud concepts will be highlighted in this presentation: 1) The high bandwidth network connectivity of large data centers reduces the need for data replication and storage local to processing services. 2) Standard data serving web services, like OPeNDAP, Web Coverage Services, and Web Feature Services allow GDP services to remotely access custom subsets of data in a variety of formats, further reducing the need for data replication and reformatting. 3) The GDP services use standard web service APIs to allow browser-based user interfaces to run complex and compute-intensive processes for users from any computer with an Internet connection. The combination of physical infrastructure and application architecture implemented for the Geo Data Portal project offer an operational example of how distributed data and processing on the cloud can be used to aid earth system science.

  9. Ice crystal characterization in cirrus clouds: a sun-tracking camera system and automated detection algorithm for halo displays

    NASA Astrophysics Data System (ADS)

    Forster, Linda; Seefeldner, Meinhard; Wiegner, Matthias; Mayer, Bernhard

    2017-07-01

    Halo displays in the sky contain valuable information about ice crystal shape and orientation: e.g., the 22° halo is produced by randomly oriented hexagonal prisms while parhelia (sundogs) indicate oriented plates. HaloCam, a novel sun-tracking camera system for the automated observation of halo displays is presented. An initial visual evaluation of the frequency of halo displays for the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) field campaign from October to mid-November 2014 showed that sundogs were observed more often than 22° halos. Thus, the majority of halo displays was produced by oriented ice crystals. During the campaign about 27 % of the cirrus clouds produced 22° halos, sundogs or upper tangent arcs. To evaluate the HaloCam observations collected from regular measurements in Munich between January 2014 and June 2016, an automated detection algorithm for 22° halos was developed, which can be extended to other halo types as well. This algorithm detected 22° halos about 2 % of the time for this dataset. The frequency of cirrus clouds during this time period was estimated by co-located ceilometer measurements using temperature thresholds of the cloud base. About 25 % of the detected cirrus clouds occurred together with a 22° halo, which implies that these clouds contained a certain fraction of smooth, hexagonal ice crystals. HaloCam observations complemented by radiative transfer simulations and measurements of aerosol and cirrus cloud optical thickness (AOT and COT) provide a possibility to retrieve more detailed information about ice crystal roughness. This paper demonstrates the feasibility of a completely automated method to collect and evaluate a long-term database of halo observations and shows the potential to characterize ice crystal properties.

  10. Evaluation of ACCESS Model Cloud Properties Over the SouthernOcean Area Using Multiple-satellite ProductsSan Luo1,2 Zhian Sun2, Xiaogu Zheng1, Lawrie Rikus2 and Charmaine Franklin31 College of Global Change and Earth System Science, Beijing Normal University, China 2 Collaboration for Australian Weather and Climate Research3 CSIRO

    NASA Astrophysics Data System (ADS)

    Luo, S.

    2016-12-01

    Radiation field and cloud properties over the Southern Ocean area generated by the Australian Community Climate and Earth System Simulator (ACCESS) are evaluated using multiple-satellite products from the Fast Longwave And Shortwave radiative Fluxes (FLASHFlux) project and NASA/GEWEX surface radiation budget (SRB) data. The cloud properties are also evaluated using the observational simulator package COSP, a synthetic brightness temperature model (SBTM) and cloud liquid-water path data (UWisc) from the University of Wisconsin satellite retrievals. All of these evaluations are focused on the Southern Ocean area in an effort to understand the reasons behind the short-wave radiation biases at the surface. It is found that the model overestimates the high-level cloud fraction and frequency of occurrence of small ice-water content and underestimates the middle and low-level cloud fraction and water content. In order to improve the modelled radiation fields over the Southern Ocean area, two main modifications have been made to the physical schemes in the ACCESS model. Firstly the autoconversion rate at which the cloud water is converted into rain and the accretion rate in the warm rain scheme have been modified, which increases the cloud liquid-water content in warm cloud layers. Secondly, the scheme which determines the fraction of supercooled liquid water in mixed-phase clouds in the parametrization of cloud optical properties has been changed to use one derived from CALIPSO data which provides larger liquid cloud fractions and thus higher optical depths than the default scheme. Sensitivity tests of these two schemes in ACCESS climate runs have shown that applying either can lead to a reduction of the solar radiation reaching the surface and reduce the short-wave radiation biases.

  11. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  12. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  13. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  14. Clustering the Orion B giant molecular cloud based on its molecular emission.

    PubMed

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. A clustering analysis based only on the J = 1 - 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes ( n H ~ 100 cm -3 , ~ 500 cm -3 , and > 1000 cm -3 ), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 - 0 line of HCO + and the N = 1 - 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO + and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO + intensity ratio in UV-illuminated regions. Finer distinctions in density classes ( n H ~ 7 × 10 3 cm -3 ~ 4 × 10 4 cm -3 ) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO + (1 - 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.

  15. Methodologies for Development of Patient Specific Bone Models from Human Body CT Scans

    NASA Astrophysics Data System (ADS)

    Chougule, Vikas Narayan; Mulay, Arati Vinayak; Ahuja, Bharatkumar Bhagatraj

    2016-06-01

    This work deals with development of algorithm for physical replication of patient specific human bone and construction of corresponding implants/inserts RP models by using Reverse Engineering approach from non-invasive medical images for surgical purpose. In medical field, the volumetric data i.e. voxel and triangular facet based models are primarily used for bio-modelling and visualization, which requires huge memory space. On the other side, recent advances in Computer Aided Design (CAD) technology provides additional facilities/functions for design, prototyping and manufacturing of any object having freeform surfaces based on boundary representation techniques. This work presents a process to physical replication of 3D rapid prototyping (RP) physical models of human bone from various CAD modeling techniques developed by using 3D point cloud data which is obtained from non-invasive CT/MRI scans in DICOM 3.0 format. This point cloud data is used for construction of 3D CAD model by fitting B-spline curves through these points and then fitting surface between these curve networks by using swept blend techniques. This process also can be achieved by generating the triangular mesh directly from 3D point cloud data without developing any surface model using any commercial CAD software. The generated STL file from 3D point cloud data is used as a basic input for RP process. The Delaunay tetrahedralization approach is used to process the 3D point cloud data to obtain STL file. CT scan data of Metacarpus (human bone) is used as the case study for the generation of the 3D RP model. A 3D physical model of the human bone is generated on rapid prototyping machine and its virtual reality model is presented for visualization. The generated CAD model by different techniques is compared for the accuracy and reliability. The results of this research work are assessed for clinical reliability in replication of human bone in medical field.

  16. Cloud-based robot remote control system for smart factory

    NASA Astrophysics Data System (ADS)

    Wu, Zhiming; Li, Lianzhong; Xu, Yang; Zhai, Jingmei

    2015-12-01

    With the development of internet technologies and the wide application of robots, there is a prospect (trend/tendency) of integration between network and robots. A cloud-based robot remote control system over networks for smart factory is proposed, which enables remote users to control robots and then realize intelligent production. To achieve it, a three-layer system architecture is designed including user layer, service layer and physical layer. Remote control applications running on the cloud server is developed on Microsoft Azure. Moreover, DIV+ CSS technologies are used to design human-machine interface to lower maintenance cost and improve development efficiency. Finally, an experiment is implemented to verify the feasibility of the program.

  17. ARM Climate Research Facility Annual Report 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency programmore » within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.« less

  18. Study on Cloud Water Resources and Precipitation Efficiency Characteristic over China

    NASA Astrophysics Data System (ADS)

    Zhou, Y., Sr.; Cai, M., Jr.

    2017-12-01

    The original concept and quantitative assessment method of cloud water resource and its related physical parameters are proposed based on the atmospheric water circulation and precipitation enhancement. A diagnosis method of the three-dimensional (3-D) cloud and cloud water field are proposed , based on cloud observation and atmospheric reanalysis data. Furthermore, using analysis data and precipitation products, Chinese cloud water resources in 2008-2010 are assessed preliminarily. The results show that: 1. Atmospheric water cycle and water balance plays an important part of the climate system. Water substance includes water vapor and hydrometeors, and the water cycle is the process of phase transition of water substances. Water vapor changes its phase into solid or liquid hydrometeors by lifting and condensation, and after that, the hydrometeors grow lager through cloud physical processes and then precipitate to ground, which is the mainly resource of available fresh water .Therefore, it's far from enough to only focus on the amount of water vapor, more attention should be transfered to the hydrometeors (cloud water resources) which is formed by the process of phase transition including lifting and condensation. The core task of rainfall enhancement is to develop the cloud water resources and raise the precipitation efficiency by proper technological measures. 2. Comparing with the water vapor, the hydrometeor content is much smaller. Besides, the horizontal delivery amount also shows two orders of magnitude lower than water vapor. But the update cycle is faster and the precipitation efficiency is higher. The amount of cloud water resources in the atmosphere is determined by the instantaneous quantity, the advection transport, condensation and precipitation from the water balance.The cloud water resources vary a lot in different regions. In southeast China, hydrometeor has the fastest renewal cycle and the highest precipitation efficiency. The total amount of hydrometeor in the northwest China is relatively small, but it still has some development potential due to the low precipitation efficiency. 3. The accuracy of the assessment results can be improved and the estimation error can be reduced by using higher-resolution reanalysis data or combining of observational diagnosis and numerical model.

  19. A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations

    NASA Astrophysics Data System (ADS)

    Greenwald, Thomas J.; Stephens, Graeme L.; Vonder Haar, Thomas H.; Jackson, Darren L.

    1993-10-01

    A method of remotely sensing integrated cloud liquid water over the oceans using spaceborne passive measurements from the special sensor microwave/imager (SSM/I) is described. The technique is comprised of a simple physical model that uses the 19.35- and 37-GHz channels of the SSM/I. The most comprehensive validation to date of cloud liquid water estimated from satellites is presented. This is accomplished through a comparison to independent ground-based microwave radiometer measurements of liquid water on San Nicolas Island, over the North Sea, and on Kwajalein and Saipan Islands in the western Pacific. In areas of marine stratocumulus clouds off the coast of California a further comparison is made to liquid water inferred from advanced very high resolution radiometer (AVHRR) visible reflectance measurements. The results are also compared qualitatively with near-coincident satellite imagery and with other existing microwave methods in selected regions. These comparisons indicate that the liquid water amounts derived from the simple scheme are consistent with the ground-based measurements for nonprecipitating cloud systems in the subtropics and middle to high latitudes. The comparison in the tropics, however, was less conclusive. Nevertheless, the retrieval method appears to have general applicability over most areas of the global oceans. An observational measure of the minimum uncertainty in the retrievals is determined in a limited number of known cloud-free areas, where the liquid water amounts are found to have a low variability of 0.016 kg m-2. A simple sensitivity and error analysis suggests that the liquid water estimates have a theoretical relative error typically ranging from about 25% to near 40% depending on the atmospheric/surface conditions and on the amount of liquid water present in the cloud. For the global oceans as a whole the average cloud liquid water is determined to be about 0.08 kg m-2. The major conclusion of this paper is that reasonably accurate amounts of cloud liquid water can be retrieved from SSM/I observations for nonprecipitating cloud systems, particularly in areas of persistent stratocumulus clouds, with less accurate retrievals in tropical regions.

  20. Evaluating and improving cloud phase in the Community Atmosphere Model version 5 using spaceborne lidar observations

    NASA Astrophysics Data System (ADS)

    Kay, Jennifer E.; Bourdages, Line; Miller, Nathaniel B.; Morrison, Ariel; Yettella, Vineel; Chepfer, Helene; Eaton, Brian

    2016-04-01

    Spaceborne lidar observations from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite are used to evaluate cloud amount and cloud phase in the Community Atmosphere Model version 5 (CAM5), the atmospheric component of a widely used state-of-the-art global coupled climate model (Community Earth System Model). By embedding a lidar simulator within CAM5, the idiosyncrasies of spaceborne lidar cloud detection and phase assignment are replicated. As a result, this study makes scale-aware and definition-aware comparisons between model-simulated and observed cloud amount and cloud phase. In the global mean, CAM5 has insufficient liquid cloud and excessive ice cloud when compared to CALIPSO observations. Over the ice-covered Arctic Ocean, CAM5 has insufficient liquid cloud in all seasons. Having important implications for projections of future sea level rise, a liquid cloud deficit contributes to a cold bias of 2-3°C for summer daily maximum near-surface air temperatures at Summit, Greenland. Over the midlatitude storm tracks, CAM5 has excessive ice cloud and insufficient liquid cloud. Storm track cloud phase biases in CAM5 maximize over the Southern Ocean, which also has larger-than-observed seasonal variations in cloud phase. Physical parameter modifications reduce the Southern Ocean cloud phase and shortwave radiation biases in CAM5 and illustrate the power of the CALIPSO observations as an observational constraint. The results also highlight the importance of using a regime-based, as opposed to a geographic-based, model evaluation approach. More generally, the results demonstrate the importance and value of simulator-enabled comparisons of cloud phase in models used for future climate projection.

  1. Sensitivity of CAM5-simulated Arctic clouds and radiation to ice nucleation parameterization

    DOE PAGES

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; ...

    2013-08-06

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and amore » decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. As a result, issues with the observations and the model–observation comparison in the Arctic region are discussed.« less

  2. Monthly Covariability of Amazonian Convective Cloud Properties and Radiative Diurnal Cycle

    NASA Technical Reports Server (NTRS)

    Dodson, J. Brant; Taylor, Patrick C.

    2016-01-01

    The diurnal cycle of convective clouds greatly influences the top-of-atmosphere radiative energy balance in convectively active regions of Earth, through both direct presence and the production of anvil and stratiform clouds. CloudSat and CERES data are used to further examine these connections by determining the sensitivity of monthly anomalies in the radiative diurnal cycle to monthly anomalies in multiple cloud variables. During months with positive anomalies in convective frequency, the longwave diurnal cycle is shifted and skewed earlier in the day by the increased longwave cloud forcing during the afternoon from mature deep convective cores and associated anvils. This is consistent with previous studies using reanalysis data to characterize anomalous convective instability. Contrary to this, months with positive anomalies in convective cloud top height (commonly associated with more intense convection) shifts the longwave diurnal cycle later in the day. The contrary results are likely an effect of the inverse relationships between cloud top height and frequency. The albedo diurnal cycle yields inconsistent results when using different cloud variables.

  3. Low-latitude variability of ice cloud properties and cloud thermodynamic phase observed by the Atmospheric Infrared Sounder (AIRS)

    NASA Astrophysics Data System (ADS)

    Kahn, B. H.; Yue, Q.; Davis, S. M.; Fetzer, E. J.; Schreier, M. M.; Tian, B.; Wong, S.

    2016-12-01

    We will quantify the time and space dependence of ice cloud effective radius (CER), optical thickness (COT), cloud top temperature (CTT), effective cloud fraction (ECF), and cloud thermodynamic phase (ice, liquid, or unknown) with the Version 6 Atmospheric Infrared Sounder (AIRS) satellite observational data set from September 2002 until present. We show that cloud frequency, CTT, COT, and ECF have substantially different responses to ENSO variations. Large-scale changes in ice CER are also observed with a several micron tropics-wide increase during the 2015-2016 El Niño and similar decreases during the La Niña phase. We show that the ice CER variations reflect fundamental changes in the spatial distributions and relative frequencies of different ice cloud types. Lastly, the high spatial and temporal resolution variability of the cloud fields are explored and we show that these data capture a multitude of convectively coupled tropical waves such as Kelvin, westward and eastward intertio-gravity, equatorial Rossby, and mixed Rossby-gravity waves.

  4. GPU-based cloud service for Smith-Waterman algorithm using frequency distance filtration scheme.

    PubMed

    Lee, Sheng-Ta; Lin, Chun-Yuan; Hung, Che Lun

    2013-01-01

    As the conventional means of analyzing the similarity between a query sequence and database sequences, the Smith-Waterman algorithm is feasible for a database search owing to its high sensitivity. However, this algorithm is still quite time consuming. CUDA programming can improve computations efficiently by using the computational power of massive computing hardware as graphics processing units (GPUs). This work presents a novel Smith-Waterman algorithm with a frequency-based filtration method on GPUs rather than merely accelerating the comparisons yet expending computational resources to handle such unnecessary comparisons. A user friendly interface is also designed for potential cloud server applications with GPUs. Additionally, two data sets, H1N1 protein sequences (query sequence set) and human protein database (database set), are selected, followed by a comparison of CUDA-SW and CUDA-SW with the filtration method, referred to herein as CUDA-SWf. Experimental results indicate that reducing unnecessary sequence alignments can improve the computational time by up to 41%. Importantly, by using CUDA-SWf as a cloud service, this application can be accessed from any computing environment of a device with an Internet connection without time constraints.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  6. BlueSky Cloud Framework: An E-Learning Framework Embracing Cloud Computing

    NASA Astrophysics Data System (ADS)

    Dong, Bo; Zheng, Qinghua; Qiao, Mu; Shu, Jian; Yang, Jie

    Currently, E-Learning has grown into a widely accepted way of learning. With the huge growth of users, services, education contents and resources, E-Learning systems are facing challenges of optimizing resource allocations, dealing with dynamic concurrency demands, handling rapid storage growth requirements and cost controlling. In this paper, an E-Learning framework based on cloud computing is presented, namely BlueSky cloud framework. Particularly, the architecture and core components of BlueSky cloud framework are introduced. In BlueSky cloud framework, physical machines are virtualized, and allocated on demand for E-Learning systems. Moreover, BlueSky cloud framework combines with traditional middleware functions (such as load balancing and data caching) to serve for E-Learning systems as a general architecture. It delivers reliable, scalable and cost-efficient services to E-Learning systems, and E-Learning organizations can establish systems through these services in a simple way. BlueSky cloud framework solves the challenges faced by E-Learning, and improves the performance, availability and scalability of E-Learning systems.

  7. Health Information System in a Cloud Computing Context.

    PubMed

    Sadoughi, Farahnaz; Erfannia, Leila

    2017-01-01

    Healthcare as a worldwide industry is experiencing a period of growth based on health information technology. The capabilities of cloud systems make it as an option to develop eHealth goals. The main objectives of the present study was to evaluate the advantages and limitations of health information systems implementation in a cloud-computing context that was conducted as a systematic review in 2016. Science direct, Scopus, Web of science, IEEE, PubMed and Google scholar were searched according study criteria. Among 308 articles initially found, 21 articles were entered in the final analysis. All the studies had considered cloud computing as a positive tool to help advance health technology, but none had insisted too much on its limitations and threats. Electronic health record systems have been mostly studied in the fields of implementation, designing, and presentation of models and prototypes. According to this research, the main advantages of cloud-based health information systems could be categorized into the following groups: economic benefits and advantages of information management. The main limitations of the implementation of cloud-based health information systems could be categorized into the 4 groups of security, legal, technical, and human restrictions. Compared to earlier studies, the present research had the advantage of dealing with the issue of health information systems in a cloud platform. The high frequency of studies conducted on the implementation of cloud-based health information systems revealed health industry interest in the application of this technology. Security was a subject discussed in most studies due to health information sensitivity. In this investigation, some mechanisms and solutions were discussed concerning the mentioned systems, which would provide a suitable area for future scientific research on this issue. The limitations and solutions discussed in this systematic study would help healthcare managers and decision-makers take better and more efficient advantages of this technology and make better planning to adopt cloud-based health information systems.

  8. A method for estimating vertical distibution of the SAGE II opaque cloud frequency

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. Patrick; Minnis, Patrick; Kent, Geoffrey S.; Yue, Glenn K.; Skeens, Kristi M.

    1995-01-01

    A method is developed to infer the vertical distribution of the occurrence frequency of clouds that are opaque to the Stratospheric Aerosol and Gas Experiment (SAGE) II instrument. An application of the method to the 1986 SAGE II observations is included in this paper. The 1986 SAGE II results are compared with the 1952-1981 cloud climatology of Warren et al. (1986, 1988)

  9. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection accuracy of the proposed method is better than related methods.

  10. The 27-28 October 1986 FIRE IFO cirrus case study: Cirrus parameter relationships derived from satellite and lidar data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sassen, Kenneth; Alvarez, Joseph M.; Grund, Christian J.

    1989-01-01

    Cirrus cloud radiative and physical characteristics are determined using a combination of ground-based, aircraft, and satellite measurements taken as part of the First ISCCP Regional Experiment (FIRE) Cirrus Intensive Field Observations (IFO) during October and November 1986. Lidar backscatter data are used to define cloud base, center, and top heights and the corresponding temperatures. Coincident GOES 4 km visible (0.65 microns) and 8 km infrared window (11.5 microns) radiances are analyzed to determine cloud emittances and reflectances. Infrared optical depth is computed from the emittance results. Visible optical depth is derived from reflectance using a theoretical ice crystal scattering model and an empirical bidirectional reflectance mode. No clouds with visible optical depths greater than 5 or infrared optical depths less than 0.1 were used in the analysis. Average cloud thickness ranged from 0.5 km to 8 km for the 71 scenes. An average visible scattering efficiency of 2.1 was found for this data set. The results reveal a significant dependence of scattering efficiency on cloud temperature.

  11. Application-oriented offloading in heterogeneous networks for mobile cloud computing

    NASA Astrophysics Data System (ADS)

    Tseng, Fan-Hsun; Cho, Hsin-Hung; Chang, Kai-Di; Li, Jheng-Cong; Shih, Timothy K.

    2018-04-01

    Nowadays Internet applications have become more complicated that mobile device needs more computing resources for shorter execution time but it is restricted to limited battery capacity. Mobile cloud computing (MCC) is emerged to tackle the finite resource problem of mobile device. MCC offloads the tasks and jobs of mobile devices to cloud and fog environments by using offloading scheme. It is vital to MCC that which task should be offloaded and how to offload efficiently. In the paper, we formulate the offloading problem between mobile device and cloud data center and propose two algorithms based on application-oriented for minimum execution time, i.e. the Minimum Offloading Time for Mobile device (MOTM) algorithm and the Minimum Execution Time for Cloud data center (METC) algorithm. The MOTM algorithm minimizes offloading time by selecting appropriate offloading links based on application categories. The METC algorithm minimizes execution time in cloud data center by selecting virtual and physical machines with corresponding resource requirements of applications. Simulation results show that the proposed mechanism not only minimizes total execution time for mobile devices but also decreases their energy consumption.

  12. 16-year Climatology of Cirrus cloud properties using ground-based Lidar over Gadanki (13.45˚N, 79.18˚E)

    NASA Astrophysics Data System (ADS)

    Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish

    Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed increase of 0.41 km and 0.56 km, respectively. These results are discussed in relation with the recent increase in the tropical tropopause altitude.

  13. Ground Based Monitoring of Cloud Activity on Titan

    NASA Astrophysics Data System (ADS)

    Corlies, Paul; Hayes, Alexander; Rojo, Patricio; Ádámkovics, Máté; Turtle, Elizabeth; Buratti, Bonnie

    2014-11-01

    We will report on the latest results of an on-going ground based monitoring campaign of Saturn’s moon Titan using the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument on the Very Large Telescope (VLT). Presently, much is still unknown about the complex and dynamic hydrologic system of Titan as observations have yet to be made through an entire Titan year (29.7 Earth years). Because of the limited ability to observe Titan with Cassini, a combined ground and spaced-based approach provides a steady cadence of observation throughout the duration of a Titan year. We will present the results of observations to date using the adaptive optics (AO) mode (weather dependent) of SINFONI. We have been regularly observing Titan since April 2014 for the purpose of monitoring and identifying clouds and have also been in collaboration with the Cassini team that has concurrent ISS observations and historical VIMS observations of clouds. Our discussion will focus on the various algorithms and approaches used for cloud identification and analysis. Currently, we are entering into a very interesting time for clouds and Titan hydrology as Saturn moves into north polar summer for the first time since Cassini entered the Saturnian system. The increased insolation that this will bring to the north, where the majority of the liquid methane lakes reside, will give us our first observations of the potentially complex interplay between surface liquid and atmospheric conditions. By carefully monitoring and characterizing clouds (size, optical depth, altitude, etc.) we will also be able to derive constraints that can help to guide and validate GCMs. Since the beginning of our observations, no clouds have been observed through ground based observations, while Cassini has only observed a single cloud event in the north polar region over Ligeia Mare. We will provide an update on the latest results of our cloud monitoring campaign and discuss how this atmospheric inactivity and the frequency and characteristics of future cloud outbursts enhances our current understanding of Titan's hydrologic system.

  14. Observations of Co-variation in Cloud Properties and their Relationships with Atmospheric State

    NASA Astrophysics Data System (ADS)

    Sinclair, K.; van Diedenhoven, B.; Fridlind, A. M.; Arnold, T. G.; Yorks, J. E.; Heymsfield, G. M.; McFarquhar, G. M.; Um, J.

    2017-12-01

    Radiative properties of upper tropospheric ice clouds are generally not well represented in global and cloud models. Cloud top height, cloud thermodynamic phase, cloud optical thickness, cloud water path, particle size and ice crystal shape all serve as observational targets for models to constrain cloud properties. Trends or biases in these cloud properties could have profound effects on the climate since they affect cloud radiative properties. Better understanding of co-variation between these cloud properties and linkages with atmospheric state variables can lead to better representation of clouds in models by reducing biases in their micro- and macro-physical properties as well as their radiative properties. This will also enhance our general understanding of cloud processes. In this analysis we look at remote sensing, in situ and reanalysis data from the MODIS Airborne Simulator (MAS), Cloud Physics Lidar (CPL), Cloud Radar System (CRS), GEOS-5 reanalysis data and GOES imagery obtained during the Tropical Composition, Cloud and Climate Coupling (TC4) airborne campaign. The MAS, CPL and CRS were mounted on the ER-2 high-altitude aircraft during this campaign. In situ observations of ice size and shape were made aboard the DC8 and WB57 aircrafts. We explore how thermodynamic phase, ice effective radius, particle shape and radar reflectivity vary with altitude and also investigate how these observed cloud properties vary with cloud type, cloud top temperature, relative humidity and wind profiles. Observed systematic relationships are supported by physical interpretations of cloud processes and any unexpected differences are examined.

  15. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  16. The clouds of Venus. [physical and chemical properties

    NASA Technical Reports Server (NTRS)

    Young, A. T.

    1975-01-01

    The physical and chemical properties of the clouds of Venus are reviewed, with special emphasis on data that are related to cloud dynamics. None of the currently-popular interpretations of cloud phenomena on Venus is consistent with all the data. Either a considerable fraction of the observational evidence is faulty or has been misinterpreted, or the clouds of Venus are much more complex than the current simplistic models. Several lines of attack are suggested to resolve some of the contradictions. A sound understanding of the clouds appears to be several years in the future.

  17. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    NASA Technical Reports Server (NTRS)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  18. Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Platnick, Steven; Arnold, G. Thomas; Holz, Robert E.; Veglio, Paolo; Yorks, John; Wang, Chenxi

    2016-04-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or mid-wave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASA's SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 µm water vapor absorption band, namely the 1.83 and 1.93 µm channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below-cloud water vapor absorption minimizes the surface contribution to measured cloudy top-of-atmosphere reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption and reduces the frequency of retrieval failures for thin cirrus clouds.

  19. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE PAGES

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  20. Ship detection from high-resolution imagery based on land masking and cloud filtering

    NASA Astrophysics Data System (ADS)

    Jin, Tianming; Zhang, Junping

    2015-12-01

    High resolution satellite images play an important role in target detection application presently. This article focuses on the ship target detection from the high resolution panchromatic images. Taking advantage of geographic information such as the coastline vector data provided by NOAA Medium Resolution Coastline program, the land region is masked which is a main noise source in ship detection process. After that, the algorithm tries to deal with the cloud noise which appears frequently in the ocean satellite images, which is another reason for false alarm. Based on the analysis of cloud noise's feature in frequency domain, we introduce a windowed noise filter to get rid of the cloud noise. With the help of morphological processing algorithms adapted to target detection, we are able to acquire ship targets in fine shapes. In addition, we display the extracted information such as length and width of ship targets in a user-friendly way i.e. a KML file interpreted by Google Earth.

  1. Evaluation of Long-Term Cloud-Resolving Model Simulations Using Satellite Radiance Observations and Multi-Frequency Satellite Simulators

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen

    2008-01-01

    This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.

  2. Systematic Differences between Satellite-Based Presipitation Climatologies over the Tropical Oceans

    NASA Technical Reports Server (NTRS)

    Robertson, Frankin R.; Fitzjarrald, Dan; McCaul, Eugene W.

    1999-01-01

    Since the beginning of the World Climate Research Program's Global Precipitation Climatology Project (GPCP) satellite remote sensing of precipitation has made dramatic improvements, particularly for tropical regions. Data from microwave and infrared sensors now form the most critical input to precipitation data sets and can be calibrated with surface gauges to so that the strengths of each data source can be maximized in some statistically optimal sense. It is clear however that there still remain significant uncertainties with satellite precipitation retrievals which limit their usefulness for many purposes. Systematic differences i'A tropical precipitation estimates have been brought to light in comparison activities such as the GPCP Algorithm Intercomparison Project and more recent Wetnet Precipitation Intercomparison Project 3. These uncertainties are assuming more importance because of the demands for validation associated with global climate modeling and data assimilation methodologies. The objective of the present study is to determine the physical basis for systematic differences in spatial structure of tropical precipitation as portrayed by several different satellite-based data sets. The study is limited to oceanic regions only and deals primarily with aspects of spatial variability. We are specifically interested in why MSU channel 1 and GPI precipitation differences are so striking over the Eastern Pacific ITCZ and why they both differ from other microwave emission-based precipitation estimates from SSM/I and a scattering-based deep convective ice index from MSU channel 2. Our results to date have shown that MSU channel I precipitation estimates are biased high over the Eastern Pacific ITCZ because of two factors: (1) the hypersensitivity of this frequency to cloud water in contrast to falling rain drops, and (2) unaccounted for scattering effects by precipitation-size ice which depresses the signal of the liquid water emission. Likewise, cold cloud top climatologies such as the GPI show an excess (a deficit) in estimated rainfall over the E. Pacific ITCZ (Warm Pool region). We show that these algorithms need to account for regionally varying heights (or temperatures) at which tropical convection detrains to form cirrus shields. A second objective we pursue is to identify variations in the macroscale cloud physical and thermodynamic properties of precipitation regimes" and relate these differences to tropical dynamical mechanisms of tropical heat and moisture balance. Finally, we interpret the algorithm differences and their associations with tropical dynamics in terms of WCRP GPCP goals for constructing precipitation climatologies.

  3. Radiative characteristics of Clouds embedded in and occurring beneath Smoke analyzed using airborne multiangular measurements

    NASA Astrophysics Data System (ADS)

    Gautam, R.; Gatebe, C. K.; Varnai, T.; Singh, M.; Poudyal, R.

    2016-12-01

    Clouds in the presence of absorbing aerosols results in their apparent darkening, observed at the Top of Atmosphere (TOA), which is associated with the radiative effects of aerosol absorption. Owing to the warming/darkening effect and potential impacts on regional climate via semidirect and thermodynamic pathways, above-cloud aerosols have been characterized in recent satellite-based studies. While satellite data are particularly useful in showing the radiative impact of above-cloud aerosols at the TOA, retrievals of aerosol and cloud properties are affected by large uncertainties when they co-occur. In this study, we present radiative characteristics of clouds in the presence of wildfire smoke using airborne data primarily from NASA's Cloud Absorption Radiometer (CAR), collected during the ARCTAS and SAFARI campaigns in Canada and southern Africa, respectively. Scattered cumulus clouds embedded in dense smoke over land (Canada) as well as smoke aerosols above marine stratocumulus clouds (southeast Atlantic) show characteristic spectral gradient across the UV-visible-NIR spectrum using CAR data. In general, clouds in the presence of smoke are impacted by absorbing aerosol-induced darkening at the shorter wavelengths (e.g. UV and blue bands), as opposed to an (expected) negative gradient for cloud-free smoke and a flat spectrum for smoke-free cloud cover. The circular and spiral flights not only allowed the complete characterization of the angular distribution of smoke-cloud radiative interactions, but also provided the vertical distribution of smoke and clouds. Overall, the observational-based smoke-cloud radiative interactions were found to be physically consistent with theoretical 1D and 3D radiation calculations. These airborne observations are also complemented by satellite data from MODIS reflectances and CERES shortwave fluxes, providing a synergistic radiative impact assessment of clouds in the presence of smoke. http://car.gsfc.nasa.gov/

  4. Estimation of the cloud transmittance from radiometric measurements at the ground level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Dario; Mares, Oana, E-mail: mareshoana@yahoo.com

    2014-11-24

    The extinction of solar radiation due to the clouds is more significant than due to any other atmospheric constituent, but it is always difficult to be modeled because of the random distribution of clouds on the sky. Moreover, the transmittance of a layer of clouds is in a very complex relation with their type and depth. A method for estimating cloud transmittance was proposed in Paulescu et al. (Energ. Convers. Manage, 75 690–697, 2014). The approach is based on the hypothesis that the structure of the cloud covering the sun at a time moment does not change significantly in amore » short time interval (several minutes). Thus, the cloud transmittance can be calculated as the estimated coefficient of a simple linear regression for the computed versus measured solar irradiance in a time interval Δt. The aim of this paper is to optimize the length of the time interval Δt. Radiometric data measured on the Solar Platform of the West University of Timisoara during 2010 at a frequency of 1/15 seconds are used in this study.« less

  5. Remotely Sensed High-Resolution Global Cloud Dynamics for Predicting Ecosystem and Biodiversity Distributions

    PubMed Central

    Wilson, Adam M.; Jetz, Walter

    2016-01-01

    Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties. PMID:27031693

  6. Estimation of the cloud transmittance from radiometric measurements at the ground level

    NASA Astrophysics Data System (ADS)

    Costa, Dario; Mares, Oana

    2014-11-01

    The extinction of solar radiation due to the clouds is more significant than due to any other atmospheric constituent, but it is always difficult to be modeled because of the random distribution of clouds on the sky. Moreover, the transmittance of a layer of clouds is in a very complex relation with their type and depth. A method for estimating cloud transmittance was proposed in Paulescu et al. (Energ. Convers. Manage, 75 690-697, 2014). The approach is based on the hypothesis that the structure of the cloud covering the sun at a time moment does not change significantly in a short time interval (several minutes). Thus, the cloud transmittance can be calculated as the estimated coefficient of a simple linear regression for the computed versus measured solar irradiance in a time interval Δt. The aim of this paper is to optimize the length of the time interval Δt. Radiometric data measured on the Solar Platform of the West University of Timisoara during 2010 at a frequency of 1/15 seconds are used in this study.

  7. Collisional rate coefficients of C3H2 and the determination of physical conditions in molecular clouds

    NASA Technical Reports Server (NTRS)

    Avery, L. W.; Green, Sheldon

    1989-01-01

    Collisional excitation rates for C3H2, calculated using the coupled states approximation at temperatures of 10-30 K, are presented. C3H2 produces a number of spectral line pairs whose members are close together in frequency but arise from levels with different excitation energies. The rates are used in statistical equilibrium calculations to illustrate the excitation properties and density-dependent behavior of various C3H2 line ratios.

  8. A Gridded Climatology of Clouds over Land (1971-1996) and Ocean (1954-2008) from Surface Observations Worldwide (NDP-026E)*

    DOE Data Explorer

    Hahn, C. J. [University of Arizona; Warren, S. G. [University of Washington

    2007-01-01

    Surface synoptic weather reports from ships and land stations worldwide were processed to produce a global cloud climatology which includes: total cloud cover, the amount and frequency of occurrence of nine cloud types within three levels of the troposphere, the frequency of occurrence of clear sky and of precipitation, the base heights of low clouds, and the non-overlapped amounts of middle and high clouds. Synoptic weather reports are made every three hours; the cloud information in a report is obtained visually by human observers. The reports used here cover the period 1971-96 for land and 1954-2008 for ocean. This digital archive provides multi-year monthly, seasonal, and annual averages in 5x5-degree grid boxes (or 10x10-degree boxes for some quantities over the ocean). Daytime and nighttime averages, as well as the diurnal average (average of day and night), are given. Nighttime averages were computed using only those reports that met an "illuminance criterion" (i.e., made under adequate moonlight or twilight), thus minimizing the "night-detection bias" and making possible the determination of diurnal cycles and nighttime trends for cloud types. The phase and amplitude of the first harmonic of both the diurnal cycle and the annual cycle are given for the various cloud types. Cloud averages for individual years are also given for the ocean for each of 4 seasons, and for each of the 12 months (daytime-only averages for the months). [Individual years for land are not gridded, but are given for individual stations in a companion data set, CDIAC's NDP-026D).] This analysis used 185 million reports from 5388 weather stations on continents and islands, and 50 million reports from ships; these reports passed a series of quality-control checks. This analysis updates (and in most ways supercedes) the previous cloud climatology constructed by the authors in the 1980s. Many of the long-term averages described here are mapped on the University of Washington, Department of Atmospheric Sciences Web site. The Online Cloud Atlas containing NDP-026E data is available via the University of Washington.

  9. The Atmospheric Infrared Sounder Version 6 Cloud Products

    NASA Technical Reports Server (NTRS)

    Kahn, B. H.; Irion, F. W.; Dang, V. T.; Manning, E. M.; Nasiri, S. L.; Naud, C. M.; Blaisdell, J. M.; Schreier, M. M..; Yue, Q.; Bowman, K. W.; hide

    2014-01-01

    The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter D(sub e), and ice cloud optical thickness (t) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of tau are found in the storm tracks and near convection in the tropics, while D(sub e) is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of tau is significantly larger than for the total cloud fraction, ice cloud frequency, and D(sub e), and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

  10. Observations of high droplet number concentrations in Southern Ocean boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Chubb, T.; Huang, Y.; Jensen, J.; Campos, T.; Siems, S.; Manton, M.

    2015-09-01

    Data from the standard cloud physics payload during the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) campaigns provide a snapshot of unusual wintertime microphysical conditions in the boundary layer over the Southern Ocean. On 29 June 2011, the HIAPER sampled the boundary layer in a region of pre-frontal warm air advection between 58 and 48° S to the south of Tasmania. Cloud droplet number concentrations were consistent with climatological values in the northernmost profiles but were exceptionally high for wintertime in the Southern Ocean at 100-200 cm-3 in the southernmost profiles. Sub-micron (0.0625 m s-1) were most likely responsible for production of sea spray aerosol which influenced the microphysical properties of the boundary layer clouds. The smaller size and higher number concentration of cloud droplets is inferred to increase the albedo of these clouds, and these conditions occur regularly, and are expected to increase in frequency, over windy parts of the Southern Ocean.

  11. Cloud Computing with iPlant Atmosphere.

    PubMed

    McKay, Sheldon J; Skidmore, Edwin J; LaRose, Christopher J; Mercer, Andre W; Noutsos, Christos

    2013-10-15

    Cloud Computing refers to distributed computing platforms that use virtualization software to provide easy access to physical computing infrastructure and data storage, typically administered through a Web interface. Cloud-based computing provides access to powerful servers, with specific software and virtual hardware configurations, while eliminating the initial capital cost of expensive computers and reducing the ongoing operating costs of system administration, maintenance contracts, power consumption, and cooling. This eliminates a significant barrier to entry into bioinformatics and high-performance computing for many researchers. This is especially true of free or modestly priced cloud computing services. The iPlant Collaborative offers a free cloud computing service, Atmosphere, which allows users to easily create and use instances on virtual servers preconfigured for their analytical needs. Atmosphere is a self-service, on-demand platform for scientific computing. This unit demonstrates how to set up, access and use cloud computing in Atmosphere. Copyright © 2013 John Wiley & Sons, Inc.

  12. Laboratory Studies of Anomalous Entrainment in Cumulus Cloud Flows

    NASA Astrophysics Data System (ADS)

    Diwan, Sourabh S.; Narasimha, Roddam; Bhat, G. S.; Sreenivas, K. R.

    2011-12-01

    Entrainment in cumulus clouds has been a subject of investigation for the last sixty years, and continues to be a central issue in current research. The development of a laboratory facility that can simulate cumulus cloud evolution enables us to shed light on the problem. The apparatus for the purpose is based on a physical model of cloud flow as a plume with off-source diabatic heating that is dynamically similar to the effect of latent-heat release in natural clouds. We present a critical review of the experimental data so far obtained in such facilities on the variation of the entrainment coefficient in steady diabatic jets and plumes. Although there are some unexplained differences among different data sets, the dominant trend of the results compares favourably with recent numerical simulations on steady-state deep convection, and helps explain certain puzzles in the fluid dynamics of clouds.

  13. Model for Semantically Rich Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Poux, F.; Neuville, R.; Hallot, P.; Billen, R.

    2017-10-01

    This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.

  14. Vertical wind velocity measurements using a five-hole probe with remotely piloted aircraft to study aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Calmer, Radiance; Roberts, Gregory C.; Preissler, Jana; Sanchez, Kevin J.; Derrien, Solène; O'Dowd, Colin

    2018-05-01

    The importance of vertical wind velocities (in particular positive vertical wind velocities or updrafts) in atmospheric science has motivated the need to deploy multi-hole probes developed for manned aircraft in small remotely piloted aircraft (RPA). In atmospheric research, lightweight RPAs ( < 2.5 kg) are now able to accurately measure atmospheric wind vectors, even in a cloud, which provides essential observing tools for understanding aerosol-cloud interactions. The European project BACCHUS (impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) focuses on these specific interactions. In particular, vertical wind velocity at cloud base is a key parameter for studying aerosol-cloud interactions. To measure the three components of wind, a RPA is equipped with a five-hole probe, pressure sensors, and an inertial navigation system (INS). The five-hole probe is calibrated on a multi-axis platform, and the probe-INS system is validated in a wind tunnel. Once mounted on a RPA, power spectral density (PSD) functions and turbulent kinetic energy (TKE) derived from the five-hole probe are compared with sonic anemometers on a meteorological mast. During a BACCHUS field campaign at Mace Head Atmospheric Research Station (Ireland), a fleet of RPAs was deployed to profile the atmosphere and complement ground-based and satellite observations of physical and chemical properties of aerosols, clouds, and meteorological state parameters. The five-hole probe was flown on straight-and-level legs to measure vertical wind velocities within clouds. The vertical velocity measurements from the RPA are validated with vertical velocities derived from a ground-based cloud radar by showing that both measurements yield model-simulated cloud droplet number concentrations within 10 %. The updraft velocity distributions illustrate distinct relationships between vertical cloud fields in different meteorological conditions.

  15. Web-based CERES Clouds QC Property Viewing Tool

    NASA Astrophysics Data System (ADS)

    Smith, R. A.

    2015-12-01

    Churngwei Chu1, Rita Smith1, Sunny Sun-Mack1, Yan Chen1, Elizabeth Heckert1, Patrick Minnis21 Science Systems and Applications, Inc., Hampton, Virginia2 NASA Langley Research Center, Hampton, Virginia This presentation will display the capabilities of a web-based CERES cloud property viewer. Aqua/Terra/NPP data will be chosen for examples. It will demonstrate viewing of cloud properties in gridded global maps, histograms, time series displays, latitudinal zonal images, binned data charts, data frequency graphs, and ISCCP plots. Images can be manipulated by the user to narrow boundaries of the map as well as color bars and value ranges, compare datasets, view data values, and more. Other atmospheric studies groups will be encouraged to put their data into the underlying NetCDF data format and view their data with the tool.

  16. Environmental Controls on Stratocumulus Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Burleyson, Casey Dale

    Marine stratocumulus clouds are widespread, low, optically thick, and persist for long periods of time. Their high albedo allows stratocumulus clouds to reflect large amounts of incoming shortwave radiation. Understanding the processes that lead to changes in stratocumulus cloud fraction is critically important in capturing the effects of stratocumulus in global climate models (GCMs). This research presents two analyses which seek to better understand the governing processes that drive variability in the stratocumulus-topped boundary layer system. The diurnal cycle of marine stratocumulus in cloud-topped boundary layers is examined using ship-based meteorological data obtained during the 2008 VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx). The high temporal and spatial continuity of the ship data, as well as the 31-day sample size, allows us to resolve the diurnal transition in degree of coupling of the stratocumulus-topped boundary layer. The amplitude of diurnal variation was comparable to the magnitude of longitudinal differences between regions east and west of 80°W for most of the cloud, surface, and precipitation variables examined. The diurnal cycle of precipitation is examined in terms of areal coverage, number of drizzle cells, and estimated rain rate. East of 80°W, the drizzle cell frequency and drizzle area peaks just prior to sunrise. West of 80°W, total drizzle area peaks at 3:00 am, 2-3 hours before sunrise. Peak drizzle cell frequency is three times higher west of 80°W compared to east of 80°W. The waning of drizzle several hours prior to the ramp up of shortwave fluxes may be related to the higher peak drizzle frequencies in the west. The ensemble effect of localized subcloud evaporation of precipitation may make drizzle a self-limiting process where the areal density of drizzle cells is sufficiently high. The daytime reduction in vertical velocity variance in a less coupled boundary layer is accompanied by enhanced stratification of potential temperature and a buildup of moisture near the surface. We also present an analysis of patterns of cloud fraction variability on a variety of time scales ranging from seasonal to sub-diurnal. The goal of this analysis is to understand which modes of variability, and thus the processes that drive variability on that time scale, may be more or less important to capturing the total variations in cloud fraction. We developed for marine regions of predominantly low cloud a novel method to separate infrared brightness temperatures measured by geostationary satellites into cloudy and cloud free pixels. The resulting cloud identification maps have a native spatial resolution of 4 km x 4 km and are available every 30 minutes from 2003-2010. Analysis of the low cloud frequency dataset shows that the diurnal cycle of low cloud fraction within a given season and region unfolds in a very regular manner. The largest diurnal cycles occur on the edges of the cloud deck where cloud fractions are generally lower. Large scale decreases in cloudiness overnight, such as those that would occur with the formation of pockets-of-open cells, occur infrequently. Total cloud fraction at sunrise is on average only a few percent lower than the maximum that occurs overnight whereas the average cloud breakup during the day is an order of magnitude larger. We show that up to 50% of the total variance of cloud fraction on 30 minute time scales can be explained solely by the time of day and day of the year. In order to improve simulation of stratocumulus within GCMs, models should be able to replicate the processes leading to variability on seasonal and diurnal time scales.

  17. Applications and Improvement of a Coupled, Global and Cloud-Resolving Modeling System

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Chern, J.; Atlas, R.

    2005-01-01

    Recently Grabowski (2001) and Khairoutdinov and Randall (2001) have proposed the use of 2D CFWs as a "super parameterization" [or multi-scale modeling framework (MMF)] to represent cloud processes within atmospheric general circulation models (GCMs). In the MMF, a fine-resolution 2D CRM takes the place of the single-column parameterization used in conventional GCMs. A prototype Goddard MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) is now being developed. The prototype includes the fvGCM run at 2.50 x 20 horizontal resolution with 32 vertical layers from the surface to 1 mb and the 2D (x-z) GCE using 64 horizontal and 32 vertical grid points with 4 km horizontal resolution and a cyclic lateral boundary. The time step for the 2D GCE would be 15 seconds, and the fvGCM-GCE coupling frequency would be 30 minutes (i.e. the fvGCM physical time step). We have successfully developed an fvGCM-GCE coupler for this prototype. Because the vertical coordinate of the fvGCM (a terrain-following floating Lagrangian coordinate) is different from that of the GCE (a z coordinate), vertical interpolations between the two coordinates are needed in the coupler. In interpolating fields from the GCE to fvGCM, we use an existing fvGCM finite- volume piecewise parabolic mapping (PPM) algorithm, which conserves the mass, momentum, and total energy. A new finite-volume PPM algorithm, which conserves the mass, momentum and moist static energy in the z coordinate, is being developed for interpolating fields from the fvGCM to the GCE. In the meeting, we will discuss the major differences between the two MMFs (i.e., the CSU MMF and the Goddard MMF). We will also present performance and critical issues related to the MMFs. In addition, we will present multi-dimensional cloud datasets (i.e., a cloud data library) generated by the Goddard MMF that will be provided to the global modeling community to help improve the representation and performance of moist processes in climate models and to improve our understanding of cloud processes globally (the software tools needed to produce cloud statistics and to identify various types of clouds and cloud systems from both high-resolution satellite and model data will be also presented).

  18. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  19. a 33GHZ and 95GHZ Cloud Profiling Radar System (cprs): Preliminary Estimates of Particle Size in Precipitation and Clouds.

    NASA Astrophysics Data System (ADS)

    Sekelsky, Stephen Michael

    1995-11-01

    The Microwave Remote Sensing Laboratory (MIRSL) st the University of Massachusetts has developed a unique single antenna, dual-frequency polarimetric Cloud Profiling Radar System (CPRS). This project was funded by the Department of Energy's Atmospheric Radiation Measurement (ARM) program, and was intended to help fill the void of ground-based remote sensors capable of characterizing cloud microphysical properties. CPRS is unique in that it can simultaneously measure the complex power backscattered from clouds at 33 GHz and 95 GHz through the same aperture. Both the 33 GHz and 95 GHz channels can transmit pulse-to-pulse selectable vertical or horizontal polarization, and simultaneously record both the copolarized and crosspolarized backscatter. CPRS Doppler, polarimetric and dual-wavelength reflectivity measurements combined with in situ cloud measurements should lead to the development of empirical models that can more accurately classify cloud-particle phase and habit, and make better quantitative estimates of particle size distribution parameters. This dissertation describes the CPRS hardware, and presents colocated 33 GHz and 95 GHz measurements that illustrate the use of dual-frequency measurements to estimate particle size when Mie scattering, is observed in backscatter from rain and ice-phase clouds. Polarimetric measurements are presented as a means of discriminating cloud phase (ice-water) and estimating crystal shape in cirrus clouds. Polarimetric and dual-wavelength observations of insects are also presented with a brief discussion of their impact on the interpretation of precipitation and liquid cloud measurements. In precipitation, Diermendjian's equations for Mie backscatter (1) and the Marshal-Palmer drop-size distribution are used to develop models relating differences in the reflectivity and mean velocity at 33 GHz and 95 GHz to the microphysical parameters of rain. These models are then used to estimate mean droplet size from CPRS measurements of drizzle, which were collected in July, 1993 during the system's first field test in Lincoln, NE. The dissertation also presents cirrus cloud and other measurements collected during the DOE-sponsored Remote Cloud Sensing Intensive Operations Period (RCS-IOP) experiment in April, 1994. Zenith-pointing cirrus measurements show small differences in 33 GHz and 95 GHz reflectivity, as models have predicted (2). Depolarization was also detected in a few cases when ice crystals precipitated from the base of a cloud. On May 29, 1994 CPRS observed a convective storm that produced a cirrus anvil cloud and hail. These storms are one 'engine' producing cirrus clouds and are currently a topic of intensive research by climatologists. Both zenith-pointing and range-height data formats are presented. Measurements of depolarization above the melting/layer are compared to in situ observations of particle size and shape. The RCS-IOP experiment also provided a first opportunity to verify our calibration with aircraft in situ measurements, and to compare our cloud measurements to those collected by other remote sensors. (Abstract shortened by UMI.).

  20. A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes

    NASA Astrophysics Data System (ADS)

    Tao, W. K.

    2017-12-01

    In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.

  1. Icing Frequencies Experienced During Climb and Descent by Fighter-Interceptor Aircraft

    NASA Technical Reports Server (NTRS)

    Perkins, Porter J.

    1958-01-01

    Data and analyses are presented on the relative frequencies of occurrence and severity of icing cloud layers encountered by jet aircraft in the climb and descent phases of flights to high altitudes. Fighter-interceptor aircraft operated by the Air Defense Command (USAF) at bases in the Duluth and Seattle areas collected the data with icing meters installed for a l-year period. The project was part of an extensive program conducted by the NACA to collect Icing cloud data for evaluating the icing problem relevant to routine operations. The average frequency of occurrence of icing was found to be about 5 percent of the number of climbs and descents during 1 year of operations The icing encounters were predominantly in the low and middle cloud layers, decreasing above 15,000 feet to practically none above 25,000 feet. The greatest thickness of ice that would accumulate on any aircraft component (as indicated by the accretion on a small object) was measured with the icing meters. The ice thicknesses on a small sensing probe averaged less than 1/32 inch and did not exceed 1/2 inch. Such accumulations are relatively small when compared with those that can form during horizontal flight in icing clouds. The light accretions resulted from relatively steep angles of flight through generally thin cloud layers. Because of the limited statistical reliability of the results, an analysis was made using previous statistics on icing clouds below an altitude of 20,000 feet to determine the general icing severity probabilities. The calculations were made using adiabatic lifting as a basis to establish the liquid-water content. Probabilities of over-all ice accretions on a small object as a function of airspeed and rate of climb were computed from the derived water contents. These results were then combined with the probability of occurrence of icing in order to give the icing severity that can be expected for routine aircraft operations.

  2. Environmental Support to Space Launch

    DTIC Science & Technology

    2006-05-31

    in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of...in this study as there were no occurrences. Tomado/Waterapout 0 999 5! FWinds Wath er nots (Convective) (MR** from Sit) Winds GTE 60 Knots (Convective...and Merceret (2004) developed an automatic process to determine cloud boundaries using cloud physics and ground-based radar data. It performs an

  3. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  4. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-07-01

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.

  5. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network.

    PubMed

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-07-28

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes.

  6. Experimental demonstration of multi-dimensional resources integration for service provisioning in cloud radio over fiber network

    PubMed Central

    Yang, Hui; Zhang, Jie; Ji, Yuefeng; He, Yongqi; Lee, Young

    2016-01-01

    Cloud radio access network (C-RAN) becomes a promising scenario to accommodate high-performance services with ubiquitous user coverage and real-time cloud computing in 5G area. However, the radio network, optical network and processing unit cloud have been decoupled from each other, so that their resources are controlled independently. Traditional architecture cannot implement the resource optimization and scheduling for the high-level service guarantee due to the communication obstacle among them with the growing number of mobile internet users. In this paper, we report a study on multi-dimensional resources integration (MDRI) for service provisioning in cloud radio over fiber network (C-RoFN). A resources integrated provisioning (RIP) scheme using an auxiliary graph is introduced based on the proposed architecture. The MDRI can enhance the responsiveness to dynamic end-to-end user demands and globally optimize radio frequency, optical network and processing resources effectively to maximize radio coverage. The feasibility of the proposed architecture is experimentally verified on OpenFlow-based enhanced SDN testbed. The performance of RIP scheme under heavy traffic load scenario is also quantitatively evaluated to demonstrate the efficiency of the proposal based on MDRI architecture in terms of resource utilization, path blocking probability, network cost and path provisioning latency, compared with other provisioning schemes. PMID:27465296

  7. Some physical and thermodynamic properties of rocket exhaust clouds measured with infrared scanners

    NASA Technical Reports Server (NTRS)

    Gomberg, R. I.; Kantsios, A. G.; Rosensteel, F. J.

    1977-01-01

    Measurements using infrared scanners were made of the radiation from exhaust clouds from liquid- and solid-propellant rocket boosters. Field measurements from four launches were discussed. These measurements were intended to explore the physical and thermodynamic properties of these exhaust clouds during their formation and subsequent dispersion. Information was obtained concerning the initial cloud's buoyancy, the stabilized cloud's shape and trajectory, the cloud volume as a function of time, and it's initial and stabilized temperatures. Differences in radiation intensities at various wavelengths from ambient and stabilized exhaust clouds were investigated as a method of distinguishing between the two types of clouds. The infrared remote sensing method used can be used at night when visible range cameras are inadequate. Infrared scanning techniques developed in this project can be applied directly to natural clouds, clouds containing certain radionuclides, or clouds of industrial pollution.

  8. Physical properties of CO-dark molecular gas traced by C+

    NASA Astrophysics Data System (ADS)

    Tang, Ningyu; Li, Di; Heiles, Carl; Wang, Shen; Pan, Zhichen; Wang, Jun-Jie

    2016-09-01

    Context. Neither Hi nor CO emission can reveal a significant quantity of so-called dark gas in the interstellar medium (ISM). It is considered that CO-dark molecular gas (DMG), the molecular gas with no or weak CO emission, dominates dark gas. Determination of physical properties of DMG is critical for understanding ISM evolution. Previous studies of DMG in the Galactic plane are based on assumptions of excitation temperature and volume density. Independent measurements of temperature and volume density are necessary. Aims: We intend to characterize physical properties of DMG in the Galactic plane based on C+ data from the Herschel open time key program, namely Galactic Observations of Terahertz C+ (GOT C+) and Hi narrow self-absorption (HINSA) data from international Hi 21 cm Galactic plane surveys. Methods: We identified DMG clouds with HINSA features by comparing Hi, C+, and CO spectra. We derived the Hi excitation temperature and Hi column density through spectral analysis of HINSA features. The Hi volume density was determined by utilizing the on-the-sky dimension of the cold foreground Hi cloud under the assumption of axial symmetry. The column and volume density of H2 were derived through excitation analysis of C+ emission. The derived parameters were then compared with a chemical evolutionary model. Results: We identified 36 DMG clouds with HINSA features. Based on uncertainty analysis, optical depth of HiτHi of 1 is a reasonable value for most clouds. With the assumption of τHi = 1, these clouds were characterized by excitation temperatures in a range of 20 K to 92 K with a median value of 55 K and volume densities in the range of 6.2 × 101 cm-3 to 1.2 × 103 cm-3 with a median value of 2.3 × 102 cm-3. The fraction of DMG column density in the cloud (fDMG) decreases with increasing excitation temperature following an empirical relation fDMG =-2.1 × 10-3Tex,(τHi = 1) + 1.0. The relation between fDMG and total hydrogen column density NH is given by fDMG = 1.0-3.7 × 1020/NH. We divided the clouds into a high extinction group and low extinction group with the dividing threshold being total hydrogen column density NH of 5.0 × 1021 cm-2 (AV = 2.7 mag). The values of fDMG in the low extinction group (AV ≤ 2.7 mag) are consistent with the results of the time-dependent, chemical evolutionary model at the age of ~10 Myr. Our empirical relation cannot be explained by the chemical evolutionary model for clouds in the high extinction group (AV > 2.7 mag). Compared to clouds in the low extinction group (AV ≤ 2.7 mag), clouds in the high extinction group (AV > 2.7 mag) have comparable volume densities but excitation temperatures that are 1.5 times lower. Moreover, CO abundances in clouds of the high extinction group (AV > 2.7 mag) are 6.6 × 102 times smaller than the canonical value in the Milky Way. Conclusions: The molecular gas seems to be the dominate component in these clouds. The high percentage of DMG in clouds of the high extinction group (AV > 2.7 mag) may support the idea that molecular clouds are forming from pre-existing molecular gas, I.e., a cold gas with a high H2 content but that contains a little or no CO content.

  9. Characterizing the Trade Space Between Capability and Complexity in Next Generation Cloud and Precipitation Observing Systems Using Markov Chain Monte Carlos Techniques

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Mace, G. G.; Posselt, D. J.

    2017-12-01

    As we begin to contemplate the next generation atmospheric observing systems, it will be critically important that we are able to make informed decisions regarding the trade space between scientific capability and the need to keep complexity and cost within definable limits. To explore this trade space as it pertains to understanding key cloud and precipitation processes, we are developing a Markov Chain Monte Carlo (MCMC) algorithm suite that allows us to arbitrarily define the specifications of candidate observing systems and then explore how the uncertainties in key retrieved geophysical parameters respond to that observing system. MCMC algorithms produce a more complete posterior solution space, and allow for an objective examination of information contained in measurements. In our initial implementation, MCMC experiments are performed to retrieve vertical profiles of cloud and precipitation properties from a spectrum of active and passive measurements collected by aircraft during the ACE Radiation Definition Experiments (RADEX). Focusing on shallow cumulus clouds observed during the Integrated Precipitation and Hydrology EXperiment (IPHEX), observing systems in this study we consider W and Ka-band radar reflectivity, path-integrated attenuation at those frequencies, 31 and 94 GHz brightness temperatures as well as visible and near-infrared reflectance. By varying the sensitivity and uncertainty of these measurements, we quantify the capacity of various combinations of observations to characterize the physical properties of clouds and precipitation.

  10. Results of the Thailand Warm-Cloud Hygroscopic Particle Seeding Experiment.

    NASA Astrophysics Data System (ADS)

    Silverman, Bernard A.; Sukarnjanaset, Wathana

    2000-07-01

    A randomized, warm-rain enhancement experiment was carried out during 1995-98 in the Bhumibol catchment area in northwestern Thailand. The experiment was conducted in accordance with a randomized, floating single-target design. The seeding targets were semi-isolated, warm convective clouds, contained within a well-defined experimental unit, that, upon qualification, were selected for seeding or not seeding with calcium chloride particles in a random manner. The seeding was done by dispensing the calcium chloride particles at an average rate of 21 kg km1 per seeding pass into the updrafts of growing warm convective clouds (about 1-2 km above cloud base) that have not yet developed or, at most, have just started to develop a precipitation radar echo. The experiment was carried out by the Bureau of Royal Rainmaking and Agricultural Aviation (BRRAA) of the Ministry of Agriculture and Cooperatives as part of its Applied Atmospheric Resources Research Program, Phase 2.During the 4 yr of the experiment, a total of 67 experimental units (34 seeded and 33 nonseeded units) were qualified in accordance with the experimental design. Volume-scan data from a 10-cm Doppler radar at 5-min intervals were used to track each experimental unit, from which various radar-estimated properties of the experimental units were obtained. The statistical evaluation of the experiment was based on a rerandomization analysis of the single ratio of seeded to unseeded experimental unit lifetime properties. In 1997, the BRRAA acquired two sophisticated King Air 350 cloud-physics aircraft, providing the opportunity to obtain physical measurements of the aerosol characteristics of the environment in which the warm clouds grow, of the hydrometeor characteristics of seeded and unseeded clouds, and of the calcium chloride seeding plume dimensions and particle size distribution-information directly related to the effectiveness of the seeding conceptual model that was not directly available up to then.The evaluation of the Thailand warm-rain enhancement experiment has provided statistically significant evidence and supporting physical evidence that the seeding of warm convective clouds with calcium chloride particles produced more rain than was produced by their unseeded counterparts. An exploratory analysis of the time evolution of the seeding effects resulted in a significant revision to the seeding conceptual model.

  11. WRF Simulations of the 20-22 January 2007 Snow Events over Eastern Canada: Comparison with In-Situ and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Shi, J. J.; Tao, W.-K.; Matsui, T.; Cifelli, R.; Huo, A.; Lang, S.; Tokay, A.; Peters-Lidard, C.; Jackson, G.; Rutledge, S.; hide

    2009-01-01

    One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.

  12. Cirrus clouds and climate feedback: Is the sky falling and should we go tell the king

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.

    1990-01-01

    It is widely believed that thin cirrus clouds act to enhance the greenhouse effect owing to a particular combination of their optical properties. It is demonstrated how this effect is perhaps based on inadequate resolution of the physics of cirrus clouds and that the more likely impact of cirrus clouds to climate change remains somewhat elusive. These conclusions are developed within the context of a specific feedback mechanism incorporated into a simple mechanistic climate model. A specific scientific question addressed is whether or not the observed relationship between the ice water content and temperature of cirrus provides any significant feedback to the CO2 greenhouse warming. A related question also examined concerns the specific role of cloud microphysics and radiation in this feedback. This raises several pertinent issues about the understanding of cirrus clouds and their likely role in climate change as there presently exists a considerable uncertainty about the microphysics of these clouds (size and shape of ice crystals) and their radiative influences.

  13. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  14. Characterizing Sorghum Panicles using 3D Point Clouds

    NASA Astrophysics Data System (ADS)

    Lonesome, M.; Popescu, S. C.; Horne, D. W.; Pugh, N. A.; Rooney, W.

    2017-12-01

    To address demands of population growth and impacts of global climate change, plant breeders must increase crop yield through genetic improvement. However, plant phenotyping, the characterization of a plant's physical attributes, remains a primary bottleneck in modern crop improvement programs. 3D point clouds generated from terrestrial laser scanning (TLS) and unmanned aerial systems (UAS) based structure from motion (SfM) are a promising data source to increase the efficiency of screening plant material in breeding programs. This study develops and evaluates methods for characterizing sorghum (Sorghum bicolor) panicles (heads) in field plots from both TLS and UAS-based SfM point clouds. The TLS point cloud over experimental sorghum field at Texas A&M farm in Burleston County TX were collected using a FARO Focus X330 3D laser scanner. SfM point cloud was generated from UAS imagery captured using a Phantom 3 Professional UAS at 10m altitude and 85% image overlap. The panicle detection method applies point cloud reflectance, height and point density attributes characteristic of sorghum panicles to detect them and estimate their dimensions (panicle length and width) through image classification and clustering procedures. We compare the derived panicle counts and panicle sizes with field-based and manually digitized measurements in selected plots and study the strengths and limitations of each data source for sorghum panicle characterization.

  15. Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Li, Zhanqing; Mok, Jungbin; Ahn, Myoung-Hwan; Kim, Byung-Gon; Choi, Yong-Sang; Jung, Chang-Hoon; Yoo, Hye Lim

    2017-12-01

    This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.

  16. Ground-based microwave radar and optical lidar signatures of volcanic ash plumes: models, observations and retrievals

    NASA Astrophysics Data System (ADS)

    Mereu, Luigi; Marzano, Frank; Mori, Saverio; Montopoli, Mario; Cimini, Domenico; Martucci, Giovanni

    2013-04-01

    The detection and quantitative retrieval of volcanic ash clouds is of significant interest due to its environmental, climatic and socio-economic effects. Real-time monitoring of such phenomena is crucial, also for the initialization of dispersion models. Satellite visible-infrared radiometric observations from geostationary platforms are usually exploited for long-range trajectory tracking and for measuring low level eruptions. Their imagery is available every 15-30 minutes and suffers from a relatively poor spatial resolution. Moreover, the field-of-view of geostationary radiometric measurements may be blocked by water and ice clouds at higher levels and their overall utility is reduced at night. Ground-based microwave radars may represent an important tool to detect and, to a certain extent, mitigate the hazard from the ash clouds. Ground-based weather radar systems can provide data for determining the ash volume, total mass and height of eruption clouds. Methodological studies have recently investigated the possibility of using ground-based single-polarization and dual-polarization radar system for the remote sensing of volcanic ash cloud. A microphysical characterization of volcanic ash was carried out in terms of dielectric properties, size distribution and terminal fall speed, assuming spherically-shaped particles. A prototype of volcanic ash radar retrieval (VARR) algorithm for single-polarization systems was proposed and applied to S-band and C-band weather radar data. The sensitivity of the ground-based radar measurements decreases as the ash cloud is farther so that for distances greater than about 50 kilometers fine ash might be not detected anymore by microwave radars. In this respect, radar observations can be complementary to satellite, lidar and aircraft observations. Active remote sensing retrieval from ground, in terms of detection, estimation and sensitivity, of volcanic ash plumes is not only dependent on the sensor specifications, but also on the range and ash cloud distribution. The minimum detectable signal can be increased, for a given system and ash plume scenario, by decreasing the observation range and increasing the operational frequency using a multi-sensor approach, but also exploiting possible polarimetric capabilities. In particular, multi-wavelengths lidars can be complementary systems useful to integrate radar-based ash particle measurement. This work, starting from the results of a previous study and from above mentioned issues, is aimed at quantitatively assessing the optimal choices for microwave and millimeter-wave radar systems with a dual-polarization capability for real-time ash cloud remote sensing to be used in combination with an optical lidar. The physical-electromagnetic model of ash particle distributions is systematically reviewed and extended to include non-spherical particle shapes, vesicular composition, silicate content and orientation phenomena. The radar and lidar scattering and absorption response is simulated and analyzed in terms of self-consistent polarimetric signatures for ash classification purposes and correlation with ash concentration and mean diameter for quantitative retrieval aims. A sensitivity analysis to ash concentration, as a function of sensor specifications, range and ash category, is carried out trying to assess the expected multi-sensor multi-spectral system performances and limitations. The multi-sensor multi-wavelength polarimetric model-based approach can be used within a particle classification and estimation scheme, based on the VARR Bayesian metrics. As an application, the ground-based observation of the Eyjafjallajökull volcanic ash plume on 15-16 May 2010, carried out at the Atmospheric Research Station at Mace Head, Carna (Ireland) with MIRA36 35-GHz Ka-Band Doppler cloud radar and CHM15K lidar/ceilometer at 1064-nm wavelength, has been considered. Results are discussed in terms of retrievals and intercomparison with other ground-based and satellite-based sensors.

  17. An adaptive process-based cloud infrastructure for space situational awareness applications

    NASA Astrophysics Data System (ADS)

    Liu, Bingwei; Chen, Yu; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik; Rubin, Bruce

    2014-06-01

    Space situational awareness (SSA) and defense space control capabilities are top priorities for groups that own or operate man-made spacecraft. Also, with the growing amount of space debris, there is an increase in demand for contextual understanding that necessitates the capability of collecting and processing a vast amount sensor data. Cloud computing, which features scalable and flexible storage and computing services, has been recognized as an ideal candidate that can meet the large data contextual challenges as needed by SSA. Cloud computing consists of physical service providers and middleware virtual machines together with infrastructure, platform, and software as service (IaaS, PaaS, SaaS) models. However, the typical Virtual Machine (VM) abstraction is on a per operating systems basis, which is at too low-level and limits the flexibility of a mission application architecture. In responding to this technical challenge, a novel adaptive process based cloud infrastructure for SSA applications is proposed in this paper. In addition, the details for the design rationale and a prototype is further examined. The SSA Cloud (SSAC) conceptual capability will potentially support space situation monitoring and tracking, object identification, and threat assessment. Lastly, the benefits of a more granular and flexible cloud computing resources allocation are illustrated for data processing and implementation considerations within a representative SSA system environment. We show that the container-based virtualization performs better than hypervisor-based virtualization technology in an SSA scenario.

  18. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-10-20

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  19. Are atmospheric updrafts a key to unlocking climate forcing and sensitivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud–aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climate and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vs in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of the scale dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  20. Pseudorandom Noise Code-Based Technique for Thin Cloud Discrimination with CO2 and O2 Absorption Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a pseudo noise (PN) code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths.

  1. New insights about cloud vertical structure from CloudSat and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-09-01

    Active cloud observations from A-Train's CloudSat and CALIPSO satellites offer new opportunities to examine the vertical structure of hydrometeor layers. We use the 2B-CLDCLASS-LIDAR merged CloudSat-CALIPSO product to examine global aspects of hydrometeor vertical stratification. We group the data into major cloud vertical structure (CVS) classes based on our interpretation of how clouds in three standard atmospheric layers overlap and provide their global frequency of occurrence. The two most frequent CVS classes are single-layer (per our definition) low and high clouds that represent 53% of cloudy skies, followed by high clouds overlying low clouds, and vertically extensive clouds that occupy near-contiguously a large portion of the troposphere. The prevalence of these configurations changes seasonally and geographically, between daytime and nighttime, and between continents and oceans. The radiative effects of the CVS classes reveal the major radiative warmers and coolers from the perspective of the planet as a whole, the surface, and the atmosphere. Single-layer low clouds dominate planetary and atmospheric cooling and thermal infrared surface warming. We also investigate the consistency between passive and active views of clouds by providing the CVS breakdowns of Moderate Resolution Imaging Spectroradiometer cloud regimes for spatiotemporally coincident MODIS-Aqua (also on the A-Train) and CloudSat-CALIPSO daytime observations. When the analysis is expanded for a more in-depth look at the most heterogeneous of the MODIS cloud regimes, it ultimately confirms previous interpretations of their makeup that did not have the benefit of collocated active observations.

  2. Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget

    NASA Technical Reports Server (NTRS)

    Haynes, John M.; Jakob, Christian; Rossow, William B.; Tselioudis, George; Brown, Josephine

    2011-01-01

    Clouds over the Southern Ocean are often poorly represented by climate models, but they make a significant contribution to the top-of-atmosphere (TOA) radiation balance, particularly in the shortwave portion of the energy spectrum. This study seeks to better quantify the organization and structure of Southern Hemisphere midlatitude clouds by combining measurements from active and passive satellite-based datasets. Geostationary and polar-orbiter satellite data from the International Satellite Cloud Climatology Project (ISCCP) are used to quantify large-scale, recurring modes of cloudiness, and active observations from CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) are used to examine vertical structure, radiative heating rates, and precipitation associated with these clouds. It is found that cloud systems are organized into eight distinct regimes and that ISCCP overestimates the midlevel cloudiness of these regimes. All regimes contain a relatively high occurrence of low cloud, with 79%of all cloud layers observed having tops below 3 km, but multiple-layered clouds systems are present in approximately 34% of observed cloud profiles. The spatial distribution of regimes varies according to season, with cloud systems being geometrically thicker, on average, during the austral winter. Those regimes found to be most closely associated with midlatitude cyclones produce precipitation the most frequently, although drizzle is extremely common in low-cloud regimes. The regimes associated with cyclones have the highest in-regime shortwave cloud radiative effect at the TOA, but the low-cloud regimes, by virtue of their high frequency of occurrence over the oceans, dominate both TOA and surface shortwave effects in this region as a whole.

  3. Are Atmospheric Updrafts a Key to Unlocking Climate Forcing and Sensitivity?

    DOE PAGES

    Donner, Leo J.; O'Brien, Travis A.; Rieger, Daniel; ...

    2016-06-08

    Both climate forcing and climate sensitivity persist as stubborn uncertainties limiting the extent to which climate models can provide actionable scientific scenarios for climate change. A key, explicit control on cloud-aerosol interactions, the largest uncertainty in climate forcing, is the vertical velocity of cloud-scale updrafts. Model-based studies of climate sensitivity indicate that convective entrainment, which is closely related to updraft speeds, is an important control on climate sensitivity. Updraft vertical velocities also drive many physical processes essential to numerical weather prediction. Vertical velocities and their role in atmospheric physical processes have been given very limited attention in models for climatemore » and numerical weather prediction. The relevant physical scales range down to tens of meters and are thus frequently sub-grid and require parameterization. Many state-of-science convection parameterizations provide mass fluxes without specifying vertical velocities, and parameterizations which do provide vertical velocities have been subject to limited evaluation against what have until recently been scant observations. Atmospheric observations imply that the distribution of vertical velocities depends on the areas over which the vertical velocities are averaged. Distributions of vertical velocities in climate models may capture this behavior, but it has not been accounted for when parameterizing cloud and precipitation processes in current models. New observations of convective vertical velocities offer a potentially promising path toward developing process-level cloud models and parameterizations for climate and numerical weather prediction. Taking account of scale-dependence of resolved vertical velocities offers a path to matching cloud-scale physical processes and their driving dynamics more realistically, with a prospect of reduced uncertainty in both climate forcing and sensitivity.« less

  4. Towards Removing the Southern Ocean Short Wave Bias in HadGEM3: Mixed-phase Cloud Improvements.

    NASA Astrophysics Data System (ADS)

    Field, P.; Furtado, K.

    2014-12-01

    Many IPCC models suffer from significant Sea Surface Temperature (SST) biases in the Southern Ocean that adversely affects the representation of the cryosphere and global circulation in these models. Evidence suggests that much of this error is linked to Short Wave (SW) radiation, sensible and latent heat biases. Flaws in the representation of clouds and a deficit of supercooled liquid water in mixed-phase clouds are suspected as a likely source of the SW error. A physically based method that uses subgrid turbulence to control a new liquid production term has been developed. Comparisons between theory, based on a stochastic differential equation used to represent supersaturation fluctuations, and decametre resolution Large Eddy Simulations will be presented. An implementation of this approach in a GCM shows an increased prevalance of supercooled liquid water and a reduction in the magnitude of the Southern Ocean SW bias. To conclude, we will summarize the complete package of changes that have been made to tackle the Southern Ocean SST bias in a physically meaningful way.

  5. Line-of-sight extrapolation noise in dust polarization

    NASA Astrophysics Data System (ADS)

    Poh, Jason; Dodelson, Scott

    2017-05-01

    The B-modes of polarization at frequencies ranging from 50-1000 GHz are produced by Galactic dust, lensing of primordial E-modes in the cosmic microwave background (CMB) by intervening large scale structure, and possibly by primordial B-modes in the CMB imprinted by gravitational waves produced during inflation. The conventional method used to separate the dust component of the signal is to assume that the signal at high frequencies (e.g. 350 GHz) is due solely to dust and then extrapolate the signal down to a lower frequency (e.g. 150 GHz) using the measured scaling of the polarized dust signal amplitude with frequency. For typical Galactic thermal dust temperatures of ˜20 K , these frequencies are not fully in the Rayleigh-Jeans limit. Therefore, deviations in the dust cloud temperatures from cloud to cloud will lead to different scaling factors for clouds of different temperatures. Hence, when multiple clouds of different temperatures and polarization angles contribute to the integrated line-of-sight polarization signal, the relative contribution of individual clouds to the integrated signal can change between frequencies. This can cause the integrated signal to be decorrelated in both amplitude and direction when extrapolating in frequency. Here we carry out a Monte Carlo analysis on the impact of this line-of-sight extrapolation noise on a greybody dust model consistent with Planck and Pan-STARRS observations, enabling us to quantify its effect. Using results from the Planck experiment, we find that this effect is small, more than an order of magnitude smaller than the current uncertainties. However, line-of-sight extrapolation noise may be a significant source of uncertainty in future low-noise primordial B-mode experiments. Scaling from Planck results, we find that accounting for this uncertainty becomes potentially important when experiments are sensitive to primordial B-mode signals with amplitude r ≲0.0015 in the greybody dust models considered in this paper.

  6. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke,E.; Kollias, P.

    2007-08-06

    The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of clouds, or else, large errors can be introduced in the calculation of the cloud radiative fluxes. Current parameterizations of cloud water partition in liquid and ice based on temperature are characterized by large uncertainty (Curry et al., 1996; Hobbs and Rangno, 1998; Intriery et al., 2002). This is particularly important in high geographical latitudes and temperature ranges where both liquid droplets and ice crystal phases can exist (mixed-phasemore » cloud). The mixture of phases has a large effect on cloud radiative properties, and the parameterization of mixed-phase clouds has a large impact on climate simulations (e.g., Gregory and Morris, 1996). Furthermore, the presence of both ice and liquid affects the macroscopic properties of clouds, including their propensity to precipitate. Despite their importance, mixed-phase clouds are severely understudied compared to the arguably simpler single-phase clouds. In-situ measurements in mixed-phase clouds are hindered due to aircraft icing, difficulties distinguishing hydrometeor phase, and discrepancies in methods for deriving physical quantities (Wendisch et al. 1996, Lawson et al. 2001). Satellite-based retrievals of cloud phase in high latitudes are often hindered by the highly reflecting ice-covered ground and persistent temperature inversions. From the ground, the retrieval of mixed-phase cloud properties has been the subject of extensive research over the past 20 years using polarization lidars (e.g., Sassen et al. 1990), dual radar wavelengths (e.g., Gosset and Sauvageot 1992; Sekelsky and McIntosh, 1996), and recently radar Doppler spectra (Shupe et al. 2004). Millimeter-wavelength radars have substantially improved our ability to observe non-precipitating clouds (Kollias et al., 2007) due to their excellent sensitivity that enables the detection of thin cloud layers and their ability to penetrate several non-precipitating cloud layers. However, in mixed-phase clouds conditions, the observed Doppler moments are dominated by the highly reflecting ice crystals and thus can not be used to identify the cloud phase. This limits our ability to identify the spatial distribution of cloud phase and our ability to identify the conditions under which mixed-phase clouds form.« less

  7. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  8. QoS-aware health monitoring system using cloud-based WBANs.

    PubMed

    Almashaqbeh, Ghada; Hayajneh, Thaier; Vasilakos, Athanasios V; Mohd, Bassam J

    2014-10-01

    Wireless Body Area Networks (WBANs) are amongst the best options for remote health monitoring. However, as standalone systems WBANs have many limitations due to the large amount of processed data, mobility of monitored users, and the network coverage area. Integrating WBANs with cloud computing provides effective solutions to these problems and promotes the performance of WBANs based systems. Accordingly, in this paper we propose a cloud-based real-time remote health monitoring system for tracking the health status of non-hospitalized patients while practicing their daily activities. Compared with existing cloud-based WBAN frameworks, we divide the cloud into local one, that includes the monitored users and local medical staff, and a global one that includes the outer world. The performance of the proposed framework is optimized by reducing congestion, interference, and data delivery delay while supporting users' mobility. Several novel techniques and algorithms are proposed to accomplish our objective. First, the concept of data classification and aggregation is utilized to avoid clogging the network with unnecessary data traffic. Second, a dynamic channel assignment policy is developed to distribute the WBANs associated with the users on the available frequency channels to manage interference. Third, a delay-aware routing metric is proposed to be used by the local cloud in its multi-hop communication to speed up the reporting process of the health-related data. Fourth, the delay-aware metric is further utilized by the association protocols used by the WBANs to connect with the local cloud. Finally, the system with all the proposed techniques and algorithms is evaluated using extensive ns-2 simulations. The simulation results show superior performance of the proposed architecture in optimizing the end-to-end delay, handling the increased interference levels, maximizing the network capacity, and tracking user's mobility.

  9. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    NASA Astrophysics Data System (ADS)

    Poulsen, C. A.; Siddans, R.; Thomas, G. E.; Sayer, A. M.; Grainger, R. G.; Campmany, E.; Dean, S. M.; Arnold, C.; Watts, P. D.

    2012-08-01

    Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud) which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase. The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick, greater than 50 optical depths, where the cloud begins to saturate. The cost proved a good indicator of multi-layer scenarios. Both the retrieval cost and the error need to be considered together in order to evaluate the quality of the retrieval. This algorithm in the configuration described here has been applied to both ATSR-2 and AATSR visible and infrared measurements in the context of the GRAPE (Global Retrieval and cloud Product Evaluation) project to produce a 14 yr consistent record for climate research.

  10. Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern Versus Southern Hemisphere Warm Fronts

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2012-01-01

    Extratropical cyclones are responsible for most of the precipitation and wind damage in the midlatitudes during the cold season, but there are still uncertainties on how they will change in a warming climate. An ubiquitous problem amongst General Circulation Models (GCMs) is a lack of cloudiness over the southern oceans that may be in part caused by a lack of clouds in cyclones. We analyze CloudSat, CALIPSO and AMSR-E observations for 3 austral and boreal cold seasons and composite cloud frequency of occurrence and precipitation at the warm fronts for northern and southern hemisphere oceanic cyclones. We find that cloud frequency of occurrence and precipitation rate are similar in the early stage of the cyclone life cycle in both northern and southern hemispheres. As cyclones evolve and reach their mature stage, cloudiness and precipitation at the warm front increase in the northern hemisphere but decrease in the southern hemisphere. This is partly caused by lower amounts of precipitable water being available to southern hemisphere cyclones, and smaller increases in wind speed as the cyclones evolve. Southern hemisphere cloud occurrence at the warm front is found to be more sensitive to the amount of moisture in the warm sector than to wind speeds. This suggests that cloudiness in southern hemisphere storms may be more susceptible to changes in atmospheric water vapor content, and thus to changes in surface temperature than their northern hemisphere counterparts. These differences between northern and southern hemisphere cyclones are statistically robust, indicating A-Train-based analyses as useful tools for evaluation of GCMs in the next IPCC report.

  11. Optical observations related to the molecular chemistry in diffuse interstellar clouds

    NASA Technical Reports Server (NTRS)

    Federman, S. R.

    1987-01-01

    Observations, which have been published since 1979, of molecular species in diffuse clouds are discussed. Particular attention is given to the ultraviolet measurements of CO with the Copernicus and IUE satellites and to ground-based optical measurements of CH, CH(+), CN, and 02. These data encompass large enough samples to test the chemical schemes expected to occur in diffuse clouds. Upper limits for other species (e.g., H2O, H2O(+), and C3) place restrictions on the pathways for molecular production. Moreover, analysis of the rotational distribution of the C2 molecule results in the determination of the physical conditions of the cloud. These parameters, including density, temperature, and the intensity of the radiation field, are necessary for modeling the chemistry.

  12. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.

  13. An Estimate of Low-Cloud Feedbacks from Variations of Cloud Radiative and Physical Properties with Sea Surface Temperature on Interannual Time Scales

    NASA Technical Reports Server (NTRS)

    Eitzen, Zachary A.; Xu, Kuan-Man; Wong, Takmeng

    2011-01-01

    Simulations of climate change have yet to reach a consensus on the sign and magnitude of the changes in physical properties of marine boundary layer clouds. In this study, the authors analyze how cloud and radiative properties vary with SST anomaly in low-cloud regions, based on five years (March 2000 - February 2005) of Clouds and the Earth s Radiant Energy System (CERES) -- Terra monthly gridded data and matched European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological reanalaysis data. In particular, this study focuses on the changes in cloud radiative effect, cloud fraction, and cloud optical depth with SST anomaly. The major findings are as follows. First, the low-cloud amount (-1.9% to -3.4% /K) and the logarithm of low-cloud optical depth (-0.085 to -0.100/K) tend to decrease while the net cloud radiative effect (3.86 W/m(exp 2)/ K) becomes less negative as SST anomalies increase. These results are broadly consistent with previous observational studies. Second, after the changes in cloud and radiative properties with SST anomaly are separated into dynamic, thermodynamic, and residual components, changes in the dynamic component (taken as the vertical velocity at 700 hPa) have relatively little effect on cloud and radiative properties. However, the estimated inversion strength decreases with increasing SST, accounting for a large portion of the measured decreases in cloud fraction and cloud optical depth. The residual positive change in net cloud radiative effect (1.48 W/m(exp 2)/ K) and small changes in low-cloud amount (-0.81% to 0.22% /K) and decrease in the logarithm of optical depth (-0.035 to -0.046/ K) with SST are interpreted as a positive cloud feedback, with cloud optical depth feedback being the dominant contributor. Last, the magnitudes of the residual changes differ greatly among the six low-cloud regions examined in this study, with the largest positive feedbacks (approximately 4 W/m(exp 2)/ K) in the southeast and northeast Atlantic regions and a slightly negative feedback (-0.2 W/m(exp 2)/ K) in the south-central Pacific region. Because the retrievals of cloud optical depth and/or cloud fraction are difficult in the presence of aerosols, the transport of heavy African continental aerosols may contribute to the large magnitudes of estimated cloud feedback in the two Atlantic regions.

  14. Integrating Cloud Processes in the Community Atmosphere Model, Version 5.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.; Bretherton, Christopher S.; Rasch, Philip J.

    2014-09-15

    This paper provides a description on the parameterizations of global cloud system in CAM5. Compared to the previous versions, CAM5 cloud parameterization has the following unique characteristics: (1) a transparent cloud macrophysical structure that has horizontally non-overlapped deep cumulus, shallow cumulus and stratus in each grid layer, each of which has own cloud fraction, mass and number concentrations of cloud liquid droplets and ice crystals, (2) stratus-radiation-turbulence interaction that allows CAM5 to simulate marine stratocumulus solely from grid-mean RH without relying on the stability-based empirical empty stratus, (3) prognostic treatment of the number concentrations of stratus liquid droplets and icemore » crystals with activated aerosols and detrained in-cumulus condensates as the main sources and evaporation-sedimentation-precipitation of stratus condensate as the main sinks, and (4) radiatively active cumulus. By imposing consistency between diagnosed stratus fraction and prognosed stratus condensate, CAM5 is free from empty or highly-dense stratus at the end of stratus macrophysics. CAM5 also prognoses mass and number concentrations of various aerosol species. Thanks to the aerosol activation and the parameterizations of the radiation and stratiform precipitation production as a function of the droplet size, CAM5 simulates various aerosol indirect effects associated with stratus as well as direct effects, i.e., aerosol controls both the radiative and hydrological budgets. Detailed analysis of various simulations revealed that CAM5 is much better than CAM3/4 in the global performance as well as the physical formulation. However, several problems were also identifed, which can be attributed to inappropriate regional tuning, inconsistency between various physics parameterizations, and incomplete model physics. Continuous efforts are going on to further improve CAM5.« less

  15. Discrimination Between Clouds and Snow in Landsat 8 Imagery: an Assessment of Current Methods and a New Approach

    NASA Astrophysics Data System (ADS)

    Stillinger, T.; Dozier, J.; Phares, N.; Rittger, K.

    2015-12-01

    Discrimination between snow and clouds poses a serious but tractable challenge to the consistent delivery of high-quality information on mountain snow from remote sensing. Clouds obstruct the surface from the sensor's view, and the similar optical properties of clouds and snow make accurate discrimination difficult. We assess the performance of the current Landsat 8 operational snow and cloud mask products (LDCM CCA and CFmask), along with a new method, using over one million manually identified snow and clouds pixels in Landsat 8 scenes. The new method uses physically based scattering models to generate spectra in each Landsat 8 band, at that scene's solar illumination, for snow and cloud particle sizes that cover the plausible range for each. The modeled spectra are compared to pixels' spectra via several independent ways to identify snow and clouds. The results are synthesized to create a final snow/cloud mask, and the method can be applied to any multispectral imager with bands covering the visible, near-infrared, and shortwave-infrared regions. Each algorithm we tested misidentifies snow and clouds in both directions to varying degrees. We assess performance with measures of Precision, Recall, and the F statistic, which are based on counts of true and false positives and negatives. Tests for significance in differences between spectra in the measured and modeled values among incorrectly identified pixels help ascertain reasons for misidentification. A cloud mask specifically designed to separate snow from clouds is a valuable tool for those interested in remotely sensing snow cover. Given freely available remote sensing datasets and computational tools to feasibly process entire mission histories for an area of interest, enabling researchers to reliably identify and separate snow and clouds increases the usability of the data for hydrological and climatological studies.

  16. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    NASA Astrophysics Data System (ADS)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  17. Infrared Data for Storm Analysis

    NASA Technical Reports Server (NTRS)

    Adler, R.

    1982-01-01

    The papers in this section include: 1) 'Thunderstorm Top Structure Observed by Aircraft Overflights with an Infrared Radiometer'; 2) 'Thunderstorm Intensity as Determined from Satellite Data'; 3) 'Relation of Satellite-Based Thunderstorm Intensity to Radar-Estimated Rainfall'; 4) 'A Simple Physical Basis for Relating Geosynchronous Satellite Infrared Observations to Thunderstorm Rainfall'; 5) 'Satellite-Observed Cloud-Top Height Changes in Tornadic Thunderstorms'; 6) 'Predicting Tropical Cyclone Intensity Using Satellite-Measured Equivalent Blackbody Temperatures of Cloud Tops'.

  18. Interference, focusing and excitation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.

    2011-05-01

    One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.

  19. Integration of Cloud resources in the LHCb Distributed Computing

    NASA Astrophysics Data System (ADS)

    Úbeda García, Mario; Méndez Muñoz, Víctor; Stagni, Federico; Cabarrou, Baptiste; Rauschmayr, Nathalie; Charpentier, Philippe; Closier, Joel

    2014-06-01

    This contribution describes how Cloud resources have been integrated in the LHCb Distributed Computing. LHCb is using its specific Dirac extension (LHCbDirac) as an interware for its Distributed Computing. So far, it was seamlessly integrating Grid resources and Computer clusters. The cloud extension of DIRAC (VMDIRAC) allows the integration of Cloud computing infrastructures. It is able to interact with multiple types of infrastructures in commercial and institutional clouds, supported by multiple interfaces (Amazon EC2, OpenNebula, OpenStack and CloudStack) - instantiates, monitors and manages Virtual Machines running on this aggregation of Cloud resources. Moreover, specifications for institutional Cloud resources proposed by Worldwide LHC Computing Grid (WLCG), mainly by the High Energy Physics Unix Information Exchange (HEPiX) group, have been taken into account. Several initiatives and computing resource providers in the eScience environment have already deployed IaaS in production during 2013. Keeping this on mind, pros and cons of a cloud based infrasctructure have been studied in contrast with the current setup. As a result, this work addresses four different use cases which represent a major improvement on several levels of our infrastructure. We describe the solution implemented by LHCb for the contextualisation of the VMs based on the idea of Cloud Site. We report on operational experience of using in production several institutional Cloud resources that are thus becoming integral part of the LHCb Distributed Computing resources. Furthermore, we describe as well the gradual migration of our Service Infrastructure towards a fully distributed architecture following the Service as a Service (SaaS) model.

  20. Clustering the Orion B giant molecular cloud based on its molecular emission

    PubMed Central

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2017-01-01

    Context Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional Probability Density Function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results A clustering analysis based only on the J = 1 – 0 lines of three isotopologues of CO proves suffcient to reveal distinct density/column density regimes (nH ~ 100 cm−3, ~ 500 cm−3, and > 1000 cm−3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1 − 0 line of HCO+ and the N = 1 − 0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm−3 ~ 4 × 104 cm−3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1 – 0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. PMID:29456256

  1. TU-F-CAMPUS-T-05: A Cloud-Based Monte Carlo Dose Calculation for Electron Cutout Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, T; Bush, K

    Purpose: For electron cutouts of smaller sizes, it is necessary to verify electron cutout factors due to perturbations in electron scattering. Often, this requires a physical measurement using a small ion chamber, diode, or film. The purpose of this study is to develop a fast Monte Carlo based dose calculation framework that requires only a smart phone photograph of the cutout and specification of the SSD and energy to determine the electron cutout factor, with the ultimate goal of making this cloud-based calculation widely available to the medical physics community. Methods: The algorithm uses a pattern recognition technique to identifymore » the corners of the cutout in the photograph as shown in Figure 1. It then corrects for variations in perspective, scaling, and translation of the photograph introduced by the user’s positioning of the camera. Blob detection is used to identify the portions of the cutout which comprise the aperture and the portions which are cutout material. This information is then used define physical densities of the voxels used in the Monte Carlo dose calculation algorithm as shown in Figure 2, and select a particle source from a pre-computed library of phase-spaces scored above the cutout. The electron cutout factor is obtained by taking a ratio of the maximum dose delivered with the cutout in place to the dose delivered under calibration/reference conditions. Results: The algorithm has been shown to successfully identify all necessary features of the electron cutout to perform the calculation. Subsequent testing will be performed to compare the Monte Carlo results with a physical measurement. Conclusion: A simple, cloud-based method of calculating electron cutout factors could eliminate the need for physical measurements and substantially reduce the time required to properly assure accurate dose delivery.« less

  2. The relationship of Arctic precipitation rates to stratus cloud thickness

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Garrett, T. J.

    2013-12-01

    Cloud properties are changing with a warming Arctic, yet it is unclear how precipitation rates will respond. For mid-latitude stratiform clouds, van Zanten et al. (2005) have shown that precipitation rates R decrease with droplet concentration N, but that they increase with the cube of cloud depth H. Furthermore, Kostinski (2008) used physical reasoning to show that the drizzle rate is related to the water content volume fraction (f) and the size dependent fall speed of particles u(r), i.e. R = f u(r). Kostinski's result suggests that R = f u(r) ~ H^ (1+2a), where a = 1 and 0.5 in the intermediate and turbulent regimes of fall speed, respectively. In general, mid-latitude stratocumuli tend to produce drizzles whose fall speed u(r) = k r^1 (a = 1) falls within the intermediate regime. Thus, the physically derived R ~ H^ (1+2 x 1) =H^3 relationship agrees well with the van Zanten et al. (2005) observations. To evaluate Kostinski's hypotheses with respect to Arctic stratus, cloud and precipitation retrieval techniques developed by Zhao and Garrett (2008) and Garrett and Zhao (2012) are used from the ARM NSA-AAO site near Barrow, Alaska. Specifically, cloud top height, cloud base height, and rain rate at cloud base and ground are used to develop dependence relationships. These data show that R ~ H^1.54 in the summer of Arctic, implying that a = 0.27. A low value of parameter a in the relationship u(r) = k r^a suggests wake turbulence behind falling precipitation particles. In the Arctic, stratocumuli often generate ice phase precipitation (or snow crystals). Snow crystals falling in air generate wake turbulence more than the drizzle that is characteristic of stratocumuli in mid-latitudes. A fall speed versus size dependence of u(r) = k r^0.27 suggests that a parameterization R ~ H^ (1+2 x 0.27) = H^1.54 is most suitable for Arctic cloud and climate models that do not explicitly resolve small and fast scale microphysical processes.

  3. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data sets (or cloud library) stored at Goddard.

  4. In Situ Microphysical and Scattering Properties of Falling Snow in GPM-GCPEx

    NASA Astrophysics Data System (ADS)

    Duffy, G.; Nesbitt, S. W.; McFarquhar, G. M.; Poellot, M.; Chandrasekar, C. V.; Hudak, D. R.

    2013-12-01

    The Global Precipitation Measurement Cold-season Precipitation Experiment (GPM-GCPEx) field campaign was conducted near Egbert, Ontario, Canada in January-February 2012 to study the physical characteristics and microwave radiative properties of the column of hydrometeors in cold season precipitation events. Extensive in situ aircraft profiling was conducted with the University of North Dakota (UND) Citation aircraft within the volume of several remote sensing instruments within a wide variety of precipitation events, from snow to freezing drizzle. Several of the primary goals of GCPEx include improving our understanding of the microphysical characteristics of falling snow and how those characteristics relate to the multi-wavelength radiative characteristics In this study, particle size distribution parameters, effective particle densities, and habit distributions are determined using in-situ cloud measurements obtained on the UND citation using the High Volume Precipitation Spectrometer, the Cloud Particle Imager, and the Cloud Imaging Probe. These quantities are matched compared to multi-frequency radar measurements from the Environment Canada King City C-Band and NASA D3R Ku-Ka Band dual polarization radars. These analysis composites provide the basis for direct evaluation of particle size distributions and observed multi-wavelength and multi-polarization radar observations, including radar reflectivity, differential reflectivity, and dual wavelength ratio) in falling snow at weather radar and GPM radar frequencies. Theoretical predictions from Mie, Rayleigh-Gans, and more complex snowflake aggregate scattering model predictions using observed particle size distributions are compared with observed radar scattering characteristics along the Citation flight track.

  5. Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension

    NASA Astrophysics Data System (ADS)

    Tritsis, Aris; Tassis, Konstantinos

    2018-05-01

    Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology.

  6. New Cloud and Precipitation Research Avenues Enabled by low-cost Phased-array Radar Technology

    NASA Astrophysics Data System (ADS)

    Kollias, P.; Oue, M.; Fridlind, A. M.; Matsui, T.; McLaughlin, D. J.

    2017-12-01

    For over half a century, radars operating in a wide range of frequencies have been the primary source of observational insights of clouds and precipitation microphysics and dynamics and contributed to numerous significant advancements in the field of cloud and precipitation physics. The development of multi-wavelength and polarization diversity techniques has further strengthened the quality of microphysical and dynamical retrievals from radars and has assisted in overcoming some of the limitations imposed by the physics of scattering. Atmospheric radars have historically employed a mechanically-scanning dish antenna and their ability to point to, survey, and revisit specific points or regions in the atmosphere is limited by mechanical inertia. Electronically scanned, or phased-array, radars capable of high-speed, inertialess beam steering, have been available for several decades, but the cost of this technology has limited its use to military applications. During the last 10 years, lower power and lower-cost versions of electronically scanning radars have been developed, and this presents an attractive and affordable new tool for the atmospheric sciences. The operational and research communities are currently exploring phased array advantages in signal processing (i.e. beam multiplexing, improved clutter rejection, cross beam wind estimation, adaptive sensing) and science applications (i.e. tornadic storm morphology studies). Here, we will present some areas of atmospheric research where inertia-less radars with ability to provide rapid volume imaging offers the potential to advance cloud and precipitation research. We will discuss the added value of single phased-array radars as well as networks of these radars for several problems including: multi-Doppler wind retrieval techniques, cloud lifetime studies and aerosol-convection interactions. The performance of current (dish) and future (e-scan) radar systems for these atmospheric studies will be evaluated using numerical model output and a sophisticated radar simulator package.

  7. The EarthCARE satellite payload

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Perez-Albinana, Abelardo; Lemanczyk, Jerzy; Heliere, Arnaud; Wehr, Tobias; Eisinger, Michael; Lefebvre, Alain; Nakatsuka, Hirotaka; Tomita, Eiichi

    2014-10-01

    EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission facilitates unique data product synergies, to improve understanding of atmospheric cloud-aerosol interactions and Earth radiative balance, towards enhancing climate and numerical weather prediction models. This paper will describe the payload, consisting of two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a Broad Band Radiometer (BBR). ATLID is a UV lidar providing atmospheric echoes, with a vertical resolution of 100 m, up to 40 km altitude. Using very high spectral resolution filtering the relative contributions of particle (aerosols) and Rayleigh (molecular) back scattering will be resolved, allowing cloud and aerosol optical depth to be deduced. Particle scatter co- and cross-polarisation measurements will provide information about the cloud and aerosol particles' physical characteristics. JAXA's 94.05 GHz Cloud Profiling Radar operates with a pulse width of 3.3 μm and repetition frequency 6100 to 7500 Hz. The 2.5 m aperture radar will retrieve data on clouds and precipitation. Doppler shift measurements in the backscatter signal will furthermore allow inference of the vertical motion of particles to an accuracy of about 1 m/s. MSI's 500 m pixel data will provide cloud and aerosol information and give context to the active instrument measurements for 3-D scene construction. Four solar channels and three thermal infrared channels cover 35 km on one side to 115 km on the other side of the other instrument's observations. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.

  8. Atmospheric microphysical experiments on an orbital platform

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.

    1974-01-01

    The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.

  9. Rise in the frequency of cloud cover in LANDSAT data for the period 1973 to 1981. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Mendonca, F. J.; Neto, G. C.

    1983-01-01

    Percentages of cloud cover in LANDSAT imagery were used to calculate the cloud cover monthly average statistic for each LANDSAT scene in Brazil, during the period of 1973 to 1981. The average monthly cloud cover and the monthly minimum cloud cover were also calculated for the regions of north, northeast, central west, southeast and south, separately.

  10. 4-D Cloud Water Content Fields Derived from Operational Satellite Data

    NASA Technical Reports Server (NTRS)

    Smith, William L., Jr.; Minnis, Patrick

    2010-01-01

    In order to improve operational safety and efficiency, the transportation industry, including aviation, has an urgent need for accurate diagnoses and predictions of clouds and associated weather conditions. Adverse weather accounts for 70% of all air traffic delays within the U.S. National Airspace System. The Federal Aviation Administration has determined that as much as two thirds of weather-related delays are potentially avoidable with better weather information and roughly 20% of all aviation accidents are weather related. Thus, it is recognized that an important factor in meeting the goals of the Next Generation Transportation System (NexGen) vision is the improved integration of weather information. The concept of a 4-D weather cube is being developed to address that need by integrating observed and forecasted weather information into a shared 4-D database, providing an integrated and nationally consistent weather picture for a variety of users and to support operational decision support systems. Weather analyses and forecasts derived using Numerical Weather Prediction (NWP) models are a critical tool that forecasters rely on for guidance and also an important element in current and future decision support systems. For example, the Rapid Update Cycle (RUC) and the recently implemented Rapid Refresh (RR) Weather Research and Forecast (WRF) models provide high frequency forecasts and are key elements of the FAA Aviation Weather Research Program. Because clouds play a crucial role in the dynamics and thermodynamics of the atmosphere, they must be adequately accounted for in NWP models. The RUC, for example, cycles at full resolution five cloud microphysical species (cloud water, cloud ice, rain, snow, and graupel) and has the capability of updating these fields from observations. In order to improve the models initial state and subsequent forecasts, cloud top altitude (or temperature, T(sub c)) derived from operational satellite data, surface observations of cloud base altitude, radar reflectivity, and lightning data are used to help build and remove clouds in the models assimilation system. Despite this advance and the many recent advances made in our understanding of cloud physical processes and radiative effects, many problems remain in adequately representing clouds in models. While the assimilation of cloud top information derived from operational satellite data has merit, other information is available that has not yet been exploited. For example, the vertically integrated cloud water content (CWC) or cloud water path (CWP) and cloud geometric thickness (delta Z) are standard products being derived routinely from operational satellite data. These and other cloud products have been validated under a variety of conditions. Since the uncertainties have generally been found to be less than those found in model analyses and forecasts, the satellite products should be suitable for data assimilation, provided an appropriate strategy can be developed that links the satellite-derived cloud parameters with cloud parameters specified in the model. In this paper, we briefly outline such a strategy and describe a methodology to retrieve cloud water content profiles from operational satellite data. Initial results and future plans are presented. It is expected that the direct assimilation of this new product will provide the most accurate depiction of the vertical distribution of cloud water ever produced at the high spatial and temporal resolution needed for short term weather analyses and forecasts.

  11. Trusted measurement model based on multitenant behaviors.

    PubMed

    Ning, Zhen-Hu; Shen, Chang-Xiang; Zhao, Yong; Liang, Peng

    2014-01-01

    With a fast growing pervasive computing, especially cloud computing, the behaviour measurement is at the core and plays a vital role. A new behaviour measurement tailored for Multitenants in cloud computing is needed urgently to fundamentally establish trust relationship. Based on our previous research, we propose an improved trust relationship scheme which captures the world of cloud computing where multitenants share the same physical computing platform. Here, we first present the related work on multitenant behaviour; secondly, we give the scheme of behaviour measurement where decoupling of multitenants is taken into account; thirdly, we explicitly explain our decoupling algorithm for multitenants; fourthly, we introduce a new way of similarity calculation for deviation control, which fits the coupled multitenants under study well; lastly, we design the experiments to test our scheme.

  12. Trusted Measurement Model Based on Multitenant Behaviors

    PubMed Central

    Ning, Zhen-Hu; Shen, Chang-Xiang; Zhao, Yong; Liang, Peng

    2014-01-01

    With a fast growing pervasive computing, especially cloud computing, the behaviour measurement is at the core and plays a vital role. A new behaviour measurement tailored for Multitenants in cloud computing is needed urgently to fundamentally establish trust relationship. Based on our previous research, we propose an improved trust relationship scheme which captures the world of cloud computing where multitenants share the same physical computing platform. Here, we first present the related work on multitenant behaviour; secondly, we give the scheme of behaviour measurement where decoupling of multitenants is taken into account; thirdly, we explicitly explain our decoupling algorithm for multitenants; fourthly, we introduce a new way of similarity calculation for deviation control, which fits the coupled multitenants under study well; lastly, we design the experiments to test our scheme. PMID:24987731

  13. Optical properties of aerosol contaminated cloud derived from MODIS instrument

    NASA Astrophysics Data System (ADS)

    Mei, Linlu; Rozanov, Vladimir; Lelli, Luca; Vountas, Marco; Burrows, John P.

    2016-04-01

    The presence of absorbing aerosols above/within cloud can reduce the amount of up-welling radiation in visible (VIS) and short-wave infrared and darken the spectral reflectance when compared with a spectrum of a clean cloud observed by satellite instruments (Jethva et al., 2013). Cloud properties retrieval for aerosol contaminated cases is a great challenge. Even small additional injection of aerosol particles into clouds in the cleanest regions of Earth's atmosphere will cause significant effect on those clouds and on climate forcing (Koren et al., 2014; Rosenfeld et al., 2014) because the micro-physical cloud process are non-linear with respect to the aerosol loading. The current cloud products like Moderate Resolution Imaging Spectroradiometer (MODIS) ignoring the aerosol effect for the retrieval, which may cause significant error in the satellite-derived cloud properties. In this paper, a new cloud properties retrieval method, considering aerosol effect, based on the weighting-function (WF) method, is presented. The retrieval results shows that the WF retrieved cloud properties (e.g COT) agrees quite well with MODIS COT product for relative clear atmosphere (AOT ≤ 0.4) while there is a large difference for large aerosol loading. The MODIS COT product is underestimated for at least 2 - 3 times for AOT>0.4, and this underestimation increases with the increase of AOT.

  14. T-28 data acquisition during COHMEX 1986

    NASA Technical Reports Server (NTRS)

    Musil, Dennis J.; Smith, Paul L.

    1986-01-01

    As part of the 1986 Cooperative Huntsville Meteorological Experiment (COHMEX) a cloud physics instrumented T-28 aircraft was used in conjunction with multiple ground based Doppler radars to characterize hydrometeors and updraft structure within developing summertime cumulus and cumulonimbus cloud systems near Huntsville, Alabama. Instrumentation aboard the aircraft included a Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP), a PMS 2D Cloud Probe and a PMS 2D Precipitation Probe, as well as a hail spectrometer and a foil impactor. Hydrometeor spectra were obtained in the interior of mature thunderstorms over the size range from cloud droplets through hailstones. In addition, vertical wind speed, temperature, Johnson-Williams (JW) liquid water content and electric field measurements were made. Significant microphysical differences exist between these clouds and summertime cumulonimbus clouds which develop over the Central Plains. One notable difference in clouds displaying similar radar reflectivities is that COHMEX hydrometeors are typically smaller and more numerous than those observed in the Central Plains. The COHMEX cloud microphysical measurements represent ground truth values for the remote sensing instrumentation which was flown over the cloud tops at altitudes between 60,000 and 70,000 ft aboard NASA U-2 and ER-2 aircraft. They are also being used jointly with a numerical cloud model to assist in understanding the development of summertime subtropical clouds.

  15. Characteristics of tropical clouds using A-train information and their relationships with sea surface temperature

    NASA Astrophysics Data System (ADS)

    Behrangi, A.; Kubar, T. L.; Lambrigtsen, B.

    2011-12-01

    Different cloud types have substantially different characteristics in terms of radiative forcing and microphysical properties, both important components of Earth's climate system. Relationships between tropical cloud type characteristics and sea surface temperature (SST) using two-years of A-train data are investigated in this presentation. Stratocumulus clouds are the dominant cloud type over SSTs less than 301K, and in fact their fraction is strongly inversely related to SST. This is physically logical as both static stability and large-scale subsidence scale well with decreasing SST. At SSTs greater than 301K, high clouds are the most abundant cloud type. All cloud types (except nimbostratus and stratocumulus) become sharply more abundant for SSTs greater than a window between 299K and 300.5K, depending on cloud type. The fraction of high, deep convective, altostratus, and altocumulus clouds peak at an SST close to 303K, while cumulus clouds have a broad cloud fraction peak centered near 301K. Deep convective and other high cloud types decrease sharply above SSTs of 303K. While overall early morning clouds are 10% (4%) more frequent than afternoon clouds as indicated by CloudSat (lidar-radar), certain cloud types occur more frequently in the early afternoon, such as high clouds. We also show that a large amount of warm precipitation mainly from stratocumulus clouds is missed or significantly underestimated by the current suite of satellite-based global precipitation measuring sensors. However, the operational sensitivity of Cloudsat cloud profiling radar permits to capture significant fraction of light drizzle and warm rain.

  16. New Concepts for Refinement of Cumulus Parameterization in GCM's the Arakawa-Schubert Framework

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Walker, G. K.; Lau, William (Technical Monitor)

    2002-01-01

    Several state-of-the-art models including the one employed in this study use the Arakawa-Schubert framework for moist convection, and Sundqvist formulation of stratiform. clouds, for moist physics, in-cloud condensation, and precipitation. Despite a variety of cloud parameterization methodologies developed by several modelers including the authors, most of the parameterized cloud-models have similar deficiencies. These consist of: (a) not enough shallow clouds, (b) too many deep clouds; (c) several layers of clouds in a vertically demoralized model as opposed to only a few levels of observed clouds, and (d) higher than normal incidence of double ITCZ (Inter-tropical Convergence Zone). Even after several upgrades consisting of a sophisticated cloud-microphysics and sub-grid scale orographic precipitation into the Data Assimilation Office (DAO)'s atmospheric model (called GEOS-2 GCM) at two different resolutions, we found that the above deficiencies remained persistent. The two empirical solutions often used to counter the aforestated deficiencies consist of a) diffusion of moisture and heat within the lower troposphere to artificially force the shallow clouds; and b) arbitrarily invoke evaporation of in-cloud water for low-level clouds. Even though helpful, these implementations lack a strong physical rationale. Our research shows that two missing physical conditions can ameliorate the aforestated cloud-parameterization deficiencies. First, requiring an ascending cloud airmass to be saturated at its starting point will not only make the cloud instantly buoyant all through its ascent, but also provide the essential work function (buoyancy energy) that would promote more shallow clouds. Second, we argue that training clouds that are unstable to a finite vertical displacement, even if neutrally buoyant in their ambient environment, must continue to rise and entrain causing evaporation of in-cloud water. These concepts have not been invoked in any of the cloud parameterization schemes so far. We introduced them into the DAO-GEOS-2 GCM with McRAS (Microphysics of Clouds with Relaxed Arakawa-Schubert Scheme).

  17. Analyses and forecasts of a tornadic supercell outbreak using a 3DVAR system ensemble

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhaorong; Yussouf, Nusrat; Gao, Jidong

    2016-05-01

    As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms.

  18. 3CPO, Cloud Chemistry and Cloud Physics Organization: Data index, June 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichler, J.; Norden, K.; Sharp, D.

    This document is an index of the data that was collected as part of the Cloud Chemistry and Cloud Physics Organization (3CPO) cooperative convective storms program which took place in June 1988 in east central Illinois. The objective of 3CPO was to ''assemble at a common time and location, the necessary measurement facilities to provide a previously unattained description of convective storm characteristics in polluted environments. 6 figs., 2 tabs.

  19. Looking Down Through the Clouds – Optical Attenuation through Real-Time Clouds

    NASA Astrophysics Data System (ADS)

    Burley, J.; Lazarewicz, A.; Dean, D.; Heath, N.

    Detecting and identifying nuclear explosions in the atmosphere and on the surface of the Earth is critical for the Air Force Technical Applications Center (AFTAC) treaty monitoring mission. Optical signals, from surface or atmospheric nuclear explosions detected by satellite sensors, are attenuated by the atmosphere and clouds. Clouds present a particularly complex challenge as they cover up to seventy percent of the earth's surface. Moreover, their highly variable and diverse nature requires physics-based modeling. Determining the attenuation for each optical ray-path is uniquely dependent on the source geolocation, the specific optical transmission characteristics along that ray path, and sensor detection capabilities. This research details a collaborative AFTAC and AFIT effort to fuse worldwide weather data, from a variety of sources, to provide near-real-time profiles of atmospheric and cloud conditions and the resulting radiative transfer analysis for virtually any wavelength(s) of interest from source to satellite. AFIT has developed a means to model global clouds using the U.S. Air Force’s World Wide Merged Cloud Analysis (WWMCA) cloud data in a new toolset that enables radiance calculations through clouds from UV to RF wavelengths.

  20. Characteristics of the fractional cloud cover and its altitude distribution over the Indian Ocean region derived from NOAA14-AVHRR

    NASA Astrophysics Data System (ADS)

    Suresh Raju, C.; Rajeev, K.; Parameswaran, K.

    The climatic impact of clouds and their role in energy and radiation budget of earth-atmosphere system largely depends on the cloud properties and its altitude of occurrence. The quantitative estimates of spatio-temporal variations of cloud fraction and cloud properties are limited over the tropical Indian Oceanic region. Cloudiness and its radiative properties over this region is significantly different from other tropical regions indicating the need for their detailed studies. This has an important role in the Indian summer monsoon which is also a part of the global climate system. Daily, monthly, seasonal and yearly mean frequency of occurrence of total and high altitude clouds are derived from the brightness temperature (TB) obtained from NOAA14-AVHRR data during the period of 1996-1999, and their spatio-temporal variations are investigated. The inversion algorithm used here is similar to the CLIVAR algorithm applied by ISCCP. All clouds with TB quad < 250 K are classified as high clouds, as their altitude of occurrence will be above ˜ 6 km. The clouds above ˜ 10 km (with TB<220K) are also classified separately to study the deep convective events. The geographical distribution of monthly, seasonal and annual mean frequency of occurrence of total cloud (Ftot) and high cloud (Fh) are remarkably consistent from year to year, though the absolute magnitude of the frequency of occurrence can vary by as much as 30%. The highest annual variations in Ftot and Fh are observed near the eastern parts of Bay of Bengal. The average amplitude of the annual cycle in Ftot in this region is ˜ 40%. During the south-west monsoon season, the monthly mean of Ftot shows very large spatial gradients in the western Arabian Sea. In July, the Ftot varies from less than 20% near Arabian coastal regions to more than 75% at a location 10 degrees east of the Arabian coast. Similar gradients in Ftot are also observed between the equator and 10 S. One of the very striking features in Ftot during this period is the minimum cloudiness observed around Srilanka during the Indian summer monsoon season, which is more discernable in high clouds. The cloud occurrence over the Indian subcontinent is less than 20% during the period of December to March. The presence of double inter tropical convergence zone (ITCZ), characterized by large cloud bands that are confined in latitude and elongated in longitude, are observed over Indian Ocean during November to March period, though the frequency of occurrence of such events is very small.

  1. Star cluster formation history along the minor axis of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.; Cole, Andrew A.; Emptage, Bryn

    2018-01-01

    We analysed Washington CMT1 photometry of star clusters located along the minor axis of the Large Magellanic Cloud (LMC), from the LMC optical centre up to ∼39° outwards to the North-West. The data base was exploited in order to search for new star cluster candidates, to produce cluster CMDs cleaned from field star contamination and to derive age estimates for a statistically complete cluster sample. We confirmed that 146 star cluster candidates are genuine physical systems, and concluded that an overall ∼30 per cent of catalogued clusters in the surveyed regions are unlikely to be true physical systems. We did not find any new cluster candidates in the outskirts of the LMC (deprojected distance ≳ 8°). The derived ages of the studied clusters are in the range 7.2 < log(t yr-1) ≤ 9.4, with the sole exception of the globular cluster NGC 1786 (log(t yr-1) = 10.10). We also calculated the cluster frequency for each region, from which we confirmed previously proposed outside-in formation scenarios. In addition, we found that the outer LMC fields show a sudden episode of cluster formation (log(t yr-1) ∼7.8-7.9) which continued until log(t yr-1) ∼7.3 only in the outermost LMC region. We link these features to the first pericentre passage of the LMC to the Milky Way (MW), which could have triggered cluster formation due to ram pressure interaction between the LMC and MW halo.

  2. Organization of the Tropical Convective Cloud Population by Humidity and the Critical Transition to Heavy Precipitation

    NASA Astrophysics Data System (ADS)

    Igel, M.

    2015-12-01

    The tropical atmosphere exhibits an abrupt statistical switch between non-raining and heavily raining states as column moisture increases across a wide range of length scales. Deep convection occurs at values of column humidity above the transition point and induces drying of moist columns. With a 1km resolution, large domain cloud resolving model run in RCE, what will be made clear here for the first time is how the entire tropical convective cloud population is affected by and feeds back to the pickup in heavy precipitation. Shallow convection can act to dry the low levels through weak precipitation or vertical redistribution of moisture, or to moisten toward a transition to deep convection. It is shown that not only can deep convection dehydrate the entire column, it can also dry just the lower layer through intense rain. In the latter case, deep stratiform cloud then forms to dry the upper layer through rain with anomalously high rates for its value of column humidity until both the total column moisture falls below the critical transition point and the upper levels are cloud free. Thus, all major tropical cloud types are shown to respond strongly to the same critical phase-transition point. This mutual response represents a potentially strong organizational mechanism for convection, and the frequency of and logical rules determining physical evolutions between these convective regimes will be discussed. The precise value of the point in total column moisture at which the transition to heavy precipitation occurs is shown to result from two independent thresholds in lower-layer and upper-layer integrated humidity.

  3. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Fei; Zhen, Zhao; Liu, Chun

    Irradiance received on the earth's surface is the main factor that affects the output power of solar PV plants, and is chiefly determined by the cloud distribution seen in a ground-based sky image at the corresponding moment in time. It is the foundation for those linear extrapolation-based ultra-short-term solar PV power forecasting approaches to obtain the cloud distribution in future sky images from the accurate calculation of cloud motion displacement vectors (CMDVs) by using historical sky images. Theoretically, the CMDV can be obtained from the coordinate of the peak pulse calculated from a Fourier phase correlation theory (FPCT) method throughmore » the frequency domain information of sky images. The peak pulse is significant and unique only when the cloud deformation between two consecutive sky images is slight enough, which is likely possible for a very short time interval (such as 1?min or shorter) with common changes in the speed of cloud. Sometimes, there will be more than one pulse with similar values when the deformation of the clouds between two consecutive sky images is comparatively obvious under fast changing cloud speeds. This would probably lead to significant errors if the CMDVs were still only obtained from the single coordinate of the peak value pulse. However, the deformation estimation of clouds between two images and its influence on FPCT-based CMDV calculations are terrifically complex and difficult because the motion of clouds is complicated to describe and model. Therefore, to improve the accuracy and reliability under these circumstances in a simple manner, an image-phase-shift-invariance (IPSI) based CMDV calculation method using FPCT is proposed for minute time scale solar power forecasting. First, multiple different CMDVs are calculated from the corresponding consecutive images pairs obtained through different synchronous rotation angles compared to the original images by using the FPCT method. Second, the final CMDV is generated from all of the calculated CMDVs through a centroid iteration strategy based on its density and distance distribution. Third, the influence of different rotation angle resolution on the final CMDV is analyzed as a means of parameter estimation. Simulations under various scenarios including both thick and thin clouds conditions indicated that the proposed IPSI-based CMDV calculation method using FPCT is more accurate and reliable than the original FPCT method, optimal flow (OF) method, and particle image velocimetry (PIV) method.« less

  4. Image phase shift invariance based cloud motion displacement vector calculation method for ultra-short-term solar PV power forecasting

    DOE PAGES

    Wang, Fei; Zhen, Zhao; Liu, Chun; ...

    2017-12-18

    Irradiance received on the earth's surface is the main factor that affects the output power of solar PV plants, and is chiefly determined by the cloud distribution seen in a ground-based sky image at the corresponding moment in time. It is the foundation for those linear extrapolation-based ultra-short-term solar PV power forecasting approaches to obtain the cloud distribution in future sky images from the accurate calculation of cloud motion displacement vectors (CMDVs) by using historical sky images. Theoretically, the CMDV can be obtained from the coordinate of the peak pulse calculated from a Fourier phase correlation theory (FPCT) method throughmore » the frequency domain information of sky images. The peak pulse is significant and unique only when the cloud deformation between two consecutive sky images is slight enough, which is likely possible for a very short time interval (such as 1?min or shorter) with common changes in the speed of cloud. Sometimes, there will be more than one pulse with similar values when the deformation of the clouds between two consecutive sky images is comparatively obvious under fast changing cloud speeds. This would probably lead to significant errors if the CMDVs were still only obtained from the single coordinate of the peak value pulse. However, the deformation estimation of clouds between two images and its influence on FPCT-based CMDV calculations are terrifically complex and difficult because the motion of clouds is complicated to describe and model. Therefore, to improve the accuracy and reliability under these circumstances in a simple manner, an image-phase-shift-invariance (IPSI) based CMDV calculation method using FPCT is proposed for minute time scale solar power forecasting. First, multiple different CMDVs are calculated from the corresponding consecutive images pairs obtained through different synchronous rotation angles compared to the original images by using the FPCT method. Second, the final CMDV is generated from all of the calculated CMDVs through a centroid iteration strategy based on its density and distance distribution. Third, the influence of different rotation angle resolution on the final CMDV is analyzed as a means of parameter estimation. Simulations under various scenarios including both thick and thin clouds conditions indicated that the proposed IPSI-based CMDV calculation method using FPCT is more accurate and reliable than the original FPCT method, optimal flow (OF) method, and particle image velocimetry (PIV) method.« less

  5. Comparison of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plains Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-01-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface retrievals of effective radius r(sub e), optical depth, and liquid water path for SL stratu are 0.1 +/- 1.9 micrometers (1.2 +/- 23.5%), -1.3 +/- 9.5 (-3.6 +/-26.2%), and 0.6 +/- 49.9 gm (exp -2) (0.3 +/- 27%), respectively, while the corresponding correlation coefficients are 0.44, 0.87, and 0.89. For Aqua, they are 0.2 +/- 1.9 micrometers (2.5 +/- 23.4%), 2.5 +/- 7.8 (7.8 +/- 24.3%), and 28.1 +/- 52.7 gm (exp -2) (17.2 +/- 32.2%), as well as 0.35, 0.96, and 0.93 from a total of 21 cases. The results for ALL cases are comparable. Although a bias in R(sub e) was expected because the satellite retrieval of effective radius only represents the top of the cloud, the surface-based radar retrievals revealed that the vertical profile of r(sub e) is highly variable with smaller droplets occurring at cloud top in some cases. The larger bias in optical depth and liquid water path for Aqua is due, at least partially, to differences in the Terra and Aqua MODIS visible channel calibrations. methods for improving the cloud-top height and microphysical property retrievals are suggested.

  6. The effect of a hot, spherical scattering cloud on quasi-periodic oscillation behavior

    NASA Astrophysics Data System (ADS)

    Bussard, R. W.; Weisskopf, M. C.; Elsner, R. F.; Shibazaki, N.

    1988-04-01

    A Monte Carlo technique is used to investigate the effects of a hot electron scattering cloud surrounding a time-dependent X-ray source. Results are presented for the time-averaged emergent energy spectra and the mean residence time in the cloud as a function of energy. Moreover, after Fourier transforming the scattering Green's function, it is shown how the cloud affects both the observed power spectrum of a time-dependent source and the cross spectrum (Fourier transform of a cross correlation between energy bands). It is found that the power spectra intrinsic to the source are related to those observed by a relatively simple frequency-dependent multiplicative factor (a transmission function). The cloud can severely attenuate high frequencies in the power spectra, depending on optical depth, and, at lower frequencies, the transmission function has roughly a Lorentzian shape. It is also found that if the intrinsic energy spectrum is constant in time, the phase of the cross spectrum is determined entirely by scattering. Finally, the implications of the results for studies of the X-ray quasi-periodic oscillators are discussed.

  7. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    NASA Technical Reports Server (NTRS)

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  8. !CHAOS: A cloud of controls

    NASA Astrophysics Data System (ADS)

    Angius, S.; Bisegni, C.; Ciuffetti, P.; Di Pirro, G.; Foggetta, L. G.; Galletti, F.; Gargana, R.; Gioscio, E.; Maselli, D.; Mazzitelli, G.; Michelotti, A.; Orrù, R.; Pistoni, M.; Spagnoli, F.; Spigone, D.; Stecchi, A.; Tonto, T.; Tota, M. A.; Catani, L.; Di Giulio, C.; Salina, G.; Buzzi, P.; Checcucci, B.; Lubrano, P.; Piccini, M.; Fattibene, E.; Michelotto, M.; Cavallaro, S. R.; Diana, B. F.; Enrico, F.; Pulvirenti, S.

    2016-01-01

    The paper is aimed to present the !CHAOS open source project aimed to develop a prototype of a national private Cloud Computing infrastructure, devoted to accelerator control systems and large experiments of High Energy Physics (HEP). The !CHAOS project has been financed by MIUR (Italian Ministry of Research and Education) and aims to develop a new concept of control system and data acquisition framework by providing, with a high level of aaabstraction, all the services needed for controlling and managing a large scientific, or non-scientific, infrastructure. A beta version of the !CHAOS infrastructure will be released at the end of December 2015 and will run on private Cloud infrastructures based on OpenStack.

  9. Near-Real-Time Satellite Cloud Products for Icing Detection and Aviation Weather over the USA

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Smith, William L., Jr.; Nguyen, Louis; Murray, J. J.; Heck, Patrick W.; Khaiyer, Mandana M.

    2003-01-01

    A set of physically based retrieval algorithms has been developed to derive from multispectral satellite imagery a variety of cloud properties that can be used to diagnose icing conditions when upper-level clouds are absent. The algorithms are being applied in near-real time to the Geostationary Operational Environmental Satellite (GOES) data over Florida, the Southern Great Plains, and the midwestern USA. The products are available in image and digital formats on the world-wide web. The analysis system is being upgraded to analyze GOES data over the CONUS. Validation, 24-hour processing, and operational issues are discussed.

  10. Aerosol and Cloud Properties during the Cloud Cheju ABC Plume -Asian Monsoon Experiment (CAPMEX) 2008: Linking between Ground-based and UAV Measurements

    NASA Astrophysics Data System (ADS)

    Kim, S.; Yoon, S.; Venkata Ramana, M.; Ramanathan, V.; Nguyen, H.; Park, S.; Kim, M.

    2009-12-01

    Cheju Atmospheric Brown Cloud (ABC) Plume-Monsoon Experiment (CAPMEX), comprehsensive ground-based measurements and a series of data-gathering flights by specially equipped autonomous unmanned aerial vehicles (AUAVs) for aerosol and cloud, had conducted at Jeju (formerly, Cheju), South Korea during August-September 2008, to improve our understanding of how the reduction of anthropogenic emissions in China (so-called “great shutdown” ) during and after the Summer Beijing Olympic Games 2008 effcts on the air quliaty and radiation budgets and how atmospheric brown clouds (ABCs) influences solar radiation budget off Asian continent. Large numbers of in-situ and remote sensing instruments at the Gosan ABC observatory and miniaturized instruments on the aircraft measure a range of properties such as the quantity of soot, size-segregated aerosol particle numbers, total particle numbers, size-segregated cloud droplet numbers (only AUAV), aerosol scattering properties (only ground), aerosol vertical distribution, column-integrated aerosol properties, and meteorological variables. By integrating ground-level and high-elevation AUAV measurements with NASA-satellite observations (e.g., MODIS, CALIPSO), we investigate the long range transport of aerosols, the impact of ABCs on clouds, and the role of biogenic and anthropogenic aerosols on cloud condensation nuclei (CCN). In this talk, we will present the results from CAPMEX focusing on: (1) the characteristics of aerosol optical, physical and chemical properties at Gosan observatory, (2) aerosol solar heating calculated from the ground-based micro-pulse lidar and AERONET sun/sky radiometer synergy, and comparison with direct measurements from UAV, and (3) aerosol-cloud interactions in conjunction with measurements by satellites and Gosan observatory.

  11. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud

    PubMed Central

    Florence, A. Paulin; Shanthi, V.; Simon, C. B. Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption. PMID:27239551

  12. Energy Conservation Using Dynamic Voltage Frequency Scaling for Computational Cloud.

    PubMed

    Florence, A Paulin; Shanthi, V; Simon, C B Sunil

    2016-01-01

    Cloud computing is a new technology which supports resource sharing on a "Pay as you go" basis around the world. It provides various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to be saved up to 55% of total Watts consumption.

  13. The relative importance of macrophysical and cloud albedo changes for aerosol-induced radiative effects in closed-cell stratocumulus: insight from the modelling of a case study

    NASA Astrophysics Data System (ADS)

    Grosvenor, Daniel P.; Field, Paul R.; Hill, Adrian A.; Shipway, Benjamin J.

    2017-04-01

    Aerosol-cloud interactions are explored using 1 km simulations of a case study of predominantly closed-cell SE Pacific stratocumulus clouds. The simulations include realistic meteorology along with newly implemented cloud microphysics and sub-grid cloud schemes. The model was critically assessed against observations of liquid water path (LWP), broadband fluxes, cloud fraction (fc), droplet number concentrations (Nd), thermodynamic profiles, and radar reflectivities.Aerosol loading sensitivity tests showed that at low aerosol loadings, changes to aerosol affected shortwave fluxes equally through changes to cloud macrophysical characteristics (LWP, fc) and cloud albedo changes due solely to Nd changes. However, at high aerosol loadings, only the Nd albedo change was important. Evidence was also provided to show that a treatment of sub-grid clouds is as important as order of magnitude changes in aerosol loading for the accurate simulation of stratocumulus at this grid resolution.Overall, the control model demonstrated a credible ability to reproduce observations, suggesting that many of the important physical processes for accurately simulating these clouds are represented within the model and giving some confidence in the predictions of the model concerning stratocumulus and the impact of aerosol. For example, the control run was able to reproduce the shape and magnitude of the observed diurnal cycle of domain mean LWP to within ˜ 10 g m-2 for the nighttime, but with an overestimate for the daytime of up to 30 g m-2. The latter was attributed to the uniform aerosol fields imposed on the model, which meant that the model failed to include the low-Nd mode that was observed further offshore, preventing the LWP removal through precipitation that likely occurred in reality. The boundary layer was too low by around 260 m, which was attributed to the driving global model analysis. The shapes and sizes of the observed bands of clouds and open-cell-like regions of low areal cloud cover were qualitatively captured. The daytime fc frequency distribution was reproduced to within Δfc = 0.04 for fc > ˜ 0.7 as was the domain mean nighttime fc (at a single time) to within Δfc = 0.02. Frequency distributions of shortwave top-of-the-atmosphere (TOA) fluxes from the satellite were well represented by the model, with only a slight underestimate of the mean by 15 %; this was attributed to near-shore aerosol concentrations that were too low for the particular times of the satellite overpasses. TOA long-wave flux distributions were close to those from the satellite with agreement of the mean value to within 0.4 %. From comparisons of Nd distributions to those from the satellite, it was found that the Nd mode from the model agreed with the higher of the two observed modes to within ˜ 15 %.

  14. IRAS images of nearby dark clouds

    NASA Technical Reports Server (NTRS)

    Wood, Douglas O. S.; Myers, Philip C.; Daugherty, Debra A.

    1994-01-01

    We have investigated approximately 100 nearby molecular clouds using the extensive, all-sky database of IRAS. The clouds in this study cover a wide range of physical properties including visual extinction, size, mass, degree of isolation, homogeneity and morphology. IRAS 100 and 60 micron co-added images were used to calculate the 100 micron optical depth of dust in the clouds. These images of dust optical depth compare very well with (12)CO and (13)CO observations, and can be related to H2 column density. From the optical depth images we locate the edges of dark clouds and the dense cores inside them. We have identified a total of 43 `IRAS clouds' (regions with A(sub v) greater than 2) which contain a total of 255 `IRAS cores' (regions with A(sub v) greater than 4) and we catalog their physical properties. We find that the clouds are remarkably filamentary, and that the cores within the clouds are often distributed along the filaments. The largest cores are usually connected to other large cores by filaments. We have developed selection criteria to search the IRAS Point Source Catalog for stars that are likely to be associated with the clouds and we catalog the IRAS sources in each cloud or core. Optically visible stars associated with the clouds have been identified from the Herbig and Bell catalog. From these data we characterize the physical properties of the clouds including their star-formation efficiency.

  15. Ground-based atmospheric water vapor monitoring system with spectroscopy of radiation in 20-30 GHz and 50-60 GHz bands

    NASA Astrophysics Data System (ADS)

    Nagasaki, Takeo; Tajima, Osamu; Araki, Kentaro; Ishimoto, Hiroshi

    2016-07-01

    We propose a novel ground-based meteorological monitoring system. In the 20{30 GHz band, our system simultaneously measures a broad absorption peak of water vapor and cloud liquid water. Additional observation in the 50{60 GHz band obtains the radiation of oxygen. Spectral results contain vertical profiles of the physical temperature of atmospheric molecules. We designed a simple method for placing the system atop high buildings and mountains and on decks of ships. There is a simple optical system in front of horn antennas for each frequency band. A focused signal from a reflector is separated into two polarized optical paths by a wire grid. Each signal received by the horn antenna is amplified by low-noise amplifiers. Spectra of each signal are measured as a function of frequency using two analyzers. A blackbody calibration source is maintained at 50 K in a cryostat. The calibration signal is led to each receiver via the wire grid. The input path of the signal is selected by rotation of the wire grid by 90°, because the polarization axis of the reflected path and axis of the transparent path are orthogonal. We developed a prototype receiver and demonstrated its performance using monitoring at the zenith.

  16. Not even wrong: A philosophical, historical and ultimately a scientific inquiry into the Schmidt Law

    NASA Astrophysics Data System (ADS)

    Madore, Barry F.; Carlson, Erika K.

    2017-03-01

    We introduce a novel approach to interpreting the well-known spatial correlation of gas densities with on-going star formation. Treated as a closed-loop process involving two physically distinct phases the data can be subdivided into regions that are active and those that are quiescent. The active regions can be distinguished by the presence of high-mass, short-lived, but recently-formed OB stars; the quiescent regions are marked by an absence of these stars and they are considered to be recovering from the last star-formation event and are re-collapsing. The relative (areal) frequencies of those two phases are directly proportional to the relative timescales. For four Local Group galaxies, NGC 6822, the Large & Small Magellanic Clouds, and M33, the cloud assembly/collapse timescales are all found to be monotonically decreasing power-law functions of density, with as yet to be explained differences.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  18. Chandra X-ray Observation of a Mature Cloud-Shock Interaction in the Bright Eastern Knot of Puppis A

    NASA Technical Reports Server (NTRS)

    Hwang, Una; Flanagan, Kathryn A.; Petre, Robert

    2005-01-01

    We present Chandra X-ray images and spectra of the most prominent cloud-shock interaction region in the Puppis A supernova remnant. The Bright Eastern Knot (BEK) has two main morphological components: (1) a bright compact knot that lies directly behind the apex of an indentation in the eastern X-ray boundary and (2) lying 1 westward behind the shock, a curved vertical structure (bar) that is separated from a smaller bright cloud (cap) by faint diffuse emission. Based on hardness images and spectra, we identify the bar and cap as a single shocked interstellar cloud. Its morphology strongly resembles the "voided sphere" structures seen at late times in Klein et al. experimental simulat.ions of cloud-shock interactions, when the crushing of the cloud by shear instabilities is well underway. We infer an intera.ction time of roughly cloud-crushing timescales, which translates to 2000-4000 years, based on the X-ray temperature, physical size, and estimated expansion of the shocked cloud. This is the first X-ray identified example of a cloud-shock interaction in this advanced phase. Closer t o the shock front, the X-ray emission of the compact knot in the eastern part of the BEK region implies a recent interaction with relatively denser gas, some of which lies in front of the remnant. The complex spatial relationship of the X-ray emission of the compact knot to optical [O III] emission suggests that there are multiple cloud interactions occurring along the line of sight.

  19. Evaluating cloudiness in an AGCM with Cloud Vertical Structure classes and their radiative effects

    NASA Astrophysics Data System (ADS)

    Lee, D.; Cho, N.; Oreopoulos, L.; Barahona, D.

    2017-12-01

    Clouds are recognized not only as the main modulator of Earth's Radiation Budget but also as the atmospheric constituent carrying the largest uncertainty in future climate projections. The presentation will showcase a new framework for evaluating clouds and their radiative effects in Atmospheric Global Climate Models (AGCMs) using Cloud Vertical Structure (CVS) classes. We take advantage of a new CVS reference dataset recently created from CloudSat's 2B-CLDCLASS-LIDAR product and which assigns observed cloud vertical configurations to nine simplified CVS classes based on cloud co-occurrence in three standard atmospheric layers. These CVS classes can also be emulated in GEOS-5 using the subcolumn cloud generator currently paired with the RRTMG radiation package as an implementation of the McICA scheme. Comparisons between the observed and modeled climatologies of the frequency of occurrence of the various CVS classes provide a new vantage point for assessing the realism of GEOS-5 clouds. Furthermore, a comparison between observed and modeled cloud radiative effects according to their CVS is also possible thanks to the availability of CloudSat's 2B-FLXHR-LIDAR product and our ability to composite radiative fluxes by CVS class - both in the observed and modeled realm. This latter effort enables an investigation of whether the contribution of the various CVS classes to the Earth's radiation budget is represented realistically in GEOS-5. Making this new pathway of cloud evaluation available to the community is a major step towards the improved representation of clouds in climate models.

  20. Effect of ion clouds micromotion on measured signal in Fourier transform ion cyclotron resonance: Computer simulation.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Kharybin, Oleg; Nikolaev, Eugene

    2017-08-01

    Particle-in-cell-based realistic simulation of Fourier transform ion cyclotron resonance experiments could be used to generate ion trajectories and a signal induced on the detection electrodes. It has been shown recently that there is a modulation of "reduced" cyclotron frequencies in ion cyclotron resonance signal caused by Coulomb interaction of ion clouds. In this work it was proposed to use this modulation in order to determine frequency difference between an ion of known m/z and all other ions generating signal in ion cyclotron resonance cell. It is shown that with an increase of number of ions in ion cyclotron resonance trap, the modulation index increases, which lead to a decrease in the accuracy of determination of peak intensities by super Fourier transform resolution methods such as filter diagonalization method.

  1. Evaluating Lightning-generated NOx (LNOx) Parameterization based on Cloud Top Height at Resolutions with Partially-resolved Convection for Upper Tropospheric Chemistry Studies

    NASA Astrophysics Data System (ADS)

    Wong, J.; Barth, M. C.; Noone, D. C.

    2012-12-01

    Lightning-generated nitrogen oxides (LNOx) is an important precursor to tropospheric ozone production. With a meteorological time-scale variability similar to that of the ozone chemical lifetime, it can nonlinearly perturb tropospheric ozone concentration. Coupled with upper-air circulation patterns, LNOx can accumulate in significant amount in the upper troposphere with other precursors, thus enhancing ozone production (see attached figure). While LNOx emission has been included and tuned extensively in global climate models, its inclusions in regional chemistry models are seldom tested. Here we present a study that evaluates the frequently used Price and Rind parameterization based on cloud-top height at resolutions that partially resolve deep convection using the Weather Research and Forecasting model with Chemistry (WRF-Chem) over the contiguous United States. With minor modifications, the parameterization is shown to generate integrated flash counts close to those observed. However, the modeled frequency distribution of cloud-to-ground flashes do not represent well for storms with high flash rates, bringing into question the applicability of the intra-cloud/ground partitioning (IC:CG) formulation of Price and Rind in some studies. Resolution dependency also requires attention when sub-grid cloud-tops are used instead of the originally intended grid-averaged cloud-top. LNOx passive tracers being gathered by monsoonal upper tropospheric anticyclone.

  2. First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements

    NASA Astrophysics Data System (ADS)

    Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.

    2012-12-01

    This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.

  3. Influence of galactic arm scale dynamics on the molecular composition of the cold and dense ISM. I. Observed abundance gradients in dense clouds

    NASA Astrophysics Data System (ADS)

    Ruaud, M.; Wakelam, V.; Gratier, P.; Bonnell, I. A.

    2018-04-01

    Aim. We study the effect of large scale dynamics on the molecular composition of the dense interstellar medium during the transition between diffuse to dense clouds. Methods: We followed the formation of dense clouds (on sub-parsec scales) through the dynamics of the interstellar medium at galactic scales. We used results from smoothed particle hydrodynamics (SPH) simulations from which we extracted physical parameters that are used as inputs for our full gas-grain chemical model. In these simulations, the evolution of the interstellar matter is followed for 50 Myr. The warm low-density interstellar medium gas flows into spiral arms where orbit crowding produces the shock formation of dense clouds, which are held together temporarily by the external pressure. Results: We show that depending on the physical history of each SPH particle, the molecular composition of the modeled dense clouds presents a high dispersion in the computed abundances even if the local physical properties are similar. We find that carbon chains are the most affected species and show that these differences are directly connected to differences in (1) the electronic fraction, (2) the C/O ratio, and (3) the local physical conditions. We argue that differences in the dynamical evolution of the gas that formed dense clouds could account for the molecular diversity observed between and within these clouds. Conclusions: This study shows the importance of past physical conditions in establishing the chemical composition of the dense medium.

  4. Multi-sensor quantification of aerosol-induced variability in warm clouds over eastern China

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Guo, Jianping; Zhang, Jiahua; Huang, Jingfeng; Min, Min; Chen, Tianmeng; Liu, Huan; Deng, Minjun; Li, Xiaowen

    2015-07-01

    Aerosol-cloud (AC) interactions remain uncharacterized due to difficulties in obtaining accurate aerosol and cloud observations. In this study, we quantified the aerosol indirect effects (AIE) on warm clouds over Eastern China based on near-simultaneous retrievals from MODIS/AQUA, CALIOP/CALIPSO, and CPR/CLOUDSAT between June 2006 and December 2010. The seasonality of aerosols from ground-based PM10 (aerosol particles with diameter of 10 μm or less) significantly differed from that estimated using MODIS aerosol optical depth (AOD). This result was supported by the lower level frequency profile of aerosol occurrence from CALIOP, indicative of the significant role of CALIOP in the AC interaction. To focus on warm clouds, cloud layers with base (top) altitudes above 7 (10) km were excluded. The combination of CALIOP and CPR was applied to determine the exact position of warm clouds relative to aerosols out of the following six scenarios in terms of AC mixing states: 1) aerosol only (AO); 2) cloud only (CO); 3) single aerosol layer-single cloud layer (SASC); 4) single aerosol layer-double cloud layers (SADC); 5) double aerosol layers - single cloud layer (DASC); and 6) others. The cases with vertical distance between aerosol and cloud layer less (more) than 100 m (700 m) were marked mixed (separated), and the rest as uncertain. Results showed that only 8.95% (7.53%) belonged to the mixed (separated and uncertain) state among all of the collocated AC overlapping cases, including SASC, SADC, and DASC. Under mixed conditions, the cloud droplet effective radius (CDR) decreased with increasing AOD at moderate aerosol loading (AOD<0.4), and then became saturated at an AOD of around 0.5, followed by an increase in CDR with increasing AOD, known as boomerang shape. Under separated conditions, no apparent changes in CDR with AOD were observed. We categorized the AC dataset into summer- and winter-season subsets to determine how the boomerang shape varied with season. The response of CDR to AOD in summer exhibited similar but much more deepened boomerang shape, as compared with the all year round case. In contrast, CDR in winter did not follow the boomerang shape for its continued decreasing with increasing AOD, even after the saturation zone (AOD around 0.5) of a cloud droplet.

  5. Predicting Decade-to-Century Climate Change: Prospects for Improving Models

    NASA Technical Reports Server (NTRS)

    Somerville, Richard C. J.

    1999-01-01

    Recent research has led to a greatly increased understanding of the uncertainties in today's climate models. In attempting to predict the climate of the 21st century, we must confront not only computer limitations on the affordable resolution of global models, but also a lack of physical realism in attempting to model key processes. Until we are able to incorporate adequate treatments of critical elements of the entire biogeophysical climate system, our models will remain subject to these uncertainties, and our scenarios of future climate change, both anthropogenic and natural, will not fully meet the requirements of either policymakers or the public. The areas of most-needed model improvements are thought to include air-sea exchanges, land surface processes, ice and snow physics, hydrologic cycle elements, and especially the role of aerosols and cloud-radiation interactions. Of these areas, cloud-radiation interactions are known to be responsible for much of the inter-model differences in sensitivity to greenhouse gases. Recently, we have diagnostically evaluated several current and proposed model cloud-radiation treatments against extensive field observations. Satellite remote sensing provides an indispensable component of the observational resources. Cloud-radiation parameterizations display a strong sensitivity to vertical resolution, and we find that vertical resolutions typically used in global models are far from convergence. We also find that newly developed advanced parameterization schemes with explicit cloud water budgets and interactive cloud radiative properties are potentially capable of matching observational data closely. However, it is difficult to evaluate the realism of model-produced fields of cloud extinction, cloud emittance, cloud liquid water content and effective cloud droplet radius until high-quality measurements of these quantities become more widely available. Thus, further progress will require a combination of theoretical and modeling research, together with intensified emphasis on both in situ and space-based remote sensing observations.

  6. Cloud optical properties from satellites over Europe: CM SAF vs CERES

    NASA Astrophysics Data System (ADS)

    Konstantinou, Athanasia; Alexandri, Georgia; Balis, Dimitris

    2017-04-01

    In this work, the macro and micro physical properties of liquid and ice clouds over Europe are examined for the 8-year period 2004-2011. For the scopes of this research, high resolution (0.05x0.05 degree) satellite-based observations from CM SAF (Satellite Application Facility on Climate Monitoring) and coarse resolution (1x1 degree) data from CERES (Clouds and the Earth's Radiant Energy System) are utilized. The spatial and temporal patterns of the bias between the two products are examined. It is found that the difference between CM SAF and CERES cloud fractional cover (CFC) is 10% while cloud optical thickness (COT) from CM SAF is generally lower than CERES by 10 %. The effective radius of liquid (Rel) and ice (Rei) clouds is also examined. For the region of interest, CM SAF Rel is 12% higher while CM SAF Rei is lower by 20% than that of CERES. Intercomparison studies like the one presented here help us to get an insight into the capabilities and limitation of the cloud satellite products which are currently in use by the scientific community.

  7. New Cloud Science from the New ARM Cloud Radar Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2010-12-01

    The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.

  8. Analysis of a jet stream induced gravity wave associated with an observed stratospheric ice cloud over Greenland

    NASA Astrophysics Data System (ADS)

    Buss, S.; Hertzog, A.; Hostettler, C.; Bui, T. B.; Lüthi, D.; Wernli, H.

    2004-08-01

    A polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates.

    In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.

  9. On the physical mechanisms governing the cloud lifecycle in the Central Molecular Zone of the Milky Way

    NASA Astrophysics Data System (ADS)

    Jeffreson, S. M. R.; Kruijssen, J. M. D.; Krumholz, M. R.; Longmore, S. N.

    2018-05-01

    We apply an analytic theory for environmentally-dependent molecular cloud lifetimes to the Central Molecular Zone of the Milky Way. Within this theory, the cloud lifetime in the Galactic centre is obtained by combining the time-scales for gravitational instability, galactic shear, epicyclic perturbations and cloud-cloud collisions. We find that at galactocentric radii ˜45-120 pc, corresponding to the location of the `100-pc stream', cloud evolution is primarily dominated by gravitational collapse, with median cloud lifetimes between 1.4 and 3.9 Myr. At all other galactocentric radii, galactic shear dominates the cloud lifecycle, and we predict that molecular clouds are dispersed on time-scales between 3 and 9 Myr, without a significant degree of star formation. Along the outer edge of the 100-pc stream, between radii of 100 and 120 pc, the time-scales for epicyclic perturbations and gravitational free-fall are similar. This similarity of time-scales lends support to the hypothesis that, depending on the orbital geometry and timing of the orbital phase, cloud collapse and star formation in the 100-pc stream may be triggered by a tidal compression at pericentre. Based on the derived time-scales, this should happen in approximately 20 per cent of all accretion events onto the 100-pc stream.

  10. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain

    NASA Astrophysics Data System (ADS)

    Bucchignani, E.; Cattaneo, L.; Panitz, H.-J.; Mercogliano, P.

    2016-02-01

    The results of a sensitivity work based on ERA-Interim driven COSMO-CLM simulations over the Middle East-North Africa (CORDEX-MENA) domain are presented. All simulations were performed at 0.44° spatial resolution. The purpose of this study was to ascertain model performances with respect to changes in physical and tuning parameters which are mainly related to surface, convection, radiation and cloud parameterizations. Evaluation was performed for the whole CORDEX-MENA region and six sub-regions, comparing a set of 26 COSMO-CLM runs against a combination of available ground observations, satellite products and reanalysis data to assess temperature, precipitation, cloud cover and mean sea level pressure. The model proved to be very sensitive to changes in physical parameters. The optimized configuration allows COSMO-CLM to improve the simulated main climate features of this area. Its main characteristics consist in the new parameterization of albedo, based on Moderate Resolution Imaging Spectroradiometer data, and the new parameterization of aerosol, based on NASA-GISS AOD distributions. When applying this configuration, Mean Absolute Error values for the considered variables are as follows: about 1.2 °C for temperature, about 15 mm/month for precipitation, about 9 % for total cloud cover, and about 0.6 hPa for mean sea level pressure.

  11. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds.

    PubMed

    Miller, Daniel J; Zhang, Zhibo; Ackerman, Andrew S; Platnick, Steven; Baum, Bryan A

    2016-04-27

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness ( τ ) and effective radius ( r e ) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5-10 g/m 2 . In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic r e profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques.

  12. The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds

    PubMed Central

    Miller, Daniel J.; Zhang, Zhibo; Ackerman, Andrew S.; Platnick, Steven; Baum, Bryan A.

    2018-01-01

    Passive optical retrievals of cloud liquid water path (LWP), like those implemented for Moderate Resolution Imaging Spectroradiometer (MODIS), rely on cloud vertical profile assumptions to relate optical thickness (τ) and effective radius (re) retrievals to LWP. These techniques typically assume that shallow clouds are vertically homogeneous; however, an adiabatic cloud model is plausibly more realistic for shallow marine boundary layer cloud regimes. In this study a satellite retrieval simulator is used to perform MODIS-like satellite retrievals, which in turn are compared directly to the large-eddy simulation (LES) output. This satellite simulator creates a framework for rigorous quantification of the impact that vertical profile features have on LWP retrievals, and it accomplishes this while also avoiding sources of bias present in previous observational studies. The cloud vertical profiles from the LES are often more complex than either of the two standard assumptions, and the favored assumption was found to be sensitive to cloud regime (cumuliform/stratiform). Confirming previous studies, drizzle and cloud top entrainment of dry air are identified as physical features that bias LWP retrievals away from adiabatic and toward homogeneous assumptions. The mean bias induced by drizzle-influenced profiles was shown to be on the order of 5–10 g/m2. In contrast, the influence of cloud top entrainment was found to be smaller by about a factor of 2. A theoretical framework is developed to explain variability in LWP retrievals by introducing modifications to the adiabatic re profile. In addition to analyzing bispectral retrievals, we also compare results with the vertical profile sensitivity of passive polarimetric retrieval techniques. PMID:29637042

  13. Observations of Kelvin-Helmholtz instability at a cloud base with the middle and upper atmosphere (MU) and weather radars

    NASA Astrophysics Data System (ADS)

    Luce, Hubert; Mega, Tomoaki; Yamamoto, Masayuki K.; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Fukao, Shoichiro; Nishi, Noriyuki; Tajiri, Takuya; Nakazato, Masahisa

    2010-10-01

    Using the very high frequency (46.5 MHz) middle and upper atmosphere radar (MUR), Ka band (35 GHz) and X band (9.8 GHz) weather radars, a Kelvin-Helmholtz (KH) instability occurring at a cloud base and its impact on modulating cloud bottom altitudes are described by a case study on 8 October 2008 at the Shigaraki MU Observatory, Japan (34.85°N, 136.10°E). KH braids were monitored by the MUR along the slope of a cloud base gradually rising with time around an altitude of ˜5.0 km. The KH braids had a horizontal wavelength of about 3.6 km and maximum crest-to-trough amplitude of about 1.6 km. Nearly monochromatic and out of phase vertical air motion oscillations exceeding ±3 m s-1 with a period of ˜3 min 20 s were measured by the MUR above and below the cloud base. The axes of the billows were at right angles of the wind and wind shear both oriented east-north-east at their altitude. The isotropy of the radar echoes and the large variance of Doppler velocity in the KH billows (including the braids) indicate the presence of strong turbulence at the Bragg (˜3.2 m) scale. After the passage of the cloud system, the KH waves rapidly damped and the vertical scale of the KH braids progressively decreased down to about 100 m before their disappearance. The radar observations suggest that the interface between clear air and cloud was conducive to the presence of the dynamical shear instability by reducing static stability (and then the Richardson number) near the cloud base. Downward cloudy protuberances detected by the Ka band radar had vertical and horizontal scales of about 0.6-1.1 and 3.2 km, respectively, and were clearly associated with the downward air motions. Observed oscillations of the reflectivity-weighted Doppler velocity measured by the X band radar indicate that falling ice particles underwent the vertical wind motions generated by the KH instability to form the protuberances. The protuberances at the cloud base might be either KH billow clouds or perhaps some sort of mamma. Reflectivity-weighted particle fall velocity computed from Doppler velocities measured by the X band radar and the MUR showed an average value of 1.3 ms-1 within the cloud and in the protuberance environment.

  14. Precipitation formation from orographic cloud seeding.

    PubMed

    French, Jeffrey R; Friedrich, Katja; Tessendorf, Sarah A; Rauber, Robert M; Geerts, Bart; Rasmussen, Roy M; Xue, Lulin; Kunkel, Melvin L; Blestrud, Derek R

    2018-02-06

    Throughout the western United States and other semiarid mountainous regions across the globe, water supplies are fed primarily through the melting of snowpack. Growing populations place higher demands on water, while warmer winters and earlier springs reduce its supply. Water managers are tantalized by the prospect of cloud seeding as a way to increase winter snowfall, thereby shifting the balance between water supply and demand. Little direct scientific evidence exists that confirms even the basic physical hypothesis upon which cloud seeding relies. The intent of glaciogenic seeding of orographic clouds is to introduce aerosol into a cloud to alter the natural development of cloud particles and enhance wintertime precipitation in a targeted region. The hypothesized chain of events begins with the introduction of silver iodide aerosol into cloud regions containing supercooled liquid water, leading to the nucleation of ice crystals, followed by ice particle growth to sizes sufficiently large such that snow falls to the ground. Despite numerous experiments spanning several decades, no direct observations of this process exist. Here, measurements from radars and aircraft-mounted cloud physics probes are presented that together show the initiation, growth, and fallout to the mountain surface of ice crystals resulting from glaciogenic seeding. These data, by themselves, do not address the question of cloud seeding efficacy, but rather form a critical set of observations necessary for such investigations. These observations are unambiguous and provide details of the physical chain of events following the introduction of glaciogenic cloud seeding aerosol into supercooled liquid orographic clouds.

  15. Polar cloud observatory at Ny-Ålesund in GRENE Arctic Climate Change Research Project

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Takashi; Takano, Toshiaki; Shiobara, Masataka; Okamoto, Hajime; Koike, Makoto; Ukita, Jinro

    2016-04-01

    Cloud is one of the main processes in the climate system and especially a large feed back agent for Arctic warming amplification (Yoshimori et al., 2014). From this reason, observation of polar cloud has been emphasized and 95 GHz cloud profiling radar in high precision was established at Ny-Ålesund, Svalbard in 2013 as one of the basic infrastructure in the GRENE (Green Network of Excellence Program) Arctic Climate Change Research Project. The radar, "FALCON-A", is a FM-CW (frequency modulated continuous wave) Doppler radar, developed for Arctic use by Chiba University (PI: T. Takano) in 2012, following its prototype, "FALCON-1" which was developed in 2006 (Takano et al., 2010). The specifications of the radar are, central frequency: 94.84 GHz; antenna power: 1 W; observation height: up to 15 km; range resolution: 48 m; beam width: 0.2 degree (15 m at 5 km); Doppler width: 3.2 m/s; time interval: 10 sec, and capable of archiving high sensitivity and high spatial and time resolution. An FM-CW type radar realizes similar sensitivity with much smaller parabolic antennas separated 1.4 m from each other used for transmitting and receiving the wave. Polarized Micro-Pulse Lidar (PMPL, Sigma Space MPL-4B-IDS), which is capable to measure the backscatter and depolarization ratio, has also been deployed to Ny-Ålesund in March 2012, and now operated to perform collocated measurements with FALCON-A. Simultaneous measurement data from collocated PMPL and FALCON-A are available for synergetic analyses of cloud microphysics. Cloud mycrophysics, such as effective radius of ice particles and ice water content, are obtained from the analysis based on algorithm, which is modified for ground-based measurements from Okamoto's retrieval algorithm for satellite based cloud profiling radar and lidar (CloudSat and CALIPSO; Okamoto et al., 2010). Results of two years will be shown in the presentation. Calibration is a point to derive radar reflectivity (dBZ) from original intensity data. Degradation of transmission power was monitored and sensitivity of receiving system was derived with estimating antenna gain by using radio wave absorber and considering antenna geometry of two antenna system. In order to estimate final results, altitude dependent detection limit curve was also calculated. Original intensity data in real time and calibrated radar reflectivity data are archived on "Arctic Data archive System (ADS)". Other collocated observations were made with fog monitor (particle size distribution), MPS (particle image) for continuous measurements at Zeppelin Mountain, 450 m height a. s. l., and tethered balloon for intense observing period. From these measurements together with aerosol and meteorological monitoring made by collaborating institutes (Stockholm University, University of Florence, AWI, NILU, NCAR and NPI) microphysics of low level cloud and aerosol-cloud interactions are discussed. Ground based remote sensors provide a powerful validation for satellite cloud observations. Radar reflectivity (dBZ) by FALCON-A was compared with that by CPR on CloudSAT during several overpasses around Ny-Ålesund, and though some difference due to the different vertical resolution was seen, overall agreement was confirmed. We are planning to establish Ny-Ålesund observatory as the super site for validation for EarthCARE (JAXA-ESA) mission.

  16. Development of a SaaS application probe to the physical properties of the Earth's interior: An attempt at moving HPC to the cloud

    NASA Astrophysics Data System (ADS)

    Huang, Qian

    2014-09-01

    Scientific computing often requires the availability of a massive number of computers for performing large-scale simulations, and computing in mineral physics is no exception. In order to investigate physical properties of minerals at extreme conditions in computational mineral physics, parallel computing technology is used to speed up the performance by utilizing multiple computer resources to process a computational task simultaneously thereby greatly reducing computation time. Traditionally, parallel computing has been addressed by using High Performance Computing (HPC) solutions and installed facilities such as clusters and super computers. Today, it has been seen that there is a tremendous growth in cloud computing. Infrastructure as a Service (IaaS), the on-demand and pay-as-you-go model, creates a flexible and cost-effective mean to access computing resources. In this paper, a feasibility report of HPC on a cloud infrastructure is presented. It is found that current cloud services in IaaS layer still need to improve performance to be useful to research projects. On the other hand, Software as a Service (SaaS), another type of cloud computing, is introduced into an HPC system for computing in mineral physics, and an application of which is developed. In this paper, an overall description of this SaaS application is presented. This contribution can promote cloud application development in computational mineral physics, and cross-disciplinary studies.

  17. Remote sounding of cloudy atmospheres. I - The single cloud layer

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1974-01-01

    The relaxation method for the inverse solution of the radiative transfer equation is applied in a dual-frequency scheme for the determination of complete vertical temperature profiles in cloudy atmospheres from radiance observations alone, without any additional information related to the expected solutions. The dual-frequency principle employs to advantage a property in the Planck function of the dependence of intensity on frequency. This property leads to the formulation of a new convergence criterion for the selection of cloud-sounding frequencies to be used for reconstructing the clear column radiance from observations made in the presence of a broken cloud layer in all fields of view. The principle is applied to the case of observations in two adjacent or partially overlapping fields of view and to the case of observations in a single field of view. The solutions are illustrated by numerical examples in the dual-frequency ranges of the 4.3 and 15-micron CO2 bands of the terrestrial atmosphere.

  18. Pseudorandom Noise Code-Based Technique for Cloud and Aerosol Discrimination Applications

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Prasad, Narasimha S.; Flood, Michael A.; Harrison, Fenton Wallace

    2011-01-01

    NASA Langley Research Center is working on a continuous wave (CW) laser based remote sensing scheme for the detection of CO2 and O2 from space based platforms suitable for ACTIVE SENSING OF CO2 EMISSIONS OVER NIGHTS, DAYS, AND SEASONS (ASCENDS) mission. ASCENDS is a future space-based mission to determine the global distribution of sources and sinks of atmospheric carbon dioxide (CO2). A unique, multi-frequency, intensity modulated CW (IMCW) laser absorption spectrometer (LAS) operating at 1.57 micron for CO2 sensing has been developed. Effective aerosol and cloud discrimination techniques are being investigated in order to determine concentration values with accuracies less than 0.3%. In this paper, we discuss the demonstration of a PN code based technique for cloud and aerosol discrimination applications. The possibility of using maximum length (ML)-sequences for range and absorption measurements is investigated. A simple model for accomplishing this objective is formulated, Proof-of-concept experiments carried out using SONAR based LIDAR simulator that was built using simple audio hardware provided promising results for extension into optical wavelengths. Keywords: ASCENDS, CO2 sensing, O2 sensing, PN codes, CW lidar

  19. Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Hironobu; Saito, Masanori; Tokoro, Yuka; Putri, Nurfiena Sagita; Sekiguchi, Miho

    2016-12-01

    Satellite remote sensing of the macroscopic, microphysical, and optical properties of clouds are useful for studying spatial and temporal variations of clouds at various scales and constraining cloud physical processes in climate and weather prediction models. Instead of using separate independent algorithms for different cloud properties, a unified, optimal estimation-based cloud retrieval algorithm is developed and applied to moderate resolution imaging spectroradiometer (MODIS) observations using ten thermal infrared bands. The model considers sensor configurations, background surface and atmospheric profile, and microphysical and optical models of ice and liquid cloud particles and radiative transfer in a plane-parallel, multilayered atmosphere. Measurement and model errors are thoroughly quantified from direct comparisons of clear-sky observations over the ocean with model calculations. Performance tests by retrieval simulations show that ice cloud properties are retrieved with high accuracy when cloud optical thickness (COT) is between 0.1 and 10. Cloud-top pressure is inferred with uncertainty lower than 10 % when COT is larger than 0.3. Applying the method to a tropical cloud system and comparing the results with the MODIS Collection 6 cloud product shows good agreement for ice cloud optical thickness when COT is less than about 5. Cloud-top height agrees well with estimates obtained by the CO2 slicing method used in the MODIS product. The present algorithm can detect optically thin parts at the edges of high clouds well in comparison with the MODIS product, in which these parts are recognized as low clouds by the infrared window method. The cloud thermodynamic phase in the present algorithm is constrained by cloud-top temperature, which tends not to produce results with an ice cloud that is too warm and liquid cloud that is too cold.

  20. Lidar cirrus cloud retrieval - methodology and applications

    NASA Astrophysics Data System (ADS)

    Larroza, Eliane; Keckhut, Philippe; Nakaema, Walter; Brogniez, Gérard; Dubuisson, Philippe; Pelon, Jacques; Duflot, Valentin; Marquestaut, Nicolas; Payen, Guillaume

    2016-04-01

    In the last decades numerical modeling has experimented sensitive improvements on accuracy and capability for climate predictions. In the same time it has demanded the reduction of uncertainties related with the respective input parameters. In this context, high altitude clouds (cirrus) have attracted special attention for their role as radiative forcing. Also such clouds are associated with the vertical transport of water vapor from the surface to upper troposphere/lower stratosphere (URLS) in form of ice crystals with variability of concentration and morphology. Still cirrus formation can occur spatially and temporally in great part of the globe due to horizontal motion of air masses and circulations. Determining accurately the physical properties of cirrus clouds still represents a challenge. Especially the so-called subvisible cirrus clouds (optical depth inferior to 0.03) are invisible for space-based passive observations. On the other hand, ground based active remote sensing as lidar can be used to suppress such deficiency. Lidar signal can provide spatial and temporal high resolution to characterize physically (height, geometric thickness, mean temperature) and optically (optical depth, extinction-to-scattering ratio or lidar ratio, depolarization ratio) the cirrus clouds. This report describes the evolution of the methodology initially adopted to retrieval systematically the lidar ratio and the subsequent application on case studies and climatology on the tropical sites of the globe - São Paulo, Brazil (23.33 S, 46.44 W) and OPAR observatory at Ille de La Réunion (21.07 S, 55.38 W). Also is attempting a synergy between different instrumentations and lidar measurements: a infrared radiometer to estimate the kind of ice crystals compounding the clouds; CALIPSO satellite observations and trajectory model (HYSPLIT) for tracking air masses potentially responsible for the horizontal displacement of cirrus. This last approach is particularly interesting to understand the history of the cirrus clouds - time of residence in different altitudes, ageing process and possible phase changes. Finally the radiative transfer code FASDOM fed by ancillary meteorological and surface data is used to simulate brightness temperatures as measured by the infrared radiometer locate at the ground level in the OPAR laboratory.

  1. Southeast Atlantic Cloud Properties in a Multivariate Statistical Model - How Relevant is Air Mass History for Local Cloud Properties?

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Cermak, Jan; Andersen, Hendrik

    2017-04-01

    This study aims at untangling the impacts of external dynamics and local conditions on cloud properties in the Southeast Atlantic (SEA) by combining satellite and reanalysis data using multivariate statistics. The understanding of clouds and their determinants at different scales is important for constraining the Earth's radiative budget, and thus prominent in climate-system research. In this study, SEA stratocumulus cloud properties are observed not only as the result of local environmental conditions but also as affected by external dynamics and spatial origins of air masses entering the study area. In order to assess to what extent cloud properties are impacted by aerosol concentration, air mass history, and meteorology, a multivariate approach is conducted using satellite observations of aerosol and cloud properties (MODIS, SEVIRI), information on aerosol species composition (MACC) and meteorological context (ERA-Interim reanalysis). To account for the often-neglected but important role of air mass origin, information on air mass history based on HYSPLIT modeling is included in the statistical model. This multivariate approach is intended to lead to a better understanding of the physical processes behind observed stratocumulus cloud properties in the SEA.

  2. Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center.

    PubMed

    Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed

    2016-10-01

    With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

  3. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Core: Toward a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2005-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.

  4. Measuring the Internal Structure and Physical Conditions in Star and Planet Forming Clouds Cores: Towards a Quantitative Description of Cloud Evolution

    NASA Technical Reports Server (NTRS)

    Lada, Charles J.

    2004-01-01

    This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.

  5. Zadoff-Chu sequence-based hitless ranging scheme for OFDMA-PON configured 5G fronthaul uplinks

    NASA Astrophysics Data System (ADS)

    Reza, Ahmed Galib; Rhee, June-Koo Kevin

    2017-05-01

    A Zadoff-Chu (ZC) sequence-based low-complexity hitless upstream time synchronization scheme is proposed for an orthogonal frequency division multiple access passive optical network configured cloud radio access network fronthaul. The algorithm is based on gradual loading of the ZC sequences, where the phase discontinuity due to the cyclic prefix is alleviated by a frequency domain phase precoder, eliminating the requirements of guard bands to mitigate intersymbol interference and inter-carrier interference. Simulation results for uncontrolled-wavelength asynchronous transmissions from four concurrent transmitting optical network units are presented to demonstrate the effectiveness of the proposed scheme.

  6. Microwave noise temperature and attenuation of clouds - Statistics of these effects at various sites in the United States, Alaska, and Hawaii

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1982-01-01

    The microwave attenuation and noise temperature effects of clouds can result in serious degradation of telecommunications link performance, especially for low-noise systems presently used in deep-space communications. Although cloud effects are generally less than rain effects, the frequent presence of clouds will cause some amount of link degradation a large portion of the time. This paper presents a general review of cloud types and their water particle densities, attenuation and noise temperature calculations, and basic link signal-to-noise ratio calculations. Tabular results of calculations for 12 different cloud models are presented for frequencies in the range 10-50 GHz. Curves of average-year attenuation and noise temperature statistics at frequencies ranging from 10 to 90 GHz, calculated from actual surface and radiosonde observations, are given for 15 climatologically distinct regions in the contiguous United States, Alaska, and Hawaii. Nonuniform sky cover is considered in these calculations.

  7. Improved Wireless Security through Physical Layer Protocol Manipulation and Radio Frequency Fingerprinting

    DTIC Science & Technology

    2014-09-18

    radios in a cognitive radio network using a radio frequency fingerprinting based method. In IEEE International Conference on Communications (ICC...IMPROVEDWIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Benjamin W. Ramsey, Captain...PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Presented to the Faculty Graduate School of Engineering and

  8. EDITORIAL: Focus on Cloud Physics FOCUS ON CLOUD PHYSICS

    NASA Astrophysics Data System (ADS)

    Falkovich, Gregory; Malinowski, Szymon P.

    2008-07-01

    Cloud physics has for a long time been an important segment of atmospheric science. It is common knowledge that clouds are crucial for our understanding of weather and climate. Clouds are also interesting by themselves (not to mention that they are beautiful). Complexity is hidden behind the common picture of these beautiful and interesting objects. The typical school textbook definition that a cloud is 'a set of droplets or particles suspended in the atmosphere' is not adequate. Clouds are complicated phenomena in which dynamics, turbulence, microphysics, thermodynamics and radiative transfer interact on a wide range of scales, from sub-micron to kilometres. Some of these interactions are subtle and others are more straightforward. Large and small-scale motions lead to activation of cloud condensation nuclei, condensational growth and collisions; small changes in composition and concentration of atmospheric aerosol lead to significant differences in radiative properties of the clouds and influence rainfall formation. It is justified to look at a cloud as a composite, nonlinear system which involves many interactions and feedback. This system is actively linked into a web of atmospheric, oceanic and even cosmic interactions. Due to the complexity of the cloud system, present-day descriptions of clouds suffer from simplifications, inadequate parameterizations, and omissions. Sometimes the most fundamental physics hidden behind these simplifications and parameterizations is not known, and a wide scope of view can sometimes prevent a 'microscopic', deep insight into the detail. Only the expertise offered by scientists focused on particular elementary processes involved in this complicated pattern of interactions allows us to shape elements of the puzzle from which a general picture of clouds can be created. To be useful, every element of the puzzle must be shaped precisely. This often creates problems in communication between the sciences responsible for shaping elements of the puzzle, and those which combine them. Scales, assumptions and the conditions used in order to describe a particular single process of interest must be consistent with the conditions in clouds. The papers in this focus issue of New Journal of Physics collectively demonstrate (i) the variation in scientific approaches towards investigating cloud processes, (ii) the various stages of shaping elements of the puzzle, and (iii) some attempts to put the pieces together. These papers present just a small subset of loosely arranged elements in an initial stage of puzzle creation. Addressed by this issue is one of the important problems in our understanding of cloud processes—the interaction between cloud particles and turbulence. There is currently a gap between the cloud physics community and scientists working in wind tunnels, on turbulence theory and particle interactions. This collection is intended to narrow this gap by bringing together work by theoreticians, modelers, laboratory experimentalists and those who measure and observe actual processes in clouds. It forms a collage of contributions showing various approaches to cloud processes including: • theoretical works with possible applications to clouds (Bistagnino and Boffetta, Gustavsson et al), • an attempt to construct a phenomenological description of clouds and rain (Lovejoy and Schertzer), • simplified models designed to parameterize turbulence micro- and macro-effects (Celani et al, Derevyanko et al), • focused theoretical research aimed at particular cloud processes (Ayala et al, parts I and II, Wang et al), • laboratory and modeling studies of complex cloud processes (Malinowski et al). This collage is far from being complete but, hopefully, should give the reader a representative impression of the current state of knowledge in the field. We hope it will be useful to all scientists whose work is inspired by cloud processes. Focus on Cloud Physics Contents The equivalent size of cloud condensation nuclei Antonio Celani, Andrea Mazzino and Marco Tizzi Laboratory and modeling studies of cloud-clear air interfacial mixing: anisotropy of small-scale turbulence due to evaporative cooling Szymon P Malinowski, Miroslaw Andrejczuk, Wojciech W Grabowski, Piotr Korczyk, Tomasz A Kowalewski and Piotr K Smolarkiewicz Evolution of non-uniformly seeded warm clouds in idealized turbulent conditions Stanislav Derevyanko, Gregory Falkovich and Sergei Turitsyn Lagrangian statistics in two-dimensional free turbulent convection A Bistagnino and G Boffetta Turbulence, raindrops and the l1/2 number density law S Lovejoy and D Schertzer Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization Orlando Ayala, Bogdan Rosa and Lian-Ping Wang Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation Orlando Ayala, Bogdan Rosa, Lian-Ping Wang and Wojciech W Grabowski Collisions of particles advected in random flows K Gustavsson, B Mehlig and M Wilkinson Turbulent collision efficiency of heavy particles relevant to cloud droplets Lian-Ping Wang, Orlando Ayala, Bogdan Rosa and Wojciech W Grabowski

  9. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  10. Examining the NZESM Cloud representation with Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Schuddeboom, Alex; McDonald, Adrian; Parsons, Simon; Morgenstern, Olaf; Harvey, Mike

    2017-04-01

    Several different cloud regimes are identified from MODIS satellite data and the representation of these regimes within the New Zealand Earth System Model (NZESM) is examined. For the development of our cloud classification we utilize a neural network algorithm known as self organizing maps (SOMs) on MODIS cloud top pressure - cloud optical thickness joint histograms. To evaluate the representation of the cloud within NZESM, the frequency and geographical distribution of the regimes is compared between the NZESM and satellite data. This approach has the advantage of not only identifying differences, but also potentially giving additional information about the discrepancy such as in which regions or phases of cloud the differences are most prominent. To allow for a more direct comparison between datasets, the COSP satellite simulation software is applied to NZESM output. COSP works by simulating the observational processes linked to a satellite, within the GCM, so that data can be generated in a way that shares the particular observational bias of specific satellites. By taking the COSP joint histograms and comparing them to our existing classifications we can easily search for discrepancies between the observational data and the simulations without having to be cautious of biases introduced by the satellite. Preliminary results, based on data for 2008, show a significant decrease in overall cloud fraction in the NZESM compared to the MODIS satellite data. To better understand the nature of this discrepancy, the cloud fraction related to different cloud heights and phases were also analysed.

  11. Regime-based evaluation of cloudiness in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin

    2017-01-01

    The concept of cloud regimes (CRs) is used to develop a framework for evaluating the cloudiness of 12 fifth Coupled Model Intercomparison Project (CMIP5) models. Reference CRs come from existing global International Satellite Cloud Climatology Project (ISCCP) weather states. The evaluation is made possible by the implementation in several CMIP5 models of the ISCCP simulator generating in each grid cell daily joint histograms of cloud optical thickness and cloud top pressure. Model performance is assessed with several metrics such as CR global cloud fraction (CF), CR relative frequency of occurrence (RFO), their product [long-term average total cloud amount (TCA)], cross-correlations of CR RFO maps, and a metric of resemblance between model and ISCCP CRs. In terms of CR global RFO, arguably the most fundamental metric, the models perform unsatisfactorily overall, except for CRs representing thick storm clouds. Because model CR CF is internally constrained by our method, RFO discrepancies yield also substantial TCA errors. Our results support previous findings that CMIP5 models underestimate cloudiness. The multi-model mean performs well in matching observed RFO maps for many CRs, but is still not the best for this or other metrics. When overall performance across all CRs is assessed, some models, despite shortcomings, apparently outperform Moderate Resolution Imaging Spectroradiometer cloud observations evaluated against ISCCP like another model output. Lastly, contrasting cloud simulation performance against each model's equilibrium climate sensitivity in order to gain insight on whether good cloud simulation pairs with particular values of this parameter, yields no clear conclusions.

  12. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean

    NASA Astrophysics Data System (ADS)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson

    2018-03-01

    The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.

    It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.

  13. Integrated cloud infrastructure of the LIT JINR, PE "NULITS" and INP's Astana branch

    NASA Astrophysics Data System (ADS)

    Mazhitova, Yelena; Balashov, Nikita; Baranov, Aleksandr; Kutovskiy, Nikolay; Semenov, Roman

    2018-04-01

    The article describes the distributed cloud infrastructure deployed on the basis of the resources of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research (LIT JINR) and some JINR Member State organizations. It explains a motivation of that work, an approach it is based on, lists of its participants among which there are private entity "Nazarbayev University Library and IT services" (PE "NULITS") Autonomous Education Organization "Nazarbayev University" (AO NU) and The Institute of Nuclear Physics' (INP's) Astana branch.

  14. Unforced decadal fluctuations in a coupled model of the atmosphere and ocean mixed layer

    NASA Technical Reports Server (NTRS)

    Barnett, T. P.; Del Genio, A. D.; Ruedy, R. A.

    1992-01-01

    Global average temperature in a 100-year control run of a model used for greenhouse gas response simulations showed low-frequency natural variability comparable in magnitude to that observed over the last 100 years. The model variability was found to be barotropic in the atmosphere, and located in the tropical strip with largest values near the equator in the Pacific. The model variations were traced to complex, low-frequency interactions between the meridional sea surface temperature gradients in the eastern equatorial Pacific, clouds at both high and low levels, and features of the tropical atmospheric circulation. The variations in these and other model parameters appear to oscillate between two limiting climate states. The physical scenario accounting for the oscillations on decadal time scales is almost certainly not found in the real world on shorter time scales due to limited resolution and the omission of key physics (e.g., equatorial ocean dynamics) in the model. The real message is that models with dynamical limitations can still produce significant long-term variability. Only a thorough physical diagnosis of such simulations and comparisons with decadal-length data sets will allow one to decide if faith in the model results is, or is not, warranted.

  15. A system for mapping sources of VHF and electric field pulses from in-cloud lightning at KSC

    NASA Technical Reports Server (NTRS)

    Thomson, Ewen M.; Medelius, Pedro J.

    1991-01-01

    The literature concerning VHF radiation and wideband electric fields from in-cloud lightning is reviewed. VHF location systems give impressive radio images of lightning in clouds with high spatial and temporal resolution. Using systems based on long and short baseline time-or-arrival and interferometry, workers have detected VHF sources that move at speeds of 10(exp 5) to 10(exp 8) m/s. The more slowly moving sources appear to be associated with channel formation but the physical basis for the higher speeds is not clear. In contrast, wideband electric fields are directly related to physical parameters such as current and tortuosity. A long baseline system is described to measure simultaneously VHF radiation and wideband electric fields at five stations at Kennedy Space Center. All signals are detected over remote, isolated ground planes with fiber optics for data transmission. The modification of this system to map rapidly varying dE/dt pulses is discussed.

  16. Statistical Analyses of Satellite Cloud Object Data from CERES. Part III; Comparison with Cloud-Resolving Model Simulations of Tropical Convective Clouds

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.

    2007-01-01

    The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the observed outgoing longwave radiation and cloud top temperature between the two periods. Comparisons between the CRM results and the observations for most parameters in March 1998 consistently show that both the simulations and observations have larger differences between the large- and small-size categories than between the large- and medium-size, or between the medium- and small-size categories. However, the simulated cloud properties do not change as much with size as observed. These disagreements are likely related to the spatial averaging of the forcing data and the mismatch in time and in space between the numerical weather prediction model from which the forcing data are produced and the CERES observed cloud systems.

  17. Evaluation of the OMI Cloud Pressures Derived from Rotational Raman Scattering by Comparisons with other Satellite Data and Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Vasilkov, Alexander; Joiner, Joanna; Spurr, Robert; Bhartia, Pawan K.; Levelt, Pieternel; Stephens, Graeme

    2009-01-01

    In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.

  18. An Observation-based Assessment of Instrument Requirements for a Future Precipitation Process Observing System

    NASA Astrophysics Data System (ADS)

    Nelson, E.; L'Ecuyer, T. S.; Wood, N.; Smalley, M.; Kulie, M.; Hahn, W.

    2017-12-01

    Global models exhibit substantial biases in the frequency, intensity, duration, and spatial scales of precipitation systems. Much of this uncertainty stems from an inadequate representation of the processes by which water is cycled between the surface and atmosphere and, in particular, those that govern the formation and maintenance of cloud systems and their propensity to form the precipitation. Progress toward improving precipitation process models requires observing systems capable of quantifying the coupling between the ice content, vertical mass fluxes, and precipitation yield of precipitating cloud systems. Spaceborne multi-frequency, Doppler radar offers a unique opportunity to address this need but the effectiveness of such a mission is heavily dependent on its ability to actually observe the processes of interest in the widest possible range of systems. Planning for a next generation precipitation process observing system should, therefore, start with a fundamental evaluation of the trade-offs between sensitivity, resolution, sampling, cost, and the overall potential scientific yield of the mission. Here we provide an initial assessment of the scientific and economic trade-space by evaluating hypothetical spaceborne multi-frequency radars using a combination of current real-world and model-derived synthetic observations. Specifically, we alter the field of view, vertical resolution, and sensitivity of a hypothetical Ka- and W-band radar system and propagate those changes through precipitation detection and intensity retrievals. The results suggest that sampling biases introduced by reducing sensitivity disproportionately affect the light rainfall and frozen precipitation regimes that are critical for warm cloud feedbacks and ice sheet mass balance, respectively. Coarser spatial resolution observations introduce regime-dependent biases in both precipitation occurrence and intensity that depend on cloud regime, with even the sign of the bias varying within a single storm system. It is suggested that the next generation spaceborne radar have a minimum sensitivity of -5 dBZ and spatial resolution of at least 3 km at all frequencies to adequately sample liquid and ice phase precipitation processes globally.

  19. FINAL REPORT (DE-FG02-97ER62338): Single-column modeling, GCM parameterizations, and ARM data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard C. J. Somerville

    2009-02-27

    Our overall goal is the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have compared SCM (single-column model) output with ARM observations at the SGP, NSA and TWP sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments ofmore » cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art three-dimensional atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable.« less

  20. The Deep South Clouds & Aerosols project: Improving the modelling of clouds in the Southern Ocean region

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; McDonald, Adrian; Harvey, Mike; Davies, Roger; Katurji, Marwan; Varma, Vidya; Williams, Jonny

    2016-04-01

    Southern-Hemisphere climate projections are subject to persistent climate model biases affecting the large majority of contemporary climate models, which degrade the reliability of these projections, particularly at the regional scale. Southern-Hemisphere specific problems include the fact that satellite-based observations comparisons with model output indicate that cloud occurrence above the Southern Ocean is substantially underestimated, with consequences for the radiation balance, sea surface temperatures, sea ice, and the position of storm tracks. The Southern-Ocean and Antarctic region is generally characterized by an acute paucity of surface-based and airborne observations, further complicating the situation. In recognition of this and other Southern-Hemisphere specific problems with climate modelling, the New Zealand Government has launched the Deep South National Science Challenge, whose purpose is to develop a new Earth System Model which reduces these very large radiative forcing problems associated with erroneous clouds. The plan is to conduct a campaign of targeted observations in the Southern Ocean region, leveraging off international measurement campaigns in this area, and using these and existing measurements of cloud and aerosol properties to improve the representation of clouds in the nascent New Zealand Earth System Model. Observations and model development will target aerosol physics and chemistry, particularly sulphate, sea salt, and non-sulphate organic aerosol, its interactions with clouds, and cloud microphysics. The hypothesis is that the cloud schemes in most GCMs are trained on Northern-Hemisphere data characterized by substantial anthropogenic or terrestrial aerosol-related influences which are almost completely absent in the Deep South.

  1. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    NASA Astrophysics Data System (ADS)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the formation and dissipation processes of ice clouds and frozen precipitations.

  2. Boundary conditions for the paleoenvironment: Chemical and Physical Processes in dense interstellar clouds

    NASA Technical Reports Server (NTRS)

    Irvine, W. M.; Schloerb, F. P.; Ziurys, L. M.

    1986-01-01

    The present research includes searches for important new interstellar constituents; observations relevant to differentiating between different models for the chemical processes that are important in the interstellar environment; and coordinated studies of the chemistry, physics, and dynamics of molecular clouds which are the sites or possible future sites of star formation. Recent research has included the detection and study of four new interstellar molecules; searches which have placed upper limits on the abundance of several other potential constituents of interstellar clouds; quantitative studies of comparative molecular abundances in different types of interstellar clouds; investigation of reaction pathways for astrochemistry from a comparison of theory and the observed abundance of related species such as isomers and isotopic variants; studies of possible tracers of energenic events related to star formation, including silicon and sulfur containing molecules; and mapping of physical, chemical, and dynamical properties over extended regions of nearby cold molecular clouds.

  3. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  4. Characterization of Individual Aerosol Particles Associated with Clouds (CRYSTAL-FACE)

    NASA Technical Reports Server (NTRS)

    Buseck, Peter R.

    2004-01-01

    The aim of our research was to obtain data on the chemical and physical properties of individual aerosol particles from near the bottoms and tops of the deep convective systems that lead to the generation of tropical cirrus clouds and to provide insights into the particles that serve as CCN or IN. We used analytical transmission electron microscopy (ATEM), including energy-dispersive X-ray spectrometry (EDS) and electron energy-loss spectroscopy (EELS), and field-emission electron microscopy (FESEM) to compare the compositions, concentrations, size distributions, shapes, surface coatings, and degrees of aggregation of individual particles from cloud bases and the anvils near the tropopause. Aggregates of sea salt and mineral dust, ammonium sulfate, and soot particles are abundant in in-cloud samples. Cirrus samples contain many H2SO4 droplets, but acidic sulfate particles are rare at the cloud bases. H2SO4 probably formed at higher altitudes through oxidation of SO2 in cloud droplets. The relatively high extent of ammoniation in the upper troposphere in-cloud samples appears to have resulted from vertical transport by strong convection. The morphology of H2SO4 droplets indicates that they had been at least yartiy ammoniated at the time of collection. They are internally mixed with organic materials, metal sulfates, and solid particles of various compositions. Ammoniation and internal mixing of result in freezing at higher temperature than in pure H2SO4 aerosols. K- and S-bearing organic particles and Si-Al-rich particles are common throughout. Sea salt and mineral dust were incorporated into the convective systems from the cloud bases and worked as ice nuclei while being vertically transported. The nonsulfate particles originated from the lower troposphere and were transported to the upper troposphere and lower stratosphere.

  5. Simulations of Infrared Radiances Over a Deep Convective Cloud System Observed During TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Hong, Gang; Ayers, Kirk; Smith, William L., Jr.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol; hide

    2012-01-01

    Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared

  6. Simulations of Infrared Radiances Over a Deep Convective Cloud System Observed During TC4- Potential for Enhancing Nocturnal Ice Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Hong, Gang; Ayers, Jeffrey Kirk; Smith, William L.; Yost, Christopher R.; Heymsfield, Andrew J.; Heymsfield, Gerald M.; Hlavka, Dennis L.; King, Michael D.; Korn, Errol M.; hide

    2012-01-01

    Retrievals of ice cloud properties using infrared measurements at 3.7, 6.7, 7.3, 8.5, 10.8, and 12.0 microns can provide consistent results regardless of solar illumination, but are limited to cloud optical thicknesses tau < approx.6. This paper investigates the variations in radiances at these wavelengths over a deep convective cloud system for their potential to extend retrievals of tau and ice particle size D(sub e) to optically thick clouds. Measurements from the Moderate Resolution Imaging Spectroradiometer Airborne Simulator--ASTER, the Scanning High-resolution Interferometer Sounder, the Cloud Physics Lidar (CPL), and the Cloud Radar System (CRS) aboard the NASA ER-2 aircraft during the NASA TC4 (Tropical Composition, Cloud and Climate Coupling) experiment flight during 5 August 2007, are used to examine the retrieval capabilities of infrared radiances over optically thick ice clouds. Simulations based on coincident in-situ measurements and combined cloud tau from CRS and CPL measurements are comparable to the observations. They reveal that brightness temperatures at these bands and their differences (BTD) are sensitive to tau up to approx.20 and that for ice clouds having tau > 20, the 3.7 - 10.8 microns and 3.7 - 6.7 microns BTDs are the most sensitive to D(sub e). Satellite imagery appears consistent with these results. Keywords: clouds; optical depth; particle size; satellite; TC4; multispectral thermal infrared

  7. Design evaluations for a flight cloud physics holocamera. [holographic/photographic camera for low-g Atmospheric Cloud Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Kurtz, R. L.; Lemons, J. F.

    1976-01-01

    The paper describes a holographic/photographic camera to be used with the zero-g or low-g Atmospheric Cloud Physics Laboratory. The flight prototype holocamera is intended to record particles from 0.01 to 5 microns for an optimum two-dimensional plane only in the microscopic photography mode, particles on a volume basis in the in-line holography mode from 5 microns up, and all particle sizes possible on a volume basis in the acute sideband holography mode.

  8. Sensitivity of Photolysis Frequencies and Key Tropospheric Oxidants in a Global Model to Cloud Vertical Distributions and Optical Properties

    NASA Technical Reports Server (NTRS)

    Liu, Hongyu; Crawford, James H.; Considine, David B.; Platnick, Steven; Norris, Peter M.; Duncan, Bryan N.; Pierce, Robert B.; Chen, Gao; Yantosca, Robert M.

    2009-01-01

    Clouds affect tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies. As a follow-up study to our recent assessment of the radiative effects of clouds on tropospheric chemistry, this paper presents an analysis of the sensitivity of such effects to cloud vertical distributions and optical properties (cloud optical depths (CODs) and cloud single scattering albedo), in a global 3-D chemical transport model (GEOS-Chem). GEOS-Chem was driven with a series of meteorological archives (GEOS1- STRAT, GEOS-3 and GEOS-4) generated by the NASA Goddard Earth Observing System data assimilation system. Clouds in GEOS1-STRAT and GEOS-3 have more similar vertical distributions (with substantially smaller CODs in GEOS1-STRAT) while those in GEOS-4 are optically much thinner in the tropical upper troposphere. We find that the radiative impact of clouds on global photolysis frequencies and hydroxyl radical (OH) is more sensitive to the vertical distribution of clouds than to the magnitude of column CODs. With random vertical overlap for clouds, the model calculated changes in global mean OH (J(O1D), J(NO2)) due to the radiative effects of clouds in June are about 0.0% (0.4%, 0.9%), 0.8% (1.7%, 3.1%), and 7.3% (4.1%, 6.0%), for GEOS1-STRAT, GEOS-3 and GEOS-4, respectively; the geographic distributions of these quantities show much larger changes, with maximum decrease in OH concentrations of approx.15-35% near the midlatitude surface. The much larger global impact of clouds in GEOS-4 reflects the fact that more solar radiation is able to penetrate through the optically thin upper-tropospheric clouds, increasing backscattering from low-level clouds. Model simulations with each of the three cloud distributions all show that the change in the global burden of ozone due to clouds is less than 5%. Model perturbation experiments with GEOS-3, where the magnitude of 3-D CODs are progressively varied from -100% to 100%, predict only modest changes (<5%) in global mean OH concentrations. J(O1D), J(NO2) and OH3 concentrations show the strongest sensitivity for small CODs and become insensitive at large CODs due to saturation effects. Caution should be exercised not to use in photochemical models a value for cloud single scattering albedo lower than about 0.999 in order to be consistent with the current knowledge of cloud absorption at the ultraviolet wavelengths.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Gustafson, William I.; Kassianov, Evgueni I.

    A new treatment for shallow clouds has been introduced into the Weather Research and Forecasting (WRF) model. The new scheme, called the cumulus potential (CuP) scheme, replaces the ad-hoc trigger function used in the Kain-Fritsch cumulus parameterization with a trigger function related to the distribution of temperature and humidity in the convective boundary layer via probability density functions (PDFs). An additional modification to the default version of WRF is the computation of a cumulus cloud fraction based on the time scales relevant for shallow cumuli. Results from three case studies over the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM)more » site in north central Oklahoma are presented. These days were selected because of the presence of shallow cumuli over the ARM site. The modified version of WRF does a much better job predicting the cloud fraction and the downwelling shortwave irradiance thancontrol simulations utilizing the default Kain-Fritsch scheme. The modified scheme includes a number of additional free parameters, including the number and size of bins used to define the PDF, the minimum frequency of a bin within the PDF before that bin is considered for shallow clouds to form, and the critical cumulative frequency of bins required to trigger deep convection. A series of tests were undertaken to evaluate the sensitivity of the simulations to these parameters. Overall, the scheme was found to be relatively insensitive to each of the parameters.« less

  10. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results. Part II; Cloud Coverage

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    This is the second part of a study on how temporal sampling frequency affects satellite retrievals in support of the Deep Space Climate Observatory (DSCOVR) mission. Continuing from Part 1, which looked at Earth's radiation budget, this paper presents the effect of sampling frequency on DSCOVR-derived cloud fraction. The output from NASA's Goddard Earth Observing System version 5 (GEOS-5) Nature Run is used as the "truth". The effect of temporal resolution on potential DSCOVR observations is assessed by subsampling the full Nature Run data. A set of metrics, including uncertainty and absolute error in the subsampled time series, correlation between the original and the subsamples, and Fourier analysis have been used for this study. Results show that, for a given sampling frequency, the uncertainties in the annual mean cloud fraction of the sunlit half of the Earth are larger over land than over ocean. Analysis of correlation coefficients between the subsamples and the original time series demonstrates that even though sampling at certain longer time intervals may not increase the uncertainty in the mean, the subsampled time series is further and further away from the "truth" as the sampling interval becomes larger and larger. Fourier analysis shows that the simulated DSCOVR cloud fraction has underlying periodical features at certain time intervals, such as 8, 12, and 24 h. If the data is subsampled at these frequencies, the uncertainties in the mean cloud fraction are higher. These results provide helpful insights for the DSCOVR temporal sampling strategy.

  11. STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B., E-mail: abbot@uchicago.edu

    2013-07-10

    The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies.more » This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.« less

  12. Diurnal Variation of Tropical Ice Cloud Microphysics: Evidence from Global Precipitation Measurement Microwave Imager Polarimetric Measurements

    NASA Astrophysics Data System (ADS)

    Gong, Jie; Zeng, Xiping; Wu, Dong L.; Li, Xiaowen

    2018-01-01

    The diurnal variation of tropical ice clouds has been well observed and examined in terms of the occurring frequency and total mass but rarely from the viewpoint of ice microphysical parameters. It accounts for a large portion of uncertainties in evaluating ice clouds' role on global radiation and hydrological budgets. Owing to the advantage of precession orbit design and paired polarized observations at a high-frequency microwave band that is particularly sensitive to ice particle microphysical properties, 3 years of polarimetric difference (PD) measurements using the 166 GHz channel of Global Precipitation Measurement Microwave Imager (GPM-GMI) are compiled to reveal a strong diurnal cycle over tropical land (30°S-30°N) with peak amplitude varying up to 38%. Since the PD signal is dominantly determined by ice crystal size, shape, and orientation, the diurnal cycle observed by GMI can be used to infer changes in ice crystal properties. Moreover, PD change is found to lead the diurnal changes of ice cloud occurring frequency and total ice mass by about 2 h, which strongly implies that understanding ice microphysics is critical to predict, infer, and model ice cloud evolution and precipitation processes.

  13. Evaluation of Cirrus Cloud Simulations Using ARM Data - Development of a Case Study Data Set

    NASA Technical Reports Server (NTRS)

    O'C.Starr, David; Demoz, Belay; Lare, Andrew; Poellot, Michael; Sassen, Kenneth; Heymsfield, Andrew; Brown, Philip; Mace, Jay; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Cloud-resolving models (CRMs) provide an effective linkage in terms of parameters and scales between observations and the parametric treatments of clouds in global climate models (GCMs). They also represent the best understanding of the physical processes acting to determine cloud system lifecycle. The goal of this project is to improve state-of-the-art CRMs used for studies of cirrus clouds and to establish a relative calibration with GCMs through comparisons among CRMs, single column model (SCM) versions of the GCMs, and observations. This project will compare and evaluate a variety of CRMs and SCMs, under the auspices of the GEWEX Cloud Systems Study (GCSS) Working Group on Cirrus Cloud Systems (WG2), using ARM data acquired at the Southern Great Plains (SGP) site. This poster will report on progress in developing a suitable WG2 case study data set based on the September 26, 1996 ARM IOP case - the Hurricane Nora outflow case. The environmental data (input) will be described as well as the wealth of validating cloud observations. We plan to also show results of preliminary simulations. The science questions to be addressed derive significantly from results of the GCSS WG2 cloud model comparison projects, which will be briefly summarized.

  14. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    NASA Astrophysics Data System (ADS)

    Huang, Dong; Liu, Yangang

    2014-12-01

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  15. Cloud detection algorithm comparison and validation for operational Landsat data products

    USGS Publications Warehouse

    Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady

    2017-01-01

    Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate nonthermal-based algorithm. We give preference to CFMask for operational cloud and cloud shadow detection, as it is derived from a priori knowledge of physical phenomena and is operable without geographic restriction, making it useful for current and future land imaging missions without having to be retrained in a machine-learning environment.

  16. Subvisual-thin cirrus lidar dataset for satellite verification and climatological research

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Cho, Byung S.

    1992-01-01

    A polarization (0.694 microns wavelength) lidar dataset for subvisual and thin (bluish-colored) cirrus clouds is drawn from project FIRE (First ISCCP Regional Experiment) extended time observations. The clouds are characterized by their day-night visual appearance; base, top, and optical midcloud heights and temperatures; measured physical and estimated optical cloud thicknesses; integrated linear depolarization ratios; and derived k/2 eta ratios. A subset of the data supporting 30 NOAA polar-orbiting satellite overpasses is given in tabular form to provide investigators with the means to test cloud retrieval algorithms and establish the limits of cirrus detectability from satellite measurements under various conditions. Climatologically, subvisual-thin cirrus appear to be higher, colder, and more strongly depolarizing than previously reported multilatitude cirrus, although similar k/2 eta that decrease with height and temperature are found.

  17. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.

  18. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  19. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  20. Clustering the Orion B giant molecular cloud based on its molecular emission

    NASA Astrophysics Data System (ADS)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1-0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions: Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers. Data products associated with this paper are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A12 and at http://www.iram.fr/ pety/ORION-B

Top