Signal Identification and Isolation Utilizing Radio Frequency Photonics
2017-09-01
analyzers can measure the frequency of signals and filters can be used to separate the signals apart from one another. This report will review...different techniques for spectrum analysis and isolation. 15. SUBJECT TERMS radio frequency, photonics, spectrum analyzer, filters 16. SECURITY CLASSIFICATION...Analyzers .......................................................................................... 3 3.2 Frequency Identification using Filters
Frequency spectrum analyzer with phase-lock
Boland, Thomas J.
1984-01-01
A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.
Micro acoustic spectrum analyzer
Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.
2004-11-23
A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.
Kotter, Dale K [Shelley, ID; Rohrbaugh, David T [Idaho Falls, ID
2010-09-07
A frequency selective surface (FSS) and associated methods for modeling, analyzing and designing the FSS are disclosed. The FSS includes a pattern of conductive material formed on a substrate to form an array of resonance elements. At least one aspect of the frequency selective surface is determined by defining a frequency range including multiple frequency values, determining a frequency dependent permittivity across the frequency range for the substrate, determining a frequency dependent conductivity across the frequency range for the conductive material, and analyzing the frequency selective surface using a method of moments analysis at each of the multiple frequency values for an incident electromagnetic energy impinging on the frequency selective surface. The frequency dependent permittivity and the frequency dependent conductivity are included in the method of moments analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gahan, D.; Hopkins, M. B.; Dolinaj, B.
2008-03-15
A retarding field energy analyzer designed to measure ion energy distributions impacting a radio-frequency biased electrode in a plasma discharge is examined. The analyzer is compact so that the need for differential pumping is avoided. The analyzer is designed to sit on the electrode surface, in place of the substrate, and the signal cables are fed out through the reactor side port. This prevents the need for modifications to the rf electrode--as is normally the case for analyzers built into such electrodes. The capabilities of the analyzer are demonstrated through experiments with various electrode bias conditions in an inductively coupledmore » plasma reactor. The electrode is initially grounded and the measured distributions are validated with the Langmuir probe measurements of the plasma potential. Ion energy distributions are then given for various rf bias voltage levels, discharge pressures, rf bias frequencies - 500 kHz to 30 MHz, and rf bias waveforms - sinusoidal, square, and dual frequency.« less
Watson, Bobby L.; Aeby, Ian
1982-01-01
An adaptive data compression device for compressing data having variable frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Watson, B.L.; Aeby, I.
1980-08-26
An adaptive data compression device for compressing data is described. The device has a frequency content, including a plurality of digital filters for analyzing the content of the data over a plurality of frequency regions, a memory, and a control logic circuit for generating a variable rate memory clock corresponding to the analyzed frequency content of the data in the frequency region and for clocking the data into the memory in response to the variable rate memory clock.
Schultz-Coulon, H J
1975-07-01
The applicability of a newly developed fundamental frequency analyzer to diagnosis in phoniatrics is reviewed. During routine voice examination, the analyzer allows a quick and accurate measurement of fundamental frequency and sound level of the speaking voice, and of vocal range and maximum phonation time. By computing fundamental frequency histograms, the median fundamental frequency and the total pitch range can be better determined and compared. Objective studies of certain technical faculties of the singing voice, which usually are estimated subjectively by the speech therapist, may now be done by means of this analyzer. Several examples demonstrate the differences between correct and incorrect phonation. These studies compare the pitch perturbations during the crescendo and decrescendo of a swell-tone, and show typical traces of staccato, thrill and yodel. Conclusions of the study indicate that fundamental frequency analysis is a valuable supplemental method for objective voice examination.
Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory
NASA Astrophysics Data System (ADS)
Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing
2018-01-01
In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.
NASA Astrophysics Data System (ADS)
Zelinsky, N. R.; Kleimenova, N. G.; Gromova, L. I.
2017-09-01
This study considers the possibility of using the new methods of time-frequency transforms, such as chirplet and warblet transforms, to analyze the digital observational data of geomagnetic pulsations of Pc5 type. For this purpose, necessary algorithms of calculation and appropriate software were developed. The chirplet transform method (CT) is used to analyze signals with a linear frequency modulation. A chirplet variation, the so-called warblet transform, is used to analyze signals with a nonlinear frequency modulation. Since, in studying geomagnetic pulsations, it is difficult to make assumptions on the character of the behavior of the instantaneous frequency of the signal, the special generalized warblet transform (GWT) was used for the analysis. The GWT has a high spatiotemporal resolution and was developed to analyze oscillations both with a periodic and nonperiodic change of the instantaneous frequency. The software developed for GWT calculation was used to study daytime geomagnetic Pc5 pulsations with durations of several hours that were detected via the network of ground-based magnetometers of the Scandinavian IMAGE profile during the magnetic storm of May 29-30, 2003. For the first time, temporal variations of the instantaneous frequency of geomagnetic pulsations are determined and their possible use in studying the fine spatial structure of Pc5 waves is shown.
EMD-WVD time-frequency distribution for analysis of multi-component signals
NASA Astrophysics Data System (ADS)
Chai, Yunzi; Zhang, Xudong
2016-10-01
Time-frequency distribution (TFD) is two-dimensional function that indicates the time-varying frequency content of one-dimensional signals. And The Wigner-Ville distribution (WVD) is an important and effective time-frequency analysis method. The WVD can efficiently show the characteristic of a mono-component signal. However, a major drawback is the extra cross-terms when multi-component signals are analyzed by WVD. In order to eliminating the cross-terms, we decompose signals into single frequency components - Intrinsic Mode Function (IMF) - by using the Empirical Mode decomposition (EMD) first, then use WVD to analyze each single IMF. In this paper, we define this new time-frequency distribution as EMD-WVD. And the experiment results show that the proposed time-frequency method can solve the cross-terms problem effectively and improve the accuracy of WVD time-frequency analysis.
General misincorporation frequency: Re-evaluation of the fidelity of DNA polymerases.
Yang, Jie; Li, Bianbian; Liu, Xiaoying; Tang, Hong; Zhuang, Xiyao; Yang, Mingqi; Xu, Ying; Zhang, Huidong; Yang, Chun
2018-02-19
DNA replication in cells is performed in the presence of four dNTPs and four rNTPs. In this study, we re-evaluated the fidelity of DNA polymerases using the general misincorporation frequency consisting of three incorrect dNTPs and four rNTPs but not using the traditional special misincorporation frequency with only the three incorrect dNTPs. We analyzed both the general and special misincorporation frequencies of nucleotide incorporation opposite dG, rG, or 8-oxoG by Pseudomonas aeruginosa phage 1 (PaP1) DNA polymerase Gp90 or Sulfolobus solfataricus DNA polymerase Dpo4. Both misincorporation frequencies of other DNA polymerases published were also summarized and analyzed. The general misincorporation frequency is obviously higher than the special misincorporation frequency for many DNA polymerases, indicating the real fidelity of a DNA polymerase should be evaluated using the general misincorporation frequency. Copyright © 2018 Elsevier Inc. All rights reserved.
On the Harmonic Coupling of Components in Pairs of IIIb-III Bursts at Decameter Wavelengths
NASA Astrophysics Data System (ADS)
Brazhenko, A. I.; Melnik, V. N.; Frantsuzenko, A. V.; Dorovskyy, V. V.; Rucker, H. O.; Panchenko, M.
2015-06-01
The properties of IIIb-III pairs observed by the URAN-2 radioThe properties of IIIb-III pairs observed by the URAN-2 radiotelescope at frequencies 16-32 MHz are analyzed. Observations of these bursts were hold in April, June and September 2011. Durations, frequency drift rates, simultaneous frequency ratio of pairs components and their polarizations are analyzed. Pro and contra of IIIb-III harmonic connection are discussed.
Techniques for analyzing frequency selective surfaces - A review
NASA Technical Reports Server (NTRS)
Mittra, Raj; Chan, Chi H.; Cwik, Tom
1988-01-01
A number of representative techniques for analyzing frequency-selective surfaces (FSSs), which comprise periodic arrays of patches or apertures in a conducting screen and find important applications as filters in microwaves and optics, are discussed. The basic properties of the FSSs are reviewed and several different approaches to predicting their frequency-response characteristics are described. Some recent developments in the treatment of truncated, curved, and doubly periodic screens are mentioned and representative experimental results are included.
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
40 CFR 86.1416 - Calibration; frequency and overview.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Emission Regulations for New Gasoline-Fueled Otto-Cycle Light-Duty Vehicles and New Gasoline-Fueled Otto-Cycle Light-Duty Trucks; Certification Short Test Procedures § 86.1416 Calibration; frequency and... calibration of the analyzer must be checked. The analyzer must be adjusted or repaired as necessary. (c) Water...
Development of a system for measurement and analysis of tremor using a three-axis accelerometer.
Mamorita, N; Iizuka, T; Takeuchi, A; Shirataka, M; Ikeda, N
2009-01-01
The aim of the study was to develop a low-cost and compact system for analysis of tremor using a three-axis accelerometer (the Wii Remote (Nintendo)). To analyze tremor, we hypothesized that the influence of gravitational acceleration should be separated from that of movement. This hypothesis was tested experimentally and we also attempted to record and analyze tremor using our system in a clinical ward. A system for tremor measurement and analysis was developed using the three-axis accelerometer built into the Wii Remote. The frequency and amplitude of mechanical oscillation were calculated using methods for frequency analysis of the axis of largest variance and an estimation of tremor amplitude. The system consists of a program for measurement and analysis of Wii Remote acceleration (Tremor Analyzer), a Wii Remote, a Bluetooth USB adapter and a Web camera. The Tremor Analyzer has a GUI (graphical user interface) that is divided into five seg- ments. The sampling period of the analyzer is 30 msec. To confirm the hypothesis, mechanical oscillations were fed to the Wii Remote. The peak frequency of the power spectrum and the frequency of the oscillation generator were in good agreement, except at 1 Hz (0.01 G) and 2 Hz (0.02 G). With a change in the sum of squares of the three axes from 1.0 to 1.8 (G), the estimated and generated amplitude (0.3 cm) were in close agreement. This system using a Wii Remote is capable of analyzing frequency and estimated amplitude of tremor between 3 Hz and 15 Hz.
A wideband, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, M. P.; Wilck, H. C.; Garyantes, M. F.; Grimm, M. J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Quirk, Maureen P.; Garyantes, Michael F.; Wilck, Helmut C.; Grimm, Michael J.
1988-01-01
A two-million-channel, 40 MHz bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory is described. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2 (sup 21) point Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis.
A wide-band high-resolution spectrum analyzer.
Quirk, M P; Garyantes, M F; Wilck, H C; Grimm, M J
1988-12-01
This paper describes a two-million-channel 40-MHz-bandwidth, digital spectrum analyzer under development at the Jet Propulsion Laboratory. The analyzer system will serve as a prototype processor for the sky survey portion of NASA's Search for Extraterrestrial Intelligence program and for other applications in the Deep Space Network. The analyzer digitizes an analog input, performs a 2(21)-point, Discrete Fourier Transform, accumulates the output power, normalizes the output to remove frequency-dependent gain, and automates simple signal detection algorithms. Due to its built-in frequency-domain processing functions and configuration flexibility, the analyzer is a very powerful tool for real-time signal analysis and detection.
AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile
NASA Astrophysics Data System (ADS)
El-Nahass, M. M.; Ali, H. A. M.
2012-06-01
AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.
Method for network analyzation and apparatus
Bracht, Roger B.; Pasquale, Regina V.
2001-01-01
A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.
Analysis of Nonlinear Dynamics in Linear Compressors Driven by Linear Motors
NASA Astrophysics Data System (ADS)
Chen, Liangyuan
2018-03-01
The analysis of dynamic characteristics of the mechatronics system is of great significance for the linear motor design and control. Steady-state nonlinear response characteristics of a linear compressor are investigated theoretically based on the linearized and nonlinear models. First, the influence factors considering the nonlinear gas force load were analyzed. Then, a simple linearized model was set up to analyze the influence on the stroke and resonance frequency. Finally, the nonlinear model was set up to analyze the effects of piston mass, spring stiffness, driving force as an example of design parameter variation. The simulating results show that the stroke can be obtained by adjusting the excitation amplitude, frequency and other adjustments, the equilibrium position can be adjusted by adjusting the DC input, and to make the more efficient operation, the operating frequency must always equal to the resonance frequency.
Educational Technology Research Journals: "The Internet and Higher Education", 2001-2010
ERIC Educational Resources Information Center
Drysdale, Jeffery S.; Matthews, Michael; Terekhova-Nan, Vera; Woodfield, Wendy; West, Richard E.
2013-01-01
This article analyzes articles published in "The Internet and Higher Education" from 2001-2010. The researchers analyzed the frequency of author-provided keywords and common abstract words, type and frequency of authorship, the type of research method employed, and the number of citations the journal and specific articles received. Words…
Educational Technology Research Journals: "Journal of Distance Education," 2003-2012
ERIC Educational Resources Information Center
Young, Eric H.; Griffiths, Ty; Luke, Brandon; West, Richard E.
2014-01-01
In this study the authors analyzed articles published in the "Journal of Distance Education" from 2003-2012. They analyzed the frequency of author-provided keywords and common abstract phrases, type and frequency of authorship, the type of research method employed, and the number of citations the journal and specific articles received.…
Terahertz Josephson spectral analysis and its applications
NASA Astrophysics Data System (ADS)
Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.
2017-04-01
Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.
Airport Choice in Sao Paulo Metropolitan Area: An Application of the Conditional Logit Model
NASA Technical Reports Server (NTRS)
Moreno, Marcelo Baena; Muller, Carlos
2003-01-01
Using the conditional LOGIT model, this paper addresses the airport choice in the Sao Paulo Metropolitan Area. In this region, Guarulhos International Airport (GRU) and Congonhas Airport (CGH) compete for passengers flying to several domestic destinations. The airport choice is believed to be a result of the tradeoff passengers perform considering airport access characteristics, airline level of service characteristics and passenger experience with the analyzed airports. It was found that access time to the airports better explain the airport choice than access distance, whereas direct flight frequencies gives better explanation to the airport choice than the indirect (connections and stops) and total (direct plus indirect) flight frequencies. Out of 15 tested variables, passenger experience with the analyzed airports was the variable that best explained the airport choice in the region. Model specifications considering 1, 2 or 3 variables were tested. The model specification most adjusted to the observed data considered access time, direct flight frequencies in the travel period (morning or afternoon peak) and passenger experience with the analyzed airports. The influence of these variables was therefore analyzed across market segments according to departure airport and flight duration criteria. The choice of GRU (located neighboring Sao Paulo city) is not well explained by the rationality of access time economy and the increase of the supply of direct flight frequencies, while the choice of CGH (located inside Sao Paulo city) is. Access time was found to be more important to passengers flying shorter distances while direct flight frequencies in the travel period were more significant to those flying longer distances. Keywords: Airport choice, Multiple airport region, Conditional LOGIT model, Access time, Flight frequencies, Passenger experience with the analyzed airports, Transportation planning
Low-frequency electromagnetic plasma waves at comet P/Grigg-Skjellerup: Analysis and interpretation
NASA Technical Reports Server (NTRS)
Neubauer, Fritz M.; Glassmeier, Karl-Heinz; Coates, A. J.; Johnstone, A. D.
1993-01-01
The propagation and polarization characteristic of low-frequency electromagnetic wave fields near comet P/Grigg-Skjellerup (P/GS) are analyzed using magnetic field and plasma observations obtained by the Giotto magnetometer experiment and the Johnstone plasma analyzer during the encounter at the comet on July 10, 1992. The results have been physically interpreted.
Real time speech formant analyzer and display
Holland, George E.; Struve, Walter S.; Homer, John F.
1987-01-01
A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.
Real time speech formant analyzer and display
Holland, G.E.; Struve, W.S.; Homer, J.F.
1987-02-03
A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.
Primary Multi-frequency Data Analyze in Electrical Impedance Scanning.
Liu, Ruigang; Dong, Xiuzhen; Fu, Feng; Shi, Xuetao; You, Fusheng; Ji, Zhenyu
2005-01-01
This paper deduced the Cole-Cole arc equation in form of admittance by the traditional Cole-Cole equation in form of impedance. Comparing to the latter, the former is more adaptive to the electrical impedance scanning which using lower frequency region. When using our own electrical impedance scanning device at 50-5000Hz, the measurement data separated on the arc of the former, while collected near the direct current resistor on the arc of the latter. The four parameters of the former can be evaluated by the least square method. The frequency of the imaginary part of admittance reaching maximum can be calculated by the Cole-Cole parameters. In conclusion, the Cole-Cole arc in form of admittance is more effective to multi-frequency data analyze at lower frequency region, like EIS.
a Signal-Tuned Gabor Transform with Application to Eeg Analysis
NASA Astrophysics Data System (ADS)
Torreão, José R. A.; Victer, Silvia M. C.; Fernandes, João L.
2013-04-01
We introduce a time-frequency transform based on Gabor functions whose parameters are given by the Fourier transform of the analyzed signal. At any given frequency, the width and the phase of the Gabor function are obtained, respectively, from the magnitude and the phase of the signal's corresponding Fourier component, yielding an analyzing kernel which is a representation of the signal's content at that particular frequency. The resulting Gabor transform tunes itself to the input signal, allowing the accurate detection of time and frequency events, even in situations where the traditional Gabor and S-transform approaches tend to fail. This is the case, for instance, when considering the time-frequency representation of electroencephalogram traces (EEG) of epileptic subjects, as illustrated by the experimental study presented here.
NASA Astrophysics Data System (ADS)
Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan
In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.
Forced vibration of a carbon nanotube with emission currents in an electromagnetic field
NASA Astrophysics Data System (ADS)
Bulyarskiy, S. V.; Dudin, A. A.; Orlov, A. P.; Pavlov, A. A.; Leont'ev, V. L.
2017-11-01
The occurrence of vibrations in a single carbon nanotubes placed in an electromagnetic field through which constant field-emission current passes has been analyzed. It has been shown experimentally that the emission current, along with the constant component, has a variable one that resonates at a certain frequency. Calculations show a relationship between the resonance frequency and the parameters of the whole system and nanotube itself. The conditions under which resonance may occur in the terahertz range of vibration frequencies have been analyzed.
MULTICHANNEL PULSE-HEIGHT ANALYZER
Russell, J.T.; Lefevre, H.W.
1958-01-21
This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.
Graph Frequency Analysis of Brain Signals
Huang, Weiyu; Goldsberry, Leah; Wymbs, Nicholas F.; Grafton, Scott T.; Bassett, Danielle S.; Ribeiro, Alejandro
2016-01-01
This paper presents methods to analyze functional brain networks and signals from graph spectral perspectives. The notion of frequency and filters traditionally defined for signals supported on regular domains such as discrete time and image grids has been recently generalized to irregular graph domains, and defines brain graph frequencies associated with different levels of spatial smoothness across the brain regions. Brain network frequency also enables the decomposition of brain signals into pieces corresponding to smooth or rapid variations. We relate graph frequency with principal component analysis when the networks of interest denote functional connectivity. The methods are utilized to analyze brain networks and signals as subjects master a simple motor skill. We observe that brain signals corresponding to different graph frequencies exhibit different levels of adaptability throughout learning. Further, we notice a strong association between graph spectral properties of brain networks and the level of exposure to tasks performed, and recognize the most contributing and important frequency signatures at different levels of task familiarity. PMID:28439325
NASA Astrophysics Data System (ADS)
Kishore, G. V. K.; Kumar, Anish; Rajkumar, K. V.; Purnachandra Rao, B.; Pramanik, Debabrata; Kapoor, Komal; Jha, Sanjay Kumar
2017-12-01
The paper presents a new methodology for detection and evaluation of mild steel (MS) can material embedded into oxide dispersion strengthened (ODS) steel tubes by magnetic Barkhausen emission (MBE) technique. The high frequency MBE measurements (125 Hz sweep frequency and 70-200 kHz analyzing frequency) are found to be very sensitive for detection of presence of MS on the surface of the ODS steel tube. However, due to a shallow depth of information from the high frequency MBE measurements, it cannot be used for evaluation of the thickness of the embedded MS. The low frequency MBE measurements (0.5 Hz sweep frequency and 2-20 kHz analyzing frequency) indicate presence of two MBE RMS voltage peaks corresponding to the MS and the ODS steel. The ratio of the two peaks changes with the thickness of the MS and hence, can be used for measurement of the thickness of the MS layer.
Reverse-time migration for subsurface imaging using single- and multi- frequency components
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, Y.; Kim, S.; Chung, W.; Shin, S.; Lee, D.
2017-12-01
Reverse-time migration is a seismic data processing method for obtaining accurate subsurface structure images from seismic data. This method has been applied to obtain more precise complex geological structure information, including steep dips, by considering wave propagation characteristics based on two-way traveltime. Recently, various studies have reported the characteristics of acquired datasets from different types of media. In particular, because real subsurface media is comprised of various types of structures, seismic data represent various responses. Among them, frequency characteristics can be used as an important indicator for analyzing wave propagation in subsurface structures. All frequency components are utilized in conventional reverse-time migration, but analyzing each component is required because they contain inherent seismic response characteristics. In this study, we propose a reverse-time migration method that utilizes single- and multi- frequency components for analyzing subsurface imaging. We performed a spectral decomposition to utilize the characteristics of non-stationary seismic data. We propose two types of imaging conditions, in which decomposed signals are applied in complex and envelope traces. The SEG/EAGE Overthrust model was used to demonstrate the proposed method, and the 1st derivative Gaussian function with a 10 Hz cutoff was used as the source signature. The results were more accurate and stable when relatively lower frequency components in the effective frequency range were used. By combining the gradient obtained from various frequency components, we confirmed that the results are clearer than the conventional method using all frequency components. Also, further study is required to effectively combine the multi-frequency components.
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
Data mining of tree-based models to analyze freeway accident frequency.
Chang, Li-Yen; Chen, Wen-Chieh
2005-01-01
Statistical models, such as Poisson or negative binomial regression models, have been employed to analyze vehicle accident frequency for many years. However, these models have their own model assumptions and pre-defined underlying relationship between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimation of accident likelihood. Classification and Regression Tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study collected the 2001-2002 accident data of National Freeway 1 in Taiwan. A CART model and a negative binomial regression model were developed to establish the empirical relationship between traffic accidents and highway geometric variables, traffic characteristics, and environmental factors. The CART findings indicated that the average daily traffic volume and precipitation variables were the key determinants for freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies. By comparing the prediction performance between the CART and the negative binomial regression models, this study demonstrates that CART is a good alternative method for analyzing freeway accident frequencies.
Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E
2016-07-15
Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.
Radar Image Processing for the AFIT Anechoic Chamber
1990-12-01
analyzer is set up for data collection using the frequency list mode option. The frequency list mode, a variation of the step sweep mode, synthesizes each of...enhanced since the frequencies are precisely repeated. The frequency list option allows the operator to select any number of data samples from 1 to 401. This
High-frequency field-deployable isotope analyzer for hydrological applications
Elena S.F. Berman; Manish Gupta; Chris Gabrielli; Tina Garland; Jeffrey J. McDonnell
2009-01-01
A high-frequency, field-deployable liquid water isotope analyzer was developed. The instrument was deployed for 4 contiguous weeks in the H. J. Andrews Experimental Forest Long-term Ecological Research site in western Oregon, where it was used for real-time measurement of the isotope ratios of precipitation and stream water during three large storm events. We were able...
NASA Astrophysics Data System (ADS)
Chen, J.; Gao, G. B.; Ünlü, M. S.; Morkoç, H.
1991-11-01
High-frequency ic- vce output characteristics of bipolar transistors, derived from calculated device cutoff frequencies, are reported. The generation of high-frequency output characteristics from device design specifications represents a novel bridge between microwave circuit design and device design: the microwave performance of simulated device structures can be analyzed, or tailored transistor device structures can be designed to fit specific circuit applications. The details of our compact transistor model are presented, highlighting the high-current base-widening (Kirk) effect. The derivation of the output characteristics from the modeled cutoff frequencies are then presented, and the computed characteristics of an AlGaAs/GaAs heterojunction bipolar transistor operating at 10 GHz are analyzed. Applying the derived output characteristics to microwave circuit design, we examine large-signal class A and class B amplification.
RF environment survey of Space Shuttle related EEE frequency bands
NASA Technical Reports Server (NTRS)
Simpson, J.; Prigel, B.; Postelle, J.
1977-01-01
Radio frequency assignments within the continental United States in frequency bands between 121 MHz abd 65 GHz were surveyed and analyzed in order to determine current utilization of anticipated frequency bands for the shuttle borne electromagnetic environment experiment. Data from both government and nongovernment files were used. Results are presented in both narrative form and in histograms which show the total number of unclassified assignments versus frequency and total assigned power versus frequency.
Mid-frequency MTF compensation of optical sparse aperture system.
Zhou, Chenghao; Wang, Zhile
2018-03-19
Optical sparse aperture (OSA) can greatly improve the spatial resolution of optical system. However, because of its aperture dispersion and sparse, its mid-frequency modulation transfer function (MTF) are significantly lower than that of a single aperture system. The main focus of this paper is on the mid-frequency MTF compensation of the optical sparse aperture system. Firstly, the principle of the mid-frequency MTF decreasing and missing of optical sparse aperture are analyzed. This paper takes the filling factor as a clue. The method of processing the mid-frequency MTF decreasing with large filling factor and method of compensation mid-frequency MTF with small filling factor are given respectively. For the MTF mid-frequency decreasing, the image spatial-variant restoration method is proposed to restore the mid-frequency information in the image; for the mid-frequency MTF missing, two images obtained by two system respectively are fused to compensate the mid-frequency information in optical sparse aperture image. The feasibility of the two method are analyzed in this paper. The numerical simulation of the system and algorithm of the two cases are presented using Zemax and Matlab. The results demonstrate that by these two methods the mid-frequency MTF of OSA system can be compensated effectively.
Choi, Young M; Garcha, Jaspreet K; Wu, Jashin J
2015-04-16
We analyzed trends in the frequency of original publications into common dermatologic topics in two premier European journals, the British Journal of Dermatology and the Journal of the European Academy of Dermatology and Venereology. Most notably, we found that psoriasis publications peaked around the mid-to-late 1980's as well as demonstrated an upward trend since the 21st century. Skin cancer research witnessed a gradual increase in the frequency of publications since 1970. These findings were consistent with a prior study analyzing trends in two American dermatology journals. We attempted to analyze these results from a historical perspective as well as provide an outlook on the future of research into these common dermatologic topics.
Improving traditional balancing methods for high-speed rotors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ling, J.; Cao, Y.
1996-01-01
This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in thismore » paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.« less
Performance Bounds on Micro-Doppler Estimation and Adaptive Waveform Design Using OFDM Signals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata; Barhen, Jacob; Glover, Charles Wayne
We analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a target having multiple rotating scatterers (e.g., rotor blades of a helicopter, propellers of a submarine). The presence of rotating scatterers introduces Doppler frequency modulation in the received signal by generating sidebands about the transmitted frequencies. This is called the micro-Doppler effects. The use of a frequency-diverse OFDM signal in this context enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. Therefore, to characterize the accuracy of micro-Doppler frequency estimation, we compute themore » Cram er-Rao Bound (CRB) on the angular-velocity estimate of the target while considering the scatterer responses as deterministic but unknown nuisance parameters. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to the transmitting OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations at different values of the signal-to-noise ratio (SNR) and the number of OFDM subcarriers. The CRB values not only decrease with the increase in the SNR values, but also reduce as we increase the number of subcarriers implying the significance of frequency-diverse OFDM waveforms. The improvement in estimation accuracy due to the adaptive waveform design is also numerically analyzed. Interestingly, we find that the relative decrease in the CRBs on the angular-velocity estimate is more pronounced for larger number of OFDM subcarriers.« less
NASA Astrophysics Data System (ADS)
Li, Xuechen; Liu, Rui; Jia, Pengying; Wu, Kaiyue; Ren, Chenhua; Yin, Zengqian
2018-01-01
A one-dimensional fluid model in atmospheric pressure argon is employed to investigate the influence of the driving frequency on dielectric barrier discharge modes excited by a triangle voltage. Results indicate that a stepped discharge mode is obtained with a low driving frequency of 35 kHz. The current amplitude increases, while its plateau duration decreases with increasing the frequency. The stepped discharge transits into a multi-pulsed mode when the frequency is increased to 80 kHz. With its further increment, the pulse number decreases, and a double-pulsed discharge is realized at 90 kHz, which finally transits to a single-pulsed discharge. Through analyzing spatial distributions of electron density, ion density, and electric field, it can be concluded that the discharge regime transits from a Townsend-like discharge to a glow discharge with increasing the frequency. The regime transition is further verified by analyzing voltage-current curves. These simulated results are consistent with the experimental phenomena.
Active control of turbomachine discrete tones
NASA Technical Reports Server (NTRS)
Fleeter, Sanford
1994-01-01
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
Active control of turbomachine discrete tones
NASA Astrophysics Data System (ADS)
Fleeter, Sanford
This paper was directed at active control of discrete frequency noise generated by subsonic blade rows through cancellation of the blade row interaction generated propagating acoustic waves. First discrete frequency noise generated by a rotor and stator in a duct was analyzed to determine the propagating acoustic pressure waves. Then a mathematical model was developed to analyze and predict the active control of discrete frequency noise generated by subsonic blade rows through cancellation of the propagating acoustic waves, accomplished by utilizing oscillating airfoil surfaces to generate additional control propagating pressure waves. These control waves interact with the propagating acoustic waves, thereby, in principle, canceling the acoustic waves and thus, the far field discrete frequency tones. This model was then applied to a fan exit guide vane to investigate active airfoil surface techniques for control of the propagating acoustic waves, and thus the far field discrete frequency tones, generated by blade row interactions.
O-chromosome lethal frequencies in Serbian and Montenegrin Drosophila subobscura populations.
Zivanovic, G; Arenas, C; Mestres, F
2011-10-01
Lethal chromosomal frequencies were obtained from three Drosophila subobscura samples from the Mt. Avala (Serbia) population in September 2003 (0.218), June 2004 (0.204) and September 2004 (0.250). These values and those from other Balkan populations studied previously (Petnica, Kamariste, Zanjic and Djerdap) were used to analyze the possible effect of population, year, month and altitude above sea level on lethal chromosomal frequencies. According to ANOVAS no effect were observed. Furthermore, the lethal frequencies of the Balkan populations did not vary according to latitude. This is probably due to the relative proximity and high gene flow between these populations. From a joint study of all the Palearctic D. subobscura populations so far analyzed, it can be deduced that the Balkan populations are located in the central area of the species distribution. Finally, it seems that lethal chromosomal frequencies are a consequence of the genetic structure of the populations.
Real-time, high frequency QRS electrocardiograph
NASA Technical Reports Server (NTRS)
Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)
2006-01-01
Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.
An Investigation into the Use of Word Frequency Lists in Computing Vocabulary Profiles.
ERIC Educational Resources Information Center
Coniam, David
1999-01-01
Investigates word frequency as an indicator of language proficiency in the written English of Grade 13 learners of English in Hong Kong. The study develops Laufer and Nation's (1995) work on Lexical Frequency Profile in which student writing was analyzed for the frequency of word families, with vocabulary profiles produced from the scripts on the…
ERIC Educational Resources Information Center
Marjanovic-Umek, Ljubica; Fekonja-Peklaj, Urška; Socan, Gregor
2017-01-01
The aim of this longitudinal study, carried out on a sample of Slovenian-speaking toddlers, was to analyze developmental changes and stability in early vocabulary development; to establish relations between toddler's vocabulary and grammar; and to analyze the effects of parental education and the frequency of shared reading on toddlers' vocabulary…
Analysis of Fresnel Zone Plates Focusing Dependence on Operating Frequency
Fuster, José Miguel; Candelas, Pilar; Castiñeira-Ibáñez, Sergio; Pérez-López, Sergio
2017-01-01
The focusing properties of Fresnel Zone Plates (FZPs) against frequency are analyzed in this work. It is shown that the FZP focal length depends almost linearly on the operating frequency. Focal depth and focal distortion are also considered, establishing a limit on the frequency span at which the operating frequency can be shifted. An underwater FZP ultrasound focusing system is demonstrated, and experimental results agree with the theoretical analysis and simulations. PMID:29206137
Multi-level RF identification system
Steele, Kerry D.; Anderson, Gordon A.; Gilbert, Ronald W.
2004-07-20
A radio frequency identification system having a radio frequency transceiver for generating a continuous wave RF interrogation signal that impinges upon an RF identification tag. An oscillation circuit in the RF identification tag modulates the interrogation signal with a subcarrier of a predetermined frequency and modulates the frequency-modulated signal back to the transmitting interrogator. The interrogator recovers and analyzes the subcarrier signal and determines its frequency. The interrogator generates an output indicative of the frequency of the subcarrier frequency, thereby identifying the responding RFID tag as one of a "class" of RFID tags configured to respond with a subcarrier signal of a predetermined frequency.
Statistical analysis of landing contact conditions for three lifting body research vehicles
NASA Technical Reports Server (NTRS)
Larson, R. R.
1972-01-01
The landing contact conditions for the HL-10, M2-F2/F3, and the X-24A lifting body vehicles are analyzed statistically for 81 landings. The landing contact parameters analyzed are true airspeed, peak normal acceleration at the center of gravity, roll angle, and roll velocity. Ground measurement parameters analyzed are lateral and longitudinal distance from intended touchdown, lateral distance from touchdown to full stop, and rollout distance. The results are presented in the form of histograms for frequency distributions and cumulative frequency distribution probability curves with a Pearson Type 3 curve fit for extrapolation purposes.
Measuring changes of radio-frequency dielectric properties of chicken meat during storage
USDA-ARS?s Scientific Manuscript database
Changes in dielectric properties of stored chicken meat were tracked by using a radio-frequency dielectric spectroscopy method. For this purpose, the dielectric properties were measured with an open-ended coaxial-line probe and vector network analyzer over a broad frequency range from 200 MHz to 20...
Hwang, Jung-Taek; Baik, Seung-Ho; Choi, Jin-Soo; Lee, Kweon-Haeng; Rhee, Seung-Koo
2011-01-03
In an attempt to observe the genetic traits of avascular necrosis of the femoral head, we analyzed the genomic alterations in blood samples of 18 patients with avascular necrosis of the femoral head (9 idiopathic and 9 alcoholic cases) using the array comparative genomic hybridization method and real-time polymerase chain reaction. Several candidate genes were identified that may induce avascular necrosis of the femoral head, and we investigated their role in the pathomechanism of osteonecrosis of bone. The frequency of each candidate gene over all the categories of avascular necrosis of the femoral head was also calculated by real-time polymerase chain reaction. The highest frequency specific genes in each category were FLJ40296, CYP27C1, and CTDP1. FLJ40296 and CYP27C1 had the highest frequency (55.6%) in the idiopathic category. FLJ40296 had a high frequency (44.4%) in the alcoholic category, but CYP27C1 had a relatively low frequency (33.3%) in the alcoholic category. However, CTDP1 showed a significantly high frequency (55.6%) in the alcoholic category and a low frequency (22.2%) in the idiopathic category. Although we statistically analyzed the frequency of each gene with Fisher's exact test, we could not prove statistical significance due to the small number of samples. Further studies are needed with larger sample numbers. If the causal genes of avascular necrosis of the femoral head are found, they may be used for early detection, prognosis prediction, and genomic treatment of avascular necrosis of the femoral head in the future. Copyright 2011, SLACK Incorporated.
A frequency standard via spectrum analysis and direct digital synthesis
NASA Astrophysics Data System (ADS)
Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong
2014-11-01
We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.
Multi-scale Slip Inversion Based on Simultaneous Spatial and Temporal Domain Wavelet Transform
NASA Astrophysics Data System (ADS)
Liu, W.; Yao, H.; Yang, H. Y.
2017-12-01
Finite fault inversion is a widely used method to study earthquake rupture processes. Some previous studies have proposed different methods to implement finite fault inversion, including time-domain, frequency-domain, and wavelet-domain methods. Many previous studies have found that different frequency bands show different characteristics of the seismic rupture (e.g., Wang and Mori, 2011; Yao et al., 2011, 2013; Uchide et al., 2013; Yin et al., 2017). Generally, lower frequency waveforms correspond to larger-scale rupture characteristics while higher frequency data are representative of smaller-scale ones. Therefore, multi-scale analysis can help us understand the earthquake rupture process thoroughly from larger scale to smaller scale. By the use of wavelet transform, the wavelet-domain methods can analyze both the time and frequency information of signals in different scales. Traditional wavelet-domain methods (e.g., Ji et al., 2002) implement finite fault inversion with both lower and higher frequency signals together to recover larger-scale and smaller-scale characteristics of the rupture process simultaneously. Here we propose an alternative strategy with a two-step procedure, i.e., firstly constraining the larger-scale characteristics with lower frequency signals, and then resolving the smaller-scale ones with higher frequency signals. We have designed some synthetic tests to testify our strategy and compare it with the traditional one. We also have applied our strategy to study the 2015 Gorkha Nepal earthquake using tele-seismic waveforms. Both the traditional method and our two-step strategy only analyze the data in different temporal scales (i.e., different frequency bands), while the spatial distribution of model parameters also shows multi-scale characteristics. A more sophisticated strategy is to transfer the slip model into different spatial scales, and then analyze the smooth slip distribution (larger scales) with lower frequency data firstly and more detailed slip distribution (smaller scales) with higher frequency data subsequently. We are now implementing the slip inversion using both spatial and temporal domain wavelets. This multi-scale analysis can help us better understand frequency-dependent rupture characteristics of large earthquakes.
Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment.
Liao, Zhijie; Popel, Aleksander S; Brownell, William E; Spector, Alexander A
2005-04-01
Cochlear outer hair cells (OHC) are critically important for the amplification and sharp frequency selectivity of the mammalian ear. The microchamber experiment has been an effective tool to analyze the OHC high-frequency performance. In this study, the OHC electrical stimulation in the microchamber is simulated. The model takes into account the inertial and viscous properties of fluids inside and outside the cell as well as the viscoelastic and piezoelectric properties of the cell composite membrane (wall). The closed ends of the cylindrical cell were considered as oscillatory rigid plates. The final solution was obtained in terms of Fourier series, and it was checked against the available results of the microchamber experiment. The conditions of the interaction between the cell and pipette was analyzed, and it was found that the amount of slip along the contact surface has a significant effect on the cell electromotile response. The cell's length changes were computed as a function of frequency, and their dependence on the viscosities of both fluids and the cell wall was analyzed. The distribution of the viscous losses inside the fluids was also estimated. The proposed approach can help in a better understanding of the high-frequency OHC electromotility under experimental and physiological conditions.
Lee, Myung W.
2007-01-01
The amplitude of a bottom simulating reflection (BSR), which occurs near the phase boundary between gas hydrate-bearing sediments and underlying gas-filled sediments, strongly depends on the frequency content of a seismic signal, as well as the impedance contrast across the phase boundary. A strong-amplitude BSR, detectable in a conventional seismic profile, is a good indicator of the presence of free gas beneath the phase boundary. However, the BSR as observed in low-frequency multichannel seismic data is generally difficult to identify in high-frequency, single-channel seismic data. To investigate the frequency dependence of BSR amplitudes, single-channel seismic data acquired with an air gun source at Blake Ridge, which is located off the shore of South Carolina, were analyzed in the frequency range of 10-240 Hz. The frequency-dependent impedance contrast caused by the velocity dispersion in partially gas saturated sediments is important to accurately analyze BSR amplitude. Analysis indicates that seismic attenuation of gas hydrate-bearing sediments, velocity dispersion, and a transitional base all contribute to the frequency-dependent BSR amplitude variation in the frequency range of 10-500 Hz. When velocity dispersion is incorporated into the BSR amplitude analysis, the frequency-dependent BSR amplitude at Blake Ridge can be explained with gas hydrate-bearing sediments having a quality factor of about 250 and a transitional base with a thickness of about 1 meter.
Automated calculation of surface energy fluxes with high-frequency lake buoy data
Woolway, R. Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.
2015-01-01
Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.
Effect of laser frequency noise on fiber-optic frequency reference distribution
NASA Technical Reports Server (NTRS)
Logan, R. T., Jr.; Lutes, G. F.; Maleki, L.
1989-01-01
The effect of the linewidth of a single longitude-mode laser on the frequency stability of a frequency reference transmitted over a single-mode optical fiber is analyzed. The interaction of the random laser frequency deviations with the dispersion of the optical fiber is considered to determine theoretically the effect on the Allan deviation (square root of the Allan variance) of the transmitted frequency reference. It is shown that the magnitude of this effect may determine the limit of the ultimate stability possible for frequency reference transmission on optical fiber, but is not a serious limitation to present system performance.
The Effect of Flow Frequency on Internet Addiction to Different Internet Usage Activities
ERIC Educational Resources Information Center
Yang, Hui-Ling; Wu, Wei-Pang
2017-01-01
This study investigated the online flow frequency among college students in regard to different internet activities, and analyzed the effect of flow frequency on internet addiction. This study surveyed 525 undergraduate internet users in Taiwan by using convenience sampling to question participants. In this paper, analysis of variance (ANOVA) was…
A Frequency-List of Sentence Structures: Distribution of Kernel Sentences
ERIC Educational Resources Information Center
Geens, Dirk
1974-01-01
A corpus of 10,000 sentences extracted from British theatrical texts was used to construct a frequency list of kernel sentence structures. Thirty-one charts illustrate the analyzed results. The procedures used and an interpretation of the frequencies are given. Such lists might aid foreign language teachers in course organization. Available from…
USDA-ARS?s Scientific Manuscript database
To develop pasteurization treatments based on radio frequency (RF) or microwave energy, dielectric properties of almond shells were determined using an open-ended coaxial-probe with an impedance analyzer over a frequency range of 10 to 1800 MHz. Both the dielectric constant and loss factor of almond...
Study on time-frequency analysis method of very fast transient overvoltage
NASA Astrophysics Data System (ADS)
Li, Shuai; Liu, Shiming; Huang, Qiyan; Fu, Chuanshun
2018-04-01
The operation of the disconnector in the gas insulated substation (GIS) may produce very fast transient overvoltage (VFTO), which has the characteristics of short rise time, short duration, high amplitude and rich frequency components. VFTO can cause damage to GIS and secondary equipment, and the frequency components contained in the VFTO can cause resonance overvoltage inside the transformer, so it is necessary to study the spectral characteristics of the VFTO. From the perspective of signal processing, VFTO is a kind of non-stationary signal, the traditional Fourier transform is difficult to describe its frequency which changes with time, so it is necessary to use time-frequency analysis to analyze VFTO spectral characteristics. In this paper, we analyze the performance of short time Fourier transform (STFT), Wigner-Ville distribution (WVD), pseudo Wigner-Ville distribution (PWVD) and smooth pseudo Wigner-Ville distribution (SPWVD). The results show that SPWVD transform is the best. The time-frequency aggregation of SPWVD is higher than STFT, and it does not have cross-interference terms, which can meet the requirements of VFTO spectrum analysis.
Analysis of error type and frequency in apraxia of speech among Portuguese speakers.
Cera, Maysa Luchesi; Minett, Thaís Soares Cianciarullo; Ortiz, Karin Zazo
2010-01-01
Most studies characterizing errors in the speech of patients with apraxia involve English language. To analyze the types and frequency of errors produced by patients with apraxia of speech whose mother tongue was Brazilian Portuguese. 20 adults with apraxia of speech caused by stroke were assessed. The types of error committed by patients were analyzed both quantitatively and qualitatively, and frequencies compared. We observed the presence of substitution, omission, trial-and-error, repetition, self-correction, anticipation, addition, reiteration and metathesis, in descending order of frequency, respectively. Omission type errors were one of the most commonly occurring whereas addition errors were infrequent. These findings differed to those reported in English speaking patients, probably owing to differences in the methodologies used for classifying error types; the inclusion of speakers with apraxia secondary to aphasia; and the difference in the structure of Portuguese language to English in terms of syllable onset complexity and effect on motor control. The frequency of omission and addition errors observed differed to the frequency reported for speakers of English.
ProteinAC: a frequency domain technique for analyzing protein dynamics
NASA Astrophysics Data System (ADS)
Bozkurt Varolgunes, Yasemin; Demir, Alper
2018-03-01
It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.
Novel Dual-Band Miniaturized Frequency Selective Surface based on Fractal Structures
NASA Astrophysics Data System (ADS)
Zhong, Tao; Zhang, Hou; Wu, Rui; Min, Xueliang
2017-01-01
A novel single-layer dual-band miniaturized frequency selective surface (FSS) based on fractal structures is proposed and analyzed in this paper. A prototype with enough dimensions is fabricated and measured in anechoic chamber, and the measured results provide good agreement with the simulated. The simulations and measurements indicate that the dual-band FSS with bandstop selectivity center at 3.95 GHz and 7.10 GHz, and the whole dimension of the proposed FSS cell is only 7×7 mm2, amount to 0.092λ0×0.092λ0, that λ0 is free space wavelength at first resonant frequency. In addition, the center frequencies have scarcely any changes for different polarizations and incidences. What's more, dual-band mechanism is analyzed clearly and it provides a new way to design novel miniaturized FSS structures.
Analysis of frequency mixing error on heterodyne interferometric ellipsometry
NASA Astrophysics Data System (ADS)
Deng, Yuan-long; Li, Xue-jin; Wu, Yu-bin; Hu, Ju-guang; Yao, Jian-quan
2007-11-01
A heterodyne interferometric ellipsometer, with no moving parts and a transverse Zeeman laser, is demonstrated. The modified Mach-Zehnder interferometer characterized as a separate frequency and common-path configuration is designed and theoretically analyzed. The experimental data show a fluctuation mainly resulting from the frequency mixing error which is caused by the imperfection of polarizing beam splitters (PBS), the elliptical polarization and non-orthogonality of light beams. The producing mechanism of the frequency mixing error and its influence on measurement are analyzed with the Jones matrix method; the calculation indicates that it results in an error up to several nanometres in the thickness measurement of thin films. The non-orthogonality has no contribution to the phase difference error when it is relatively small; the elliptical polarization and the imperfection of PBS have a major effect on the error.
Beat frequency interference pattern characteristics study
NASA Technical Reports Server (NTRS)
Ott, J. H.; Rice, J. S.
1981-01-01
The frequency spectra and corresponding beat frequencies created by the relative motions between multiple Solar Power Satellites due to solar wind, lunar gravity, etc. were analyzed. The results were derived mathematically and verified through computer simulation. Frequency spectra plots were computer generated. Detailed computations were made for the seven following locations in the continental US: Houston, Tx.; Seattle, Wa.; Miami, Fl.; Chicago, Il.; New York, NY; Los Angeles, Ca.; and Barberton, Oh.
Time-Frequency Distribution Analyses of Ku-Band Radar Doppler Echo Signals
NASA Astrophysics Data System (ADS)
Bujaković, Dimitrije; Andrić, Milenko; Bondžulić, Boban; Mitrović, Srđan; Simić, Slobodan
2015-03-01
Real radar echo signals of a pedestrian, vehicle and group of helicopters are analyzed in order to maximize signal energy around central Doppler frequency in time-frequency plane. An optimization, preserving this concentration, is suggested based on three well-known concentration measures. Various window functions and time-frequency distributions were optimization inputs. Conducted experiments on an analytic and three real signals have shown that energy concentration significantly depends on used time-frequency distribution and window function, for all three used criteria.
Piezoelectric-tuned microwave cavity for absorption spectrometry
Leskovar, Branko; Buscher, Harold T.; Kolbe, William F.
1978-01-01
Gas samples are analyzed for pollutants in a microwave cavity that is provided with two highly polished walls. One wall of the cavity is mechanically driven with a piezoelectric transducer at a low frequency to tune the cavity over a band of microwave frequencies in synchronism with frequency modulated microwave energy applied to the cavity. Absorption of microwave energy over the tuned frequencies is detected, and energy absorption at a particular microwave frequency is an indication of a particular pollutant in the gas sample.
Analysis of long wavelength electromagnetic scattering by a magnetized cold plasma prolate spheroid
NASA Astrophysics Data System (ADS)
Ahmadizadeh, Yadollah; Jazi, Bahram; Abdoli-Arani, Abbas
2013-08-01
Using dielectric permittivity tensor of the magnetized prolate plasma, the scattering of long wavelength electromagnetic waves from the mentioned object is studied. The resonance frequency and differential scattering cross section for the backward scattered waves are presented. Consistency between the resonance frequency in this configuration and results obtained for spherical plasma are investigated. Finally, the effective factors on obtained results such as incident wave polarization, the frequency of the incident wave, the plasma frequency and the cyclotron frequency are analyzed.
Probing a Spray Using Frequency-Analyzed Light Scattering
NASA Technical Reports Server (NTRS)
Eskridge, Richard; Lee, Michael H.; Rhys, Noah O.
2008-01-01
Frequency-analyzed laser-light scattering (FALLS) is a relatively simple technique that can be used to measure principal characteristics of a sheet of sprayed liquid as it breaks up into ligaments and then the ligaments break up into droplets. In particular, through frequency analysis of laser light scattered from a spray, it is possible to determine whether the laser-illuminated portion of the spray is in the intact-sheet region, the ligament region, or the droplet region. By logical extension, it is possible to determine the intact length from the location of the laser beam at the transition between the intact-sheet and ligament regions and to determine a breakup frequency from the results of the frequency analysis. Hence, FALLS could likely be useful both as a means of performing research on sprays in general and as a means of diagnostic sensing in diverse applications in which liquid fuels are sprayed. Sprays are also used for drying and to deposit paints and other coating materials.
Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu
2013-11-15
A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.
Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection
NASA Technical Reports Server (NTRS)
Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)
2009-01-01
Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.
Acoustic Environment of Haro Strait: Preliminary Propagation Modeling and Data Analysis
2006-08-01
the frequency range 1–10 kHz are combined to analyze the acoustic environment of Haro Strait of Puget Sound , an area frequented by the southern...51Haro Strait, Puget Sound , acoustic environment, shallow water, acoustic model, southern resident killer whales, shipping noise Field measurements and...acoustic propagation modeling for the frequency range 1–10 kHz are combined to analyze the acous- tic environment of Haro Strait of Puget Sound , home to
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
21 CFR 882.1420 - Electroencephalogram (EEG) signal spectrum analyzer.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electroencephalogram (EEG) signal spectrum....1420 Electroencephalogram (EEG) signal spectrum analyzer. (a) Identification. An electroencephalogram (EEG) signal spectrum analyzer is a device used to display the frequency content or power spectral...
Time-frequency analysis : mathematical analysis of the empirical mode decomposition.
DOT National Transportation Integrated Search
2009-01-01
Invented over 10 years ago, empirical mode : decomposition (EMD) provides a nonlinear : time-frequency analysis with the ability to successfully : analyze nonstationary signals. Mathematical : Analysis of the Empirical Mode Decomposition : is a...
High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple
NASA Astrophysics Data System (ADS)
Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei
2017-07-01
With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.
ERIC Educational Resources Information Center
Crossley, Scott A.; Subtirelu, Nicholas; Salsbury, Tom
2013-01-01
This study examines frequency, contextual diversity, and contextual distinctiveness effects in predicting produced versus not-produced frequent nouns and verbs by early second language (L2) learners of English. The study analyzes whether word frequency is the strongest predictor of early L2 word production independent of contextual diversity and…
ERIC Educational Resources Information Center
Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.
2012-01-01
The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…
Fang, Chenglong; Luo, Tingting; Lin, Ling
2017-12-01
We investigated whether serum CXC ligand 13 protein (CXCL13) levels correlate with the circulating plasmablasts and memory B-cells alteration in systemic lupus erythematosus (SLE) patients. The diagnostic use of CXCL13 concentrations in active lupus was also analyzed.A total of 36 SLE patients and 18 healthy controls were included. Serum CXCL13 levels were examined by enzyme-linked immunosorbent assay. The frequency and absolute count of circulating plasmablasts and memory B cells were analyzed by flow cytometry. Receiver operating characteristic curves (ROC curves) were generated to analyze the utility of serum CXCL13 level and plasmablasts frequency as tools for the recognition of active SLE.Elevation of serum CXCL13 levels, higher plasmablasts frequency, and reduction of memory B-cells count were observed in SLE patients, compared with healthy controls. Interestingly, correlational analyses showed not only significantly positive association between CXCL13 levels and SLE Disease Activity Index (SLEDAI) or plasmablasts frequency, but an inverse correlation between CXCL13 concentration and memory B-cell count. ROC curves showed that serum CXCL13 level and plasmablasts frequency were practical in identifying active disease from overall SLE patients, with considerable accuracy.Serum CXCL13 levels correlate with the alteration of plasmablasts and memory B cells in SLE. CXCL13 may be used as a practical tool in judgment of active SLE.
Multi-frequency communication system and method
Carrender, Curtis Lee; Gilbert, Ronald W.
2004-06-01
A multi-frequency RFID remote communication system is provided that includes a plurality of RFID tags configured to receive a first signal and to return a second signal, the second signal having a first frequency component and a second frequency component, the second frequency component including data unique to each remote RFID tag. The system further includes a reader configured to transmit an interrogation signal and to receive remote signals from the tags. A first signal processor, preferably a mixer, removes an intermediate frequency component from the received signal, and a second processor, preferably a second mixer, analyzes the IF frequency component to output data that is unique to each remote tag.
Knabe, Kevin; Williams, Paul A; Giorgetta, Fabrizio R; Armacost, Chris M; Crivello, Sam; Radunsky, Michael B; Newbury, Nathan R
2012-05-21
The instantaneous optical frequency of an external-cavity quantum cascade laser (QCL) is characterized by comparison to a near-infrared frequency comb. Fluctuations in the instantaneous optical frequency are analyzed to determine the frequency-noise power spectral density for the external-cavity QCL both during fixed-wavelength and swept-wavelength operation. The noise performance of a near-infrared external-cavity diode laser is measured for comparison. In addition to providing basic frequency metrology of external-cavity QCLs, this comb-calibrated swept QCL system can be applied to rapid, precise broadband spectroscopy in the mid-infrared spectral region.
Simple and flexible SAS and SPSS programs for analyzing lag-sequential categorical data.
O'Connor, B P
1999-11-01
This paper describes simple and flexible programs for analyzing lag-sequential categorical data, using SAS and SPSS. The programs read a stream of codes and produce a variety of lag-sequential statistics, including transitional frequencies, expected transitional frequencies, transitional probabilities, adjusted residuals, z values, Yule's Q values, likelihood ratio tests of stationarity across time and homogeneity across groups or segments, transformed kappas for unidirectional dependence, bidirectional dependence, parallel and nonparallel dominance, and significance levels based on both parametric and randomization tests.
The instantaneous frequency rate spectrogram
NASA Astrophysics Data System (ADS)
Czarnecki, Krzysztof
2016-01-01
An accelerogram of the instantaneous phase of signal components referred to as an instantaneous frequency rate spectrogram (IFRS) is presented as a joint time-frequency distribution. The distribution is directly obtained by processing the short-time Fourier transform (STFT) locally. A novel approach to amplitude demodulation based upon the reassignment method is introduced as a useful by-product. Additionally, an estimator of energy density versus the instantaneous frequency rate (IFR) is proposed and referred to as the IFR profile. The energy density is estimated based upon both the classical energy spectrogram and the IFRS smoothened by the median filter. Moreover, the impact of an analyzing window width, additive white Gaussian noise and observation time is tested. Finally, the introduced method is used for the analysis of the acoustic emission of an automotive engine. The recording of the engine of a Lamborghini Gallardo is analyzed as an example.
Source of seed fluctuations for electromagnetic ion cyclotron waves in Earth's magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Zhang, M.; Rassoul, H. K.
2015-06-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The presented theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz), i.e. into the frequency range of EMIC waves, is able to supply the needed level of seed fluctuations that guarantees growth of EMIC waves up to the observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze the magnetic field data from the Polar and Van Allen Probes spacecraft to test the suggested nonlinear mechanism. In this initial study we restrict our analysis to magnetic fluctuation spectra only. We do not analyze the third-order structure function, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low-frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere data, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability.
Remote tire pressure sensing technique
NASA Technical Reports Server (NTRS)
Robinson, Howard H. (Inventor); Mcginnis, Timothy A. (Inventor); Daugherty, Robert H. (Inventor)
1993-01-01
A remote tire pressure sensing technique is provided which uses vibration frequency to determine tire pressure. A vibration frequency measuring device is attached to the external surface of a tire which is then struck with an object, causing the tire to vibrate. The frequency measuring device measures the vibrations and converts the vibrations into corresponding electrical impulses. The electrical impulses are then fed into the frequency analyzing system which uses the electrical impulses to determine the relative peaks of the vibration frequencies as detected by the frequency measuring device. The measured vibration frequency peaks are then compared to predetermined data describing the location of vibration frequency peaks for a given pressure, thereby determining the air pressure of the tire.
Using frequency-domain methods to identify XV-15 aeroelastic modes
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1987-01-01
The XV-15 Tilt-Rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed) with cross spectral and transfer function methods. Modal frequencies and damping were determined by performing curve fits to transfer function magnitude and phase data and to cross spectral magnitude data. Results are given for the XV-15 with its original metal rotor blades. Frequency and damping values are also compared with earlier predictions.
Substructure coupling in the frequency domain
NASA Technical Reports Server (NTRS)
1985-01-01
Frequency domain analysis was found to be a suitable method for determining the transient response of systems subjected to a wide variety of loads. However, since a large number of calculations are performed within the discrete frequency loop, the method loses it computational efficiency if the loads must be represented by a large number of discrete frequencies. It was also discovered that substructure coupling in the frequency domain work particularly well for analyzing structural system with a small number of interface and loaded degrees of freedom. It was discovered that substructure coupling in the frequency domain can lead to an efficient method of obtaining natural frequencies of undamped structures. It was also found that the damped natural frequencies of a system may be determined using frequency domain techniques.
Optical and microwave control of resonance fluorescence and squeezing spectra in a polar molecule
NASA Astrophysics Data System (ADS)
Antón, M. A.; Maede-Razavi, S.; Carreño, F.; Thanopulos, I.; Paspalakis, E.
2017-12-01
A two-level quantum emitter with broken inversion symmetry simultaneously driven by an optical field and a microwave field that couples to the permanent dipole's moment is presented. We focus to a situation where the angular frequency of the microwave field is chosen such that it closely matches the Rabi frequency of the optical field, the so-called Rabi resonance condition. Using a series of unitary transformations we obtain an effective Hamiltonian in the double-dressed basis which results in easily solvable Bloch equations which allow us to derive analytical expressions for the spectrum of the scattered photons. We analyze the steady-state population inversion of the system which shows a distinctive behavior at the Rabi resonance with regard to an ordinary two-level nonpolar system. We show that saturation can be produced even in the case that the optical field is far detuned from the transition frequency, and we demonstrate that this behavior can be controlled through the intensity and the angular frequency of the microwave field. The spectral properties of the scattered photons are analyzed and manifest the emergence of a series of Mollow-like triplets which may be spectrally broadened or narrowed for proper values of the amplitude and/or frequency of the low-frequency field. We also analyze the phase-dependent spectrum which reveals that a significant enhancement or suppression of the squeezing at certain sidebands can be produced. These quantum phenomena are illustrated in a recently synthesized molecular complex with high nonlinear optical response although they can also occur in other quantum systems with broken inversion symmetry.
Satellite Power System (SPS) international agreements
NASA Technical Reports Server (NTRS)
Grove, S.
1978-01-01
The problems in obtaining international agreements on geostationary orbit availability, microwave frequency allocations and microwave frequency standards for satellites transmitting solar power are considered. The various U.S. policy options, strategies and time frames with respect to key issues are analyzed.
Research of frequency converters energy characteristics of drilling rigs
NASA Astrophysics Data System (ADS)
Vasiliev, B. Y.; Kalashnikov, O. V.; Oleynikova, A. M.; Ivanovsky, A. I.; Grudinin, N. N.
2017-10-01
The investigation deals with multi-motor electric drives with frequency converters of various structures: with a common converter, with an individual converter, with a multi-inverter frequency converter. Their shortcomings and advantages were analyzed and there were drawn conclusions about the expediency of using each structure. Expediency of using multi-inverter frequency converters with an active frond end was shown to ensure the highest power characteristics of multi-motor electric drives of drilling rigs’ main mechanisms.
Large-amplitude ULF waves at high latitudes
NASA Astrophysics Data System (ADS)
Guido, T.; Tulegenov, B.; Streltsov, A. V.
2014-11-01
We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quiet times. Our analysis demonstrates that the frequency of the waves carrying most of the power in almost all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system, and the amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.
ERIC Educational Resources Information Center
Song, Shi
2018-01-01
This research aims at analyzing the correlation between parents' awareness of anti-domestic violence in China, attitude and frequency of beating children. According to the literature analysis, this paper sets children's parents' anti-domestic violence cognition and attitude of beating children as independent variable, and the frequency of beating…
Sources of Instabilities in Two-Way Satellite Time Transfer
2005-08-01
Frequency Division 325 Broadway Boulder, CO USA Abstract -- Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) has become an important...stability of TWSTFT a more complete understanding of the sources of instabilities is required. This paper analyzes several sources of instabilities...Frequency Transfer ( TWSTFT ) regularly delivers subnanosecond time transfer stability at 1 day as measured by the time deviation (TDEV) statistic
Analysis of Meniscus Fluctuation in a Continuous Casting Slab Mold
NASA Astrophysics Data System (ADS)
Zhang, Kaitian; Liu, Jianhua; Cui, Heng; Xiao, Chao
2018-06-01
A water model of slab mold was established to analyze the microscopic and macroscopic fluctuation of meniscus. The fast Fourier transform and wavelet entropy were adopted to analyze the wave amplitude, frequency, and components of fluctuation. The flow patterns under the meniscus were measured by using particle image velocimetry measurement and then the mechanisms of meniscus fluctuation were discussed. The results reflected that wavelet entropy had multi-scale and statistical properties, and it was suitable for the study of meniscus fluctuation details both in time and frequency domain. The basic wave, frequency of which exceeding 1 Hz in the condition of no mold oscillation, was demonstrated in this work. In fact, three basic waves were found: long-wave with low frequency, middle-wave with middle frequency, and short-wave with high frequency. In addition, the upper roll flow in mold had significant effect on meniscus fluctuation. When the position of flow impinged was far from the meniscus, long-wave dominated the fluctuation and the stability of meniscus was enhanced. However, when the velocity of flow was increased, the short-wave dominated the meniscus fluctuation and the meniscus stability was decreased.
Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods
NASA Technical Reports Server (NTRS)
Mosher, Marianne; Pryor, Anna H.; Lewicki, David G.
2003-01-01
In this paper, the authors show a detailed analysis of the vibration signal from the destructive testing of a spiral bevel gear and pinion pair containing seeded faults. The vibration signal is analyzed in the time domain, frequency domain and with four time-frequency transforms: the Short Time Frequency Transform (STFT), the Wigner-Ville Distribution with the Choi-Williams kernel (WV-CW), the Continuous Wavelet' Transform (CWT) and the Discrete Wavelet Transform (DWT). Vibration data of bevel gear tooth fatigue cracks, under a variety of operating load levels and damage conditions, are analyzed using these methods. A new metric for automatic anomaly detection is developed and can be produced from any systematic numerical representation of the vibration signals. This new metric reveals indications of gear damage with all of the time-frequency transforms, as well as time and frequency representations, on this data set. Analysis with the CWT detects changes in the signal at low torque levels not found with the other transforms. The WV-CW and CWT use considerably more resources than the STFT and the DWT. More testing of the new metric is needed to determine its value for automatic anomaly detection and to develop fault detection methods for the metric.
Improving the signal analysis for in vivo photoacoustic flow cytometry
NASA Astrophysics Data System (ADS)
Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin
2015-03-01
At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.
Laser velocimeter application to oscillatory liquid flows
NASA Technical Reports Server (NTRS)
Gartrell, L. R.
1978-01-01
A laser velocimeter technique was used to measure the mean velocity and the frequency characteristics of an oscillatory flow component generated with a rotating flapper in liquid flow system at Reynolds numbers approximating 93,000. The velocity information was processed in the frequency domain using a tracker whose output was used to determine the flow spectrum. This was accomplished with the use of an autocorrelator/Fourier transform analyzer and a spectrum averaging analyzer where induced flow oscillations up to 40 Hz were detected. Tests were conducted at a mean flow velocity of approximately 2 m/s. The experimental results show that the laser velocimeter can provide quantitative information such as liquid flow velocity and frequency spectrum with a possible application to cryogenic fluid flows.
Study of opto-acoustic communication between air and underwater carrier
NASA Astrophysics Data System (ADS)
Zong, Si-Guang; Liu, Tao; Cao, Jing; He, Qi-Yi
2018-02-01
How to solve the communication problem to the underwater target has turned into one of the subjects that the militarists of all over the world commonly concern. Laser-induced acoustic signal is a new approach for underwater acoustic source, which has much virtue such as high intensity, short pulse and broad frequency. The paper studies the opto-acoustic communication method. The acoustic signal characteristic of laser-induced breakdown is studied and corresponding theory model is systemically analyzed. The opto-acoustic communication experimental measure investigation is formed with the high power laser, water tank and high frequency hydrophone. The characteristic of acoustic signal is analyzed, such as intensity and frequency. This makes a stride for pursing the feasibility of laser-acoustic underwater communication.
Acoustic Analysis of Chinese Fricatives and Affricates.
ERIC Educational Resources Information Center
Svantesson, Jan-Olof
1986-01-01
Develops a method of analyzing and describing the acoustic properties of fricatives, which consists of making frequency spectra using the Fast Fourier Transform and then analyzing the spectra in terms of critical bands. The six fricatives of Chinese are analyzed by this method, and comparison with other languages is made. (SED)
Adaptive OFDM Radar Waveform Design for Improved Micro-Doppler Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Satyabrata
Here we analyze the performance of a wideband orthogonal frequency division multiplexing (OFDM) signal in estimating the micro-Doppler frequency of a rotating target having multiple scattering centers. The use of a frequency-diverse OFDM signal enables us to independently analyze the micro-Doppler characteristics with respect to a set of orthogonal subcarrier frequencies. We characterize the accuracy of micro-Doppler frequency estimation by computing the Cramer-Rao bound (CRB) on the angular-velocity estimate of the target. Additionally, to improve the accuracy of the estimation procedure, we formulate and solve an optimization problem by minimizing the CRB on the angular-velocity estimate with respect to themore » OFDM spectral coefficients. We present several numerical examples to demonstrate the CRB variations with respect to the signal-to-noise ratios, number of temporal samples, and number of OFDM subcarriers. We also analysed numerically the improvement in estimation accuracy due to the adaptive waveform design. A grid-based maximum likelihood estimation technique is applied to evaluate the corresponding mean-squared error performance.« less
Meng, Lu; Xiang, Jing
2016-11-01
The present study investigated frequency dependent developmental patterns of the brain resting-state networks from childhood to adolescence. Magnetoencephalography (MEG) data were recorded from 20 healthy subjects at resting-state with eyes-open. The resting-state networks (RSNs) was analyzed at source-level. Brain network organization was characterized by mean clustering coefficient and average path length. The correlations between brain network measures and subjects' age during development from childhood to adolescence were statistically analyzed in delta (1-4Hz), theta (4-8Hz), alpha (8-12Hz), and beta (12-30Hz) frequency bands. A significant positive correlation between functional connectivity with age was found in alpha and beta frequency bands. A significant negative correlation between average path lengths with age was found in beta frequency band. The results suggest that there are significant developmental changes of resting-state networks from childhood to adolescence, which matures from a lattice network to a small-world network. Copyright © 2016 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Monitoring method and apparatus using high-frequency carrier
Haynes, Howard D.
1996-01-01
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.
NASA Astrophysics Data System (ADS)
Wang, Zian; Li, Shiguang; Yu, Ting
2015-12-01
This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.
Isomura, Akihiro; Hörning, Marcel; Agladze, Konstantin; Yoshikawa, Kenichi
2008-12-01
The unpinning of spiral waves by the application of high-frequency wave trains was studied in cultured cardiac myocytes. Successful unpinning was observed when the frequency of the paced waves exceeded a critical level. The unpinning process was analyzed by a numerical simulation with a model of cardiac tissue. The mechanism of unpinning by high-frequency stimuli is discussed in terms of local entrainment failure, through a reduction of the two-dimensional spatial characteristics into one dimension.
Josephson junction spectrum analyzer for millimeter and submillimeter wavelengths
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larkin, S.Y.; Anischenko, S.E.; Khabayev, P.V.
1994-12-31
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter-wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Josephson Junction spectrum analyzer for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Larkin, S. Y.; Anischenko, S. E.; Khabayev, P. V.
1995-01-01
A prototype of the Josephson-effect spectrum analyzer developed for the millimeter wave band is described. The measurement results for spectra obtained in the frequency band from 50 to 250 GHz are presented.
Characterization of an Outdoor Ambient Radio Frequency Environment
2016-02-16
radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization, locations can be selected to avoid RF...spectrum analyzer, ambient RF noise floor, RF interference 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18...environment (sometimes referred to as “radio frequency noise ”) prior to testing of a specific system under test (SUT). With this characterization
NASA Technical Reports Server (NTRS)
Vonbun, F. O.
1972-01-01
The application of time and frequency standards to the Earth and Ocean Physics Applications Program (EOPAP) is discussed. The goals and experiments of the EOPAP are described. Methods for obtaining frequency stability and time synchronization are analyzed. The orbits, trajectories, and characteristics of the satellites used in the program are reported.
An A Priori Multiobjective Optimization Model of a Search and Rescue Network
1992-03-01
sequences. Classical sensitivity analysis and tolerance analysis were used to analyze the frequency assignments generated by the different weight...function for excess coverage of a frequency. Sensitivity analysis is used to investigate the robustness of the frequency assignments produced by the...interest. The linear program solution is used to produce classical sensitivity analysis for the weight ranges. 17 III. Model Formulation This chapter
The processes in spring-loaded injection valves of solid injection oil engines
NASA Technical Reports Server (NTRS)
Lutz, O
1934-01-01
On the premise of a rectangular velocity wave arriving at the valve, the equation of motion of a spring-loaded valve stem is developed and analyzed. It is found that the stem oscillates, the oscillation frequency being consistently above the natural frequency of the nozzle stem alone, and whose amplitudes would increase in the absence of damping. The results are evaluated and verified on an example. The pressure in the valve and the spray volume are analyzed and several pertinent questions are discussed on the basis of the results.
Synchrosqueezing an effective method for analyzing Doppler radar physiological signals.
Yavari, Ehsan; Rahman, Ashikur; Jia Xu; Mandic, Danilo P; Boric-Lubecke, Olga
2016-08-01
Doppler radar can monitor vital sign wirelessly. Respiratory and heart rate have time-varying behavior. Capturing the rate variability provides crucial physiological information. However, the common time-frequency methods fail to detect key information. We investigate Synchrosqueezing method to extract oscillatory components of the signal with time varying spectrum. Simulation and experimental result shows the potential of the proposed method for analyzing signals with complex time-frequency behavior like physiological signals. Respiration and heart signals and their components are extracted with higher resolution and without any pre-filtering and signal conditioning.
Guidelines for Selecting Microphones for Human Voice Production Research
ERIC Educational Resources Information Center
Svec, Jan G.; Granqvist, Svante
2010-01-01
Purpose: This tutorial addresses fundamental characteristics of microphones (frequency response, frequency range, dynamic range, and directionality), which are important for accurate measurements of voice and speech. Method: Technical and voice literature was reviewed and analyzed. The following recommendations on desirable microphone…
NASA Technical Reports Server (NTRS)
Podwysocki, M. H.
1974-01-01
Two study areas in a cratonic platform underlain by flat-lying sedimentary rocks were analyzed to determine if a quantitative relationship exists between fracture trace patterns and their frequency distributions and subsurface structural closures which might contain petroleum. Fracture trace lengths and frequency (number of fracture traces per unit area) were analyzed by trend surface analysis and length frequency distributions also were compared to a standard Gaussian distribution. Composite rose diagrams of fracture traces were analyzed using a multivariate analysis method which grouped or clustered the rose diagrams and their respective areas on the basis of the behavior of the rays of the rose diagram. Analysis indicates that the lengths of fracture traces are log-normally distributed according to the mapping technique used. Fracture trace frequency appeared higher on the flanks of active structures and lower around passive reef structures. Fracture trace log-mean lengths were shorter over several types of structures, perhaps due to increased fracturing and subsequent erosion. Analysis of rose diagrams using a multivariate technique indicated lithology as the primary control for the lower grouping levels. Groupings at higher levels indicated that areas overlying active structures may be isolated from their neighbors by this technique while passive structures showed no differences which could be isolated.
Parametric Time-Frequency Analysis and Its Applications in Music Classification
NASA Astrophysics Data System (ADS)
Shen, Ying; Li, Xiaoli; Ma, Ngok-Wah; Krishnan, Sridhar
2010-12-01
Analysis of nonstationary signals, such as music signals, is a challenging task. The purpose of this study is to explore an efficient and powerful technique to analyze and classify music signals in higher frequency range (44.1 kHz). The pursuit methods are good tools for this purpose, but they aimed at representing the signals rather than classifying them as in Y. Paragakin et al., 2009. Among the pursuit methods, matching pursuit (MP), an adaptive true nonstationary time-frequency signal analysis tool, is applied for music classification. First, MP decomposes the sample signals into time-frequency functions or atoms. Atom parameters are then analyzed and manipulated, and discriminant features are extracted from atom parameters. Besides the parameters obtained using MP, an additional feature, central energy, is also derived. Linear discriminant analysis and the leave-one-out method are used to evaluate the classification accuracy rate for different feature sets. The study is one of the very few works that analyze atoms statistically and extract discriminant features directly from the parameters. From our experiments, it is evident that the MP algorithm with the Gabor dictionary decomposes nonstationary signals, such as music signals, into atoms in which the parameters contain strong discriminant information sufficient for accurate and efficient signal classifications.
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
Identification of site frequencies from building records
Celebi, M.
2003-01-01
A simple procedure to identify site frequencies using earthquake response records from roofs and basements of buildings is presented. For this purpose, data from five different buildings are analyzed using only spectral analyses techniques. Additional data such as free-field records in close proximity to the buildings and site characterization data are also used to estimate site frequencies and thereby to provide convincing evidence and confirmation of the site frequencies inferred from the building records. Furthermore, simple code-formula is used to calculate site frequencies and compare them with the identified site frequencies from records. Results show that the simple procedure is effective in identification of site frequencies and provides relatively reliable estimates of site frequencies when compared with other methods. Therefore the simple procedure for estimating site frequencies using earthquake records can be useful in adding to the database of site frequencies. Such databases can be used to better estimate site frequencies of those sites with similar geological structures.
Al-Swiahb, Jamil Nasser; Hwang, Eul Seung; Kong, Ji Sun; Kim, Woo Jin; Yeo, Sang Won; Park, Shi Nae
2016-12-01
This study was performed to analyze clinical and audiologic characteristics of sensorineural tinnitus and to investigate the associating factors reflecting psychological aspects of stress and depression of the patients. This is a retrospective analytical study conducted in a tinnitus clinic of a tertiary referral center of a university hospital. The medical records of 216 patients suffering from sensorineural tinnitus were thoroughly evaluated to determine correlations between clinical and audiological characteristics, including age, sex, predisposing or etiologic factors, hearing levels up to extended high frequencies, and tinnitus severity. Psychological aspects of stress and depression were also evaluated and analyzed to seek the associations with tinnitus severity. All data were stored in our database bank and were statistically analyzed. Our study subjects showed a slight male predominance. The highest percentage of tinnitus was found in patients of 60-80 years old. Only 32.5 % of tinnitus patients were subjectively aware of their hearing loss, whereas 73 % of subjects had hearing deficits in some frequencies in their audiogram. Hearing impairments were of the low-frequency sensorineural type in 18.2 % of patients and were limited to the high frequencies in 77.9 % of patients. Tinnitus was unilateral in 51 % of patients and had a tonal nature in 45 % of patients. In total, 45.8 % of patients with high-frequency sensorineural hearing loss had high-pitched tinnitus. There were significant correlations between tinnitus severity, loudness and annoyance. Correlations with THI (Tinnitus Handicap Inventory) and Beck depression index scores were also found. Sensorineural tinnitus was related with hearing loss in some frequencies nevertheless of patients' own awareness of hearing loss. Loudness and annoyance of tinnitus seems to be two important factors reflecting psychological problems of patients' stress and depression.
Design of dual band FSS by using quadruple L-slot technique
NASA Astrophysics Data System (ADS)
Fauzi, Noor Azamiah Md; Aziz, Mohamad Zoinol Abidin Abd.; Said, Maizatul Alice Meor; Othman, Mohd Azlishah; Ahmad, Badrul Hisham; Malek, Mohd Fareq Abd
2015-05-01
This paper presents a new design of dual band frequency selective surface (FSS) for band pass microwave transmission application. FSS can be used on energy saving glass to improve the transmission of wireless communication signals through the glass. The microwave signal will be attenuate when propagate throughout the different structure such as building. Therefore, some of the wireless communication system cannot be used in the optimum performance. The aim of this paper is designed, simulated and analyzed the new dual band FSS structure for microwave transmission. This design is based on a quadruple L slot combined with cross slot to produce pass band at 900 MHz and 2.4 GHz. The vertical of pair inverse L slot is used as the band pass for the frequency of 2.4GHz. While, the horizontal of pair inverse L slot is used as the band pass at frequency 900MHz. This design is simulated and analyzed by using Computer Simulation Technology (CST) Microwave Studio (MWS) software. The characteristics of the transmission (S21) and reflection (S11) of the dual band FSS were simulater and analyzed. The bandwidth of the first band is 118.91MHz which covered the frequency range from 833.4MHz until 952.31MHz. Meanwhile, the bandwidth for the second band is 358.84MHz which covered the frequency range from 2.1475GHz until 2.5063GHz. The resonance/center frequency of this design is obtained at 900MHz with a 26.902dB return loss and 2.37GHz with 28.506dB a return loss. This FSS is suitable as microwave filter for GSM900 and WLAN 2.4GHz application.
Code of Federal Regulations, 2010 CFR
2010-07-01
... which you sample and record gas-analyzer concentrations. (b) Measurement principles. This test verifies... appropriate frequency to prevent loss of information. This test also verifies that the measurement system... instructions. Adjust the measurement system as needed to optimize performance. Run this verification with the...
[Evaluation of using statistical methods in selected national medical journals].
Sych, Z
1996-01-01
The paper covers the performed evaluation of frequency with which the statistical methods were applied in analyzed works having been published in six selected, national medical journals in the years 1988-1992. For analysis the following journals were chosen, namely: Klinika Oczna, Medycyna Pracy, Pediatria Polska, Polski Tygodnik Lekarski, Roczniki Państwowego Zakładu Higieny, Zdrowie Publiczne. Appropriate number of works up to the average in the remaining medical journals was randomly selected from respective volumes of Pol. Tyg. Lek. The studies did not include works wherein the statistical analysis was not implemented, which referred both to national and international publications. That exemption was also extended to review papers, casuistic ones, reviews of books, handbooks, monographies, reports from scientific congresses, as well as papers on historical topics. The number of works was defined in each volume. Next, analysis was performed to establish the mode of finding out a suitable sample in respective studies, differentiating two categories: random and target selections. Attention was also paid to the presence of control sample in the individual works. In the analysis attention was also focussed on the existence of sample characteristics, setting up three categories: complete, partial and lacking. In evaluating the analyzed works an effort was made to present the results of studies in tables and figures (Tab. 1, 3). Analysis was accomplished with regard to the rate of employing statistical methods in analyzed works in relevant volumes of six selected, national medical journals for the years 1988-1992, simultaneously determining the number of works, in which no statistical methods were used. Concurrently the frequency of applying the individual statistical methods was analyzed in the scrutinized works. Prominence was given to fundamental statistical methods in the field of descriptive statistics (measures of position, measures of dispersion) as well as most important methods of mathematical statistics such as parametric tests of significance, analysis of variance (in single and dual classifications). non-parametric tests of significance, correlation and regression. The works, in which use was made of either multiple correlation or multiple regression or else more complex methods of studying the relationship for two or more numbers of variables, were incorporated into the works whose statistical methods were constituted by correlation and regression as well as other methods, e.g. statistical methods being used in epidemiology (coefficients of incidence and morbidity, standardization of coefficients, survival tables) factor analysis conducted by Jacobi-Hotellng's method, taxonomic methods and others. On the basis of the performed studies it has been established that the frequency of employing statistical methods in the six selected national, medical journals in the years 1988-1992 was 61.1-66.0% of the analyzed works (Tab. 3), and they generally were almost similar to the frequency provided in English language medical journals. On a whole, no significant differences were disclosed in the frequency of applied statistical methods (Tab. 4) as well as in frequency of random tests (Tab. 3) in the analyzed works, appearing in the medical journals in respective years 1988-1992. The most frequently used statistical methods in analyzed works for 1988-1992 were the measures of position 44.2-55.6% and measures of dispersion 32.5-38.5% as well as parametric tests of significance 26.3-33.1% of the works analyzed (Tab. 4). For the purpose of increasing the frequency and reliability of the used statistical methods, the didactics should be widened in the field of biostatistics at medical studies and postgraduation training designed for physicians and scientific-didactic workers.
A time-frequency approach for the analysis of normal and arrhythmia cardiac signals.
Mahmoud, Seedahmed S; Fang, Qiang; Davidović, Dragomir M; Cosic, Irena
2006-01-01
Previously, electrocardiogram (ECG) signals have been analyzed in either a time-indexed or spectral form. The reality, is that the ECG and all other biological signals belong to the family of multicomponent nonstationary signals. Due to this reason, the use of time-frequency analysis can be unavoidable for these signals. The Husimi and Wigner distributions are normally used in quantum mechanics for phase space representations of the wavefunction. In this paper, we introduce the Husimi distribution (HD) to analyze the normal and abnormal ECG signals in time-frequency domain. The abnormal cardiac signal was taken from a patient with supraventricular arrhythmia. Simulation results show that the HD has a good performance in the analysis of the ECG signals comparing with the Wigner-Ville distribution (WVD).
Modal, ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities
NASA Technical Reports Server (NTRS)
Pathak, Prabhakar H.; Burkholder, Robert J.
1989-01-01
The problem of high-frequency electromagnetic (EM) scattering by open-ended waveguide cavities with an interior termination is analyzed via three different approaches. When cavities can be adequately modeled by joining together piecewise separable waveguide sections, a hybrid combination of asymptotic high-frequency and modal techniques is employed. In the case of more arbitrarily shaped waveguide cavities for which modes cannot even be defined in the conventional sense, the geometrical optics ray approach proves to be highly useful. However, at sufficiently high frequencies, both of these approaches tend to become inefficient. Hence, a paraxial Gaussian batch technique, which retains much of the simplicity of the ray approximation but is potentially more efficient, is investigated. Typical numerical results based on the different approaches are discussed.
Temporal structure of neuronal population oscillations with empirical model decomposition
NASA Astrophysics Data System (ADS)
Li, Xiaoli
2006-08-01
Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation.
Development of a distributed polarization-OTDR to measure two vibrations with the same frequency
NASA Astrophysics Data System (ADS)
Pan, Yun; Wang, Feng; Wang, Xiangchuan; Zhang, Mingjiang; Zhou, Ling; Sun, Zhenqing; Zhang, Xuping
2015-08-01
A polarization optical time-domain reflectometer (POTDR) can distributedly measure the vibration of fiber by detecting the vibration induced polarization variation only with a polarization analyzer. It has great potential in the monitoring of the border intrusion, structural healthy, anti-stealing of pipeline and so on, because of its simple configuration, fast response speed and distributed measuring ability. However, it is difficult to distinguish two vibrations with the same frequency for POTDR because the signal induced by the first vibration would bury the other vibration induced signal. This paper proposes a simple method to resolve this problem in POTDR by analyzing the phase of the vibration induced signal. The effectiveness of this method in distinguishing two vibrations with the same frequency for POTDR is proved by simulation.
Soul and Musical Theater: A Comparison of Two Vocal Styles.
Hallqvist, Hanna; Lã, Filipa M B; Sundberg, Johan
2017-03-01
The phonatory and resonatory characteristics of nonclassical styles of singing have been rarely analyzed in voice research. Six professional singers volunteered to sing excerpts from two songs pertaining to the musical theater and to the soul styles of singing. Voice source parameters and formant frequencies were analyzed by inverse filtering tones, sung at the same fundamental frequencies in both excerpts. As compared with musical theater, the soul style was characterized by significantly higher subglottal pressure and maximum flow declination rate. Yet sound pressure level was lower, suggesting higher glottal resistance. The differences would be the effects of firmer glottal adduction and a greater frequency separation between the first formant and its closest spectrum partial in soul than in musical theater. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bouslema, Marwa; Frikha, Ahmed; Abdennadhar, Moez; Fakhfakh, Tahar; Nasri, Rachid; Haddar, Mohamed
2017-12-01
The present paper is aimed at the application of a substructure methodology, based on the Frequency Response Function (FRF) simulation technique, to analyze the vibration of a stage reducer connected by a rigid coupling to a planetary gear system. The computation of the vibration response was achieved using the FRF-based substructuring method. First of all, the two subsystems were analyzed separately and their FRF were obtained. Then the coupled model was analyzed indirectly using the substructuring technique. A comparison between the full system response and the coupled model response using the FRF substructuring was investigated to validate the coupling method. Furthermore, a parametric study of the effect of the shaft coupling stiffness on the FRF was discussed and the effects of modal truncation and condensation methods on the FRF of subsystems were analyzed.
NASA Astrophysics Data System (ADS)
Freeman, Allison
This research examined the fundamental frequency and perturbation (jitter % and shimmer %) measures in young adult (20-30 year-old) and middle-aged adult (40-55 year-old) smokers and non-smokers; there were 36 smokers and 36 non-smokers. Acoustic analysis was carried out utilizing one task: production of sustained /a/. These voice samples were analyzed utilizing Multi-Dimensional Voice Program (MDVP) software, which provided values for fundamental frequency, jitter %, and shimmer %.These values were analyzed for trends regarding smoking status, age, and gender. Statistical significance was found regarding the fundamental frequency, jitter %, and shimmer % for smokers as compared to non-smokers; smokers were found to have significantly lower fundamental frequency values, and significantly higher jitter % and shimmer % values. Statistical significance was not found regarding fundamental frequency, jitter %, and shimmer % for age group comparisons. With regard to gender, statistical significance was found regarding fundamental frequency; females were found to have statistically higher fundamental frequencies as compared to males. However, the relationships between gender and jitter % and shimmer % lacked statistical significance. These results indicate that smoking negatively affects voice quality. This study also examined the ability of untrained listeners to identify smokers and non-smokers based on their voices. Results of this voice perception task suggest that listeners are not accurately able to identify smokers and non-smokers, as statistical significance was not reached. However, despite a lack of significance, trends in data suggest that listeners are able to utilize voice quality to identify smokers and non-smokers.
The nonstationary strain filter in elastography: Part I. Frequency dependent attenuation.
Varghese, T; Ophir, J
1997-01-01
The accuracy and precision of the strain estimates in elastography depend on a myriad number of factors. A clear understanding of the various factors (noise sources) that plague strain estimation is essential to obtain quality elastograms. The nonstationary variation in the performance of the strain filter due to frequency-dependent attenuation and lateral and elevational signal decorrelation are analyzed in this and the companion paper for the cross-correlation-based strain estimator. In this paper, we focus on the role of frequency-dependent attenuation in the performance of the strain estimator. The reduction in the signal-to-noise ratio (SNRs) in the RF signal, and the center frequency and bandwidth downshift with frequency-dependent attenuation are incorporated into the strain filter formulation. Both linear and nonlinear frequency dependence of attenuation are theoretically analyzed. Monte-Carlo simulations are used to corroborate the theoretically predicted results. Experimental results illustrate the deterioration in the precision of the strain estimates with depth in a uniformly elastic phantom. Theoretical, simulation and experimental results indicate the importance of high SNRs values in the RF signals, because the strain estimation sensitivity, elastographic SNRe and dynamic range deteriorate rapidly with a decrease in the SNRs. In addition, a shift in the strain filter toward higher strains is observed at large depths in tissue due to the center frequency downshift.
Analysis of the atmospheric upward radiation in low latitude area
NASA Astrophysics Data System (ADS)
Li, Haiying; Wu, Zhensen; Lin, Leke; Lu, Changsheng
2016-10-01
Remote sensing using THz wave has irreplaceable advantage comparing to the microwave and the infrared waves, and study on the THz remote sensing become more and more popular in recent years. The major applications of the remote sensing in THz wavelengths are the retrieval of the atmospheric parameters and the microphysical information of the ice cloud. The remote sensing of the atmosphere is based on the radiation of THz wave along the earth-space path of which the most significant part is the upward radiation of the atmosphere. The upward radiation of the atmosphere in sunny day in the low latitude area is computed and analyzed in this paper. The absorption of THz wave by the atmosphere is calculated using the formulations illustrated in the Recommendation ITU-R P.676 to save machine hour, the frequency range is then restricted below 1THz. The frequencies used for the retrieval of atmospheric parameters such as temperature and water content are usually a few hundred GHz, at the lower end of THz wavelengths, so this frequency range is sufficient. The radiation contribution of every atmospheric layer for typical frequencies such as absorption window frequencies and peak frequencies are analyzed. Results show that at frequencies which absorption is severe, information about lower atmosphere cannot reach the receiver onboard a satellite or other high platforms due to the strong absorption along the path.
Heterodyne laser diagnostic system
Globig, Michael A.; Johnson, Michael A.; Wyeth, Richard W.
1990-01-01
The heterodyne laser diagnostic system includes, in one embodiment, an average power pulsed laser optical spectrum analyzer for determining the average power of the pulsed laser. In another embodiment, the system includes a pulsed laser instantaneous optical frequency measurement for determining the instantaneous optical frequency of the pulsed laser.
Data Acquisition Unit for SATCOM Signal Analyzer
1980-01-01
APSIM simulator program APDEBUG debugging program APTEST diagnostic and test program MATH Library IOP-16 16 bit I/O port 223 APPENDIX C Table...3. SYNTEST Corporation, Frequency Synthesizer Module, Data Sheet, The Syntest SM-101 Frequency Synthesizer Module, not dated . 4. DATEL Systems Inc
NASA Astrophysics Data System (ADS)
Pisa, D.; Krupar, V.; Kruparova, O.; Santolik, O.
2017-12-01
Intense whistler-mode emissions known as 'lion-roars' are often observed inside the terrestrial magnetosheath, where the solar wind plasma flow slows down, and the local magnetic field increases ahead of a planetary magnetosphere. Plasma conditions in this transient region lead to the electron temperature anisotropy, which can result in the whistler-mode waves. The lion-roars are narrow-band emissions with typical frequencies between 0.1-0.5 Fce, where Fce is the electron cyclotron frequency. We present results of a long-term survey obtained by the Spatio Temporal Analysis Field Fluctuations - Spectral Analyzer (STAFF-SA) instruments on board the four Cluster spacecraft between 2001 and 2010. We have visually identified the time-frequency intervals with the intense lion-roar signature. Using the Singular Value Decomposition (SVD) method, we analyzed the wave propagation properties. We show the spatial, frequency and wave power distributions. Finally, the wave properties as a function of upstream solar wind conditions are discussed.
A study of some features of ac and dc electric power systems for a space station
NASA Technical Reports Server (NTRS)
Hanania, J. I.
1983-01-01
This study analyzes certain selected topics in rival dc and high frequency ac electric power systems for a Space Station. The interaction between the Space Station and the plasma environment is analyzed, leading to a limit on the voltage for the solar array and a potential problem with resonance coupling at high frequencies. Certain problems are pointed out in the concept of a rotary transformer, and further development work is indicated in connection with dc circuit switching, special design of a transmission conductor for the ac system, and electric motors. The question of electric shock hazards, particularly at high frequency, is also explored. and a problem with reduced skin resistance and therefore increased hazard with high frequency ac is pointed out. The study concludes with a comparison of the main advantages and disadvantages of the two rival systems, and it is suggested that the choice between the two should be made after further studies and development work are completed.
NASA Astrophysics Data System (ADS)
Arakawa, Mototaka; Mori, Shohei; Kanai, Hiroshi; Nagaoka, Ryo; Horie, Miki; Kobayashi, Kazuto; Saijo, Yoshifumi
2018-07-01
We proposed a robust analysis method for the acoustic properties of biological specimens measured by acoustic microscopy. Reflected pulse signals from the substrate and specimen were converted into frequency domains to obtain sound speed and thickness. To obtain the average acoustic properties of the specimen, parabolic approximation was performed to determine the frequency at which the amplitude of the normalized spectrum became maximum or minimum, considering the sound speed and thickness of the specimens and the operating frequency of the ultrasonic device used. The proposed method was demonstrated for a specimen of malignant melanoma of the skin by using acoustic microscopy attaching a concave transducer with a center frequency of 80 MHz. The variations in sound speed and thickness analyzed by the proposed method were markedly smaller than those analyzed by the method based on an autoregressive model. The proposed method is useful for the analysis of the acoustic properties of bilogical tissues or cells.
Analyzing Effect of System Inertia on Grid Frequency Forecasting Usnig Two Stage Neuro-Fuzzy System
NASA Astrophysics Data System (ADS)
Chourey, Divyansh R.; Gupta, Himanshu; Kumar, Amit; Kumar, Jitesh; Kumar, Anand; Mishra, Anup
2018-04-01
Frequency forecasting is an important aspect of power system operation. The system frequency varies with load-generation imbalance. Frequency variation depends upon various parameters including system inertia. System inertia determines the rate of fall of frequency after the disturbance in the grid. Though, inertia of the system is not considered while forecasting the frequency of power system during planning and operation. This leads to significant errors in forecasting. In this paper, the effect of inertia on frequency forecasting is analysed for a particular grid system. In this paper, a parameter equivalent to system inertia is introduced. This parameter is used to forecast the frequency of a typical power grid for any instant of time. The system gives appreciable result with reduced error.
Research on frequency control strategy of interconnected region based on fuzzy PID
NASA Astrophysics Data System (ADS)
Zhang, Yan; Li, Chunlan
2018-05-01
In order to improve the frequency control performance of the interconnected power grid, overcome the problems of poor robustness and slow adjustment of traditional regulation, the paper puts forward a frequency control method based on fuzzy PID. The method takes the frequency deviation and tie-line deviation of each area as the control objective, takes the regional frequency deviation and its deviation as input, and uses fuzzy mathematics theory, adjusts PID control parameters online. By establishing the regional frequency control model of water-fire complementary power generation in MATLAB, the regional frequency control strategy is given, and three control modes (TBC-FTC, FTC-FTC, FFC-FTC) are simulated and analyzed. The simulation and experimental results show that, this method has better control performance compared with the traditional regional frequency regulation.
Error Analysis of Wind Measurements for the University of Illinois Sodium Doppler Temperature System
NASA Technical Reports Server (NTRS)
Pfenninger, W. Matthew; Papen, George C.
1992-01-01
Four-frequency lidar measurements of temperature and wind velocity require accurate frequency tuning to an absolute reference and long term frequency stability. We quantify frequency tuning errors for the Illinois sodium system, to measure absolute frequencies and a reference interferometer to measure relative frequencies. To determine laser tuning errors, we monitor the vapor cell and interferometer during lidar data acquisition and analyze the two signals for variations as functions of time. Both sodium cell and interferometer are the same as those used to frequency tune the laser. By quantifying the frequency variations of the laser during data acquisition, an error analysis of temperature and wind measurements can be calculated. These error bounds determine the confidence in the calculated temperatures and wind velocities.
Role of the Ionosphere in the Generation of Large-Amplitude Ulf Waves at High Latitudes
NASA Astrophysics Data System (ADS)
Tulegenov, B.; Guido, T.; Streltsov, A. V.
2014-12-01
We present results from the statistical study of ULF waves detected by the fluxgate magnetometer in Gakona, Alaska during several experimental campaigns conducted at the High Frequency Active Auroral Research Program (HAARP) facility in years 2011-2013. We analyzed frequencies of ULF waves recorded during 26 strongly disturbed geomagnetic events (substorms) and compared them with frequencies of ULF waves detected during magnetically quite times. Our analysis demonstrates that the frequency of the waves carrying most of the power almost in all these events is less than 1 mHz. We also analyzed data from the ACE satellite, measuring parameters of the solar wind in the L1 Lagrangian point between Earth and Sun, and found that in several occasions there is a strong correlation between oscillations of the magnetic field in the solar wind and oscillations detected on the ground. We also found several cases when there is no correlation between signals detected on ACE and on the ground. This finding suggests that these frequencies correspond to the fundamental eigenfrequency of the coupled magnetosphere-ionosphere system. The low frequency of the oscillations is explained by the effect of the ionosphere, where the current is carried by ions through highly collisional media. The amplitude of these waves can reach significant magnitude when the system is driven by the external driver (for example, the solar wind) with this particular frequency. When the frequency of the driver does not match the frequency of the system, the waves still are observed, but their amplitudes are much smaller.
Non Debye approximation on specific heat of solids
NASA Astrophysics Data System (ADS)
Bhattacharjee, Ruma; Das, Anamika; Sarkar, A.
2018-05-01
A simple non Debye frequency spectrum is proposed. The normalized frequency spectrum is compared to that of Debye spectrum. The proposed spectrum, provides a good account of low frequency phonon density of states, which gives a linear temperature variation at low temperature in contrast to Debye T3 law. It has been analyzed that the proposed model provides a good account of excess specific heat for nanostructure solid.
Cosic, Irena; Cosic, Drasko; Lazar, Katarina
2016-06-29
The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health.
Cosic, Irena; Cosic, Drasko; Lazar, Katarina
2016-01-01
The meaning and influence of light to biomolecular interactions, and consequently to health, has been analyzed using the Resonant Recognition Model (RRM). The RRM proposes that biological processes/interactions are based on electromagnetic resonances between interacting biomolecules at specific electromagnetic frequencies within the infra-red, visible and ultra-violet frequency ranges, where each interaction can be identified by the certain frequency critical for resonant activation of specific biological activities of proteins and DNA. We found that: (1) the various biological interactions could be grouped according to their resonant frequency into super families of these functions, enabling simpler analyses of these interactions and consequently analyses of influence of electromagnetic frequencies to health; (2) the RRM spectrum of all analyzed biological functions/interactions is the same as the spectrum of the sun light on the Earth, which is in accordance with fact that life is sustained by the sun light; (3) the water is transparent to RRM frequencies, enabling proteins and DNA to interact without loss of energy; (4) the spectrum of some artificial sources of light, as opposed to the sun light, do not cover the whole RRM spectrum, causing concerns for disturbance to some biological functions and consequently we speculate that it can influence health. PMID:27367714
Methodology for fault detection in induction motors via sound and vibration signals
NASA Astrophysics Data System (ADS)
Delgado-Arredondo, Paulo Antonio; Morinigo-Sotelo, Daniel; Osornio-Rios, Roque Alfredo; Avina-Cervantes, Juan Gabriel; Rostro-Gonzalez, Horacio; Romero-Troncoso, Rene de Jesus
2017-01-01
Nowadays, timely maintenance of electric motors is vital to keep up the complex processes of industrial production. There are currently a variety of methodologies for fault diagnosis. Usually, the diagnosis is performed by analyzing current signals at a steady-state motor operation or during a start-up transient. This method is known as motor current signature analysis, which identifies frequencies associated with faults in the frequency domain or by the time-frequency decomposition of the current signals. Fault identification may also be possible by analyzing acoustic sound and vibration signals, which is useful because sometimes this information is the only available. The contribution of this work is a methodology for detecting faults in induction motors in steady-state operation based on the analysis of acoustic sound and vibration signals. This proposed approach uses the Complete Ensemble Empirical Mode Decomposition for decomposing the signal into several intrinsic mode functions. Subsequently, the frequency marginal of the Gabor representation is calculated to obtain the spectral content of the IMF in the frequency domain. This proposal provides good fault detectability results compared to other published works in addition to the identification of more frequencies associated with the faults. The faults diagnosed in this work are two broken rotor bars, mechanical unbalance and bearing defects.
NASA Astrophysics Data System (ADS)
Prawoko, S. S.; Nelwan, L. C.; Odang, R. W.; Kusdhany, L. S.
2017-08-01
The histomorphometric test is the gold standard for dental implant stability quantification; however, it is invasive, and therefore, it is inapplicable to clinical patients. Consequently, accurate and objective alternative methods are required. Resonance frequency analysis (RFA) and digital radiographic analysis are noninvasive methods with excellent objectivity and reproducibility. To analyze the correlation between the radiographic analysis of alveolar bone density around a dental implant and the resonance frequency of the dental implant. Digital radiographic images for 35 samples were obtained, and the resonance frequency of the dental implant was acquired using Osstell ISQ immediately after dental implant placement and on third-month follow-up. The alveolar bone density around the dental implant was subsequently analyzed using SIDEXIS-XG software. No significant correlation was reported between the alveolar bone density around the dental implant and the resonance frequency of the dental implant (r = -0.102 at baseline, r = 0.146 at follow-up, p > 0.05). However, the alveolar bone density and resonance frequency showed a significant difference throughout the healing period (p = 0.005 and p = 0.000, respectively). Conclusion: Digital dental radiographs and Osstell ISQ showed excellent objectivity and reproducibility in quantifying dental implant stability. Nonetheless, no significant correlation was observed between the results obtained using these two methods.
Busanello-Stella, Angela Ruviaro; Blanco-Dutra, Ana Paula; Corrêa, Eliane Castilhos Rodrigues; Silva, Ana Maria Toniolo da
2015-01-01
To investigate the process of fatigue in orbicularis oris muscles by analyzing the median frequency of electromyographic signal and the referred fatigue time, according to the breathing mode and the facial pattern. The participants were 70 children, aged 6 to 12 years, who matched the established criteria. To be classified as 36 nasal-breathing and 34 mouth-breathing children, they underwent speech-language, otorhinolaryngologic, and cephalometric evaluation. For the electromyographic assessment, the children had to sustain lip dumbbells weighing 40, 60, and 100 g and a lip exerciser, until the feeling of fatigue. Median frequency was analyzed in 5, 10, 15, and 20 seconds of activity. The referred time of the feeling of fatigue was also recorded. Data were analyzed through the analysis of variance--repeated measures (post hoc Tukey's test), Kruskal-Wallis test, and Mann-Whitney U-test. A significant decrease in the median frequency from 5 seconds of activity was observed, independently from the comparison between the groups. On comparison, the muscles did not show significant decrease. The reported time for the feeling of fatigue was shorter for mouth-breathing individuals. This feeling occurred after the significant decrease in the median frequency. There were signals that indicated myoelectric fatigue for the orbicularis oris muscles, in both groups analyzed, from the first 5 seconds of activity. Myoelectric fatigue in the orbicularis oris muscles preceded the reported feeling of fatigue in all groups. The account for fatigue time was influenced by only the breathing pattern, occurring more precociously in mouth-breathing children.
Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes
NASA Astrophysics Data System (ADS)
Mosquera, Samuel Arba; Verma, Shwetabh
2015-07-01
The objective is to characterize the impact of different ablation parameters on the thermal load during corneal refractive surgery by means of excimer laser ablation on porcine eyes. One hundred eleven ablations were performed in 105 porcine eyes. Each ablation was recorded using infrared thermography and analyzed mainly based on the two tested local frequencies (40 Hz, clinical local frequency; 1000 Hz, no local frequency). The change in peak corneal temperature was analyzed with respect to varying ablation parameters [local frequency, system repetition rate, pulse energy, optical zone (OZ) size, and refractive correction]. Transepithelial ablations were also compared to intrastromal ablations. The average of the baseline temperature across all eyes was 20.5°C±1.1 (17.7°C to 22.2°C). Average of the change in peak corneal temperature for all clinical local frequency ablations was 5.8°C±0.8 (p=3.3E-53 to baseline), whereas the average was 9.0°C±1.5 for all no local frequency ablations (p=1.8E-35 to baseline, 1.6E-16 to clinical local frequency ablations). A logarithmic relationship was observed between the changes in peak corneal temperature with increasing local frequency. For clinical local frequency, change in peak corneal temperature was comparatively flat (r2=0.68 with a range of 1.5°C) with increasing system repetition rate and increased linearly with increasing OZ size (r2=0.95 with a range of 2.4°C). Local frequency controls help maintain safe corneal temperature increase during excimer laser ablations. Transepithelial ablations induce higher thermal load compared to intrastromal ablations, indicating a need for stronger thermal controls in transepithelial refractive procedures.
NASA Astrophysics Data System (ADS)
Nalyanya, Kallen Mulilo; Rop, Ronald K.; Onyuka, Arthur S.
2017-04-01
This work presents both analytical and experimental results of the effect of unfiltered natural solar radiation on the thermal and dynamic mechanical properties of Boran bovine leather at both pickling and tanning stages of preparation. Samples cut from both pickled and tanned pieces of leather of appropriate dimensions were exposed to unfiltered natural solar radiation for time intervals ranging from 0 h (non-irradiated) to 24 h. The temperature of the dynamic mechanical analyzer was equilibrated at 30°C and increased to 240°C at a heating rate of 5°C \\cdot Min^{-1}, while its oscillation frequency varied from 0.1 Hz to 100 Hz. With the help of thermal analysis (TA) control software which analyzes and generates parameter means/averages at temperature/frequency range, the graphs were created by Microsoft Excel 2013 from the means. The viscoelastic properties showed linear frequency dependence within 0.1 Hz to 30 Hz followed by negligible frequency dependence above 30 Hz. Storage modulus (E') and shear stress (σ ) increased with frequency, while loss modulus (E''), complex viscosity (η ^{*}) and dynamic shear viscosity (η) decreased linearly with frequency. The effect of solar radiation was evident as the properties increased initially from 0 h to 6 h of irradiation followed by a steady decline to a minimum at 18 h before a drastic increase to a maximum at 24 h. Hence, tanning industry can consider the time duration of 24 h for sun-drying of leather to enhance the mechanical properties and hence the quality of the leather. At frequencies higher than 30 Hz, the dynamic mechanical properties are independent of the frequency. The frequency of 30 Hz was observed to be a critical value in the behavior in the mechanical properties of bovine hide.
Colhoun, Andrew F; Speich, John E; Cooley, Lauren F; Bell, Eugene D; Barbee, R Wayne; Guruli, Georgi; Ratz, Paul H; Klausner, Adam P
2017-08-01
Low amplitude rhythmic contractions (LARC) occur in detrusor smooth muscle and may play a role in storage disorders such as overactive bladder and detrusor overactivity. The purpose of this study was to determine whether LARC frequencies identified in vitro from strips of human urinary bladder tissue correlate with in vivo LARC frequencies, visualized as phasic intravesical pressure (p ves ) waves during urodynamics (UD). After IRB approval, fresh strips of human urinary bladder were obtained from patients. LARC was recorded with tissue strips at low tension (<2 g) and analyzed by fast Fourier transform (FFT) to identify LARC signal frequencies. Blinded UD tracings were retrospectively reviewed for signs of LARC on the p ves tracing during filling and were analyzed via FFT. Distinct LARC frequencies were identified in 100% of tissue strips (n = 9) obtained with a mean frequency of 1.97 ± 0.47 cycles/min (33 ± 8 mHz). Out of 100 consecutive UD studies reviewed, 35 visually displayed phasic p ves waves. In 12/35 (34%), real p ves signals were present that were independent of abdominal activity. Average UD LARC frequency was 2.34 ± 0.36 cycles/min (39 ± 6 mHz) which was similar to tissue LARC frequencies (p = 0.50). A majority (83%) of the UD cohort with LARC signals also demonstrated detrusor overactivity. During UD, a subset of patients displayed phasic p ves waves with a distinct rhythmic frequency similar to the in vitro LARC frequency quantified in human urinary bladder tissue strips. Further refinements of this technique may help identify subsets of individuals with LARC-mediated storage disorders.
Monitoring method and apparatus using high-frequency carrier
Haynes, H.D.
1996-04-30
A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.
Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere
NASA Astrophysics Data System (ADS)
Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.
2015-12-01
We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work supported by the National Science Foundation under Grant Number AGS-1203516.
[Design of a high-voltage insulation testing system of X-ray high frequency generators].
Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang
2007-09-01
In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.
Detection and imaging of moving objects with SAR by a joint space-time-frequency processing
NASA Astrophysics Data System (ADS)
Barbarossa, Sergio; Farina, Alfonso
This paper proposes a joint spacetime-frequency processing scheme for the detection and imaging of moving targets by Synthetic Aperture Radars (SAR). The method is based on the availability of an array antenna. The signals received by the array elements are combined, in a spacetime processor, to cancel the clutter. Then, they are analyzed in the time-frequency domain, by computing their Wigner-Ville Distribution (WVD), in order to estimate the instantaneous frequency, to be used for the successive phase compensation, necessary to produce a high resolution image.
Yang, Hao; Yang, Xiaohe; Chen, Yuquan; Pan, Min
2008-12-01
Radio frequency identification sensor network, which is a product of integrating radio frequency identification (RFID) with wireless sensor network (WSN), is introduced in this paper. The principle of radio frequency identification sensor is analyzed, and the importance of the antenna is emphasized. Then three kinds of common antennae, namely coil antenna, dipole antenna and microstrip antenna, are discussed. Subsequently, according to requirement, we have designed a microstrip antenna in a wireless temperature-monitoring and controlling system. The measurement of factual effect showed the requirement was fulfilled.
Gacek, Maria
2014-03-01
The aim of this study was to analyze selected individual determinants of consumption of soy products and legumes by menopausal women. The analyzed individual characteristics included the level of general self-efficacy, optimism, and satisfaction with life. The study, using a questionnaire for the assessment of food product consumption frequency, and psychological tests (GSES, LOT-R, SWLS), was conducted in a group of 320 women aged between 45 and 55 years. Spearman's coefficient of rank correlation and the Kruskal-Wallis test with the Dunn test for multiple comparisons were used for statistical analysis (p < 0.05). The analyzed 45-55-year-old women consumed legume seeds several times a month on average, while the frequency of soy/soy product consumption was lower than once a month. Statistical analysis revealed that the frequency of soy product consumption increased with the level of self-efficacy, optimism and satisfaction with life (p < 0.01). Also the increased frequency of legume seed consumption was associated with higher level of optimism and satisfaction with life (p < 0.01). Intergroup comparisons of the average consumption frequency of these products confirmed that legume seeds were significantly more frequently chosen by women characterized by high rather than low levels of optimism (3.36 vs. 2.62, p < 0.001) and satisfaction with life (3.36 vs. 2.65, p < 0.01). Also soy products were preferred significantly more often by women with higher levels of optimism (2.00 vs. 1.38, p < 0.05) and satisfaction with life (2.02 vs. 1.39, p < 0.05). The consumption of legume seeds, and especially soy products, was revealed to be very low among perimenopausal women, and varied depending on the analyzed individual traits, with a tendency to more frequent ingestion by individuals with higher levels of self-efficacy, optimism, and satisfaction with life.
[Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].
Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin
2012-03-01
To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P < 0.05), but there was no significant difference of noise between two workplaces (P > 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P < 0.05). There were no differences of sex, age, height, weight between two groups (P > 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.
NASA Astrophysics Data System (ADS)
Ma, Chien-Ching; Lin, Hsien-Yang
2005-09-01
This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.
Frequency of depression, anxiety and stress among the undergraduate physiotherapy students.
Syed, Annosha; Ali, Syed Shazad; Khan, Muhammad
2018-01-01
To assess the frequency of Depression, Anxiety and Stress (DAS) among the undergraduate physiotherapy students. A descriptive cross sectional study was conducted in various Physiotherapy Institutes in Sindh, Pakistan among undergraduate physiotherapy students. The total duration of this study was 4 months from September, 2016 to January, 2017. Data was collected from 267 students with no physical and mental illness; more than half were female students 75.3%. They were selected through Non probability purposive sampling technique. A self-administered standardized DASS (depression, anxiety and stress scale) was used to collect data and result was analyzed using its severity rating index. Data was entered and analyzed by using SPSS version 21. Descriptive statistics including the frequency of depression, anxiety, stress and demographic characteristic of the participant was collected. The mean age of students was 19.3371±1.18839 years. The Frequency of depression, anxiety and stress found among undergraduates Physiotherapy students was 48.0%, 68.54% and 53.2%, respectively. It was observed that the frequency of depression, anxiety and stress among physiotherapy undergraduates students were high. It suggests the urgent need of carrying out evidence based Psychological health promotion for undergraduate Physiotherapy students to control this growing problem.
Measurements by a Vector Network Analyzer at 325 to 508 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony
2008-01-01
Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.
Ballistic missile precession frequency extraction by spectrogram's texture
NASA Astrophysics Data System (ADS)
Wu, Longlong; Xu, Shiyou; Li, Gang; Chen, Zengping
2013-10-01
In order to extract precession frequency, an crucial parameter in ballistic target recognition, which reflected the kinematical characteristics as well as structural and mass distribution features, we developed a dynamic RCS signal model for a conical ballistic missile warhead, with a log-norm multiplicative noise, substituting the familiar additive noise, derived formulas of micro-Doppler induced by precession motion, and analyzed time-varying micro-Doppler features utilizing time-frequency transforms, extracted precession frequency by measuring the spectrogram's texture, verified them by computer simulation studies. Simulation demonstrates the excellent performance of the method proposed in extracting the precession frequency, especially in the case of low SNR.
High-performance flexible microwave passives on plastic
NASA Astrophysics Data System (ADS)
Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong
2014-06-01
We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.
NASA Astrophysics Data System (ADS)
Seo, Seong-Heon; Lee, K. D.
2012-10-01
A frequency modulation reflectometer has been developed to measure the density profile of the KSTAR tokamak. It has two channels operating in X-mode in the frequency range of Q band (33-50 GHz) and V band (50-75 GHz). The full band is swept in 20 μs. The mixer output is directly digitized at the sampling rate of 100 MSamples/s. A new phase detection algorithm is developed to analyze both amplitude and frequency modulated signal. The algorithm is benchmarked for a synthesized amplitude modulation-frequency modulation signal. This new algorithm is applied to the data analysis of KSTAR reflectometer.
Filter frequency response of time dependent signal using Laplace transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shestakov, Aleksei I.
We analyze the effect a filter has on a time dependent signal x(t). If X(s) is the Laplace transform of x and H (s) is the filter Transfer function, the response in frequency space is X (s) H (s). Consequently, in real space, the response is the convolution (x*h) (t), where hi is the Laplace inverse of H. Effects are analyzed and analytically for functions such as (t/t c) 2 e -t/tmore » $$_c$$, where t c = const. We consider lowpass, highpass and bandpass filters.« less
Equivalent circuit consideration of frequency-shift-type acceleration sensor
NASA Astrophysics Data System (ADS)
Sasaki, Yoshifumi; Sugawara, Sumio; Kudo, Subaru
2018-07-01
In this paper, an electrical equivalent circuit for the piezoelectrically driven frequency-shift-type acceleration sensor model is represented, and the equivalent circuit constants including the effect of the axial force are clarified for the first time. The results calculated by the finite element method are compared with the experimentally measured ones of the one-axis sensor of trial production. The result shows that the analyzed values almost agree with the measured ones, and that the equivalent circuit representation of the sensor is useful for electrical engineers in order to easily analyze the characteristics of the sensors.
Study of the spectral bandwidth of a double-pass acousto-optic system [Invited].
Champagne, Justine; Kastelik, Jean-Claude; Dupont, Samuel; Gazalet, Joseph
2018-04-01
Acousto-optic tunable filters are known as efficient instruments for spectral and spatial filtering of light. In this paper, we analyze the bandwidth dependence of a double-pass filter. The interaction geometry chosen allows the simultaneous diffraction of the ordinary and the extraordinary optical modes by a single ultrasonic frequency. We present the main parameters of a custom device (design, optical range, driving frequency) and experimental results concerning the angular deviation of the beams including the effect of optical birefringence. The spectral resolution and the side lobes' significance are discussed. Spectral bandwidth of such a system is analyzed.
Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis
NASA Technical Reports Server (NTRS)
Murty, A. N.
1978-01-01
The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.
[Pattern changes in food and beverages expenditure in Mexican households (1984-2014)].
Garza-Montoya, Beatriz Gabriela; Ramos-Tovar, María Elena
2017-01-01
To analyze the proportion of expenditure and its frequency in food and beverages consumed inside and outside of households, at national and regional level, in Mexico between 1984 and 2014. It analyzes data of household expenditure of food and beverages taken from the National Survey of Mexican Household Income and Expenditures 1984, 1994, 2005 and 2014. It conducted descriptive statistics analyses such as percentages, growth rates and crosstabs. There were changes in food expenditure patterns at national and regional level. The proportion of expenditure and its frequency increased in non-alcoholic beverages, prepared food, meals made outside home and cereals. The proportion of expenditure and its frequency decreased in oils and fats, fruits, vegetables, sugar and honeys. These changes can be related to political, economic, social and cultural transformations experienced in the last decades.
NASA Astrophysics Data System (ADS)
Tang, Biao; Zhang, Bao-Cheng; Zhou, Lin; Wang, Jin; Zhan, Ming-Sheng
2015-03-01
Recently, a configuration using atomic interferometers (AIs) had been suggested for the detection of gravitational waves. A new AI with some additional laser pulses for implementing large momentum transfer was also put forward, in order to reduce the effect of shot noise and laser frequency noise. We use a sensitivity function to analyze all possible configurations of the new AI and to distinguish how many momenta are transferred in a specific configuration. By analyzing the new configuration, we further explore a detection scheme for gravitational waves, in particular, that ameliorates laser frequency noise. We find that the amelioration occurs in such a scheme, but novelly, in some cases, the frequency noise can be canceled completely by using a proper data processing method. Supported by the National Natural Science Foundation of China.
Quantum channels from reflections on moving mirrors.
Gianfelici, Giulio; Mancini, Stefano
2017-11-16
Light reflection on a mirror can be thought as a simple physical effect. However if this happens when the mirror moves a rich scenario opens up. Here we aim at analyzing it from a quantum communication perspective. In particular, we study the kind of quantum channel that arises from (Gaussian) light reflection upon an accelerating mirror. Two competing mechanisms emerge in such a context, namely photons production by the mirror's motion and interference between modes. As consequence we find out a quantum amplifier channel and quantum lossy channel respectively below and above a threshold frequency (that depends on parameters determining mirror's acceleration). Exactly at the threshold frequency the channel behaves like a purely classical additive channel, while it becomes purely erasure for large frequencies. In addition the time behavior of the channel is analyzed by employing wave packets expansion of the light field.
Varied absorption peaks of dual-band metamaterial absorber analysis by using reflection theory
NASA Astrophysics Data System (ADS)
Xiong, Han; Yu, Yan-Tao; Tang, Ming-Chun; Chen, Shi-Yong; Liu, Dan-Ping; Ou, Xiang; Zeng, Hao
2016-03-01
Cross-resonator metamaterial absorbers (MMA) have been widely investigated from microwave to optical frequencies. However, only part of the factors influencing the absorption properties were analyzed in previous works at the same time. In order to completely understand how the spacer thickness, dielectric parameter and incidence angle affect the absorption properties of the dual-band MMA, two sets of simulation were performed. It was found that with increasing incident angles, the low-frequency absorption peak showed a blue shift, while the high-frequency absorption peaks showed a red shift. However, with the increase in spacer thickness, both of the absorption peaks showed a red shift. By using the reflection theory expressions, the physical mechanism of the cross-resonator MMA was well explained. This method provides an effective way to analyze multi-band absorber in technology.
Quantum correlations across two octaves from combined up- and down-conversion
NASA Astrophysics Data System (ADS)
Li, Jingyan; Olsen, M. K.
2018-04-01
We propose and analyze a cascaded optical parametric system which involves three interacting modes across two octaves of frequency difference. Our system, combining degenerate optical parametric oscillation (OPO) with second harmonic generation (SHG), promises to be a useful source of squeezed and entangled light at three differing frequencies. We show how changes in damping rates and the ratio of the two concurrent nonlinearities affect the quantum correlations in the output fields. We analyze the threshold behavior, showing how the normal OPO threshold is changed by the addition of the SHG interactions. We also find that the inclusion of the OPO interaction removes the self-pulsing behavior found in normal SHG. Finally, we show how the Einstein-Podolsky-Rosen correlations can be controlled by the injection of a coherent seed field at the lower frequency.
Linewidth and tuning characteristics of terahertz quantum cascade lasers.
Barkan, A; Tittel, F K; Mittleman, D M; Dengler, R; Siegel, P H; Scalari, G; Ajili, L; Faist, J; Beere, H E; Linfield, E H; Davies, A G; Ritchie, D A
2004-03-15
We have measured the spectral linewidths of three continuous-wave quantum cascade lasers operating at terahertz frequencies by heterodyning the free-running quantum cascade laser with two far-infrared gas lasers. Beat notes are detected with a GaAs diode mixer and a microwave spectrum analyzer, permitting very precise frequency measurements and giving instantaneous linewidths of less than -30 kHz. Characteristics are also reported for frequency tuning as the injection current is varied.
2015-01-01
AFRL-RY-WP-TR-2014-0230 INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND...INFLUENCE OF SPECTRAL TRANSFER PROCESSES IN COMPRESSIBLE LOW FREQUENCY PLASMA TURBULENCE ON SCATTERING AND REFRACTION OF ELECTROMAGNETIC SIGNALS 5a...research is to analyze influence of plasma turbulence on hypersonic sensor systems and NGOTHR applications and to meet the Air Force’s ever-increasing
Scattering of ultrashort electromagnetic pulses on metal clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Astapenko, V. A., E-mail: astval@mail.ru; Sakhno, S. V.
We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.
Scattering of ultrashort electromagnetic pulses on metal clusters
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Sakhno, S. V.
2016-12-01
We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.
The transmission of low frequency medical data using delta modulation techniques.
NASA Technical Reports Server (NTRS)
Arndt, G. D.; Dawson, C. T.
1972-01-01
The transmission of low-frequency medical data using delta modulation techniques is described. The delta modulators are used to distribute the low-frequency data into the passband of the telephone lines. Both adaptive and linear delta modulators are considered. Optimum bit rates to minimize distortion and intersymbol interference are discussed. Vibrocardiographic waves are analyzed as a function of bit rate and delta modulator configuration to determine their reproducibility for medical evaluation.
A source mechanism producing HF-induced plasma lines (HFPLS) with up-shifted frequencies
NASA Technical Reports Server (NTRS)
Kuo, S. P.; Lee, M. C.
1992-01-01
Attention is given to a nonlinear scattering process analyzed as a source mechanism producing the frequency up-shifted HFPLs observed in the Arecibo ionospheric heating experiments. A physical picture is offered to explain how Langmuir waves with frequencies greater than the HF heater wave frequency can be produced in the heating experiments and be detected by incoherent radars as frequency up-shifted HFPLs. Since the considered scattering process occurs in a region near the reflection height, it explains why the frequency up-shifted HFPLs should originate from the altitude near the reflection height as observed. The theory also shows that the amount of frequency up-shift is inversely proportional to the frequency of the HF heater and increases linearly with the electron temperature. The quantitative analysis of the theory shows a good agreement with the experimental results.
[Invert transformer design for high frequency X-ray machine based on PWM controller SG 3525].
Yu, Xue-fei; Li, Zhe
2005-07-01
This paper introduces the principle of invert transformer of high frequency X-ray machine, and analyzes its main constitution. Meanwhile, a scheme based on SG3525 for closed loop voltage regulation is given. The experimental result testifies its efficiency and utility.
40 CFR 86.1216-90 - Calibrations; frequency and overview.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1216-90 Calibrations; frequency and...). (d) At least twice annually or after any maintenance perform a methanol retention check and calibration on the evaporative emission enclosure (see § 86.1217). (e) Calibrate the methanol analyzer as...
40 CFR 86.1216-90 - Calibrations; frequency and overview.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1216-90 Calibrations; frequency and...). (d) At least twice annually or after any maintenance perform a methanol retention check and calibration on the evaporative emission enclosure (see § 86.1217). (e) Calibrate the methanol analyzer as...
Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Brown, W. K.
1990-01-01
A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.
Muñoz, Jesús Escrivá; Gambús, Pedro; Jensen, Erik W; Vallverdú, Montserrat
2018-01-01
This works investigates the time-frequency content of impedance cardiography signals during a propofol-remifentanil anesthesia. In the last years, impedance cardiography (ICG) is a technique which has gained much attention. However, ICG signals need further investigation. Time-Frequency Distributions (TFDs) with 5 different kernels are used in order to analyze impedance cardiography signals (ICG) before the start of the anesthesia and after the loss of consciousness. In total, ICG signals from one hundred and thirty-one consecutive patients undergoing major surgery under general anesthesia were analyzed. Several features were extracted from the calculated TFDs in order to characterize the time-frequency content of the ICG signals. Differences between those features before and after the loss of consciousness were studied. The Extended Modified Beta Distribution (EMBD) was the kernel for which most features shows statistically significant changes between before and after the loss of consciousness. Among all analyzed features, those based on entropy showed a sensibility, specificity and area under the curve of the receiver operating characteristic above 60%. The anesthetic state of the patient is reflected on linear and non-linear features extracted from the TFDs of the ICG signals. Especially, the EMBD is a suitable kernel for the analysis of ICG signals and offers a great range of features which change according to the patient's anesthesia state in a statistically significant way. Schattauer GmbH.
Transient dynamics of secondary radiation from an HF pumped magnetized space plasma
NASA Astrophysics Data System (ADS)
Norin, L.; Grach, S. M.; Thidé, B.; Sergeev, E. N.; Leyser, T. B.
2007-09-01
In order to systematically analyze the transient wave and radiation processes that are excited when a high-frequency (HF) radio wave is injected into a magnetized space plasma, we have measured the secondary radiation, or stimulated electromagnetic emission (SEE), from the ionosphere, preconditioned such that geomagnetic field-aligned plasma irregularities are already present. The transient dynamics experiments were made using a duty cycle of the HF radio wave of 200 ms (180 ms on and 20 ms off) and 100 ms (80 ms on and 20 ms off) for various frequencies near the fifth harmonic of the local ionospheric electron cyclotron frequency. Within the first 10 ms after the radio pulse turn-on, frequency downshifted structures of the SEE exhibit an overshoot with a maximum at 3 ms < t < 8 ms, whereas the upshifted spectral components do not exhibit this feature. The relative magnitude of the overshoot is strongly dependent on the frequency offset of the pump from the harmonic of the electron cyclotron frequency. A transient blue-shifted frequency component is identified. This component is upshifted from the pump by 14 kHz < Δ f < 55 kHz and exists only within the first 10 ms after the radio pulse turn-on. On a longer time scale we analyze the amplitude modulation, or ``ringing,'' of the reflected radio wave, (also known as ``quasi-periodic oscillations'' or ``spikes''). The ringing has a frequency of the order 15-20 Hz and we show that this phenomenon is also present in the SEE sidebands and is synchronized with the ringing of the reflected HF wave itself.
Grid Frequency Extreme Event Analysis and Modeling: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Florita, Anthony R; Clark, Kara; Gevorgian, Vahan
Sudden losses of generation or load can lead to instantaneous changes in electric grid frequency and voltage. Extreme frequency events pose a major threat to grid stability. As renewable energy sources supply power to grids in increasing proportions, it becomes increasingly important to examine when and why extreme events occur to prevent destabilization of the grid. To better understand frequency events, including extrema, historic data were analyzed to fit probability distribution functions to various frequency metrics. Results showed that a standard Cauchy distribution fit the difference between the frequency nadir and prefault frequency (f_(C-A)) metric well, a standard Cauchy distributionmore » fit the settling frequency (f_B) metric well, and a standard normal distribution fit the difference between the settling frequency and frequency nadir (f_(B-C)) metric very well. Results were inconclusive for the frequency nadir (f_C) metric, meaning it likely has a more complex distribution than those tested. This probabilistic modeling should facilitate more realistic modeling of grid faults.« less
Digital frequency control of satellite frequency standards. [Defense Navigation Satellites
NASA Technical Reports Server (NTRS)
Nichols, S. A.
1973-01-01
In the Frequency and Time Standard Development Program of the TIMATION System, a new miniaturized rubidium vapor frequency standard has been tested and analyzed for possible use on the TIMATION 3A launch, as part of the Defense Navigation Satellite Development Program. The design and construction of a digital frequency control was required to remotely control this rubidium vapor frequency standard as well as the quartz oscillator in current use. This control must be capable of accepting commands from a satellite telemetry system, verify that the correct commands have been sent and control the frequency to the requirements of the system. Several modifications must be performed to the rubidium vapor frequency standard to allow it to be compatible with the digital frequency control. These include the addition of a varactor to voltage tune the coarse range of the flywheel oscillator, and a modification to supply the C field current externally. The digital frequency control for the rubidium vapor frequency standard has been successfully tested in prototype form.
Snyder, Dalton T; Kaplan, Desmond A; Danell, Ryan M; van Amerom, Friso H W; Pinnick, Veronica T; Brinckerhoff, William B; Mahaffy, Paul R; Cooks, R Graham
2017-06-21
A limitation of conventional quadrupole ion trap scan modes which use rf amplitude control for mass scanning is that, in order to detect a subset of an ion population, the rest of the ion population must also be interrogated. That is, ions cannot be detected out of order; they must be detected in order of either increasing or decreasing mass-to-charge (m/z). However, an ion trap operated in the ac frequency scan mode, where the rf amplitude is kept constant and instead the ac frequency is used for mass-selective operations, has no such limitation because any variation in the ac frequency affects only the subset of ions whose secular frequencies match the perturbation frequency. Hence, an ion trap operated in the ac frequency scan mode can perform any arbitrary mass scan, as well as a sequence of scans, using a single ion injection; we demonstrate both capabilities here. Combining these two capabilities, we demonstrate the acquisition of a full mass spectrum, a product ion spectrum, and a second generation product ion spectrum using a single ion injection event. We further demonstrate a "segmented scan" in which different mass ranges are interrogated at different rf amplitudes in order to improve resolution over a portion of the mass range, and a "periodic scan" in which ions are continuously introduced into the ion trap to achieve a nearly 100% duty cycle. These unique scan modes, along with other characteristics of ac frequency scanning, are particularly appropriate for miniature ion trap mass spectrometers. Hence, implementation of ac frequency scanning on a prototype of the Mars Organic Molecule Analyzer mass spectrometer is also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yizhou, E-mail: yliu062@ucr.edu; Yin, Gen; Lake, Roger K., E-mail: rlake@ece.ucr.edu
Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resultingmore » from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.« less
Wun, Jhih-Min; Wei, Chia-Chien; Chen, Jyehong; Goh, Chee Seong; Set, S Y; Shi, Jin-Wei
2013-05-06
A high-performance photonic sweeping-frequency (chirped) radio-frequency (RF) generator has been demonstrated. By use of a novel wavelength sweeping distributed-feedback (DFB) laser, which is operated based on the linewidth enhancement effect, a fixed wavelength narrow-linewidth DFB laser, and a wideband (dc to 50 GHz) photodiode module for the hetero-dyne beating RF signal generation, a very clear chirped RF waveform can be captured by a fast real-time scope. A very-high frequency sweeping rate (10.3 GHz/μs) with an ultra-wide RF frequency sweeping range (~40 GHz) have been demonstrated. The high-repeatability (~97%) in sweeping frequency has been verified by analyzing tens of repetitive chirped waveforms.
Shin, Woo Young; Lee, Taehee; Jeon, Da Hye; Kim, Hyeon Chang
2018-02-19
The goal of this study was to analyze the relationship between exercise frequency and all-cause mortality for individuals diagnosed with and without diabetes mellitus (DM). We analyzed data for 505,677 participants (53.9% men) in the National Health Insurance Service-National Health Screening (NHIS-HEALS) cohort. The study endpoint variable was all-cause mortality. Frequency of exercise and covariates including age, sex, smoking status, household income, blood pressure, fasting glucose, body mass index, total cholesterol, and Charlson comorbidity index were determined at baseline. Cox proportional hazard regression models were developed to assess the effects of exercise frequency (0, 1-2, 3-4, 5-6, and 7 days per week) on mortality, separately in individuals with and without DM. We found a U-shaped association between exercise frequency and mortality in individuals with and without DM. However, the frequency of exercise associated with the lowest risk of all-cause mortality was 3-4 times per week (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.65-0.73) in individuals without DM, and 5-6 times per week in those with DM (HR, 0.93; 95% CI, 0.78-1.10). A moderate frequency of exercise may reduce mortality regardless of the presence or absence of DM; however, when compared to those without the condition, people with DM may need to exercise more often. © 2018 The Korean Academy of Medical Sciences.
2018-01-01
Background The goal of this study was to analyze the relationship between exercise frequency and all-cause mortality for individuals diagnosed with and without diabetes mellitus (DM). Methods We analyzed data for 505,677 participants (53.9% men) in the National Health Insurance Service-National Health Screening (NHIS-HEALS) cohort. The study endpoint variable was all-cause mortality. Results Frequency of exercise and covariates including age, sex, smoking status, household income, blood pressure, fasting glucose, body mass index, total cholesterol, and Charlson comorbidity index were determined at baseline. Cox proportional hazard regression models were developed to assess the effects of exercise frequency (0, 1–2, 3–4, 5–6, and 7 days per week) on mortality, separately in individuals with and without DM. We found a U-shaped association between exercise frequency and mortality in individuals with and without DM. However, the frequency of exercise associated with the lowest risk of all-cause mortality was 3–4 times per week (hazard ratio [HR], 0.69; 95% confidence interval [CI], 0.65–0.73) in individuals without DM, and 5–6 times per week in those with DM (HR, 0.93; 95% CI, 0.78–1.10). Conclusion A moderate frequency of exercise may reduce mortality regardless of the presence or absence of DM; however, when compared to those without the condition, people with DM may need to exercise more often. PMID:29441753
Real-Time, Polyphase-FFT, 640-MHz Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Zimmerman, George A.; Garyantes, Michael F.; Grimm, Michael J.; Charny, Bentsian; Brown, Randy D.; Wilck, Helmut C.
1994-01-01
Real-time polyphase-fast-Fourier-transform, polyphase-FFT, spectrum analyzer designed to aid in detection of multigigahertz radio signals in two 320-MHz-wide polarization channels. Spectrum analyzer divides total spectrum of 640 MHz into 33,554,432 frequency channels of about 20 Hz each. Size and cost of polyphase-coefficient memory substantially reduced and much of processing loss of windowed FFTs eliminated.
Airborne RF Measurement System and Analysis of Representative Flight RF Environment
NASA Technical Reports Server (NTRS)
Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John
2007-01-01
Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.
Nonuniform gyrotropic oscillation of skyrmion in a nanodisk
NASA Astrophysics Data System (ADS)
Xuan, Shengjie; Liu, Yan
2018-04-01
It was predicted that magnetic skyrmions have potential application in the spin nano-oscillators. The oscillation frequency is a key parameter. In this paper, we study the skyrmion relaxation in a FeGe nanodisk and find that the oscillation frequency depends on the skyrmion position. The relaxation process is associated with the variation of skyrmion diameter. By analyzing the system energy, we believe that the nonuniform gyrotropic oscillation frequency is due to the change of the skyrmion diameter.
[Objective study of the voice quality following partial laryngectomy].
Remacle, M; Millet, B
1991-01-01
The high resolution frequency analyzer is used for the study of the vocal quality after partial laryngectomy. The post-operative plot after speech therapy is of good quality when respecting one vocal fold. On the contrary, the heard vocal sound does not correspond to the harmonics of the fundamental frequency but to intense noise from irregular vibrations of the residual laryngeal mucosa (ventricular folds, arytenoids). High resolution frequency analysis contributes to the follow-up of the partial laryngectomy.
Dynamic-compliance and viscosity of PET and PEN
NASA Astrophysics Data System (ADS)
Weick, Brian L.
2016-05-01
Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.
VISAR Analysis in the Frequency Domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, D. H.; Specht, P.
2017-05-18
VISAR measurements are typically analyzed in the time domain, where velocity is approximately proportional to fringe shift. Moving to the frequency domain clarifies the limitations of this approximation and suggests several improvements. For example, optical dispersion preserves high-frequency information, so a zero-dispersion (air delay) interferometer does not provide optimal time resolution. Combined VISAR measurements can also improve time resolution. With adequate bandwidth and reasonable noise levels, it is quite possible to achieve better resolution than the VISAR approximation allows.
Dynamic-compliance and viscosity of PET and PEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weick, Brian L.
Complex dynamic-compliance and in-phase dynamic-viscosity data are presented and analyzed for PET and PEN advanced polyester substrates used for magnetic tapes. Frequency-temperature superposition is used to predict long-term behavior. Temperature and frequency ranges for the primary glass transition and secondary transitions are discussed and compared for PET and PEN. Shift factors from frequency-temperature superposition are used to determine activation energies for the transitions, and WLF parameters are determined for the polyester substrates.
Huizenga, Hilde M; Crone, Eveline A; Jansen, Brenda J
2007-11-01
In the standard Iowa Gambling Task (IGT), participants have to choose repeatedly from four options. Each option is characterized by a constant gain, and by the frequency and amount of a probabilistic loss. Crone and van der Molen (2004) reported that school-aged children and even adolescents show marked deficits in IGT performance. In this study, we have re-analyzed the data with a multivariate normal mixture analysis to show that these developmental changes can be explained by a shift from unidimensional to multidimensional proportional reasoning (Siegler, 1981; Jansen & van der Maas, 2002). More specifically, the results show a gradual shift with increasing age from (a) guessing with a slight tendency to consider frequency of loss to (b) focusing on frequency of loss, to (c) considering both frequency and amount of probabilistic loss. In the latter case, participants only considered options with low-frequency loss and then chose the option with the lowest amount of loss. Performance improved in a reversed task, in which punishment was placed up front and gain was delivered unexpectedly. In this reversed task, young children are guessing with already a slight tendency to consider both the frequency and amount of gain; this strategy becomes more pronounced with age. We argue that these findings have important implications for the interpretation of IGT performance, as well as for methods to analyze this performance.
NASA Astrophysics Data System (ADS)
Liu, Tzu-Chi; Wu, Hau-Tieng; Chen, Ya-Hui; Chen, Ya-Han; Fang, Te-Yung; Wang, Pa-Chun; Liu, Yi-Wen
2018-05-01
The presence of click-evoked (CE) otoacoustic emissions (OAEs) has been clinically accepted as an indicator of normal cochlear processing of sounds. For treatment and diagnostic purposes, however, clinicians do not typically pay attention to the detailed spectrum and waveform of CEOAEs. A possible reason is due to the lack of noise-robust signal processing tools to estimate physiologically meaningful time-frequency properties of CEOAEs, such as the latency of spectral components. In this on-going study, we applied a modern tool called concentration of frequency and time (ConceFT, [1]) to analyze CEOAE waveforms. Randomly combined orthogonal functions are used as windowing functions for time-frequency analysis. The resulting spectrograms are subject to nonlinear time-frequency reassignment so as to enhance the concentration of time-varying sinusoidal components. The results after reassignment could be further averaged across the random choice of windows. CEOAE waveforms are acquired by a linear averaging paradigm, and longitudinal data are currently being collected from patients with Ménière's disease (MD) and a control group of normal hearing subjects. When CEOAE is present, the ConceFT plots show traces of decreasing but fluctuating instantaneous frequency against time. For comparison purposes, same processing methods are also applied to analyze CEOAE data from cochlear mechanics simulation.
Determining XV-15 aeroelastic modes from flight data with frequency-domain methods
NASA Technical Reports Server (NTRS)
Acree, C. W., Jr.; Tischler, Mark B.
1993-01-01
The XV-15 tilt-rotor wing has six major aeroelastic modes that are close in frequency. To precisely excite individual modes during flight test, dual flaperon exciters with automatic frequency-sweep controls were installed. The resulting structural data were analyzed in the frequency domain (Fourier transformed). All spectral data were computed using chirp z-transforms. Modal frequencies and damping were determined by fitting curves to frequency-response magnitude and phase data. The results given in this report are for the XV-15 with its original metal rotor blades. Also, frequency and damping values are compared with theoretical predictions made using two different programs, CAMRAD and ASAP. The frequency-domain data-analysis method proved to be very reliable and adequate for tracking aeroelastic modes during flight-envelope expansion. This approach required less flight-test time and yielded mode estimations that were more repeatable, compared with the exponential-decay method previously used.
Spatial structure of the magnetic field induced by an infrasonic wave in the oceanic waveguide
NASA Astrophysics Data System (ADS)
Semkin, S. V.; Smagin, V. P.
2012-05-01
The magnetic field generated by an acoustic wave propagating in the oceanic waveguide has been considered. The effect of the self-induction factor on the spatial structure of this field has been studied. It has been indicated that there exists a frequency range where it is necessary to take into consideration self-induction. It has been indicated that the induced field is most substantial at frequencies when only the first normal mode exists. The dependences of the induced field on the depth, frequency, and geomagnetic field direction have been obtained and analyzed for this frequency range.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
NASA Astrophysics Data System (ADS)
Grishkov, V. E.; Uryupin, S. A.
2017-03-01
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron-ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
NASA Astrophysics Data System (ADS)
Li, Jingru; Li, Sheng
2018-02-01
Low-frequency transverse wave propagation plays a significant role in the out-of-plane vibration control. To efficiently attenuate the propagation of transverse waves at low-frequency range, this letter proposed a new type phononic beam by attaching inertial amplification mechanisms on it. The wave propagation of the beam with enhanced effective inertia is analyzed using the transfer matrix method. It is demonstrated that the low-frequency gap within inertial amplification effects can possess much wider bandwidth than using the local resonance method, thus is more suitable for designing applications to suppress transverse wave propagation.
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishkov, V. E.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru
Excitation of plasma waves by nonlinear currents induced by a high-frequency electromagnetic pulse is analyzed within the kinetic approach. It is shown that the most efficient source of plasma waves is the nonlinear current arising due to the gradient of the energy density of the high-frequency field. Generation of plasma waves by the drag current is usually less efficient but not negligibly small at relatively high frequencies of electron–ion collisions. The influence of electron collisions on the excitation of plasma waves by pulses of different duration is described quantitatively.
Herbicides and nitrate in near-surface aquifers in the midcontinental United States, 1991
Kolpin, Dana W.; Burkart, Michael R.; Thurman, E. Michael
1994-01-01
Hydrogeologic factors, land use, agricultural practices, local features, and water chemistry were analyzed for possible relation to herbicide and excess-nitrate detections. Herbicides and excess nitrate were detected more frequently in near-surface unconsolidated aquifers than in nearsurface bedrock aquifers. The depth to the top of the aquifer was inversely related to the frequency of detection of herbicides and excess nitrate. The proximity of streams to sampled wells also affected the frequency of herbicide detection. Significant seasonal differences were determined for the frequency of herbicide detection, but not for the frequency of excess nitrate.
A Wide Band Absorbing Material Design Using Band-Pass Frequency Selective Surface
NASA Astrophysics Data System (ADS)
Xu, Yonggang; Xu, Qiang; Liu, Ting; Zheng, Dianliang; Zhou, Li
2018-03-01
Based on the high frequency advantage characteristics of the Fe based absorbing coating, a method for designing the structure of broadband absorbing structure by using frequency selective surface (FSS) is proposed. According to the transmission and reflection characteristic of the different size FSS structure, the frequency variation characteristic was simulated. Secondly, the genetic algorithm was used to optimize the high frequency broadband absorbing materials, including the single and double magnetic layer material. Finally, the absorbing characteristics in iron layer were analyzed as the band pass FSS structure was embedded, the results showed that the band-pass FSS had the influence on widening the absorbing frequency. As the FSS was set as the bottom layer, it was effective to achieve the good absorbing property in low frequency and the high frequency absorbing performance was not weakened, because the band-pass FSS led the low frequency absorption and the high frequency shielding effect. The results of this paper are of guiding significance for designing and manufacturing the broadband absorbing materials.
Guan, Liu; Zhao, Jiahao; Yu, Shijie; Li, Peng; You, Zheng
2010-01-01
Micro-cantilever sensors for mass detection using resonance frequency have attracted considerable attention over the last decade in the field of gas sensing. For such a sensing system, an oscillator circuit loop is conventionally used to actuate the micro-cantilever, and trace the frequency shifts. In this paper, gas experiments are introduced to investigate the mechanical resonance frequency shifts of the micro-cantilever within the circuit loop(mechanical resonance frequency, MRF) and resonating frequency shifts of the electric signal in the oscillator circuit (system working frequency, SWF). A silicon beam with a piezoelectric zinc oxide layer is employed in the experiment, and a Self-Actuating-Detecting (SAD) circuit loop is built to drive the micro-cantilever and to follow the frequency shifts. The differences between the two resonating frequencies and their shifts are discussed and analyzed, and a coefficient α related to the two frequency shifts is confirmed. PMID:22163588
Frequency-noise measurements of optical frequency combs by multiple fringe-side discriminator
Coluccelli, Nicola; Cassinerio, Marco; Gambetta, Alessio; Laporta, Paolo; Galzerano, Gianluca
2015-01-01
The frequency noise of an optical frequency comb is routinely measured through the hetherodyne beat of one comb tooth against a stable continuous-wave laser. After frequency-to-voltage conversion, the beatnote is sent to a spectrum analyzer to retrive the power spectral density of the frequency noise. Because narrow-linewidth continuous-wave lasers are available only at certain wavelengths, heterodyning the comb tooth can be challenging. We present a new technique for direct characterization of the frequency noise of an optical frequency comb, requiring no supplementary reference lasers and easily applicable in all spectral regions from the terahertz to the ultraviolet. The technique is based on the combination of a low finesse Fabry-Perot resonator and the so-called “fringe-side locking” method, usually adopted to characterize the spectral purity of single-frequency lasers, here generalized to optical frequency combs. The effectiveness of this technique is demonstrated with an Er-fiber comb source across the wavelength range from 1 to 2 μm. PMID:26548900
Frequency of urban building fires as related to daily weather conditions
Arthur R. Pirsko; Wallace L. Fons
1956-01-01
Daily weather elements of precipitation, wind, mean temperature, relative humidity, and dew-point temperature for selected urban areas (approximately 850,000 population) in the United States are statistically analyzed to determine their correlation with daily number of building fires. The frequency of urban building fires is found to be significantly correlated with...
Acoustic Measurement Of Periodic Motion Of Levitated Object
NASA Technical Reports Server (NTRS)
Watkins, John L.; Barmatz, Martin B.
1992-01-01
Some internal vibrations, oscillations in position, and rotations of acoustically levitated object measured by use of microphone already installed in typical levitation chamber for tuning chamber to resonance and monitoring operation. Levitating acoustic signal modulated by object motion of lower frequency. Amplitude modulation detected and analyzed spectrally to determine amplitudes and frequencies of motions.
Audio Frequency Analysis in Mobile Phones
ERIC Educational Resources Information Center
Aguilar, Horacio Munguía
2016-01-01
A new experiment using mobile phones is proposed in which its audio frequency response is analyzed using the audio port for inputting external signal and getting a measurable output. This experiment shows how the limited audio bandwidth used in mobile telephony is the main cause of the poor speech quality in this service. A brief discussion is…
Comparing Nouns and Verbs in a Lexical Task
ERIC Educational Resources Information Center
Cordier, Francoise; Croizet, Jean-Claude; Rigalleau, Francois
2013-01-01
We analyzed the differential processing of nouns and verbs in a lexical decision task. Moderate and high-frequency nouns and verbs were compared. The characteristics of our material were specified at the formal level (number of letters and syllables, number of homographs, orthographic neighbors, frequency and age of acquisition), and at the…
Demodulation circuit for AC motor current spectral analysis
Hendrix, Donald E.; Smith, Stephen F.
1990-12-18
A motor current analysis method for the remote, noninvasive inspection of electric motor-operated systems. Synchronous amplitude demodulation and phase demodulation circuits are used singly and in combination along with a frequency analyzer to produce improved spectral analysis of load-induced frequencies present in the electric current flowing in a motor-driven system.
NASA Astrophysics Data System (ADS)
Na, Byungkeun; Bae, Inshik; Park, Gi Jung; Chang, Hong-Young
2016-09-01
Multi-frequency capacitively coupled plasma (CCP) has been studied to independently control the ion energy and the ion flux; pulsing technique is used to reduce the electron temperature and finally the charging effects. The use of these techniques is a key to high aspect ratio contact (HARC) etching in the recent semiconductor processing. In this study, the characteristics of pulsed dual frequency (DF) CCP is investigated. Two separate powers of 3 MHz and 40 MHz are delivered to the powered electrode of an asymmetric CCP, and each frequency is modulated by an external 1 kHz pulse. Due to the complexity of the RF compensation in DF CCP, the characteristics of the plasma and the sheath are analyzed by high speed impedance measurement. The transient behavior of pulse modulated DF CCP is analyzed based on the result of continuous wave (CW) DF CCP. The optimized experimental condition for high ion energy will be presented. The difference between electronegative oxygen plasma and electropositive argon plasma is discussed as well.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation.
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2014-12-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror's nonlinear dynamics under such excitation is analyzed in a Hill's equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror's frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lu; Albright, Austin P; Rahimpour, Alireza
Wide-area-measurement systems (WAMSs) are used in smart grid systems to enable the efficient monitoring of grid dynamics. However, the overwhelming amount of data and the severe contamination from noise often impede the effective and efficient data analysis and storage of WAMS generated measurements. To solve this problem, we propose a novel framework that takes advantage of Multivariate Empirical Mode Decomposition (MEMD), a fully data-driven approach to analyzing non-stationary signals, dubbed MEMD based Signal Analysis (MSA). The frequency measurements are considered as a linear superposition of different oscillatory components and noise. The low-frequency components, corresponding to the long-term trend and inter-areamore » oscillations, are grouped and compressed by MSA using the mean shift clustering algorithm. Whereas, higher-frequency components, mostly noise and potentially part of high-frequency inter-area oscillations, are analyzed using Hilbert spectral analysis and they are delineated by statistical behavior. By conducting experiments on both synthetic and real-world data, we show that the proposed framework can capture the characteristics, such as trends and inter-area oscillation, while reducing the data storage requirements« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlin, P W
1989-06-01
As part of US Department of Energy-sponsored research on wind energy, a Mod-O wind turbine was used to drive a variable-speed, wound-rotor, induction generator. Energy resulting from the slip frequency voltage in the generator rotor was rectified to dc, inverted back to utility frequency ac, and injected into the power line. Spurious changing frequencies displayed in the generator output by a spectrum analyzer are caused by ripple on the dc link. No resonances of any of these moving frequencies were seen in spite of the presence of a bank of power factor correcting capacitors. 5 figs.
Device for recording the 20 Hz - 200 KHz sound frequency spectrum using teletransmission
NASA Technical Reports Server (NTRS)
Baciu, I.
1974-01-01
The device described consists of two distinct parts: (1) The sound pickup system consisting of the wide-frequency band condenser microphone which contains in the same assembly the frequency-modulated oscillator and the output stage. Being transistorized and small, this system can be easily moved, so that sounds can be picked up even in places that are difficult to reach with larger devices. (2) The receiving and recording part is separate and can be at a great distance from the sound pickup system. This part contains a 72 MHz input stage, a frequency changer that gives an intermediate frequency of 30 MHz and a multichannel analyzer coupled to an oscilloscope and a recorder.
Frequency spectrum analysis of laser generated ultrasonic waves in ablative regime
NASA Astrophysics Data System (ADS)
Mi, Bao; Ume, I. Charles
2002-05-01
In this paper, laser ultrasonic signals generated in ablative regime are measured in a number of metal samples (2024 Al, 6061 Al, 7075 Al, mild steel, and copper) with a broadband laser interferometer. The frequency spectra are analyzed and compared for different thicknesses (50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm), and for different power densities. Hanning windowing is applied before frequency analysis is performed. The experimental data match the theoretical predictions very well. The results show that the frequency spectrum extends from 0 to 15 MHz, while the center frequency occurs near 2 MHz. The detailed distribution of the spectrum is dependent on the material, thickness, and laser power density.
NASA Astrophysics Data System (ADS)
Zhao, Peng; Khosravi, Ava; Azcatl, Angelica; Bolshakov, Pavel; Mirabelli, Gioele; Caruso, Enrico; Hinkle, Christopher L.; Hurley, Paul K.; Wallace, Robert M.; Young, Chadwin D.
2018-07-01
Border traps and interface traps in HfO2/few-layer MoS2 top-gate stacks are investigated by C–V characterization. Frequency dependent C–V data shows dispersion in both the depletion and accumulation regions for the MoS2 devices. The border trap density is extracted with a distributed model, and interface traps are analyzed using the high-low frequency and multi-frequency methods. The physical origins of interface traps appear to be caused by impurities/defects in the MoS2 layers, performing as band tail states, while the border traps are associated with the dielectric, likely a consequence of the low-temperature deposition. This work provides a method of using multiple C–V measurements and analysis techniques to analyze the behavior of high-k/TMD gate stacks and deconvolute border traps from interface traps.
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.
2017-07-01
In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.
NASA Astrophysics Data System (ADS)
Su, Zhi-Yuan; Wang, Chuan-Chen; Wu, Tzuyin; Wang, Yeng-Tseng; Tang, Feng-Cheng
2008-01-01
This study used the Hilbert-Huang transform, a recently developed, instantaneous frequency-time analysis, to analyze radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy. The acquired instantaneous frequency-time spectrum (Hilbert spectrum) is further compared with the Morlet wavelet spectrum. Results indicate that the Hilbert spectrum is especially suitable for analyzing the time series of non-stationary radial artery pulse signals since, in the Hilbert-Huang transform, signals are decomposed into different mode functions in accordance with signal’s local time scale. Therefore, the Hilbert spectrum contains more detailed information than the Morlet wavelet spectrum. From the Hilbert spectrum, we can see that radial artery pulse signals taken from women in their 36th week of pregnancy and after pregnancy have different patterns. This approach could be applied to facilitate non-invasive diagnosis of fetus’ physiological signals in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamadeh, A.; Loubens, G. de, E-mail: gregoire.deloubens@cea.fr; Klein, O.
2014-01-13
We study the synchronization of the auto-oscillation signal generated by the spin transfer driven dynamics of two coupled vortices in a spin-valve nanopillar to an external source. Phase-locking to the microwave field h{sub rf} occurs in a range larger than 10% of the oscillator frequency for drive amplitudes of only a few Oersteds. Using synchronization at the double frequency, the generation linewidth is found to decrease by more than five orders of magnitude in the phase-locked regime (down to 1 Hz, limited by the resolution bandwidth of the spectrum analyzer) in comparison to the free running regime (140 kHz). This perfect phase-lockingmore » holds for frequency detuning as large as 2 MHz, which proves its robustness. We also analyze how the free running spectral linewidth impacts the main characteristics of the synchronization regime.« less
Modification of the G-phonon mode of graphene by nitrogen doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukashev, Pavel V., E-mail: pavel.lukashev@uni.edu; Hurley, Noah; Zhao, Liuyan
2016-01-25
The effect of nitrogen doping on the phonon spectra of graphene is analyzed. In particular, we employ first-principles calculations and scanning Raman analysis to investigate the dependence of phonon frequencies in graphene on the concentration of nitrogen dopants. We demonstrate that the G phonon frequency shows oscillatory behavior as a function of nitrogen concentration. We analyze different mechanisms which could potentially be responsible for this behavior, such as Friedel charge oscillations around the localized nitrogen impurity atom, the bond length change between nitrogen impurity and its nearest neighbor carbon atoms, and the long-range interactions of the nitrogen point defects. Wemore » show that the bond length change and the long range interaction of point defects are possible mechanisms responsible for the oscillatory behavior of the G frequency as a function of nitrogen concentration. At the same time, Friedel charge oscillations are unlikely to contribute to this behavior.« less
Subaperture clutter filter with CFAR signal detection
Ormesher, Richard C.; Naething, Richard M.
2016-08-30
The various technologies presented herein relate to the determination of whether a received signal comprising radar clutter further comprises a communication signal. The communication signal can comprise of a preamble, a data symbol, communication data, etc. A first portion of the radar clutter is analyzed to determine a radar signature of the first portion of the radar clutter. A second portion of the radar clutter can be extracted based on the radar signature of the first portion. Following extraction, any residual signal can be analyzed to retrieve preamble data, etc. The received signal can be based upon a linear frequency modulation (e.g., a chirp modulation) whereby the chirp frequency can be determined and the frequency of transmission of the communication signal can be based accordingly thereon. The duration and/or bandwidth of the communication signal can be a portion of the duration and/or the bandwidth of the radar clutter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karoff, C.; Campante, T. L.; Ballot, J.
2013-04-10
Sun-like stars show intensity fluctuations on a number of timescales due to various physical phenomena on their surfaces. These phenomena can convincingly be studied in the frequency spectra of these stars-while the strongest signatures usually originate from spots, granulation, and p-mode oscillations, it has also been suggested that the frequency spectrum of the Sun contains a signature of faculae. We have analyzed three stars observed for 13 months in short cadence (58.84 s sampling) by the Kepler mission. The frequency spectra of all three stars, as for the Sun, contain signatures that we can attribute to granulation, faculae, and p-modemore » oscillations. The temporal variability of the signatures attributed to granulation, faculae, and p-mode oscillations was analyzed and the analysis indicates a periodic variability in the granulation and faculae signatures-comparable to what is seen in the Sun.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Bing, E-mail: qibing@szu.edu.cn; Pan, Lizhu; Zhou, Qiujiao
2014-12-15
The measurements of the ion densities in the atmospheric AC barrier corona argon discharge are carried out by receiving and analyzing the frequencies of the electromagnetic radiation emitted from the plasma. An auxiliary excitation source composed of a pin-to-pin discharge system is introduced to excite the oscillations of the main discharge. To analyze the resonance mechanism, a complemented model based on a one-dimensional description of forced vibrations is given. Calculations indicate that Ar{sub 2}{sup +} is the dominant ion (∼89% in number density). By analyzing resonance frequencies, the ion densities of Ar{sub 2}{sup +} are in the order of 10{supmore » 19}∼10{sup 20}m{sup −3} and increase slowly as the applied voltage increases.« less
Wang, Y Z; Ding, X D; Xiong, X M; Zhang, J X
2007-10-01
Relations between various values of the internal friction (tgdelta, Q(-1), Q(-1*), and Lambda/pi) measured by free decay and forced vibration are analyzed systemically based on a fundamental mechanical model in this paper. Additionally, relations between various natural frequencies, such as vibration frequency of free decay omega(FD), displacement-resonant frequency of forced vibration omega(d), and velocity-resonant frequency of forced vibration omega(0) are calculated. Moreover, measurement of natural frequencies of a copper specimen of 99.9% purity has been made to demonstrate the relation between the measured natural frequencies of the system by forced vibration and free decay. These results are of importance for not only more accurate measurement of the elastic modulus of materials but also the data conversion between different internal friction measurements.
Digital signal processing in the radio science stability analyzer
NASA Technical Reports Server (NTRS)
Greenhall, C. A.
1995-01-01
The Telecommunications Division has built a stability analyzer for testing Deep Space Network installations during flight radio science experiments. The low-frequency part of the analyzer operates by digitizing wave signals with bandwidths between 80 Hz and 45 kHz. Processed outputs include spectra of signal, phase, amplitude, and differential phase; time series of the same quantities; and Allan deviation of phase and differential phase. This article documents the digital signal-processing methods programmed into the analyzer.
Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms
NASA Technical Reports Server (NTRS)
Schlegel, Todd T.; Arenare, Brian
2006-01-01
A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present method is the presence versus the absence of reduced-amplitude zones (RAZs). In terms that must be simplified for the sake of brevity, an RAZ comprises several cycles of a high-frequency QRS signal during which the amplitude of the high-frequency oscillation in a portion of the signal is abnormally low (see figure). A given signal sample exhibiting an interval of reduced amplitude may or may not be classified as an RAZ, depending on quantitative criteria regarding peaks and troughs within the reduced-amplitude portion of the high-frequency QRS signal. This analysis is performed in all 12 leads in real time.
[An EMD based time-frequency distribution and its application in EEG analysis].
Li, Xiaobing; Chu, Meng; Qiu, Tianshuang; Bao, Haiping
2007-10-01
Hilbert-Huang transform (HHT) is a new time-frequency analytic method to analyze the nonlinear and the non-stationary signals. The key step of this method is the empirical mode decomposition (EMD), with which any complicated signal can be decomposed into a finite and small number of intrinsic mode functions (IMF). In this paper, a new EMD based method for suppressing the cross-term of Wigner-Ville distribution (WVD) is developed and is applied to analyze the epileptic EEG signals. The simulation data and analysis results show that the new method suppresses the cross-term of the WVD effectively with an excellent resolution.
FH/MFSK performance in multitone jamming
NASA Technical Reports Server (NTRS)
Levitt, B. K.
1985-01-01
The performance of frequency-hopped (FH) M-ary frequency-shift keyed (MFSK) signals in partial-band noise was analyzed in the open literature. The previous research is extended to the usually more effective class of multitone jamming. Some objectives researched are: (1) To categorize several different multitone jamming strategies; (2) To analyze the performance of FH/MSFK signaling, both uncoded with diversity, assuming a noncoherent energy detection metric with linear combining and perfect jamming state side information, in the presence of worst case interference for each of these multitone categories; and (3) To compare the effectiveness of the various multitone jamming techniques, and contrast the results with the partial band noise jamming case.
NASA Astrophysics Data System (ADS)
Gomes, Dora Prata; Sequeira, Inês J.; Figueiredo, Carlos; Rueff, José; Brás, Aldina
2016-12-01
Human chromosomal fragile sites (CFSs) are heritable loci or regions of the human chromosomes prone to exhibit gaps, breaks and rearrangements. Determining the frequency of deletions and duplications in CFSs may contribute to explain the occurrence of human disease due to those rearrangements. In this study we analyzed the frequency of deletions and duplications in each human CFS. Statistical methods, namely data display, descriptive statistics and linear regression analysis were applied to analyze this dataset. We found that FRA15C, FRA16A and FRAXB are the most frequently involved CFSs in deletions and duplications occurring in the human genome.
Characteristics of electron-wave interaction in orotron-DRG type devices at the higher modes
NASA Astrophysics Data System (ADS)
Shmatko, A. A.
The excitation of oscillations in an orotron/diffraction-radiation generator at the higher longitudinal modes of the open resonator is analyzed with allowance for the space-charge field of the electron beam, represented by Fourier series in time harmonics of the oscillation frequency. Analytical expressions for the amplitude-frequency characteristics of the starting regime are obtained, and the case of large oscillation amplitudes (where nonlinear phenomena are significant) is analyzed numerically. The collective interaction of beam electrons and the resonator field is examined. Oscillation zones are determined, and the main characteristics of oscillation excitation at the higher modes are established.
Modal testing with Asher's method using a Fourier analyzer and curve fitting
NASA Technical Reports Server (NTRS)
Gold, R. R.; Hallauer, W. L., Jr.
1979-01-01
An unusual application of the method proposed by Asher (1958) for structural dynamic and modal testing is discussed. Asher's method has the capability, using the admittance matrix and multiple-shaker sinusoidal excitation, of separating structural modes having indefinitely close natural frequencies. The present application uses Asher's method in conjunction with a modern Fourier analyzer system but eliminates the necessity of exciting the test structure simultaneously with several shakers. Evaluation of this approach with numerically simulated data demonstrated its effectiveness; the parameters of two modes having almost identical natural frequencies were accurately identified. Laboratory evaluation of this approach was inconclusive because of poor experimental input data.
A detector for high frequency modulation in auroral particle fluxes
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Oehme, D.; Loewenstein, R. F.; Murphree, J.; Anderson, H. R.; Anderson, R.
1974-01-01
A high time resolution electron detector has been developed for use in sounding rocket studies of the aurora. The detector is used to look for particle bunching in the range 50 kHz-10 MHz. The design uses an electron multiplier and an onboard frequency spectrum analyzer. By using the onboard analyzer, the data can be transmitted back to ground on a single 93-kHz voltage-controlled oscillator. The detector covers the 50 kHz-10 MHz range six times per second and detects modulation on the order of a new percent of the total electron flux. Spectra are presented for a flight over an auroral arc.
Scanning microwave microscopy applied to semiconducting GaAs structures
NASA Astrophysics Data System (ADS)
Buchter, Arne; Hoffmann, Johannes; Delvallée, Alexandra; Brinciotti, Enrico; Hapiuk, Dimitri; Licitra, Christophe; Louarn, Kevin; Arnoult, Alexandre; Almuneau, Guilhem; Piquemal, François; Zeier, Markus; Kienberger, Ferry
2018-02-01
A calibration algorithm based on one-port vector network analyzer (VNA) calibration for scanning microwave microscopes (SMMs) is presented and used to extract quantitative carrier densities from a semiconducting n-doped GaAs multilayer sample. This robust and versatile algorithm is instrument and frequency independent, as we demonstrate by analyzing experimental data from two different, cantilever- and tuning fork-based, microscope setups operating in a wide frequency range up to 27.5 GHz. To benchmark the SMM results, comparison with secondary ion mass spectrometry is undertaken. Furthermore, we show SMM data on a GaAs p-n junction distinguishing p- and n-doped layers.
ERIC Educational Resources Information Center
Owens, Katharine A.; Legere, Sasha
2015-01-01
Purpose: The purpose of this paper is to analyze how faculty, staff and students at one American University define the term sustainability. Design/methodology/approach: The authors analyze student, staff and faculty definitions by comparing word frequency counts to a list of the 25 most frequently found words in over 100 definitions of…
Modal vector estimation for closely spaced frequency modes
NASA Technical Reports Server (NTRS)
Craig, R. R., Jr.; Chung, Y. T.; Blair, M.
1982-01-01
Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.
Digital processing of RF signals from optical frequency combs
NASA Astrophysics Data System (ADS)
Cizek, Martin; Smid, Radek; Buchta, Zdeněk.; Mikel, Břetislav; Lazar, Josef; Cip, Ondřej
2013-01-01
The presented work is focused on digital processing of beat note signals from a femtosecond optical frequency comb. The levels of mixing products of single spectral components of the comb with CW laser sources are usually very low compared to products of mixing all the comb components together. RF counters are more likely to measure the frequency of the strongest spectral component rather than a weak beat note. Proposed experimental digital signal processing system solves this problem by analyzing the whole spectrum of the output RF signal and using software defined radio (SDR) algorithms. Our efforts concentrate in two main areas: Firstly, using digital servo-loop techniques for locking free running continuous laser sources on single components of the fs comb spectrum. Secondly, we are experimenting with digital signal processing of the RF beat note spectrum produced by f-2f 1 technique used for assessing the offset and repetition frequencies of the comb, resulting in digital servo-loop stabilization of the fs comb. Software capable of computing and analyzing the beat-note RF spectrums using FFT and peak detection was developed. A SDR algorithm performing phase demodulation on the f- 2f signal is used as a regulation error signal source for a digital phase-locked loop stabilizing the offset frequency of the fs comb.
A Novel Design of Circular Edge Bow-Tie Nano Antenna for Energy Harvesting
NASA Astrophysics Data System (ADS)
Haque, Ahasanul; Reza, Ahmed Wasif; Kumar, Narendra
2015-11-01
In this study, a novel nano antenna is designed in order to convert the high frequency solar energy, thermal energy or earth re-emitted sun's energy into electricity. The proposed antenna is gold printed on a SiO2 layer, designed as a circular edge bow-tie with a ground plane at the bottom of the substrate. The Lorentz-Drude model is used to analyze the behavior of gold at the infrared band of frequencies. The proposed antenna is designed by 3D-electromagnetic solver, and analyzed for optimization of metal thickness, gap size, and antenna's geometrical length. Simulations are conducted in order to investigate the behavior of the antenna illuminated by the circularly polarized plane wave. The numerical simulations are studied for improving the harvesting E-field of the antenna within 5 THz-40 THz frequency range. The proposed antenna offers multiple resonance frequency and better return loss within the frequency bands of 23.2 THz to 27 THz (bandwidth 3.8 THz) and 31 THz to 35.9 THz (bandwidth 4.9 THz). An output electric field of 0.656 V/µm is simulated at 25.3 THz. The best fitted gap size at the feed point is achieved as 50 nm with the substrate thickness of 1.2 µm.
Experiments and error analysis of laser ranging based on frequency-sweep polarization modulation
NASA Astrophysics Data System (ADS)
Gao, Shuyuan; Ji, Rongyi; Li, Yao; Cheng, Zhi; Zhou, Weihu
2016-11-01
Frequency-sweep polarization modulation ranging uses a polarization-modulated laser beam to determine the distance to the target, the modulation frequency is swept and frequency values are measured when transmitted and received signals are in phase, thus the distance can be calculated through these values. This method gets much higher theoretical measuring accuracy than phase difference method because of the prevention of phase measurement. However, actual accuracy of the system is limited since additional phase retardation occurs in the measuring optical path when optical elements are imperfectly processed and installed. In this paper, working principle of frequency sweep polarization modulation ranging method is analyzed, transmission model of polarization state in light path is built based on the theory of Jones Matrix, additional phase retardation of λ/4 wave plate and PBS, their impact on measuring performance is analyzed. Theoretical results show that wave plate's azimuth error dominates the limitation of ranging accuracy. According to the system design index, element tolerance and error correcting method of system is proposed, ranging system is built and ranging experiment is performed. Experiential results show that with proposed tolerance, the system can satisfy the accuracy requirement. The present work has a guide value for further research about system design and error distribution.
Frequency of depression, anxiety and stress among the undergraduate physiotherapy students
Syed, Annosha; Ali, Syed Shazad; Khan, Muhammad
2018-01-01
Objectives: To assess the frequency of Depression, Anxiety and Stress (DAS) among the undergraduate physiotherapy students. Methods: A descriptive cross sectional study was conducted in various Physiotherapy Institutes in Sindh, Pakistan among undergraduate physiotherapy students. The total duration of this study was 4 months from September, 2016 to January, 2017. Data was collected from 267 students with no physical and mental illness; more than half were female students 75.3%. They were selected through Non probability purposive sampling technique. A self-administered standardized DASS (depression, anxiety and stress scale) was used to collect data and result was analyzed using its severity rating index. Data was entered and analyzed by using SPSS version 21. Descriptive statistics including the frequency of depression, anxiety, stress and demographic characteristic of the participant was collected. Results: The mean age of students was 19.3371±1.18839 years. The Frequency of depression, anxiety and stress found among undergraduates Physiotherapy students was 48.0%, 68.54% and 53.2%, respectively. Conclusions: It was observed that the frequency of depression, anxiety and stress among physiotherapy undergraduates students were high. It suggests the urgent need of carrying out evidence based Psychological health promotion for undergraduate Physiotherapy students to control this growing problem. PMID:29805428
Analyzing the acoustic beat with mobile devices
NASA Astrophysics Data System (ADS)
Kuhn, Jochen; Vogt, Patrik; Hirth, Michael
2014-04-01
In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency Δf. The resulting auditory sensation is a tone with a volume that varies periodically. Acoustic beats can be perceived repeatedly in day-to-day life and have some interesting applications. For example, string instruments are still tuned with the help of an acoustic beat, even with modern technology. If a reference tone (e.g., 440 Hz) and, for example, a slightly out-of-tune violin string produce a tone simultaneously, a beat can be perceived. The more similar the frequencies, the longer the duration of the beat. In the extreme case, when the frequencies are identical, a beat no longer arises. The string is therefore correctly tuned. Using the Oscilloscope app,4 it is possible to capture and save acoustic signals of this kind and determine the beat frequency fS of the signal, which represents the difference in frequency Δf of the two overlapping tones (for Android smartphones, the app OsciPrime Oscilloscope can be used).
[Emergency nursing: "I want to leave my unit... I'm burning"?].
Ríos Rísquez, M Isabel; Martínez Cano, Fuensanta; Sabuco Tebar, Emiliana; Lozano Alguacil, Ester; Mateo Perea, Ginés
2012-05-01
To determine whether the intent of career mobility is associated with the frequency of job stressors and burnout syndrome experienced by emergency nurses. to assess perceived frequency of job stressors and burnout syndrome prevalence and its possible association with demographic and occupational values of the sample analyzed. We performed a cross-sectional study. We used a survey of sociodemographic and occupational variables, and two validated questionnaires: the "Nursing Stress Scale" validated by Escriba et al. (1999) and the Inventory to assess Burnout Syndrome (MBI-GS, Schaufeli et al., 1996). The total Stress score mean was 32.88 +/- 12.67. There was a Burnout prevalence of 2.34%, while 23.4% of the sample expressed high levels of cynicism/depersonalization. The frequency of job stressors was significantly associated with burnout syndrome dimensions. The frequency of stressors and intention of career mobility were significant predictors of emotional exhaustion and cynicism, while the fixed night shift was associated with lower professional efficacy. This study shows a moderate frequency of job stressors in the unit analyzed, and a low prevalence of Burnout Syndrome. The intention to leave or career mobility is an important predictor of burnout process, so it should be something to take into account by human resource managers, in order to prevent the development of the burnout process in health organizations.
Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings
Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N.
2013-01-01
To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12C6+), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12C6+. Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12C6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12C6+, however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. PMID:23728320
Dynamic modulus estimation and structural vibration analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.
1998-11-18
Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.
NASA Technical Reports Server (NTRS)
Mitchell, J. R.
1972-01-01
The frequency response method of analyzing control system performance is discussed, and the difficulty of obtaining the sampled frequency response of the continuous system is considered. An upper bound magnitude error equation is obtained which yields reasonable estimates of the actual error. Finalization of the compensator improvement program is also reported, and the program was used to design compensators for Saturn 5/S1-C dry workshop and Saturn 5/S1-C Skylab.
Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna
2016-01-01
Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052
NASA Astrophysics Data System (ADS)
Cheng, Z.; Chen, Y.; Liu, Y.; Liu, W.; Zhang, G.
2015-12-01
Among those hydrocarbon reservoir detection techniques, the time-frequency analysis based approach is one of the most widely used approaches because of its straightforward indication of low-frequency anomalies from the time-frequency maps, that is to say, the low-frequency bright spots usually indicate the potential hydrocarbon reservoirs. The time-frequency analysis based approach is easy to implement, and more importantly, is usually of high fidelity in reservoir prediction, compared with the state-of-the-art approaches, and thus is of great interest to petroleum geologists, geophysicists, and reservoir engineers. The S transform has been frequently used in obtaining the time-frequency maps because of its better performance in controlling the compromise between the time and frequency resolutions than the alternatives, such as the short-time Fourier transform, Gabor transform, and continuous wavelet transform. The window function used in the majority of previous S transform applications is the symmetric Gaussian window. However, one problem with the symmetric Gaussian window is the degradation of time resolution in the time-frequency map due to the long front taper. In our study, a bi-Gaussian S transform that substitutes the symmetric Gaussian window with an asymmetry bi-Gaussian window is proposed to analyze the multi-channel seismic data in order to predict hydrocarbon reservoirs. The bi-Gaussian window introduces asymmetry in the resultant time-frequency spectrum, with time resolution better in the front direction, as compared with the back direction. It is the first time that the bi-Gaussian S transform is used for analyzing multi-channel post-stack seismic data in order to predict hydrocarbon reservoirs since its invention in 2003. The superiority of the bi-Gaussian S transform over traditional S transform is tested on a real land seismic data example. The performance shows that the enhanced temporal resolution can help us depict more clearly the edge of the hydrocarbon reservoir, especially when the thickness of the reservoir is small (such as the thin beds).
Characteristics of EMG frequency bands in temporomandibullar disorders patients.
Politti, Fabiano; Casellato, Claudia; Kalytczak, Marcelo Martins; Garcia, Marilia Barbosa Santos; Biasotto-Gonzalez, Daniela Aparecida
2016-12-01
The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23±6.68years) and 27 TMD patients (20 women and seven men; mean age: 24±5.89years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p<0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100Hz of the normalized PSDF range was significantly lower (p<0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays. Copyright © 2016 Elsevier Ltd. All rights reserved.
Improved Controller Design of Grid Friendly™ Appliances for Primary Frequency Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian, Jianming; Sun, Yannan; Marinovici, Laurentiu D.
2015-09-01
The Grid Friendlymore » $$^\\textrm{TM}$$ Appliance~(GFA) controller, developed at Pacific Northwest National Laboratory, can autonomously switch off the appliances by detecting the under-frequency events. In this paper, the impacts of curtailing frequency threshold on the performance of frequency responsive GFAs are carefully analyzed first. The current method of selecting curtailing frequency thresholds for GFAs is found to be insufficient to guarantee the desired performance especially when the frequency deviation is shallow. In addition, the power reduction of online GFAs could be so excessive that it can even impact the system response negatively. As a remedy to the deficiency of the current controller design, a different way of selecting curtailing frequency thresholds is proposed to ensure the effectiveness of GFAs in frequency protection. Moreover, it is also proposed to introduce a supervisor at each distribution feeder to monitor the curtailing frequency thresholds of online GFAs and take corrective actions if necessary.« less
Theoretical analysis of optical poling and frequency doubling effect based on classical model
NASA Astrophysics Data System (ADS)
Feng, Xi; Li, Fuquan; Lin, Aoxiang; Wang, Fang; Chai, Xiangxu; Wang, Zhengping; Zhu, Qihua; Sun, Xun; Zhang, Sen; Sun, Xibo
2018-03-01
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it's exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
Lee, Jaeyoung; Yasmin, Shamsunnahar; Eluru, Naveen; Abdel-Aty, Mohamed; Cai, Qing
2018-02-01
In traffic safety literature, crash frequency variables are analyzed using univariate count models or multivariate count models. In this study, we propose an alternative approach to modeling multiple crash frequency dependent variables. Instead of modeling the frequency of crashes we propose to analyze the proportion of crashes by vehicle type. A flexible mixed multinomial logit fractional split model is employed for analyzing the proportions of crashes by vehicle type at the macro-level. In this model, the proportion allocated to an alternative is probabilistically determined based on the alternative propensity as well as the propensity of all other alternatives. Thus, exogenous variables directly affect all alternatives. The approach is well suited to accommodate for large number of alternatives without a sizable increase in computational burden. The model was estimated using crash data at Traffic Analysis Zone (TAZ) level from Florida. The modeling results clearly illustrate the applicability of the proposed framework for crash proportion analysis. Further, the Excess Predicted Proportion (EPP)-a screening performance measure analogous to Highway Safety Manual (HSM), Excess Predicted Average Crash Frequency is proposed for hot zone identification. Using EPP, a statewide screening exercise by the various vehicle types considered in our analysis was undertaken. The screening results revealed that the spatial pattern of hot zones is substantially different across the various vehicle types considered. Copyright © 2017 Elsevier Ltd. All rights reserved.
Automatic tuned MRI RF coil for multinuclear imaging of small animals at 3T.
Muftuler, L Tugan; Gulsen, Gultekin; Sezen, Kumsal D; Nalcioglu, Orhan
2002-03-01
We have developed an MRI RF coil whose tuning can be adjusted automatically between 120 and 128 MHz for sequential spectroscopic imaging of hydrogen and fluorine nuclei at field strength 3 T. Variable capacitance (varactor) diodes were placed on each rung of an eight-leg low-pass birdcage coil to change the tuning frequency of the coil. The diode junction capacitance can be controlled by the amount of applied reverse bias voltage. Impedance matching was also done automatically by another pair of varactor diodes to obtain the maximum SNR at each frequency. The same bias voltage was applied to the tuning varactors on all rungs to avoid perturbations in the coil. A network analyzer was used to monitor matching and tuning of the coil. A Pentium PC controlled the analyzer through the GPIB bus. A code written in LABVIEW was used to communicate with the network analyzer and adjust the bias voltages of the varactors via D/A converters. Serially programmed D/A converter devices were used to apply the bias voltages to the varactors. Isolation amplifiers were used together with RF choke inductors to provide isolation between the RF coil and the DC bias lines. We acquired proton and fluorine images sequentially from a multicompartment phantom using the designed coil. Good matching and tuning were obtained at both resonance frequencies. The tuning and matching of the coil were changed from one resonance frequency to the other within 60 s. (c) 2002 Elsevier Science (USA).
Magnetic Search Coil (MSC) of Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite
NASA Astrophysics Data System (ADS)
Ozaki, Mitsunori; Yagitani, Satoshi; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Kumamoto, Atsushi; Tsuchiya, Fuminori; Matsuda, Shoya; Matsuoka, Ayako; Sasaki, Takashi; Yumoto, Takahiro
2018-05-01
This paper presents detailed performance values of the Magnetic Search Coil (MSC) that is part of the Plasma Wave Experiment on board the Arase (ERG) satellite. The MSC consists of a three-axis search coil magnetometer with a 200-mm-long magnetic core. The MSC plays a central role in the magnetic field observations, particularly for whistler mode chorus and hiss waves in a few kHz frequency range, which may cause local acceleration and/or rapid loss of radiation belt electrons. Accordingly, the MSC was carefully designed and developed to operate well in harsh radiation environments. To ascertain the wave-normal vectors, polarizations, and refractive indices of the plasma waves in a wide frequency band, the output signals detected by the MSC are fed into the two different wave receivers: one is the WaveForm Capture/Onboard Frequency Analyzer for waveform and spectrum observations in the frequency range from a few Hz up to 20 kHz, and the other is the High Frequency Analyzer for spectrum observations in the frequency range from 10 to 100 kHz. The noise equivalent magnetic induction of the MSC is 20 {fT/Hz}^{1/2} at a frequency of 2 kHz, and the null depth of directionality is - 40 dB, which is equivalent to an angular error less than 1°. The MSC on board the Arase satellite is the first experiment using a current-sensitive preamplifier for probing the plasma waves in the radiation belts.[Figure not available: see fulltext.
Nameda, N
1988-01-01
Illumination allows solid object perception to be obtained and depicted by a shading pattern produced by lighting. The shading cue, as one of solid perception cues (Gibson 1979), was investigated in regard to a white corrugated wave shape, using computer graphic device: Tospix-2. The reason the corrugated wave was chosen, is that an alternately bright and dark pattern, produced by shading, can be conveniently analyzed into contained spatial frequencies. This paper reports spatial frequency properties contained in the shading pattern. The shading patterns, input into the computer graphic device, are analyzed by Fourier Transformation by the same device. After the filtration by various spatial frequency low and high pass filters, Inverse Fourier Transformation is carried out for the residual components. The result of the analysis indicates that the third through higher harmonics components are important in regard to presenting a solid reality feeling in solid perception. Sakata (1983) also reported that an edged pattern, superimposed onto a lower sinusoidal pattern, was important in solid perception. The third through higher harmonics components express the changing position of luminance on the pattern, and a slanted plane relating to the light direction. Detection of a solid shape, constructed with flat planes, is assumed to be on the bottom of the perfect curved solid perception mechanism. Apparent evidence for this assumption, in difficult visual conditions, is that a flat paneled solid is seen before the curved solid. This mechanism is explained by two spatial frequency neural network systems, assumed as having correspondence with higher spatial frequency detection and lower spatial frequency detection.
Numerical study on the instabilities in H2-air rotating detonation engines
NASA Astrophysics Data System (ADS)
Liu, Yan; Zhou, Weijiang; Yang, Yunjun; Liu, Zhou; Wang, Jianping
2018-04-01
Numerical simulations of rotating detonation engines (RDEs) are performed using two-dimensional Euler equations and a detailed chemistry model of H2-air. Two propagation modes, the one-wave mode and the two-wave mode, are observed in the RDEs. The instabilities of the RDEs are studied and analyzed specifically. A low frequency instability and a high frequency instability are found from the pressure-time trace measured at a fixed location and the average density-time trace of the RDEs. For the low frequency instability, the pressure peak of the pressure-time trace oscillates with a low frequency while the average density is stable. The deviation between the measurement location and the location of the detonation wave results in the low frequency instability. For the high frequency instability, the average density of the RDEs oscillates regularly with a single frequency while the pressure oscillates irregularly with several frequencies. The oscillation of the detonation wave height results in the high frequency instability. Furthermore, the low frequency instability and the high frequency instability both occur in the one-wave and two-wave mode RDEs.
Sequential Analysis of Mastery Behavior in 6- and 12-Month-Old Infants.
ERIC Educational Resources Information Center
MacTurk, Robert H.; And Others
1987-01-01
Sequences of mastery behavior were analyzed in a sample of 67 infants 6 to 12 months old. Authors computed (a) frequencies of six categories of mastery behavior, transitional probabilities, and z scores for each behavior change, and (b) transitions from a mastery behavior to positive affect. Changes in frequencies and similarity in organization…
Mid-Latitude Mobile Wideband HF- NVIS Channel Analysis: Part 1
2017-09-14
Division EXECUTIVE SUMMARY High frequency (HF) links (2 to 30 MHz) are an alternative to the cost and tactical fragility of commercial satellite...43 4.5 HIGH -LATITUDE HF AND HF-NVIS MODELS...ionosphere without vehicle speed..................... B-6 xi 1. REPORT OUTLINE This report analyzes a mid-latitude wideband high frequency nearly vertical
A Model to Demonstrate the Place Theory of Hearing
ERIC Educational Resources Information Center
Ganesh, Gnanasenthil; Srinivasan, Venkata Subramanian; Krishnamurthi, Sarayu
2016-01-01
In this brief article, the authors discuss Georg von Békésy's experiments showing the existence of traveling waves in the basilar membrane and that maximal displacement of the traveling wave was determined by the frequency of the sound. The place theory of hearing equates the basilar membrane to a frequency analyzer. The model described in this…
ERIC Educational Resources Information Center
Cakici, Ozden Engin
2012-01-01
This dissertation examines three issues on the effect of Radio Frequency Identification (RFID) on the management of healthcare supply chain performance within the context of inventory management. Motivated by a case study conducted in a radiology practice, the second chapter analyzes the incremental benefits of RFID over barcodes for managing…
NASA Astrophysics Data System (ADS)
Mishra, Rinku; Dey, M.
2018-04-01
An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.
Radial evolution of power spectra of interplanetary Alfvenic turbulence
NASA Technical Reports Server (NTRS)
Bavassano, B.; Dobrowolny, M.; Mariani, F.; Ness, N. F.
1981-01-01
The radial evolution of the power spectra of the MHD turbulence within the trailing edge of high speed streams in the solar wind was investigated with the magnetic field data of Helios 1 and 2 for heliocentric distance between 0.3 and 0.9 AU. In the analyzed frequency range (.00028 Hz to .0083 Hz) the computed spectra have, near the Earth, values of the spectral index close to that predicted for an incompressible hydromagnetic turbulence in a stationary state. Approaching the Sun the spectral slope remains unchanged for frequencies f or approximately .00 Hz, whereas at lower frequencies, a clear evolution toward a less steep fall off with frequency is found. The radial gradient of the power in Alfvenic fluctuations depends on frequency and it increases upon increasing frequency. For frequencies f or approximately .00 Hz, however, the radial gradient remains approximately the same. Possible theoretical implications of the observational features are discussed.
NASA Astrophysics Data System (ADS)
Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu; Kasaba, Yasumasa; Yagitani, Satoshi; Ozaki, Mitsunori; Imachi, Tomohiko; Ishisaka, Keigo; Kumamoto, Atsushi; Tsuchiya, Fuminori; Ota, Mamoru; Kurita, Satoshi; Miyoshi, Yoshizumi; Hikishima, Mitsuru; Matsuoka, Ayako; Shinohara, Iku
2018-05-01
We developed the onboard processing software for the Plasma Wave Experiment (PWE) onboard the Exploration of energization and Radiation in Geospace, Arase satellite. The PWE instrument has three receivers: Electric Field Detector, Waveform Capture/Onboard Frequency Analyzer (WFC/OFA), and the High-Frequency Analyzer. We designed a pseudo-parallel processing scheme with a time-sharing system and achieved simultaneous signal processing for each receiver. Since electric and magnetic field signals are processed by the different CPUs, we developed a synchronized observation system by using shared packets on the mission network. The OFA continuously measures the power spectra, spectral matrices, and complex spectra. The OFA obtains not only the entire ELF/VLF plasma waves' activity but also the detailed properties (e.g., propagation direction and polarization) of the observed plasma waves. We performed simultaneous observation of electric and magnetic field data and successfully obtained clear wave properties of whistler-mode chorus waves using these data. In order to measure raw waveforms, we developed two modes for the WFC, `chorus burst mode' (65,536 samples/s) and `EMIC burst mode' (1024 samples/s), for the purpose of the measurement of the whistler-mode chorus waves (typically in a frequency range from several hundred Hz to several kHz) and the EMIC waves (typically in a frequency range from a few Hz to several hundred Hz), respectively. We successfully obtained the waveforms of electric and magnetic fields of whistler-mode chorus waves and ion cyclotron mode waves along the Arase's orbit. We also designed the software-type wave-particle interaction analyzer mode. In this mode, we measure electric and magnetic field waveforms continuously and transfer them to the mission data recorder onboard the Arase satellite. We also installed an onboard signal calibration function (onboard SoftWare CALibration; SWCAL). We performed onboard electric circuit diagnostics and antenna impedance measurement of the wire-probe antennas along the orbit. We utilize the results obtained using the SWCAL function when we calibrate the spectra and waveforms obtained by the PWE.[Figure not available: see fulltext.
Fang, X; Yu, L S; Ma, X; Xia, R M; Jiang, Y H; Liu, H X; Jing, Y Y
2018-01-07
Objective: To analyze the correlation between the changes of fibrinogen and the treatment effect of all-frequency sudden deafness, and to explore the individualized treatment strategy for the use of Batroxobin. Methods: Patients with all-frequency sudden deafness who were admitted to Department of Otorhinolaryngology, People's Hospital of Peking University, from January 2010 to September 2016 were selected. All patients were given standard treatment and regular use of Batroxobin. Value of fibrinogen on D1 (before treatment) / D3 / D7 (±1) and D14 (±2) were recorded, at the same time, the correlation between the changes of fibrinogen and prognosis of all-frequency sudden deafness by the audiograms of onset and after-treatment of all patients were analyzed. Independent t -test was used to analyze normal distributed measurement data and chi square linear trend test was used to analyze the curative effect of different fibrinogen groups. Results: A total of 148 patients were included, the outcomes were worst when the patient's fibrinogen was below 2 g/L or above 4 g/L before treatment, ineffective rate were both 50%. The fibrinogen was lowest when the treatment came to the third day. Normally, the patient's prognosis was best when this value waved between 0.7 and 0.9 g/L, with a total effective rate between 73.9% and 83.3%. The fibrinogen value of the 7th day was a good indicator of the outcome, and Fib7 value was significant lower in patients of effective group than ineffective ones ((1.25±0.37)g/L vs (1.38±0.35) g/L, t =-0.27, P =0.04). Patients found a best recovery when Fib7 was below 1 g/L, and the higher the Fib7 value, the higher the inefficiency (χ(2)=7.55, P =0.01). Batroxobin showed safety during the treatment and found no complications. Conclusion: The change of fibrinogen in the process of all-frequency sudden deafness is closely related to the curative effect.
Medium-frequency impulsive-thrust-activated liquid hydrogen reorientation with Geyser
NASA Technical Reports Server (NTRS)
Hung, R. J.; Shyu, K. L.
1992-01-01
Efficient technique are studied for accomplishing propellant resettling through the minimization of propellant usage through impulsive thrust. A comparison between the use of constant-thrust and impulsive-thrust accelerations for the activation of propellant resettlement shows that impulsive thrust is superior to constant thrust for liquid reorientation in a reduced-gravity environment. This study shows that when impulsive thrust with 0.1-1.0-, and 10-Hz frequencies for liquid-fill levels in the range between 30-80 percent is considered, the selection of 1.0-Hz-frequency impulsive thrust over the other frequency ranges of impulsive thrust is the optimum. Characteristics of the slosh waves excited during the course of 1.0-Hz-frequency impulsive-thrust liquid reorientation were also analyzed.
Sensitivity of Hawking radiation to superluminal dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, C.; Garay, L. J.; Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid
2009-01-15
We analyze the Hawking radiation process due to collapsing configurations in the presence of superluminal modifications of the dispersion relation. With such superluminal dispersion relations, the horizon effectively becomes a frequency-dependent concept. In particular, at every moment of the collapse, there is a critical frequency above which no horizon is experienced. We show that, as a consequence, the late-time radiation suffers strong modifications, both quantitative and qualitative, compared to the standard Hawking picture. Concretely, we show that the radiation spectrum becomes dependent on the measuring time, on the surface gravities associated with different frequencies, and on the critical frequency. Evenmore » if the critical frequency is well above the Planck scale, important modifications still show up.« less
Seismology and geodesy of the sun: Low-frequency oscillations.
Dicke, R H
1981-04-01
The hourly averages of the solar ellipticity measured from June 13 to Sept. 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 hr nu < 0.5 hr(-1). Nothing significant is found for frequencies nu > 0.1 hr(-1) but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-hr period, with many observational days missing, and with different numbers of hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.
A wide-band, high-resolution spectrum analyzer
NASA Technical Reports Server (NTRS)
Wilck, H. C.; Quirk, M. P.; Grimm, M. J.
1985-01-01
A million-channel, 20 MHz-bandwidth, digital spectrum analyzer under evelopment for use in the SETI Sky Survey and other applications in the Deep Space Network is described. The analyzer digitizes an analog input, performs a 2(20)-point Radix-2, Fast Fourier Transform, accumulates the output power, and normalizes the output to remove frequency-dependent gain. The effective speed of the real-time hardware is 2.2 GigaFLOPS.
The Statistical Loop Analyzer (SLA)
NASA Technical Reports Server (NTRS)
Lindsey, W. C.
1985-01-01
The statistical loop analyzer (SLA) is designed to automatically measure the acquisition, tracking and frequency stability performance characteristics of symbol synchronizers, code synchronizers, carrier tracking loops, and coherent transponders. Automated phase lock and system level tests can also be made using the SLA. Standard baseband, carrier and spread spectrum modulation techniques can be accomodated. Through the SLA's phase error jitter and cycle slip measurements the acquisition and tracking thresholds of the unit under test are determined; any false phase and frequency lock events are statistically analyzed and reported in the SLA output in probabilistic terms. Automated signal drop out tests can be performed in order to trouble shoot algorithms and evaluate the reacquisition statistics of the unit under test. Cycle slip rates and cycle slip probabilities can be measured using the SLA. These measurements, combined with bit error probability measurements, are all that are needed to fully characterize the acquisition and tracking performance of a digital communication system.
Effect of pole zero location on system dynamics of boost converter for micro grid
NASA Astrophysics Data System (ADS)
Lavanya, A.; Vijayakumar, K.; Navamani, J. D.; Jayaseelan, N.
2018-04-01
Green clean energy like photo voltaic, wind energy, fuel cell can be brought together by microgrid.For low voltage sources like photovoltaic cell boost converter is very much essential. This paper explores the dynamic analysis of boost converter in a continuous conduction mode (CCM). The transient performance and stability analysis is carried out in this paper using time domain analysis and frequency domain analysis techniques. Boost converter is simulated using both PSIM and MATLAB software. Furthermore, state space model obtained and the transfer function is derived. The converter behaviour when a step input is applied is analyzed and stability of the converter is analyzed from bode plot frequency for open loop. Effect of the locations of poles and zeros in the transfer function of boost converter and how the performance parameters are affected is discussed in this paper. Closed loop performance with PI controller is also analyzed for boost converter.
Cross-Modulated Amplitudes and Frequencies Characterize Interacting Components in Complex Systems
NASA Astrophysics Data System (ADS)
Gans, Fabian; Schumann, Aicko Y.; Kantelhardt, Jan W.; Penzel, Thomas; Fietze, Ingo
2009-03-01
The dynamics of complex systems is characterized by oscillatory components on many time scales. To study the interactions between these components we analyze the cross modulation of their instantaneous amplitudes and frequencies, separating synchronous and antisynchronous modulation. We apply our novel technique to brain-wave oscillations in the human electroencephalogram and show that interactions between the α wave and the δ or β wave oscillators as well as spatial interactions can be quantified and related with physiological conditions (e.g., sleep stages). Our approach overcomes the limitation to oscillations with similar frequencies and enables us to quantify directly nonlinear effects such as positive or negative frequency modulation.
FIBER AND INTEGRATED OPTICS: Radio-frequency electrooptic modulation in optical fibers
NASA Astrophysics Data System (ADS)
Bulyuk, A. N.
1992-10-01
The electrooptic interaction in single-mode optical fibers with both linear and circular birefringe is analyzed. In most cases, a large interaction length imposes a limit on the modulation frequency. A circular birefringence in an optical fiber may lead to an effective coupling of polarization normal modes if a phase-matching condition is satisfied. Through an appropriate choice of polarization states of the light at the entrance and exit of the device, one can achieve a polarization modulation or a frequency shift of the light. There are possible applications in rf polarization modulators, devices for shifting the frequency of light, and detectors of electromagnetic fields.
Entanglement and asymmetric steering over two octaves of frequency difference
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2017-12-01
The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.
Optical frequency standards for gravitational wave detection using satellite velocimetry
NASA Astrophysics Data System (ADS)
Vutha, Amar
2015-04-01
Satellite Doppler velocimetry, building on the work of Kaufmann and Estabrook and Wahlquist, is a complementary technique to interferometric methods of gravitational wave detection. This method is based on the fact that the gravitational wave amplitude appears in the apparent Doppler shift of photons propagating from an emitter to a receiver. This apparent Doppler shift can be resolved provided that a frequency standard, capable of quickly averaging down to a high stability, is available. We present a design for a space-capable optical atomic frequency standard, and analyze the sensitivity of satellite Doppler velocimetry for gravitational wave astronomy in the milli-hertz frequency band.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-03-01
We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bame, D.
To determine if seismic signals at frequencies up to 50 Hz are useful for detecting events and discriminating between earthquakes and explosions, approximately 180 events from the three-component high-frequency seismic element (HFSE) installed at the center of the Norwegian Regional Seismic Array (NRSA) have been analyzed. The attenuation of high-frequency signals in Scandinavia varies with distance, azimuth, magnitude, and source effects. Most of the events were detected with HFSE, although detections were better on the NRSA where signal processing techniques were used. Based on a preliminary analysis, high-frequency data do not appear to be a useful discriminant in Scandinavia. 21more » refs., 29 figs., 3 tabs.« less
ITER-like antenna capacitors voltage probes: Circuit/electromagnetic calculations and calibrations.
Helou, W; Dumortier, P; Durodié, F; Lombard, G; Nicholls, K
2016-10-01
The analyses illustrated in this manuscript have been performed in order to provide the required data for the amplitude-and-phase calibration of the D-dot voltage probes used in the ITER-like antenna at the Joint European Torus tokamak. Their equivalent electrical circuit has been extracted and analyzed, and it has been compared to the one of voltage probes installed in simple transmission lines. A radio-frequency calibration technique has been formulated and exact mathematical relations have been derived. This technique mixes in an elegant fashion data extracted from measurements and numerical calculations to retrieve the calibration factors. The latter have been compared to previous calibration data with excellent agreement proving the robustness of the proposed radio-frequency calibration technique. In particular, it has been stressed that it is crucial to take into account environmental parasitic effects. A low-frequency calibration technique has been in addition formulated and analyzed in depth. The equivalence between the radio-frequency and low-frequency techniques has been rigorously demonstrated. The radio-frequency calibration technique is preferable in the case of the ITER-like antenna due to uncertainties on the characteristics of the cables connected at the inputs of the voltage probes. A method to extract the effect of a mismatched data acquisition system has been derived for both calibration techniques. Finally it has been outlined that in the case of the ITER-like antenna voltage probes can be in addition used to monitor the currents at the inputs of the antenna.
Tip clearance noise of axial flow fans operating at design and off-design condition
NASA Astrophysics Data System (ADS)
Fukano, T.; Jang, C.-M.
2004-08-01
The noise due to tip clearance (TC) flow in axial flow fans operating at a design and off-design conditions is analyzed by an experimental measurement using two hot-wire probes rotating with the fan blades. The unsteady nature of the spectra of the real-time velocities measured by two hot-wire sensors in a vortical flow region is investigated by using cross-correlation coefficient and retarded time of the two fluctuating velocities. The results show that the noise due to TC flow consists of a discrete frequency noise due to periodic velocity fluctuation and a broadband noise due to velocity fluctuation in the blade passage. The peak frequencies in a vortical flow are mainly observed below at four harmonic blade passing frequency. The discrete frequency component of velocity fluctuation at the off-design operating conditions is generated in vortical flow region as well as in reverse flow region. The peak frequency can be an important noise source when the fans are rotated with a high rotational speed. The authors propose a spiral pattern of velocity fluctuation in the vortical flow to describe the generation mechanism of the peak frequency in the vortical flow. In addition, noise increase due to TC flow at low flow rate condition is analyzed with relation to the distribution of velocity fluctuation due to the interference between the tip leakage vortex and the adjacent pressure surface of the blade.
Temporal Evolution of Chromospheric Oscillations in Flaring Regions: A Pilot Study
NASA Astrophysics Data System (ADS)
Monsue, T.; Hill, F.; Stassun, K. G.
2016-10-01
We have analyzed Hα intensity images obtained at a 1 minute cadence with the Global Oscillation Network Group (GONG) system to investigate the properties of oscillations in the 0-8 mHz frequency band at the location and time of strong M- and X-class flares. For each of three subregions within two flaring active regions, we extracted time series from multiple distinct positions, including the flare core and quieter surrounding areas. The time series were analyzed with a moving power-map analysis to examine power as a function of frequency and time. We find that, in the flare core of all three subregions, the low-frequency power (˜1-2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency- and time-dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flare cores. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset. Dark lanes of reduced wave power are also visible in the power maps, which may arise from the interaction of the acoustic waves and the magnetic field.
TEMPORAL EVOLUTION OF CHROMOSPHERIC OSCILLATIONS IN FLARING REGIONS: A PILOT STUDY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monsue, T.; Stassun, K. G.; Hill, F., E-mail: teresa.monsue@vanderbilt.edu, E-mail: keivan.stassun@vanderbilt.edu, E-mail: hill@email.noao.edu
2016-10-01
We have analyzed H α intensity images obtained at a 1 minute cadence with the Global Oscillation Network Group (GONG) system to investigate the properties of oscillations in the 0–8 mHz frequency band at the location and time of strong M- and X-class flares. For each of three subregions within two flaring active regions, we extracted time series from multiple distinct positions, including the flare core and quieter surrounding areas. The time series were analyzed with a moving power-map analysis to examine power as a function of frequency and time. We find that, in the flare core of all threemore » subregions, the low-frequency power (∼1–2 mHz) is substantially enhanced immediately prior to and after the flare, and that power at all frequencies up to 8 mHz is depleted at flare maximum. This depletion is both frequency- and time-dependent, which probably reflects the changing depths visible during the flare in the bandpass of the filter. These variations are not observed outside the flare cores. The depletion may indicate that acoustic energy is being converted into thermal energy at flare maximum, while the low-frequency enhancement may arise from an instability in the chromosphere and provide an early warning of the flare onset. Dark lanes of reduced wave power are also visible in the power maps, which may arise from the interaction of the acoustic waves and the magnetic field.« less
Lasekan, John B.; Hustead, Deborah S.; Masor, Marc; Murray, Robert
2017-01-01
ABSTRACT Background: Meta-analysis studies have documented that palm olein (PALM) predominant formulas reduce calcium and fat absorption, and bone mineralization in infants, but none have been documented for stool consistency and frequency. Objective: The study objective was to conduct a meta-analysis of published randomized clinical trials (RCTs) on the effect of PALM-based formulas on stool consistency and frequency in infants. Design: A literature search was conducted in BIOSIS Previews®, Embase®, Embase® Alert, MEDLINE® and Cochrane databases. PALM-based RCTs with available stool outcomes were selected and meta-analyzed. Mean rank stool consistency (MRSC, primary outcome) and stool frequency (secondary outcome) were compared between infants fed PALM-based and PALM-free formulas (NoPALM), using random effects model. Results: Nine out of identified16 studies were meta-analyzed. The mean MRSC (scale of 1 = watery to 5 = hard) in the NoPALM-fed infants was lower (softer stools) compared to the PALM-fed infants (mean difference ‒0.355, 95% Confidence Interval [CI] of ‒0.472 to ‒0.239, p < 0.001). Difference for stool frequency was not significant (p = 0.613). Conclusion: Meta-analysis of RCTs indicated that NoPALM-fed infants have significantly softer stools but similar stool frequencies versus PALM-fed infants, despite differences in study types and design. Future meta-analysis could benefit from including comparison with human milk-fed infants. PMID:28659741
Single- and multi-frequency detection of surface displacements via scanning probe microscopy.
Romanyuk, Konstantin; Luchkin, Sergey Yu; Ivanov, Maxim; Kalinin, Arseny; Kholkin, Andrei L
2015-02-01
Piezoresponse force microscopy (PFM) provides a novel opportunity to detect picometer-level displacements induced by an electric field applied through a conducting tip of an atomic force microscope (AFM). Recently, it was discovered that superb vertical sensitivity provided by PFM is high enough to monitor electric-field-induced ionic displacements in solids, the technique being referred to as electrochemical strain microscopy (ESM). ESM has been implemented only in multi-frequency detection modes such as dual AC resonance tracking (DART) and band excitation, where the response is recorded within a finite frequency range, typically around the first contact resonance. In this paper, we analyze and compare signal-to-noise ratios of the conventional single-frequency method with multi-frequency regimes of measuring surface displacements. Single-frequency detection ESM is demonstrated using a commercial AFM.
Burst-by-burst laser frequency monitor
NASA Technical Reports Server (NTRS)
Esproles, Carlos (Inventor)
1994-01-01
The invention is a system for real-time frequency monitoring and display of an RF burst where the burst frequency is analyzed and displayed on a burst-by-burst basis in order to allow for frequency control. Although the invention was made for monitoring the laser frequency of a LIDAR system, it has other applications where realtime monitoring is required. The novelty of the invention resides in the use of a counter that is reset at the beginning of each unit time of monitoring and then gated for a unit of time. The invention also has an LED bar graph for displaying the measure of frequency at the end of each unit time in either a bar length mode or a moving dot mode. In the latter mode, the operator makes necessary adjustments to maintain the dot at the center of the bar graph.
Experimental and analytical studies in fluids
NASA Technical Reports Server (NTRS)
Goglia, Gene L.; Ibrahim, Adel
1984-01-01
The first objective was to analyze and design a true airspeed sensor which will replace the conventional pitot-static pressure transducer for small commercial aircraft. The second objective was to obtain a numerical solution and predict the frequency response which is generated by the vortex whistle at a certain airspeed. It was concluded flow rate measurements indicate that the vortex tube sound frequency is linearly proportional to the frequency response. The vortex tube whistle frequency is dependent upon geometrical parameters to such an extent that: an increase in vortex tube length produces a decrease in frequency response and that an increase in the exhaust nozzle length produces an increase in the frequency precession. An increase in the vortex tube diameter produces a decrease in frequency precession. An increase in swirler diameter produces a decrease in frequency. An increase in the location distance of the microphone pickup signal point from the inside edge of the exit nozzle produces an increase in frequency response. The experimental results indicate that those parameters most significantly effecting frequency are in descending order of importance microphone location, vortex tube diameter, exit nozzle length, vortex tube length, and swirler diameter.
Amplitude-frequency effect of Y-cut langanite and langatate.
Kim, Yoonkee
2003-12-01
Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.
NASA Astrophysics Data System (ADS)
Seyfried, Daniel; Schubert, Karsten; Schoebel, Joerg
2014-12-01
Employing a continuous-wave radar system, with the stepped-frequency radar being one type of this class, all reflections from the environment are present continuously and simultaneously at the receiver. Utilizing such a radar system for Ground Penetrating Radar purposes, antenna cross-talk and ground bounce reflection form an overall dominant signal contribution while reflections from objects buried in the ground are of quite weak amplitude due to attenuation in the ground. This requires a large dynamic range of the receiver which in turn requires high sensitivity of the radar system. In this paper we analyze the sensitivity of our vector network analyzer utilized as stepped-frequency radar system for GPR pipe detection. We furthermore investigate the performance of increasing the sensitivity of the radar by means of appropriate averaging and low-noise pre-amplification of the received signal. It turns out that the improvement in sensitivity actually achievable may differ significantly from theoretical expectations. In addition, we give a descriptive explanation why our appropriate experiments demonstrate that the sensitivity of the receiver is independent of the distance between the target object and the source of dominant signal contribution. Finally, our investigations presented in this paper lead to a preferred setting of operation for our vector network analyzer in order to achieve best detection capability for weak reflection amplitudes, hence making the radar system applicable for Ground Penetrating Radar purposes.
Effect of Al2O3 nanoparticles in plasticized PMMA-LiClO4 based solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Pal, P.; Ghosh, A.
2017-05-01
We have studied the broadband complex conductivity spectra covering a 0.01 Hz-3 GHz frequency range for plasticized PMMA-LiClO4 based solid polymer electrolyte embedded with Al2O3 nanoparticle. We have analyzed the conductivity spectra using the random free-energy barrier model (RBM) coupled with electrode polarization contribution in the low frequency region and at high temperatures. The temperature dependence of the ionic conductivity obtained from the analysis has been analyzed using Vogel-Tammann-Fulcher equation. The maximum ionic conductivity ˜ 1.93×10-4 S/cm has been obtained for 1 wt% Al2O3 nanoparticle.
Energetic ion mass analysis using a radio-frequency quadrupole filter.
Medley, S S
1978-06-01
In conventional applications of the radio-frequency quadrupole mass analyzer, the ion injection energy is usually limited to less than the order of 100 eV due to constraints on the dimensions and power supply of the device. However, requirements often arise, for example in fusion plasma ion diagnostics, for mass analysis of much more energetic ions. A technique easily adaptable to any conventional quadrupole analyzer which circumvents the limitation on injection energy is documented in this paper. Briefly, a retarding potential applied to the pole assembly is shown to facilitate mass analysis of multikiloelectron volt ions without altering the salient characteristics of either the quadrupole filter or the ion beam.
Single-shot distributed Brillouin optical time domain analyzer.
Fang, Jian; Xu, Pengbai; Dong, Yongkang; Shieh, William
2017-06-26
We demonstrate a novel single-shot distributed Brillouin optical time domain analyzer (SS-BOTDA). In our method, dual-polarization probe with orthogonal frequency-division multiplexing (OFDM) modulation is used to acquire the distributed Brillouin gain spectra, and coherent detection is used to enhance the signal-to-noise ratio (SNR) drastically. Distributed temperature sensing is demonstrated over a 1.08 km standard single-mode fiber (SSMF) with 20.48 m spatial resolution and 0.59 °C temperature accuracy. Neither frequency scanning, nor polarization scrambling, nor averaging is required in our scheme. All the data are obtained through only one-shot measurement, indicating that the sensing speed is only limited by the length of fiber.
NASA Technical Reports Server (NTRS)
Wheeler, A. A.; Mcfadden, G. B.; Murray, B. T.; Coriell, S. R.
1991-01-01
The effect of vertical, sinusoidal, time-dependent gravitational acceleration on the onset of solutal convection during directional solidification is analyzed in the limit of large modulation frequency. When the unmodulated state is unstable, the modulation amplitude required to stabilize the system is determined by the method of averaging. When the unmodulated state is stable, resonant modes of instability occur at large modulation amplitude. These are analyzed using matched asymptotic expansions to elucidate the boundary-layer structure for both the Rayleigh-Benard and directional solidification configurations. Based on these analyses, a thorough examination of the dependence of the stability criteria on the unmodulated Rayleigh number, Schmidt number, and distribution coefficient, is carried out.
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Kuixing; Fu, Xinghu; Bi, Weihong
2013-07-01
During the fusion splicing Hollow Core Photonic Crystal Fiber (HC-PCF), the air-holes collapse easily due to the improper fusion duration time and optical power. To analyze the temperature characteristics of fusion splicing HC-PCF, a heating method by sinusoidal modulation CO2 laser has been proposed. In the sinusoidal modulation, the variation relationships among laser power, temperature difference and angular frequency are analyzed. The results show that the theoretical simulation is basically in accordance with the experimental data. Therefore, a low-loss fusion splicing can be achieved by modulating the CO2 laser frequency to avoid the air-holes collapse of HC-PCF. Further, the errors are also given.
NASA Technical Reports Server (NTRS)
Lokerson, D. C. (Inventor)
1977-01-01
A speech signal is analyzed by applying the signal to formant filters which derive first, second and third signals respectively representing the frequency of the speech waveform in the first, second and third formants. A first pulse train having approximately a pulse rate representing the average frequency of the first formant is derived; second and third pulse trains having pulse rates respectively representing zero crossings of the second and third formants are derived. The first formant pulse train is derived by establishing N signal level bands, where N is an integer at least equal to two. Adjacent ones of the signal bands have common boundaries, each of which is a predetermined percentage of the peak level of a complete cycle of the speech waveform.
New sample cell configuration for wide-frequency dielectric spectroscopy: DC to radio frequencies.
Nakanishi, Masahiro; Sasaki, Yasutaka; Nozaki, Ryusuke
2010-12-01
A new configuration for the sample cell to be used in broadband dielectric spectroscopy is presented. A coaxial structure with a parallel plate capacitor (outward parallel plate cell: OPPC) has made it possible to extend the frequency range significantly in comparison with the frequency range of the conventional configuration. In the proposed configuration, stray inductance is significantly decreased; consequently, the upper bound of the frequency range is improved by two orders of magnitude from the upper limit of conventional parallel plate capacitor (1 MHz). Furthermore, the value of capacitance is kept high by using a parallel plate configuration. Therefore, the precision of the capacitance measurement in the lower frequency range remains sufficiently high. Finally, OPPC can cover a wide frequency range (100 Hz-1 GHz) with an appropriate admittance measuring apparatus such as an impedance or network analyzer. The OPPC and the conventional dielectric cell are compared by examining the frequency dependence of the complex permittivity for several polar liquids and polymeric films.
Peak-flow frequency relations and evaluation of the peak-flow gaging network in Nebraska
Soenksen, Philip J.; Miller, Lisa D.; Sharpe, Jennifer B.; Watton, Jason R.
1999-01-01
Estimates of peak-flow magnitude and frequency are required for the efficient design of structures that convey flood flows or occupy floodways, such as bridges, culverts, and roads. The U.S. Geological Survey, in cooperation with the Nebraska Department of Roads, conducted a study to update peak-flow frequency analyses for selected streamflow-gaging stations, develop a new set of peak-flow frequency relations for ungaged streams, and evaluate the peak-flow gaging-station network for Nebraska. Data from stations located in or within about 50 miles of Nebraska were analyzed using guidelines of the Interagency Advisory Committee on Water Data in Bulletin 17B. New generalized skew relations were developed for use in frequency analyses of unregulated streams. Thirty-three drainage-basin characteristics related to morphology, soils, and precipitation were quantified using a geographic information system, related computer programs, and digital spatial data.For unregulated streams, eight sets of regional regression equations relating drainage-basin to peak-flow characteristics were developed for seven regions of the state using a generalized least squares procedure. Two sets of regional peak-flow frequency equations were developed for basins with average soil permeability greater than 4 inches per hour, and six sets of equations were developed for specific geographic areas, usually based on drainage-basin boundaries. Standard errors of estimate for the 100-year frequency equations (1percent probability) ranged from 12.1 to 63.8 percent. For regulated reaches of nine streams, graphs of peak flow for standard frequencies and distance upstream of the mouth were estimated.The regional networks of streamflow-gaging stations on unregulated streams were analyzed to evaluate how additional data might affect the average sampling errors of the newly developed peak-flow equations for the 100-year frequency occurrence. Results indicated that data from new stations, rather than more data from existing stations, probably would produce the greatest reduction in average sampling errors of the equations.
Ren, Jun-Guo; Wang, Dong-Zhi; Lei, Lei; Kang, Li; Liu, Jian-Xun
2017-05-01
To find the relationship between traditional efficacy of Chinese medicine and modern pharmacological action by using data mining, and provide information and reference for further research and development for the pharmacology research of traditional Chinese medicine.The information of 547 kinds of traditional Chinese medicines, 335 kinds of Chinese medicine effects and 86 kinds of pharmacological actions were collected and processed in Clinical Guide to the Chinese Pharmacopoeia published in 2010; Access and Excel software were used to analyze the frequence and frequency of single effect, pharmacological action, and both. In addition, the relationship between efficacy and pharmacology was analyzed with the clearing heat and antibacterial effects as the example. The analysis results showed that 547 kinds of Chinese medicines involved 335 kinds of Chinese medicine effects and 86 kinds of pharmacological actions. Among them, the most frequent Chinese medicine effect was"clearing heat", whose frequence was 130 and the frequency was 0.24; the most frequent pharmacological action was "anti-inflammatory action" whose frequence was 191 and the frequency was 0.35. The most common efficacy-pharmacological action group was "clearing heat" and "anti-bacterial action", whose frequence was 75 and the frequency was 0.26. The couple of "purgation" and "cathartic effect" had the largest frequency of 0.30, but they just appeared together for 3 times. There were 52 kinds of pharmacological actions that occurred together with clearing heat, of which, the top 10 were anti-bacterial action, anti-inflammatory action, antineoplastic action, anti-hepatic injury action, immunoregulation action, antipyretic action, antiviralaction, hypoglycemic action, antioxidant action and analgesic action. There were 161 kinds of Chinese medicine effects that occurred together with anti-bacterial action, of which, the top 10 were clearing heat, detoxification, detumescence, analgesia, resolving dampness, pesticide, cooling blood, expelling wind, eliminating dampness and hemostasis. These results suggested that there was a certain relationship between traditional Chinese medicine effects and modern pharmacological actions. Copyright© by the Chinese Pharmaceutical Association.
Noise Spectroscopy Used in Biology
NASA Astrophysics Data System (ADS)
Žacik, Michal
This thesis contains glossary topic of spectroscopic measurement methods in broad bands of frequency. There is designed experimental measurement method for simple samples and biological samples measurements for noise spectroscopy in frequency range of 0.1 - 6 GHz, using broadband noise generator. There is realized the workplace and the measurement method is verified by measuring on selected samples. Measurements a displayed and analyzed.
Tornado detection data reduction and analysis
NASA Technical Reports Server (NTRS)
Davisson, L. D.
1977-01-01
Data processing and analysis was provided in support of tornado detection by analysis of radio frequency interference in various frequency bands. Sea state determination data from short pulse radar measurements were also processed and analyzed. A backscatter simulation was implemented to predict radar performance as a function of wind velocity. Computer programs were developed for the various data processing and analysis goals of the effort.
ERIC Educational Resources Information Center
Kuhnle, Claudia; Hofer, Manfred; Kilian, Britta
2010-01-01
The aim of this self-report study is to analyze proposed interrelations between value orientations, self-control, frequency of school-leisure conflicts, and life-balance in adolescence. Life-balance is defined as satisfying time investment in different life areas. The tested model posits that self-control is negatively related to conflict…
Analyzing Idioms and Their Frequency in Three Advanced ILI Textbooks: A Corpus-Based Study
ERIC Educational Resources Information Center
Alavi, Sepideh; Rajabpoor, Aboozar
2015-01-01
The present study aimed at identifying and quantifying the idioms used in three ILI "Advanced" level textbooks based on three different English corpora; MICASE, BNC and the Brown Corpus, and comparing the frequencies of the idioms across the three corpora. The first step of the study involved searching the books to find multi-word…
Parametric traveling wave amplifier with a low pump frequency
NASA Astrophysics Data System (ADS)
Marchenko, V. F.; Streltsov, A. M.; Zhmurov, S. E.
1983-01-01
Consideration is given to the model of a parametric traveling wave amplifier with a cubic nonlinearity in the form of an LF filter with MOS varactors. The operation of the amplifier is analyzed with allowance for wave damping and nonlinearity saturation, and the nonlinear mode of operation is examined. Experimental results are discussed, with emphasis on the amplitude-frequency response characteristics.
ERIC Educational Resources Information Center
Proger, Barton B.; And Others
Many researchers assume that unequal cell frequencies in analysis of variance (ANOVA) designs result from poor planning. However, there are several valid reasons why one might have to analyze an unequal-n data matrix. The present study reviewed four categories of methods for treating unequal-n matrices by ANOVA: (a) unaltered data (least-squares…
Postural Analysis in Time and Frequency Domains in Patients with Ehlers-Danlos Syndrome
ERIC Educational Resources Information Center
Galli, Manuela; Rigoldi, Chiara; Celletti, Claudia; Mainardi, Luca; Tenore, Nunzio; Albertini, Giorgio; Camerota, Filippo
2011-01-01
The goal of this work is to analyze postural control in Ehlers-Danlos syndrome (EDS) participants in time and frequency domain. This study considered a pathological group composed by 22 EDS participants performing a postural test consisting in maintaining standing position over a force platform for 30 s in two conditions: open eyes (OE) and closed…
NASA Astrophysics Data System (ADS)
Alizadeh Sahraei, Abolfazl; Ayati, Moosa; Baniassadi, Majid; Rodrigue, Denis; Baghani, Mostafa; Abdi, Yaser
2018-03-01
This study attempts to comprehensively investigate the effects of multi-walled carbon nanotubes (MWCNTs) on the AC and DC electrical conductivity of epoxy nanocomposites. The samples (0.2, 0.3, and 0.5 wt. % MWCNT) were produced using a combination of ultrason and shear mixing methods. DC measurements were performed by continuous measurement of the current-voltage response and the results were analyzed via a numerical percolation approach, while for the AC behavior, the frequency response was studied by analyzing phase difference and impedance in the 10 Hz to 0.2 MHz frequency range. The results showed that the dielectric parameters, including relative permittivity, impedance phase, and magnitude, present completely different behaviors for the frequency range and MWCNT weight fractions studied. To better understand the nanocomposites electrical behavior, equivalent electric circuits were also built for both DC and AC modes. The DC equivalent networks were developed based on the current-voltage curves, while the AC equivalent circuits were proposed by using an optimization problem according to the impedance magnitude and phase at different frequencies. The obtained equivalent electrical circuits were found to be highly useful tools to understand the physical mechanisms involved in MWCNT filled polymer nanocomposites.
NASA Technical Reports Server (NTRS)
Tessarzik, J. M.; Chiang, T.; Badgley, R. H.
1973-01-01
The random vibration response of a gas bearing rotor support system has been experimentally and analytically investigated in the amplitude and frequency domains. The NASA Brayton Rotating Unit (BRU), a 36,000 rpm, 10 KWe turbogenerator had previously been subjected in the laboratory to external random vibrations, and the response data recorded on magnetic tape. This data has now been experimentally analyzed for amplitude distribution and magnetic tape. This data has now been experimentally analyzed for amplitude distribution and frequency content. The results of the power spectral density analysis indicate strong vibration responses for the major rotor-bearing system components at frequencies which correspond closely to their resonant frequencies obtained under periodic vibration testing. The results of amplitude analysis indicate an increasing shift towards non-Gaussian distributions as the input level of external vibrations is raised. Analysis of axial random vibration response of the BRU was performed by using a linear three-mass model. Power spectral densities, the root-mean-square value of the thrust bearing surface contact were calculated for specified input random excitation.
Chen, Zhen; Zhao, Kong-Shuang; Guo, Lin; Feng, Cai-Hong
2007-04-28
Dielectric measurements were carried out on colloidal suspensions of palladium nanoparticle chains dispersed in poly(vinyl pyrrolidone)/ethylene glycol (PVP/EG) solution with different particle volume fractions, and dielectric relaxation with relaxation time distribution and small relaxation amplitude was observed in the frequency range from 10(5) to 10(7) Hz. By means of the method based on logarithmic derivative of the dielectric constant and a numerical Kramers-Kronig transform method, two dielectric relaxations were confirmed and dielectric parameters were determined from the dielectric spectra. The dielectric parameters showed a strong dependence on the volume fraction of palladium nanoparticle chain. Through analyzing limiting conductivity at low frequency, the authors found the conductance percolation phenomenon of the suspensions, and the threshold volume fraction is about 0.18. It was concluded from analyzing the dielectric parameters that the high frequency dielectric relaxation results from interfacial polarization and the low frequency dielectric relaxation is a consequence of counterion polarization. They also found that the dispersion state of the palladium nanoparticle chain in PVP/EG solution is dependent on the particle volume fraction, and this may shed some light on a better application of this kind of materials.
Design of High Performance Microstrip LPF with Analytical Transfer Function
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mohammad Hadi; Raziani, Saeed; Falihi, Ali
2017-12-01
By exploiting butterfly and T-shaped resonators, a new design of microstrip lowpass filter (LPF) is proposed and analyzed. The LPF is investigated in four sections. Analyzing initial resonator and its equation in detail, providing a sharp skirt by using series configuration, suppressing in middle frequencies and suppressing in high frequencies are focused in each section, respectively. To present a theoretical design, LC equivalent circuit and transfer function are precisely calculated. The measured insertion loss of the LPF is less that 0.4 dB in frequency range from DC up to 1.25 GHz, and the return loss is better than 16 dB. A narrow transition band of 217 MHz and a roll-off rate of 170.5 dB /GHz are indicative of a sharp skirt. By utilizing T-shaped and modified T-shaped resonators in the third and fourth sections, respectively, a relative stopband bandwidth (RSB) of 166 % is obtained. Furthermore, the proposed LPF occupies a small circuit of 0.116{λ _g} × 0.141{λ _g}, where {λ _g} is the guided wavelength at cut-off frequency (1.495 GHz). Finally, the proposed LPF is fabricated and the measured results agree well with the simulated ones.
Modeling and Simulation of a Parametrically Resonant Micromirror With Duty-Cycled Excitation
Shahid, Wajiha; Qiu, Zhen; Duan, Xiyu; Li, Haijun; Wang, Thomas D.; Oldham, Kenn R.
2014-01-01
High frequency large scanning angle electrostatically actuated microelectromechanical systems (MEMS) mirrors are used in a variety of applications involving fast optical scanning. A 1-D parametrically resonant torsional micromirror for use in biomedical imaging is analyzed here with respect to operation by duty-cycled square waves. Duty-cycled square wave excitation can have significant advantages for practical mirror regulation and/or control. The mirror’s nonlinear dynamics under such excitation is analyzed in a Hill’s equation form. This form is used to predict stability regions (the voltage-frequency relationship) of parametric resonance behavior over large scanning angles using iterative approximations for nonlinear capacitance behavior of the mirror. Numerical simulations are also performed to obtain the mirror’s frequency response over several voltages for various duty cycles. Frequency sweeps, stability results, and duty cycle trends from both analytical and simulation methods are compared with experimental results. Both analytical models and simulations show good agreement with experimental results over the range of duty cycled excitations tested. This paper discusses the implications of changing amplitude and phase with duty cycle for robust open-loop operation and future closed-loop operating strategies. PMID:25506188
Tafreshi, Azadeh Kamali; Top, Can Barış; Gençer, Nevzat Güneri
2017-06-21
Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a [Formula: see text] mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.
Dissecting the T Cell Response: Proliferation Assays vs. Cytokine Signatures by ELISPOT
Anthony, Donald D.; Milkovich, Kimberly A.; Zhang, Wenji; Rodriguez, Benigno; Yonkers, Nicole L.; Tary-Lehmann, Magdalena; Lehmann, Paul V.
2012-01-01
Chronic allograft rejection is in part mediated by host T cells that recognize allogeneic antigens on transplanted tissue. One factor that determines the outcome of a T cell response is clonal size, while another is the effector quality. Studies of alloimmune predictors of transplant graft survival have most commonly focused on only one measure of the alloimmune response. Because differing qualities and frequencies of the allospecific T cell response may provide distinctly different information we analyzed the relationship between frequency of soluble antigen and allo-antigen specific memory IFN-γ secreting CD4 and CD8 T cells, their ability to secrete IL-2, and their proliferative capacity, while accounting for cognate and bystander proliferation. The results show proliferative responses primarily reflect on IL-2 production by antigen-specific T cells, and that proliferating cells in such assays entail a considerable fraction of bystander cells. On the other hand, proliferation (and IL-2 production) did not reflect on the frequency of IFN-γ producing memory cells, a finding particularly accentuated in the CD8 T cell compartment. These data provide rationale for considering both frequency and effector function of pre-transplant T cell reactivity when analyzing immune predictors of graft rejection. PMID:24710419
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, H.S., E-mail: horacio.santana.vieira@hotmail.com; Centro de Ciências, Tecnologia e Saúde, Universidade Estadual da Paraíba, CEP 58233-000, Araruna, PB; Bezerra, V.B., E-mail: valdir@fisica.ufpb.br
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr–Newman–Kasuya spacetime (dyon black hole) and a Reissner–Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein–Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild blackmore » hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied. - Highlights: • Charged massive scalar field in the dyon black hole and massless scalar field in the Ernst spacetime are analyzed. • The confluent Heun functions are applied to obtain the solution of the Klein–Gordon equation. • The resonant frequencies are obtained. • The Hawking radiation and the scattering process of scalar waves are examined.« less
Hilbert-Huang transform analysis of dynamic and earthquake motion recordings
Zhang, R.R.; Ma, S.; Safak, E.; Hartzell, S.
2003-01-01
This study examines the rationale of Hilbert-Huang transform (HHT) for analyzing dynamic and earthquake motion recordings in studies of seismology and engineering. In particular, this paper first provides the fundamentals of the HHT method, which consist of the empirical mode decomposition (EMD) and the Hilbert spectral analysis. It then uses the HHT to analyze recordings of hypothetical and real wave motion, the results of which are compared with the results obtained by the Fourier data processing technique. The analysis of the two recordings indicates that the HHT method is able to extract some motion characteristics useful in studies of seismology and engineering, which might not be exposed effectively and efficiently by Fourier data processing technique. Specifically, the study indicates that the decomposed components in EMD of HHT, namely, the intrinsic mode function (IMF) components, contain observable, physical information inherent to the original data. It also shows that the grouped IMF components, namely, the EMD-based low- and high-frequency components, can faithfully capture low-frequency pulse-like as well as high-frequency wave signals. Finally, the study illustrates that the HHT-based Hilbert spectra are able to reveal the temporal-frequency energy distribution for motion recordings precisely and clearly.
NASA Astrophysics Data System (ADS)
Kamali Tafreshi, Azadeh; Barış Top, Can; Güneri Gençer, Nevzat
2017-06-01
Harmonic motion microwave Doppler imaging (HMMDI) is a novel imaging modality for imaging the coupled electrical and mechanical properties of body tissues. In this paper, we used two experimental systems with different receiver configurations to obtain HMMDI images from tissue-mimicking phantoms at multiple vibration frequencies between 15 Hz and 35 Hz. In the first system, we used a spectrum analyzer to obtain the Doppler data in the frequency domain, while in the second one, we used a homodyne receiver that was designed to acquire time-domain data. The developed phantoms mimicked the elastic and dielectric properties of breast fat tissue, and included a 14~\\text{mm}× 9 mm cylindrical inclusion representing the tumor. A focused ultrasound probe was mechanically scanned in two lateral dimensions to obtain two-dimensional HMMDI images of the phantoms. The inclusions were resolved inside the fat phantom using both experimental setups. The image resolution increased with increasing vibration frequency. The designed receiver showed higher sensitivity than the spectrum analyzer measurements. The results also showed that time-domain data acquisition should be used to fully exploit the potential of the HMMDI method.
New Approach to Ultrasonic Spectroscopy Applied to Flywheel Rotors
NASA Technical Reports Server (NTRS)
Harmon, Laura M.; Baaklini, George Y.
2002-01-01
Flywheel energy storage devices comprising multilayered composite rotor systems are being studied extensively for use in the International Space Station. A flywheel system includes the components necessary to store and discharge energy in a rotating mass. The rotor is the complete rotating assembly portion of the flywheel, which is composed primarily of a metallic hub and a composite rim. The rim may contain several concentric composite rings. This article summarizes current ultrasonic spectroscopy research of such composite rings and rims and a flat coupon, which was manufactured to mimic the manufacturing of the rings. Ultrasonic spectroscopy is a nondestructive evaluation (NDE) method for material characterization and defect detection. In the past, a wide bandwidth frequency spectrum created from a narrow ultrasonic signal was analyzed for amplitude and frequency changes. Tucker developed and patented a new approach to ultrasonic spectroscopy. The ultrasonic system employs a continuous swept-sine waveform and performs a fast Fourier transform on the frequency spectrum to create the spectrum resonance spacing domain, or fundamental resonant frequency. Ultrasonic responses from composite flywheel components were analyzed at Glenn to assess this NDE technique for the quality assurance of flywheel applications.
de Almeida, Terezinha M B; Leitão, Regina C; Andrade, Joyce D; Beçak, Willy; Carrilho, Flair J; Sonohara, Shigueko
2004-04-01
Human cirrhosis is considered an important factor in hepatocarcinogenesis. The lack of substantial genetics and cytogenetics data in human cirrhosis led us to investigate spontaneous micronuclei formation, as an indicator of chromosomal damage. The analysis was performed in hepatocytes of regenerative, macroregenerative, and tumoral nodules from 30 cases of cirrhosis (paraffin-embedded archival material), retrospectively selected: cryptogenic, hepatitis C virus, and hepatitis C virus associated with hepatocellular carcinoma (HCC). Thirteen control liver samples of healthy organ donors were included. Micronucleated hepatocytes were analyzed with Feulgen-fast-green dyeing techniques. The spontaneous frequency of micronucleated hepatocytes in both regenerative and macroregenerative nodules of all cirrhotic patients was significantly higher than for the normal control group. There was no significant difference in frequency of micronucleated hepatocytes in regenerative nodules compared with macroregenerative nodules for all cases analyzed, whereas a significantly higher frequency of micronucleated hepatocytes was detected in tumoral nodules, compared with cirrhotic regenerative nodules and normal parenchyma. A higher frequency of the nuclear anomalies termed broken-eggs was observed in hepatitis C virus-related samples. Chromatinic losses and genotoxicity already existed in the cirrhotic regenerative nodules, which might predispose to development of HCC.
Talpalar, Adolfo E.; Rybak, Ilya A.
2015-01-01
The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model reproduced, and suggested explanation for, a series of experimental phenomena and generated predictions available for experimental testing. PMID:25970489
Analyzing the Acoustic Beat with Mobile Devices
ERIC Educational Resources Information Center
Kuhn, Jochen; Vogt, Patrik; Hirth, Michael
2014-01-01
In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency ?f. The…
ERIC Educational Resources Information Center
Mbalamula, Yazidu Saidi
2018-01-01
The study analyzes students' performance scores in formative assessments depicting the individual and group settings. A case study design was adopted using quantitative approach to extract data of 198 undergraduate students. Data were analyzed quantitatively using descriptive statistics--means and frequencies; spearman correlations, multiple…
1991-05-01
the problem of the frequency drift is still open. In- this context, the cavity pulling has drawn a lot of attention. Today, to our knowledge, 4...term maser frequency drift associated with the cavity pulling is a well known subject due to the high level of -precision obtainable in principle by...microprocessors. The frequency pulling due to microwave AM = =1:transitions (Ramsey pulling ) has been analyzed and shown to be important. Status of
Geodesic acoustic modes in noncircular cross section tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.
2017-03-15
The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.
Characterization of the relationship of the cure cycle chemistry to cure cycle processing properties
NASA Technical Reports Server (NTRS)
Kranbuehl, D. E.
1985-01-01
Dynamic dielectric analysis (DDA) is used to study curing polymer systems and thermoplastics. Measurements are made over a frequency range of six decades. This wide range of frequencies increases the amount of information which can be obtained. The data is analyzed in terms of the frequency dependence of the complex permittivity epsilon sup *, specific conductivity sigma (ohm/cm) and the relaxation time tau, parameters which are characteristic of the cure state of the material and independent of the size of the sample.
Approximate method for calculating free vibrations of a large-wind-turbine tower structure
NASA Technical Reports Server (NTRS)
Das, S. C.; Linscott, B. S.
1977-01-01
A set of ordinary differential equations were derived for a simplified structural dynamic lumped-mass model of a typical large-wind-turbine tower structure. Dunkerley's equation was used to arrive at a solution for the fundamental natural frequencies of the tower in bending and torsion. The ERDA-NASA 100-kW wind turbine tower structure was modeled, and the fundamental frequencies were determined by the simplified method described. The approximate fundamental natural frequencies for the tower agree within 18 percent with test data and predictions analyzed.
Motor monitoring method and apparatus using high frequency current components
Casada, D.A.
1996-05-21
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.
Motor monitoring method and apparatus using high frequency current components
Casada, Donald A.
1996-01-01
A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.
In-Flight Vibration Environment of the NASA F-15B Flight Test Fixture
NASA Technical Reports Server (NTRS)
Corda, Stephen; Franz, Russell J.; Blanton, James N.; Vachon, M. Jake; DeBoer, James B.
2002-01-01
Flight vibration data are analyzed for the NASA F-15B/Flight Test Fixture II test bed. Understanding the in-flight vibration environment benefits design and integration of experiments on the test bed. The power spectral density (PSD) of accelerometer flight data is analyzed to quantify the in-flight vibration environment from a frequency of 15 Hz to 1325 Hz. These accelerometer data are analyzed for typical flight conditions and maneuvers. The vibration data are compared to flight-qualification random vibration test standards. The PSD levels in the lateral axis generally are greater than in the longitudinal and vertical axes and decrease with increasing frequency. At frequencies less than approximately 40 Hz, the highest PSD levels occur during takeoff and landing. Peaks in the PSD data for the test fixture occur at approximately 65, 85, 105-110, 200, 500, and 1000 Hz. The pitch-pulse and 2-g turn maneuvers produce PSD peaks at 115 Hz. For cruise conditions, the PSD level of the 85-Hz peak is greatest for transonic flight at Mach 0.9. From 400 Hz to 1325 Hz, the takeoff phase has the highest random vibration levels. The flight-measured vibration levels generally are substantially lower than the random vibration test curve.
Multispectral photoacoustic method for the early detection and diagnosis of osteoporosis
NASA Astrophysics Data System (ADS)
Steinberg, Idan; Eyal, Avishay; Gannot, Israel
2013-03-01
Osteoporosis is a major health problem worldwide, with healthcare costs of billions of dollars annually. The risk of fracture depends on the bone mineral density (measured in clinical practice) as well as on the bone microstructure and functional status. Since pure ultrasonic methods can measure bone strength and spectroscopic optical methods can provide valuable functional information, a hybrid multispectral photoacoustic technique can be of great value. We have developed such a system based on a tunable Ti:Sapph laser at 750 - 950 nm, followed by an acousto-optic modulator to generate photoacoustic signals with frequencies of 0.5 - 2.5 MHz. Another system was based on two directly modulated 830nm laser diodes. The systems were used to photoacoustically excite the proximal end of a rat tibia. Spectrum analyzer with tracking generator was used for measuring both the amplitude and the phase at the distal end. Scanning along both the optical wavelength as well as the acoustic frequency enables full mapping of the bone transfer function. Analyzing this function along the wavelength axis allows deducing the gross biochemical composition related to the bone functional and pathological state. Analyzing the amplitude and phase along the acoustic frequency axis yields the speed of sound dispersion and the broadband ultrasonic attenuation - both have shown clinical relevance.
NASA Astrophysics Data System (ADS)
Jin, Chenhao; Li, Jingcheng; Jang, Shinae; Sun, Xiaorong; Christenson, Richard
2015-03-01
Structural health monitoring has drawn significant attention in the past decades with numerous methodologies and applications for civil structural systems. Although many researchers have developed analytical and experimental damage detection algorithms through vibration-based methods, these methods are not widely accepted for practical structural systems because of their sensitivity to uncertain environmental and operational conditions. The primary environmental factor that influences the structural modal properties is temperature. The goal of this article is to analyze the natural frequency-temperature relationships and detect structural damage in the presence of operational and environmental variations using modal-based method. For this purpose, correlations between natural frequency and temperature are analyzed to select proper independent variables and inputs for the multiple linear regression model and neural network model. In order to capture the changes of natural frequency, confidence intervals to detect the damages for both models are generated. A long-term structural health monitoring system was installed on an in-service highway bridge located in Meriden, Connecticut to obtain vibration and environmental data. Experimental testing results show that the variability of measured natural frequencies due to temperature is captured, and the temperature-induced changes in natural frequencies have been considered prior to the establishment of the threshold in the damage warning system. This novel approach is applicable for structural health monitoring system and helpful to assess the performance of the structure for bridge management and maintenance.
Spatiotemporal Variables of Able-bodied and Amputee Sprinters in Men's 100-m Sprint.
Hobara, H; Kobayashi, Y; Mochimaru, M
2015-06-01
The difference in world records set by able-bodied sprinters and amputee sprinters in the men's 100-m sprint is still approximately 1 s (as of 28 March 2014). Theoretically, forward velocity in a 100-m sprint is the product of step frequency and step length. The goal of this study was to examine the hypothesis that differences in the sprint performance of able-bodied and amputee sprinters would be due to a shorter step length rather than lower step frequency. Men's elite-level 100-m races with a total of 36 able-bodied, 25 unilateral and 17 bilateral amputee sprinters were analyzed from the publicly available internet broadcasts of 11 races. For each run of each sprinter, the average forward velocity, step frequency and step length over the whole 100-m distance were analyzed. The average forward velocity of able-bodied sprinters was faster than that of the other 2 groups, but there was no significant difference in average step frequency among the 3 groups. However, the average step length of able-bodied sprinters was significantly longer than that of the other 2 groups. These results suggest that the differences in sprint performance between 2 groups would be due to a shorter step length rather than lower step frequency. © Georg Thieme Verlag KG Stuttgart · New York.
Stability and modal analysis of shock/boundary layer interactions
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2017-02-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
Ehrensberger, Mark T; Gilbert, Jeremy L
2010-05-01
The measurement of electrochemical impedance is a valuable tool to assess the electrochemical environment that exists at the surface of metallic biomaterials. This article describes the development and validation of a new technique, potential step impedance analysis (PSIA), to assess the electrochemical impedance of materials whose interface with solution can be modeled as a simplified Randles circuit that is modified with a constant phase element. PSIA is based upon applying a step change in voltage to a working electrode and analyzing the subsequent current transient response in a combined time and frequency domain technique. The solution resistance, polarization resistance, and interfacial capacitance are found directly in the time domain. The experimental current transient is numerically transformed to the frequency domain to determine the constant phase exponent, alpha. This combined time and frequency approach was tested using current transients generated from computer simulations, from resistor-capacitor breadboard circuits, and from commercially pure titanium samples immersed in phosphate buffered saline and polarized at -800 mV or +1000 mV versus Ag/AgCl. It was shown that PSIA calculates equivalent admittance and impedance behavior over this range of potentials when compared to standard electrochemical impedance spectroscopy. This current transient approach characterizes the frequency response of the system without the need for expensive frequency response analyzers or software. Copyright 2009 Wiley Periodicals, Inc.
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O.
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort. PMID:29740266
Nanri, Hinako; Itoi, Aya; Yamagata, Emi; Watanabe, Yuya; Yoshida, Tsukasa; Miyake, Motoko; Date, Heiwa; Ishikawa-Takata, Kazuko; Yoshida, Mitsuyoshi; Kikutani, Takeshi; Kimura, Misaka
2017-01-01
Objective: Many previous studies have reported that fruit and vegetable consumption is associated with a reduced risk of various disease, but whether or not their consumption is associated with the oral health-related quality of life (OHRQoL) is unclear. The objective of this study was to examine the association between the frequency of fruit and vegetable consumption and the OHRQoL in elderly subjects by sex. Methods: We analyzed cross-sectional data from a population-based Kyoto-Kameoka Study in 2012 of 3112 men and 3439 women (age ≥ 65 years). The frequencies of fruit and vegetable consumption were assessed using a validated food frequency questionnaire. We evaluated the OHRQoL using the General Oral Health Assessment Index (GOHAI), a self-reported measure designed to assess the oral health problems in old adults. Results: After adjusting for age, body mass index, alcohol, smoking, education, socioeconomic status, history of disease, medication use, mobility disability, and total energy intake, a higher frequency of combined fruit and vegetable consumption showed a significant positive association with the GOHAI score in both men and women (p-trend < 0.001 in both sexes). These associations remained significant after adjustment for poor mastication and denture use (p-trend all < 0.05 in both sexes). We observed a significant positive association even when the frequencies of fruit or vegetable consumption were analyzed separately (all p-trend < 0.05 in both sexes). Conclusions: A higher frequency of fruit and/or vegetable consumption independently showed a strong positive association with the OHRQoL in both men and women. Further prospective studies are needed to confirm these findings. PMID:29244736
Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O
2018-01-01
In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants ( n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT ( p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS ( p = 0.014, post-hoc with Bonferroni correction ) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.
Xu, L; Chen, F M; Wang, L; Zhang, P X; Jiang, X R
2016-04-18
To evaluate the meaning and value of high-frequency ultrasound in the diagnosis of carpal tunnel syndrome (CTS). In this study, 48 patients (unilateral hand) with CTS were analyzed. The thickness of transverse carpal ligaments at the pisiform bone was measured using high-frequency ultrasound. Open carpal tunnel release procedure was performed in the 48 CTS patients, and the thickness of transverse carpal ligaments at the hamate hook bone measured using vernier caliper under direct vision. The accuracy of thickness of transverse carpal ligaments was evaluated using high-frequency ultrasound. high-frequency ultrasound measurement of thickness of transverse carpal ligaments at the hamate hook bone and pisiform bone, and determination of the diagnostic threshold measurement index using receiver operating characteristic (ROC) curve, sensitivity and specificity were performed and the correlation between the thickness of transverse carpal ligaments and nerve conduction study (NCS) analyzed. The thickness of transverse carpal ligaments in the CTS patients were (0.42±0.08) cm (high-frequency ultrasound) and (0.41±0.06) cm (operation) at hamate hook bone, and there was no significant difference between the two ways (t=0.672, P>0.05). The optimal cut-off value of the transverse carpal ligaments at hamate hook bone was 0.385 cm, the sensitivity 0.775, and the specificity 0.788. The optimal cut-off value of the transverse carpal ligaments at the pisiform bone was 0.315 cm, the sensitivity 0.950, and the specificity 1.000. The transverse carpal ligaments thickness and wrist-index finger sensory nerve conduction velocity (SCV), wrist-middle finger SCV showed a negative correlation. High frequency ultrasound measurements of thickness of transverse carpal ligaments is a valuable method for the diagnosis of CTS.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-02-19
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges.
Method and device for identifying different species of honeybees
Kerr, Howard T.; Buchanan, Michael E.; Valentine, Kenneth H.
1989-01-01
A method and device have been provided for distinguishing Africanized honeybees from European honeybees. The method is based on the discovery of a distinct difference in the acoustical signatures of these two species of honeybees in flight. The European honeybee signature has a fundamental power peak in the 210 to 240 Hz range while the Africanized honeybee signature has a fundamental power peak in the 260 to 290 Hz range. The acoustic signal produced by honeybees is analyzed by means of a detecting device to quickly determine the honeybee species through the detection of the presence of frequencies in one of these distinct ranges. The device includes a microphone for acoustical signal detection which feeds the detected signal into a frequency analyzer which is designed to detect the presence of either of the known fundamental wingbeat frequencies unique to the acoustical signatures of these species as an indication of the identity of the species and indicate the species identity on a readout device.
Topal, Taner; Polat, Hüseyin; Güler, Inan
2008-10-01
In this paper, a time-frequency spectral analysis software (Heart Sound Analyzer) for the computer-aided analysis of cardiac sounds has been developed with LabVIEW. Software modules reveal important information for cardiovascular disorders, it can also assist to general physicians to come up with more accurate and reliable diagnosis at early stages. Heart sound analyzer (HSA) software can overcome the deficiency of expert doctors and help them in rural as well as urban clinics and hospitals. HSA has two main blocks: data acquisition and preprocessing, time-frequency spectral analyses. The heart sounds are first acquired using a modified stethoscope which has an electret microphone in it. Then, the signals are analysed using the time-frequency/scale spectral analysis techniques such as STFT, Wigner-Ville distribution and wavelet transforms. HSA modules have been tested with real heart sounds from 35 volunteers and proved to be quite efficient and robust while dealing with a large variety of pathological conditions.
Amplifiers dedicated for large area SiC photodiodes
NASA Astrophysics Data System (ADS)
Doroz, P.; Duk, M.; Korwin-Pawlowski, M. L.; Borecki, M.
2016-09-01
Large area SiC photodiodes find applications in optoelectronic sensors working at special conditions. These conditions include detection of UV radiation in harsh environment. Moreover, the mentioned sensors have to be selective and resistant to unwanted signals. For this purpose, the modulation of light at source unit and the rejection of constant current and low frequency component of signal at detector unit are used. The popular frequency used for modulation in such sensor is 1kHz. The large area photodiodes are characterized by a large capacitance and low shunt resistance that varies with polarization of the photodiode and can significantly modify the conditions of signal pre-amplification. In this paper two pre-amplifiers topology are analyzed: the transimpedance amplifier and the non-inverting voltage to voltage amplifier with negative feedback. The feedback loops of both pre-amplifiers are equipped with elements used for initial constant current and low frequency signals rejections. Both circuits are analyzed and compared using simulation and experimental approaches.
Analysis on Coupled Vibration of a Radially Polarized Piezoelectric Cylindrical Transducer
Xu, Jie; Lin, Shuyu; Ma, Yan; Tang, Yifan
2017-01-01
Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method has been utilized to analyze the metal cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method, the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions. Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical coupling coefficients and angular frequencies are derived, respectively. The resonance frequency equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are presented with experimental measurement. On the support of experiments, this work is verified and provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric cylindrical transducer. PMID:29292785
Schroder, Kerstin E. E.; Carey, Michael P.; Vanable, Peter A.
2008-01-01
Investigation of sexual behavior involves many challenges, including how to assess sexual behavior and how to analyze the resulting data. Sexual behavior can be assessed using absolute frequency measures (also known as “counts”) or with relative frequency measures (e.g., rating scales ranging from “never” to “always”). We discuss these two assessment approaches in the context of research on HIV risk behavior. We conclude that these two approaches yield non-redundant information and, more importantly, that only data yielding information about the absolute frequency of risk behavior have the potential to serve as valid indicators of HIV contraction risk. However, analyses of count data may be challenging due to non-normal distributions with many outliers. Therefore, we identify new and powerful data analytical solutions that have been developed recently to analyze count data, and discuss limitations of a commonly applied method (viz., ANCOVA using baseline scores as covariates). PMID:14534027
Research on Wide-field Imaging Technologies for Low-frequency Radio Array
NASA Astrophysics Data System (ADS)
Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.
2017-09-01
Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.
Investigation on a fiber optic accelerometer based on FBG-FP interferometer
NASA Astrophysics Data System (ADS)
Lin, Chongyu; Luo, Hong; Xiong, Shuidong; Li, Haitao
2014-12-01
A fiber optic accelerometer based on fiber Bragg grating Fabry-Perot (FBG-FP) interferometer is presented. The sensor is a FBG-FP cavity which is formed with two weak fiber Bragg gratings (FBGs) in a single-mode fiber. The reflectivity of the two FBGs is 9.42% and 7.74% respectively, and the fiber between them is 10 meters long. An optical demodulation system was set up to analyze the reflected light of FBG-FP cavity. Acceleration signals of different frequencies and intensities were demodulated correctly and stably by the system. Based on analyzing the optical spectrum of weak FBG based FBG-FP cavity, we got the equivalent length of FBG-FP cavity. We used a path-matching Michelson interferometer (MI) to demodulate the acceleration signal. The visibility of the interference fringe we got was 41%~42% while the theory limit was 50%. This indicated that the difference of interferometer's two arms and the equivalent length of FBG-FP cavity were matched well. Phase generated carrier (PGC) technology was used to eliminate phase fading caused by random phase shift and Faraday rotation mirrors (FRMs) were used to eliminate polarization-induced phase fading. The accelerometer used a compliant cylinder design and its' sensitivity and frequency response were analyzed and simulated based on elastic mechanics. Experiment result showed that the accelerometer had a flat frequency response over the frequency range of 31-630Hz. The sensitivity was about 31dB (0dB=1rad/g) with fluctuation less than 1.5dB.
Rectennas at optical frequencies: How to analyze the response
NASA Astrophysics Data System (ADS)
Joshi, Saumil; Moddel, Garret
2015-08-01
Optical rectennas, antenna-coupled diode rectifiers that receive optical-frequency electromagnetic radiation and convert it to DC output, have been proposed for use in harvesting electromagnetic radiation from a blackbody source. The operation of these devices is qualitatively different from that of lower-frequency rectennas, and their design requires a new approach. To that end, we present a method to determine the rectenna response to high frequency illumination. It combines classical circuit analysis with classical and quantum-based photon-assisted tunneling response of a high-speed diode. We demonstrate the method by calculating the rectenna response for low and high frequency monochromatic illumination, and for radiation from a blackbody source. Such a blackbody source can be a hot body generating waste heat, or radiation from the sun.
A 15-pole high temperature superconductor filter for radar applications
NASA Astrophysics Data System (ADS)
Yu, Xiao; Xi, Weibin; Wu, Songtao
2018-06-01
This paper presents a compact and high first harmonic frequency resonator. The characteristics of this resonator are theoretically analyzed. A highly selective 15-pole Chebyshev high temperature superconducting ultra-high frequency narrowband filter for radar applications was fabricated by using this resonator. The filter has a center frequency of 495 MHz and a fractional bandwidth of 1%. The first harmonic frequency is more than 3.3 times the fundamental frequency. The measured filter shows excellent selectivity, better than 85 dB/1 MHz skirt slopes, and more than 85 dB of rejection at 497.5 MHz from the band edge. The filter was fabricated on a 2 inch YBCO thin film with a 0.5 mm thick MgO substrate. The experimental results are consistent with the simulations.
Formant frequencies in country singers' speech and singing.
Stone, R E; Cleveland, T F; Sundberg, J
1999-06-01
In previous investigations breathing kinematics, subglottal pressures, and voice source characteristics of a group of premier country singers have been analyzed. The present study complements the description of these singers' voice properties by examining the formant frequencies in five of these country singers' spoken and sung versions of the national anthem and of a song of their own choosing. The formant frequencies were measured for identical phonemes under both conditions. Comparisons revealed that the singers used the same or slightly higher formant frequencies when they were singing than when they were speaking. The differences may be related to the higher fundamental frequency in singing. These findings are in good agreement with previous observations regarding breathing, subglottal pressures, and voice source, but are in marked contrast to what has been found for classically trained singers.
Frequency Representation: Visualization and Clustering of Acoustic Data Using Self-Organizing Maps.
Guo, Xinhua; Sun, Song; Yu, Xiantao; Wang, Pan; Nakamura, Kentaro
2017-11-01
Extraction and display of frequency information in three-dimensional (3D) acoustic data are important steps to analyze object characteristics, because the characteristics, such as profiles, sizes, surface structures, and material properties, may show frequency dependence. In this study, frequency representation (FR) based on phase information in multispectral acoustic imaging (MSAI) is proposed to overcome the limit of intensity or amplitude information in image display. Experiments are performed on 3D acoustic data collected from a rigid surface engraved with five different letters. The results show that the proposed FR technique can not only identify the depth of the five letters by the colors representing frequency characteristics but also demonstrate the 3D image of the five letters, providing more detailed characteristics that are unavailable by conventional acoustic imaging.
Seismology and geodesy of the sun: low-frequency oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dicke, R.H.
1981-04-01
The hourly averages of the solar ellipticity measured from June 13 to September 17, 1966, are analyzed for indications of solar oscillations with periods in excess of 2 h ..nu.. < 0.5 h/sup -1/. Nothing significant is found for frequencies ..nu.. > 0.1 hr/sup -1/ but for lower frequencies the power spectrum shows a very complex structure containing about 20 strong narrow peaks. The complexity is illusionary. The signal apparently consists of only two frequencies. The complexity is due to aliasing by the window function with its basic 24-h period, with many observational days missing, and with different numbers ofmore » hourly averages for the various observational days. Both signal frequencies are apparently due to odd-degree spherical harmonic oscillations of the sun.« less
System and method of detecting cavitation in pumps
Lu, Bin; Sharma, Santosh Kumar; Yan, Ting; Dimino, Steven A.
2017-10-03
A system and method for detecting cavitation in pumps for fixed and variable supply frequency applications is disclosed. The system includes a controller having a processor programmed to repeatedly receive real-time operating current data from a motor driving a pump, generate a current frequency spectrum from the current data, and analyze current data within a pair of signature frequency bands of the current frequency spectrum. The processor is further programmed to repeatedly determine fault signatures as a function of the current data within the pair of signature frequency bands, repeatedly determine fault indices based on the fault signatures and a dynamic reference signature, compare the fault indices to a reference index, and identify a cavitation condition in a pump based on a comparison between the reference index and a current fault index.
Dependence of the colored frequency noise in spin torque oscillators on current and magnetic field
NASA Astrophysics Data System (ADS)
Eklund, Anders; Bonetti, Stefano; Sani, Sohrab R.; Majid Mohseni, S.; Persson, Johan; Chung, Sunjae; Amir Hossein Banuazizi, S.; Iacocca, Ezio; Östling, Mikael; Åkerman, Johan; Gunnar Malm, B.
2014-03-01
The nano-scale spin torque oscillator (STO) is a compelling device for on-chip, highly tunable microwave frequency signal generation. Currently, one of the most important challenges for the STO is to increase its longer-time frequency stability by decreasing the 1/f frequency noise, but its high level makes even its measurement impossible using the phase noise mode of spectrum analyzers. Here, we present a custom made time-domain measurement system with 150 MHz measurement bandwidth making possible the investigation of the variation of the 1/f as well as the white frequency noise in a STO over a large set of operating points covering 18-25 GHz. The 1/f level is found to be highly dependent on the oscillation amplitude-frequency non-linearity and the vicinity of unexcited oscillation modes. These findings elucidate the need for a quantitative theoretical treatment of the low-frequency, colored frequency noise in STOs. Based on the results, we suggest that the 1/f frequency noise possibly can be decreased by improving the microstructural quality of the metallic thin films.
Fast focus estimation using frequency analysis in digital holography.
Oh, Seungtaik; Hwang, Chi-Young; Jeong, Il Kwon; Lee, Sung-Keun; Park, Jae-Hyeung
2014-11-17
A novel fast frequency-based method to estimate the focus distance of digital hologram for a single object is proposed. The focus distance is computed by analyzing the distribution of intersections of smoothed-rays. The smoothed-rays are determined by the directions of energy flow which are computed from local spatial frequency spectrum based on the windowed Fourier transform. So our method uses only the intrinsic frequency information of the optical field on the hologram and therefore does not require any sequential numerical reconstructions and focus detection techniques of conventional photography, both of which are the essential parts in previous methods. To show the effectiveness of our method, numerical results and analysis are presented as well.
A Frequency Reconfigurable MIMO Antenna System for Cognitive Radio Applications
NASA Astrophysics Data System (ADS)
Raza, A.; Khan, Muhammad U.; Tahir, Farooq A.
2017-10-01
In this paper, a two element frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system is presented. The proposed antenna consists of miniaturized patch antenna elements, loaded with varactor diodes to achieve frequency reconfigurability. The antenna has bandwidth of 30 MHz and provides a smooth frequency sweep from 2.12 GHz to 2.4 GHz by varying the reverse bias voltage of varactor diode. The antenna is designed on an FR4 substrate and occupies a space of 50×100 × 0.8 mm3. The antenna is analyzed for its far-field characteristics as well as for MIMO performance parameters. Designed antenna showed good performance and is suitable for cognitive radios (CR) applications.
NASA Astrophysics Data System (ADS)
Zheng, Zhiyuan; Gao, Hua; Gao, Lu; Xing, Jie
2014-11-01
Acoustic waves generated in nanosecond pulsed-laser ablation of a solid target in both air and water-confined environments were measured experimentally. It was found that the amplitude of the acoustic wave tended to decrease with an increase in water thickness. The waves were analyzed by means of fast Fourier transform. It was shown that there are several frequency components in the acoustic waves with the dominant frequency shifting from high frequency to low frequency as the thickness of the water layer increases. Furthermore, strong acoustic pressure led to enhancement of the coupling of the laser energy to the target in laser plasma propulsion.
NASA Astrophysics Data System (ADS)
Pan, Hao; Qu, Xinghua; Shi, Chunzhao; Zhang, Fumin; Li, Yating
2018-06-01
The non-uniform interval resampling method has been widely used in frequency modulated continuous wave (FMCW) laser ranging. In the large-bandwidth and long-distance measurements, the range peak is deteriorated due to the fiber dispersion mismatch. In this study, we analyze the frequency-sampling error caused by the mismatch and measure it using the spectroscopy of molecular frequency references line. By using the adjacent points' replacement and spline interpolation technique, the sampling errors could be eliminated. The results demonstrated that proposed method is suitable for resolution-enhancement and high-precision measurement. Moreover, using the proposed method, we achieved the precision of absolute distance less than 45 μm within 8 m.
NASA Astrophysics Data System (ADS)
Kassem, M.; Soize, C.; Gagliardini, L.
2009-06-01
In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.
NASA Astrophysics Data System (ADS)
Algarray, A. F. A.; Jun, H.; Mahdi, I.-E. M.
2017-11-01
The effects of the end conditions of cross-ply laminated composite beams on their dimensionless natural frequencies of free vibration is investigated. The problem is analyzed and solved by using the energy approach, which is formulated by a finite element model. Various end conditions of beams are used. Each beam has either movable ends or immovable ends. Numerical results are verified by comparisons with other relevant works. It is found that more constrained beams have higher values of natural frequencies of transverse vibration. The values of the natural frequencies of longitudinal modes are found to be the same for all beams with movable ends because they are generated by longitudinal movements only.
Impact of Offshore Wind Power Integrated by VSC-HVDC on Power Angle Stability of Power Systems
NASA Astrophysics Data System (ADS)
Lu, Haiyang; Tang, Xisheng
2017-05-01
Offshore wind farm connected to grid by VSC-HVDC loses frequency support for power system, so adding frequency control in wind farm and VSC-HVDC system is an effective measure, but it will change wind farm VSC-HVDC’s transient stability on power system. Through theoretical analysis, concluding the relationship between equivalent mechanical power and electromagnetic power of two-machine system with the active power of wind farm VSC-HVDC, then analyzing the impact of wind farm VSC-HVDC with or without frequency control and different frequency control parameters on angle stability of synchronous machine by EEAC. The validity of theoretical analysis has been demonstrated through simulation in PSCAD/EMTDC.
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.
Warlaumont, Anne S; Jarmulowicz, Linda
2012-11-01
Acquisition of regular inflectional suffixes is an integral part of grammatical development in English and delayed acquisition of certain inflectional suffixes is a hallmark of language impairment. We investigate the relationship between input frequency and grammatical suffix acquisition, analyzing 217 transcripts of mother-child (ages 1 ; 11-6 ; 9) conversations from the CHILDES database. Maternal suffix frequency correlates with previously reported rank orders of acquisition and with child suffix frequency. Percentages of children using a suffix are consistent with frequencies in caregiver speech. Although late talkers acquire suffixes later than typically developing children, order of acquisition is similar across populations. Furthermore, the third person singular and past tense verb suffixes, weaknesses for children with language impairment, are less frequent in caregiver speech than the plural noun suffix, a relative strength in language impairment. Similar findings hold across typical, SLI and late talker populations, suggesting that frequency plays a role in suffix acquisition.
Low-frequency oscillations in Hall thrusters
NASA Astrophysics Data System (ADS)
Wei, Li-Qiu; Han, Liang; Yu, Da-Ren; Guo, Ning
2015-05-01
In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. Project supported by the National Natural Science Foundation of China (Grant No. 51477035), the Fundamental Research Funds for the Central Universities, China (Grant No. HIT.NSRIF 2015064), and the Open Research Fund Program of State Key Laboratory of Cryogenic Vacuum Technology and Physics, China (Grant No. ZDK201304).
NASA Astrophysics Data System (ADS)
Sakurai, T.; Okubo, S.; Ohta, H.
2017-07-01
We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.
A pattern jitter free AFC scheme for mobile satellite systems
NASA Technical Reports Server (NTRS)
Yoshida, Shousei
1993-01-01
This paper describes a scheme for pattern jitter free automatic frequency control (AFC) with a wide frequency acquisition range. In this scheme, equalizing signals fed to the frequency discriminator allow pattern jitter free performance to be achieved for all roll-off factors. In order to define the acquisition range, frequency discrimination characateristics are analyzed on a newly derived frequency domain model. As a result, it is shown that a sufficiently wide acquisition range over a given system symbol rate can be achieved independent of symbol timing errors. Additionally, computer simulation demonstrates that frequency jitter performance improves in proportion to E(sub b)/N(sub 0) because pattern-dependent jitter is suppressed in the discriminator output. These results show significant promise for applciation to mobile satellite systems, which feature relatively low symbol rate transmission with an approximately 0.4-0.7 roll-off factor.
Sum-Frequency Generation from a Thin Cylindrical Layer
NASA Astrophysics Data System (ADS)
Shamyna, A. A.; Kapshai, V. N.
2018-01-01
In the Rayleigh-Gans-Debye approximation, we have solved the problem of the sum-frequency generation by two plane elliptically polarized electromagnetic waves from the surface of a dielectric particle of a cylindrical shape that is coated by a thin layer possessing nonlinear optical properties. The formulas that describe the sum-frequency field have been presented in the tensor and vector forms for the second-order nonlinear dielectric susceptibility tensor, which was chosen in the general form, containing chiral components. Expressions describing the sum-frequency field from the cylindrical particle ends have been obtained for the case of a nonlinear layer possessing chiral properties. Three-dimensional directivity patterns of the sum-frequency radiation have been analyzed for different combinations of parameters (angles of incidence, degrees of ellipticity, orientations of polarization ellipses, cylindrical particle dimensions). The mathematical properties of the spatial distribution functions of the sum-frequency field, which characterize the symmetry of directivity patterns, have been revealed.
A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rockway, J D; Champagne, N J; Sharpe, R M
2004-01-14
Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-loadmore » circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.« less
Analysis of high-frequency oscillations in mutually-coupled nano-lasers.
Han, Hong; Shore, K Alan
2018-04-16
The dynamics of mutually coupled nano-lasers has been analyzed using rate equations which include the Purcell cavity-enhanced spontaneous emission factor F and the spontaneous emission coupling factor β. It is shown that in the mutually-coupled system, small-amplitude oscillations with frequencies of order 100 GHz are generated and are maintained with remarkable stability. The appearance of such high-frequency oscillations is associated with the effective reduction of the carrier lifetime for larger values of the Purcell factor, F, and spontaneous coupling factor, β. In mutually-coupled nano-lasers the oscillation frequency changes linearly with the frequency detuning between the lasers. For non-identical bias currents, the oscillation frequency of mutually-coupled nano-lasers also increases with bias current. The stability of the oscillations which appear in mutually coupled nano-lasers offers opportunities for their practical applications and notably in photonic integrated circuits.
Development of a low energy electron spectrometer for SCOPE
NASA Astrophysics Data System (ADS)
Tominaga, Yuu; Saito, Yoshifumi; Yokota, Shoichiro
We are newly developing a low-energy charged particle analyzer for the future satellite mission SCOPE (cross Scale COupling in the Plasma universE). The main purpose of the mission is to understand the cross scale coupling between macroscopic MHD scale phenomena and microscopic ion and electron-scale phenomena. In order to under-stand the dynamics of plasma in small scales, we need to observe the plasma with an analyzer which has high time resolution. For ion-scale phenomena, the time resolution must be as high as ion cyclotron frequency (-10 sec) in Earth's magnetosphere. However, for electron-scale phe-nomena, the time resolution must be as high as electron cyclotron frequency (-1 msec). The GEOTAIL satellite that observes Earth's magnetosphere has the analyzer whose time resolution is 12 sec, so the satellite can observe ion-scale phenomena. However in the SCOPE mission, we will go further to observe electron-scale phenomena. Then we need analyzers that have at least several msec time resolution. Besides, we need to make the analyzer as small as possible for the volume and weight restrictions of the satellite. The diameter of the top-hat analyzer must be smaller than 20 cm. In this study, we are developing an electrostatic analyzer that meets such requirements using numerical simulations. The electrostatic analyzer is a spherical/toroidal top-hat electrostatic analyzer with three nested spherical/toroidal deflectors. Using these deflectors, the analyzer measures charged particles simultaneously in two different energy ranges. Therefore time res-olution of the analyzer can be doubled. With the analyzer, we will measure energies from 10 eV to 22.5 keV. In order to obtain three-dimensional distribution functions of low energy parti-cles, the analyzer must have 4-pi str field of view. Conventional electrostatic analyzers use the spacecraft spin to have 4-pi field of view. So the time resolution of the analyzer depends on the spin frequency of the spacecraft. However, we cannot secure the several msec time resolution by using the spacecraft spin. In the SCOPE mission, we set 8 pairs of two nested electrostatic analyzers on each side of the spacecraft, which enable us to secure 4-pi field of view altogether. Then the time resolution of the analyzer does not depend on the spacecraft spin. Given that the sampling time of the analyzer is 0.5 msec, the time resolution of the analyzer can be 8 msec. In order to secure the time resolution as high as 10 msec, the geometric factor of the analyzer has to be as high as 8*10-3 (cm2 str eV/eV/22.5deg). Higher geometric factor requires bigger instrument. However, we have to reduce the volume and weight of the instrument to set it on the satellite. Under these restrictions, we have realized the analyzer which has the geometric factors of 7.5*10-3 (cm2 str eV/eV/22.5deg) (inner sphere) and 10.0*10-3 (cm2 str eV/eV/22.5deg) (outer sphere) with diameter of 17.4 cm.
Gutiérrez-Rojas, Luis; Jurado, Dolores; Martínez-Ortega, José María; Gurpegui, Manuel
2010-12-01
We analyzed the association of previous course-of-illness and other variables of clinical interest with a high frequency of both depressive or (hypo)manic episodes controlling for the effect of socio-demographic characteristics. A total of 108 outpatients with a DSM-IV diagnosis of bipolar disorder (BD) were recruited. A retrospective and naturalistic study was conducted to examine the number of affective episodes and their relationship with socio-demographic, clinical and course-of-illness variables, including adherence to medication, type of medication used and the use of addictive substances. The episode frequency was estimated as the number of "major instances" of depression, hypomania and mania during the illness. To classify the patients into two groups (higher and lower-episode frequency), we used the statistical criterion of median split. Results were analyzed with logistic regression models to control for the effects of potential confounders. A high episode frequency (nine or more episodes) was associated with age (36-55years), delay in diagnosis, poor adherence to medication and current use of antipsychotic medication. In addition, a high frequency of manic episodes (four or more) was associated with female sex, age (>36years) and a manic onset of the illness, whereas a high frequency of depressive episodes (five or more) was associated with delay in diagnosis and poor adherence to medication. Cross-sectional study design. Avoiding delay in diagnosis and enhancing treatment adherence might be important targets for reducing recurrences in BD. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Hattier, Megan A.; Matson, Johnny L.; Tureck, Kimberly; Horovitz, Max
2011-01-01
Frequency of repetitive and/or restricted behaviors and interests (RRBIs) was assessed in 140 adults with autism spectrum disorders (ASDs) and severe or profound intellectual disability (ID). The associations of gender and age range were analyzed with RRBI frequency which was obtained using the Stereotypies subscale of the "Diagnostic…
Frequency Diverse Array Receiver Architectures
2015-06-29
completely associated with FDA, the Hybrid MIMO phased array (HMPAR) concept presented in [18] developed the basic beam patern synthesis theory for an...20], that analyzed beam paterns of chirp waveforms with slightly 6 different starting frequencies. In [21] and [11] they investigated using FDA for...forward-looking radar GMTI benefits. This research showed the ability of the range-dependent energy distribution characteristics of the FDA beam patern
[Definition of quantum efficiency of X-ray detectors].
Zelikman, M I
2001-01-01
Different definitions available in the literature on the quantum efficiency of X-ray detectors are presented and compared. The relationship of this parameter to spatial frequencies for quantum accounting receivers and energy accumulating ones is analyzed. A procedure is proposed for evaluating the quantum efficiency of the detectors in the area of zero spatial frequencies, which is rather simple and requires no special testing equipment.
The Accuracy of Two-Way Satellite Time Transfer Calibrations
2005-01-01
20392, USA Abstract Results from successive calibrations of Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) operational equipment at...USNO and five remote stations using portable TWSTFT equipment are analyzed for internal and external errors, finding an average random error of ±0.35...most accurate means of operational long-distance time transfer are Two-Way Satellite Time and Frequency Transfer ( TWSTFT ) and carrier-phase GPS
Types and Frequency of Infusion Pump Alarms: Protocol for a Retrospective Data Analysis.
Glover, Kevin R; Vitoux, Rachel R; Schuster, Catherine; Curtin, Christopher R
2018-06-14
The variety of alarms from all types of medical devices has increased from 6 to 40 in the last three decades, with today's most critically ill patients experiencing as many as 45 alarms per hour. Alarm fatigue has been identified as a critical safety issue for clinical staff that can lead to potentially dangerous delays or nonresponse to actionable alarms, resulting in serious patient injury and death. To date, most research on medical device alarms has focused on the nonactionable alarms of physiological monitoring devices. While there have been some reports in the literature related to drug library alerts during the infusion pump programing sequence, research related to the types and frequencies of actionable infusion pump alarms remains largely unexplored. The objectives of this study protocol are to establish baseline data related to the types and frequency of infusion pump alarms from the B. Braun Outlook 400ES Safety Infusion System with the accompanying DoseTrac Infusion Management Software. The most recent consecutive 60-day period of backup hospital data received between April 2014 and February 2017 from 32 United States-based hospitals will be selected for analysis. Microsoft SQL Server (2012 - 11.0.5343.0 X64) will be used to manage the data with unique code written to sort data and perform descriptive analyses. A validated data management methodology will be utilized to clean and analyze the data. Data management procedures will include blinding, cleaning, and review of existing infusion data within the DoseTrac Infusion Management Software databases at each hospital. Patient-identifying data will be removed prior to merging into a dedicated and secure data repository. This pooled data will then be analyzed. This exploratory study will analyze the aggregate alarm data for each hospital by care area, drug infused, time of day, and day of week, including: overall infusion pump alarm frequency (number of alarms per active infusion), duration of alarms (average, range, median), and type and frequency of alarms distributed by care area. Infusion pump alarm data collected and analyzed in this study will be used to help establish a baseline of infusion pump alarm types and relative frequencies. Understanding the incidences and characteristics of infusion pump alarms will result in more informed quality improvement recommendations to decrease and/or modify infusion pump alarms, and potentially reduce clinical staff alarm fatigue and improve patient safety. . RR1-10.2196/10446. ©Kevin R Glover, Rachel R Vitoux, Catherine Schuster, Christopher R Curtin. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 14.06.2018.
Design and Calibration of an Airborne Multichannel Swept-Tuned Spectrum Analyzer
NASA Technical Reports Server (NTRS)
Hamory, Philip J.; Diamond, John K.; Bertelrud, Arild
1999-01-01
This paper describes the design and calibration of a four-channel, airborne, swept-tuned spectrum analyzer used in two hypersonic flight experiments for characterizing dynamic data up to 25 kHz. Built mainly from commercially available analog function modules, the analyzer proved useful for an application with limited telemetry bandwidth, physical weight and volume, and electrical power. The authors discuss considerations that affect the frequency and amplitude calibrations, limitations of the design, and example flight data.
Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.
1990-01-01
Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.
Quantitative subsurface analysis using frequency modulated thermal wave imaging
NASA Astrophysics Data System (ADS)
Subhani, S. K.; Suresh, B.; Ghali, V. S.
2018-01-01
Quantitative depth analysis of the anomaly with an enhanced depth resolution is a challenging task towards the estimation of depth of the subsurface anomaly using thermography. Frequency modulated thermal wave imaging introduced earlier provides a complete depth scanning of the object by stimulating it with a suitable band of frequencies and further analyzing the subsequent thermal response using a suitable post processing approach to resolve subsurface details. But conventional Fourier transform based methods used for post processing unscramble the frequencies with a limited frequency resolution and contribute for a finite depth resolution. Spectral zooming provided by chirp z transform facilitates enhanced frequency resolution which can further improves the depth resolution to axially explore finest subsurface features. Quantitative depth analysis with this augmented depth resolution is proposed to provide a closest estimate to the actual depth of subsurface anomaly. This manuscript experimentally validates this enhanced depth resolution using non stationary thermal wave imaging and offers an ever first and unique solution for quantitative depth estimation in frequency modulated thermal wave imaging.
Frequency-dependent solvent friction and torsional damping in liquid 1,2-difluoroethane
NASA Astrophysics Data System (ADS)
MacPhail, Richard A.; Monroe, Frances C.
1991-04-01
We have used Raman spectroscopy to study the torsional dynamics, rotational dynamics, and conformational solvation energy of liquid 1,2-difluoroethane. From the Raman intensities, we obtain Δ H(g-t) = -2.4±0.1 kcal/mol, indicating strong dipolar solvation of the gauche conformer. We analyze the Raman linewidths of the CCF bending bands to obtain the zero-frequency torsional damping coefficient or well friction for the gauche conformer, and from the linewidth of the torsion band we obtain the friction evaluated at the torsional frequency. The zero-frequency well friction shows deviations from hydrodynamic behavior reminiscent of those observed for barrier friction, whereas the high-frequency friction is considerably smaller in magnitude and independent of temperature and viscosity. The zero-frequency torsional friction correlates linearly with the rotational friction. It is argued that the small amplitude of the torsional fluctuations emphasizes the short distance, or high wavevector components of the solvent friction. Dielectric friction apparently does not contribute to the torsional friction at the observed frequencies.
Wave-field decay rate estimate from the wavenumber-frequency spectra
NASA Astrophysics Data System (ADS)
Comisel, H.; Narita, Y.; Voros, Z.
2017-12-01
Observational data for wave or turbulent fields are conveniently analyzed and interpreted in the Fourier domain spanning the frequencies and the wavenumbers. If a wave field has not only oscillatory components (characterized by real parts of frequency) but also temporally decaying components (characterized by imaginary parts of frequency), the energy spectrum shows a frequency broadening around the peak due to the imaginary parts of frequency (or the decay rate). The mechanism of the frequency broadening is the same as that of the Breit-Wigner spectrum in nuclear resonance phenomena. We show that the decay rate can observationally and directly be estimated once multi-point data are available, and apply the method to Cluster four-point magnetometer data in the solar wind on a spatial scale of about 1000 km. The estimated decay rate is larger than the eddy turnover time, indicating that the decay profile of solar wind turbulence is more plasma physical such as excitation of whistler waves and other modes rather than hydrodynamic turbulence behavior.
NASA Astrophysics Data System (ADS)
Silva, Guilherme Augusto Lopes da; Nicoletti, Rodrigo
2017-06-01
This work focuses on the placement of natural frequencies of beams to desired frequency regions. More specifically, we investigate the effects of combining mode shapes to shape a beam to change its natural frequencies, both numerically and experimentally. First, we present a parametric analysis of a shaped beam and we analyze the resultant effects for different boundary conditions and mode shapes. Second, we present an optimization procedure to find the optimum shape of the beam for desired natural frequencies. In this case, we adopt the Nelder-Mead simplex search method, which allows a broad search of the optimum shape in the solution domain. Finally, the obtained results are verified experimentally for a clamped-clamped beam in three different optimization runs. Results show that the method is effective in placing natural frequencies at desired values (experimental results lie within a 10% error to the expected theoretical ones). However, the beam must be axially constrained to have the natural frequencies changed.
NASA Astrophysics Data System (ADS)
Shaker, Ahmed; Ossaimee, Mahmoud; Zekry, A.; Abouelatta, Mohamed
2015-10-01
In this paper, we have investigated the effect of gate overlapping-on-drain on the ambipolar behavior and high frequency performance of tunnel CNTFET (T-CNTFET). It is found that gate overlapping-on-drain suppresses the ambipolar behavior and improves OFF-state current. The simulation results show that there is an optimum choice for the overlapped length. On the other hand, this overlap deteriorates the high frequency performance. The high frequency figure of merit is analyzed in terms of the unit-gain cutoff frequency (fT). Further, we propose two different approaches to improve the high frequency performance of the overlapped T-CNTFET. The first one is based on inserting a high-dielectric constant material below the overlapped part of the gate and the second is based on depositing a different work function gate metal for the overlapped region. The two solutions show very good improvement in the high frequency performance with maintaining the suppression of the ambipolar characteristics.
Analysis of fast and slow responses in AC conductance curves for p-type SiC MOS capacitors
NASA Astrophysics Data System (ADS)
Karamoto, Yuki; Zhang, Xufang; Okamoto, Dai; Sometani, Mitsuru; Hatakeyama, Tetsuo; Harada, Shinsuke; Iwamuro, Noriyuki; Yano, Hiroshi
2018-06-01
We used a conductance method to investigate the interface characteristics of a SiO2/p-type 4H-SiC MOS structure fabricated by dry oxidation. It was found that the measured equivalent parallel conductance–frequency (G p/ω–f) curves were not symmetric, showing that there existed both high- and low-frequency signals. We attributed high-frequency responses to fast interface states and low-frequency responses to near-interface oxide traps. To analyze the fast interface states, Nicollian’s standard conductance method was applied in the high-frequency range. By extracting the high-frequency responses from the measured G p/ω–f curves, the characteristics of the low-frequency responses were reproduced by Cooper’s model, which considers the effect of near-interface traps on the G p/ω–f curves. The corresponding density distribution of slow traps as a function of energy level was estimated.
Charge Analyzer Responsive Local Oscillations
NASA Technical Reports Server (NTRS)
Krause, Linda Habash; Thornton, Gary
2015-01-01
The first transatlantic radio transmission, demonstrated by Marconi in December of 1901, revealed the essential role of the ionosphere for radio communications. This ionized layer of the upper atmosphere controls the amount of radio power transmitted through, reflected off of, and absorbed by the atmospheric medium. Low-frequency radio signals can propagate long distances around the globe via repeated reflections off of the ionosphere and the Earth's surface. Higher frequency radio signals can punch through the ionosphere to be received at orbiting satellites. However, any turbulence in the ionosphere can distort these signals, compromising the performance or even availability of space-based communication and navigations systems. The physics associated with this distortion effect is analogous to the situation when underwater images are distorted by convecting air bubbles. In fact, these ionospheric features are often called 'plasma bubbles' since they exhibit some of the similar behavior as underwater air bubbles. These events, instigated by solar and geomagnetic storms, can cause communication and navigation outages that last for hours. To help understand and predict these outages, a world-wide community of space scientists and technologists are devoted to researching this topic. One aspect of this research is to develop instruments capable of measuring the ionospheric plasma bubbles. Figure 1 shows a photo of the Charge Analyzer Responsive to Local Oscillations (CARLO), a new instrument under development at NASA Marshall Space Flight Center (MSFC). It is a frequency-domain ion spectrum analyzer designed to measure the distributions of ionospheric turbulence from 1 Hz to 10 kHz (i.e., spatial scales from a few kilometers down to a few centimeters). This frequency range is important since it focuses on turbulence scales that affect VHF/UHF satellite communications, GPS systems, and over-the-horizon radar systems. CARLO is based on the flight-proven Plasma Local Anomalous Noise Environment (PLANE) instrument, previously flown on a U.S. Air Force low-Earth orbiting satellite, which successfully measured ion turbulence in five frequency decades from 0.1 Hz to 10 kHz (fig 2).
NASA Astrophysics Data System (ADS)
Zhu, Q.; Xu, Y. P.; Gu, H.
2014-12-01
Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management and risk management.
The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight.
Taha, Haithem E; Tahmasian, Sevak; Woolsey, Craig A; Nayfeh, Ali H; Hajj, Muhammad R
2015-01-05
Because of the relatively high flapping frequency associated with hovering insects and flapping wing micro-air vehicles (FWMAVs), dynamic stability analysis typically involves direct averaging of the time-periodic dynamics over a flapping cycle. However, direct application of the averaging theorem may lead to false conclusions about the dynamics and stability of hovering insects and FWMAVs. Higher-order averaging techniques may be needed to understand the dynamics of flapping wing flight and to analyze its stability. We use second-order averaging to analyze the hovering dynamics of five insects in response to high-amplitude, high-frequency, periodic wing motion. We discuss the applicability of direct averaging versus second-order averaging for these insects.
Communication: Probing anomalous diffusion in frequency space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stachura, Sławomir; Synchrotron Soleil, L’Orme de Merisiers, 91192 Gif-sur-Yvette; Kneller, Gerald R., E-mail: gerald.kneller@cnrs-orleans.fr
Anomalous diffusion processes are usually detected by analyzing the time-dependent mean square displacement of the diffusing particles. The latter evolves asymptotically as W(t) ∼ 2D{sub α}t{sup α}, where D{sub α} is the fractional diffusion constant and 0 < α < 2. In this article we show that both D{sub α} and α can also be extracted from the low-frequency Fourier spectrum of the corresponding velocity autocorrelation function. This offers a simple method for the interpretation of quasielastic neutron scattering spectra from complex (bio)molecular systems, in which subdiffusive transport is frequently encountered. The approach is illustrated and validated by analyzing molecularmore » dynamics simulations of molecular diffusion in a lipid POPC bilayer.« less
The effect of temperature on ferroelectric properties of CaCu3Ti4O12 ceramic
NASA Astrophysics Data System (ADS)
Kumar, Sandeep; Ahlawat, Neetu; Punia, Suman
2014-04-01
CaCu3Ti4O12 (CCTO) ceramic was synthesized by conventional solid-state reaction technique and sintered at 1353K for 10 hours. The dielectric properties of CCTO were analyzed in 1Hz-5 MHz frequency range, from room temperature to 413K. The ferroelectric properties of CCTO were analyzed at various frequencies viz. 50 Hz, 100 Hz and 200 Hz at temperatures (298K to 413K). Result of these investigation points that with increasing temperature the values of coercive field (Ec) and remnant polarization (Pr) decrease while maximum polarization (Pmax) increases non-linearly. P-E hysteresis loop of CCTO goes to slimed and a ferroelectric to Para-electric phase transition is observed at 403K.
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E.; Reeder, Mark F.
1995-01-01
Results of a feasibility study to apply laser Rayleigh scattering to non-intrusively measure flow properties in a small supersonic wind tunnel are presented. The technique uses an injection seeded, frequency doubled Nd:YAG laser tuned to an absorption band of iodine. The molecular Rayleigh scattered light is filtered with an iodine cell to block light at the laser frequency. The Doppler-shifted Rayleigh scattered light that passes through the iodine cell is analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode. An intensified CCD camera is used to record the images. The images are analyzed at several subregions, where the flow velocity is determined. Each image is obtained with a single laser pulse, giving instantaneous measurements.
Spectral inversion of frequency-domain IP data obtained in Haenam, South Korea
NASA Astrophysics Data System (ADS)
Kim, B.; Nam, M. J.; Son, J. S.
2017-12-01
Spectral induced polarization (SIP) method using a range of source frequencies have been performed for not only exploring minerals resources, but also engineering or environmental application. SIP interpretation first makes inversion of individual frequency data to obtain complex resistivity structures, which will further analyzed employing Cole-Cole model to explain the frequency-dependent characteristics. However, due to the difficulty in fitting Cole-Cole model, there is a movement to interpret complex resistivity structure inverted only from a single frequency data: that is so-called "complex resistivity survey". Further, simultaneous inversion of multi-frequency SIP data, rather than making a single frequency SIP data, has been studied to improve ambiguity and artefacts of independent single frequency inversion in obtaining a complex resistivity structure, even though the dispersion characteristics of complex resistivity with respect to source frequency. Employing the simultaneous inversion method, this study makes inversion of field SIP data obtained over epithermal mineralized area, Haenam, in the southernmost tip of South Korea. The area has a polarizable structure because of extensive hydrothermal alteration, gold-silver deposits. After the inversion, we compare between inversion results considering multi-frequency data and single frequency data set to evaluate the performance of simultaneous inversion of multi-frequency SIP data.
NASA Technical Reports Server (NTRS)
Makikallio, T. H.; Koistinen, J.; Jordaens, L.; Tulppo, M. P.; Wood, N.; Golosarsky, B.; Peng, C. K.; Goldberger, A. L.; Huikuri, H. V.
1999-01-01
The traditional methods of analyzing heart rate (HR) variability have failed to predict imminent ventricular fibrillation (VF). We sought to determine whether new methods of analyzing RR interval variability based on nonlinear dynamics and fractal analysis may help to detect subtle abnormalities in RR interval behavior before the onset of life-threatening arrhythmias. RR interval dynamics were analyzed from 24-hour Holter recordings of 15 patients who experienced VF during electrocardiographic recording. Thirty patients without spontaneous or inducible arrhythmia events served as a control group in this retrospective case control study. Conventional time- and frequency-domain measurements, the short-term fractal scaling exponent (alpha) obtained by detrended fluctuation analysis, and the slope (beta) of the power-law regression line (log power - log frequency, 10(-4)-10(-2) Hz) of RR interval dynamics were determined. The short-term correlation exponent alpha of RR intervals (0.64 +/- 0.19 vs 1.05 +/- 0.12; p <0.001) and the power-law slope beta (-1.63 +/- 0.28 vs -1.31 +/- 0.20, p <0.001) were lower in the patients before the onset of VF than in the control patients, but the SD and the low-frequency spectral components of RR intervals did not differ between the groups. The short-term scaling exponent performed better than any other measurement of HR variability in differentiating between the patients with VF and controls. Altered fractal correlation properties of HR behavior precede the spontaneous onset of VF. Dynamic analysis methods of analyzing RR intervals may help to identify abnormalities in HR behavior before VF.
Confocal Fabry-Perot interferometer for frequency stabilization of laser
NASA Astrophysics Data System (ADS)
Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.
2011-02-01
The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.
Vibration analysis of large centrifugal pump rotors
NASA Astrophysics Data System (ADS)
Y Zhao, W.; Ge, J. G.; Ma, D.; Li, C. M.; Bao, S. B.
2013-12-01
Through the critical speed of centrifugal pumps, internal flow field and the force of the impeller, we analyze centrifugal pump vibration. Using finite element analysis software ANSYS to calculate the natural frequency of the rotor system and the critical speed; with the help of the Fluent software to simulate pump internal flow field, we conclude that speed increase will not cause intense vibration of the fluid in the pump. Using unsteady numerical simulation we discovered that in an impeller suffering transient radial force cyclical change periodically, as well as the frequency size determined by the product of the impeller speed and number of blades, resonance phenomena should make impeller to transient radial force frequency. If wanting to avoid pump resonance when it is running away, the transient radial force frequency should avoid the frequency range which can cause resonance.
Noise in solid-state nanopores
Smeets, R. M. M.; Keyser, U. F.; Dekker, N. H.; Dekker, C.
2008-01-01
We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f ≲ 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter α = (1.1 ± 0.1) × 10−4. In the high-frequency regime (f ≳ 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency. PMID:18184817
Noise in solid-state nanopores.
Smeets, R M M; Keyser, U F; Dekker, N H; Dekker, C
2008-01-15
We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter alpha = (1.1 +/- 0.1) x 10(-4). In the high-frequency regime (f approximately > 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng Dian; Fu Panming; Wang Bingbing
2010-11-15
We investigate numerically with Hylleraas coordinates the frequency dependence of the carrier-envelope phase (CEP) effect on bound-bound transitions of helium induced by an ultrashort laser pulse of a few cycles. We find that the CEP effect is very sensitive to the carrier frequency of the laser pulse, occurring regularly even at far-off-resonance frequencies. By analyzing a two-level model, we find that the CEP effect can be attributed to the quantum interference between neighboring multiphoton transition pathways, which is made possible by the broadened spectrum of the ultrashort laser pulse. A general picture is developed along this line to understand themore » sensitivity of the CEP effect to the laser's carrier frequency. Multilevel influence on the CEP effect is also discussed.« less
Development of a high-frequency and large-stroke fatigue testing system for rubber
NASA Astrophysics Data System (ADS)
Chen, Gang; Wu, Hao; Gao, Jianwen; Lin, Qiang
2017-04-01
The limited capabilities of current fatigue testing machines have resulted in studies on the fatigue behavior of rubber under large-displacement amplitude and high frequency being very sparse. In this study, a fatigue testing system that can carry out large-displacement amplitude and high-frequency fatigue tests on rubber was developed using a moving magnet voice coil motor (MMVCM) actuator, with finite element analysis applied to analyze the thrust of the MMVCM actuator. The results of a series of cyclic tension tests conducted on vulcanized natural rubber specimens using the developed fatigue testing system verify that it has high precision, low noise, large-stroke, and high-frequency characteristics. Further, the load frame with the developed MMVCM actuator is feasible for material testing, especially for large-stroke and high-frequency fatigue tests.
Acoustic analysis of speech variables during depression and after improvement.
Nilsonne, A
1987-09-01
Speech recordings were made of 16 depressed patients during depression and after clinical improvement. The recordings were analyzed using a computer program which extracts acoustic parameters from the fundamental frequency contour of the voice. The percent pause time, the standard deviation of the voice fundamental frequency distribution, the standard deviation of the rate of change of the voice fundamental frequency and the average speed of voice change were found to correlate to the clinical state of the patient. The mean fundamental frequency, the total reading time and the average rate of change of the voice fundamental frequency did not differ between the depressed and the improved group. The acoustic measures were more strongly correlated to the clinical state of the patient as measured by global depression scores than to single depressive symptoms such as retardation or agitation.
NASA Astrophysics Data System (ADS)
Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing
2015-03-01
The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.
NASA Astrophysics Data System (ADS)
Shim, Hayeong; Roh, Yongrae
2018-07-01
Ultrasonic sensors in air are used to measure distances from obstacles in household appliances, automobiles, and other areas. Among these ultrasonic sensors in air, sensors using disk-shaped piezoelectric ceramics are composed of a multilayered structure having a vibrational plate, a piezoelectric ceramic disk, and a backing layer. In this study, we derived theoretical equations that can accurately analyze the acoustic characteristics of the piezoelectric multilayered structure, and then analyzed the performance of the ultrasonic sensor according to the geometrical change of the multilayered structure. The characteristics analyzed were the resonant frequency and the radiated sound pressure at a far field of the sensor. The validity of the theoretical analysis was verified by comparing the results with those obtained from the finite element analysis of the same structure. The exact functional forms of the resonant frequency of and the radiated sound pressure from the piezoelectric multilayered structure derived in this study can be directly utilized to maximize the performance of various ultrasonic sensors in air.
The solar vector magnetograph of the Okayama Astrophysical Observatory
NASA Technical Reports Server (NTRS)
Makita, M.; Hamana, S.; Nishi, K.
1985-01-01
The vector magnetograph of the Okayama Astrophysical Observatory is fed to the 65 cm solar coude telescope with a 10 m Littrow spectrograph. The polarimeter put at the telescope focus analyzes the incident polarization. Photomultipliers (PMT) at the exit of the spectrograph pick up the modulated light signals and send them to the electronic controller. The controller analyzes frequency and phase of the signal. The analyzer of the polarimeter is a combination of a single wave plate rotating at 40 Hz and a Wallaston prism. Incident linear and circular polarizations are modified at four times and twice the rotation frequency, respectively. Two compensators minimize the instrumental polarization, mainly caused by the two tilt mirrors in the optical path of the telescope. The four photomultipliers placed on the wings of the FeI 5250A line give maps of intensity, longitudinal field and transverse field. The main outputs, maps of intensity, and net linear and circular polarizations in the neighboring continuum are obtained by the other two monitor PMTs.
Alessi, Alessio; Accoto, Dino; Guglielmelli, Eugenio
2015-08-01
Underactuated compliant swimming robots are characterized by a simple mechanical structure, capable to mimic the body undulation of many fish species. One of the design issue for these robots is the generation and control of best performing swimming gaits. In this paper we propose a new controller, based on AFO oscillators, to address this issue. After analyzing the effects of the motion on the robot natural frequencies, we show that the closed loop system is able to generate self-sustained oscillations, at a characteristic frequency, while maximizing swimming velocity.
High pressure study on layered nitride superconductors
NASA Astrophysics Data System (ADS)
Taguchi, Y.; Hisakabe, M.; Ohishi, Y.; Yamanaka, S.; Iwasa, Y.
2004-03-01
Pressure dependence of critical temperature, lattice constant, and phonon frequency has been investigated for layered nitride superconductors, Li_0.5(THF)_yHfNCl and ZrNCl_0.7. The data have been analyzed in terms of MacMillan's theory, and electron-phonon coupling constant λ (=1.3), Coulomb pseudopotential μ^* (=0.31), and relevant phonon frequency (=630 cm-1) have been extracted. The obtained value of λ exceeds 1 in contrast with previous experimental and theoretical results. The present result indicates that, if the superconductivity is within a MacMillan scheme, it is mediated by high frequency phonons in a strong coupling regime.
Real time analysis of voiced sounds
NASA Technical Reports Server (NTRS)
Hong, J. P. (Inventor)
1976-01-01
A power spectrum analysis of the harmonic content of a voiced sound signal is conducted in real time by phase-lock-loop tracking of the fundamental frequency, (f sub 0) of the signal and successive harmonics (h sub 1 through h sub n) of the fundamental frequency. The analysis also includes measuring the quadrature power and phase of each frequency tracked, differentiating the power measurements of the harmonics in adjacent pairs, and analyzing successive differentials to determine peak power points in the power spectrum for display or use in analysis of voiced sound, such as for voice recognition.
NASA Astrophysics Data System (ADS)
Park, Sahnggi; Kim, Kap-Joong; Kim, Duk-Jun; Kim, Gyungock
2009-02-01
Third order ring resonators are designed and their resonance frequency deviations are analyzed experimentally by processing them with E-beam lithography and ICP etching in a CMOS nano-Fabrication laboratory. We developed a reliable method to identify and reduce experimentally the degree of deviation of each ring resonance frequency before completion of the fabrication process. The identified deviations can be minimized by the way to be presented in this paper. It is expected that this method will provide a significant clue to make a high order multi-channel ring resonators.
Study on rotational frequency noise in a centrifugal compressor for automobile turbochargers
NASA Astrophysics Data System (ADS)
Wakaki, Daichi; Sakuka, Yuta; Yamasaki, Nobuhiko; Yamagata, Akihiro
2014-02-01
The rotational frequency noise (also known as the pulsation noise) due to the mistuning of impeller blade rows introduced at the manufacturing stage of the impellers is observed in the small-sized centrifugal compressor for automobile turbochargers. The present paper addresses the elucidation of the generating mechanism and parameter dependency such as the kind and degree of mistuning. In order to analyze numerically the rotational frequency noise due to mistuning, the unsteady computational fluid dynamics (CFD) of the whole compressor including volute is executed, and the resultant time history of the pressure is fed into the spectral analysis.
NASA Astrophysics Data System (ADS)
Ibrahim, Omar A.; Elwi, Taha A.; Islam, Naz E.
2012-11-01
A miniaturized microstrip antenna is analyzed for implantable biomedical applications. The antenna is designed using two different commercial software packages, CST Microwave Studio and HFSS, to validate the results. The proposed design operates in the WMTS frequency band. The antenna performance is tested inside the human body, Hugo model. The antenna design is readjusted to get the desired resonant frequency. The resonant frequency, bandwidth, gain, and radiation pattern of the proposed antenna are provided in this paper. Furthermore, the effect of losses inside human body due to the fat layer is recognized.
Adiabatic description of long range frequency sweeping
NASA Astrophysics Data System (ADS)
Breizman, Boris; Nyqvist, Robert; Lilley, Matthew
2012-10-01
A theoretical framework is developed to describe long range frequency sweeping events in the 1D electrostatic bump-on-tail model with fast particle sources and collisions. The model includes three collision operators (Krook, drag (dynamical friction) and velocity space diffusion), and allows for a general shape of the fast particle distribution function. The behavior of phase space holes and clumps is analyzed, and the effect of particle trapping due to separatrix expansion is discussed. With a fast particle distribution function whose slope decays above the resonant phase velocity, hooked frequency sweeping is found for holes in the presence of drag collisions alone.
Optimal behavior of viscoelastic flow at resonant frequencies.
Lambert, A A; Ibáñez, G; Cuevas, S; del Río, J A
2004-11-01
The global entropy generation rate in the zero-mean oscillatory flow of a Maxwell fluid in a pipe is analyzed with the aim of determining its behavior at resonant flow conditions. This quantity is calculated explicitly using the analytic expression for the velocity field and assuming isothermal conditions. The global entropy generation rate shows well-defined peaks at the resonant frequencies where the flow displays maximum velocities. It was found that resonant frequencies can be considered optimal in the sense that they maximize the power transmitted to the pulsating flow at the expense of maximum dissipation.
Acoustic absorbance measurements in neonates exposed to smoking during pregnancy.
Pucci, Beatriz Paloma Corrêa; Roque, Nayara Michelle Costa de Freitas; Gamero, Marcella Scigliano; Durante, Alessandra Spada
2017-04-01
To analyze acoustic absorbance using wideband tympanometry in neonates exposed to passive smoking during pregnancy. A study comprising 54 neonates in the control group (CG - unexposed) and 19 in the study group (SG - exposed) was carried out. Subjects were submitted to the wideband tympanometry test and subsequent analysis of absorbance of 17 frequencies. Low frequencies had a lower level of absorbance compared to high frequencies for both ambient and peak pressures, with no difference between the groups. No effect of passive smoking on acoustic absorbance measurements in neonates was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Hao; Zhang, Shulian; Tan, Yidong
2016-04-10
The pump polarization direction can greatly influence the characteristics of the laser diode end-pumped monolithic microchip Nd:YAG dual-frequency laser. We experimentally observe the lasing thresholds and the optical powers of two splitting modes versus the pump polarization direction. The effect of the pump-induced gain anisotropy on the mode oscillation sequence is analyzed. And the effect on the intensities of these modes is also proved with a rate equation model. This study contributes to the improvement of the stability and the reliability of the Nd:YAG dual-frequency laser.
Alcaraz, Raúl; Martínez, Arturo; Rieta, José J
2015-09-01
The study of atrial conduction defects associated with the onset of paroxysmal atrial fibrillation (PAF) can be addressed by analyzing the P wave from the surface electrocardiogram (ECG). Traditionally, signal-averaged ECGs have been mostly used for this purpose. However, this alternative hinders the possibility to quantify every single P wave, its variability over time, as well as to obtain complimentary and evolving information about the arrhythmia. This work analyzes the time progression of several time and frequency P wave features as potential indicators of atrial conduction variability several hours preceding the onset of PAF. The longest sinus rhythm interval from 24-hour Holter recordings of 46 PAF patients was selected. Next, the 2 hours before the onset of PAF were extracted and divided into two 1-hour periods. Every single P wave was automatically delineated and characterized by 16 time and frequency metrics, such as its duration, absolute energy in several frequency bands and high-to-low-frequency energy ratios. Finally, the P wave variability over each 1-hour period was estimated from the 16 features making use of a least-squares linear fitting. As a reference, the same parameters were also estimated from a set of 1-hour ECG segments randomly chosen from a control group of 53 healthy subjects age-, gender-, and heart rate-matched. All the analyzed metrics provided an increasing P wave variability trend as the onset of PAF approximated, being P wave duration and P wave high-frequency energy the most significant individual metrics. The linear fitting slope α associated with P wave duration was (2.48 ± 1.98)×10(-2) for healthy subjects, (23.8 ± 14.1)×10(-2) for ECG segments far from PAF and for (81.8 ± 48.7)×10(-2) ECG segments close to PAF p = 6.96×10(-22) . Similarly, the P wave high-frequency energy linear fitting slope was (2.42 ± 4.97)×10(-9) , (54.2 ± 107.1)×10(-9) and (274.2 ± 566.1)×10(-9) , respectively (p = 2.85×10(-20) ). A univariate discriminant analysis provided that both P wave duration and P wave high-frequency energy could discern among the three ECG sets with diagnostic ability around 80%, which was improved up to 88% by combining these metrics in a multivariate discriminant analysis. Alterations in atrial conduction can be successfully quantified several hours before the onset of PAF by estimating variability over time of several time and frequency P wave features. © 2014 Wiley Periodicals, Inc.
[Design and implementation of a questionnaire to evaluate the dietary quality of school meals].
de Mateo Silleras, Beatriz; Camina Martín, M Alicia; Ojeda Sainz, Berta; Carreño Enciso, Laura; de la Cruz Marcos, Sandra; Marugán de Miguelsanz, José Manuel; Redondo del Río, Paz
2014-10-03
The school canteen provides a substantial proportion of the daily nutritional intake for many children. There are nutritional standards for school meals, however, it is still difficult to assess the dietary quality. To design a questionnaire for assessing the dietary quality of school meals, quickly and easily. A dietary questionnaire (COMES) was designed on the basis of the current recommendations. COMES consist of 15 items related to the food-frequency and to other characteristics of school meals. Then, a longitudinal prospective study was performed in order to analyze, with COMES, 36 school meals of 4 catering companies from Castilla y León during the academic years 2006-2007 to 2010-2011. Differences in dietary quality menus according to the management system of catering companies (in situ vs. transported) were analyzed by using the Mann-Whitney and the Kruskal-Wallis tests. The significance was reached at p <0,05. The frequency intake of meat, dairy and prepared products was higher to the recommended in 97,2%, 94,4% and 27,8% of the analyzed menus, respectively. By contrast, the frequency intake of fish, fruit, legume, and vegetable garnishes were lower to the recommended in 83,3%, 94,4%, 91,7% and 75% of menus, respectively. Nevertheless, recommendations established by our consensus document for school meals are complied for all food groups, except for dairy and fruits. The variety of foods and culinary techniques were appropriate. No significant differences were found in the COMES score according to the management system (p=0,87), although catering system provides higher dietary quality. A new tool to assess quickly and easily the nutritional quality of school meals has been proposed. The assessment of the frequency intake of the most problematic foods for schoolchildren with this scale is much more demanding than the current recommendations. Even so, menus analyzed showed an acceptable quality in terms of variety of foods and culinary techniques, although milk frequency in the menus was excessive at the expense of fresh fruit. On the other hand, the transported system (i.e. catering, both hot and cold-holding) provides menus more consistent with the dietary recommendations. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Variation in pin knot frequency in black walnut lumber cut from a small provenance/progeny test
Peter Y. S. Chen; Robert E. Bodkin; J. W. Van Sambeek
1995-01-01
This small study examined the frequency of knots (> 1 growth ring), pin knots (latent or suppressed buds), and pin knot clusters in 414 black walnut (Juglans nigra L.) lumber from 42 logs. 18 to 21 cm dbh, cut from a 14-year-old provenance/progeny test. Two boards from opposite sides of each log were analyzed for number of knots, pin knots, and...
Two-photon absorption spectroscopy using intense phase-chirped entangled beams
NASA Astrophysics Data System (ADS)
Svozilík, Jiří; Peřina, Jan; León-Montiel, Roberto de J.
2018-06-01
We numerically analyze the use of intense entangled twin beams for ultra-sensitive spectroscopic measurements in chemical and biological systems. The examined scheme makes use of intense frequency-modulated (chirped) entangled beams to successfully extract information about the intermediate material states that contribute to the two-photon excitation of an absorbing medium. Robustness of the presented method is examined with respect to the applied intervals of the frequency chirp.
Microwave Remote Sensing of Falling Snow
NASA Technical Reports Server (NTRS)
Kim, Min-Jeong; Wang, J. R.; Meneghini, R.; Johnson, B.; Tanelli, S.; Roman-Nieves, J. I.; Sekelsky, S. M.; Skofronick-Jackson, G.
2005-01-01
This study analyzes passive and active microwave measurements during the 2003 Wakasa Bay field experiment for understanding of the electromagnetic characteristics of frozen hydrometeors at millimeter-wave frequencies. Based on these understandings, parameterizations of the electromagnetic scattering properties of snow at millimeter-wave frequencies are developed and applied to the hydrometeor profiles obtained by airborne radar measurements. Calculated brightness temperatures and radar reflectivity are compared with the millimeter-wave measurements.
Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine
Ziminsky, Willy Steve [Simpsonville, SC; Krull, Anthony Wayne [Anderson, SC; Healy, Timothy Andrew , Yilmaz, Ertan
2011-05-17
A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.
Synthetic gene frequency maps of man and selective effects of climate
Piazza, A.; Menozzi, P.; Cavalli-Sforza, L. L.
1981-01-01
The world distribution of 39 independent gene frequencies in human populations is analyzed by multivariate techniques and synthetic geographic maps. Most genetic variation is associated with longitude, with South Asia showing a tendency to be central. Also latitude and, more particularly, distance from the equator play a significant role in a way that suggests that climatic factors exercise selective pressures, especially for certain genes. Images PMID:6941316
ERIC Educational Resources Information Center
Goodman, Kenneth S.; Bird, Lois Bridges
Analyzing word frequency in six complete texts, a study investigated how vocabulary can be used to define texts. The texts included three stories from 5th and 6th grade readers, selections from literature anthologies for 8th grade and 12th grade students, and a magazine essay for adults. Results indicated that if particular words occur frequently…
Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions
Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean
2015-01-01
Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436
Effects of Ti doping on the dielectric properties of HfO{sub 2} nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhriyal, S.; Biswas, S., E-mail: drsomnathbiswas@gmail.com
2016-05-06
We report the effects of Ti doping on the dielectric properties of HfO{sub 2} [Hf{sub 1-x}Ti{sub x}O{sub 2} (x = 0.2-0.8)] nanoparticles at room temperature. The Hf{sub 1-x}Ti{sub x}O{sub 2} nanoparticles were synthesized by a wet chemical process. The structural and morphological properties of the derived samples were analyzed with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM). Impedance analysis was performed in pelletized samples in the frequency range of 1 MHz to 1 GHz. The obtained results were analyzed in correlation with microstructure and doping concentration in the derived samples. The averagemore » size of the Hf{sub 1-x}Ti{sub x}O{sub 2} nanoparticles is typically in the range of 4-8 nm depending on the processing temperature. The Hf{sub 1−x}Ti{sub x}O{sub 2} nanoparticles show reduction in crystallinity with the increase in Ti doping. The dielectric constants of the derived samples decrease with the increase in frequency. The ac-conductivity in the samples increases with the increase in frequency irrespective of Ti concentration and shows significant drop with the increase in Ti concentration at all frequencies.« less
Divergence at the casein haplotypes in dairy and meat goat breeds.
Küpper, Julia; Chessa, Stefania; Rignanese, Daniela; Caroli, Anna; Erhardt, Georg
2010-02-01
Casein genes have been proved to have an influence on milk properties, and are in addition appropriate for phylogeny studies. A large number of casein polymorphisms exist in goats, making their analysis quite complex. The four casein loci were analyzed by molecular techniques for genetic polymorphism detection in the two dairy goat breeds Bunte Deutsche Edelziege (BDE; n=96), Weisse Deutsche Edelziege (WDE; n=91), and the meat goat breed Buren (n=75). Of the 35 analyzed alleles, 18 were found in BDE, and 17 in Buren goats and WDE. In addition, a new allele was identified at the CSN1S1 locus in the BDE, showing a frequency of 0.05. This variant, named CSN1S1*A', is characterized by a t-->c transversion in intron 9. Linkage disequilibrium was found at the casein haplotype in all three breeds. A total of 30 haplotypes showed frequencies higher than 0.01. In the Buren breed only one haplotype showed a frequency higher than 0.1. The ancestral haplotype B-A-A-B (in the order: CSN1S1-CSN2-CSN1S2-CSN3) occurred in all three breeds, showing a very high frequency (>0.8) in the Buren.
Frequency of sucrose exposure on the cariogenicity of a biofilm-caries model
Díaz-Garrido, Natalia; Lozano, Carla; Giacaman, Rodrigo A.
2016-01-01
Objective: Although sucrose is considered the most cariogenic carbohydrate in the human diet, the question of how many exposures are needed to induce damage on the hard dental tissues remains unclear. To approach this question, different frequencies of daily sucrose exposure were tested on a relevant biological caries model. Materials and Methods: Biofilms of the Streptococcus mutans were formed on enamel slabs and exposed to cariogenic challenges with 10% sucrose for 5 min at 0, 1, 3, 5, 8, or 10 times per day. After 5 days, biofilms were retrieved to analyze biomass, protein content, viable bacteria, and polysaccharide formation. Enamel demineralization was evaluated by percentage of microhardness loss (percentage surface hardness loss [%SHL]). Results: Biomass, protein content, polysaccharide production, acidogenicity of the biofilm, and %SHL proportionally increased with the number of daily exposures to sucrose (P < 0.05). One daily sucrose exposure was enough to induce 20% more demineralization than the negative unexposed control. Higher frequencies induced greater demineralization and more virulent biofilms, but eight and ten exposures were not different between them in most of the analyzed variables (P > 0.05). Conclusions: Higher sucrose exposure seems to increase cariogenicity, in a frequency-dependent manner, by the modification of bacterial virulent properties. PMID:27403051
Broadband W-band Rapid Frequency Sweep Considerations for Fourier Transform EPR.
Strangeway, Robert A; Hyde, James S; Camenisch, Theodore G; Sidabras, Jason W; Mett, Richard R; Anderson, James R; Ratke, Joseph J; Subczynski, Witold K
2017-12-01
A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T 1 values using pulse saturation recovery. An overview of that work is provided.
Amplification of light in one-dimensional vibrating metal photonic crystal
NASA Astrophysics Data System (ADS)
Ueta, Tsuyoshi
2012-04-01
Photon-phonon interaction on the analogy of electron-phonon interaction is considered in one-dimensional metal photonic crystal. When lattice vibration is artificially introduced to the photonic crystal, a governing equation of electromagnetic field is derived. A simple model is numerically analyzed, and the following novel phenomena are found out. The lattice vibration generates the light of frequency which added the integral multiple of the vibration frequency to that of the incident wave and also amplifies the incident wave resonantly. On a resonance, the amplification factor increases very rapidly with the number of layers. Resonance frequencies change with the phases of lattice vibration. The amplification phenomenon is analytically discussed for low frequency of the lattice vibration and is confirmed by numerical works.
Resonant ultrasound spectroscopy
Migliori, Albert
1991-01-01
A resonant ultrasound spectroscopy method provides a unique characterization of an object for use in distinguishing similar objects having physical differences greater than a predetermined tolerance. A resonant response spectrum is obtained for a reference object by placing excitation and detection transducers at any accessible location on the object. The spectrum is analyzed to determine the number of resonant response peaks in a predetermined frequency interval. The distribution of the resonance frequencies is then characterized in a manner effective to form a unique signature of the object. In one characterization, a small frequency interval is defined and stepped though the spectrum frequency range. Subsequent objects are similarly characterized where the characterizations serve as signatures effective to distinguish objects that differ from the reference object by more than the predetermined tolerance.
Nonlinear beat excitation of low frequency wave in degenerate plasmas
NASA Astrophysics Data System (ADS)
Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.
2018-03-01
The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.
Vibration analysis of three guyed tower designs for intermediate size wind turbines
NASA Technical Reports Server (NTRS)
Christie, R. J.
1982-01-01
Three guyed tower designs were analyzed for intermediate size wind turbines. The four lowest natural frequencies of vibration of the three towers concepts were estimated. A parametric study was performed on each tower to determine the effect of varying such tower properties as the inertia and stiffness of the tower and guys, the inertia values of the nacelle and rotor, and the rotational speed of the rotor. Only the two lowest frequencies were in a range where they could be excited by the rotor blade passing frequencies. There two frequencies could be tuned by varying the guy stiffness, the guy attachment point on the tower, the tower and mass stiffness, and the nacelle/rotor/power train masses.
Effect of annealing induced residual stress on the resonance frequency of SiO2 microcantilevers
NASA Astrophysics Data System (ADS)
Balasubramanian, S.; Prabakar, K.; Tripura Sundari, S.
2018-04-01
In the present work, effect of residual stress, induced due to annealing of SiO2 microcantilevers (MCs) on their resonance frequency is studied. SiO2MCs of various dimensions were fabricated using direct laser writer & wet chemical etching method and were annealed at 800 °C in oxygen environment, post release. The residual stress was estimated from the deflection profile of the MCs measured using 3D optical microscope, before and after annealing. Resonance frequency of the MCs was measured using nano-vibration analyzer and was found to change after annealing. Further the frequency shift was found to depend on the MC dimensions. This is attributed to the large stress gradients induced by annealing and associated stiffness changes.
NASA Astrophysics Data System (ADS)
Filippov, A. V.; Tarasov, S. Yu.; Podgornykh, O. A.; Chazov, P. A.; Shamarin, N. N.; Filippova, E. O.
2017-12-01
The effect of AE sensor positioning on the bulk ultrafine-grained materials used for sliding against steel ball has been investigated. Two versions of AE sensor positioning have been tested and showed the different attenuation levels. The experimentally obtained AE signal waveforms have been analyzed under the AE signal parameters such as a median frequency and AE energy. It was established that the AE sensor positioned on the sample supporting plate in the vicinity of the sample tested allowed redistribution of the signal energy from a low-frequency to high-frequency range as well as extending the median frequency range as compared to those obtained by mounting the sensor on the immobile sample holder.
NASA Astrophysics Data System (ADS)
Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank
2016-07-01
High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.
Spectrometer employing optical fiber time delays for frequency resolution
Schuss, Jack J.; Johnson, Larry C.
1979-01-01
This invention provides different length glass fibers for providing a broad range of optical time delays for short incident chromatic light pulses for the selective spatial and frequency analysis of the light with a single light detector. To this end, the frequencies of the incident light are orientated and matched with the different length fibers by dispersing the separate frequencies in space according to the respective fiber locations and lengths at the input terminal of the glass fibers. This makes the different length fibers useful in the field of plasma physics. To this end the short light pulses can be scattered by a plasma and then passed through the fibers for analyzing and diagnosing the plasma while it varies rapidly with time.
Work of PZT ceramics sounder for sound source artificial larynx
NASA Astrophysics Data System (ADS)
Sugio, Yuuichi; Kanetake, Ryota; Tanaka, Akimitsu; Ooe, Katsutoshi
2007-04-01
We aim to develop the easy-to-use artificial larynx with high tone quality. We focus on using a PZT ceramics sounder as its sound source, because it is small size, low power consumption, and harmless to humans. But conventional PZT ceramics sounder have the problem that it cannot generate an enough sound in the low frequency range, thus they cannot be used for artificial larynx. Then, we aim to develop the PZT ceramics sounder which can generate enough volume in the low frequency range. If we can lower the resonance frequency of the sounder, it can generate low pitch sound easily. Therefore I created the new diaphragm with low resonance frequency. In addition, we could obtain the high amplitude by changing method of driving. This time, we report on the characteristic comparison of this new PZT ceramics sounder and conventional one. Furthermore, for this new one, we analyzed the best alignment of PZT ceramics and the shape of the diaphragm to obtain low resonance frequency and big amplitude. In fact we analyzed the optimization of the structure. The analysis is done by computer simulation of ANSYS and Laser Doppler Vibrometer. In the future, we will add intonation to the generated sound by input wave form which is developed concurrently, and implant the sounder inside of the body by the method of fixing metal to biomolecule which is done too. And so high tone quality and convenient artificial larynx will be completed.
Kim, Jin Wook; Oh, Mi Mi; Yoon, Cheol Yong; Bae, Jae Hyun; Kim, Je Jong; Moon, Du Geon
2014-05-01
To investigate the putative association between nocturia and decreased serum testosterone in men with lower urinary tract symptoms. Frequency volume charts and serum testosterone levels of patients visiting the outpatient clinic for lower urinary tract symptoms were collected and analyzed. Age, prostate volume, body mass index and the presence of comorbidities were accounted for. Frequency volume charts were analyzed for pathophysiological components of nocturnal polyuria, global polyuria, decreased nocturnal bladder capacity and increased frequency to identify associated risks. Frequency volume charts were also used to chart 8-h changes of volume, frequency and capacity to identify time diurnal interactions with risk factors based on serum testosterone levels. A total of 2180 patients were enrolled in the study. Multivariate analysis showed testosterone decreased 0.142 ng/mL for every increase in nocturia, independent of other factors. Logistic regression analysis showed a significant difference between pathophysiological components. Decreased testosterone was shown to carry a significant independent risk for overall nocturia (odds ratio 1.60, 95% confidence interval 1.013-2.527, P = 0.044), and particularly nocturnal polyuria (odds ratio 1.934, 95% confidence interval 1.001-3.737, P = 0.027). Repeated measurement models showed patients with serum testosterone below 2.50 ng/mL to have a paradoxical increase in nocturnal urine volume at night. Nocturia, especially nocturnal polyuria, is associated with decreased serum testosterone. Patients with low serum testosterone show increased nocturnal urine output. © 2013 The Japanese Urological Association.
Ramírez, I; Pantrigo, J J; Montemayor, A S; López-Pérez, A E; Martín-Fontelles, M I; Brookes, S J H; Abalo, R
2017-08-01
When available, fluoroscopic recordings are a relatively cheap, non-invasive and technically straightforward way to study gastrointestinal motility. Spatiotemporal maps have been used to characterize motility of intestinal preparations in vitro, or in anesthetized animals in vivo. Here, a new automated computer-based method was used to construct spatiotemporal motility maps from fluoroscopic recordings obtained in conscious rats. Conscious, non-fasted, adult, male Wistar rats (n=8) received intragastric administration of barium contrast, and 1-2 hours later, when several loops of the small intestine were well-defined, a 2 minutes-fluoroscopic recording was obtained. Spatiotemporal diameter maps (Dmaps) were automatically calculated from the recordings. Three recordings were also manually analyzed for comparison. Frequency analysis was performed in order to calculate relevant motility parameters. In each conscious rat, a stable recording (17-20 seconds) was analyzed. The Dmaps manually and automatically obtained from the same recording were comparable, but the automated process was faster and provided higher resolution. Two frequencies of motor activity dominated; lower frequency contractions (15.2±0.9 cpm) had an amplitude approximately five times greater than higher frequency events (32.8±0.7 cpm). The automated method developed here needed little investigator input, provided high-resolution results with short computing times, and automatically compensated for breathing and other small movements, allowing recordings to be made without anesthesia. Although slow and/or infrequent events could not be detected in the short recording periods analyzed to date (17-20 seconds), this novel system enhances the analysis of in vivo motility in conscious animals. © 2017 John Wiley & Sons Ltd.
In-office Discussions of Migraine: Results from the American Migraine Communication Study
Hahn, Steven R.; Cady, Roger K.; Brandes, Jan Lewis; Simons, Suzanne E.; Bain, Philip A.; Nelson, Meaghan R.
2008-01-01
Background Research indicates that successful migraine assessment and treatment depends on information obtained during patient and healthcare professional (HCP) discussions. However, no studies outline how migraine is actually discussed during clinical encounters. Objective Record naturally occurring HCP–migraineur interactions, analyzing frequency and impairment assessment, and preventive treatment discussions. Design HCPs seeing high volumes of migraineurs were recruited for a communication study. Patients likely to discuss migraine were recruited immediately before their normally scheduled appointment and, once consented, were audio- and video-recorded without a researcher present. Separate post-visit interviews were conducted with patients and HCPs. All interactions were transcribed. Participants Sixty patients (83% female; mean age 41.7) were analyzed. Patients were diagnosed with migraine 14 years and experienced 5 per month, on average. Approach Transcripts were analyzed using sociolinguistic techniques such as number and type of questions asked and post-visit alignment on migraine frequency and impairment. American Migraine Prevalence and Prevention Study guidelines were utilized. Results Ninety-one percent of HCP-initiated, migraine-specific questions were closed-ended/short answer; assessments focused on frequency and did not focus on attention on impairment. Open-ended questions in patient post-visit interviews yielded robust impairment-related information. Post-visit, 55% of HCP–patient pairs were misaligned regarding frequency; 51% on impairment. Of the 20 (33%) patients who were preventive medication candidates, 80% did not receive it and 50% of their visits lacked discussion of prevention. Conclusions Sociolinguistic analysis revealed that HCPs often used narrowly focused, closed-ended questions and were often unaware of how migraine affected patients’ lives as a result. It is recommended that HCPs assess impairment using open-ended questions in combination with the ask-tell-ask technique. PMID:18459012
Santaolalla Montoya, Francisco; Ibargüen, Agustín Martinez; Vences, Ana Rodriguez; del Rey, Ana Sanchez; Fernandez, Jose Maria Sanchez
2008-10-01
Exposure to recreational noise may cause injuries to the inner ear, and transient evoked (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) may identify these cochlear alterations. The goal of this study was to evaluate TEOAEs and DPOAEs as a method to diagnose early cochlear alterations in young adults exposed to MP3 player noise. We performed a prospective study of the cochlear function in normal-hearing MP3 player users by analyzing TEOAE and DPOAE incidence, amplitude, and spectral content. We gathered a sample of 40 ears from patients between 19 and 29 years old (mean age 24.09 years, SD 3.9 years). We compared the results with those of a control group of 232 ears not exposed to MP3 noise from patients aged 18 to 32 years (mean age 23.35 years, SD 2.7 years). Fifty percent of ears were from females and 50% were from males. Subjects who had used MP3 players for most years and for more hours each week exhibited a reduction in TEOAE and DPOAE incidence and amplitudes and an increase in DPOAE thresholds. TEOAEs showed a statistically significant lower incidence and amplitudes for normal-hearing subjects using MP3 players at frequencies of 2000, 3000, and 4000 Hz. DPOAE incidence was lower at 700, 1000, 1500, and 2000 Hz; the amplitudes were lower at frequencies between 1500 and 6000 Hz; and the thresholds were higher for all frequency bands, statistically significant at frequencies from 1500 to 6000 Hz, p < .05. Cochlear impairment caused by MP3 player noise exposure may be detectable by analyzing TEOAEs and DPOAEs before the impairment becomes clinically apparent.
2014-01-01
Background Hypervariable region 1 (HVR1) contained within envelope protein 2 (E2) gene is the most variable part of HCV genome and its translation product is a major target for the host immune response. Variability within HVR1 may facilitate evasion of the immune response and could affect treatment outcome. The aim of the study was to analyze the impact of HVR1 heterogeneity employing sensitive ultra-deep sequencing, on the outcome of PEG-IFN-α (pegylated interferon α) and ribavirin treatment. Methods HVR1 sequences were amplified from pretreatment serum samples of 25 patients infected with genotype 1b HCV (12 responders and 13 non-responders) and were subjected to pyrosequencing (GS Junior, 454/Roche). Reads were corrected for sequencing error using ShoRAH software, while population reconstruction was done using three different minimal variant frequency cut-offs of 1%, 2% and 5%. Statistical analysis was done using Mann–Whitney and Fisher’s exact tests. Results Complexity, Shannon entropy, nucleotide diversity per site, genetic distance and the number of genetic substitutions were not significantly different between responders and non-responders, when analyzing viral populations at any of the three frequencies (≥1%, ≥2% and ≥5%). When clonal sample was used to determine pyrosequencing error, 4% of reads were found to be incorrect and the most abundant variant was present at a frequency of 1.48%. Use of ShoRAH reduced the sequencing error to 1%, with the most abundant erroneous variant present at frequency of 0.5%. Conclusions While deep sequencing revealed complex genetic heterogeneity of HVR1 in chronic hepatitis C patients, there was no correlation between treatment outcome and any of the analyzed quasispecies parameters. PMID:25016390
In-office discussions of migraine: results from the American Migraine Communication Study.
Lipton, Richard B; Hahn, Steven R; Cady, Roger K; Brandes, Jan Lewis; Simons, Suzanne E; Bain, Philip A; Nelson, Meaghan R
2008-08-01
Research indicates that successful migraine assessment and treatment depends on information obtained during patient and healthcare professional (HCP) discussions. However, no studies outline how migraine is actually discussed during clinical encounters. Record naturally occurring HCP-migraineur interactions, analyzing frequency and impairment assessment, and preventive treatment discussions. HCPs seeing high volumes of migraineurs were recruited for a communication study. Patients likely to discuss migraine were recruited immediately before their normally scheduled appointment and, once consented, were audio- and video-recorded without a researcher present. Separate post-visit interviews were conducted with patients and HCPs. All interactions were transcribed. Sixty patients (83% female; mean age 41.7) were analyzed. Patients were diagnosed with migraine 14 years and experienced 5 per month, on average. Transcripts were analyzed using sociolinguistic techniques such as number and type of questions asked and post-visit alignment on migraine frequency and impairment. American Migraine Prevalence and Prevention Study guidelines were utilized. Ninety-one percent of HCP-initiated, migraine-specific questions were closed-ended/short answer; assessments focused on frequency and did not focus on attention on impairment. Open-ended questions in patient post-visit interviews yielded robust impairment-related information. Post-visit, 55% of HCP-patient pairs were misaligned regarding frequency; 51% on impairment. Of the 20 (33%) patients who were preventive medication candidates, 80% did not receive it and 50% of their visits lacked discussion of prevention. Sociolinguistic analysis revealed that HCPs often used narrowly focused, closed-ended questions and were often unaware of how migraine affected patients' lives as a result. It is recommended that HCPs assess impairment using open-ended questions in combination with the ask-tell-ask technique.
Frequencies of VNTR and RFLP polymorphisms associated with factor VIII gene in Singapore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fong, I.; Lai, P.S.; Ouah, T.C.
1994-09-01
The allelic frequency of any polymorphism within a population determines its usefulness for genetic counselling. This is important in populations of non-Caucasian origin as RFLPs may significantly differ among ethnic groups. We report a study of five intragenic polymorphisms in factor VIII gene carried out in Singapore. The three PCR-based RFLP markers studied were Intron 18/Bcl I, Intron 19/Hind III and Intron 22/Xba I. In an analysis of 148 unrelated normal X chromosomes, the allele frequencies were found to be A1 = 0.18, A2 = 0.82 (Bcl I RFLP), A1 = 0.80, A2 = 0.20 (Hind III RFLP) and A1more » = 0.58, and A2 = 0.42 (Xba I RFLP). The heterozygosity rates of 74 females analyzed separately were 31%, 32% and 84.2%, respectively. Linkage disequilibrium was also observed to some degree between Bcl I and Hind III polymorphism in our population. We have also analyzed a sequence polymorphism in Intron 7 using hybridization with radioactive-labelled {sup 32}P allele-specific oligonucleotide probes. This polymorphism was not very polymorphic in our population with only 2% of 117 individuals analyzed being informative. However, the use of a hypervariable dinucleotide repeat sequence (VNTR) in Intron 13 showed that 25 of our of 27 (93%) females were heterozygous. Allele frequencies ranged from 1 to 55 %. We conclude that a viable strategy for molecular analysis of Hemophilia A families in our population should include the use of Intron 18/Bcl I and Intron 22/Xba I RFLP markers and the Intron 13 VNTR marker.« less
ERIC Educational Resources Information Center
Hsu, Shang-Wei; Lin, Jin-Ding; Chiang, Po-Huang; Chang, Yu-Chia; Tung, Ho-Jui
2012-01-01
This study aims to analyze the ambulatory visit frequency and medical expenditures of the general elderly population versus the elderly with intellectual disabilities in Taiwan, while examining the effects of age, gender, urbanization and copayment status on ambulatory utilization. A cross-sectional study was conducted to analyze data from 103,183…
Collection and analysis of specific ELINT Signal Parameters
NASA Astrophysics Data System (ADS)
Wilson, Lonnie A.
1985-12-01
This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for water removed from the sample done in post-processing according to § 1065.659 and it does not... initial installation (i.e., test cell commissioning) and after any modifications to the system that would... concentration is updated and recorded at an appropriate frequency to prevent loss of information. This test also...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for water removed from the sample done in post-processing according to § 1065.659 and it does not... initial installation (i.e., test cell commissioning) and after any modifications to the system that would... concentration is updated and recorded at an appropriate frequency to prevent loss of information. This test also...
Collection and analysis of specific ELINT Signal Parameters
NASA Technical Reports Server (NTRS)
Wilson, Lonnie A.
1985-01-01
This report was a followup to, Collection and Analysis of Specific ELINT Signal Parameters, DTIC A166507, 23 June 1985. The programs and hardware assembled for the above mentioned report were used to analyze two types of radar, the PPS-6 and the HOOD radars. The typical ELINT parameters of frequency, pulse width, and pulse repetition rate were collected and analyzed.
Wang, Yubo; Veluvolu, Kalyana C
2017-06-14
It is often difficult to analyze biological signals because of their nonlinear and non-stationary characteristics. This necessitates the usage of time-frequency decomposition methods for analyzing the subtle changes in these signals that are often connected to an underlying phenomena. This paper presents a new approach to analyze the time-varying characteristics of such signals by employing a simple truncated Fourier series model, namely the band-limited multiple Fourier linear combiner (BMFLC). In contrast to the earlier designs, we first identified the sparsity imposed on the signal model in order to reformulate the model to a sparse linear regression model. The coefficients of the proposed model are then estimated by a convex optimization algorithm. The performance of the proposed method was analyzed with benchmark test signals. An energy ratio metric is employed to quantify the spectral performance and results show that the proposed method Sparse-BMFLC has high mean energy (0.9976) ratio and outperforms existing methods such as short-time Fourier transfrom (STFT), continuous Wavelet transform (CWT) and BMFLC Kalman Smoother. Furthermore, the proposed method provides an overall 6.22% in reconstruction error.
NASA Astrophysics Data System (ADS)
Nikitin, Pavel Viktorovich
2002-01-01
A typical HVAC duct system is a network of interconnected hollow metal pipes which can serve as waveguides and carry electromagnetic waves. This work presents an analysis of this system as a radio frequency communication channel. Two main parts of the analysis include channel modelling and antenna design. The propagation modelling approach used here is based on the waveguide mode theory and employs the transfer matrix method to describe propagation through various cascaded HVAC elements. This allows one to model the channel response in the frequency domain. Impulse response characteristics of the ducts are also analyzed in this work. The approximate transfer matrices of cylindrical straight sections, bends, and tapers are derived analytically. The transforming properties of cylindrical T-junctions are analyzed experimentally. Antenna designs in waveguides and free-space are different. In waveguides, mode excitation characteristics are important as well as the impedance match. The criteria for antenna design in waveguides are presented here. Antennas analyzed in this work are monopole antennas, dipole antennas, and antenna arrays. The developed model can predict both channel response and antenna characteristics for a given geometry and dimensions of the duct system and the antennas. The model is computationally efficient and can potentially be applied to duct systems of multiple story buildings. The accuracy of the model has been validated with extensive experimental measurements on real HVAC ducts.
Juárez-Velázquez, Rocio; Canto, Patricia; Canto-Cetina, Thelma; Rangel-Villalobos, Hector; Rosas-Vargas, Haydee; Rodríguez, Maricela; Canizales-Quinteros, Samuel; Velázquez Wong, Ana Claudia; Ordoñez-Razo, Rosa María; Vilchis-Dorantes, Guadalupe; Coral-Vázquez, Ramón Mauricio
2010-01-01
Several polymorphisms related to hypertension, thrombophilia, and oxidative stress has been associated with the development of cardiovascular disease. We analyzed the frequency of M235T angiotensinogen (AGT), A222V 5,10 methylenete-trahydrofolate reductase (MTHFR), L33P glycoprotein IIIa (GPIIIa), and I105V glutathione S-transferase P1 (GSTP1) polymorphisms in 285 individuals belonging to Mexican-Mestizo and five Amerindian population from México, by real time PCR allelic discrimination. Allele and genotype frequencies were compared using χ2 tests. All populations followed the Hardy Weinberg equilibrium for assay markers with the exception of the Triki, whose were in Hardy Weinberg dysequilibrium for the glutathione S-transferase P1 polymorphism. Interestingly, according to all the analyzed single nucleotide polymorphisms (SNPs), the Triki population was the most differentiated and homogeneous group of the six populations analyzed. A comparison of our data with those previously published for some Caucasian, Asian and Black populations showed quite significant differences. These differences were remarkable with all the Mexican populations having a lower frequency of the 105V allele of the glutathione S-transferase P1 and reduced occurrence of the 222A allele of the 5,10 methylenetetrahydrofolate reductase. Our results show the genetic diversity among different Mexican populations and with other racial groups. PMID:20592457
NASA Astrophysics Data System (ADS)
Nagabalasubramanian, P. B.; Periandy, S.; Karabacak, Mehmet; Govindarajan, M.
2015-06-01
The solid phase FT-IR and FT-Raman spectra of 4-vinylcyclohexene (abbreviated as 4-VCH) have been recorded in the region 4000-100 cm-1. The optimized molecular geometry and vibrational frequencies of the fundamental modes of 4-VCH have been precisely assigned and analyzed with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) method at 6-311++G(d,p) level basis set. The theoretical frequencies were properly scaled and compared with experimentally obtained FT-IR and FT-Raman spectra. Also, the effect due the substitution of vinyl group on the ring vibrational frequencies was analyzed and a detailed interpretation of the vibrational spectra of this compound has been made on the basis of the calculated total energy distribution (TED). The time dependent DFT (TD-DFT) method was employed to predict its electronic properties, such as electronic transitions by UV-Visible analysis, HOMO and LUMO energies, molecular electrostatic potential (MEP) and various global reactivity and selectivity descriptors (chemical hardness, chemical potential, softness, electrophilicity index). Stability of the molecule arising from hyper conjugative interaction, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Atomic charges obtained by Mulliken population analysis and NBO analysis are compared. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures are also calculated.
Frequency Distribution in Domestic Microwave Ovens and Its Influence on Heating Pattern.
Luan, Donglei; Wang, Yifen; Tang, Juming; Jain, Deepali
2017-02-01
In this study, snapshots of operating frequency profiles of domestic microwave ovens were collected to reveal the extent of microwave frequency variations under different operation conditions. A computer simulation model was developed based on the finite difference time domain method to analyze the influence of the shifting frequency on heating patterns of foods in a microwave oven. The results showed that the operating frequencies of empty and loaded domestic microwave ovens varied widely even among ovens of the same model purchased on the same date. Each microwave oven had its unique characteristic operating frequencies, which were also affected by the location and shape of the load. The simulated heating patterns of a gellan gel model food when heated on a rotary plate agreed well with the experimental results, which supported the reliability of the developed simulation model. Simulation indicated that the heating patterns of a stationary model food load changed with the varying operating frequency. However, the heating pattern of a rotary model food load was not sensitive to microwave frequencies due to the severe edge heating overshadowing the effects of the frequency variations. © 2016 Institute of Food Technologists®.
Sonic spectrometer and treatment system
Slomka, B.J.
1997-06-03
A novel system and method is developed for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object. 1 fig.
Sonic spectrometer and treatment system
Slomka, Bogdan J.
1997-06-03
A novel system and method for treating an object with sonic waveforms. A traveling broad-band sonic waveform containing a broad-band of sonic frequencies is radiated at the object. A traveling reflected sonic waveform containing sonic frequencies reflected by the object is received in response to the traveling broad-band sonic waveform. A traveling transmitted sonic waveform containing sonic frequencies transmitted through the object is also received in response to the traveling broad-band sonic waveform. In a resonance mode, the frequency spectra of the broad-band and reflected sonic waveforms is analyzed so as to select one or more sonic frequencies that cause the object to resonate. An electrical resonance treatment sonic waveform containing the sonic frequencies that cause the object to resonate is then radiated at the object so as to treat the object. In an absorption mode, the frequency spectra of the electrical broad-band, reflected, and transmitted sonic waveforms is compared so as to select one or more sonic frequencies that are absorbed by the object. An electrical absorption treatment sonic waveform containing the sonic frequencies that are absorbed by the object is then radiated at the object so as to treat the object.
NASA Astrophysics Data System (ADS)
Skel'chik, V. S.; Ryabov, V. M.
1996-11-01
On the basis of the classical theory of thin anisotropic laminated plates the article analyzes the free vibrations of rectangular cantilever plates made of fibrous composites. The application of Kantorovich's method for the binomial representation of the shape of the elastic surface of a plate yielded for two unknown functions a system of two connected differential equations and the corresponding boundary conditions at the place of constraint and at the free edge. The exact solution for the frequencies and forms of the free vibrations was found with the use of Laplace transformation with respect to the space variable. The magnitudes of several first dimensionless frequencies of the bending and torsional vibrations of the plate were calculated for a wide range of change of two dimensionless complexes, with the dimensions of the plate and the anisotropy of the elastic properties of the material taken into account. The article shows that with torsional vibrations the warping constraint at the fixed end explains the apparent dependence of the shear modulus of the composite on the length of the specimen that had been discovered earlier on in experiments with a torsional pendulum. It examines the interaction and transformation of the second bending mode and of the first torsional mode of the vibrations. It analyzes the asymptotics of the dimensionless frequencies when the length of the plate is increased, and it shows that taking into account the bending-torsion interaction in strongly anisotropic materials type unidirectional carbon reinforced plastic can reduce substantially the frequencies of the bending vibrations but has no effect (within the framework of the binomial model) on the frequencies of the torsional vibrations.
Conduction mechanism in bismuth silicate glasses containing titanium
NASA Astrophysics Data System (ADS)
Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.
2014-11-01
Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.
Frequency spectral analysis of GPR data over a crude oil spill
Burton, B.L.; Olhoeft, G.R.; Powers, M.H.; ,
2004-01-01
A multi-offset ground penetrating radar (GPR) dataset was acquired by the U.S. Geological Survey (USGS) at a crude oil spill site near Bemidji, Minnesota, USA. The dataset consists of two, parallel profiles, each with 17 transmitter-receiver offsets ranging from 0.60 to 5.15m. One profile was acquired over a known oil pool floating on the water table, and the other profile was acquired over an uncontaminated area. The data appear to be more attenuated, or at least exhibit less reflectivity, in the area over the oil pool. In an attempt to determine the frequency dependence of this apparent attenuation, several attributes of the frequency spectra of the data were analyzed after accounting for the effects on amplitude of the radar system (radiation pattern), changes in antenna-ground coupling, and spherical divergence. The attributes analyzed were amplitude spectra peak frequency, 6 dB down, or half-amplitude, spectrum width, and the low and high frequency slopes between the 3 and 9 dB down points. The most consistent trend was observed for Fourier transformed full traces at offsets 0.81, 1.01, and 1.21m which displayed steeper low frequency slopes over the area corresponding to the oil pool. The Fourier-transformed time-windowed traces, where each window was equal to twice the airwave wavelet length, exhibited weakly consistent attribute trends from offset to offset and from window to window. The fact that strong, consistent oil indicators are not seen in this analysis indicates that another mechanism due to the presence of the oil, such as a gradient in the electromagnetic properties, may simply suppress reflections over the contaminated zone.
Khojandi, Anahita; Shylo, Oleg; Mannini, Lucia; Kopell, Brian H; Ramdhani, Ritesh A
2017-07-01
High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes. © 2017 International Neuromodulation Society.
Dos Santos Silva, Wellington; de Nazaré Klautau-Guimarães, Maria; Grisolia, Cesar Koppe
2010-07-01
Five restriction site polymorphisms in the β-globin gene cluster (HincII-5' ε, HindIII-(G) γ, HindIII-(A) γ, HincII- ψβ1 and HincII-3' ψβ1) were analyzed in three populations (n = 114) from Reconcavo Baiano, State of Bahia, Brazil. The groups included two urban populations from the towns of Cachoeira and Maragojipe and one rural Afro-descendant population, known as the "quilombo community", from Cachoeira municipality. The number of haplotypes found in the populations ranged from 10 to 13, which indicated higher diversity than in the parental populations. The haplotypes 2 (+ - - - -), 3 (- - - - +), 4 (- + - - +) and 6 (- + + - +) on the β(A) chromosomes were the most common, and two haplotypes, 9 (- + + + +) and 14 (+ + - - +), were found exclusively in the Maragojipe population. The other haplotypes (1, 5, 9, 11, 12, 13, 14 and 16) had lower frequencies. Restriction site analysis and the derived haplotypes indicated homogeneity among the populations. Thirty-two individuals with hemoglobinopathies (17 sickle cell disease, 12 HbSC disease and 3 HbCC disease) were also analyzed. The haplotype frequencies of these patients differed significantly from those of the general population. In the sickle cell disease subgroup, the predominant haplotypes were BEN (Benin) and CAR (Central African Republic), with frequencies of 52.9% and 32.4%, respectively. The high frequency of the BEN haplotype agreed with the historical origin of the afro-descendant population in the state of Bahia. However, this frequency differed from that of Salvador, the state capital, where the CAR and BEN haplotypes have similar frequencies, probably as a consequence of domestic slave trade and subsequent internal migrations to other regions of Brazil.
2010-01-01
Five restriction site polymorphisms in the β-globin gene cluster (HincII-5‘ ε, HindIII-G γ, HindIII-A γ, HincII- ψβ1 and HincII-3‘ ψβ1) were analyzed in three populations (n = 114) from Reconcavo Baiano, State of Bahia, Brazil. The groups included two urban populations from the towns of Cachoeira and Maragojipe and one rural Afro-descendant population, known as the “quilombo community”, from Cachoeira municipality. The number of haplotypes found in the populations ranged from 10 to 13, which indicated higher diversity than in the parental populations. The haplotypes 2 (+ - - - -), 3 (- - - - +), 4 (- + - - +) and 6 (- + + - +) on the βA chromosomes were the most common, and two haplotypes, 9 (- + + + +) and 14 (+ + - - +), were found exclusively in the Maragojipe population. The other haplotypes (1, 5, 9, 11, 12, 13, 14 and 16) had lower frequencies. Restriction site analysis and the derived haplotypes indicated homogeneity among the populations. Thirty-two individuals with hemoglobinopathies (17 sickle cell disease, 12 HbSC disease and 3 HbCC disease) were also analyzed. The haplotype frequencies of these patients differed significantly from those of the general population. In the sickle cell disease subgroup, the predominant haplotypes were BEN (Benin) and CAR (Central African Republic), with frequencies of 52.9% and 32.4%, respectively. The high frequency of the BEN haplotype agreed with the historical origin of the afro-descendant population in the state of Bahia. However, this frequency differed from that of Salvador, the state capital, where the CAR and BEN haplotypes have similar frequencies, probably as a consequence of domestic slave trade and subsequent internal migrations to other regions of Brazil. PMID:21637405
Solar wind electron densities from Viking dual-frequency radio measurements
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Anderson, J. D.
1981-01-01
Simultaneous phase coherent, two-frequency measurements of the time delay between the earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii to 200 solar radii. The measurements were made during a period of solar activity minimum (1976-1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r exp -2.7 and r exp -2.04. However, the more rapidly falling term quickly disappears at moderate latitudes (approximately 20 deg) leaving only the inverse-square behavior.
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
System and method for non-destructive evaluation of surface characteristics of a magnetic material
Jiles, David C.; Sipahi, Levent B.
1994-05-17
A system and a related method for non-destructive evaluation of the surface characteristics of a magnetic material. The sample is excited by an alternating magnetic field. The field frequency, amplitude and offset are controlled according to a predetermined protocol. The Barkhausen response of the sample is detected for the various fields and offsets and is analyzed. The system produces information relating to the frequency content, the amplitude content, the average or RMS energy content, as well as count rate information, for each of the Barkhausen responses at each of the excitation levels applied during the protocol. That information provides a contiguous body of data, heretofore unavailable, which can be analyzed to deduce information about the surface characteristics of the material at various depths below the surface.
Analysis of dispersion relation in three-dimensional single gyroid
NASA Astrophysics Data System (ADS)
Jheng, Pei-Lun; Hung, Yu-Chueh
2016-03-01
Gyroid is a type of three-dimensional chiral structures and has been found in many insect species. Besides the photonic crystal properties exhibited by gyroid structures, the chirality and gyroid network morphology also provide unique opportunities for manipulating propagation of light. In this work, we present studies based on finite-difference time domain (FDTD) method for analyzing the dispersion relation characteristics of dielectric single gyroid (SG) metamaterials. The band structures, transmission spectrum, dispersion surfaces, equifrequency contours (EFCs) of SG metamaterials are examined. Some interesting wave guiding characteristics, such as negative refraction and collimation, are presented and discussed. We also show how these optical properties are predicted by analyzing the EFCs at different frequencies. These results are crucial for the design of functional devices at optical frequencies based on dielectric single gyroid metamaterials.
Frequency and specificity of red blood cell alloimmunization in chilean transfused patients.
Caamaño, José; Musante, Evangelina; Contreras, Margarita; Ulloa, Hernán; Reyes, Carolina; Inaipil, Verónica; Saavedra, Nicolás; Guzmán, Neftalí
2015-01-01
Alloimmunization is an adverse effect of blood transfusions. In Chile, alloimmunization frequency is not established, and for this reason the aim of this study was to investigate the prevalence and specificity of red blood cell (RBC) alloantibodies in Chilean transfused subjects. Records from 4,716 multi-transfused patients were analyzed. In these patients, antibody screening was carried out prior to cross-matching with a commercially available two-cell panel by the microcolum gel test, and samples with a positive screen were analyzed for the specificity of the alloantibody with a 16-cell identification panel. The incidence of RBC alloimmunization in transfused patients was 1.02% (48/4,716) with a higher prevalence in women (40/48). We detected 52 antibodies, the most frequent specificities identified were anti-E (30.8%), anti-K (26.9%), anti-D (7.7%), and anti-Fy(a) (5.8%). The highest incidence of alloantibodies was observed in cancer and gastroenterology patients. The data demonstrated a low alloimmunization frequency in Chilean transfused patients, principally associated with antibodies anti-E, anti-K, anti-D, and anti-Fy(a).
Analysis of high-k spacer on symmetric underlap DG-MOSFET with Gate Stack architecture
NASA Astrophysics Data System (ADS)
Das, Rahul; Chakraborty, Shramana; Dasgupta, Arpan; Dutta, Arka; Kundu, Atanu; Sarkar, Chandan K.
2016-09-01
This paper shows the systematic study of underlap double gate (U-DG) NMOSFETs with Gate Stack (GS) under the influence of high-k spacers. In highly scaled devices, underlap is used at the Source and Drain side so as to reduce the short channel effects (SCE's), however, it significantly reduces the on current due to the increased channel resistance. To overcome these drawbacks, the use of high-k spacers is projected as one of the remedies. In this paper, the analog performance of the devices is studied on the basis of parameters like transconductance (gm), transconductance generation factor (gm/Id) and intrinsic gain (gmro). The RF performance is analyzed on the merits of intrinsic capacitance (Cgd, Cgs), resistance (Rgd, Rgs), transport delay (τm), inductance (Lsd), cutoff frequency (fT), and the maximum frequency of oscillation (fmax). The circuit performance of the devices are studied by implementing the device as the driver MOSFET in a Single Stage Common Source Amplifier. The Gain Bandwidth Product (GBW) has been analyzed from the frequency response of the circuit.
Geotail MCA plasma wave data analysis
NASA Astrophysics Data System (ADS)
Anderson, Roger R.
NASA Grant NAG 5-2346 supports the data analysis effort at The University of Iowa for the GEOTAIL Multi-Channel Analyzer (MCA) which is a part of the GEOTAIL Plasma Wave Instrument (PWI). At the beginning of this reporting period we had just begun to receive our GEOTAIL Sirius data on CD-ROMs. Much programming effort went into adapting and refining the data analysis programs to include the CD-ROM inputs. Programs were also developed to display the high-frequency-resolution PWI Sweep Frequency Analyzer (SFA) data and to include in all the various plot products the electron cyclotron frequency derived from the magnitude of the magnetic field extracted from the GEOTAIL Magnetic Field (MGF) data included in the GEOTAIL Sirius data. We also developed programs to use the MGF data residing in the Institute of Space and Astronautical Science (ISAS) GEOTAIL Scientific Data Base (SDB). Our programmers also developed programs and provided technical support for the GEOTAIL data analysis efforts of Co-lnvestigator William W. L. Taylor at Nichols Research Corporation (NRC). At the end of this report we have included brief summaries of the NRC effort and the progress being made.
Geotail MCA plasma wave data analysis
NASA Technical Reports Server (NTRS)
Anderson, Roger R.
1994-01-01
NASA Grant NAG 5-2346 supports the data analysis effort at The University of Iowa for the GEOTAIL Multi-Channel Analyzer (MCA) which is a part of the GEOTAIL Plasma Wave Instrument (PWI). At the beginning of this reporting period we had just begun to receive our GEOTAIL Sirius data on CD-ROMs. Much programming effort went into adapting and refining the data analysis programs to include the CD-ROM inputs. Programs were also developed to display the high-frequency-resolution PWI Sweep Frequency Analyzer (SFA) data and to include in all the various plot products the electron cyclotron frequency derived from the magnitude of the magnetic field extracted from the GEOTAIL Magnetic Field (MGF) data included in the GEOTAIL Sirius data. We also developed programs to use the MGF data residing in the Institute of Space and Astronautical Science (ISAS) GEOTAIL Scientific Data Base (SDB). Our programmers also developed programs and provided technical support for the GEOTAIL data analysis efforts of Co-lnvestigator William W. L. Taylor at Nichols Research Corporation (NRC). At the end of this report we have included brief summaries of the NRC effort and the progress being made.
NASA Astrophysics Data System (ADS)
Offringa, A. R.
2010-10-01
The RFI software presented here can automatically flag data and can be used to analyze the data in a measurement. The purpose of flagging is to mark samples that are affected by interfering sources such as radio stations, airplanes, electrical fences or other transmitting interferers. The tools in the package are meant for offline use. The software package contains a graphical interface ("rfigui") that can be used to visualize a measurement set and analyze mitigation techniques. It also contains a console flagger ("rficonsole") that can execute a script of mitigation functions without the overhead of a graphical environment. All tools were written in C++. The software has been tested extensively on low radio frequencies (150 MHz or lower) produced by the WSRT and LOFAR telescopes. LOFAR is the Low Frequency Array that is built in and around the Netherlands. Higher frequencies should work as well. Some of the methods implemented are the SumThreshold, the VarThreshold and the singular value decomposition (SVD) method. Included also are several surface fitting algorithms. The software is published under the GNU General Public License version 3.
Influence of impeller shroud forces on turbopump rotor dynamics
NASA Technical Reports Server (NTRS)
Williams, J. P.; Childs, Dara W.
1993-01-01
The shrouded-impeller leakage path forces calculated by Childs have been analyzed to answer two questions. First, because of certain characteristics or the results of Childs, the forces could not be modeled with traditional approaches. Therefore, an approach has been devised to include the forces in conventional rotordynamic analyses. The forces were found to be well-modeled with this approach. Finally, the effect these forces had on a simple rotor-bearing system was analyzed, and, therefore, they, in addition to seal forces, were applied to a Jeffcott rotor. The traditional methods of dynamic system analysis were modified to incorporate the impeller forces and yielded results for the eigenproblem, frequency response, critical speed, transient response, and an iterative technique for finding the frequency of free vibration as well as system stability. All results lead to the conclusion that the forces have little influence on natural frequency but can have appreciable effects on system stability. Specifically, at higher values of fluid swirl at the leakage path entrance, relative stability is reduced. The only unexpected response characteristics that occurred are attributed to the nonlinearity of the model.
Ardila-Rey, Jorge Alfredo; Rojas-Moreno, Mónica Victoria; Martínez-Tarifa, Juan Manuel; Robles, Guillermo
2014-01-01
Partial discharge (PD) detection is a standardized technique to qualify electrical insulation in machines and power cables. Several techniques that analyze the waveform of the pulses have been proposed to discriminate noise from PD activity. Among them, spectral power ratio representation shows great flexibility in the separation of the sources of PD. Mapping spectral power ratios in two-dimensional plots leads to clusters of points which group pulses with similar characteristics. The position in the map depends on the nature of the partial discharge, the setup and the frequency response of the sensors. If these clusters are clearly separated, the subsequent task of identifying the source of the discharge is straightforward so the distance between clusters can be a figure of merit to suggest the best option for PD recognition. In this paper, two inductive sensors with different frequency responses to pulsed signals, a high frequency current transformer and an inductive loop sensor, are analyzed to test their performance in detecting and separating the sources of partial discharges. PMID:24556674
Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables
NASA Astrophysics Data System (ADS)
Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke
2017-11-01
Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.
Multivariate cross-frequency coupling via generalized eigendecomposition
Cohen, Michael X
2017-01-01
This paper presents a new framework for analyzing cross-frequency coupling in multichannel electrophysiological recordings. The generalized eigendecomposition-based cross-frequency coupling framework (gedCFC) is inspired by source-separation algorithms combined with dynamics of mesoscopic neurophysiological processes. It is unaffected by factors that confound traditional CFC methods—such as non-stationarities, non-sinusoidality, and non-uniform phase angle distributions—attractive properties considering that brain activity is neither stationary nor perfectly sinusoidal. The gedCFC framework opens new opportunities for conceptualizing CFC as network interactions with diverse spatial/topographical distributions. Five specific methods within the gedCFC framework are detailed, these are validated in simulated data and applied in several empirical datasets. gedCFC accurately recovers physiologically plausible CFC patterns embedded in noise that causes traditional CFC methods to perform poorly. The paper also demonstrates that spike-field coherence in multichannel local field potential data can be analyzed using the gedCFC framework, which provides significant advantages over traditional spike-field coherence analyses. Null-hypothesis testing is also discussed. DOI: http://dx.doi.org/10.7554/eLife.21792.001 PMID:28117662
Diffraction analysis of sidelobe characteristics of optical elements with ripple error
NASA Astrophysics Data System (ADS)
Zhao, Lei; Luo, Yupeng; Bai, Jian; Zhou, Xiangdong; Du, Juan; Liu, Qun; Luo, Yujie
2018-03-01
The ripple errors of the lens lead to optical damage in high energy laser system. The analysis of sidelobe on the focal plane, caused by ripple error, provides a reference to evaluate the error and the imaging quality. In this paper, we analyze the diffraction characteristics of sidelobe of optical elements with ripple errors. First, we analyze the characteristics of ripple error and build relationship between ripple error and sidelobe. The sidelobe results from the diffraction of ripple errors. The ripple error tends to be periodic due to fabrication method on the optical surface. The simulated experiments are carried out based on angular spectrum method by characterizing ripple error as rotationally symmetric periodic structures. The influence of two major parameter of ripple including spatial frequency and peak-to-valley value to sidelobe is discussed. The results indicate that spatial frequency and peak-to-valley value both impact sidelobe at the image plane. The peak-tovalley value is the major factor to affect the energy proportion of the sidelobe. The spatial frequency is the major factor to affect the distribution of the sidelobe at the image plane.
NASA Astrophysics Data System (ADS)
Bogoev, Ivan; Helbig, Manuel; Sonnentag, Oliver
2015-04-01
A growing number of studies report systematic differences in CO2 flux estimates obtained with the two main types of gas analyzers: compared to eddy-covariance systems based on closed-path (CP) gas analyzers, systems with open-path (OP) gas analyzers systematically overestimate CO2 uptake during daytime periods with high positive sensible heat fluxes, while patterns for differences in nighttime CO2 exchange are less obvious. These biases have been shown to correlate with the sign and the magnitude of the sensible heat flux and to introduce large uncertainties when calculating annual CO2 budgets. In general, CP and OP gas analyzers commonly used to measure the CO2 density in the atmosphere operate on the principle of infrared light absorption approximated by Beer-Lambert's law. Non-dispersive interference-based optical filter elements are used to select spectral bands with strong attenuation of light transmission, characteristic to the gas of interest. The intensity of the light passing through the optical sensing path depends primarily on the amount of absorber gas in the measurement volume. Besides the density of the gas, barometric pressure and air temperature are additional factors affecting the strength and the half-width of the absorption lines. These so-called spectroscopic effects are accounted for by measuring barometric pressure and air temperature in the sensing path and scaling the light-intensity measurements before applying the calibration equation. This approach works well for CP gas analyzers with an intake tube that acts as a low-pass filter on fast air-temperature fluctuations. Low-frequency response temperature sensors in the measurement cell are therefore sufficient to account for spectroscopic temperature effects. In contrast, OP gas analyzers are exposed to high-frequency air-temperature fluctuations associated with the atmospheric surface-layer turbulent heat exchange. If not corrected adequately, these fast air-temperature variations can cause systematic errors in the CO2 density measurements. Under conditions of high positive or negative sensible heat flux, air-temperature fluctuations are correlated with fluctuations of the vertical wind component and can lead to significant biases in the CO2 flux estimates. This study demonstrates that sonically derived fast-response air temperature in the optical sensing path of an OP gas analyzer can replace the slow-response measurements from the temperature sensor as a scaling parameter in the calibration model to correct for these air temperature-induced spectroscopic effects. Our approach is evaluated by comparison between different OP and CP gas analyzer-based eddy-covariance systems in ecosystems with low CO2 uptake under a range of sensible heat flux regimes and varying meteorological parameters. We show that ignoring high-frequency spectroscopic effects can lead to false interpretations of net ecosystem CO2 exchange for specific site and environmental conditions.
Schmuziger, Nicolas; Probst, Rudolf; Smurzynski, Jacek
2004-04-01
The purposes of the study were: (1) To evaluate the intrasession test-retest reliability of pure-tone thresholds measured in the 0.5-16 kHz frequency range for a group of otologically healthy subjects using Sennheiser HDA 200 circumaural and Etymotic Research ER-2 insert earphones and (2) to compare the data with existing criteria of significant threshold shifts related to ototoxicity and noise-induced hearing loss. Auditory thresholds in the frequency range from 0.5 to 6 kHz and in the extended high-frequency range from 8 to 16 kHz were measured in one ear of 138 otologically healthy subjects (77 women, 61 men; mean age, 24.4 yr; range, 12-51 yr) using HDA 200 and ER-2 earphones. For each subject, measurements of thresholds were obtained twice for both transducers during the same test session. For analysis, the extended high-frequency range from 8 to 16 kHz was subdivided into 8 to 12.5 and 14 to 16 kHz ranges. Data for each frequency and frequency range were analyzed separately. There were no significant differences in repeatability for the two transducer types for all frequency ranges. The intrasession variability increased slightly, but significantly, as frequency increased with the greatest amount of variability in the 14 to 16 kHz range. Analyzing each individual frequency, variability was increased particularly at 16 kHz. At each individual frequency and for both transducer types, intrasession test-retest repeatability from 0.5 to 6 kHz and 8 to 16 kHz was within 10 dB for >99% and >94% of measurements, respectively. The results indicated a false-positive rate of <3% in reference to the criteria for cochleotoxicity for both transducer types. In reference to the Occupational Safety and Health Administration Standard Threshold Shift criteria for noise-induced hazards, the results showed a minor false-positive rate of <1% for the HDA 200. Repeatability was similar for both transducer types. Intrasession test-retest repeatability from 0.5 to 12.5 kHz at each individual frequency including the frequency range susceptible to noise-induced hearing loss was excellent for both transducers. Repeatability was slightly, but significantly poorer in the frequency range from 14 to 16 kHz compared with the frequency ranges from 0.5 to 6 or 8 to 12.5 kHz. Measurements in the extended high-frequency range from 8 to 14 kHz, but not up to 16 kHz, may be recommended for monitoring purposes.
Sasaki, Tomonari; Tahira, Tomoko; Suzuki, Akari; Higasa, Koichiro; Kukita, Yoji; Baba, Shingo; Hayashi, Kenshi
2001-01-01
We show that single-nucleotide polymorphisms (SNPs) of moderate to high heterozygosity (minor allele frequencies >10%) can be efficiently detected, and their allele frequencies accurately estimated, by pooling the DNA samples and applying a capillary-based SSCP analysis. In this method, alleles are separated into peaks, and their frequencies can be reliably and accurately quantified from their peak heights (SD <1.8%). We found that as many as 40% of publicly available SNPs that were analyzed by this method have widely differing allele frequency distributions among groups of different ethnicity (parents of Centre d'Etude Polymorphisme Humaine families vs. Japanese individuals). These results demonstrate the effectiveness of the present pooling method in the reevaluation of candidate SNPs that have been collected by examination of limited numbers of individuals. The method should also serve as a robust quantitative technique for studies in which a precise estimate of SNP allele frequencies is essential—for example, in linkage disequilibrium analysis. PMID:11083945
Tolerance of the frequency deviation of LO sources at a MIMO system
NASA Astrophysics Data System (ADS)
Xiao, Jiangnan; Li, Xingying; Zhang, Zirang; Xu, Yuming; Chen, Long; Yu, Jianjun
2015-11-01
We analyze and simulate the tolerance of frequency offset at a W-band optical-wireless transmission system. The transmission system adopts optical polarization division multiplexing (PDM), and multiple-input multiple-output (MIMO) reception. The transmission signal adopts optical quadrature phase shift keying (QPSK) modulation, and the generation of millimeter-wave is based on the optical heterodyning technique. After 20-km single-mode fiber-28 (SMF-28) transmission, tens of Gb/s millimeter-wave signal is delivered. At the receiver, two millimeter-wave signals are down-converted into electrical intermediate-frequency (IF) signals in the analog domain by mixing with two electrical local oscillators (LOs) with different frequencies. We investigate the different frequency LO effect on the 2×2 MIMO system performance for the first time, finding that the process during DSP of implementing frequency offset estimation (FOE) before cascaded multi-modulus-algorithm (CMMA) equalization can get rid of the inter-channel interference (ICI) and improve system bit-error-ratio (BER) performance in this type of transmission system.
Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-01-01
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio (C/N0) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C/N0 can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis. PMID:29207546
Jin, Tian; Yuan, Heliang; Zhao, Na; Qin, Honglei; Sun, Kewen; Ji, Yuanfa
2017-12-04
Frequency-locked detector (FLD) has been widely utilized in tracking loops of Global Positioning System (GPS) receivers to indicate their locking status. The relation between FLD and lock status has been seldom discussed. The traditional PLL experience is not suitable for FLL. In this paper, the threshold setting criteria for frequency-locked detector in the GPS receiver has been proposed by analyzing statistical characteristic of FLD output. The approximate probability distribution of frequency-locked detector is theoretically derived by using a statistical approach, which reveals the relationship between probabilities of frequency-locked detector and the carrier-to-noise ratio ( C / N ₀) of the received GPS signal. The relationship among mean-time-to-lose-lock (MTLL), detection threshold and lock probability related to C / N ₀ can be further discovered by utilizing this probability. Therefore, a theoretical basis for threshold setting criteria in frequency locked loops for GPS receivers is provided based on mean-time-to-lose-lock analysis.
NASA Technical Reports Server (NTRS)
Clements, P. A.; Borutzki, S. E.; Kirk, A.
1984-01-01
The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.
A Novel CMOS Multi-band THz Detector with Embedded Ring Antenna
NASA Astrophysics Data System (ADS)
Xu, Lei-jun; Guan, Jia-ning; Bai, Xue; Li, Qin; Mao, Han-ping
2017-10-01
To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.
Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, K. H.; Seo, B. H.; Kim, J. H.
2016-03-15
As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuitmore » model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.« less
Scientific applications of frequency-stabilized laser technology in space
NASA Technical Reports Server (NTRS)
Schumaker, Bonny L.
1990-01-01
A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.
Frequency Arrangement For 700 MHz Band
NASA Astrophysics Data System (ADS)
Ancans, G.; Bobrovs, V.; Ivanovs, G.
2015-02-01
The 694-790 MHz (700 MHz) band was allocated by the 2012 World Radiocommunication Conference (WRC-12) in ITU Region 1 (Europe included), to the mobile service on a co-primary basis with other services to which this band was allocated on the primary basis and identified for the International Mobile Telecommunications (IMT). At the same time, the countries of Region 1 will be able also to continue using these frequencies for their broadcasting services if necessary. This allocation will be effective immediately after 2015 World Radiocommunication Conference (WRC-15). In order to make the best possible use of this frequency band for mobile service, a worldwide harmonized frequency arrangement is to be prepared to allow for large economies of scale and international roaming as well as utilizing the available spectrum in the best possible way, minimizing possible interference between services, facilitating deployment and cross-border coordination. The authors analyze different possible frequency arrangements and conclude on the frequency arrangement most suitable for Europe.
ELF whistler events with a reduced intensity observed by the DEMETER spacecraft
NASA Astrophysics Data System (ADS)
Zahlava, J.; Nemec, F.; Santolik, O.; Kolmasova, I.; Parrot, M.
2017-12-01
A survey of VLF frequency-time spectrograms obtained by the DEMETER spacecraft (2004-2010, altitude about 700 km) revealed that the intensity of fractional hop whistlers is sometimes significantly reduced at specific frequencies. These frequencies are typically above about 3.4 kHz (second cutoff frequency of the Earth-ionosphere waveguide), and they vary smoothly in time. The events were explained by the wave propagation in the Earth-ionosphere waveguide, and a resulting interference of the first few waveguide modes. We analyze the events whose frequency-time structure is rather similar, but at frequencies below 1 kHz. Altogether, 284 events are identified during the periods with active Burst mode, when high resolution data are measured by DEMETER. The vast majority of events (93%) occurs during the nighttime. All six electromagnetic field components are available, which allows us to perform a detailed wave analysis. An overview of the properties of these events is presented, and their possible origin is discussed.
Frequency clusters in self-excited dust density waves
NASA Astrophysics Data System (ADS)
Menzel, Kristoffer O.; Arp, Oliver; Piel, Alexander
2010-11-01
Self-excited dust density waves were studied under microgravity conditions. Their non-sinusoidal shape and high degrees of modulation suggests that nonlinear effects play an important role in their spatio-temporal dynamics. The resulting complex wave pattern is analyzed in great detail by means of the Hilbert transform, which provides instantaneous wave attributes, such as the phase and the frequency. Our analysis showed that the spatial frequency distribution of the DDWs is usually not constant over the dust cloud. In contrast, the wave field is divided into regions of different but almost constant frequencies [1]. The boundaries of these so-called frequency clusters coincide with the locations of phase defects in the wave field. It is found that the size of the clusters depends on the strength of spatial gradients in the plasma parameters. We attribute the formation of frequency clusters to synchronization phenomena as a consequence of the nonlinear character of the wave.[1] K. O. Menzel, O. Arp, A.Piel, Phys. Rev. Lett. 104, 235002 (2010)
Study on the radial vibration of a piezoelectric ceramic thin ring with an inner metal disc
NASA Astrophysics Data System (ADS)
Lin, Shuyu
2006-11-01
In this paper, a piezoelectric ceramic thin ring with an inner metal disc is studied. The radial vibrations of a metal thin disc and a piezoelectric ceramic thin ring are analysed. Their electro-mechanical equivalent circuits in radial vibration are obtained. Based on the electro-mechanical equivalent circuits and the radial boundary conditions, the composite electro-mechanical equivalent circuit of the combination of a piezoelectric ceramic thin ring and a metal disc is obtained and the resonance and anti-resonance frequency equations are derived. The relationship between the resonance frequency, the anti-resonance frequency, the effective electro-mechanical coupling coefficient and the geometrical dimensions is analysed. The resonance and anti-resonance frequencies are measured using the Agilent Precision Impedance Analyzer. It is illustrated that the measured radial resonance and anti-resonance frequencies are in good agreement with the theoretical results.
Song, Bo; Nelson, Kevin
2015-09-01
Kolsky compression bar experiments were conducted to characterize the shock mitigation response of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam, abbreviated as PMDI foam in this study. The Kolsky bar experimental data was analyzed in the frequency domain with respect to impact energy dissipation and acceleration attenuation to perform a shock mitigation assessment on the foam material. The PMDI foam material exhibits excellent performance in both energy dissipation and acceleration attenuation, particularly for the impact frequency content over 1.5 kHz. This frequency (1.5 kHz) was observed to be independent of specimen thickness and impact speed, which may represent themore » characteristic shock mitigation frequency of the PMDI foam material under investigation. The shock mitigation characteristics of the PMDI foam material were insignificantly influenced by the specimen thickness. As a result, impact speed did have some effect.« less
NASA Astrophysics Data System (ADS)
Wang, Wentao; Li, Hui; Qu, Zhi
2012-04-01
Basalt fiber reinforced polymer (BFRP) is a structural material with superior mechanical properties. In this study, unidirectional BFRP laminates with 14 layers are made with the hand lay-up method. Then, the acoustic emission technique (AE) combined with the scanning electronic microscope (SEM) technique is employed to monitor the fatigue damage evolution of the BFRP plates in the fatigue loading tests. Time-frequency analysis using the wavelet transform technique is proposed to analyze the received AE signal instead of the peak frequency method. A comparison between AE signals and SEM images indicates that the multi-frequency peaks picked from the time-frequency curves of AE signals reflect the accumulated fatigue damage evolution and fatigue damage patterns. Furthermore, seven damage patterns, that is, matrix cracking, delamination, fiber fracture and their combinations, are identified from the time-frequency curves of the AE signals.
Dmitrieva, E S; Gel'man, V Ia; Zaĭtseva, K A; Orlov, A M
2009-01-01
Comparative study of acoustic correlates of emotional intonation was conducted on two types of speech material: sensible speech utterances and short meaningless words. The corpus of speech signals of different emotional intonations (happy, angry, frightened, sad and neutral) was created using the actor's method of simulation of emotions. Native Russian 20-70-year-old speakers (both professional actors and non-actors) participated in the study. In the corpus, the following characteristics were analyzed: mean values and standard deviations of the power, fundamental frequency, frequencies of the first and second formants, and utterance duration. Comparison of each emotional intonation with "neutral" utterances showed the greatest deviations of the fundamental frequency and frequencies of the first formant. The direction of these deviations was independent of the semantic content of speech utterance and its duration, age, gender, and being actor or non-actor, though the personal features of the speakers affected the absolute values of these frequencies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yalong; Jones, Edward A.; Wang, Fred
Arm inductor in a modular multilevel converter (MMC) is used to limit the circulating current and dc short circuit fault current. The circulating current in MMC is dominated by second-order harmonic, which can be largely reduced with circulating current suppressing control. By analyzing the mechanism of the circulating current suppressing control, it is found that the circulating current at switching frequency becomes the main harmonic when suppression control is implemented. Unlike the second-order harmonic that circulates only within the three phases, switching frequency harmonic also flows through the dc side and may further cause high-frequency dc voltage harmonic. This articlemore » develops the theoretical relationship between the arm inductance and switching frequency circulating current, which can be used to guide the arm inductance selection. The experimental results with a downscaled MMC prototype verify the existence of the switching frequency circulating current and its relationship with arm inductance.« less
An approach to the interpretation of Cole-Davidson and Cole-Cole dielectric functions
NASA Astrophysics Data System (ADS)
Iglesias, T. P.; Vilão, G.; Reis, João Carlos R.
2017-08-01
Assuming that a dielectric sample can be described by Debye's model at each frequency, a method based on Cole's treatment is proposed for the direct estimation at experimental frequencies of relaxation times and the corresponding static and infinite-frequency permittivities. These quantities and the link between dielectric strength and mean molecular dipole moment at each frequency could be useful to analyze dielectric relaxation processes. The method is applied to samples that follow a Cole-Cole or a Cole-Davidson dielectric function. A physical interpretation of these dielectric functions is proposed. The behavior of relaxation time with frequency can be distinguished between the two dielectric functions. The proposed method can also be applied to samples following a Navriliak-Negami or any other dielectric function. The dielectric relaxation of a nanofluid consisting of graphene nanoparticles dispersed in the oil squalane is reported and discussed within the novel framework.