Sample records for frequency conditioning stimulation

  1. Transcranial alternating current stimulation modulates auditory temporal resolution in elderly people.

    PubMed

    Baltus, Alina; Vosskuhl, Johannes; Boetzel, Cindy; Herrmann, Christoph Siegfried

    2018-05-13

    Recent research provides evidence for a functional role of brain oscillations for perception. For example, auditory temporal resolution seems to be linked to individual gamma frequency of auditory cortex. Individual gamma frequency not only correlates with performance in between-channel gap detection tasks but can be modulated via auditory transcranial alternating current stimulation. Modulation of individual gamma frequency is accompanied by an improvement in gap detection performance. Aging changes electrophysiological frequency components and sensory processing mechanisms. Therefore, we conducted a study to investigate the link between individual gamma frequency and gap detection performance in elderly people using auditory transcranial alternating current stimulation. In a within-subject design, twelve participants were electrically stimulated with two individualized transcranial alternating current stimulation frequencies: 3 Hz above their individual gamma frequency (experimental condition) and 4 Hz below their individual gamma frequency (control condition) while they were performing a between-channel gap detection task. As expected, individual gamma frequencies correlated significantly with gap detection performance at baseline and in the experimental condition, transcranial alternating current stimulation modulated gap detection performance. In the control condition, stimulation did not modulate gap detection performance. In addition, in elderly, the effect of transcranial alternating current stimulation on auditory temporal resolution seems to be dependent on endogenous frequencies in auditory cortex: elderlies with slower individual gamma frequencies and lower auditory temporal resolution profit from auditory transcranial alternating current stimulation and show increased gap detection performance during stimulation. Our results strongly suggest individualized transcranial alternating current stimulation protocols for successful modulation of performance. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Interhemispheric modulation of dual-mode, noninvasive brain stimulation on motor function.

    PubMed

    Park, Eunhee; Kim, Yun-Hee; Chang, Won Hyuk; Kwon, Tae Gun; Shin, Yong-Il

    2014-06-01

    To investigate the effects of simultaneous, bihemispheric, dual-mode stimulation using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) on motor functions and cortical excitability in healthy individuals. Twenty-five healthy, right-handed volunteers (10 men, 15 women; mean age, 25.5 years) were enrolled. All participants received four randomly arranged, dual-mode, simultaneous stimulations under the following conditions: condition 1, high-frequency rTMS over the right primary motor cortex (M1) and sham tDCS over the left M1; condition 2, high-frequency rTMS over the right M1 and anodal tDCS over the left M1; condition 3, high-frequency rTMS over the right M1 and cathodal tDCS over the left M1; and condition 4, sham rTMS and sham tDCS. The cortical excitability of the right M1 and motor functions of the left hand were assessed before and after each simulation. Motor evoked potential (MEP) amplitudes after stimulation were significantly higher than before stimulation, under the conditions 1 and 2. The MEP amplitude in condition 2 was higher than both conditions 3 and 4, while the MEP amplitude in condition 1 was higher than condition 4. The results of the Purdue Pegboard test and the box and block test showed significant improvement in conditions 1 and 2 after stimulation. Simultaneous stimulation by anodal tDCS over the left M1 with high-frequency rTMS over the right M1 could produce interhemispheric modulation and homeostatic plasticity, which resulted in modulation of cortical excitability and motor functions.

  3. Neuro-muscular transmission in blood vessels: phasic and tonic components. An in-vitro study of mesenteric arteries of the rat.

    PubMed

    Sjöblom-Widfeldt, N

    1990-01-01

    For many years noradrenaline was considered to be the exclusive transmitter released from sympathetic nerves. However, during recent years both ATP and NPY have been suggested to be co-transmitters to noradrenaline in these nerves. The present study aimed to investigate the functional relationship between these suggested transmitters during nerve stimulation with different frequencies and in different extracellular calcium concentrations. Also the importance of the pattern of nerve stimulation and the potentiation of the neurogenic response after a period of high-frequency nerve stimulation were investigated. Contractions caused by nerve stimulation and applied agonists were investigated in segments of small mesenteric arteries from rat. The biophysical, electrophysiological, and pharmacological properties of these vessels are well characterized in previous studies. The rapid contraction caused by a single nerve stimulus, the "single twitch", and the initial, phasic contraction caused by high-frequency nerve stimulation were only slightly affected by alpha-adrenoceptor blockade with prazosin, whereas the tonic response to high-frequency stimulation was markedly reduced. The phasic responses and those to low-frequency nerve stimulation thus appear to be due mainly to a non-adrenergic transmitter. After inhibiting the response to exogenous ATP by alpha beta-methylene ATP, the response to single impulses and to low-frequency nerve stimulation were markedly reduced, while those to high-frequency stimulation were unaffected. This suggests that ATP acts as a true transmitter in sympathetic nerves, being responsible mainly for rapid responses to low-frequency stimulation, and for the initial part of responses to high-frequency stimulation. When alpha beta-methylene ATP and prazosin were given in combination, no contraction was obtained during nerve stimulation at any frequency. However, if in this situation a contraction was induced by e.g. exogenous vasopressin, field stimulation caused a further, slow contraction. This additional response was undoubtedly neurogenic, but required high-frequency nerve stimulation. The response to nerve stimulation was found to be calcium-dependent, the calcium-dependency being more pronounced at low than at high stimulation frequencies. A continuous, high-frequency (8-16 Hz) nerve stimulation could greatly (5-15 fold) enhance the response to subsequent low-frequency nerve stimulation. This potentiation increased with the frequency of the conditioning stimulation and, within limits, with the number of impulses delivered. Also the extracellular calcium concentration during the conditioning stimulation determined the magnitude of the potentiation. This post-tetanic potentiation has many characteristics in common with the post-tetanic potentiation studied in the central and somatomotor nervous system.(ABSTRACT TRUNCATED AT 400 WORDS)

  4. Hatch plasticity in response to varied inundation frequency in Aedes albopictus.

    PubMed

    Vitek, Christopher J; Livdahl, Todd

    2009-07-01

    Eggs of container-breeding mosquitoes are able to withstand drought conditions as an egg and hatch when submerged. Frequent rainfall can be simulated by frequent submersion, and drought conditions can be simulated by infrequent submersion. We examined the hatch response of Aedes albopictus (Skuse) eggs to simulated drought conditions. Ae. albopictus eggs from a strain originating outside Kobe, Japan, were subjected to one of three treatments; high-frequency hatch stimulation consisting of submerging the eggs in a nutrient broth mixture every 3 d, low-frequency hatch stimulation consisting of submerging the eggs every 7 d, and delayed high-frequency hatch stimulation. Eggs that were subjected to lower-frequency stimulation showed a significant decrease in hatch delay, which was the opposite of the predicted response. This decrease in hatch delay may be an example of hatch plasticity in response to drought conditions. This response could not be explained as a result of the difference in the ages of the eggs on any given stimulus. A decreased hatch delay response to potential drought conditions combined with rapid larval development may enable Ae. albopictus, whose eggs are not as desiccation resistant as some other container-breeding mosquitoes, to survive extended drought.

  5. An analogue assessment of repetitive hand behaviours in girls and young women with Rett syndrome.

    PubMed

    Wales, L; Charman, T; Mount, R H

    2004-10-01

    Rett syndrome is a neurodevelopmental disorder that almost exclusively affects females. In addition to neurodevelopmental regression and loss of hand skills, apraxia, deceleration of head growth, and increasing spasticity and scoliosis, a number of behavioural features are also seen, including stereotypic hand movements, hyperventilation and breath holding. The aim of the study was to investigate the extent to which analogue environmental conditions affected the frequency of repetitive hand behaviour in eight girls and young women with Rett syndrome. The frequency of repetitive hand movements was observed every 10 s for four 4-min sessions under the following conditions: Continuous Adult Attention, Adult Demands, Stimulation and No Stimulation. The frequency of repetitive hand movements was high -- they occurred in above 60% of all intervals in all conditions for all participants and at nearly 100% for some participants in some conditions. For one participant the frequency of repetitive hand movements was somewhat reduced in the Stimulation condition; for another it was relatively increased in the No Stimulation condition. Overall, environmental manipulations had relatively limited effects on repetitive hand behaviours. Repetitive hand behaviour in Rett syndrome may be maintained by automatic reinforcement or neurochemical processes and may not be primarily influenced by contingent reinforcement.

  6. Effect of higher frequency on the classification of steady-state visual evoked potentials

    NASA Astrophysics Data System (ADS)

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Objective. Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. Approach. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. Main results. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. Significance. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  7. Effect of higher frequency on the classification of steady-state visual evoked potentials.

    PubMed

    Won, Dong-Ok; Hwang, Han-Jeong; Dähne, Sven; Müller, Klaus-Robert; Lee, Seong-Whan

    2016-02-01

    Most existing brain-computer interface (BCI) designs based on steady-state visual evoked potentials (SSVEPs) primarily use low frequency visual stimuli (e.g., <20 Hz) to elicit relatively high SSVEP amplitudes. While low frequency stimuli could evoke photosensitivity-based epileptic seizures, high frequency stimuli generally show less visual fatigue and no stimulus-related seizures. The fundamental objective of this study was to investigate the effect of stimulation frequency and duty-cycle on the usability of an SSVEP-based BCI system. We developed an SSVEP-based BCI speller using multiple LEDs flickering with low frequencies (6-14.9 Hz) with a duty-cycle of 50%, or higher frequencies (26-34.7 Hz) with duty-cycles of 50%, 60%, and 70%. The four different experimental conditions were tested with 26 subjects in order to investigate the impact of stimulation frequency and duty-cycle on performance and visual fatigue, and evaluated with a questionnaire survey. Resting state alpha powers were utilized to interpret our results from the neurophysiological point of view. The stimulation method employing higher frequencies not only showed less visual fatigue, but it also showed higher and more stable classification performance compared to that employing relatively lower frequencies. Different duty-cycles in the higher frequency stimulation conditions did not significantly affect visual fatigue, but a duty-cycle of 50% was a better choice with respect to performance. The performance of the higher frequency stimulation method was also less susceptible to resting state alpha powers, while that of the lower frequency stimulation method was negatively correlated with alpha powers. These results suggest that the use of higher frequency visual stimuli is more beneficial for performance improvement and stability as time passes when developing practical SSVEP-based BCI applications.

  8. Hyper-Transcranial Alternating Current Stimulation: Experimental Manipulation of Inter-Brain Synchrony

    PubMed Central

    Szymanski, Caroline; Müller, Viktor; Brick, Timothy R.; von Oertzen, Timo; Lindenberger, Ulman

    2017-01-01

    We walk together, we watch together, we win together: Interpersonally coordinated actions are omnipresent in everyday life, yet the associated neural mechanisms are not well understood. Available evidence suggests that the synchronization of oscillatory activity across brains may provide a mechanism for the temporal alignment of actions between two or more individuals. In an attempt to provide a direct test of this hypothesis, we applied transcranial alternating current stimulation simultaneously to two individuals (hyper-tACS) who were asked to drum in synchrony at a set pace. Thirty-eight female-female dyads performed the dyadic drumming in the course of 3 weeks under three different hyper-tACS stimulation conditions: same-phase-same-frequency; different-phase-different-frequency; sham. Based on available evidence and theoretical considerations, stimulation was applied over right frontal and parietal sites in the theta frequency range. We predicted that same-phase-same-frequency stimulation would improve interpersonal action coordination, expressed as the degree of synchrony in dyadic drumming, relative to the other two conditions. Contrary to expectations, both the same-phase-same-frequency and the different-phase-different-frequency conditions were associated with greater dyadic drumming asynchrony relative to the sham condition. No influence of hyper-tACS on behavioral performance was seen when participants were asked to drum separately in synchrony to a metronome. Individual and dyad preferred drumming tempo was also unaffected by hyper-tACS. We discuss limitations of the present version of the hyper-tACS paradigm, and suggest avenues for future research. PMID:29167638

  9. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    PubMed Central

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p < 0.0001) hemispheres. Notably, the left and right hemisphere showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  10. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants.

    PubMed

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcomes. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency fc = 90% (SEF-90), which is derived from EEG recordings in preterm infants. A total of 22 preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at ~32 wk postmenstrual age. The SEF-90 was derived from two-channel EEG recordings. Compared with the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (P = 0.005) and right (P < 0.0001) hemispheres. Notably, the left and right hemispheres showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short-term cortical adaptation and a long-term neural adaptation manifested as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants.

  11. Frequency-Unspecific Effects of θ-tACS Related to a Visuospatial Working Memory Task

    PubMed Central

    Kleinert, Maria-Lisa; Szymanski, Caroline; Müller, Viktor

    2017-01-01

    Working memory (WM) is crucial for intelligent cognitive functioning, and synchronization phenomena in the fronto-parietal network have been suggested as an underlying neural mechanism. In an attempt to provide causal evidence for this assumption, we applied transcranial alternating current stimulation (tACS) at theta frequency over fronto-parietal sites during a visuospatial match-to-sample (MtS) task. Depending on the stimulation protocol, i.e., in-phase, anti-phase or sham, we anticipated a differential impact of tACS on behavioral WM performance as well as on the EEG (electroencephalography) during resting state before and after stimulation. We hypothesized that in-phase tACS of the fronto-parietal theta network (stimulation frequency: 5 Hz; intensity: 1 mA peak-to-peak) would result in performance enhancement, whereas anti-phase tACS would cause performance impairment. Eighteen participants (nine female) received in-phase, anti-phase, and sham stimulation in balanced order. While being stimulated, subjects performed the MtS task, which varied in executive demand (two levels: low and high). EEG analysis of power peaks within the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequency bands was carried out. No significant differences were observed between in-phase and anti-phase stimulation regarding both behavioral and EEG measurements. Yet, with regard to the alpha frequency band, we observed a statistically significant drop of peak power from pre to post in the sham condition, whereas alpha power remained on a similar level in the actively stimulated conditions. Our results indicate a frequency-unspecific modulation of neuronal oscillations by tACS. However, the closer participants’ individual theta peak frequencies were to the stimulation frequency of 5 Hz after anti-phase tACS, the faster they responded in the MtS task. This effect did not reach statistical significance during in-phase tACS and was not present during sham. A lack of statistically significant behavioral results in the MtS task and frequency-unspecific effects on the electrophysiological level question the effectiveness of tACS in modulating cortical oscillations in a frequency-specific manner. PMID:28747881

  12. Optimum conditions for producing Cs2 molecular condensates by stimulated Raman adiabatic passage

    NASA Astrophysics Data System (ADS)

    Feng, Zhifang; Li, Weidong; Wang, Lirong; Xiao, Liantuan; Jia, Suotang

    2009-10-01

    The optimum conditions for producing Cs2 molecular condensates from Cs atomic condensates with high transfer efficiency by stimulated Raman adiabatic passage are presented. Under the extended “two-photon” resonance condition, including the two-photon process, the mean-field correction, and the tunneling coupling between two upper excited molecular levels, a high and stable conversion efficiency is realized. The high conversion efficiency could be achieved by following two methods under experimentally less demanding conditions (relatively small effective Rabi frequency for pump laser pulse). One is adjusting the detuning difference between two laser pulses for same effective Rabi frequencies with up to 87.2% transfer efficiency. Another one is adjusting the effective Rabi frequency, the detuning of dump laser for given effective Rabi frequency, and the detuning of pump laser with up to 80.7% transfer efficiency.

  13. Enhanced Extinction of Aversive Memories by High-Frequency Stimulation of the Rat Infralimbic Cortex

    PubMed Central

    Maroun, Mouna; Kavushansky, Alexandra; Holmes, Andrew; Wellman, Cara; Motanis, Helen

    2012-01-01

    Electrical stimulation of the rodent medial prefrontal cortex (mPFC), including the infralimbic cortex (IL), immediately prior to or during fear extinction training facilitates extinction memory. Here we examined the effects of high-frequency stimulation (HFS) of the rat IL either prior to conditioning or following retrieval of the conditioned memory, on extinction of Pavlovian fear and conditioned taste aversion (CTA). IL-HFS applied immediately after fear memory retrieval, but not three hours after retrieval or prior to conditioning, subsequently reduced freezing during fear extinction. Similarly, IL-HFS given immediately, but not three hours after, retrieval of a CTA memory reduced aversion during extinction. These data indicate that HFS of the IL may be an effective method for reducing both learned fear and learned aversion. PMID:22586453

  14. Frequency-dependence of the slow force response.

    PubMed

    von Lewinski, Dirk; Zhu, Danan; Khafaga, Mounir; Kockskamper, Jens; Maier, Lars S; Hasenfuss, Gerd; Pieske, Burkert

    2008-05-01

    Stretch induces biphasic inotropic effects in mammalian myocardium. A delayed component (slow force response, SFR) has been demonstrated in various species, however, experimental conditions varied and the underlying mechanisms are controversial. The physiological relevance of the SFR is poorly understood. Experiments were performed in ventricular muscle strips from failing human hearts and non-failing rabbit hearts. Upon stretch, twitch force was assessed at basal conditions (1 Hz, 37 degrees C) and after changing stimulation frequency with and without blockade of the Na+/H+-exchanger-1 (NHE1) or reverse-mode Na+/Ca2+-exchange (NCX). Action potential duration (APD) was assessed using floating electrodes. Low stimulation rates (0.2 Hz) potentiated and higher stimulation rates (2 and 3 Hz) reduced the SFR. The extent of SFR inhibition by NHE1 or NCX inhibition was not affected by stimulation rate. APD decreased at 0.2 Hz but was not altered at higher stimulation rates. The data demonstrate frequency-dependence of the SFR with greater positive inotropic effects at lower stimulation rates. Subcellular mechanisms underlying the SFR are not fundamentally affected by stimulation rate. The SFR may have more pronounced physiological effects at lower heart rates.

  15. Optimization of Electrical Stimulation Parameters for Cardiac Tissue Engineering

    PubMed Central

    Tandon, Nina; Marsano, Anna; Maidhof, Robert; Wan, Leo; Park, Hyoungshin; Vunjak-Novakovic, Gordana

    2010-01-01

    In vitro application of pulsatile electrical stimulation to neonatal rat cardiomyocytes cultured on polymer scaffolds has been shown to improve the functional assembly of cells into contractile cardiac tissue constrcuts. However, to date, the conditions of electrical stimulation have not been optimized. We have systematically varied the electrode material, amplitude and frequency of stimulation, to determine the conditions that are optimal for cardiac tissue engineering. Carbon electrodes, exhibiting the highest charge-injection capacity and producing cardiac tissues with the best structural and contractile properties, and were thus used in tissue engineering studies. Cardiac tissues stimulated at 3V/cm amplitude and 3Hz frequency had the highest tissue density, the highest concentrations of cardiac troponin-I and connexin-43, and the best developed contractile behavior. These findings contribute to defining bioreactor design specifications and electrical stimulation regime for cardiac tissue engineering. PMID:21604379

  16. Local entrainment of oscillatory activity induced by direct brain stimulation in humans

    PubMed Central

    Amengual, Julià L.; Vernet, Marine; Adam, Claude; Valero-Cabré, Antoni

    2017-01-01

    In a quest for direct evidence of oscillation entrainment, we analyzed intracerebral electroencephalographic recordings obtained during intracranial electrical stimulation in a cohort of three medication-resistant epilepsy patients tested pre-surgically. Spectral analyses of non-epileptogenic cerebral sites stimulated directly with high frequency electrical bursts yielded episodic local enhancements of frequency-specific rhythmic activity, phase-locked to each individual pulse. These outcomes reveal an entrainment of physiological oscillatory activity within a frequency band dictated by the rhythm of the stimulation source. Our results support future uses of rhythmic stimulation to elucidate the causal contributions of synchrony to specific aspects of human cognition and to further develop the therapeutic manipulation of dysfunctional rhythmic activity subtending the symptoms of some neuropsychiatric conditions. PMID:28256510

  17. Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.

    PubMed

    Quass, Gunnar Lennart; Kurt, Simone; Hildebrandt, Jannis; Kral, Andrej

    2018-05-17

    Auditory midbrain implant users cannot achieve open speech perception and have limited frequency resolution. It remains unclear whether the spread of excitation contributes to this issue and how much it can be compensated by current-focusing, which is an effective approach in cochlear implants. The present study examined the spread of excitation in the cortex elicited by electric midbrain stimulation. We further tested whether current-focusing via bipolar and tripolar stimulation is effective with electric midbrain stimulation and whether these modes hold any advantage over monopolar stimulation also in conditions when the stimulation electrodes are in direct contact with the target tissue. Using penetrating multielectrode arrays, we recorded cortical population responses to single pulse electric midbrain stimulation in 10 ketamine/xylazine anesthetized mice. We compared monopolar, bipolar, and tripolar stimulation configurations with regard to the spread of excitation and the characteristic frequency difference between the stimulation/recording electrodes. The cortical responses were distributed asymmetrically around the characteristic frequency of the stimulated midbrain region with a strong activation in regions tuned up to one octave higher. We found no significant differences between monopolar, bipolar, and tripolar stimulation in threshold, evoked firing rate, or dynamic range. The cortical responses to electric midbrain stimulation are biased towards higher tonotopic frequencies. Current-focusing is not effective in direct contact electrical stimulation. Electrode maps should account for the asymmetrical spread of excitation when fitting auditory midbrain implants by shifting the frequency-bands downward and stimulating as dorsally as possible. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats.

    PubMed

    Formenti, Alessandro; Zocchi, Luciano

    2014-10-01

    Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Frequency-dependent response of SI RA-class neurons to vibrotactile stimulation of the receptive field.

    PubMed

    Whitsel, B L; Kelly, E F; Xu, M; Tommerdahl, M; Quibrera, M

    2001-01-01

    Three types of experiment were carried out on anesthetized monkeys and cats. In the first, spike discharge activity of rapidly adapting (RA) SI neurons was recorded extracellularly during the application of different frequencies of vibrotactile stimulation to the receptive field (RF). The second used the same stimulus conditions to study the response of RA-I (RA) cutaneous mechanoreceptive afferents. The third used optical intrinsic signal (OIS) imaging and extracellular neurophysiological recording methods together, in the same sessions, to evaluate the relationship between the SI optical and RA neuron spike train responses to low- vs high-frequency stimulation of the same skin site. RA afferent entrainment was high at all frequencies of stimulation. In contrast, SI RA neuron entrainment was much lower on average, and was strongly frequency-dependent, declining in near-linear fashion from 6 to 200 Hz. Even at 200 Hz, however, unambiguous frequency-following responses were present in the spike train activity of som

  20. Dysregulation of the Descending Pain System in Temporomandibular Disorders Revealed by Low-Frequency Sensory Transcutaneous Electrical Nerve Stimulation: A Pupillometric Study

    PubMed Central

    Monaco, Annalisa; Cattaneo, Ruggero; Mesin, Luca; Ortu, Eleonora; Giannoni, Mario; Pietropaoli, Davide

    2015-01-01

    Using computerized pupillometry, our previous research established that the autonomic nervous system (ANS) is dysregulated in patients suffering from temporomandibular disorders (TMDs), suggesting a potential role for ANS dysfunction in pain modulation and the etiology of TMD. However, pain modulation hypotheses for TMD are still lacking. The periaqueductal gray (PAG) is involved in the descending modulation of defensive behavior and pain through μ, κ, and δ opioid receptors. Transcutaneous electrical nerve stimulation (TENS) has been extensively used for pain relief, as low-frequency stimulation can activate µ receptors. Our aim was to use pupillometry to evaluate the effect of low-frequency TENS stimulation of μ receptors on opioid descending pathways in TMD patients. In accordance with the Research Diagnostic Criteria for TMD, 18 females with myogenous TMD and 18 matched-controls were enrolled. All subjects underwent subsequent pupillometric evaluations under dark and light conditions before, soon after (end of stimulation) and long after (recovery period) sensorial TENS. The overall statistics derived from the darkness condition revealed no significant differences in pupil size between cases and controls; indeed, TENS stimulation significantly reduced pupil size in both groups. Controls, but not TMD patients, displayed significant differences in pupil size before compared with after TENS. Under light conditions, TMD patients presented a smaller pupil size compared with controls; the pupil size was reduced only in the controls. Pupil size differences were found before and during TENS and before and after TENS in the controls only. Pupillometry revealed that stimulating the descending opioid pathway with low-frequency sensory TENS of the fifth and seventh pairs of cranial nerves affects the peripheral target. The TMD patients exhibited a different pattern of response to TENS stimulation compared with the controls, suggesting that impaired modulation of the descending pain system may be involved in TMD. PMID:25905862

  1. Vibration over the larynx increases swallowing and cortical activation for swallowing.

    PubMed

    Mulheren, Rachel W; Ludlow, Christy L

    2017-09-01

    Sensory input can alter swallowing control in both the cortex and brainstem. Electrical stimulation of superior laryngeal nerve afferents increases reflexive swallowing in animals, with different frequencies optimally effective across species. Here we determined 1 ) if neck vibration overlying the larynx affected the fundamental frequency of the voice demonstrating penetration of vibration into the laryngeal tissues, and 2 ) if vibration, in comparison with sham, increased spontaneous swallowing and enhanced cortical hemodynamic responses to swallows in the swallowing network. A device with two motors, one over each thyroid lamina, delivered intermittent 10-s epochs of vibration. We recorded swallows and event-related changes in blood oxygenation level to swallows over the motor and sensory swallowing cortexes bilaterally using functional near infrared spectroscopy. Ten healthy participants completed eight 20-min conditions in counterbalanced order with either epochs of continuous vibration at 30, 70, 110, 150, and 70 + 110 Hz combined, 4-Hz pulsed vibration at 70 + 110 Hz, or two sham conditions without stimulation. Stimulation epochs were separated by interstimulus intervals varying between 30 and 45 s in duration. Vibration significantly reduced the fundamental frequency of the voice compared with no stimulation demonstrating that vibration penetrated laryngeal tissues. Vibration at 70 and at 150 Hz increased spontaneous swallowing compared with sham. Hemodynamic responses to swallows in the motor cortex were enhanced during conditions containing stimulation compared with sham. As vibratory stimulation on the neck increased spontaneous swallowing and enhanced cortical activation for swallows in healthy participants, it may be useful for enhancing swallowing in patients with dysphagia. NEW & NOTEWORTHY Vibratory stimulation at 70 and 150 Hz on the neck overlying the larynx increased the frequency of spontaneous swallowing. Simultaneously vibration also enhanced hemodynamic responses in the motor cortex to swallows when recorded with functional near-infrared spectroscopy (fNIRS). As vibrotactile stimulation on the neck enhanced cortical activation for swallowing in healthy participants, it may be useful for enhancing swallowing in patients with dysphagia. Copyright © 2017 the American Physiological Society.

  2. Binaural Interaction Effects of 30-50 Hz Auditory Steady State Responses.

    PubMed

    Gransier, Robin; van Wieringen, Astrid; Wouters, Jan

    Auditory stimuli modulated by modulation frequencies within the 30 to 50 Hz region evoke auditory steady state responses (ASSRs) with high signal to noise ratios in adults, and can be used to determine the frequency-specific hearing thresholds of adults who are unable to give behavioral feedback reliably. To measure ASSRs as efficiently as possible a multiple stimulus paradigm can be used, stimulating both ears simultaneously. The response strength of 30 to 50Hz ASSRs is, however, affected when both ears are stimulated simultaneously. The aim of the present study is to gain insight in the measurement efficiency of 30 to 50 Hz ASSRs evoked with a 2-ear stimulation paradigm, by systematically investigating the binaural interaction effects of 30 to 50 Hz ASSRs in normal-hearing adults. ASSRs were obtained with a 64-channel EEG system in 23 normal-hearing adults. All participants participated in one diotic, multiple dichotic, and multiple monaural conditions. Stimuli consisted of a modulated one-octave noise band, centered at 1 kHz, and presented at 70 dB SPL. The diotic condition contained 40 Hz modulated stimuli presented to both ears. In the dichotic conditions, the modulation frequency of the left ear stimulus was kept constant at 40 Hz, while the stimulus at the right ear was either the unmodulated or modulated carrier. In case of the modulated carrier, the modulation frequency varied between 30 and 50 Hz in steps of 2 Hz across conditions. The monaural conditions consisted of all stimuli included in the diotic and dichotic conditions. Modulation frequencies ≥36 Hz resulted in prominent ASSRs in all participants for the monaural conditions. A significant enhancement effect was observed (average: ~3 dB) in the diotic condition, whereas a significant reduction effect was observed in the dichotic conditions. There was no distinct effect of the temporal characteristics of the stimuli on the amount of reduction. The attenuation was in 33% of the cases >3 dB for ASSRs evoked with modulation frequencies ≥40 Hz and 50% for ASSRs evoked with modulation frequencies ≤36 Hz. Binaural interaction effects as observed in the diotic condition are similar to the binaural interaction effects of middle latency responses as reported in the literature, suggesting that these responses share a same underlying mechanism. Our data also indicated that 30 to 50 Hz ASSRs are attenuated when presented dichotically and that this attenuation is independent of the stimulus characteristics as used in the present study. These findings are important as they give insight in how binaural interaction affects the measurement efficiency. The 2-ear stimulation paradigm of the present study was, for the most optimal modulation frequencies (i.e., ≥40 Hz), more efficient than a 1-ear sequential stimulation paradigm in 66% of the cases.

  3. A novel stimulation method for multi-class SSVEP-BCI using intermodulation frequencies

    NASA Astrophysics Data System (ADS)

    Chen, Xiaogang; Wang, Yijun; Zhang, Shangen; Gao, Shangkai; Hu, Yong; Gao, Xiaorong

    2017-04-01

    Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has been widely investigated because of its easy system configuration, high information transfer rate (ITR) and little user training. However, due to the limitations of brain responses and the refresh rate of a monitor, the available stimulation frequencies for practical BCI application are generally restricted. Approach. This study introduced a novel stimulation method using intermodulation frequencies for SSVEP-BCIs that had targets flickering at the same frequency but with different additional modulation frequencies. The additional modulation frequencies were generated on the basis of choosing desired flickering frequencies. The conventional frame-based ‘on/off’ stimulation method was used to realize the desired flickering frequencies. All visual stimulation was present on a conventional LCD screen. A 9-target SSVEP-BCI based on intermodulation frequencies was implemented for performance evaluation. To optimize the stimulation design, three approaches (C: chromatic; L: luminance; CL: chromatic and luminance) were evaluated by online testing and offline analysis. Main results. SSVEP-BCIs with different paradigms (C, L, and CL) enabled us not only to encode more targets, but also to reliably evoke intermodulation frequencies. The online accuracies for the three paradigms were 91.67% (C), 93.98% (L), and 96.41% (CL). The CL condition achieved the highest classification performance. Significance. These results demonstrated the efficacy of three approaches (C, L, and CL) for eliciting intermodulation frequencies for multi-class SSVEP-BCIs. The combination of chromatic and luminance characteristics of the visual stimuli is the most efficient way for the intermodulation frequency coding method.

  4. Effects of auditory selective attention on chirp evoked auditory steady state responses.

    PubMed

    Bohr, Andreas; Bernarding, Corinna; Strauss, Daniel J; Corona-Strauss, Farah I

    2011-01-01

    Auditory steady state responses (ASSRs) are frequently used to assess auditory function. Recently, the interest in effects of attention on ASSRs has increased. In this paper, we investigated for the first time possible effects of attention on AS-SRs evoked by amplitude modulated and frequency modulated chirps paradigms. Different paradigms were designed using chirps with low and high frequency content, and the stimulation was presented in a monaural and dichotic modality. A total of 10 young subjects participated in the study, they were instructed to ignore the stimuli and after a second repetition they had to detect a deviant stimulus. In the time domain analysis, we found enhanced amplitudes for the attended conditions. Furthermore, we noticed higher amplitudes values for the condition using frequency modulated low frequency chirps evoked by a monaural stimulation. The most difference between attended and unattended modality was exhibited at the dichotic case of the amplitude modulated condition using chirps with low frequency content.

  5. Acute effects and after-effects of acoustic coordinated reset neuromodulation in patients with chronic subjective tinnitus.

    PubMed

    Adamchic, Ilya; Toth, Timea; Hauptmann, Christian; Walger, Martin; Langguth, Berthold; Klingmann, Ingrid; Tass, Peter Alexander

    2017-01-01

    Chronic subjective tinnitus is an auditory phantom phenomenon characterized by abnormal neuronal synchrony in the central auditory system. As shown computationally, acoustic coordinated reset (CR) neuromodulation causes a long-lasting desynchronization of pathological synchrony by downregulating abnormal synaptic connectivity. In a previous proof of concept study acoustic CR neuromodulation, employing stimulation tone patterns tailored to the dominant tinnitus frequency, was compared to noisy CR-like stimulation, a CR version significantly detuned by sparing the tinnitus-related pitch range and including substantial random variability of the tone spacing on the frequency axis. Both stimulation protocols caused an acute relief as measured with visual analogue scale scores for tinnitus loudness (VAS-L) and annoyance (VAS-A) in the stimulation-ON condition (i.e. 15 min after stimulation onset), but only acoustic CR neuromodulation had sustained long-lasting therapeutic effects after 12 weeks of treatment as assessed with VAS-L, VAS-A scores and a tinnitus questionnaire (TQ) in the stimulation-OFF condition (i.e. with patients being off stimulation for at least 2.5 h). To understand the source of the long-lasting therapeutic effects, we here study whether acoustic CR neuromodulation has different electrophysiological effects on oscillatory brain activity as compared to noisy CR-like stimulation under stimulation-ON conditions and immediately after cessation of stimulation. To this end, we used a single-blind, single application, cross over design in 18 patients with chronic tonal subjective tinnitus and administered three different 16-minute stimulation protocols: acoustic CR neuromodulation, noisy CR-like stimulation and low frequency range (LFR) stimulation, a CR type stimulation with deliberately detuned pitch and repetition rate of stimulation tones, as control stimulation. We measured VAS-L and VAS-A scores together with spontaneous EEG activity pre-, during- and post-stimulation. Under stimulation-ON conditions acoustic CR neuromodulation and noisy CR-like stimulation had similar effects: a reduction of VAS-L and VAS-A scores together with a decrease of auditory delta power and an increase of auditory alpha and gamma power, without significant differences. In contrast, LFR stimulation had significantly weaker EEG effects and no significant clinical effects under stimulation-ON conditions. The distinguishing feature between acoustic CR neuromodulation and noisy CR-like stimulation were the electrophysiological after-effects. Acoustic CR neuromodulation caused the longest significant reduction of delta and gamma and increase of alpha power in the auditory cortex region. Noisy CR-like stimulation had weaker and LFR stimulation hardly any electrophysiological after-effects. This qualitative difference further supports the assertion that long-term effects of acoustic CR neuromodulation on tinnitus are mediated by a specific disruption of synchronous neural activity. Furthermore, our results indicate that acute electrophysiological after-effects might serve as a marker to further improve desynchronizing sound stimulation.

  6. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking.

    PubMed

    Hartmann, Cornelia; Dosen, Strahinja; Amsuess, Sebastian; Farina, Dario

    2015-09-01

    Electrocutaneous stimulation is a promising approach to provide sensory feedback to amputees, and thus close the loop in upper limb prosthetic systems. However, the stimulation introduces artifacts in the recorded electromyographic (EMG) signals, which may be detrimental for the control of myoelectric prostheses. In this study, artifact blanking with three data segmentation approaches was investigated as a simple method to restore the performance of pattern recognition in prosthesis control (eight motions) when EMG signals are corrupted by stimulation artifacts. The methods were tested over a range of stimulation conditions and using four feature sets, comprising both time and frequency domain features. The results demonstrated that when stimulation artifacts were present, the classification performance improved with blanking in all tested conditions. In some cases, the classification performance with blanking was at the level of the benchmark (artifact-free data). The greatest pulse duration and frequency that allowed a full performance recovery were 400 μs and 150 Hz, respectively. These results show that artifact blanking can be used as a practical solution to eliminate the negative influence of the stimulation artifact on EMG pattern classification in a broad range of conditions, thus allowing to close the loop in myoelectric prostheses using electrotactile feedback.

  7. Susceptibility study of audio recording devices to electromagnetic stimulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halligan, Matthew S.; Grant, Steven L.; Beetner, Daryl G.

    2014-02-01

    Little research has been performed to study how intentional electromagnetic signals may couple into recording devices. An electromagnetic susceptibility study was performed on an analog tape recorder, a digital video camera, a wired computer microphone, and a wireless microphone system to electromagnetic interference. Devices were subjected to electromagnetic stimulations in the frequency range of 1-990 MHz and field strengths up to 4.9 V/m. Carrier and message frequencies of the stimulation signals were swept, and the impacts of device orientation and antenna polarization were explored. Message signals coupled into all devices only when amplitude modulated signals were used as stimulation signals.more » Test conditions that produced maximum sensitivity were highly specific to each device. Only narrow carrier frequency ranges could be used for most devices to couple messages into recordings. A basic detection technique using cross-correlation demonstrated the need for messages to be as long as possible to maximize message detection and minimize detection error. Analysis suggests that detectable signals could be coupled to these recording devices under realistic ambient conditions.« less

  8. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging.

    PubMed

    Chen, Andrew C N; Liu, Feng-Jun; Wang, Li; Arendt-Nielsen, Lars

    2006-02-15

    This study determined: (a) if acupuncture stimulation at a traditional site might modulate ongoing EEG as compared with stimulation of a control site; (b) if high-frequency vs. low-frequency stimulation could exert differential effects of acupuncture; (c) if the observed effects of acupuncture were specific to certain EEG bands; and (d) if the acupuncture effect could be isolated at a specific scalp field, with its putative underlying intracranial source. Twelve healthy male volunteers (age range 22-35) participated in two experimental sessions separated by 1 week, which involved transcutaneous acupoint stimulation at selected acupoint (Li 4, HeGu) vs. a mock point at the fourth interosseous muscle area on the left hand in high (HF: 100 Hz) vs. low-frequency (LF: 2 Hz) stimulation by counter-balanced order. 124-ch EEG data were used to analyze the Delta, Theta, Alpha-1, Alpha-2, Beta, and Gamma bands. The absolute EEG powers (muv2) at focal maxima across three stages (baseline, stimulation, post) were examined by two-way (condition, stage) repeated measures ANOVA. The activity of the Theta power significantly decreased (P = 0.02), compared with control during HF but not LF stimulation at acupoint stimulation, however, there was no study effect at the mock point. A decreased Theta EEG power was prominent at the frontal midline sites (FCz, Fz) and the contralateral right hemisphere front site (FCC2h). In contrast, the Theta power of low-frequency stimulation showed an increase from the baseline as those in both controlled mock point stimulations. The observed high-frequency acupoint stimulation effects of Theta EEG were only present during, but not after, simulation. The topographic Theta activity was tentatively identified to originate from the intracranial current source in cingulate cortex, likely ACC. It is likely that short-term cortical plasticity occurs during high-frequency but not low-frequency stimulation at the HeGu point, but not mock point. We suggest that HeGu acupuncture stimulation modulates limbic cingulum by a frequency modulation mode, which then may damp nociceptive processing in the brain.

  9. Pavlovian conditioning of psychomotor stimulant-induced behaviours: has convenience led us astray?

    PubMed

    Martin-Iverson, M.T.; Fawcett, S.L.

    1996-01-01

    In order to classically condition the behavioural effects of psychomotor stimulants within a test context, rats were treated for 10 days with (+)-amphetamine (1.5mg/kg), (+)-4-propyl-9-hydroxynaphthoxazine (PHNO, 30µg/kg) or vehicle prior to a 1h placement into a test box. Conditioned behavioural effects were then measured in the previously drug-paired context after a vehicle injection (drug-free test day). Each rat was videotaped for the 1h test box exposure on days 1, 4, 7 and 10 of the drug conditioning trials, and on the drug-free test day. Eleven of 28 behaviours that were scored for frequency, duration and mean bout duration (bout length) were significantly influenced by at least one of the two drugs. Amphetamine predominantly increased bout lengths while PHNO predominantly increased bout frequency. Only two measures that were influenced by the drugs exhibited clear increases over controls in a manner consistent with a classical conditioning interpretation. Behavioural sensitization clearly occurred to some of the effects of amphetamine and PHNO, but these were not the same effects as those increased on the non-drug day testing for classical conditioning. Most behavioural effects of amphetamine and PHNO are not classically conditioned, and behavioural sensitization to these drugs, while perhaps context-specific, is not due to classical conditioning. Automated measures of behaviours have provided misleading evidence concerning the similarity among behavioural effects of stimulants, sensitization and effects of exposure to an environment previously paired with stimulants. Analysis of transitions between behaviours does not support the view that stimulants increase switching or response competition, or that behavioural reorganization is responsible for sensitization. Rather, it is suggested that stimulants selectively facilitate current stimulus-guided behaviours.

  10. Bidirectional Modulation of Extinction of Drug Seeking by Deep Brain Stimulation of the Ventral Striatum.

    PubMed

    Martínez-Rivera, Freddyson J; Rodriguez-Romaguera, Jose; Lloret-Torres, Mario E; Do Monte, Fabricio H; Quirk, Gregory J; Barreto-Estrada, Jennifer L

    2016-11-01

    Recent research in humans and rodents has explored the use of deep brain stimulation (DBS) of the ventral capsule/ventral striatum (VS) as a possible treatment for drug addiction. However, the optimum electrode placement and optimum DBS parameters have not been thoroughly studied. Here we varied stimulation sites and frequencies to determine whether DBS of the VS could facilitate the extinction of morphine-induced conditioned place preference in rats. Rats were implanted with DBS electrodes in the dorsal or ventral subregions of the VS and trained to the morphine conditioned place preference. Subsequently, rats received extinction sessions over 9 days, combined with 60 min of either high- (130 Hz) or low- (20 Hz) frequency DBS. To study circuit-wide activations after DBS of the VS, c-fos immunohistochemistry was performed in regions involved in the extinction of drug-seeking behaviors. High-frequency DBS of the dorsal-VS impaired both extinction training and extinction memory, whereas high-frequency DBS of the ventral-VS had no effect. In contrast, low-frequency DBS of the dorsal-VS strengthened extinction memory when tested 2 or 9 days after the cessation of stimulation. Both DBS frequencies increased c-fos expression in the infralimbic prefrontal cortex, but only low-frequency DBS increased c-fos expression in the basal amygdala and the medial portion of the central amygdala. Our results suggest that low-frequency (rather than high-frequency) DBS of the dorsal-VS strengthens extinction memory and may be a potential adjunct for extinction-based therapies for treatment-refractory opioid addiction. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. The output per stimulus of acetylcholine from cerebral cortical slices in the presence or absence of cholinesterase inhibition

    PubMed Central

    Bourdois, P.S.; Mitchell, J.F.; Somogyi, G.T.; Szerb, J.C.

    1974-01-01

    1 The release of endogenous acetylcholine (ACh) from cerebral cortical slices stimulated at 0.25, 1, 4, 16 and 64 Hz was measured in the presence either of physostigmine or of physostigmine and atropine. 2 Atropine potentiated the evoked release of endogenous ACh especially at low frequencies resulting in an output per stimulus which sharply declined with increasing frequency of stimulation, while in the absence of atropine the output of ACh per stimulus was low and fairly constant. 3 The evoked release of [3H]-ACh per stimulus following the incubation of the slices with [3H]-choline, as estimated by means of rate constants of the evoked release of total radioactivity, showed a frequency dependence similar to endogenous ACh when the two were tested under identical conditions. 4 In the absence of an anticholinesterase the evoked release of [3H]-ACh per stimulus was dependent on frequency of stimulation in a similar way to that in the presence of physostigmine and atropine. 5 Results suggest that under physiological conditions, i.e. in the absence of an anti-cholinesterase, the release of ACh per stimulus decreases with increasing frequency of stimulation and that this decrease is due to a lag in the mobilization of stored ACh rather than in the synthesis of new ACh. PMID:4455327

  12. High-frequency rTMS on DLPFC increases prosocial attitude in case of decision to support people.

    PubMed

    Balconi, Michela; Canavesio, Ylenia

    2014-02-01

    Engaging in prosocial behavior was explored in the present research, by investigating the role of dorsolateral prefrontal cortex (DLPFC) in modulation of intention to support other people and of emotional attuning as it was expressed by facial feedback (electromiography, EMG). High-frequency rTMS was applied on DLPFC to 25 subjects when they were required to choose to directly intervene or not to support other people in emotionally valenced social situations (cooperative, noncooperative, conflictual, neutral contexts). Two control conditions were included in the experimental design to control the simple stimulation effect (sham condition with absence of TMS stimulation) and the location effect (control site condition with Pz stimulation). In comparison with sham and control condition, rTMS stimulation induced increased prosocial behavior in all the emotional situations. Moreover, as a function of valence, zygomatic (for positive situations) and corrugators (for negative situations) muscle activity was increased, with significant effect by DLPFC stimulation which induced a "facilitation effect". In addition, negative situations showed a higher rTMS impact for both behavioral and EMG responsiveness. Finally, prosocial behavior was found to be predicted (regression analysis) by EMG variations, as a function of the negative versus positive valence. The prefrontal circuit was suggested to support emotional responsiveness and facial feedback in order to facilitate the prosocial behavior.

  13. Frequency-following and connectivity of different visual areas in response to contrast-reversal stimulation.

    PubMed

    Stephen, Julia M; Ranken, Doug F; Aine, Cheryl J

    2006-01-01

    The sensitivity of visual areas to different temporal frequencies, as well as the functional connections between these areas, was examined using magnetoencephalography (MEG). Alternating circular sinusoids (0, 3.1, 8.7 and 14 Hz) were presented to foveal and peripheral locations in the visual field to target ventral and dorsal stream structures, respectively. It was hypothesized that higher temporal frequencies would preferentially activate dorsal stream structures. To determine the effect of frequency on the cortical response we analyzed the late time interval (220-770 ms) using a multi-dipole spatio-temporal analysis approach to provide source locations and timecourses for each condition. As an exploratory aspect, we performed cross-correlation analysis on the source timecourses to determine which sources responded similarly within conditions. Contrary to predictions, dorsal stream areas were not activated more frequently during high temporal frequency stimulation. However, across cortical sources the frequency-following response showed a difference, with significantly higher power at the second harmonic for the 3.1 and 8.7 Hz stimulation and at the first and second harmonics for the 14 Hz stimulation with this pattern seen robustly in area V1. Cross-correlations of the source timecourses showed that both low- and high-order visual areas, including dorsal and ventral stream areas, were significantly correlated in the late time interval. The results imply that frequency information is transferred to higher-order visual areas without translation. Despite the less complex waveforms seen in the late interval of time, the cross-correlation results show that visual, temporal and parietal cortical areas are intricately involved in late-interval visual processing.

  14. Impact of active geomagnetic conditions on stimulated radiation during ionospheric second electron gyroharmonic heating

    NASA Astrophysics Data System (ADS)

    Bordikar, M. R.; Scales, W. A.; Mahmoudian, A.; Kim, H.; Bernhardt, P. A.; Redmon, R.; Samimi, A. R.; Brizcinski, S.; McCarrick, M. J.

    2014-01-01

    Recently, narrowband emissions ordered near the H+ (proton) gyrofrequency (fcH) were reported in the stimulated electromagnetic emission (SEE) spectrum during active geomagnetic conditions. This work presents new observations and theoretical analysis of these recently discovered emissions. These emission lines are observed in the stimulated electromagnetic emission (SEE) spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during recent ionospheric modification experiments at the High Frequency Active Auroral Research (HAARP) facility near Gakona, Alaska. The spectral lines are typically shifted below and above the pump wave frequency by harmonics of a frequency roughly 10% less than fcH (≈ 800 Hz) with a narrow emission bandwidth less than the O+ gyrofrequency (≈ 50 Hz). However, new observations and analysis of emission lines ordered by a frequency approximately 10% greater than fcH are presented here for the first time as well. The interaction altitude for the heating for all the observations is in the range of 160 km up to 200 km. As described previously, proton precipitation due to active geomagnetic conditions is considered as the reason for the presence of H+ ions known to be a minor background constituent in this altitude region. DMSP satellite observations over HAARP during the heating experiments and ground-based magnetometer and riometer data validate active geomagnetic conditions. The theory of parametric decay instability in multi-ion component plasma including H+ ions as a minority species described in previous work is expanded in light of simultaneously observed preexisting SEE features to interpret the newly reported observations. Impact of active geomagnetic conditions on the SEE spectrum as a diagnostic tool for proton precipitation event characterization is discussed.

  15. Left dorso-lateral repetitive transcranial magnetic stimulation affects cortical excitability and functional connectivity, but does not impair cognition in major depression.

    PubMed

    Shajahan, Polash M; Glabus, Mike F; Steele, J Douglas; Doris, Alan B; Anderson, Kay; Jenkins, Jenny A; Gooding, Patricia A; Ebmeier, Klaus P

    2002-06-01

    Transcranial magnetic stimulation (TMS) has been used for over a decade to investigate cortical function. More recently, it has been employed to treat conditions such as major depression. This study was designed to explore the effects of differential treatment parameters, such as stimulation frequency. In addition, the data were examined to determine whether a change in connectivity occurred following TMS. Fifteen patients with major depression were entered into a combined imaging and treatment experiment with single photon emission computed tomography (SPECT) and repetitive transcranial magnetic stimulation (rTMS) over left dorso-lateral prefrontal cortex (DLPFC). Brain perfusion during a verbal fluency task was compared between pre- and poststimulation conditions. Patients were then treated with 80% of motor threshold for a total of 10 days, using 5000 stimuli at 5, 10 or 20 Hz. Tests of cortical excitability and neuropsychological tests were done throughout the trial. Patients generally improved with treatment. There was no perceptible difference between stimulation frequencies, which may have reflected low study power. An increase in rostral anterior cingulate activation after the treatment day was associated with increased functional connectivity in the dorso-lateral frontal loop on the left and the limbic loop on both sides. No noticeable deterioration in neuropsychological function was observed. TMS at the stimulation frequencies used seems to be safe over a course of 5000 stimuli. It appears to have an activating effect in anterior limbic structures and increase functional connectivity in the neuroanatomical networks under the stimulation coil within an hour of stimulation.

  16. The effect of binaural beats on verbal working memory and cortical connectivity.

    PubMed

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2017-04-01

    Synchronization in activated regions of cortical networks affect the brain's frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain's response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant's accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  17. No changes in parieto-occipital alpha during neural phase locking to visual quasi-periodic theta-, alpha-, and beta-band stimulation.

    PubMed

    Keitel, Christian; Benwell, Christopher S Y; Thut, Gregor; Gross, Joachim

    2018-05-08

    Recent studies have probed the role of the parieto-occipital alpha rhythm (8 - 12 Hz) in human visual perception through attempts to drive its neural generators. To that end, paradigms have used high-intensity strictly-periodic visual stimulation that created strong predictions about future stimulus occurrences and repeatedly demonstrated perceptual consequences in line with an entrainment of parieto-occipital alpha. Our study, in turn, examined the case of alpha entrainment by non-predictive low-intensity quasi-periodic visual stimulation within theta- (4 - 7 Hz), alpha- (8 - 13 Hz) and beta (14 - 20 Hz) frequency bands, i.e. a class of stimuli that resemble the temporal characteristics of naturally occurring visual input more closely. We have previously reported substantial neural phase-locking in EEG recording during all three stimulation conditions. Here, we studied to what extent this phase-locking reflected an entrainment of intrinsic alpha rhythms in the same dataset. Specifically, we tested whether quasi-periodic visual stimulation affected several properties of parieto-occipital alpha generators. Speaking against an entrainment of intrinsic alpha rhythms by non-predictive low-intensity quasi-periodic visual stimulation, we found none of these properties to show differences between stimulation frequency bands. In particular, alpha band generators did not show increased sensitivity to alpha band stimulation and Bayesian inference corroborated evidence against an influence of stimulation frequency. Our results set boundary conditions for when and how to expect effects of entrainment of alpha generators and suggest that the parieto-occipital alpha rhythm may be more inert to external influences than previously thought. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Music acupuncture stimulation method.

    PubMed

    Brătilă, F; Moldovan, C

    2007-01-01

    Harmonic Medicine is the model using the theory that the body rhythms synchronize to an outer rhythm applied for therapeutic purpose, can restores the energy balance in acupuncture channels and organs and the condition of well-being. The purpose of this scientific work was to demonstrate the role played by harmonic sounds in the stimulation of the Lung (LU) Meridian (Shoutaiyin Feijing) and of the Kidney (KI) Meridian (Zushaoyin Shenjing). It was used an original method that included: measurement and electronic sound stimulation of the Meridian Entry Point, measurement of Meridian Exit Point, computer data processing, bio feed-back adjustment of the music stimulation parameters. After data processing, it was found that the sound stimulation of the Lung Meridian Frequency is optimal between 122 Hz and 128 Hz, with an average of 124 Hz (87% of the subjects) and for Kidney Meridian from 118 Hz to 121 Hz, with an average of 120 Hz (67% of the subjects). The acupuncture stimulation was more intense for female subjects (> 7%) than for the male ones. We preliminarily consider that an informational resonance phenomenon can be developed between the acupuncture music stimulation frequency and the cellular dipole frequency, being a really "resonant frequency signature" of an acupoint. The harmonic generation and the electronic excitation or low-excitation status of an acupuncture point may be considered as a resonance mechanism. By this kind of acupunctural stimulation, a symphony may act and play a healer role.

  19. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    PubMed

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  20. Augmenting Visual Search Performance with Transcranial Direct Current Stimulation (tDCS)

    DTIC Science & Technology

    2015-09-28

    Augmenting Visual Search Performance with Transcranial Direct Current Stimulation ( tDCS ) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62202F...stimulation ( tDCS ) over the left frontal eye field (LFEF) region of the scalp to improve cognitive performance. The participants received anodal and...blinking frequency in relation to stimulation condition. Our data suggest that tDCS over the LFEF would be a beneficial countermeasure to mitigate the

  1. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.

    PubMed

    Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Gaunt, Robert A; Tenore, Francesco V; Bensmaia, Sliman J

    2015-12-08

    Intracortical microstimulation (ICMS) is a powerful tool to investigate the functional role of neural circuits and may provide a means to restore sensation for patients for whom peripheral stimulation is not an option. In a series of psychophysical experiments with nonhuman primates, we investigate how stimulation parameters affect behavioral sensitivity to ICMS. Specifically, we deliver ICMS to primary somatosensory cortex through chronically implanted electrode arrays across a wide range of stimulation regimes. First, we investigate how the detectability of ICMS depends on stimulation parameters, including pulse width, frequency, amplitude, and pulse train duration. Then, we characterize the degree to which ICMS pulse trains that differ in amplitude lead to discriminable percepts across the range of perceptible and safe amplitudes. We also investigate how discriminability of pulse amplitude is modulated by other stimulation parameters-namely, frequency and duration. Perceptual judgments obtained across these various conditions will inform the design of stimulation regimes for neuroscience and neuroengineering applications.

  2. Parametric changes in response equilibrium during an intra-cranial self stimulation (ICSS) task: can reward value be assessed independently of absolute threshold?

    PubMed

    Easterling, K W; Holtzman, S G

    1997-01-01

    Traditional ICSS methodologies have attempted to evaluate changes in the rewarding value of brain stimulation by assessing the lowest value of the stimulation that will support responding. However, orderly changes in suprathreshold indicants of hedonic magnitude such as titration point have been shown. In the present experiments, rats were trained to respond on two ICSS autotitration schedules in which every response on one lever produced stimulation of the medial forebrain bundle, and every Xth response decreased either the stimulation current or the stimulation frequency. At any time, a response on a second "reset" lever restored the stimulation current or frequency available on the stimulation lever to its starting level and operationally defined changes in "reward value". In order to study this titration point measure, two response requirements (responses/stepdown; step size) and two stimulation parameters (initial stimulation level; train duration) were systematically varied. Under both current and frequency titration schedules, data indicated that response rate and titration point remained stable over repeated trials and multiple testing days--parameters being constant. Across all conditions, compared to the frequency titration schedule, subjects responding under the current titration schedule showed significantly higher titration points and lower rates of responding. Indicating the independence of rate and titration point data, parametric manipulations did not affect titration point and rate data concurrently. Results support the conclusion that titration point is a relative measure of "reward value" that is generally independent of response rate, but that is affected by manipulations that alter the amount of stimulation available between "resets". Additional work is needed in order to determine the relationship between the magnitude of stimulation needed to maintain minimal responding and that needed to maintain response equilibrium in an autotitration task.

  3. The effect of binaural beats on verbal working memory and cortical connectivity

    NASA Astrophysics Data System (ADS)

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2017-04-01

    Objective. Synchronization in activated regions of cortical networks affect the brain’s frequency response, which has been associated with a wide range of states and abilities, including memory. A non-invasive method for manipulating cortical synchronization is binaural beats. Binaural beats take advantage of the brain’s response to two pure tones, delivered independently to each ear, when those tones have a small frequency mismatch. The mismatch between the tones is interpreted as a beat frequency, which may act to synchronize cortical oscillations. Neural synchrony is particularly important for working memory processes, the system controlling online organization and retention of information for successful goal-directed behavior. Therefore, manipulation of synchrony via binaural beats provides a unique window into working memory and associated connectivity of cortical networks. Approach. In this study, we examined the effects of different acoustic stimulation conditions during an N-back working memory task, and we measured participant response accuracy and cortical network topology via EEG recordings. Six acoustic stimulation conditions were used: None, Pure Tone, Classical Music, 5 Hz binaural beats, 10 Hz binaural beats, and 15 Hz binaural beats. Main results. We determined that listening to 15 Hz binaural beats during an N-Back working memory task increased the individual participant’s accuracy, modulated the cortical frequency response, and changed the cortical network connection strengths during the task. Only the 15 Hz binaural beats produced significant change in relative accuracy compared to the None condition. Significance. Listening to 15 Hz binaural beats during the N-back task activated salient frequency bands and produced networks characterized by higher information transfer as compared to other auditory stimulation conditions.

  4. Induction of slow oscillations by rhythmic acoustic stimulation.

    PubMed

    Ngo, Hong-Viet V; Claussen, Jens C; Born, Jan; Mölle, Matthias

    2013-02-01

    Slow oscillations are electrical potential oscillations with a spectral peak frequency of ∼0.8 Hz, and hallmark the electroencephalogram during slow-wave sleep. Recent studies have indicated a causal contribution of slow oscillations to the consolidation of memories during slow-wave sleep, raising the question to what extent such oscillations can be induced by external stimulation. Here, we examined whether slow oscillations can be effectively induced by rhythmic acoustic stimulation. Human subjects were examined in three conditions: (i) with tones presented at a rate of 0.8 Hz ('0.8-Hz stimulation'); (ii) with tones presented at a random sequence ('random stimulation'); and (iii) with no tones presented in a control condition ('sham'). Stimulation started during wakefulness before sleep and continued for the first ∼90 min of sleep. Compared with the other two conditions, 0.8-Hz stimulation significantly delayed sleep onset. However, once sleep was established, 0.8-Hz stimulation significantly increased and entrained endogenous slow oscillation activity. Sleep after the 90-min period of stimulation did not differ between the conditions. Our data show that rhythmic acoustic stimulation can be used to effectively enhance slow oscillation activity. However, the effect depends on the brain state, requiring the presence of stable non-rapid eye movement sleep. © 2012 European Sleep Research Society.

  5. Therapeutic mechanisms of high-frequency stimulation in Parkinson's disease and neural restoration via loop-based reinforcement.

    PubMed

    Santaniello, Sabato; McCarthy, Michelle M; Montgomery, Erwin B; Gale, John T; Kopell, Nancy; Sarma, Sridevi V

    2015-02-10

    High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20-180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop.

  6. Therapeutic mechanisms of high-frequency stimulation in Parkinson’s disease and neural restoration via loop-based reinforcement

    PubMed Central

    Santaniello, Sabato; McCarthy, Michelle M.; Montgomery, Erwin B.; Gale, John T.; Kopell, Nancy; Sarma, Sridevi V.

    2015-01-01

    High-frequency deep brain stimulation (HFS) is clinically recognized to treat parkinsonian movement disorders, but its mechanisms remain elusive. Current hypotheses suggest that the therapeutic merit of HFS stems from increasing the regularity of the firing patterns in the basal ganglia (BG). Although this is consistent with experiments in humans and animal models of Parkinsonism, it is unclear how the pattern regularization would originate from HFS. To address this question, we built a computational model of the cortico-BG-thalamo-cortical loop in normal and parkinsonian conditions. We simulated the effects of subthalamic deep brain stimulation both proximally to the stimulation site and distally through orthodromic and antidromic mechanisms for several stimulation frequencies (20–180 Hz) and, correspondingly, we studied the evolution of the firing patterns in the loop. The model closely reproduced experimental evidence for each structure in the loop and showed that neither the proximal effects nor the distal effects individually account for the observed pattern changes, whereas the combined impact of these effects increases with the stimulation frequency and becomes significant for HFS. Perturbations evoked proximally and distally propagate along the loop, rendezvous in the striatum, and, for HFS, positively overlap (reinforcement), thus causing larger poststimulus activation and more regular patterns in striatum. Reinforcement is maximal for the clinically relevant 130-Hz stimulation and restores a more normal activity in the nuclei downstream. These results suggest that reinforcement may be pivotal to achieve pattern regularization and restore the neural activity in the nuclei downstream and may stem from frequency-selective resonant properties of the loop. PMID:25624501

  7. Toward an implantable functional electrical stimulation device to correct strabismus

    PubMed Central

    Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.

    2010-01-01

    PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369

  8. Physiological recruitment of motor units by high-frequency electrical stimulation of afferent pathways.

    PubMed

    Dideriksen, Jakob L; Muceli, Silvia; Dosen, Strahinja; Laine, Christopher M; Farina, Dario

    2015-02-01

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation, but electrically evoked muscle activation is in several ways different from voluntary muscle contractions. These differences lead to challenges in the use of NMES for restoring muscle function. We investigated the use of low-current, high-frequency nerve stimulation to activate the muscle via the spinal motoneuron (MN) pool to achieve more natural activation patterns. Using a novel stimulation protocol, the H-reflex responses to individual stimuli in a train of stimulation pulses at 100 Hz were reliably estimated with surface EMG during low-level contractions. Furthermore, single motor unit recruitment by afferent stimulation was analyzed with intramuscular EMG. The results showed that substantially elevated H-reflex responses were obtained during 100-Hz stimulation with respect to a lower stimulation frequency. Furthermore, motor unit recruitment using 100-Hz stimulation was not fully synchronized, as it occurs in classic NMES, and the discharge rates differed among motor units because each unit was activated only after a specific number of stimuli. The most likely mechanism behind these observations is the temporal summation of subthreshold excitatory postsynaptic potentials from Ia fibers to the MNs. These findings and their interpretation were also verified by a realistic simulation model of afferent stimulation of a MN population. These results suggest that the proposed stimulation strategy may allow generation of considerable levels of muscle activation by motor unit recruitment that resembles the physiological conditions. Copyright © 2015 the American Physiological Society.

  9. Maintenance percutaneous posterior nerve stimulation for refractory lower urinary tract symptoms in patients with multiple sclerosis: an open label, multicenter, prospective study.

    PubMed

    Zecca, C; Digesu, G A; Robshaw, P; Singh, A; Elneil, S; Gobbi, C

    2014-03-01

    Percutaneous tibial nerve stimulation is an effective second line therapy for lower urinary tract symptoms. Data on percutaneous tibial nerve stimulation maintenance treatment are scarce. In this study we evaluate its effectiveness and propose an algorithm of percutaneous tibial nerve stimulation maintenance treatment in patients with multiple sclerosis. In this prospective, multicenter, open label trial consecutive patients with multiple sclerosis and lower urinary tract symptoms unresponsive to medical therapy were treated with 12 weekly sessions of percutaneous tibial nerve stimulation. Responder patients (50% or greater improvement of lower urinary tract symptoms as measured by the patient perception of bladder condition questionnaire) entered a maintenance phase with individualized treatment frequency based on patient response. Lower urinary tract symptoms were assessed using a 3-day frequency volume chart, urodynamics and patient perception of bladder condition questionnaire. Treatment satisfaction was evaluated using a global response assessment scale and a treatment satisfaction visual analog scale. A total of 83 patients were included in the study and 74 (89%) responded to initial treatment. Persistent efficacy occurred in all initial responders after a mean treatment of 24 months. The greatest frequency of maintenance percutaneous tibial nerve stimulation was every 2 weeks. Lower urinary tract symptoms and patient treatment satisfaction improved with time compared to initial treatment (p <0.05). Bladder diary parameters and voiding parameters improved compared to baseline (p <0.05). Prolonged percutaneous tibial nerve stimulation treatment leads to a persistent improvement of lower urinary tract symptoms in patients with multiple sclerosis. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Long-term depression-like plasticity of the blink reflex for the treatment of blepharospasm.

    PubMed

    Kranz, Gottfried; Shamim, Ejaz A; Lin, Peter T; Kranz, George S; Hallett, Mark

    2013-04-01

    Our previous work showed a beneficial therapeutic effect on blepharospasm using slow repetitive transcranial magnetic stimulation, which produces a long-term depression (LTD)-like effect. High-frequency supraorbital electrical stimulation, asynchronous with the R2 component of the blink reflex, can also induce LTD-like effects on the blink reflex circuit in healthy subjects. Patients with blepharospasm have reduced inhibition of their blink recovery curves; therefore, a LTD-like intervention might normalize the blink reflex recovery (BRR) and have a favorable therapeutic effect. This is a randomized, sham-controlled, observer-blinded prospective study. In 14 blepharospasm patients, we evaluated the effects of high-frequency supraorbital stimulation on three separate treatment days. We applied 28 trains of nine stimuli, 400 Hz, either before or after the R2 or used sham stimulation. The primary outcome was the blink rate, number of spasms rated by a blinded physician and patient rating before, immediately after and 1 hour after stimulation while resting, reading, and talking; secondary outcome was the BRR. Stimulation "before" and "after" the R2 both showed a similar improvement as sham stimulation in physician rating, but patients felt significantly better with the before condition. Improvement in recovery of the blink reflex was noted only in the before condition. Clinical symptoms differed in the three baseline conditions (resting, reading, and talking). Stimulation before R2 increased inhibition in trigeminal blink reflex circuits in blepharospasm toward normal values and produced subjective, but not objective, improvement. Inhibition of the blink reflex pathway by itself appeared to be insufficient for a useful therapeutic effect. Copyright © 2013 Movement Disorder Society.

  11. Influence of transcutaneous electrical nerve stimulation conditions on disynaptic reciprocal Ia inhibition and presynaptic inhibition in healthy adults.

    PubMed

    Takeda, Kazuya; Tanabe, Shigeo; Koyama, Soichiro; Ushiroyama, Kosuke; Naoi, Yuki; Motoya, Ikuo; Sakurai, Hiroaki; Kanada, Yoshikiyo

    2017-03-01

    This study investigated the influence of stimulus conditions of transcutaneous electrical nerve stimulation (TENS) on disynaptic reciprocal Ia inhibition (RI) and presynaptic inhibition (D1 inhibition) in healthy adults. Eight healthy participants received TENS (stimulus frequencies of 50, 100, and 200 Hz) over the deep peroneal nerve and tibialis anterior (TA) muscle in the resting condition for 30 min. At pre- and post-intervention, the RI from the TA to the soleus (SOL) and D1 inhibition of the SOL alpha motor neuron were assessed by evoked electromyography. The results showed that RI was not changed by TENS at any stimulus frequency condition. Conversely, D1 inhibition was significantly changed by TENS regardless of the stimulus frequency. The present results and previous studies pertaining to RI suggest that the resting condition might strongly influence the lack of pre- vs. post-intervention change in the RI. Regarding the D1 inhibition, the present results suggest that the effect of TENS might be caused by post-tetanic potentiation. The knowledge gained from the present study might contribute to a better understanding of fundamental studies of TENS in healthy adults and its clinical application for stroke survivors.

  12. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment

    PubMed Central

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Background Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8–12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. Objective We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment “echoes.” To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. Methods 12 healthy participants were stimulated at around individual α-frequency for 11–15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. Results α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Conclusion Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. PMID:25648377

  13. Alpha Power Increase After Transcranial Alternating Current Stimulation at Alpha Frequency (α-tACS) Reflects Plastic Changes Rather Than Entrainment.

    PubMed

    Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    Periodic stimulation of occipital areas using transcranial alternating current stimulation (tACS) at alpha (α) frequency (8-12 Hz) enhances electroencephalographic (EEG) α-oscillation long after tACS-offset. Two mechanisms have been suggested to underlie these changes in oscillatory EEG activity: tACS-induced entrainment of brain oscillations and/or tACS-induced changes in oscillatory circuits by spike-timing dependent plasticity. We tested to what extent plasticity can account for tACS-aftereffects when controlling for entrainment "echoes." To this end, we used a novel, intermittent tACS protocol and investigated the strength of the aftereffect as a function of phase continuity between successive tACS episodes, as well as the match between stimulation frequency and endogenous α-frequency. 12 healthy participants were stimulated at around individual α-frequency for 11-15 min in four sessions using intermittent tACS or sham. Successive tACS events were either phase-continuous or phase-discontinuous, and either 3 or 8 s long. EEG α-phase and power changes were compared after and between episodes of α-tACS across conditions and against sham. α-aftereffects were successfully replicated after intermittent stimulation using 8-s but not 3-s trains. These aftereffects did not reveal any of the characteristics of entrainment echoes in that they were independent of tACS phase-continuity and showed neither prolonged phase alignment nor frequency synchronization to the exact stimulation frequency. Our results indicate that plasticity mechanisms are sufficient to explain α-aftereffects in response to α-tACS, and inform models of tACS-induced plasticity in oscillatory circuits. Modifying brain oscillations with tACS holds promise for clinical applications in disorders involving abnormal neural synchrony. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Geophysical Remote Sensing Using the HF Pumped Stimulated Brillouin Scatter (SBS) Emission Lines Produced by HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, P. A.; Selcher, C. A.

    2009-12-01

    An ordinary or extraordinary mode electromagnetic wave can decay into a low frequency electrostatic wave and a scattered electromagnetic wave by a process called stimulated Brillouin scatter (SBS). The low frequency wave can be either an ion acoustic wave (IA) or an electrostatic ion cyclotron (EIC) wave. The first detection ion acoustic waves by this process during ionospheric modification with high power radio waves was reported by Norin et al. (2009) using the HAARP transmitter in Alaska. The first detection of the electrostatic ion cyclotron waves is reported here using HAARP during the March 2009 campaign. Subsequent experiments have provided additional verification of the SBS process and quantitative interpretation of the scattered wave frequency offsets to yield measurements of the electron temperatures in the heated ionosphere by Bernhardt et al. (2009). Using the SBS technique to generate ion acoustic waves, electron temperatures between 3000 and 4000 K were measured over the HAARP facility. The matching conditions for decay of the high frequency pump wave show that in addition to the production of an ion-acoustic wave, an electrostatic ion cyclotron wave can produced by the generalized SBS processes only if the pump waves makes a large angle with the magnetic field. When the EIC mode is produced, it is seen as a narrow of stimulated electromagnetic emissions at the ion cyclotron frequency. Occasionally, multiple lines are seen and analyzed to yield the relative abundance of oxygen, and molecular ions in the lower ionosphere. This ion mass spectrometer interpretation of the SBS data is new to the field of ionosphere remote sensing. In addition, based on the matching condition theory, the first profiles of the scattered wave amplitude are produced using the stimulated Brillouin scatter (SBS) matching conditions. These profiles are consistent with maximum ionospheric interactions at the upper-hybrid resonance height and at a region just below the plasma resonance altitude where the pump wave electric fields reach their maximum values. All of these measurements of the HF modified ionosphere are made possible at HAARP because of (1) the recently increased transmitter power to 3.6 MW into the large antenna array and (2) the new digital receiver diagnostics that allow up to 100 dB dynamic range in the stimulated electromagnetic emission measurements. Paul A. Bernhardt, Craig A. Selcher, Robert H. Lehmberg, Serafin Rodriguez, Joe Thomason, Mike McCarrick, Gordon Frazer, Determination of the Electron Temperature in the Modified Ionosphere over HAARP Using the HF Pumped Stimulated Brillouin Scatter (SBS) Emission Lines, Annales Geophysicae, in press, 2009. Norin, L., Leyser, T. B., Nordblad, E., Thidé, B., and McCarrick, M., Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere, Phys. Rev. Lett., 102, 065003, 2009.

  15. [Simulation of speech perception with cochlear implants : Influence of frequency and level of fundamental frequency components with electronic acoustic stimulation].

    PubMed

    Rader, T; Fastl, H; Baumann, U

    2017-03-01

    After implantation of cochlear implants with hearing preservation for combined electronic acoustic stimulation (EAS), the residual acoustic hearing ability relays fundamental speech frequency information in the low frequency range. With the help of acoustic simulation of EAS hearing perception the impact of frequency and level fine structure of speech signals can be systematically examined. The aim of this study was to measure the speech reception threshold (SRT) under various noise conditions with acoustic EAS simulation by variation of the frequency and level information of the fundamental frequency f0 of speech. The study was carried out to determine to what extent the SRT is impaired by modification of the f0 fine structure. Using partial tone time pattern analysis an acoustic EAS simulation of the speech material from the Oldenburg sentence test (OLSA) was generated. In addition, determination of the f0 curve of the speech material was conducted. Subsequently, either the parameter frequency or level of f0 was fixed in order to remove one of the two fine contour information of the speech signal. The processed OLSA sentences were used to determine the SRT in background noise under various test conditions. The conditions "f0 fixed frequency" and "f0 fixed level" were tested under two different situations, under "amplitude modulated background noise" and "continuous background noise" conditions. A total of 24 subjects with normal hearing participated in the study. The SRT in background noise for the condition "f0 fixed frequency" was more favorable in continuous noise with 2.7 dB and in modulated noise with 0.8 dB compared to the condition "f0 fixed level" with 3.7 dB and 2.9 dB, respectively. In the simulation of speech perception with cochlear implants and acoustic components, the level information of the fundamental frequency had a stronger impact on speech intelligibility than the frequency information. The method of simulation of transmission of cochlear implants allows investigation of how various parameters influence speech intelligibility in subjects with normal hearing.

  16. Visual Evoked Cortical Potential (VECP) Elicited by Sinusoidal Gratings Controlled by Pseudo-Random Stimulation

    PubMed Central

    Araújo, Carolina S.; Souza, Givago S.; Gomes, Bruno D.; Silveira, Luiz Carlos L.

    2013-01-01

    The contributions of contrast detection mechanisms to the visual cortical evoked potential (VECP) have been investigated studying the contrast-response and spatial frequency-response functions. Previously, the use of m-sequences for stimulus control has been almost restricted to multifocal electrophysiology stimulation and, in some aspects, it substantially differs from conventional VECPs. Single stimulation with spatial contrast temporally controlled by m-sequences has not been extensively tested or compared to multifocal techniques. Our purpose was to evaluate the influence of spatial frequency and contrast of sinusoidal gratings on the VECP elicited by pseudo-random stimulation. Nine normal subjects were stimulated by achromatic sinusoidal gratings driven by pseudo random binary m-sequence at seven spatial frequencies (0.4–10 cpd) and three stimulus sizes (4°, 8°, and 16° of visual angle). At 8° subtence, six contrast levels were used (3.12–99%). The first order kernel (K1) did not provide a consistent measurable signal across spatial frequencies and contrasts that were tested–signal was very small or absent–while the second order kernel first (K2.1) and second (K2.2) slices exhibited reliable responses for the stimulus range. The main differences between results obtained with the K2.1 and K2.2 were in the contrast gain as measured in the amplitude versus contrast and amplitude versus spatial frequency functions. The results indicated that K2.1 was dominated by M-pathway, but for some stimulus condition some P-pathway contribution could be found, while the second slice reflected the P-pathway contribution. The present work extended previous findings of the visual pathways contribution to VECP elicited by pseudorandom stimulation for a wider range of spatial frequencies. PMID:23940546

  17. Change in Mean Frequency of Resting-State Electroencephalography after Transcranial Direct Current Stimulation

    PubMed Central

    Boonstra, Tjeerd W.; Nikolin, Stevan; Meisener, Ann-Christin; Martin, Donel M.; Loo, Colleen K.

    2016-01-01

    Transcranial direct current stimulation (tDCS) is proposed as a tool to investigate cognitive functioning in healthy people and as a treatment for various neuropathological disorders. However, the underlying cortical mechanisms remain poorly understood. We aim to investigate whether resting-state electroencephalography (EEG) can be used to monitor the effects of tDCS on cortical activity. To this end we tested whether the spectral content of ongoing EEG activity is significantly different after a single session of active tDCS compared to sham stimulation. Twenty participants were tested in a sham-controlled, randomized, crossover design. Resting-state EEG was acquired before, during and after active tDCS to the left dorsolateral prefrontal cortex (15 min of 2 mA tDCS) and sham stimulation. Electrodes with a diameter of 3.14 cm2 were used for EEG and tDCS. Partial least squares (PLS) analysis was used to examine differences in power spectral density (PSD) and the EEG mean frequency to quantify the slowing of EEG activity after stimulation. PLS revealed a significant increase in spectral power at frequencies below 15 Hz and a decrease at frequencies above 15 Hz after active tDCS (P = 0.001). The EEG mean frequency was significantly reduced after both active tDCS (P < 0.0005) and sham tDCS (P = 0.001), though the decrease in mean frequency was smaller after sham tDCS than after active tDCS (P = 0.073). Anodal tDCS of the left DLPFC using a high current density bi-frontal electrode montage resulted in general slowing of resting-state EEG. The similar findings observed following sham stimulation question whether the standard sham protocol is an appropriate control condition for tDCS. PMID:27375462

  18. Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network.

    PubMed

    Kang, Guiyeom; Lowery, Madeleine M

    2013-03-01

    Growing evidence suggests that synchronized neural oscillations in the cortico-basal ganglia network may play a critical role in the pathophysiology of Parkinson's disease. In this study, a new model of the closed loop network is used to explore the generation and interaction of network oscillations and their suppression through deep brain stimulation (DBS). Under simulated dopamine depletion conditions, increased gain through the hyperdirect pathway resulted in the interaction of neural oscillations at different frequencies in the cortex and subthalamic nucleus (STN), leading to the emergence of synchronized oscillations at a new intermediate frequency. Further increases in synaptic gain resulted in the cortex driving synchronous oscillatory activity throughout the network. When DBS was added to the model a progressive reduction in STN power at the tremor and beta frequencies was observed as the frequency of stimulation was increased, with resonance effects occurring for low frequency DBS (40 Hz) in agreement with experimental observations. The results provide new insights into the mechanisms by which synchronous oscillations can arise within the network and how DBS may suppress unwanted oscillatory activity.

  19. Flicker-Driven Responses in Visual Cortex Change during Matched-Frequency Transcranial Alternating Current Stimulation

    PubMed Central

    Ruhnau, Philipp; Keitel, Christian; Lithari, Chrysa; Weisz, Nathan; Neuling, Toralf

    2016-01-01

    We tested a novel combination of two neuro-stimulation techniques, transcranial alternating current stimulation (tACS) and frequency tagging, that promises powerful paradigms to study the causal role of rhythmic brain activity in perception and cognition. Participants viewed a stimulus flickering at 7 or 11 Hz that elicited periodic brain activity, termed steady-state responses (SSRs), at the same temporal frequency and its higher order harmonics. Further, they received simultaneous tACS at 7 or 11 Hz that either matched or differed from the flicker frequency. Sham tACS served as a control condition. Recent advances in reconstructing cortical sources of oscillatory activity allowed us to measure SSRs during concurrent tACS, which is known to impose strong artifacts in magnetoencephalographic (MEG) recordings. For the first time, we were thus able to demonstrate immediate effects of tACS on SSR-indexed early visual processing. Our data suggest that tACS effects are largely frequency-specific and reveal a characteristic pattern of differential influences on the harmonic constituents of SSRs. PMID:27199707

  20. Spiking irregularity and frequency modulate the behavioral report of single-neuron stimulation.

    PubMed

    Doron, Guy; von Heimendahl, Moritz; Schlattmann, Peter; Houweling, Arthur R; Brecht, Michael

    2014-02-05

    The action potential activity of single cortical neurons can evoke measurable sensory effects, but it is not known how spiking parameters and neuronal subtypes affect the evoked sensations. Here, we examined the effects of spike train irregularity, spike frequency, and spike number on the detectability of single-neuron stimulation in rat somatosensory cortex. For regular-spiking, putative excitatory neurons, detectability increased with spike train irregularity and decreasing spike frequencies but was not affected by spike number. Stimulation of single, fast-spiking, putative inhibitory neurons led to a larger sensory effect compared to regular-spiking neurons, and the effect size depended only on spike irregularity. An ideal-observer analysis suggests that, under our experimental conditions, rats were using integration windows of a few hundred milliseconds or more. Our data imply that the behaving animal is sensitive to single neurons' spikes and even to their temporal patterning. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Effects of erotic stimulation and masturbatory training upon situational orgasmic dysfunction.

    PubMed

    Reisinger, J J

    1978-01-01

    Six single women, aged 22 to 29 years, were treated in a laboratory situation through erotic stimulation with masturbatory training for the disorder of situational orgasmic dysfunction. With single subject designs, three conditions of treatment were counterbalanced to estimate component effects. Intervention conditions included exposure to selected erotic stimuli, self-masturbation, and the preceding simultaneous combination. Frequency of orgasm was monitored via heart rate and verbal confirmation. Erotic stimulation with masturbatory training proved adequate to establish and maintain orgasmic responsiveness. Follow-up measures, conducted 6 to 12 months thereafter, partially supported generalization of treatment effects across environments and into existing heterosexual patterns of behavior.

  2. Key Physiological Parameters Dictate Triggering of Activity-Dependent Bulk Endocytosis in Hippocampal Synapses

    PubMed Central

    Wenzel, Eva M.; Morton, Andrew; Ebert, Katrin; Welzel, Oliver; Kornhuber, Johannes; Cousin, Michael A.; Groemer, Teja W.

    2012-01-01

    To maintain neurotransmission in central neurons, several mechanisms are employed to retrieve synaptically exocytosed membrane. The two major modes of synaptic vesicle (SV) retrieval are clathrin-mediated endocytosis and activity-dependent bulk endocytosis (ADBE). ADBE is the dominant SV retrieval mode during intense stimulation, however the precise physiological conditions that trigger this mode are not resolved. To determine these parameters we manipulated rat hippocampal neurons using a wide spectrum of stimuli by varying both the pattern and duration of stimulation. Using live-cell fluorescence imaging and electron microscopy approaches, we established that stimulation frequency, rather than the stimulation load, was critical in the triggering of ADBE. Thus two hundred action potentials, when delivered at high frequency, were sufficient to induce near maximal bulk formation. Furthermore we observed a strong correlation between SV pool size and ability to perform ADBE. We also identified that inhibitory nerve terminals were more likely to utilize ADBE and had a larger SV recycling pool. Thus ADBE in hippocampal synaptic terminals is tightly coupled to stimulation frequency and is more likely to occur in terminals with large SV pools. These results implicate ADBE as a key modulator of both hippocampal neurotransmission and plasticity. PMID:22675521

  3. Effects of deep brain stimulation of the peduncolopontine area on working memory tasks in patients with Parkinson's disease.

    PubMed

    Costa, Alberto; Carlesimo, Giovanni Augusto; Caltagirone, Carlo; Mazzone, Paolo; Pierantozzi, Mariangela; Stefani, Alessandro; Peppe, Antonella

    2010-01-01

    The present paper was aimed at investigating the effect of low-frequency electrical stimulation (25 Hz) of the peduncolopontine (PPN) area on working memory (WM) functioning in patients with Parkinson's disease (PD). Five PD patients who underwent simultaneous PPN area- and subthalamic nucleus-deep brain stimulation (DBS) implantation participated in the study. PD patients were evaluated in the morning at least 12 h after antiparkinsonian therapy withdrawal in two conditions: i) after continuous PPN area stimulation (Off Therapy/On PPN: "On" condition); ii) at least 120 min after PPN area had been switched "Off" (Off Ther/Off PPN: "Off" condition). The experimental WM task consisted of an n-back paradigm with verbal and visual-object stimuli. PD patients showed a consistent response time decrease on both the verbal and the visual-object tasks passing from the "Off" to the "On" condition (p < 0.05). However, the accuracy score did not significantly differ between the two experimental conditions. The present findings, although preliminary, suggest that PPN area stimulation facilitates the speed processing of information in the content of WM, possibly through the modulation of the attentional resources.

  4. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity.

    PubMed

    Beauchene, Christine; Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task.

  5. The Effect of Binaural Beats on Visuospatial Working Memory and Cortical Connectivity

    PubMed Central

    Abaid, Nicole; Moran, Rosalyn; Diana, Rachel A.; Leonessa, Alexander

    2016-01-01

    Binaural beats utilize a phenomenon that occurs within the cortex when two different frequencies are presented separately to each ear. This procedure produces a third phantom binaural beat, whose frequency is equal to the difference of the two presented tones and which can be manipulated for non-invasive brain stimulation. The effects of binaural beats on working memory, the system in control of temporary retention and online organization of thoughts for successful goal directed behavior, have not been well studied. Furthermore, no studies have evaluated the effects of binaural beats on brain connectivity during working memory tasks. In this study, we determined the effects of different acoustic stimulation conditions on participant response accuracy and cortical network topology, as measured by EEG recordings, during a visuospatial working memory task. Three acoustic stimulation control conditions and three binaural beat stimulation conditions were used: None, Pure Tone, Classical Music, 5Hz binaural beats, 10Hz binaural beats, and 15Hz binaural beats. We found that listening to 15Hz binaural beats during a visuospatial working memory task not only increased the response accuracy, but also modified the strengths of the cortical networks during the task. The three auditory control conditions and the 5Hz and 10Hz binaural beats all decreased accuracy. Based on graphical network analyses, the cortical activity during 15Hz binaural beats produced networks characteristic of high information transfer with consistent connection strengths throughout the visuospatial working memory task. PMID:27893766

  6. Initial results of stimulated radiation measurements during the HAARP campaign of September 2017

    NASA Astrophysics Data System (ADS)

    Yellu, A. D.; Scales, W. A.; Mahmoudian, A.; Siefring, C.; Bernhardt, P.

    2018-02-01

    Initial results of stimulated electromagnetic radiation observed during an ionosphere heating experiment conducted at the High-Frequency Active Auroral Program (HAARP) facility are reported. The frequency of the pump wave used in the heating is in the neighborhood of the third harmonic of the electron cyclotron frequency, and of interest are simulated electromagnetic emissions (SEEs) within ? kHz of the heating frequency known as narrowband SEE (NSEE) and the commonly known wideband SEE (WSEE) which occur within ? kHz of the pump wave frequency. With the transmit power maintained at maximum, and all other conditions of the experiment invariable, the characteristics of NSEE and WSEE as time progresses from the time the transmitter is switched on are detailed in the results. The dependence of the characteristics of the NSEE and WSEE with temporal evolution into the heating cycle are observed to be fundamentally different.

  7. Articulation Features of Parkinson's Disease Patients with Subthalamic Nucleus Deep Brain Stimulation.

    PubMed

    Tanaka, Yasuhiro; Tsuboi, Takashi; Watanabe, Hirohisa; Kajita, Yasukazu; Nakatsubo, Daisuke; Fujimoto, Yasushi; Ohdake, Reiko; Ito, Mizuki; Atsuta, Naoki; Yamamoto, Masahiko; Wakabayashi, Toshihiko; Katsuno, Masahisa; Sobue, Gen

    2016-10-19

    Voice and speech disorders are one of the most important issues after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients. However, articulation features in this patient population remain unclear. We studied the articulation features of PD patients with STN-DBS. Participants were 56 PD patients treated with STN-DBS (STN-DBS group) and 41 patients treated only with medical therapy (medical-therapy-alone group). Articulation function was evaluated with acoustic and auditory-perceptual analyses. The vowel space area (VSA) was calculated using the formant frequency data of three vowels (/a/, /i/, and /u/) from sustained phonation task. The VSA reportedly reflects the distance of mouth/jaw and tongue movements during speech and phonation. Correlations between acoustic and auditory-perceptual measurements were also assessed. The VSA did not significantly differ between the medical-therapy-alone group and the STN-DBS group in the off-stimulation condition. In the STN-DBS group, the VSA was larger in the on-stimulation condition than in the off-stimulation condition. However, individual analysis showed the VSA changes after stopping stimulation were heterogeneous. In total, 89.8% of the STN-DBS group showed a large VSA size in the on- than in the off-stimulation condition. In contrast, the VSA of the remaining patients in that group was smaller in the on- than the off-stimulation condition. STN-DBS may resolve hypokinesia of the articulation structures, including the mouth/jaw and tongue, and improve maximal vowel articulation. However, in the on-stimulation condition, the VSA was not significantly correlated with speech intelligibility. This may be because STN-DBS potentially affects other speech processes such as voice and/or respiratory process.

  8. Influence and interactions of laryngeal adductors and cricothyroid muscles on fundamental frequency and glottal posture control

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar; Berry, David A.

    2014-01-01

    The interactions of the intrinsic laryngeal muscles (ILMs) in controlling fundamental frequency (F0) and glottal posture remain unclear. In an in vivo canine model, three sets of intrinsic laryngeal muscles—the thyroarytenoid (TA), cricothyroid (CT), and lateral cricoarytenoid plus interarytenoid (LCA/IA) muscle complex—were independently and accurately stimulated in a graded manner using distal laryngeal nerve stimulation. Graded neuromuscular stimulation was used to independently activate these paired intrinsic laryngeal muscles over a range from threshold to maximal activation, to produce 320 distinct laryngeal phonatory postures. At phonation onset these activation conditions were evaluated in terms of their vocal fold strain, glottal width at the vocal processes, fundamental frequency (F0), subglottic pressure, and airflow. F0 ranged from 69 to 772 Hz and clustered into chest-like and falsetto-like groups. CT activation was always required to raise F0, but could also lower F0 at low TA and LCA/IA activation levels. Increasing TA activation first increased then decreased F0 in all CT and LCA/IA activation conditions. Increasing TA activation also facilitated production of high F0 at a lower onset pressure. Independent control of membranous (TA) and cartilaginous (LCA/IA) glottal closure enabled multiple pathways for F0 control via changes in glottal posture. PMID:25235003

  9. Magnetic Stimulation and Epilepsy

    DTIC Science & Technology

    2013-10-14

    the seizure-induced groups exhibited varying degrees of EEG activity reduction. Figure 2. The effects of TMS on penicillin-induced seizures...the EEG recording including (a) baseline (pre-penicillin injection), (b) 30-min post-penicillin injection (30min-PI), (c) 10-min post- TMS stimulation...stable conditions 55% faster, and the 5 pps TMS -treated group 78% faster. Figure 3. Maximum frequency relationships in EEG activity among the

  10. Plasticity in Human Pitch Perception Induced by Tonotopically Mismatched Electro-Acoustic Stimulation

    PubMed Central

    Reiss, Lina A.J.; Turner, Christopher W.; Karsten, Sue A.; Gantz, Bruce J.

    2013-01-01

    Under normal conditions, the acoustic pitch percept of a pure tone is determined mainly by the tonotopic place of the stimulation along the cochlea. Unlike acoustic stimulation, electric stimulation of a cochlear implant (CI) allows for the direct manipulation of the place of stimulation in human subjects. CI sound processors analyze the range of frequencies needed for speech perception and allocate portions of this range to the small number of electrodes distributed in the cochlea. Because the allocation is assigned independently of the original resonant frequency of the basilar membrane associated with the location of each electrode, CI users who have access to residual hearing in either or both ears often have tonotopic mismatches between the acoustic and electric stimulation. Here we demonstrate plasticity of place pitch representations of up to 3 octaves in Hybrid CI users after experience with combined electro-acoustic stimulation. The pitch percept evoked by single CI electrodes, measured relative to acoustic tones presented to the non-implanted ear, changed over time in directions that reduced the electro-acoustic pitch mismatch introduced by the CI programming. This trend was particularly apparent when the allocations of stimulus frequencies to electrodes were changed over time, with pitch changes even reversing direction in some subjects. These findings show that pitch plasticity can occur more rapidly and on a greater scale in the mature auditory system than previously thought possible. Overall, the results suggest that the adult auditory system can impose perceptual order on disordered arrays of inputs. PMID:24157931

  11. Blood flow and oxygenation changes due to low-frequency repetitive transcranial magnetic stimulation of the cerebral cortex

    NASA Astrophysics Data System (ADS)

    Mesquita, Rickson C.; Faseyitan, Olufunsho K.; Turkeltaub, Peter E.; Buckley, Erin M.; Thomas, Amy; Kim, Meeri N.; Durduran, Turgut; Greenberg, Joel H.; Detre, John A.; Yodh, Arjun G.; Hamilton, Roy H.

    2013-06-01

    Transcranial magnetic stimulation (TMS) modulates processing in the human brain and is therefore of interest as a treatment modality for neurologic conditions. During TMS administration, an electric current passing through a coil on the scalp creates a rapidly varying magnetic field that induces currents in the cerebral cortex. The effects of low-frequency (1 Hz), repetitive TMS (rTMS) on motor cortex cerebral blood flow (CBF) and tissue oxygenation in seven healthy adults, during/after 20 min stimulation, is reported. Noninvasive optical methods are employed: diffuse correlation spectroscopy (DCS) for blood flow and diffuse optical spectroscopy (DOS) for hemoglobin concentrations. A significant increase in median CBF (33%) on the side ipsilateral to stimulation was observed during rTMS and persisted after discontinuation. The measured hemodynamic parameter variations enabled computation of relative changes in cerebral metabolic rate of oxygen consumption during rTMS, which increased significantly (28%) in the stimulated hemisphere. By contrast, hemodynamic changes from baseline were not observed contralateral to rTMS administration (all parameters, p>0.29). In total, these findings provide new information about hemodynamic/metabolic responses to low-frequency rTMS and, importantly, demonstrate the feasibility of DCS/DOS for noninvasive monitoring of TMS-induced physiologic effects.

  12. Effect of chronic and acute low-frequency repetitive transcranial magnetic stimulation on spatial memory in rats.

    PubMed

    Li, Wei; Yang, Yuye; Ye, Qing; Yang, Bo; Wang, Zhengrong

    2007-03-15

    Repetitive transcranial magnetic stimulation (rTMS) is a novel, non-invasive neurological and psychiatric tool. The low-frequency (1 Hz or less) rTMS is likely to play a particular role in its mechanism of action with different effects in comparison with high-frequency (>1 Hz) rTMS. There is limited information regarding the effect of low-frequency rTMS on spatial memory. In our study, each male Wistar rat was daily given 300 stimuli (1.0 T, 200 micros) at a rate of 0.5 Hz or sham stimulation. We investigated the effects of chronic and acute rTMS on reference/working memory process in Morris water maze test with the hypothesis that the effect would differ by chronic or acute condition. Chronic low-frequency rTMS impaired the retrieval of spatial short- and long-term spatial reference memory but not acquisition process and working memory, whereas acute low-frequency rTMS predominantly induced no deficits in acquisition or short-term spatial reference memory as well as working memory except for long-term reference memory. In summary, chronic 0.5 Hz rTMS disrupts spatial short- and long-term reference memory function, but acute rTMS differently affects reference memory. Chronic low-frequency rTMS may be used to modulate reference memory. Treatment protocols using low-frequency rTMS in neurological and psychiatric disorders need to take into account the potential effect of chronic low-frequency rTMS on memory and other cognitive functions.

  13. Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of the mylohyoid muscle in rabbits under conditions of hunger and satiety.

    PubMed

    Ignatova, Ju P; Kromin, A A

    2011-03-01

    Effects of electrical stimulation of the hunger center in the lateral hypothalamus and food reinforcement on impulse activity of mylohyoid muscle were studied in chronic experiments under conditions of hunger and satiety. Threshold stimulation of the lateral hypothalamus in starving and satiated rabbits in the absence of food induced searching behavior associated with burst-like impulse activity with a bimodal distribution of interpulse intervals. Regular spike burst in the mylohyoid muscle during stimulation of the lateral hypothalamus in the absence of food serves as an example of the anticipatory type reaction. Increased food motivation during threshold stimulation of the lateral hypothalamus in starving and satiated rabbits with food offered led to successful food-procuring behavior, during which the frequency of spike bursts in the mylohyoid muscle became comparable with that under conditions of natural foraging behavior stimulated by the need in nutrients. Our results suggest that temporal structure of mylohyoid muscle impulse activity reflects convergent interactions of food-motivation excitation with reinforcement excitation on neurons of the masticatory and deglutitive centers.

  14. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and NGF in accordance with the in vivo results. Immediate or late transcutaneous high-frequency electrical stimulation exhibited the potential to stimulate the motor nerve regeneration. However, immediate electrical stimulation had a predilection to develop neuropathic pain. A delay in TENS initiation appears to be a reasonable approach for nerve repair and provides the appropriate time profile for its clinical application.

  15. Power spectral density analysis of physiological, rest and action tremor in Parkinson’s disease patients treated with deep brain stimulation

    PubMed Central

    2013-01-01

    Background Observation of the signals recorded from the extremities of Parkinson’s disease patients showing rest and/or action tremor reveal a distinct high power resonance peak in the frequency band corresponding to tremor. The aim of the study was to investigate, using quantitative measures, how clinically effective and less effective deep brain stimulation protocols redistribute movement power over the frequency bands associated with movement, pathological and physiological tremor, and whether normal physiological tremor may reappear during those periods that tremor is absent. Methods The power spectral density patterns of rest and action tremor were studied in 7 Parkinson’s disease patients treated with (bilateral) deep brain stimulation of the subthalamic nucleus. Two tests were carried out: 1) the patient was sitting at rest; 2) the patient performed a hand or foot tapping movement. Each test was repeated four times for each extremity with different stimulation settings applied during each repetition. Tremor intermittency was taken into account by classifying each 3-second window of the recorded angular velocity signals as a tremor or non-tremor window. Results The distribution of power over the low frequency band (<3.5 Hz – voluntary movement), tremor band (3.5-7.5 Hz) and high frequency band (>7.5 Hz – normal physiological tremor) revealed that rest and action tremor show a similar power-frequency shift related to tremor absence and presence: when tremor is present most power is contained in the tremor frequency band; when tremor is absent lower frequencies dominate. Even under resting conditions a relatively large low frequency component became prominent, which seemed to compensate for tremor. Tremor absence did not result in the reappearance of normal physiological tremor. Conclusion Parkinson’s disease patients continuously balance between tremor and tremor suppression or compensation expressed by power shifts between the low frequency band and the tremor frequency band during rest and voluntary motor actions. This balance shows that the pathological tremor is either on or off, with the latter state not resembling that of a healthy subject. Deep brain stimulation can reverse the balance thereby either switching tremor on or off. PMID:23834737

  16. The Impact of Monaural Beat Stimulation on Anxiety and Cognition.

    PubMed

    Chaieb, Leila; Wilpert, Elke C; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation.

  17. The Impact of Monaural Beat Stimulation on Anxiety and Cognition

    PubMed Central

    Chaieb, Leila; Wilpert, Elke C.; Hoppe, Christian; Axmacher, Nikolai; Fell, Juergen

    2017-01-01

    Application of auditory beat stimulation has been speculated to provide a promising new tool with which to alleviate symptoms of anxiety and to enhance cognition. In spite of reportedly similar EEG effects of binaural and monaural beats, data on behavioral effects of monaural beats are still lacking. Therefore, we examined the impact of monaural beat stimulation on anxiety, mood and memory performance. We aimed to target states related to anxiety levels and general well-being, in addition to long-term and working memory processes, using monaural beats within the range of main cortical rhythms. Theta (6 Hz), alpha (10 Hz) and gamma (40 Hz) beat frequencies, as well as a control stimulus were applied to healthy participants for 5 min. After each stimulation period, participants were asked to evaluate their current mood state and to perform cognitive tasks examining long-term and working memory processes, in addition to a vigilance task. Monaural beat stimulation was found to reduce state anxiety. When evaluating responses for the individual beat frequencies, positive effects on state anxiety were observed for all monaural beat conditions compared to control stimulation. Our results indicate a role for monaural beat stimulation in modulating state anxiety and are in line with previous studies reporting anxiety-reducing effects of auditory beat stimulation. PMID:28555100

  18. Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti-ictogenic actions in rats.

    PubMed

    Cheng, Hui; Kuang, Yi-fang; Liu, Yang; Wang, Yi; Xu, Zheng-hao; Gao, Feng; Zhang, Shi-hong; Ding, Mei-ping; Chen, Zhong

    2015-08-01

    To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. In addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment.

  19. A quantitative theory of gamma synchronization in macaque V1.

    PubMed

    Lowet, Eric; Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter

    2017-08-31

    Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other's phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms.

  20. A quantitative theory of gamma synchronization in macaque V1

    PubMed Central

    Roberts, Mark J; Peter, Alina; Gips, Bart; De Weerd, Peter

    2017-01-01

    Gamma-band synchronization coordinates brief periods of excitability in oscillating neuronal populations to optimize information transmission during sensation and cognition. Commonly, a stable, shared frequency over time is considered a condition for functional neural synchronization. Here, we demonstrate the opposite: instantaneous frequency modulations are critical to regulate phase relations and synchronization. In monkey visual area V1, nearby local populations driven by different visual stimulation showed different gamma frequencies. When similar enough, these frequencies continually attracted and repulsed each other, which enabled preferred phase relations to be maintained in periods of minimized frequency difference. Crucially, the precise dynamics of frequencies and phases across a wide range of stimulus conditions was predicted from a physics theory that describes how weakly coupled oscillators influence each other’s phase relations. Hence, the fundamental mathematical principle of synchronization through instantaneous frequency modulations applies to gamma in V1 and is likely generalizable to other brain regions and rhythms. PMID:28857743

  1. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    PubMed

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  2. Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation

    PubMed Central

    Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2013-01-01

    High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency stimulation approaches, and may lower the risk for tolerance and rebound. PMID:24038075

  3. Effects of age on F0 discrimination and intonation perception in simulated electric and electroacoustic hearing.

    PubMed

    Souza, Pamela; Arehart, Kathryn; Miller, Christi Wise; Muralimanohar, Ramesh Kumar

    2011-02-01

    Recent research suggests that older listeners may have difficulty processing information related to the fundamental frequency (F0) of voiced speech. In this study, the focus was on the mechanisms that may underlie this reduced ability. We examined whether increased age resulted in decreased ability to perceive F0 using fine-structure cues provided by the harmonic structure of voiced speech sounds or cues provided by high-rate envelope fluctuations (periodicity). Younger listeners with normal hearing and older listeners with normal to near-normal hearing completed two tasks of F0 perception. In the first task (steady state F0), the fundamental frequency difference limen (F0DL) was measured adaptively for synthetic vowel stimuli. In the second task (time-varying F0), listeners relied on variations in F0 to judge intonation of synthetic diphthongs. For both tasks, three processing conditions were created: eight-channel vocoding that preserved periodicity cues to F0; a simulated electroacoustic stimulation condition, which consisted of high-frequency vocoder processing combined with a low-pass-filtered portion, and offered both periodicity and fine-structure cues to F0; and an unprocessed condition. F0 difference limens for steady state vowel sounds and the ability to discern rising and falling intonations were significantly worse in the older subjects compared with the younger subjects. For both older and younger listeners, scores were lowest for the vocoded condition, and there was no difference in scores between the unprocessed and electroacoustic simulation conditions. Older listeners had difficulty using periodicity cues to obtain information related to talker fundamental frequency. However, performance was improved by combining periodicity cues with (low frequency) acoustic information, and that strategy should be considered in individuals who are appropriate candidates for such processing. For cochlear implant candidates, this effect might be achieved by partial electrode insertion providing acoustic stimulation in the low frequencies or by the combination of a traditional implant in one ear and a hearing aid in the opposite ear.

  4. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  5. Low-frequency stimulation of the external globus palladium produces anti-epileptogenic and anti-ictogenic actions in rats

    PubMed Central

    Cheng, Hui; Kuang, Yi-fang; Liu, Yang; Wang, Yi; Xu, Zheng-hao; Gao, Feng; Zhang, Shi-hong; Ding, Mei-ping; Chen, Zhong

    2015-01-01

    Aim: To investigate the anti-epileptic effects of deep brain stimulation targeting the external globus palladium (GPe) in rats. Methods: For inducing amygdala kindling and deep brain stimulation, bipolar stainless-steel electrodes were implanted in SD rats into right basolateral amygdala and right GPe, respectively. The effects of deep brain stimulation were evaluated in the amygdala kindling model, maximal electroshock model (MES) and pentylenetetrazole (PTZ) model. Moreover, the background EEGs in the amygdala and GPe were recorded. Results: Low-frequency stimulation (0.1 ms, 1 Hz, 15 min) at the GPe slowed the progression of seizure stages and shortened the after-discharge duration (ADD) during kindling acquisition. Furthermore, low-frequency stimulation significantly decreased the incidence of generalized seizures, suppressed the average stage, and shortened the cumulative ADD and generalized seizure duration in fully kindled rats. In addition, low-frequency stimulation significantly suppressed the average stage of MES-induced seizures and increased the latency to generalized seizures in the PTZ model. High-frequency stimulation (0.1 ms, 130 Hz, 5 min) at the GPe had no anti-epileptic effect and even aggravated epileptogenesis induced by amygdala kindling. EEG analysis showed that low-frequency stimulation at the GPe reversed the increase in delta power, whereas high-frequency stimulation at the GPe had no such effect. Conclusion: Low-frequency stimulation, but not high-frequency stimulation, at the GPe exerts therapeutic effect on temporal lobe epilepsy and tonic-colonic generalized seizures, which may be due to interference with delta rhythms. The results suggest that modulation of GPe activity using low-frequency stimulation or drugs may be a promising epilepsy treatment. PMID:26095038

  6. Stimulus features underlying reduced tremor suppression with temporally patterned deep brain stimulation

    PubMed Central

    Birdno, Merrill J.; Kuncel, Alexis M.; Dorval, Alan D.; Turner, Dennis A.; Gross, Robert E.

    2012-01-01

    Deep brain stimulation (DBS) provides dramatic tremor relief when delivered at high-stimulation frequencies (more than ∼100 Hz), but its mechanisms of action are not well-understood. Previous studies indicate that high-frequency stimulation is less effective when the stimulation train is temporally irregular. The purpose of this study was to determine the specific characteristics of temporally irregular stimulus trains that reduce their effectiveness: long pauses, bursts, or irregularity per se. We isolated these characteristics in stimulus trains and conducted intraoperative measurements of postural tremor in eight volunteers. Tremor varied significantly across stimulus conditions (P < 0.015), and stimulus trains with pauses were significantly less effective than stimulus trains without (P < 0.002). There were no significant differences in tremor between trains with or without bursts or between trains that were irregular or periodic. Thus the decreased effectiveness of temporally irregular DBS trains is due to long pauses in the stimulus trains, not the degree of temporal irregularity alone. We also conducted computer simulations of neuronal responses to the experimental stimulus trains using a biophysical model of the thalamic network. Trains that suppressed tremor in volunteers also suppressed fluctuations in thalamic transmembrane potential at the frequency associated with cerebellar burst-driver inputs. Clinical and computational findings indicate that DBS suppresses tremor by masking burst-driver inputs to the thalamus and that pauses in stimulation prevent such masking. Although stimulation of other anatomic targets may provide tremor suppression, we propose that the most relevant neuronal targets for effective tremor suppression are the afferent cerebellar fibers that terminate in the thalamus. PMID:21994263

  7. Relationship Between Psychomotor Efficiency and Sensation Seeking of People Exposed to Noise and Low Frequency Vibration Stimuli

    NASA Astrophysics Data System (ADS)

    Korchut, Aleksander; Kowalska-Koczwara, Alicja; Romanska – Zapała, Anna; Stypula, Krzysztof

    2017-10-01

    At the workplace of the machine operator, low frequency whole body and hand- arm vibrations are observed. They occur together with noise. Whole body vibration in the range of 3-25 Hz are detrimental to the human body due to the location of the resonant frequency of large organs of the human body in this range. It can be assumed that for this reason people working every day in such conditions can have reduced working efficiency. The influence of low frequency vibration and noise on the human body leads to both physiological and functional changes. The result of the impact of noise and vibration stimuli depends largely on the specific characteristics of the objects, which include among other personality traits, temperament and emotional factor. The pilot study conducted in the laboratory was attended by 30 young men. The aim of the study was to look for correlations between the need for stimulation of the objects and their psychomotor efficiency in case of vibration exposure and vibration together with noise exposure in variable conditions task. The need for stimulation of the objects as defined in the study is based on theoretical assumptions of one dimensional model of temperament developed by Marvin Zuckerman. This theory defines the need for stimulation as the search for different, new, complex and intense sensations, as well as the willingness to take risks. The aim of research was to verify if from four factors such as: the search for adventure and horror, sensation seeking, disinhibition and susceptibility to boredom, we can choose the ones that in conjunction with varying operating conditions, may significantly determine the efficiency of the task situation. The objects performed the test evaluation of their motor skills which consisted in keeping the cursor controlled by a joystick through the path. The number of exceeds of the cursor beyond the path and its maximum deviation was recorded. The collected data were used to determine the correlation between the working efficiency and the need for stimulation of the objects under the influence of vibroacoustic factors. The analysis of the results allowed to define a set of criteria that make up the arduous working conditions. The obtained results indicate the need for the continuation of the research.

  8. LTP in Hippocampal Area CA1 Is Induced by Burst Stimulation over a Broad Frequency Range Centered around Delta

    ERIC Educational Resources Information Center

    Grover, Lawrence M.; Kim, Eunyoung; Cooke, Jennifer D.; Holmes, William R.

    2009-01-01

    Long-term potentiation (LTP) is typically studied using either continuous high-frequency stimulation or theta burst stimulation. Previous studies emphasized the physiological relevance of theta frequency; however, synchronized hippocampal activity occurs over a broader frequency range. We therefore tested burst stimulation at intervals from 100…

  9. Comparing the force ripple during asynchronous and conventional stimulation.

    PubMed

    Downey, Ryan J; Tate, Mark; Kawai, Hiroyuki; Dixon, Warren E

    2014-10-01

    Asynchronous stimulation has been shown to reduce fatigue during electrical stimulation; however, it may also exhibit a force ripple. We quantified the ripple during asynchronous and conventional single-channel transcutaneous stimulation across a range of stimulation frequencies. The ripple was measured during 5 asynchronous stimulation protocols, 2 conventional stimulation protocols, and 3 volitional contractions in 12 healthy individuals. Conventional 40 Hz and asynchronous 16 Hz stimulation were found to induce contractions that were as smooth as volitional contractions. Asynchronous 8, 10, and 12 Hz stimulation induced contractions with significant ripple. Lower stimulation frequencies can reduce fatigue; however, they may also lead to increased ripple. Future efforts should study the relationship between force ripple and the smoothness of the evoked movements in addition to the relationship between stimulation frequency and NMES-induced fatigue to elucidate an optimal stimulation frequency for asynchronous stimulation. © 2014 Wiley Periodicals, Inc.

  10. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons.

    PubMed

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca 2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca 2+ spike and Ca 2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.

  11. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    PubMed Central

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  12. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.

    2014-11-01

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourth Stokes Raman components. For the KGd(WO4)2 (high dispersion) and Ba(NO3)2 (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes - anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes - anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium.

  13. Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction.

    PubMed

    Li, Jiang; Meng, Xiang-Min; Li, Ru-Yi; Zhang, Ru; Zhang, Zheng; Du, Yi-Feng

    2016-10-01

    Studies have confirmed that low-frequency repetitive transcranial magnetic stimulation can decrease the activity of cortical neurons, and high-frequency repetitive transcranial magnetic stimulation can increase the excitability of cortical neurons. However, there are few studies concerning the use of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper-limb motor function after cerebral infarction. We hypothesized that different frequencies of repetitive transcranial magnetic stimulation in patients with cerebral infarction would produce different effects on the recovery of upper-limb motor function. This study enrolled 127 patients with upper-limb dysfunction during the subacute phase of cerebral infarction. These patients were randomly assigned to three groups. The low-frequency group comprised 42 patients who were treated with 1 Hz repetitive transcranial magnetic stimulation on the contralateral hemisphere primary motor cortex (M1). The high-frequency group comprised 43 patients who were treated with 10 Hz repetitive transcranial magnetic stimulation on ipsilateral M1. Finally, the sham group comprised 42 patients who were treated with 10 Hz of false stimulation on ipsilateral M1. A total of 135 seconds of stimulation was applied in the sham group and high-frequency group. At 2 weeks after treatment, cortical latency of motor-evoked potentials and central motor conduction time were significantly lower compared with before treatment. Moreover, motor function scores were significantly improved. The above indices for the low- and high-frequency groups were significantly different compared with the sham group. However, there was no significant difference between the low- and high-frequency groups. The results show that low- and high-frequency repetitive transcranial magnetic stimulation can similarly improve upper-limb motor function in patients with cerebral infarction.

  14. A Point-process Response Model for Spike Trains from Single Neurons in Neural Circuits under Optogenetic Stimulation

    PubMed Central

    Luo, X.; Gee, S.; Sohal, V.; Small, D.

    2015-01-01

    Optogenetics is a new tool to study neuronal circuits that have been genetically modified to allow stimulation by flashes of light. We study recordings from single neurons within neural circuits under optogenetic stimulation. The data from these experiments present a statistical challenge of modeling a high frequency point process (neuronal spikes) while the input is another high frequency point process (light flashes). We further develop a generalized linear model approach to model the relationships between two point processes, employing additive point-process response functions. The resulting model, Point-process Responses for Optogenetics (PRO), provides explicit nonlinear transformations to link the input point process with the output one. Such response functions may provide important and interpretable scientific insights into the properties of the biophysical process that governs neural spiking in response to optogenetic stimulation. We validate and compare the PRO model using a real dataset and simulations, and our model yields a superior area-under-the- curve value as high as 93% for predicting every future spike. For our experiment on the recurrent layer V circuit in the prefrontal cortex, the PRO model provides evidence that neurons integrate their inputs in a sophisticated manner. Another use of the model is that it enables understanding how neural circuits are altered under various disease conditions and/or experimental conditions by comparing the PRO parameters. PMID:26411923

  15. Speech Perception With Combined Electric-Acoustic Stimulation: A Simulation and Model Comparison.

    PubMed

    Rader, Tobias; Adel, Youssef; Fastl, Hugo; Baumann, Uwe

    2015-01-01

    The aim of this study is to simulate speech perception with combined electric-acoustic stimulation (EAS), verify the advantage of combined stimulation in normal-hearing (NH) subjects, and then compare it with cochlear implant (CI) and EAS user results from the authors' previous study. Furthermore, an automatic speech recognition (ASR) system was built to examine the impact of low-frequency information and is proposed as an applied model to study different hypotheses of the combined-stimulation advantage. Signal-detection-theory (SDT) models were applied to assess predictions of subject performance without the need to assume any synergistic effects. Speech perception was tested using a closed-set matrix test (Oldenburg sentence test), and its speech material was processed to simulate CI and EAS hearing. A total of 43 NH subjects and a customized ASR system were tested. CI hearing was simulated by an aurally adequate signal spectrum analysis and representation, the part-tone-time-pattern, which was vocoded at 12 center frequencies according to the MED-EL DUET speech processor. Residual acoustic hearing was simulated by low-pass (LP)-filtered speech with cutoff frequencies 200 and 500 Hz for NH subjects and in the range from 100 to 500 Hz for the ASR system. Speech reception thresholds were determined in amplitude-modulated noise and in pseudocontinuous noise. Previously proposed SDT models were lastly applied to predict NH subject performance with EAS simulations. NH subjects tested with EAS simulations demonstrated the combined-stimulation advantage. Increasing the LP cutoff frequency from 200 to 500 Hz significantly improved speech reception thresholds in both noise conditions. In continuous noise, CI and EAS users showed generally better performance than NH subjects tested with simulations. In modulated noise, performance was comparable except for the EAS at cutoff frequency 500 Hz where NH subject performance was superior. The ASR system showed similar behavior to NH subjects despite a positive signal-to-noise ratio shift for both noise conditions, while demonstrating the synergistic effect for cutoff frequencies ≥300 Hz. One SDT model largely predicted the combined-stimulation results in continuous noise, while falling short of predicting performance observed in modulated noise. The presented simulation was able to demonstrate the combined-stimulation advantage for NH subjects as observed in EAS users. Only NH subjects tested with EAS simulations were able to take advantage of the gap listening effect, while CI and EAS user performance was consistently degraded in modulated noise compared with performance in continuous noise. The application of ASR systems seems feasible to assess the impact of different signal processing strategies on speech perception with CI and EAS simulations. In continuous noise, SDT models were largely able to predict the performance gain without assuming any synergistic effects, but model amendments are required to explain the gap listening effect in modulated noise.

  16. Evoked EMG-based torque prediction under muscle fatigue in implanted neural stimulation

    NASA Astrophysics Data System (ADS)

    Hayashibe, Mitsuhiro; Zhang, Qin; Guiraud, David; Fattal, Charles

    2011-10-01

    In patients with complete spinal cord injury, fatigue occurs rapidly and there is no proprioceptive feedback regarding the current muscle condition. Therefore, it is essential to monitor the muscle state and assess the expected muscle response to improve the current FES system toward adaptive force/torque control in the presence of muscle fatigue. Our team implanted neural and epimysial electrodes in a complete paraplegic patient in 1999. We carried out a case study, in the specific case of implanted stimulation, in order to verify the corresponding torque prediction based on stimulus evoked EMG (eEMG) when muscle fatigue is occurring during electrical stimulation. Indeed, in implanted stimulation, the relationship between stimulation parameters and output torques is more stable than external stimulation in which the electrode location strongly affects the quality of the recruitment. Thus, the assumption that changes in the stimulation-torque relationship would be mainly due to muscle fatigue can be made reasonably. The eEMG was proved to be correlated to the generated torque during the continuous stimulation while the frequency of eEMG also decreased during fatigue. The median frequency showed a similar variation trend to the mean absolute value of eEMG. Torque prediction during fatigue-inducing tests was performed based on eEMG in model cross-validation where the model was identified using recruitment test data. The torque prediction, apart from the potentiation period, showed acceptable tracking performances that would enable us to perform adaptive closed-loop control through implanted neural stimulation in the future.

  17. Intralaminar stimulation of the inferior colliculus facilitates frequency-specific activation in the auditory cortex

    NASA Astrophysics Data System (ADS)

    Allitt, B. J.; Benjaminsen, C.; Morgan, S. J.; Paolini, A. G.

    2013-08-01

    Objective. Auditory midbrain implants (AMI) provide inadequate frequency discrimination for open set speech perception. AMIs that can take advantage of the tonotopic laminar of the midbrain may be able to better deliver frequency specific perception and lead to enhanced performance. Stimulation strategies that best elicit frequency specific activity need to be identified. This research examined the characteristic frequency (CF) relationship between regions of the auditory cortex (AC), in response to stimulated regions of the inferior colliculus (IC), comparing monopolar, and intralaminar bipolar electrical stimulation. Approach. Electrical stimulation using multi-channel micro-electrode arrays in the IC was used to elicit AC responses in anaesthetized male hooded Wistar rats. The rate of activity in AC regions with CFs within 3 kHz (CF-aligned) and unaligned CFs was used to assess the frequency specificity of responses. Main results. Both monopolar and bipolar IC stimulation led to CF-aligned neural activity in the AC. Altering the distance between the stimulation and reference electrodes in the IC led to changes in both threshold and dynamic range, with bipolar stimulation with 400 µm spacing evoking the lowest AC threshold and widest dynamic range. At saturation, bipolar stimulation elicited a significantly higher mean spike count in the AC at CF-aligned areas than at CF-unaligned areas when electrode spacing was 400 µm or less. Bipolar stimulation using electrode spacing of 400 µm or less also elicited a higher rate of elicited activity in the AC in both CF-aligned and CF-unaligned regions than monopolar stimulation. When electrodes were spaced 600 µm apart no benefit over monopolar stimulation was observed. Furthermore, monopolar stimulation of the external cortex of the IC resulted in more localized frequency responses than bipolar stimulation when stimulation and reference sites were 200 µm apart. Significance. These findings have implications for the future development of AMI, as a bipolar stimulation strategy may improve the ability of implant users to discriminate between frequencies.

  18. Effects of repetitive transcranial magnetic stimulation in performing eye-hand integration tasks: four preliminary studies with children showing low-functioning autism.

    PubMed

    Panerai, Simonetta; Tasca, Domenica; Lanuzza, Bartolo; Trubia, Grazia; Ferri, Raffaele; Musso, Sabrina; Alagona, Giovanna; Di Guardo, Giuseppe; Barone, Concetta; Gaglione, Maria P; Elia, Maurizio

    2014-08-01

    This report, based on four studies with children with low-functioning autism, aimed at evaluating the effects of repetitive transcranial magnetic stimulation delivered on the left and right premotor cortices on eye-hand integration tasks; defining the long-lasting effects of high-frequency repetitive transcranial magnetic stimulation; and investigating the real efficacy of high-frequency repetitive transcranial magnetic stimulation by comparing three kinds of treatments (high-frequency repetitive transcranial magnetic stimulation, a traditional eye-hand integration training, and both treatments combined). Results showed a significant increase in eye-hand performances only when high-frequency repetitive transcranial magnetic stimulation was delivered on the left premotor cortex; a persistent improvement up to 1 h after the end of the stimulation; better outcomes in the treatment combining high-frequency repetitive transcranial magnetic stimulation and eye-hand integration training. Based on these preliminary findings, further evaluations on the usefulness of high-frequency repetitive transcranial magnetic stimulation in rehabilitation of children with autism are strongly recommended. © The Author(s) 2013.

  19. Electrical high frequency stimulation in the dorsal striatum: Effects on response learning and on GABA levels in rats.

    PubMed

    Schumacher, Anett; de Vasconcelos, Anne Pereira; Lecourtier, Lucas; Moser, Andreas; Cassel, Jean-Christophe

    2011-09-23

    Electrical high frequency stimulation (HFS) has been used to treat various neurological and psychiatric diseases. The striatal area contributes to response learning and procedural memory. Therefore, we investigated the effect of striatal HFS application on procedural/declarative-like memory in rats. All rats were trained in a flooded Double-H maze for three days (4 trials/day) to swim to an escape platform hidden at a constant location. The starting place was the same for all trials. After each training session, HFS of the left dorsal striatum was performed over 4h in alternating 20 min periods (during rest time, 10a.m. to 3p.m.). Nineteen hours after the last HFS and right after a probe trial assessing the rats' strategy (procedural vs. declarative-like memory-based choice), animals were sacrificed and the dorsal striatum was quickly removed. Neurotransmitter levels were measured by HPLC. Stimulated rats did not differ from sham-operated and control rats in acquisition performance, but exhibited altered behavior during the probe trial (procedural memory responses being less frequent than in controls). In stimulated rats, GABA levels were significantly increased in the dorsal striatum on both sides. We suggest that HFS of the dorsal striatum does not alter learning behavior in rats but influences the strategy by which the rats solve the task. Given that the HFS-induced increase of GABA levels was found 19 h after stimulation, it can be assumed that HFS has consequences lasting for several hours and which are functionally significant at a behavioral level, at least under our stimulation (frequency, timing, location, side and strength of stimulation) and testing conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of combined opioid receptor and α2-adrenoceptor blockade on anxiety and electrically evoked startle responses.

    PubMed

    Vo, Lechi; Drummond, Peter D

    2017-06-01

    The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.

  1. Re-evaluation of rhodopsin's relaxation kinetics determined from femtosecond stimulated Raman lineshapes.

    PubMed

    McCamant, David W

    2011-07-28

    This work presents a theoretical treatment of the vibrational line shape generated in a femtosecond stimulated Raman spectroscopy (FSRS) experiment under conditions in which the probed vibration undergoes a significant frequency shift during its free induction decay. This theory is applied to simulate the FSRS lineshapes previously observed in rhodopsin (Kukura et al. Science 2005, 310, 1006). The previously determined relaxation times for formation of the trans-photoproduct of rhodopsin were calculated using an incorrect equation for the time dependence of the observed frequency shifts. Here the data are reanalyzed by calculation of the corrected frequency sweep occurring during the vibrational free induction decay. It is shown that the calculated frequency shifts and general conclusions of the original work are sound but that the coherent vibrational frequency shifts of the C(10), C(11), and C(12) hydrogen-out-of-plane vibrations occur with a 140 fs time constant rather than the previously reported 325 fs time constant. This time constant provides an important constraint for models of the dynamics of the cis to trans isomerization process. © 2011 American Chemical Society

  2. Short-term anomia training and electrical brain stimulation.

    PubMed

    Flöel, Agnes; Meinzer, Marcus; Kirstein, Robert; Nijhof, Sarah; Deppe, Michael; Knecht, Stefan; Breitenstein, Caterina

    2011-07-01

    Language training success in chronic aphasia remains only moderate. Electric brain stimulation may be a viable way to enhance treatment efficacy. In a randomized, double-blind, sham-controlled crossover trial, we assessed if anodal transcranial direct current stimulation compared to cathodal transcranial direct current stimulation and sham stimulation over the right temporo-parietal cortex would improve the success of short-term high-frequency anomia training. Twelve chronic poststroke aphasia patients were studied. Naming outcome was assessed after training and 2 weeks later. All training conditions led to a significant increase in naming ability, which was retained for at least 2 weeks after the end of the training. Application of anodal transcranial direct current stimulation significantly enhanced the overall training effect compared to sham stimulation. Baseline naming ability significantly predicted anodal transcranial direct current stimulation effects. Anodal transcranial direct current stimulation applied over the nonlanguage dominant hemisphere can enhance language training outcome in chronic aphasia. Clinical Trial Registration- URL: www.clinicaltrials.gov/. Unique identifier: NCT00822068.

  3. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease.

    PubMed

    Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza

    2015-03-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson’s disease

    PubMed Central

    Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko

    2015-01-01

    Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to ‘stimulation off’. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with ‘stimulation on’ compared to ‘stimulation off’ could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. PMID:25558877

  5. Longitudinal endolymph movements and endocochlear potential changes induced by stimulation at infrasonic frequencies.

    PubMed

    Salt, A N; DeMott, J E

    1999-08-01

    The inner ear is continually exposed to pressure fluctuations in the infrasonic frequency range (< 20 Hz) from external and internal body sources. The cochlea is generally regarded to be insensitive to such stimulation. The effects of stimulation at infrasonic frequencies (0.1 to 10 Hz) on endocochlear potential (EP) and endolymph movements in the guinea pig cochlea were studied. Stimuli were applied directly to the perilymph of scala tympani or scala vestibuli of the cochlea via a fluid-filled pipette. Stimuli, especially those near 1 Hz, elicited large EP changes which under some conditions exceeded 20 mV in amplitude and were equivalent to a cochlear microphonic (CM) response. Accompanying the electrical responses was a cyclical, longitudinal displacement of the endolymph. The amplitude and phase of the CM varied according to which perilymphatic scala the stimuli were applied to and whether a perforation was made in the opposing perilymphatic scala. Spontaneously occurring middle ear muscle contractions were also found to induce EP deflections and longitudinal endolymph movements comparable to those generated by perilymphatic injections. These findings suggest that cochlear fluid movements induced by pressure fluctuations at infrasonic frequencies could play a role in fluid homeostasis in the normal state and in fluid disturbances in pathological states.

  6. Locally induced neuronal synchrony precisely propagates to specific cortical areas without rhythm distortion.

    PubMed

    Toda, Haruo; Kawasaki, Keisuke; Sato, Sho; Horie, Masao; Nakahara, Kiyoshi; Bepari, Asim K; Sawahata, Hirohito; Suzuki, Takafumi; Okado, Haruo; Takebayashi, Hirohide; Hasegawa, Isao

    2018-05-16

    Propagation of oscillatory spike firing activity at specific frequencies plays an important role in distributed cortical networks. However, there is limited evidence for how such frequency-specific signals are induced or how the signal spectra of the propagating signals are modulated during across-layer (radial) and inter-areal (tangential) neuronal interactions. To directly evaluate the direction specificity of spectral changes in a spiking cortical network, we selectively photostimulated infragranular excitatory neurons in the rat primary visual cortex (V1) at a supra-threshold level with various frequencies, and recorded local field potentials (LFPs) at the infragranular stimulation site, the cortical surface site immediately above the stimulation site in V1, and cortical surface sites outside V1. We found a significant reduction of LFP powers during radial propagation, especially at high-frequency stimulation conditions. Moreover, low-gamma-band dominant rhythms were transiently induced during radial propagation. Contrastingly, inter-areal LFP propagation, directed to specific cortical sites, accompanied no significant signal reduction nor gamma-band power induction. We propose an anisotropic mechanism for signal processing in the spiking cortical network, in which the neuronal rhythms are locally induced/modulated along the radial direction, and then propagate without distortion via intrinsic horizontal connections for spatiotemporally precise, inter-areal communication.

  7. Ultrasonic and electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto a titanium plasma-spray surface.

    PubMed

    Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; Cusella De Angelis, Maria Gabriella; Mazzini, Giuliano; Benazzo, Francesco; Magenes, Giovanni

    2009-06-01

    Several studies suggest that the surface coating of titanium could play an important role in bone tissue engineering. In the present study, we have followed a particular biomimetic strategy where ultrasonically or electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix on a titanium plasma-spray surface. In comparison with control conditions, the ultrasonic stimulation (average power, 149 mW; frequency, 1.5 MHz) and the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation, and increased surface coating with decorin, osteocalcin, osteopontin, and type I collagen together with higher incorporation of calcium and phosphorus inside the extracellular matrix. The immunofluorescence related to the preceding bone matrix proteins showed their colocalization in the cell-rich areas. The use of the two physical stimulations aimed at obtaining the coating of the rough titanium plasma-spray surface in terms of cell colonization and deposition of extracellular matrix. The superficially cultured biomaterial could be theoretically used, in clinical applications, as an implant for bone repair.

  8. Electroacupuncture most effectively elicits depressor and bradycardic responses at 1 Hz in humans.

    PubMed

    Nakahara, Hidehiro; Kawada, Toru; Ueda, Shin-ya; Kawai, Eriko; Yamamoto, Hiromi; Sugimachi, Masaru; Miyamoto, Tadayoshi

    2016-02-01

    Acupuncture stimulation is known to act on the autonomic nervous system and elicits depressor and bradycardic effects. However, previous studies on humans did not conduct quantitative analyses on optimal acupuncture conditions such as the stimulation frequency and duration to achieve maximum depressor and bradycardic effects. The aim of the present study was to investigate the effects of varying stimulation frequencies of electroacupuncture on time-dependent changes in blood pressure and heart rate in humans. Twelve healthy volunteers participated in the study. An acupuncture needle was inserted at the Ximen acupoint (PC4 according to WHO nomenclature), located at the anterior aspect of the forearm. An electrical stimulation was delivered through the acupuncture needle at an intensity of 1 V, pulse width of 5 ms, and stimulation frequencies of 0.5, 1, 5, and 10 Hz in a random order. The duration of electroacupuncture was 6 min, during which blood pressure and heart rate responses were monitored. Group-averaged data indicated that 1-Hz electroacupuncture decreased blood pressure and heart rate. Blood pressure was significantly decreased from the prestimulation baseline value of 86.6 ± 2.9 to 81.4 ± 2.3 mmHg during 4-6 min of 1-Hz electroacupuncture (mean ± SE, P < 0.01). Heart rate was also significantly decreased (from 66.2 ± 2.0 to 62.7 ± 1.7 beats/min, P < 0.01). These results provide fundamental evidence that bradycardiac and depressor responses are effectively produced by electrical acupuncture in humans.

  9. Transcranial magnetic stimulation changes response selectivity of neurons in the visual cortex

    PubMed Central

    Kim, Taekjun; Allen, Elena A.; Pasley, Brian N.; Freeman, Ralph D.

    2015-01-01

    Background Transcranial magnetic stimulation (TMS) is used to selectively alter neuronal activity of specific regions in the cerebral cortex. TMS is reported to induce either transient disruption or enhancement of different neural functions. However, its effects on tuning properties of sensory neurons have not been studied quantitatively. Objective/Hypothesis Here, we use specific TMS application parameters to determine how they may alter tuning characteristics (orientation, spatial frequency, and contrast sensitivity) of single neurons in the cat’s visual cortex. Methods Single unit spikes were recorded with tungsten microelectrodes from the visual cortex of anesthetized and paralyzed cats (12 males). Repetitive TMS (4Hz, 4sec) was delivered with a 70mm figure-8 coil. We quantified basic tuning parameters of individual neurons for each pre- and post-TMS condition. The statistical significance of changes for each tuning parameter between the two conditions was evaluated with a Wilcoxon signed-rank test. Results We generally find long-lasting suppression which persists well beyond the stimulation period. Pre- and post-TMS orientation tuning curves show constant peak values. However, strong suppression at non-preferred orientations tends to narrow the widths of tuning curves. Spatial frequency tuning exhibits an asymmetric change in overall shape, which results in an emphasis on higher frequencies. Contrast tuning curves show nonlinear changes consistent with a gain control mechanism. Conclusions These findings suggest that TMS causes extended interruption of the balance between sub-cortical and intra-cortical inputs. PMID:25862599

  10. High frequency oscillations evoked by peripheral magnetic stimulation.

    PubMed

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  11. Frequency-dependent learning achieved using semiconducting polymer/electrolyte composite cells

    NASA Astrophysics Data System (ADS)

    Dong, W. S.; Zeng, F.; Lu, S. H.; Liu, A.; Li, X. J.; Pan, F.

    2015-10-01

    Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP.Frequency-dependent learning has been achieved using semiconducting polymer/electrolyte composite cells. The cells composed of polymer/electrolyte double layers realized the conventional spike-rate-dependent plasticity (SRDP) learning model. These cells responded to depression upon low-frequency stimulation and to potentiation upon high-frequency stimulation and presented long-term memory. The transition threshold θm from depression to potentiation varied depending on the previous stimulations. A nanostructure resembling a bio-synapse in its transport passages was demonstrated and a random channel model was proposed to describe the ionic kinetics at the polymer/electrolyte interface during and after stimulations with various frequencies, accounting for the observed SRDP. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02891d

  12. Spinal Cord Stimulation: Clinical Efficacy and Potential Mechanisms.

    PubMed

    Sdrulla, Andrei D; Guan, Yun; Raja, Srinivasa N

    2018-03-11

    Spinal cord stimulation (SCS) is a minimally invasive therapy used for the treatment of chronic neuropathic pain. SCS is a safe and effective alternative to medications such as opioids, and multiple randomized controlled studies have demonstrated efficacy for difficult-to-treat neuropathic conditions such as failed back surgery syndrome. Conventional SCS is believed mediate pain relief via activation of dorsal column Aβ fibers, resulting in variable effects on sensory and pain thresholds, and measurable alterations in higher order cortical processing. Although potentiation of inhibition, as suggested by Wall and Melzack's gate control theory, continues to be the leading explanatory model, other segmental and supraspinal mechanisms have been described. Novel, non-standard, stimulation waveforms such as high-frequency and burst have been shown in some studies to be clinically superior to conventional SCS, however their mechanisms of action remain to be determined. Additional studies are needed, both mechanistic and clinical, to better understand optimal stimulation strategies for different neuropathic conditions, improve patient selection and optimize efficacy. © 2018 World Institute of Pain.

  13. Bi-frontal transcranial alternating current stimulation in the ripple range reduced overnight forgetting.

    PubMed

    Ambrus, Géza Gergely; Pisoni, Alberto; Primaßin, Annika; Turi, Zsolt; Paulus, Walter; Antal, Andrea

    2015-01-01

    High frequency oscillations in the hippocampal structures recorded during sleep have been proved to be essential for long-term episodic memory consolidation in both animals and in humans. The aim of this study was to test if transcranial Alternating Current Stimulation (tACS) of the dorsolateral prefrontal cortex (DLPFC) in the hippocampal ripple range, applied bi-frontally during encoding, could modulate declarative memory performance, measured immediately after encoding, and after a night's sleep. An associative word-pair learning test was used. During an evening encoding phase, participants received 1 mA 140 Hz tACS or sham stimulation over both DLPFCs for 10 min while being presented twice with a list of word-pairs. Cued recall performance was investigated 10 min after training and the morning following the training session. Forgetting from evening to morning was observed in the sham condition, but not in the 140 Hz stimulation condition. 140 Hz tACS during encoding may have an effect on the consolidation of declarative material.

  14. The nature of tremor circuits in parkinsonian and essential tremor

    PubMed Central

    Cagnan, Hayriye; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Cheeran, Binith; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu

    2014-01-01

    Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that parkinsonian rest tremor is driven by a neural network, which includes the subthalamic nucleus and ventrolateral thalamus and has broad frequency-amplitude tolerance. We propose that it is this tolerance to changes in tremor frequency that dictates that parkinsonian rest tremor may be significantly entrained by low frequency stimulation without stimulation timing-dependent amplitude modulation. In contrast, the circuit influenced by low frequency thalamic stimulation in essential tremor has a narrower frequency-amplitude tolerance so that tremor entrainment through extrinsic driving is necessarily accompanied by amplitude modulation. Such differences in parkinsonian rest and essential tremor will be important in selecting future strategies for closed loop deep brain stimulation for tremor control. PMID:25200741

  15. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    PubMed Central

    Medina, Leonel E.; Grill, Warren M.

    2014-01-01

    Objective Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES. PMID:25380254

  16. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    NASA Astrophysics Data System (ADS)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  17. Bradykinesia induced by frequency-specific pallidal stimulation in patients with cervical and segmental dystonia.

    PubMed

    Huebl, Julius; Brücke, Christof; Schneider, Gerd-Helge; Blahak, Christian; Krauss, Joachim K; Kühn, Andrea A

    2015-07-01

    Pallidal deep brain stimulation (DBS) is an effective treatment for patients with primary dystonia leading to a substantial reduction of symptom severity. However, stimulation induced side effects such as bradykinesia have also been reported recently. The influence of stimulation parameters on such side effects have not yet been systemically assessed in these patients. Here we tested the effect of stimulation frequency and duration of stimulation period on hand motor function in 22 patients with primary cervical and segmental dystonia using an unimanual tapping task. Patients performed the task at 4 different stimulation frequencies (0 Hz = OFF stimulation, 20, 50 and ≥130 Hz = high frequency stimulation) after either an SHORT (5 min, N = 16) or a LONG (60 min, N = 6) stimulation period (i.e. changing of DBS-frequency). The change of overall mobility under HFS compared to the preoperative state was assessed with a 5-point Likert-scale. Tapping performance was analysed using a repeated measures ANOVA with the main factor 'FREQUENCY'. Tapping performance at HFS and changes in general mobility were correlated using Spearman's Rho. We found a frequency specific modulation of hand motor function: HFS led to deterioration and 20 Hz stimulation to improvement of tapping rate. The effects were predominant in the 'LONG' group suggesting a significant contribution of stimulation duration. This is important to consider during DBS-programming and evaluation of potential side effects. Furthermore, the impairment in hand motor function under HFS was mirrored by the patients' observation of a deterioration of general mobility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of age on F0-discrimination and intonation perception in simulated electric and electro-acoustic hearing

    PubMed Central

    Souza, Pamela; Arehart, Kathryn; Miller, Christi Wise; Muralimanohar, Ramesh Kumar

    2010-01-01

    Objectives Recent research suggests that older listeners may have difficulty processing information related to the fundamental frequency (F0) of voiced speech. In this study, the focus was on the mechanisms that may underlie this reduced ability. We examined whether increased age resulted in decreased ability to perceive F0 using fine structure cues provided by the harmonic structure of voiced speech sounds and/or cues provided by high-rate envelope fluctuations (periodicity). Design Younger listeners with normal hearing and older listeners with normal to near-normal hearing completed two tasks of F0 perception. In the first task (steady-state F0), the fundamental frequency difference limen (F0DL) was measured adaptively for synthetic vowel stimuli. In the second task (time-varying F0), listeners relied on variations in F0 to judge intonation of synthetic diphthongs. For both tasks, three processing conditions were created: 8-channel vocoding which preserved periodicity cues to F0; a simulated electroacoustic stimulation condition, which consisted of high-frequency vocoder processing combined with a low-pass filtered portion, and offered both periodicity and fine-structure cues to F0; and an unprocessed condition. Results F0 difference limens for steady-state vowel sounds and the ability to discern rising and falling intonations were significantly worse in the older subjects compared to the younger subjects. For both older and younger listeners scores were lowest for the vocoded condition, and there was no difference in scores between the unprocessed and electroacoustic simulation conditions. Conclusions Older listeners had difficulty using periodicity cues to obtain information related to talker fundamental frequency. However, performance was improved by combining periodicity cues with (low-frequency) acoustic information, and that strategy should be considered in individuals who are appropriate candidates for such processing. For cochlear implant candidates, that effect might be achieved by partial electrode insertion providing acoustic stimulation in the low frequencies; or by the combination of a traditional implant in one ear and a hearing aid in the opposite ear. PMID:20739892

  19. Non-linear transfer characteristics of stimulation and recording hardware account for spurious low-frequency artifacts during amplitude modulated transcranial alternating current stimulation (AM-tACS).

    PubMed

    Kasten, Florian H; Negahbani, Ehsan; Fröhlich, Flavio; Herrmann, Christoph S

    2018-05-31

    Amplitude modulated transcranial alternating current stimulation (AM-tACS) has been recently proposed as a possible solution to overcome the pronounced stimulation artifact encountered when recording brain activity during tACS. In theory, AM-tACS does not entail power at its modulating frequency, thus avoiding the problem of spectral overlap between brain signal of interest and stimulation artifact. However, the current study demonstrates how weak non-linear transfer characteristics inherent to stimulation and recording hardware can reintroduce spurious artifacts at the modulation frequency. The input-output transfer functions (TFs) of different stimulation setups were measured. Setups included recordings of signal-generator and stimulator outputs and M/EEG phantom measurements. 6 th -degree polynomial regression models were fitted to model the input-output TFs of each setup. The resulting TF models were applied to digitally generated AM-tACS signals to predict the frequency of spurious artifacts in the spectrum. All four setups measured for the study exhibited low-frequency artifacts at the modulation frequency and its harmonics when recording AM-tACS. Fitted TF models showed non-linear contributions significantly different from zero (all p < .05) and successfully predicted the frequency of artifacts observed in AM-signal recordings. Results suggest that even weak non-linearities of stimulation and recording hardware can lead to spurious artifacts at the modulation frequency and its harmonics. These artifacts were substantially larger than alpha-oscillations of a human subject in the MEG. Findings emphasize the need for more linear stimulation devices for AM-tACS and careful analysis procedures, taking into account low-frequency artifacts to avoid confusion with effects of AM-tACS on the brain. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation.

    PubMed

    Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S

    2015-01-01

    Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.

  1. Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns.

    PubMed

    McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M

    2012-11-07

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (<50 Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.

  2. Effective deep brain stimulation suppresses low frequency network oscillations in the basal ganglia by regularizing neural firing patterns

    PubMed Central

    McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (<50Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407

  3. Physiological and psychological assessment of sound

    NASA Astrophysics Data System (ADS)

    Yanagihashi, R.; Ohira, Masayoshi; Kimura, Teiji; Fujiwara, Takayuki

    The psycho-physiological effects of several sound stimulations were investigated to evaluate the relationship between a psychological parameter, such as subjective perception, and a physiological parameter, such as the heart rate variability (HRV). Eight female students aged 21-22 years old were tested. Electrocardiogram (ECG) and the movement of the chest-wall for estimating respiratory rate were recorded during three different sound stimulations; (1) music provided by a synthesizer (condition A); (2) birds twitters (condition B); and (3) mechanical sounds (condition C). The percentage power of the low-frequency (LF; 0.05<=0.15 Hz) and high-frequency (HF; 0.15<=0.40 Hz) components in the HRV (LF%, HF%) were assessed by a frequency analysis of time-series data for 5 min obtained from R-R intervals in the ECG. Quantitative assessment of subjective perception was also described by a visual analog scale (VAS). The HF% and VAS value for comfort in C were significantly lower than in either A and/or B. The respiratory rate and VAS value for awakening in C were significantly higher than in A and/or B. There was a significant correlation between the HF% and the value of the VAS, and between the respiratory rate and the value of the VAS. These results indicate that mechanical sounds similar to C inhibit the para-sympathetic nervous system and promote a feeling that is unpleasant but alert, also suggesting that the HRV reflects subjective perception.

  4. High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons

    PubMed Central

    van Dongen, Marijn N.; Hoebeek, Freek E.; Koekkoek, S. K. E.; De Zeeuw, Chris I.; Serdijn, Wouter A.

    2015-01-01

    This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100 kHz) duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation. These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency. PMID:25798105

  5. Repetitive transcranial magnetic stimulation as an alternative therapy for dysphagia after stroke: a systematic review and meta-analysis.

    PubMed

    Liao, Xiang; Xing, Guoqiang; Guo, Zhiwei; Jin, Yu; Tang, Qing; He, Bin; McClure, Morgan A; Liu, Hua; Chen, Huaping; Mu, Qiwen

    2017-03-01

    A meta-analysis and systematic review was conducted to investigate the potential effects of repetitive transcranial magnetic stimulation on dysphagia in patients with stroke, including different parameters of frequency and stimulation site. PubMed, Embase, MEDLINE databases and the Cochrane Library, were searched for randomized controlled studies of repetitive transcranial magnetic stimulation treatment of dysphagia published before March 2016. Six clinical randomized controlled studies of a total of 163 stroke patients were included in this meta-analysis. A significant effect size of 1.24 was found for dysphagic outcome (mean effect size, 1.24; 95% confidence interval (CI), 0.67-1.81). A subgroup analysis based on frequency showed that the clinical scores were significantly improved in dysphagic patients with low frequency repetitive transcranial magnetic stimulation treatment ( P < 0.05) as well as high frequency repetitive transcranial magnetic stimulation treatment ( P < 0.05). A stimulation site stratified subgroup analysis implied significant changes in stroke patients with dysphagia for the unaffected hemisphere ( P < 0.05) and the bilateral hemisphere stimulation ( P < 0.05), but not for the affected hemisphere ( P > 0.05). The analysis of the follow-up data shows that patients in the repetitive transcranial magnetic stimulation groups still maintained the therapeutic benefit of repetitive transcranial magnetic stimulation four weeks after the last session of repetitive transcranial magnetic stimulation therapy ( P < 0.05). This meta-analysis indicates that repetitive transcranial magnetic stimulation has a positive effect on dysphagia after stroke. Compared with low-frequency repetitive transcranial magnetic stimulation, high-frequency repetitive transcranial magnetic stimulation may be more beneficial to the patients. This meta-analysis also supports that repetitive transcranial magnetic stimulation on an unaffected - or bilateral - hemisphere has a significant therapeutic effect on dysphagia.

  6. Intracranial Self-Stimulation to Evaluate Abuse Potential of Drugs

    PubMed Central

    Miller, Laurence L.

    2014-01-01

    Intracranial self-stimulation (ICSS) is a behavioral procedure in which operant responding is maintained by pulses of electrical brain stimulation. In research to study abuse-related drug effects, ICSS relies on electrode placements that target the medial forebrain bundle at the level of the lateral hypothalamus, and experimental sessions manipulate frequency or amplitude of stimulation to engender a wide range of baseline response rates or response probabilities. Under these conditions, drug-induced increases in low rates/probabilities of responding maintained by low frequencies/amplitudes of stimulation are interpreted as an abuse-related effect. Conversely, drug-induced decreases in high rates/probabilities of responding maintained by high frequencies/amplitudes of stimulation can be interpreted as an abuse-limiting effect. Overall abuse potential can be inferred from the relative expression of abuse-related and abuse-limiting effects. The sensitivity and selectivity of ICSS to detect abuse potential of many classes of abused drugs is similar to the sensitivity and selectivity of drug self-administration procedures. Moreover, similar to progressive-ratio drug self-administration procedures, ICSS data can be used to rank the relative abuse potential of different drugs. Strengths of ICSS in comparison with drug self-administration include 1) potential for simultaneous evaluation of both abuse-related and abuse-limiting effects, 2) flexibility for use with various routes of drug administration or drug vehicles, 3) utility for studies in drug-naive subjects as well as in subjects with controlled levels of prior drug exposure, and 4) utility for studies of drug time course. Taken together, these considerations suggest that ICSS can make significant contributions to the practice of abuse potential testing. PMID:24973197

  7. Anodal Transcranial Direct Current Stimulation Shows Minimal, Measure-Specific Effects on Dynamic Postural Control in Young and Older Adults: A Double Blind, Sham-Controlled Study.

    PubMed

    Craig, Chesney E; Doumas, Michail

    2017-01-01

    We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18-35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition-M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant's body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS' growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control.

  8. Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease

    PubMed Central

    Milosevic, Luka; Kalia, Suneil K; Hodaie, Mojgan; Lozano, Andres M; Fasano, Alfonso; Popovic, Milos R; Hutchison, William D

    2018-01-01

    Abstract Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation. PMID:29236966

  9. Activation of PAF-synthesizing enzymes in rat brain stem slices after LTP induction in the medial vestibular nuclei.

    PubMed

    Francescangeli, Ermelinda; Grassi, Silvarosa; Pettorossi, Vito E; Goracci, Gianfrancesco

    2002-11-01

    LysoPAF acetyltransferase (lysoPAF-AT) and PAF-synthesizing phosphocholinetransferase (PAF-PCT) are the two enzymes which catalyze the final reactions for the synthesis of PAF. Their activities, assayed in the homogenate of rat brain stem slices and under their optimal conditions, increased 5 min after high frequency stimulation of vestibular afferents, inducing LTP in the medial vestibular nuclei. The activity of phosphatidylcholine-synthesizing phosphocholinetransferase, was not affected. Sixty minutes from the induction of LTP, PAF-PCT activity, but not that of lysoPAF-AT, was still significantly higher with respect to 5 min test stimulated control. We used AP-5 to verify whether this increase was strictly dependent upon LTP induction, which requires NMDA receptor activation. In AP-5 treated slices, lysoPAF-acetyltransferase and PAF-synthesizing phosphocholinetransferase activities increased, but they were reduced after high frequency stimulation under AP-5. In conclusion, we have demonstrated that the activities of PAF-synthesizing enzymes are activated soon after the induction of LTP and that this effect is linked to the activation of NMDA-receptors. We suggest that the enzyme activation by AP-5, preventing LTP, might be due to glutamate enhancement but, in neurons showing LTP and under normal conditions, the activation of potentiation mechanisms is critical for the enhancement of enzyme activities.

  10. Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.

    PubMed

    Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya

    2015-10-01

    The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.

  11. Theoretical study of collinear optical frequency comb generation under multi-wave, transient stimulated Raman scattering in crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smetanin, S N

    2014-11-30

    Using mathematical modelling we have studied the conditions of low-threshold collinear optical frequency comb generation under transient (picosecond) stimulated Raman scattering (SRS) and parametric four-wave coupling of SRS components in crystals. It is shown that Raman-parametric generation of an octave-spanning optical frequency comb occurs most effectively under intermediate, transient SRS at a pump pulse duration exceeding the dephasing time by five-to-twenty times. We have found the optimal values of not only the laser pump pulse duration, but also of the Raman crystal lengths corresponding to highly efficient generation of an optical frequency comb from the second anti-Stokes to the fourthmore » Stokes Raman components. For the KGd(WO{sub 4}){sub 2} (high dispersion) and Ba(NO{sub 3}){sub 2} (low dispersion) crystals pumped at a wavelength of 1.064 μm and a pulse duration five or more times greater than the dephasing time, the optimum length of the crystal was 0.3 and 0.6 cm, respectively, which is consistent with the condition of the most effective Stokes – anti-Stokes coupling ΔkL ≈ 15, where Δk is the wave detuning from phase matching of Stokes – anti-Stokes coupling, determined by the refractive index dispersion of the SRS medium. (nonlinear optical phenomena)« less

  12. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  13. Testing a linear time invariant model for skin conductance responses by intraneural recording and stimulation

    PubMed Central

    Gerster, Samuel; Namer, Barbara; Elam, Mikael

    2017-01-01

    Abstract Skin conductance responses (SCR) are increasingly analyzed with model‐based approaches that assume a linear and time‐invariant (LTI) mapping from sudomotor nerve (SN) activity to observed SCR. These LTI assumptions have previously been validated indirectly, by quantifying how much variance in SCR elicited by sensory stimulation is explained under an LTI model. This approach, however, collapses sources of variability in the nervous and effector organ systems. Here, we directly focus on the SN/SCR mapping by harnessing two invasive methods. In an intraneural recording experiment, we simultaneously track SN activity and SCR. This allows assessing the SN/SCR relationship but possibly suffers from interfering activity of non‐SN sympathetic fibers. In an intraneural stimulation experiment under regional anesthesia, such influences are removed. In this stimulation experiment, about 95% of SCR variance is explained under LTI assumptions when stimulation frequency is below 0.6 Hz. At higher frequencies, nonlinearities occur. In the intraneural recording experiment, explained SCR variance is lower, possibly indicating interference from non‐SN fibers, but higher than in our previous indirect tests. We conclude that LTI systems may not only be a useful approximation but in fact a rather accurate description of biophysical reality in the SN/SCR system, under conditions of low baseline activity and sporadic external stimuli. Intraneural stimulation under regional anesthesia is the most sensitive method to address this question. PMID:28862764

  14. Influence of Asymmetric Recurrent Laryngeal Nerve Stimulation on Vibration, Acoustics, and Aerodynamics

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Sofer, Elazar

    2015-01-01

    Objectives/Hypothesis Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Study Design Basic science study using an in vivo canine model. Methods The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Results Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0, glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Conclusion Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. PMID:24913182

  15. Influence of asymmetric recurrent laryngeal nerve stimulation on vibration, acoustics, and aerodynamics.

    PubMed

    Chhetri, Dinesh K; Neubauer, Juergen; Sofer, Elazar

    2014-11-01

    Evaluate the influence of asymmetric recurrent laryngeal nerve (RLN) stimulation on the vibratory phase, acoustics and aerodynamics of phonation. Basic science study using an in vivo canine model. The RLNs were symmetrically and asymmetrically stimulated over eight graded levels to test a range of vocal fold activation conditions from subtle paresis to paralysis. Vibratory phase, fundamental frequency (F0 ), subglottal pressure, and airflow were noted at phonation onset. The evaluations were repeated for three levels of symmetric superior laryngeal nerve (SLN) stimulation. Asymmetric laryngeal adductor activation from asymmetric left-right RLN stimulation led to a consistent pattern of vibratory phase asymmetry, with the more activated vocal fold leading in the opening phase of the glottal cycle and in mucosal wave amplitude. Vibratory amplitude asymmetry was also observed, with more lateral excursion of the glottis of the less activated side. Onset fundamental frequency was higher with asymmetric activation because the two RLNs were synergistic in decreasing F0 , glottal width, and strain. Phonation onset pressure increased and airflow decreased with symmetric RLN activation. Asymmetric laryngeal activation from RLN paresis and paralysis has consistent effects on vocal fold vibration, acoustics, and aerodynamics. This information may be useful in diagnosis and management of vocal fold paresis. N/A. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  16. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats.

    PubMed

    Jia, Jun; Li, Bo; Sun, Zuo-Li; Yu, Fen; Wang, Xuan; Wang, Xiao-Min

    2010-04-01

    The role of electro-acupuncture (EA) stimulation on motor symptoms in Parkinson's disease (PD) has not been well studied. In a rat hemiparkinsonian model induced by unilateral transection of the medial forebrain bundle (MFB), EA stimulation improved motor impairment in a frequency-dependent manner. Whereas EA stimulation at a low frequency (2 Hz) had no effect, EA stimulation at a high frequency (100 Hz) significantly improved motor coordination. However, neither low nor high EA stimulation could significantly enhance dopamine levels in the striatum. EA stimulation at 100 Hz normalized the MFB lesion-induced increase in midbrain GABA content, but it had no effect on GABA content in the globus pallidus. These results suggest that high-frequency EA stimulation improves motor impairment in MFB-lesioned rats by increasing GABAergic inhibition in the output structure of the basal ganglia.

  17. A simulation study of harmonics regeneration in noise reduction for electric and acoustic stimulation.

    PubMed

    Hu, Yi

    2010-05-01

    Recent research results show that combined electric and acoustic stimulation (EAS) significantly improves speech recognition in noise, and it is generally established that access to the improved F0 representation of target speech, along with the glimpse cues, provide the EAS benefits. Under noisy listening conditions, noise signals degrade these important cues by introducing undesired temporal-frequency components and corrupting harmonics structure. In this study, the potential of combining noise reduction and harmonics regeneration techniques was investigated to further improve speech intelligibility in noise by providing improved beneficial cues for EAS. Three hypotheses were tested: (1) noise reduction methods can improve speech intelligibility in noise for EAS; (2) harmonics regeneration after noise reduction can further improve speech intelligibility in noise for EAS; and (3) harmonics sideband constraints in frequency domain (or equivalently, amplitude modulation in temporal domain), even deterministic ones, can provide additional benefits. Test results demonstrate that combining noise reduction and harmonics regeneration can significantly improve speech recognition in noise for EAS, and it is also beneficial to preserve the harmonics sidebands under adverse listening conditions. This finding warrants further work into the development of algorithms that regenerate harmonics and the related sidebands for EAS processing under noisy conditions.

  18. Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: Effects of frequency modulations and clinical outcome.

    PubMed

    Galazky, Imke; Kaufmann, Jörn; Lorenzl, Stefan; Ebersbach, Georg; Gandor, Florin; Zaehle, Tino; Specht, Sylke; Stallforth, Sabine; Sobieray, Uwe; Wirkus, Edyta; Casjens, Franziska; Heinze, Hans-Jochen; Kupsch, Andreas; Voges, Jürgen

    2018-05-01

    The pedunculopontine nucleus has been suggested as a potential deep brain stimulation target for axial symptoms such as gait and balance impairment in idiopathic Parkinson's disease as well as atypical Parkinsonian disorders. Seven consecutive patients with progressive supranuclear palsy received bilateral pedunculopontine nucleus deep brain stimulation. Inclusion criteria comprised of the clinical diagnosis of progressive supranuclear palsy, a levodopa-resistant gait and balance disorder, age <75 years, and absence of dementia or major psychiatric co-morbidities. Effects of stimulation frequencies at 8, 20, 60 and 130 Hz on motor scores and gait were assessed. Motor scores were followed up for two years postoperatively. Activities of daily living, frequency of falls, health-related quality of life, cognition and mood at 12 months were compared to baseline parameters. Surgical and stimulation related adverse events were assessed. Bilateral pedunculopontine nucleus deep brain stimulation at 8 Hz significantly improved axial motor symptoms and cyclic gait parameters, while high frequency stimulation did not ameliorate gait and balance but improved hypokinesia. This improvement however did not translate into clinically relevant benefits. Frequency of falls was not reduced. Activities of daily living, quality of life and frontal cognitive functions declined, while mood remained unchanged. Bilateral pedunculopontine nucleus deep brain stimulation in progressive supranuclear palsy generates frequency-dependent effects with improvement of cyclic gait parameters at low frequency and amelioration of hypokinesia at high frequency stimulation. However, these effects do not translate into a clinically important improvement. Copyright © 2018. Published by Elsevier Ltd.

  19. First observations of minority ion (H+) structuring in stimulated radiation during second electron gyroharmonic heating experiments

    NASA Astrophysics Data System (ADS)

    Bordikar, M. R.; Scales, W. A.; Samimi, A. R.; Bernhardt, P. A.; Brizcinski, S.; McCarrick, M. J.

    2013-04-01

    This work presents the first observations of unique narrowband emissions ordered near the hydrogen ion (H+) gyrofrequency (fcH) in the stimulated electromagnetic emission spectrum when the transmitter is tuned near the second electron gyroharmonic frequency (2fce) during ionospheric modification experiments. The frequency structuring of these newly discovered emission lines is quite unexpected since H+ is known to be a minor constituent in the interaction region which is near 160 km altitude. The spectral lines are typically shifted from the pump wave frequency by harmonics of a frequency about 10% less than fcH (≈ 800 Hz) and have a bandwidth of less than 50 Hz which is near the O+ gyrofrequency fcO. A theory is proposed to explain these emissions in terms of a parametric decay instability in a multi-ion species plasma due to possible proton precipitation associated with the disturbed conditions during the heating experiment. The observations can be explained by including several percent H+ ions into the background plasma. The implications are new possibilities for characterizing proton precipitation events during ionospheric heating experiments.

  20. Long-term depression of neuron to glial signalling in rat cerebellar cortex.

    PubMed

    Bellamy, Tomas C; Ogden, David

    2006-01-01

    Bergmann glial cells enclose synapses throughout the molecular layer of the cerebellum and express extrasynaptic AMPA receptors and glutamate transporters. Accordingly, stimulation of parallel fibres leads to the generation of inward currents in the glia due to AMPA receptor activation and electrogenic uptake of glutamate. Elimination of AMPA receptor Ca(2+) permeability leads to the withdrawal of glial processes and synaptic dysfunction, suggesting that AMPA receptor-mediated Ca(2+) signalling is essential for glial support of the neuronal network. Here we show that glial extrasynaptic currents (ESCs) exhibit activity-dependent plasticity, specifically, long-term depression during repetitive stimulation of parallel fibres at low frequencies (0.033-1 Hz) -- conditions in which Purkinje neuron excitatory postsynaptic currents (EPSCs) remain stable. Both the rate of onset and the magnitude of ESC depression increased with stimulation frequency. Depression was reversible following brief periods of stimulation, but became increasingly persistent as the duration of repetitive stimulation increased. All glial currents -- AMPA receptors, glutamate transporter and a recently discovered slow 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulphonamide (NBQX)-sensitive current -- were depressed. Increasing presynaptic release probability by doubling external Ca(2+) concentration did not affect the time course of depression, suggesting that neither decreased release probability nor fatigue of release sites contribute to depression. Inhibition of glutamate uptake caused a dramatic enhancement of the rate of depression, implicating glutamate in the underlying mechanism. The strength of neuron to glial signalling in the cerebellum is therefore dynamically regulated, independently of adjacent synapses, by the frequency of parallel fibre activity.

  1. A machine learning approach for automated wide-range frequency tagging analysis in embedded neuromonitoring systems.

    PubMed

    Montagna, Fabio; Buiatti, Marco; Benatti, Simone; Rossi, Davide; Farella, Elisabetta; Benini, Luca

    2017-10-01

    EEG is a standard non-invasive technique used in neural disease diagnostics and neurosciences. Frequency-tagging is an increasingly popular experimental paradigm that efficiently tests brain function by measuring EEG responses to periodic stimulation. Recently, frequency-tagging paradigms have proven successful with low stimulation frequencies (0.5-6Hz), but the EEG signal is intrinsically noisy in this frequency range, requiring heavy signal processing and significant human intervention for response estimation. This limits the possibility to process the EEG on resource-constrained systems and to design smart EEG based devices for automated diagnostic. We propose an algorithm for artifact removal and automated detection of frequency tagging responses in a wide range of stimulation frequencies, which we test on a visual stimulation protocol. The algorithm is rooted on machine learning based pattern recognition techniques and it is tailored for a new generation parallel ultra low power processing platform (PULP), reaching performance of more that 90% accuracy in the frequency detection even for very low stimulation frequencies (<1Hz) with a power budget of 56mW. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Low-frequency electrical stimulation combined with a cooling vest improves recovery of elite kayakers following a simulated 1000-m race in a hot environment.

    PubMed

    Borne, R; Hausswirth, C; Costello, J T; Bieuzen, F

    2015-06-01

    This study compared the effects of a low-frequency electrical stimulation (LFES; Veinoplus(®) Sport, Ad Rem Technology, Paris, France), a low-frequency electrical stimulation combined with a cooling vest (LFESCR ) and an active recovery combined with a cooling vest (ACTCR ) as recovery strategies on performance (racing time and pacing strategies), physiologic and perceptual responses between two sprint kayak simulated races, in a hot environment (∼32 wet-bulb-globe temperature). Eight elite male kayakers performed two successive 1000-m kayak time trials (TT1 and TT2), separated by a short-term recovery period, including a 30-min of the respective recovery intervention protocol, in a randomized crossover design. Racing time, power output, and stroke rate were recorded for each time trial. Blood lactate concentration, pH, core, skin and body temperatures were measured before and after both TT1 and TT2 and at mid- and post-recovery intervention. Perceptual ratings of thermal sensation were also collected. LFESCR was associated with a very likely effect in performance restoration compared with ACTCR (99/0/1%) and LFES conditions (98/0/2%). LFESCR induced a significant decrease in body temperature and thermal sensation at post-recovery intervention, which is not observed in ACTCR condition. In conclusion, the combination of LFES and wearing a cooling vest (LFESCR ) improves performance restoration between two 1000-m kayak time trials achieved by elite athletes, in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Alternating frequencies of transcutaneous electric nerve stimulation: does it produce greater analgesic effects on mechanical and thermal pain thresholds?

    PubMed

    Tong, K C; Lo, Sing Kai; Cheing, Gladys L

    2007-10-01

    To determine whether alternating frequency transcutaneous electric nerve stimulation (TENS) at 2 and 100Hz (2/100Hz) has a more potent hypoalgesic effect than a fixed frequency at 2 or 100Hz in healthy participants. A single-blind randomized controlled trial with a convenience sample. University physiotherapy department. Sixty-four healthy volunteers (32 men [mean age, 28.1+/-5.9y], 32 women [mean age, 27.7+/-5.6y]) were recruited and randomly divided into 4 groups. The 4 groups received TENS delivered at (1) 2Hz; (2) 100Hz; (3) 2/100Hz alternating frequency; and (4) no treatment (control group), respectively. Electric stimulation was applied over the anterior aspect of the dominant forearm for 30 minutes. Mechanical pain thresholds (MPTs) and heat pain thresholds (HPTs) were recorded before, during, and after TENS stimulation. The data were analyzed using linear mixed models, with group treated as a between-subject factor and time a within-subject factor. During and shortly after electric stimulation, HPT increased significantly in the alternating frequency stimulation group (P=.024). MPT increased significantly in both the 100Hz (P=.008) and the alternating frequency groups (P=.012), but the increase was substantially larger in the 100Hz group. Alternating frequency stimulation produced a greater elevation in the HPT, but a greater increase in the MPT was achieved using 100Hz stimulation.

  4. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  5. Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.

    PubMed

    Jastreboff, P J; Keller, O; Zieliński, K

    1977-01-01

    In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.

  6. Exploring the Relationship between Stimulant Use and Gambling in College Students

    PubMed Central

    Geisner, Irene Markman; Huh, David; Cronce, Jessica M.; Lostutter, Ty W.; Kilmer, Jason; Larimer, Mary E.

    2016-01-01

    Both gambling and stimulant use are common and can lead to problems on college campuses with consequences that impact the financial, emotional, academic and physical well-being of students. Yet few studies have been conducted to understand the co-occurrence of these conditions and the increased risk factors if any that may exist for gambling and related problems. The present study is among the first to document the co-occurrence of these behaviors in both a random sample of students (N = 4640), and then to explore to what extent stimulant use impacts subsequent gambling and related problems 12 months later in an at-risk sample (N = 199). Results revealed a three-fold higher rate of recent problem gambling for those who used stimulants vs. those who had not (11% vs 4%). For those already gambling, stimulant use predicted an increased frequency in gambling 12 months later. Implications for prevention and screening are discussed. PMID:26691633

  7. Investigation of the Relationship Between Electrical Stimulation Frequency and Muscle Frequency Response Under Submaximal Contractions.

    PubMed

    Papcke, Caluê; Krueger, Eddy; Olandoski, Marcia; Nogueira-Neto, Guilherme Nunes; Nohama, Percy; Scheeren, Eduardo Mendonça

    2018-03-25

    Neuromuscular electrical stimulation (NMES) is a common tool that is used in clinical and laboratory experiments and can be combined with mechanomyography (MMG) for biofeedback in neuroprostheses. However, it is not clear if the electrical current applied to neuromuscular tissues influences the MMG signal in submaximal contractions. The objective of this study is to investigate whether the electrical stimulation frequency influences the mechanomyographic frequency response of the rectus femoris muscle during submaximal contractions. Thirteen male participants performed three maximal voluntary isometric contractions (MVIC) recorded in isometric conditions to determine the maximal force of knee extensors. This was followed by the application of nine modulated NMES frequencies (20, 25, 30, 35, 40, 45, 50, 75, and 100 Hz) to evoke 5% MVIC. Muscle behavior was monitored by the analysis of MMG signals, which were decomposed into frequency bands by using a Cauchy wavelet transform. For each applied electrical stimulus frequency, the mean MMG spectral/frequency response was estimated for each axis (X, Y, and Z axes) of the MMG sensor with the values of the frequency bands used as weights (weighted mean). Only with respect to the Z (perpendicular) axis of the MMG signal, the stimulus frequency of 20 Hz did not exhibit any difference with the weighted mean (P = 0.666). For the frequencies of 20 and 25 Hz, the MMG signal displayed the bands between 12 and 16 Hz in the three axes (P < 0.050). In the frequencies from 30 to 100 Hz, the muscle presented a higher concentration of the MMG signal between the 22 and 29 Hz bands for the X and Z axes, and between 16 and 34 Hz bands for the Y axis (P < 0.050 for all cases). We observed that MMG signals are not dependent on the applied NMES frequency, because their frequency contents tend to mainly remain between the 20- and 25-Hz bands. Hence, NMES does not interfere with the use of MMG in neuroprosthesis. © 2018 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  8. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    PubMed

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Use of low frequency repetitive transcranial magnetic stimulation to reduce context-dependent learning in people with Parkinson's disease.

    PubMed

    Lee, Ya-Yun; Fisher, Beth E

    2017-05-22

    Compared with age-matched non-disabled adults, people with Parkinson's disease (PD) demonstrated greater context-dependent learning, a phenomenon in which an individual shows inferior motor performance when the testing environmental context is different from the original practice context. Additionally, enhanced context- dependency has been shown to be associated with an increased activation of the dorsolateral prefrontal cortex (DLPFC). This study aimed to determine whether context-dependent learning in people with PD could be reduced by decreasing DLPFC activation with low frequency repetitive transcranial magnetic stimulation (rTMS). Quasi-experimental pre-post test controlled study. University laboratory. Twenty-seven participants (18 individuals with PD and 9 age-matched non- disabled adults) were recruited into the PD, PD_rTMS (PD participants who received low frequency rTMS), and Control groups. All participants practiced a finger sequence task containing 3 sequences embedded within specific contexts (colored circles and spatial location on a computer screen) on the first day. On day 2, the participants were tested under the SWITCH and SAME conditions. In the SWITCH condition, the sequence-context association changed from that of practice; in the SAME condition, the sequence-context association remained the same as practice. The PD_rTMS group received 1 Hz rTMS applied over the left DLPFC on the second day before the testing conditions. Switch cost, the performance difference between the SWITCH and SAME conditions, was calculated to indicate context-dependency. All participants improved throughout practice on the first day. Analysis of the switch cost revealed a significant group main effect (p = 0.050). Post-hoc analysis revealed that the PD_rTMS group had significantly smaller switch cost than the PD group (p = 0.031) but not the Control group. Low frequency rTMS applied over DLPFC reduced context-dependency in people with PD. The findings provide a preliminary evidence of using low frequency rTMS as an adjuvant intervention approach to facilitate individuals with PD to generalize a learned motor task from one environmental context to another.

  10. Stuttering in Parkinson's disease after deep brain stimulation: A note on dystonia and low-frequency stimulation.

    PubMed

    Mendonça, Marcelo D; Barbosa, Raquel; Seromenho-Santos, Alexandra; Reizinho, Carla; Bugalho, Paulo

    2018-04-01

    Stuttering, a speech fluency disorder, is a rare complication of Deep Brain Stimulation (DBS) in Parkinson's Disease (PD). We report a 61 years-old patient with PD, afflicted by severe On and Off dystonia, treated with Subthalamic Nucleus DBS that developed post-DBS stuttering while on 130 Hz stimulation. Stuttering reduction was noted when frequency was changed to 80 Hz, but the previously observed dystonia improvement was lost. There are no reports in literature on patients developing stuttering with low-frequency stimulation. We question if low-frequency stimulation could have a role for managing PD's post-DBS stuttering, and notice that stuttering improvement was associated with dystonia worsening suggesting that they are distinct phenomena. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes

    PubMed Central

    Ford, Kerrie L.; Moorhouse, Emma L.; Bortolozzi, Mario; Richards, Mark A.; Swietach, Pawel; Vaughan-Jones, Richard D.

    2017-01-01

    Abstract Aims Spontaneous Ca2+ waves in cardiomyocytes are potentially arrhythmogenic. A powerful controller of Ca2+ waves is the cytoplasmic H+ concentration ([H+]i), which fluctuates spatially and temporally in conditions such as myocardial ischaemia/reperfusion. H+-control of Ca2+ waves is poorly understood. We have therefore investigated how [H+]i co-ordinates their initiation and frequency. Methods and results Spontaneous Ca2+ waves were imaged (fluo-3) in rat isolated ventricular myocytes, subjected to modest Ca2+-overload. Whole-cell intracellular acidosis (induced by acetate-superfusion) stimulated wave frequency. Pharmacologically blocking sarcolemmal Na+/H+ exchange (NHE1) prevented this stimulation, unveiling inhibition by H+. Acidosis also increased Ca2+ wave velocity. Restricting acidosis to one end of a myocyte, using a microfluidic device, inhibited Ca2+ waves in the acidic zone (consistent with ryanodine receptor inhibition), but stimulated wave emergence elsewhere in the cell. This remote stimulation was absent when NHE1 was selectively inhibited in the acidic zone. Remote stimulation depended on a locally evoked, NHE1-driven rise of [Na+]i that spread rapidly downstream. Conclusion Acidosis influences Ca2+ waves via inhibitory Hi+ and stimulatory Nai+ signals (the latter facilitating intracellular Ca2+-loading through modulation of sarcolemmal Na+/Ca2+ exchange activity). During spatial [H+]i-heterogeneity, Hi+-inhibition dominates in acidic regions, while rapid Nai+ diffusion stimulates waves in downstream, non-acidic regions. Local acidosis thus simultaneously inhibits and stimulates arrhythmogenic Ca2+-signalling in the same myocyte. If the principle of remote H+-stimulation of Ca2+ waves also applies in multicellular myocardium, it raises the possibility of electrical disturbances being driven remotely by adjacent ischaemic areas, which are known to be intensely acidic. PMID:28339694

  12. Regional acidosis locally inhibits but remotely stimulates Ca2+ waves in ventricular myocytes.

    PubMed

    Ford, Kerrie L; Moorhouse, Emma L; Bortolozzi, Mario; Richards, Mark A; Swietach, Pawel; Vaughan-Jones, Richard D

    2017-07-01

    Spontaneous Ca2+ waves in cardiomyocytes are potentially arrhythmogenic. A powerful controller of Ca2+ waves is the cytoplasmic H+ concentration ([H+]i), which fluctuates spatially and temporally in conditions such as myocardial ischaemia/reperfusion. H+-control of Ca2+ waves is poorly understood. We have therefore investigated how [H+]i co-ordinates their initiation and frequency. Spontaneous Ca2+ waves were imaged (fluo-3) in rat isolated ventricular myocytes, subjected to modest Ca2+-overload. Whole-cell intracellular acidosis (induced by acetate-superfusion) stimulated wave frequency. Pharmacologically blocking sarcolemmal Na+/H+ exchange (NHE1) prevented this stimulation, unveiling inhibition by H+. Acidosis also increased Ca2+ wave velocity. Restricting acidosis to one end of a myocyte, using a microfluidic device, inhibited Ca2+ waves in the acidic zone (consistent with ryanodine receptor inhibition), but stimulated wave emergence elsewhere in the cell. This remote stimulation was absent when NHE1 was selectively inhibited in the acidic zone. Remote stimulation depended on a locally evoked, NHE1-driven rise of [Na+]i that spread rapidly downstream. Acidosis influences Ca2+ waves via inhibitory Hi+ and stimulatory Nai+ signals (the latter facilitating intracellular Ca2+-loading through modulation of sarcolemmal Na+/Ca2+ exchange activity). During spatial [H+]i-heterogeneity, Hi+-inhibition dominates in acidic regions, while rapid Nai+ diffusion stimulates waves in downstream, non-acidic regions. Local acidosis thus simultaneously inhibits and stimulates arrhythmogenic Ca2+-signalling in the same myocyte. If the principle of remote H+-stimulation of Ca2+ waves also applies in multicellular myocardium, it raises the possibility of electrical disturbances being driven remotely by adjacent ischaemic areas, which are known to be intensely acidic. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Cardiology.

  13. THE EFFECTS OF MATCHED STIMULATION AND RESPONSE INTERRUPTION AND REDIRECTION ON VOCAL STEREOTYPY

    PubMed Central

    Love, Jessica J; Miguel, Caio F; Fernand, Jonathan K; LaBrie, Jillian K

    2012-01-01

    Stereotypy has been classified as repetitive behavior that does not serve any apparent function. Two procedures that have been found to reduce rates of vocal stereotypy effectively are response interruption and redirection (RIRD) and noncontingent access to matched stimulation (MS). The purpose of the current study was to evaluate the effects of RIRD alone, MS alone, and MS combined with RIRD. One participant's results suggested similar suppressive effects on vocal stereotypy across treatment conditions. For the second participant, a slightly greater suppression of stereotypy was associated with MS + RIRD. In addition, both participants emitted a greater frequency of appropriate vocalizations in conditions with RIRD. Data suggest that the addition of MS might facilitate the implementation of RIRD in applied settings. PMID:23060668

  14. Improvement of Olfactory Function With High Frequency Non-invasive Auricular Electrostimulation in Healthy Humans

    PubMed Central

    Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O.

    2018-01-01

    In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants (n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT (p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS (p = 0.014, post-hoc with Bonferroni correction) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort. PMID:29740266

  15. Improvement of Olfactory Function With High Frequency Non-invasive Auricular Electrostimulation in Healthy Humans.

    PubMed

    Maharjan, Ashim; Wang, Eunice; Peng, Mei; Cakmak, Yusuf O

    2018-01-01

    In past literature on animal models, invasive vagal nerve stimulation using high frequencies has shown to be effective at modulating the activity of the olfactory bulb (OB). Recent advances in invasive vagal nerve stimulation in humans, despite previous findings in animal models, used low frequency stimulation and found no effect on the olfactory functioning. The present article aimed to test potential effects of non-invasive, high and low frequency vagal nerve stimulation in humans, with supplementary exploration of the orbitofrontal cortex using near-infrared spectroscopy (NIRS). Healthy, male adult participants ( n = 18) performed two olfactory tests [odor threshold test (OTT) and supra-threshold test (STT)] before and after receiving high-, low frequency vagal nerve stimulation and placebo (no stimulation). Participant's olfactory functioning was monitored using NIRS, and assessed with two behavioral olfactory tests. NIRS data of separate stimulation parameters were statistically analyzed using repeated-measures ANOVA across different stages. Data from olfactory tests were analyzed using paired parametric and non-parametric statistical tests. Only high frequency, non-invasive vagal nerve stimulation was able to positively modulate the performance of the healthy participants in the STT ( p = 0.021, Wilcoxon sign-ranked test), with significant differences in NIRS ( p = 0.014, post-hoc with Bonferroni correction ) recordings of the right hemispheric, orbitofrontal cortex. The results from the current article implore further exploration of the neurocircuitry involved under vagal nerve stimulation and the effects of non-invasive, high frequency, vagal nerve stimulation toward olfactory dysfunction which showcase in Parkinson's and Alzheimer's Diseases. Despite the sufficient effect size (moderate effect, correlation coefficient (r): 0.39 for the STT) of the current study, future research should replicate the current findings with a larger cohort.

  16. Investigating the effect of STN-DBS stimulation and different frequency settings on the acoustic-articulatory features of vowels.

    PubMed

    Yilmaz, Atilla; Sarac, Elif Tuğba; Aydinli, Fatma Esen; Yildizgoren, Mustafa Turgut; Okuyucu, Emine Esra; Serarslan, Yurdal

    2018-06-25

    Parkinson's disease (PD) is the second most frequent progressive neuro-degenerative disorder. In addition to motor symptoms, nonmotor symptoms and voice and speech disorders can also develop in 90% of PD patients. The aim of our study was to investigate the effects of DBS and different DBS frequencies on speech acoustics of vowels in PD patients. The study included 16 patients who underwent STN-DBS surgery due to PD. The voice recordings for the vowels including [a], [e], [i], and [o] were performed at frequencies including 230, 130, 90, and 60 Hz and off-stimulation. The voice recordings were gathered and evaluated by the Praat software, and the effects on the first (F1), second (F2), and third formant (F3) frequencies were analyzed. A significant difference was found for the F1 value of the vowel [a] at 130 Hz compared to off-stimulation. However, no significant difference was found between the three formant frequencies with regard to the stimulation frequencies and off-stimulation. In addition, though not statistically significant, stimulation at 60 and 230 Hz led to several differences in the formant frequencies of other three vowels. Our results indicated that STN-DBS stimulation at 130 Hz had a significant positive effect on articulation of [a] compared to off-stimulation. Although there is not any statistical significant stimulation at 60 and 230 Hz may also have an effect on the articulation of [e], [i], and [o] but this effect needs to be investigated in future studies with higher numbers of participants.

  17. Comparison of electroacupuncture frequency-related effects on heart rate variability in healthy volunteers: a randomized clinical trial.

    PubMed

    Lee, Jong-Ho; Kim, Kyu-Hyeong; Hong, Jin-Woo; Lee, Won-Chul; Koo, Sungtae

    2011-06-01

    This study aimed to compare the effects of high frequency electroacupuncture (EA) and low-frequency EA on the autonomic nervous system by using a heart rate variability measuring device in normal individuals. Fourteen participants were recruited and each participated in the high-frequency and low-frequency sessions (crossover design). The order of sessions was randomized and the interval between the two sessions was over 2 weeks. Participants received needle insertion with 120-Hz stimulation during the high-frequency session (high-frequency EA group), and with 2-Hz stimulation during the low-frequency session (low-frequency EA group). Acupuncture needles were directly inserted perpendicularly to LI 4 and LI 11 acupoints followed by delivery of electric pulses to these points for 15 minutes. Heart rate variability was measured 5 minutes before and after EA stimulation by a heart rate variability measuring system. We found a significant increase in the standard deviation of the normal-to-normal interval in the high-frequency EA group, with no change in the low-frequency EA group. Both the high-frequency and low-frequency EA groups showed no significant differences in other parameters including high-frequency power, low-frequency power, and the ratio of low-frequency power to high-frequency power. Based on these findings, we concluded that high-frequency EA stimulation is more effective than low-frequency EA stimulation in increasing autonomic nervous activity and there is no difference between the two EA frequencies in enhancing sympathovagal balance. Copyright © 2011 Korean Pharmacopuncture Institute. Published by .. All rights reserved.

  18. Optimized temporal pattern of brain stimulation designed by computational evolution

    PubMed Central

    Brocker, David T.; Swan, Brandon D.; So, Rosa Q.; Turner, Dennis A.; Gross, Robert E.; Grill, Warren M.

    2017-01-01

    Brain stimulation is a promising therapy for several neurological disorders, including Parkinson’s disease. Stimulation parameters are selected empirically and are limited to the frequency and intensity of stimulation. We used the temporal pattern of stimulation as a novel parameter of deep brain stimulation to ameliorate symptoms in a parkinsonian animal model and in humans with Parkinson’s disease. We used model-based computational evolution to optimize the stimulation pattern. The optimized pattern produced symptom relief comparable to that from standard high-frequency stimulation (a constant rate of 130 or 185 Hz) and outperformed frequency-matched standard stimulation in the parkinsonian rat and in patients. Both optimized and standard stimulation suppressed abnormal oscillatory activity in the basal ganglia of rats and humans. The results illustrate the utility of model-based computational evolution to design temporal pattern of stimulation to increase the efficiency of brain stimulation in Parkinson’s disease, thereby requiring substantially less energy than traditional brain stimulation. PMID:28053151

  19. Low-frequency stimulation cancels the high-frequency-induced long-lasting effects in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Pettorossi, V E; Zampolini, M

    1996-05-15

    In rat brainstem slices, we investigated the effects of low-frequency stimulation (LFS) of the primary vestibular afferents on the amplitude of the field potentials evoked in the medial vestibular nuclei (MVN). LFS induced long-term effects, the sign of which depended on whether the vestibular neurons were previously conditioned by HFS. In unconditioned slices, LFS evoked modifications of the responses that were similar to those observed after HFS but had a smaller extension. In fact, LFS caused long-lasting potentiation of the N1 wave in the MVN ventral portion (Vp) and long-lasting depression of the N2 wave in the MVN dorsal portion (Dp), whereas it provoked small and variable effects on the N1 wave. By contrast, when the synaptic transmission was already conditioned, LFS influenced the synaptic responses oppositely, reducing or annulling the HFS long-term effects. This phenomenon was specifically induced by LFS, because HFS was not able to cause it. The involvement of NMDA receptors in mediating the LFS long-term effects was supported by the fact that AP-5 prevented their induction. In addition, the annulment of HFS long-term effects by LFS was also demonstrated by the shift in the latency of the evoked unitary potentials after LFS. In conclusion, we suggest that the reduction of the previously induced conditioning could represent a cancellation mechanism, useful to quickly adapt the vestibular system to continuous different needs and to avoid saturation.

  20. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey.

    PubMed

    Jenkinson, Ned; Nandi, Dipankar; Miall, R Chris; Stein, John F; Aziz, Tipu Z

    2004-12-03

    We have studied the effects of stimulating the pedunculopontine nuclei through a fully implanted macroelectrode with a s.c. implantable pulse generator whose parameters can be programmed telemetrically, in a macaque before and after inducing Parkinsonian akinesia with MPTP. Our results show that in the normal monkey high frequency stimulation of the pedunculopontine nuclei reduces motor activity while low frequency stimulation increases it significantly over baseline. After making the monkey Parkinsonian with MPTP, unilateral low frequency stimulation of the pedunculopontine nuclei led to significant increases in activity. These results suggest that pedunculopontine nuclei stimulation could be clinically effective in treating advanced Parkinson's disease and other akinetic disorders.

  1. Effect of Electrical Current Stimulation on Pseudomonas Aeruginosa Growth

    NASA Astrophysics Data System (ADS)

    Alneami, Auns Q.; Khalil, Eman G.; Mohsien, Rana A.; Albeldawi, Ali F.

    2018-05-01

    The present study evaluates the effect of electrical current with different frequencies stimulation to kill pathogenic Pseudomonas aeruginosa (PA) bacteria in vitro using human safe level of electricity controlled by function generator. A wide range of frequencies has been used from 0.5 Hz-1.2 MHz to stimulate the bacteria at a voltage of 20 p-p volt for different periods of time (5 to 30) minutes. The culture of bacteria used Nickel, Nichrome, or Titanium electrode using agarose in phosphate buffer saline (PBS) and mixed with bacterial stock activated by trypticase soy broth (TSB). The results of frequencies between 0.5-1 KHz show the inhibition zone diameter of 20 mm in average at 30 minutes of stimulation. At frequencies between 3-60 KHz the inhibition zone diameter was only 10mm for 30 minutes of stimulation. While the average of inhibition zone diameter increased to more than 30mm for 30 minutes of stimulation at frequencies between 80-120 KHz. From this study we conclude that at specific frequency (resonance frequency) (frequencies between 0.5-1 KHz) there was relatively large inhibition zone because the inductive reactance effect is equal to the value of capacitive reactance effect (XC = XL). At frequencies over than 60 KHz, maximum inhibition zone noticed because the capacitance impedance becomes negligible (only the small resistivity of the bacterial internal organs).

  2. Synchrony of two uncoupled neurons under half wave sine current stimulation

    NASA Astrophysics Data System (ADS)

    Peng, Yueping; Wang, Jue; Jian, Zhong

    2009-04-01

    Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.

  3. Feasibility of recording high frequency oscillations with tripolar concentric ring electrodes during pentylenetetrazole-induced seizures in rats.

    PubMed

    Makeyev, Oleksandr; Liu, Xiang; Wang, Liling; Zhu, Zhenghan; Taveras, Aristides; Troiano, Derek; Medvedev, Andrei V; Besio, Walter G

    2012-01-01

    As epilepsy remains a refractory condition in about 30% of patients with complex partial seizures, electrical stimulation of the brain has recently shown potential for additive seizure control therapy. Previously, we applied noninvasive transcranial focal stimulation via novel tripolar concentric ring electrodes (TCREs) on the scalp of rats after inducing seizures with pentylenetetrazole (PTZ). We developed a close-loop system to detect seizures and automatically trigger the stimulation and evaluated its effect on the electrographic activity recorded by TCREs in rats. In our previous work the detectors of seizure onset were based on seizure-induced changes in signal power in the frequency range up to 100 Hz, while in this preliminary study we assess the feasibility of recording high frequency oscillations (HFOs) in the range up to 300 Hz noninvasively with scalp TCREs during PTZ-induced seizures. Grand average power spectral density estimate and generalized likelihood ratio tests were used to compare power of electrographic activity at different stages of seizure development in a group of rats (n= 8). The results suggest that TCREs have the ability to record HFOs from the scalp as well as that scalp-recorded HFOs can potentially be used as features for seizure onset detection.

  4. Effects of Surface Electrical Stimulation Both at Rest and During Swallowing in Chronic Pharyngeal Dysphagia§

    PubMed Central

    Ludlow, Christy L.; Humbert, Ianessa; Saxon, Keith; Poletto, Christopher; Sonies, Barbara; Crujido, Lisa

    2006-01-01

    We tested two hypotheses using surface electrical stimulation in chronic pharyngeal dysphagia: that stimulation 1) lowered the hyoid bone and/or larynx when applied at rest, and 2) increased aspiration, penetration or pharyngeal pooling during swallowing. Bipolar surface electrodes were placed on the skin overlying the submandibular and laryngeal regions. Maximum tolerated levels of stimulation were applied while patients held their mouth closed at rest. Videofluoroscopic recordings were used to measure hyoid movements in the superior-inferior (s-i) and anterior-posterior (a-p) dimensions and the subglottic air column (s-i) position while stimulation was on and off. Patients swallowed 5 ml liquid when stimulation was off, at low sensory stimulation levels, and at maximum tolerated levels (motor). Speech pathologists blinded to condition, tallied the frequency of aspiration, penetration, pooling and esophageal entry from videofluorographic recordings of swallows. Only significant (p=0.0175) hyoid depression occurred during stimulation at rest. Aspiration and pooling were significantly reduced only with low sensory threshold levels of stimulation (p=0.025) and not during maximum levels of surface electrical stimulation. Those patients who had reduced aspiration and penetration during swallowing with stimulation had greater hyoid depression during stimulation at rest (p= 0.006). Stimulation may have acted to resist patients’ hyoid elevation during swallowing. PMID:16718620

  5. Pathways of translation: deep brain stimulation.

    PubMed

    Gionfriddo, Michael R; Greenberg, Alexandra J; Wahegaonkar, Abhijeet L; Lee, Kendall H

    2013-12-01

    Electrical stimulation of the brain has a 2000 year history. Deep brain stimulation (DBS), one form of neurostimulation, is a functional neurosurgical approach in which a high-frequency electrical current stimulates targeted brain structures for therapeutic benefit. It is an effective treatment for certain neuropathologic movement disorders and an emerging therapy for psychiatric conditions and epilepsy. Its translational journey did not follow the typical bench-to-bedside path, but rather reversed the process. The shift from ancient and medieval folkloric remedy to accepted medical practice began with independent discoveries about electricity during the 19th century and was fostered by technological advances of the 20th. In this paper, we review that journey and discuss how the quest to expand its applications and improve outcomes is taking DBS from the bedside back to the bench. © 2013 Wiley Periodicals, Inc.

  6. Improved Anatomical Specificity of Non-invasive Neuro-stimulation by High Frequency (5 MHz) Ultrasound

    NASA Astrophysics Data System (ADS)

    Li, Guo-Feng; Zhao, Hui-Xia; Zhou, Hui; Yan, Fei; Wang, Jing-Yao; Xu, Chang-Xi; Wang, Cong-Zhi; Niu, Li-Li; Meng, Long; Wu, Song; Zhang, Huai-Ling; Qiu, Wei-Bao; Zheng, Hai-Rong

    2016-04-01

    Low frequency ultrasound (<1 MHz) has been demonstrated to be a promising approach for non-invasive neuro-stimulation. However, the focal width is limited to be half centimeter scale. Minimizing the stimulation region with higher frequency ultrasound will provide a great opportunity to expand its application. This study first time examines the feasibility of using high frequency (5 MHz) ultrasound to achieve neuro-stimulation in brain, and verifies the anatomical specificity of neuro-stimulation in vivo. 1 MHz and 5 MHz ultrasound stimulation were evaluated in the same group of mice. Electromyography (EMG) collected from tail muscles together with the motion response videos were analyzed for evaluating the stimulation effects. Our results indicate that 5 MHz ultrasound can successfully achieve neuro-stimulation. The equivalent diameter (ED) of the stimulation region with 5 MHz ultrasound (0.29 ± 0.08 mm) is significantly smaller than that with 1 MHz (0.83 ± 0.11 mm). The response latency of 5 MHz ultrasound (45 ± 31 ms) is also shorter than that of 1 MHz ultrasound (208 ± 111 ms). Consequently, high frequency (5 MHz) ultrasound can successfully activate the brain circuits in mice. It provides a smaller stimulation region, which offers improved anatomical specificity for neuro-stimulation in a non-invasive manner.

  7. Effect of fusimotor stimulation on Ia discharge during shortening of cat soleus muscle at different speeds

    PubMed Central

    Appenteng, K.; Prochazka, A.; Proske, U.; Wand, P.

    1982-01-01

    1. In barbiturate-anaesthetized cats, the L7 and S1 dorsal and ventral roots were dissected to isolate functionally single afferents identified as primary endings of soleus muscle spindles, and motor filaments which exerted a fusimotor action on the afferents with limited action on extrafusal muscle. Up to seven filaments, with an action on a given primary ending, could be isolated and each was classified as exerting either a predominantly dynamic or static action. 2. Combined stimulation of these filaments, at rates up to 200 impulses/s could maintain afferent firing during muscle shortenings at speeds up to 200 mm/s. 3. Fusimotor stimulation could also maintain afferent firing at a target frequency of 100 impulses/s during muscle shortenings up to 200 mm/s. The timing, in relation to the onset of shortening, and the rates of fusimotor stimulation were found to be critical in achieving the target frequency. 4. Sinusoidal modulation of the frequency of fusimotor stimulation was used to study the conditions required to achieve constant afferent firing in the face of imposed sinusoidal length changes. 5. For given depths of modulation, the phase advance of fusimotor stimulation needed to produce minimum modulation of afferent firing (best compensation) increased with increasing frequency of the sinusoids. The compensation deteriorated with an increase in the frequency of the sinusoids and a change in the mean muscle lengths, although in some cases it could be restored by adjustments to the depth of modulation of fusimotor rate. This suggests that for movements of varying speeds and amplitudes, settings which are appropriate for shortening at a given velocity and mean muscle length, do not apply if either of these two variables are altered. 6. These findings demonstrate that the fusimotor system is potentially capable of eliciting constant afferent firing as envisaged in the `servo-assistance' hypothesis (Matthews, 1964, 1972; Stein, 1974). This, and the fact that constant afferent firing is not seen during normal unobstructed shortenings at velocities greater than 0·2 resting length/s (Prochazka, 1981), are used to argue that it is by choice rather than necessity that `servo-assistance' (as defined above) is not employed during normal movements. However, servo-assistance of a different form (involving modulated spindle afferent feed-back from both agonists and antagonists) remains a viable alternative. PMID:6216336

  8. Myoneural necrosis following high-frequency electrical stimulation of the cast-immobilized rabbit hindlimb

    NASA Technical Reports Server (NTRS)

    Friden, J.; Lieber, R. L.; Myers, R. R.; Powell, H. C.; Hargens, A. R.

    1989-01-01

    The morphological and physiological effects of 4 weeks of high-frequency electrical stimulation (1 h/day, 5 days/week) on cast-immobilized rabbit hindlimbs were investigated in the tibialis anterior muscle and peroneal nerve. In 2 out of 6 animals, high-frequency stimulation with immobilization caused muscle fiber death, internalization of muscle fiber nuclei, connective tissue proliferation, inflammatory response, altered fiber size distribution and variable staining intensities. The fast-twitch fibers were predominantly affected. Two of six peripheral nerves subjected to immobilization and stimulation showed severe damage. Tetanic forces were significantly reduced in the affected muscles. Therefore, the immobilization and high-frequency stimulation may be detrimental to myoneural structure and function and, thus, this combination of therapies should be applied conservatively.

  9. Women's Experience of Orgasm During Intercourse: Question Semantics Affect Women's Reports and Men's Estimates of Orgasm Occurrence.

    PubMed

    Shirazi, Talia; Renfro, Kaytlin J; Lloyd, Elisabeth; Wallen, Kim

    2018-04-01

    Most women report reliably experiencing orgasm from masturbation, but a smaller proportion of women report regularly experiencing orgasm from intercourse. Research suggests that concurrent clitoral stimulation during intercourse increases the likelihood of orgasm, yet most surveys of orgasm during intercourse leave unspecified whether vaginal intercourse does or does not include concurrent clitoral stimulation (assisted intercourse or unassisted intercourse, respectively). Using an online sample of 1569 men and 1478 women, we tested whether phrasing of questions about the occurrence of orgasm in intercourse modulates women's reported frequency and men's estimates of women's frequency of orgasm in intercourse. Participants provided estimates of orgasm when asked explicitly about intercourse with stimulation unspecified, assisted intercourse, and unassisted intercourse. Women's reports of orgasm occurrence were highest in response to assisted intercourse (51-60%), second highest in response to intercourse with clitoral stimulation unspecified (31-40%), and lowest in response to unassisted intercourse (21-30%). Men's estimates of women's orgasms were highest in response to assisted intercourse (61-70%), and lowest in response to unassisted intercourse (41-50%); in both conditions, men's estimates were significantly higher than women's reports. When clitoral stimulation was unspecified, women interpreted "orgasm in intercourse" in three ways: as from intercourse alone, as including concurrent clitoral stimulation though it was unspecified, or as an average of assisted and unassisted intercourse. Taken together, these results demonstrate that the phrasing of questions about women's orgasm produces markedly different orgasm estimates, and suggest that concurrent clitoral stimulation increases the likelihood of women experiencing orgasm in intercourse.

  10. Mobilization of colloidal particles by low-frequency dynamic stress stimulation.

    PubMed

    Beckham, Richard E; Abdel-Fattah, Amr I; Roberts, Peter M; Ibrahim, Reem; Tarimala, Sowmitri

    2010-01-05

    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern, especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. Although the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and the mobilization of in situ colloidal particles. This article explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1 mm borosilicate beads and loaded with polystyrene microparticles demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microparticles. Increasing the amplitude of the oscillations increases the number of microparticles released and can also result in cyclical spikes in effluent microparticle concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data and continued at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes in the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low-frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed microparticles. These results support the theory that mechanical interactions between porous matrix grains are important mechanisms in flow path alteration and the mobilization of naturally occurring colloidal particles during elastic wave stimulation. These results also point to both continuous and discrete en masse releases of colloidal particles, perhaps because of circulation cells within the packing material.

  11. Treatment of intractable chronic cluster headache by occipital nerve stimulation: a cohort of 51 patients.

    PubMed

    Miller, S; Watkins, L; Matharu, M

    2017-02-01

    Chronic cluster headache is a rare, highly disabling primary headache condition. When medically intractable, occipital nerve stimulation can offer effective treatment. Open-label series have provided data on small cohorts only. We analyzed 51 subjects to evaluate the long-term outcomes of highly intractable chronic cluster headache with occipital nerve stimulation. Patients with intractable chronic cluster headache were implanted with occipital nerve stimulators during the period 2007-2014. The primary endpoint was improvement in daily attack frequency. Secondary endpoints included attack severity, attack duration, quality-of-life measures, headache disability scores and adverse events. We studied 51 patients [35 males; mean age at implant 47.78 (range 31-70) years; mean follow-up 39.17 (range 2-81) months]. Nineteen patients had other chronic headache types in addition in chronic cluster headache. At final follow-up, there was a 46.1% improvement in attack frequency (P < 0001) across all patients, 49.5% (P < 0.001) in those with cluster headache alone and 40.3% (P = 0.036) in those with multiple phenotypes. There were no significant differences in response in those with or without multiple headache types. The overall response rate (defined as at least a 50% improvement in attack frequency) was 52.9%. Significant reductions were also seen in attack duration and severity. Improvements were noted in headache disability scores and quality-of-life measures. Triptan use of responders dropped by 62.56%, resulting in significant cost savings. Adverse event rates were highly favorable. Occipital nerve stimulation appears to be a safe and efficacious treatment for highly intractable chronic cluster headache even after a mean follow-up of over 3 years. © 2016 EAN.

  12. The effects of acoustic vibration on fibroblast cell migration.

    PubMed

    Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic

    2016-12-01

    Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Causal Evidence from Humans for the Role of Mediodorsal Nucleus of the Thalamus in Working Memory.

    PubMed

    Peräkylä, Jari; Sun, Lihua; Lehtimäki, Kai; Peltola, Jukka; Öhman, Juha; Möttönen, Timo; Ogawa, Keith H; Hartikainen, Kaisa M

    2017-12-01

    The mediodorsal nucleus of the thalamus (MD), with its extensive connections to the lateral pFC, has been implicated in human working memory and executive functions. However, this understanding is based solely on indirect evidence from human lesion and imaging studies and animal studies. Direct, causal evidence from humans is missing. To obtain direct evidence for MD's role in humans, we studied patients treated with deep brain stimulation (DBS) for refractory epilepsy. This treatment is thought to prevent the generalization of a seizure by disrupting the functioning of the patient's anterior nuclei of the thalamus (ANT) with high-frequency electric stimulation. This structure is located superior and anterior to MD, and when the DBS lead is implanted in ANT, tip contacts of the lead typically penetrate through ANT into the adjoining MD. To study the role of MD in human executive functions and working memory, we periodically disrupted and recovered MD's function with high-frequency electric stimulation using DBS contacts reaching MD while participants performed a cognitive task engaging several aspects of executive functions. We hypothesized that the efficacy of executive functions, specifically working memory, is impaired when the functioning of MD is perturbed by high-frequency stimulation. Eight participants treated with ANT-DBS for refractory epilepsy performed a computer-based test of executive functions while DBS was repeatedly switched ON and OFF at MD and at the control location (ANT). In comparison to stimulation of the control location, when MD was stimulated, participants committed 2.26 times more errors in general (total errors; OR = 2.26, 95% CI [1.69, 3.01]) and 2.86 times more working memory-related errors specifically (incorrect button presses; OR = 2.88, CI [1.95, 4.24]). Similarly, participants committed 1.81 more errors in general ( OR = 1.81, CI [1.45, 2.24]) and 2.08 times more working memory-related errors ( OR = 2.08, CI [1.57, 2.75]) in comparison to no stimulation condition. "Total errors" is a composite score consisting of basic error types and was mostly driven by working memory-related errors. The facts that MD and a control location, ANT, are only few millimeters away from each other and that their stimulation produces very different results highlight the location-specific effect of DBS rather than regionally unspecific general effect. In conclusion, disrupting and recovering MD's function with high-frequency electric stimulation modulated participants' online working memory performance providing causal, in vivo evidence from humans for the role of MD in human working memory.

  14. Interactions of cervico-ocular and vestibulo-ocular fast-phase signals in the control of eye position in rabbits.

    PubMed Central

    Barmack, N H; Errico, P; Ferraresi, A; Pettorossi, V E

    1989-01-01

    1. Eye movements in unanaesthetized rabbits were studied during horizontal neck-proprioceptive stimulation (movement of the body with respect to the fixed head), when this stimulation was given alone and when it was given simultaneously with vestibular stimulation (rotation of the head-body). The effect of neck-proprioceptive stimulation on modifying the anticompensatory fast-phase eye movements (AFPs) evoked by vestibular stimulation was studied with a 'conditioning-test' protocol; the 'conditioning' stimulus was a neck-proprioceptive signal evoked by a step-like change in body position with respect to the head and the 'test' stimulus was a vestibular signal evoked by a step rotation of the head-body. 2. The influence of eye position and direction of slow eye movements on the occurrence of compensatory fast-phase eye movements (CFPs) evoked by neck-proprioceptive stimulation was also examined. 3. The anticompensatory fast phase (AFP) evoked by vestibular stimulation was attenuated by a preceding neck-proprioceptive stimulus which when delivered alone evoked compensatory slow-phase eye movements (CSP) in the same direction as the CSP evoked by vestibular stimulation. Conversely, the vestibularly evoked AFP was potentiated by a neck-proprioceptive stimulus which evoked CSPs opposite to that of vestibularly evoked CSPs. 4. Eccentric initial eye positions increased the probability of occurrence of midline-directed compensatory fast-phase eye movements (CFPs) evoked by appropriate neck-proprioceptive stimulation. 5. The gain of the horizontal cervico-ocular reflex (GHCOR) was measured from the combined changes in eye position resulting from AFPs and CSPs. GHCOR was potentiated during simultaneous vestibular stimulation. This enhancement of GHCOR occurred at neck-proprioceptive stimulus frequencies which, in the absence of conjoint vestibular stimulation, do not evoke CSPs. PMID:2795479

  15. Assessment of the risk of fall, related to visual stimulation, in patients with central vestibular disorders.

    PubMed

    Suárez, H; Musé, P; Suárez, A; Arocena, M

    2001-01-01

    In order to assess the influence of visual stimulation in the triggering of imbalance and falls in the elderly population, the postural responses of 18 elderly patients with central vestibular disorders and clinical evidence of instability and falls were studied while receiving different types of visual stimuli. The stimulation conditions were: (i) no specific stimuli; (ii) smooth pursuit with pure sinusoids of 0.2 Hz as foveal stimulation; and (iii) optokinetic stimulation (OK) as retinal stimuli. Using a platform AMTI Accusway platform, the 95% confidence ellipse (CE) and sway velocity (SV) were evaluated with a scalogram using wavelets in order to assess the relationship between time and frequency in postural control. Velocity histograms were also constructed in order to observe the distribution of velocity values during the recording. A non-homogeneous postural behavior after visual stimulation was found among this population. In five of the patients the OK stimulation generated: (i) significantly higher average values of CE ( > 3.4+/-0.69 cm2); (ii) a significant increase in the average values of the SV ( > 3.89+/-1.15 cm/s) and a velocity histogram with a homogeneous distribution between 0 and 18 cm/s; and (iii) a scalogram with sway frequencies of up to 4 Hz distributed in both the X and Y directions (backwards and forwards and lateral) during visual stimulation with arbitrary units of energy density > 5. These three qualitative and quantitative aspects could be "markers" of visual dependence in the triggering of the mechanism of lack of equilibrium and hence falls in some elderly patients and should be considered in order to prevent falls and also to assist in the rehabilitation program of these patients.

  16. Combined Electric and Acoustic Stimulation With Hearing Preservation: Effect of Cochlear Implant Low-Frequency Cutoff on Speech Understanding and Perceived Listening Difficulty.

    PubMed

    Gifford, René H; Davis, Timothy J; Sunderhaus, Linsey W; Menapace, Christine; Buck, Barbara; Crosson, Jillian; O'Neill, Lori; Beiter, Anne; Segel, Phil

    The primary objective of this study was to assess the effect of electric and acoustic overlap for speech understanding in typical listening conditions using semidiffuse noise. This study used a within-subjects, repeated measures design including 11 experienced adult implant recipients (13 ears) with functional residual hearing in the implanted and nonimplanted ear. The aided acoustic bandwidth was fixed and the low-frequency cutoff for the cochlear implant (CI) was varied systematically. Assessments were completed in the R-SPACE sound-simulation system which includes a semidiffuse restaurant noise originating from eight loudspeakers placed circumferentially about the subject's head. AzBio sentences were presented at 67 dBA with signal to noise ratio varying between +10 and 0 dB determined individually to yield approximately 50 to 60% correct for the CI-alone condition with full CI bandwidth. Listening conditions for all subjects included CI alone, bimodal (CI + contralateral hearing aid), and bilateral-aided electric and acoustic stimulation (EAS; CI + bilateral hearing aid). Low-frequency cutoffs both below and above the original "clinical software recommendation" frequency were tested for all patients, in all conditions. Subjects estimated listening difficulty for all conditions using listener ratings based on a visual analog scale. Three primary findings were that (1) there was statistically significant benefit of preserved acoustic hearing in the implanted ear for most overlap conditions, (2) the default clinical software recommendation rarely yielded the highest level of speech recognition (1 of 13 ears), and (3) greater EAS overlap than that provided by the clinical recommendation yielded significant improvements in speech understanding. For standard-electrode CI recipients with preserved hearing, spectral overlap of acoustic and electric stimuli yielded significantly better speech understanding and less listening effort in a laboratory-based, restaurant-noise simulation. In conclusion, EAS patients may derive more benefit from greater acoustic and electric overlap than given in current software fitting recommendations, which are based solely on audiometric threshold. These data have larger scientific implications, as previous studies may not have assessed outcomes with optimized EAS parameters, thereby underestimating the benefit afforded by hearing preservation.

  17. Reduction in spontaneous firing of mouse excitatory layer 4 cortical neurons following visual classical conditioning

    NASA Astrophysics Data System (ADS)

    Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.

    2017-08-01

    The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.

  18. Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.

    PubMed

    Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V

    2012-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.

  19. Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

    PubMed Central

    Ryu, Sang Baek; Bae, Eun Kyung; Kim, Jinhyung; Hwang, Yong Sup; Im, Changkyun; Chang, Jin Woo; Shin, Hyung-Cheul

    2013-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation. PMID:23946689

  20. On the efficiency of FES cycling: a framework and systematic review.

    PubMed

    Hunt, K J; Fang, J; Saengsuwan, J; Grob, M; Laubacher, M

    2012-01-01

    Research and development in the art of cycling using functional electrical stimulation (FES) of the paralysed leg muscles has been going on for around thirty years. A range of physiological benefits has been observed in clinical studies but an outstanding problem with FES-cycling is that efficiency and power output are very low. The present work had the following aims: (i) to provide a tutorial introduction to a novel framework and methods of estimation of metabolic efficiency using example data sets, and to propose benchmark measures for evaluating FES-cycling performance; (ii) to systematically review the literature pertaining specifically to the metabolic efficiency of FES-cycling, to analyse the observations and possible explanations for the low efficiency, and to pose hypotheses for future studies which aim to improve performance. We recommend the following as benchmark measures for assessment of the performance of FES-cycling: (i) total work efficiency, delta efficiency and stimulation cost; (ii) we recommend, further, that these benchmark measures be complemented by mechanical measures of maximum power output, sustainable steady-state power output and endurance. Performance assessments should be carried out at a well-defined operating point, i.e. under conditions of well controlled work rate and cadence, because these variables have a strong effect on energy expenditure. Future work should focus on the two main factors which affect FES-cycling performance, namely: (i) unfavourable biomechanics, i.e. crude recruitment of muscle groups, non-optimal timing of muscle activation, and lack of synergistic and antagonistic joint control; (ii) non-physiological recruitment of muscle fibres, i.e. mixed recruitment of fibres of different type and deterministic constant-frequency stimulation. We hypothesise that the following areas may bring better FES-cycling performance: (i) study of alternative stimulation strategies for muscle activation including irregular stimulation patterns (e.g. doublets, triplets, stochastic patterns) and variable frequency stimulation trains, where it appears that increasing frequency over time may be profitable; (ii) study of better timing parameters for the stimulated muscle groups, and addition of more muscle groups: this path may be approached using EMG studies and constrained numerical optimisation employing dynamic models; (iii) development of optimal stimulation protocols for muscle reconditioning and FES-cycle training.

  1. Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters

    PubMed Central

    Goh, Jinzhong J.; Manahan-Vaughan, Denise

    2012-01-01

    Persistent synaptic plasticity has been subjected to intense study in the decades since it was first described. Occurring in the form of long-term potentiation (LTP) and long-term depression (LTD), it shares many cellular and molecular properties with hippocampus-dependent forms of persistent memory. Recent reports of both LTP and LTD occurring endogenously under specific learning conditions provide further support that these forms of synaptic plasticity may comprise the cellular correlates of memory. Most studies of synaptic plasticity are performed using in vitro or in vivo preparations where patterned electrical stimulation of afferent fibers is implemented to induce changes in synaptic strength. This strategy has proven very effective in inducing LTP, even under in vivo conditions. LTD in vivo has proven more elusive: although LTD occurs endogenously under specific learning conditions in both rats and mice, its induction has not been successfully demonstrated with afferent electrical stimulation alone. In this study we screened a large spectrum of protocols that are known to induce LTD either in hippocampal slices or in the intact rat hippocampus, to clarify if LTD can be induced by sole afferent stimulation in the mouse CA1 region in vivo. Low frequency stimulation at 1, 2, 3, 5, 7, or 10 Hz given in the range of 100 through 1800 pulses produced, at best, short-term depression (STD) that lasted for up to 60 min. Varying the administration pattern of the stimuli (e.g., 900 pulses given twice at 5 min intervals), or changing the stimulation intensity did not improve the persistency of synaptic depression. LTD that lasts for at least 24 h occurs under learning conditions in mice. We conclude that a coincidence of factors, such as afferent activity together with neuromodulatory inputs, play a decisive role in the enablement of LTD under more naturalistic (e.g., learning) conditions. PMID:23355815

  2. The Relationship between MOC Reflex and Masked Threshold

    PubMed Central

    Garinis, Angela; Werner, Lynne; Abdala, Carolina

    2011-01-01

    Otoacoustic emission (OAE) amplitude can be reduced by acoustic stimulation. This effect is produced by the medial olivocochlear (MOC) reflex. Past studies have shown that the MOC reflex is related to listening in noise and attention. In the present study, the relationship between strength of the contralateral MOC reflex and masked threshold was investigated in 19 adults. Detection thresholds were determined for a 1000-Hz, 300-ms tone presented simultaneously with one repetition of a 300-ms masker in an ongoing train of 300-ms masker bursts at 600-ms intervals. Three masking conditions were tested: 1) broadband noise 2) a fixed-frequency 4-tone complex masker and 3) a random-frequency 4-tone complex masker. Broadband noise was expected to produce energetic masking and the tonal maskers were expected to produce informational masking in some listeners. DPOAEs were recorded at fine frequency interval from 500 to 4000 Hz, with and without contralateral acoustic stimulation. MOC reflex strength was estimated as a reduction in baseline level and a shift in frequency of DPOAE fine-structure maxima near 1000-Hz. MOC reflex and psychophysical testing were completed in separate sessions. Individuals with poorer thresholds in broadband noise and in random-frequency maskers were found to have stronger MOC reflexes. PMID:21878379

  3. Closed-Loop Efficient Searching of Optimal Electrical Stimulation Parameters for Preferential Excitation of Retinal Ganglion Cells

    PubMed Central

    Guo, Tianruo; Yang, Chih Yu; Tsai, David; Muralidharan, Madhuvanthi; Suaning, Gregg J.; Morley, John W.; Dokos, Socrates; Lovell, Nigel H.

    2018-01-01

    The ability for visual prostheses to preferentially activate functionally-distinct retinal ganglion cells (RGCs) is important for improving visual perception. This study investigates the use of high frequency stimulation (HFS) to elicit RGC activation, using a closed-loop algorithm to search for optimal stimulation parameters for preferential ON and OFF RGC activation, resembling natural physiological neural encoding in response to visual stimuli. We evaluated the performance of a wide range of electrical stimulation amplitudes and frequencies on RGC responses in vitro using murine retinal preparations. It was possible to preferentially excite either ON or OFF RGCs by adjusting amplitudes and frequencies in HFS. ON RGCs can be preferentially activated at relatively higher stimulation amplitudes (>150 μA) and frequencies (2–6.25 kHz) while OFF RGCs are activated by lower stimulation amplitudes (40–90 μA) across all tested frequencies (1–6.25 kHz). These stimuli also showed great promise in eliciting RGC responses that parallel natural RGC encoding: ON RGCs exhibited an increase in spiking activity during electrical stimulation while OFF RGCs exhibited decreased spiking activity, given the same stimulation amplitude. In conjunction with the in vitro studies, in silico simulations indicated that optimal HFS parameters could be rapidly identified in practice, whilst sampling spiking activity of relevant neuronal subtypes. This closed-loop approach represents a step forward in modulating stimulation parameters to achieve appropriate neural encoding in retinal prostheses, advancing control over RGC subtypes activated by electrical stimulation. PMID:29615857

  4. Neuromodulation in a rat model of the bladder micturition reflex

    PubMed Central

    Nickles, Angela; Nelson, Dwight E.

    2012-01-01

    A rat model of bladder reflex contraction (BRC) was used to determine the optimal frequency and intensity of spinal nerve (SN) stimulation to produce neuromodulation of bladder activity and to assess the therapeutic mechanisms of this neuromodulation. In anesthetized female rats (urethane 1.2 g/kg ip), a wire electrode was used to produce bilateral stimulation of the L6 SN. A cannula was placed into the bladder via the urethra, and the urethra was ligated to ensure an isovolumetric bladder. Saline infusion induced BRC. Electrical stimulation of the SN produced a frequency- and intensity-dependent attenuation of the frequency of bladder contractions. Ten-herz stimulation produced maximal inhibition; lower and higher stimulation frequency produced less attenuation of BRC. Attenuation of bladder contraction frequency was directly proportional to the current intensity. At 10 Hz, stimulation using motor threshold pulses (Tmot) produced a delayed inhibition of the frequency of bladder contractions to 34 ± 11% of control. Maximal bladder inhibition appeared at 10 min poststimulation. High current intensity at 0.6 mA (∼6 * Tmot) abolished bladder contraction during stimulation, and the inhibition was sustained for 10 min poststimulation (prolonged inhibition). Furthermore, in rats pretreated with capsaicin (125 mg/kg sc), stimulation produced a stronger inhibition of BRC. The inhibitory effects on bladder contraction may be mediated by both afferent and efferent mechanisms. Lower intensities of stimulation may activate large, fast-conducting fibers and actions through the afferent limb of the micturition reflex arc in SN neuromodulation. Higher intensities may additionally act through the efferent limb. PMID:22049401

  5. Trapped-Particle Instability Leading to Bursting in Stimulated Raman Scattering Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Brunner; E. Valeo

    2001-11-08

    Nonlinear, kinetic simulations of Stimulated Raman Scattering (SRS) for laser-fusion-relevant conditions present a bursting behavior. Different explanations for this regime has been given in previous studies: Saturation of SRS by increased nonlinear Landau damping [K. Estabrook et al., Phys. Fluids B 1 (1989) 1282] and detuning due to the nonlinear frequency shift of the plasma wave [H.X. Vu et al., Phys. Rev. Lett. 86 (2001) 4306]. Another mechanism, also assigning a key role to the trapped electrons, is proposed here: The break-up of the plasma wave through the trapped-particle instability.

  6. The Home Environments of Children in the United States Part II: Relations with Behavioral Development through Age Thirteen.

    ERIC Educational Resources Information Center

    Bradley, Robert H.; Corwyn, Robert F.; Burchinal, Margaret; McAdoo, Harriette Pipes; Coll, Cynthia Garcia

    2001-01-01

    Examined frequency with which children were exposed to various parental actions, materials, events, and conditions as part of their home environments, and how these exposures related to well-being. Found the most consistent relations between learning stimulation and children's developmental status, with relations for parental responsiveness and…

  7. Impact of elevated CO2 concentration on dynamics of leaf photosynthesis in Fagus sylvatica is modulated by sky conditions.

    PubMed

    Urban, Otmar; Klem, Karel; Holišová, Petra; Šigut, Ladislav; Šprtová, Mirka; Teslová-Navrátilová, Petra; Zitová, Martina; Špunda, Vladimír; Marek, Michal V; Grace, John

    2014-02-01

    It has been suggested that atmospheric CO2 concentration and frequency of cloud cover will increase in future. It remains unclear, however, how elevated CO2 influences photosynthesis under complex clear versus cloudy sky conditions. Accordingly, diurnal changes in photosynthetic responses among beech trees grown at ambient (AC) and doubled (EC) CO2 concentrations were studied under contrasting sky conditions. EC stimulated the daily sum of fixed CO2 and light use efficiency under clear sky. Meanwhile, both these parameters were reduced under cloudy sky as compared with AC treatment. Reduction in photosynthesis rate under cloudy sky was particularly associated with EC-stimulated, xanthophyll-dependent thermal dissipation of absorbed light energy. Under clear sky, a pronounced afternoon depression of CO2 assimilation rate was found in sun-adapted leaves under EC compared with AC conditions. This was caused in particular by stomata closure mediated by vapour pressure deficit. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Topographic EEG activations during timbre and pitch discrimination tasks using musical sounds.

    PubMed

    Auzou, P; Eustache, F; Etevenon, P; Platel, H; Rioux, P; Lambert, J; Lechevalier, B; Zarifian, E; Baron, J C

    1995-01-01

    Successive auditory stimulation sequences were presented binaurally to 18 young normal volunteers. Five conditions were investigated: two reference tasks, assumed to involve passive listening to couples of musical sounds, and three discrimination tasks, one dealing with pitch, and two with timbre (either with or without the attack). A symmetrical montage of 16 EEG channels was recorded for each subject across the different conditions. Two quantitative parameters of EEG activity were compared among the different sequences within five distinct frequency bands. As compared to a rest (no stimulation) condition, both passive listening conditions led to changes in primary auditory cortex areas. Both discrimination tasks for pitch and timbre led to right hemisphere EEG changes, organized in two poles: an anterior one and a posterior one. After discussing the electrophysiological aspects of this work, these results are interpreted in terms of a network including the right temporal neocortex and the right frontal lobe to maintain the acoustical information in an auditory working memory necessary to carry out the discrimination task.

  9. Gender Differences in Food Choice: Effects of Superior Temporal Sulcus Stimulation.

    PubMed

    Manippa, Valerio; Padulo, Caterina; van der Laan, Laura N; Brancucci, Alfredo

    2017-01-01

    The easy availability of food has caused a shift from eating for survival to hedonic eating. Women, compared to men, have shown to respond differently to food cues in the environment on a behavioral and a neural level, in particular to energy rich (compared to low energy) foods. It has been demonstrated that the right posterior superior temporal sulcus (STS) is the only region exhibiting greater activation for high vs. low calorie food choices. In order to test for a possible causal role of STS in food choice, we applied high frequency transcranial random noise stimulation (tRNS) on STS assuming a different response pattern between males and females. Our participants (18 females, 17 males) performed a forced choice task between food pairs matched for individual liking but differed in calorie, during the left STS, right STS stimulation and sham condition. Male participants showed a general preference for low calorie (LC) foods compared to females. In addition, we observed in males, but not in females, an increase of high calorie (HC) food choice during right STS tRNS compared to sham condition and left STS tRNS. Finally, we found an increase of missed choices during right STS stimulation compared to sham condition and left STS stimulation. In conclusion, thanks to tRNS evidence, we both confirm the involvement and suggest a causal role of right posterior STS in feeding behavior. Moreover, we suggest that gender differences exist in STS mechanisms underlying food choice.

  10. Three-dimensional vestibular eye and head reflexes of the chameleon: characteristics of gain and phase and effects of eye position on orientation of ocular rotation axes during stimulation in yaw direction.

    PubMed

    Haker, H; Misslisch, H; Ott, M; Frens, M A; Henn, V; Hess, K; Sándor, P S

    2003-07-01

    We investigated gaze-stabilizing reflexes in the chameleon using the three-dimensional search-coil technique. Animals were rotated sinusoidally around an earth-vertical axis under head-fixed and head-free conditions, in the dark and in the light. Gain, phase and the influence of eye position on vestibulo-ocular reflex rotation axes were studied. During head-restrained stimulation in the dark, vestibulo-ocular reflex gaze gains were low (0.1-0.3) and phase lead decreased with increasing frequencies (from 100 degrees at 0.04 Hz to < 30 degrees at 1 Hz). Gaze gains were larger during stimulation in the light (0.1-0.8) with a smaller phase lead (< 30 degrees) and were close to unity during the head-free conditions (around 0.6 in the dark, around 0.8 in the light) with small phase leads. These results confirm earlier findings that chameleons have a low vestibulo-ocular reflex gain during head-fixed conditions and stimulation in the dark and higher gains during head-free stimulation in the light. Vestibulo-ocular reflex eye rotation axes were roughly aligned with the head's rotation axis and did not systematically tilt when the animals were looking eccentrically, up- or downward (as predicted by Listing's Law). Therefore, vestibulo-ocular reflex responses in the chameleon follow a strategy, which optimally stabilizes the entire retinal images, a result previously found in non-human primates.

  11. Gender Differences in Food Choice: Effects of Superior Temporal Sulcus Stimulation

    PubMed Central

    Manippa, Valerio; Padulo, Caterina; van der Laan, Laura N.; Brancucci, Alfredo

    2017-01-01

    The easy availability of food has caused a shift from eating for survival to hedonic eating. Women, compared to men, have shown to respond differently to food cues in the environment on a behavioral and a neural level, in particular to energy rich (compared to low energy) foods. It has been demonstrated that the right posterior superior temporal sulcus (STS) is the only region exhibiting greater activation for high vs. low calorie food choices. In order to test for a possible causal role of STS in food choice, we applied high frequency transcranial random noise stimulation (tRNS) on STS assuming a different response pattern between males and females. Our participants (18 females, 17 males) performed a forced choice task between food pairs matched for individual liking but differed in calorie, during the left STS, right STS stimulation and sham condition. Male participants showed a general preference for low calorie (LC) foods compared to females. In addition, we observed in males, but not in females, an increase of high calorie (HC) food choice during right STS tRNS compared to sham condition and left STS tRNS. Finally, we found an increase of missed choices during right STS stimulation compared to sham condition and left STS stimulation. In conclusion, thanks to tRNS evidence, we both confirm the involvement and suggest a causal role of right posterior STS in feeding behavior. Moreover, we suggest that gender differences exist in STS mechanisms underlying food choice. PMID:29270120

  12. Frequency-dependent transition from homogeneous to constricted shape in surface dielectric barrier discharge and its impact on biological target

    NASA Astrophysics Data System (ADS)

    Lazukin, A. V.; Serdukov, Y. A.; Pinchuk, M. E.; Stepanova, O. M.; Krivov, S. A.; Grabelnykh, O. I.

    2018-01-01

    The results of an experimental research of influence the surface dielectric discharge products excited by alternating sinusoidal voltage with RMS of 3.5 kV across the barrier of aluminum nitride with frequency of 50 Hz-100 kHz on a germination of soft winter wheat (Triticum aestivum L.) are presented. The stimulation effect on seedling morphological characteristics (sprout length and total length of roots) was observed but its reproducibility with combining the same processing conditions and subsequent germination is insignificant.

  13. Harmonic effects on ion-bulk waves and simulation of stimulated ion-bulk-wave scattering in CH plasmas

    NASA Astrophysics Data System (ADS)

    Feng, Q. S.; Zheng, C. Y.; Liu, Z. J.; Cao, L. H.; Xiao, C. Z.; Wang, Q.; Zhang, H. C.; He, X. T.

    2017-08-01

    Ion-bulk (IBk) wave, a novel branch with a phase velocity close to the ion’s thermal velocity, discovered by Valentini et al (2011 Plasma Phys. Control. Fusion 53 105017), is recently considered as an important electrostatic activity in solar wind, and thus of great interest to space physics and also inertial confinement fusion. The harmonic effects on IBk waves has been researched by Vlasov simulation for the first time. The condition of excitation of the large-amplitude IBk waves is given. The nature of nonlinear IBk waves in the condition of k< {k}{{lor}}/2 (k lor is the wave number at loss-of-resonance point) is undamped Bernstein-Greene-Kruskal-like waves with harmonic superposition. Only when the wave number k of IBk waves satisfies {k}{{lor}}/2≲ k≤slant {k}{{lor}}, can a large-amplitude and mono-frequency IBk wave be excited. A novel stimulated scattering from IBk modes called stimulated ion-bulk-wave scattering (SIBS) or stimulated Feng scattering (SFS) has been proposed and also verified by Vlasov-Maxwell code. In CH plasmas, in addition to the stimulated Brillouin scattering from multi ion-acoustic waves, there exists SIBS simultaneously. This research gives an insight into the SIBS in the field of laser plasma interaction.

  14. Preventive and Abortive Strategies for Stimulation Based Control of Epilepsy: A Computational Model Study.

    PubMed

    Koppert, Marc; Kalitzin, Stiliyan; Velis, Demetrios; Lopes Da Silva, Fernando; Viergever, Max A

    2016-12-01

    Epilepsy is a condition in which periods of ongoing normal EEG activity alternate with periods of oscillatory behavior characteristic of epileptic seizures. The dynamics of the transitions between the two states are still unclear. Computational models provide a powerful tool to explore the underlying mechanisms of such transitions, with the purpose of eventually finding therapeutic interventions for this debilitating condition. In this study, the possibility to postpone seizures elicited by a decrease of inhibition is investigated by using external stimulation in a realistic bistable neuronal model consisting of two interconnected neuronal populations representing pyramidal cells and interneurons. In the simulations, seizures are induced by slowly decreasing the conductivity of GABA[Formula: see text] synaptic channels over time. Since the model is bistable, the system will change state from the initial steady state (SS) to the limit cycle (LS) state because of internal noise, when the inhibition falls below a certain threshold. Several state-independent stimulations paradigms are simulated. Their effectiveness is analyzed for various stimulation frequencies and intensities in combination with periodic and random stimulation sequences. The distributions of the time to first seizure in the presence of stimulation are compared with the situation without stimulation. In addition, stimulation protocols targeted to specific subsystems are applied with the objective of counteracting the baseline shift due to decreased inhibition in the system. Furthermore, an analytical model is used to investigate the effects of random noise. The relation between the strength of random noise stimulation, the control parameter of the system and the transitions between steady state and limit cycle are investigated. The study shows that it is possible to postpone epileptic activity by targeted stimulation in a realistic neuronal model featuring bistability and that it is possible to stop seizures by random noise in an analytical model.

  15. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation: A case report.

    PubMed

    Lai, Jian-Bo; Han, Mao-Mao; Xu, Yi; Hu, Shao-Hua

    2017-11-01

    Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic.

  16. Effective treatment of narcolepsy-like symptoms with high-frequency repetitive transcranial magnetic stimulation

    PubMed Central

    Lai, Jian-bo; Han, Mao-mao; Xu, Yi; Hu, Shao-hua

    2017-01-01

    Abstract Rationale: Narcolepsy is a rare sleep disorder with disrupted sleep-architecture. Clinical management of narcolepsy lies dominantly on symptom-driven pharmacotherapy. The treatment role of repetitive transcranial magnetic stimulation (rTMS) for narcolepsy remains unexplored. Patient concerns: In this paper, we present a case of a 14-year-old young girl with excessive daytime sleepiness (EDS), cataplexy and hypnagogic hallucinations. Diagnoses: After excluding other possible medical conditions, this patient was primarily diagnosed with narcolepsy. Interventions: The patient received 25 sessions of high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC). Outcomes: The symptoms of EDS and cataplexy significantly improved after rTMS treatment. Meanwhile, her score in the Epworth sleep scale (ESS) also remarkably decreased. Lessons: This case indicates that rTMS may be selected as a safe and effective alternative strategy for treating narcolepsy-like symptoms. Well-designed researches are warranted in future investigations on this topic. PMID:29145290

  17. Ethological analysis of mother-pup interactions and other behavioral reactions in rats: effects of malnutrition and tactile stimulation of the pups.

    PubMed

    Riul, T R; Carvalho, A F; Almeida, P S; De-Oliveira, L M; Almeida, S S

    1999-08-01

    Mother-pup interaction, as well as other behavioral reactions were studied during the lactation period in 24 litters of Wistar rats and their dams fed either a 16% (control - C; 12 litters) or a 6% (malnourished - M; 12 litters) protein diet. The diets were isocaloric. Throughout lactation there was a 36.4% weight loss of M dams and a 63% body weight deficit in the M pups when compared to control pups. During this period, half of the litters were exposed daily to additional tactile stimulation (CS or MS), while the other half were submitted to normal rearing conditions (CN or MN). The tactile stimulation of pups (handling) consisted of holding the animal in one hand and gently touching the dorsal part of the animal's body with the fingers for 3 min. A special camera and a time-lapse video were used to record litter behavior in their home cages. Starting at 6 p.m. and ending at 6 a.m., on days 3, 6, 12, 15, 18 and 21 of lactation, photos were taken at 4-s intervals. An increase in the frequency (154.88 +/- 16.19) and duration (455.86 +/- 18.05 min) of suckling was observed throughout the lactation period in all groups compared to birth day (frequency 24.88 +/- 2.37 and duration 376.76 +/- 21.01 min), but the frequency was higher in the C (84.96 +/- 8.52) than in the M group (43.13 +/- 4.37); however, the M group (470.2 +/- 11.87 min) spent more time suckling as compared with the C group (393.67 +/- 13.09 min). The M dams showed a decreased frequency of resting position throughout the lactation period (6.5 +/- 2.48) compared to birth day (25.42 +/- 7.74). Pups from the C group were more frequently observed separated (73.02 +/- 4.38) and interacting (258.99 +/- 20.61) more with their mothers than the M pups (separated 66.94 +/- 5.5 and interacting 165.72 +/- 12.05). Tactile stimulation did not interact with diet condition, showing that the kind of stimulation used in the present study did not lead to recovery from the changes induced by protein malnutrition. The changes in mother-pup interaction produced by protein malnutrition of both may represent retardation in neuromotor development and a higher dependence of the pups on their mothers. These changes may represent an important means of energy saving and heat maintenance in malnourished pups.

  18. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  19. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  20. Frequency modulation detection in cochlear implant subjects

    NASA Astrophysics Data System (ADS)

    Chen, Hongbin; Zeng, Fan-Gang

    2004-10-01

    Frequency modulation (FM) detection was investigated in acoustic and electric hearing to characterize cochlear-implant subjects' ability to detect dynamic frequency changes and to assess the relative contributions of temporal and spectral cues to frequency processing. Difference limens were measured for frequency upward sweeps, downward sweeps, and sinusoidal FM as a function of standard frequency and modulation rate. In electric hearing, factors including electrode position and stimulation level were also studied. Electric hearing data showed that the difference limen increased monotonically as a function of standard frequency regardless of the modulation type, the modulation rate, the electrode position, and the stimulation level. In contrast, acoustic hearing data showed that the difference limen was nearly a constant as a function of standard frequency. This difference was interpreted to mean that temporal cues are used only at low standard frequencies and at low modulation rates. At higher standard frequencies and modulation rates, the reliance on the place cue is increased, accounting for the better performance in acoustic hearing than for electric hearing with single-electrode stimulation. The present data suggest a speech processing strategy that encodes slow frequency changes using lower stimulation rates than those typically employed by contemporary cochlear-implant speech processors. .

  1. Development of a simple MR-compatible vibrotactile stimulator using a planar-coil-type actuator.

    PubMed

    Kim, Hyung-Sik; Choi, Mi-Hyun; Chung, Yoon-Gi; Kim, Sung-Phil; Jun, Jae-Hoon; Park, Jang-Yeon; Yi, Jeong-Han; Park, Jong-Rak; Lim, Dae-Woon; Chung, Soon-Cheol

    2013-06-01

    For this study, we developed a magnetic resonance (MR)-compatible vibrotactile stimulator using a planar-coil-type actuator. The newly developed vibrotactile stimulator consists of three units: control unit, drive unit, and planar-coil-type actuator. The control unit controls frequency, intensity, time, and channel, and transfers the stimulation signals to the drive unit. The drive unit operates the planar-coil-type actuator in response to commands from the control unit. The planar-coil-type actuator, which uses a planar coil instead of conventional electric wire, generates vibrating stimulation through interaction of the current of the planar coil with the static magnetic field of the MR scanner. Even though the developed tactile stimulating system is small, simple, and inexpensive, it has a wide range of stimulation frequencies (20 ~ 400 Hz, at 40 levels) and stimulation intensities (0 ~ 7 V, at 256 levels). The stimulation intensity does not change due to frequency changes. Since the transient response time is a few microseconds, the stimulation time can be controlled on a scale of microseconds. In addition, this actuator has the advantages of providing highly repeatable stimulation, being durable, being able to assume various shapes, and having an adjustable contact area with the skin. The new stimulator operated stably in an MR environment without affecting the MR images. Using functional magnetic resonance imaging, we observed the brain activation changes resulting from stimulation frequency and intensity changes.

  2. Stimulated emission from ladder-type two-photon coherent atomic ensemble.

    PubMed

    Park, Jiho; Moon, Han Seb

    2018-05-28

    We investigated the stimulated emission from a ladder-type two-photon coherent atomic ensemble, for the 5S 1/2 - 5P 3/2 - 5D 5/2 transition of 87 Rb atoms. Under the ladder-type two-photon resonance condition obtained using pump and coupling lasers, we observed broad four-wave mixing (FWM) light stimulated from two-photon coherence induced by the seed laser coupled between the ground state of 5S 1/2 and the first excited state of 5P 3/2 . A dip in the FWM spectrum was obtained for three-photon resonance due to V-type two-photon coherence using the pump and seed lasers. From the FWM spectra obtained for varying frequency detuning and seed-laser power, we determined that the seed laser acts as a stimulator for FWM generation, but also acts as a disturber of FWM due to V-type two-photon coherence.

  3. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    PubMed

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  4. Long-term modifications of synaptic efficacy in the human inferior and middle temporal cortex

    NASA Technical Reports Server (NTRS)

    Chen, W. R.; Lee, S.; Kato, K.; Spencer, D. D.; Shepherd, G. M.; Williamson, A.

    1996-01-01

    The primate temporal cortex has been demonstrated to play an important role in visual memory and pattern recognition. It is of particular interest to investigate whether activity-dependent modification of synaptic efficacy, a presumptive mechanism for learning and memory, is present in this cortical region. Here we address this issue by examining the induction of synaptic plasticity in surgically resected human inferior and middle temporal cortex. The results show that synaptic strength in the human temporal cortex could undergo bidirectional modifications, depending on the pattern of conditioning stimulation. High frequency stimulation (100 or 40 Hz) in layer IV induced long-term potentiation (LTP) of both intracellular excitatory postsynaptic potentials and evoked field potentials in layers II/III. The LTP induced by 100 Hz tetanus was blocked by 50-100 microM DL-2-amino-5-phosphonovaleric acid, suggesting that N-methyl-D-aspartate receptors were responsible for its induction. Long-term depression (LTD) was elicited by prolonged low frequency stimulation (1 Hz, 15 min). It was reduced, but not completely blocked, by DL-2-amino-5-phosphonovaleric acid, implying that some other mechanisms in addition to N-methyl-DL-aspartate receptors were involved in LTD induction. LTD was input-specific, i.e., low frequency stimulation of one pathway produced LTD of synaptic transmission in that pathway only. Finally, the LTP and LTD could reverse each other, suggesting that they can act cooperatively to modify the functional state of cortical network. These results suggest that LTP and LTD are possible mechanisms for the visual memory and pattern recognition functions performed in the human temporal cortex.

  5. Effects of Asymmetric Superior Laryngeal Nerve Stimulation on Glottic Posture, Acoustics, Vibration

    PubMed Central

    Chhetri, Dinesh K.; Neubauer, Juergen; Bergeron, Jennifer L.; Sofer, Elazar; Peng, Kevin A.; Jamal, Nausheen

    2013-01-01

    Objectives Evaluate the effects of asymmetric superior laryngeal nerve stimulation on the vibratory phase, laryngeal posture, and acoustics. Study Design Basic science study using an in vivo canine model. Methods The superior laryngeal nerves were symmetrically and asymmetrically stimulated over eight activation levels to mimic laryngeal asymmetries representing various levels of superior laryngeal nerve paresis and paralysis conditions. Glottal posture change, vocal fold speed, and vibration of these 64 distinct laryngeal activation conditions were evaluated by high speed video and concurrent acoustic and aerodynamic recordings. Assessments were made at phonation onset. Results Vibratory phase was symmetric in all symmetric activation conditions but consistent phase asymmetry towards the vocal fold with higher superior laryngeal nerve activation was observed. Superior laryngeal nerve paresis and paralysis conditions had reduced vocal fold strain and fundamental frequency. Superior laryngeal nerve activation increased vocal fold closure speed, but this effect was more pronounced for the ipsilateral vocal fold. Increasing asymmetry led to aperiodic and chaotic vibration. Conclusions This study directly links vocal fold tension asymmetry with vibratory phase asymmetry; in particular the side with greater tension leads in the opening phase. The clinical observations of vocal fold lag, reduced vocal range, and aperiodic voice in superior laryngeal paresis and paralysis is also supported. PMID:23712542

  6. Measurement of dynamic patterns of an elastic membrane at bi-modal vibration using high speed electronic speckle pattern interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preciado, Jorge Sanchez; Lopez, Carlos Perez; Santoyo, Fernando Mendoza

    2014-05-27

    Implementing a hybrid arrangement of Laser Doppler Vibrometry (LDV) and high speed Electronic Speckle Pattern Interferometry (ESPI) we were able to measure the dynamic patterns of a flat rectangular elastic membrane clamped at its edges stimulated with the sum of two resonance frequencies. ESPI is a versatile technique to analyze in real-time the deformation of a membrane since its low computational cost and easy implementation of the optical setup. Elastic membranes present nonlinear behaviors when stimulated with low amplitude signals. The elastic membrane under test, with several non rational related vibrating modals below the 200 Hz, was stimulated with twomore » consecutives resonant frequencies. The ESPI patterns, acquired at high speed rates, shown a similar behavior for the dual frequency stimulation as in the case of patterns formed with the entrainment frequency. We think this may be related to the effects observed in the application of dual frequency stimulation in ultrasound.« less

  7. Interaural time discrimination of envelopes carried on high-frequency tones as a function of level and interaural carrier mismatch

    PubMed Central

    Blanks, Deidra A.; Buss, Emily; Grose, John H.; Fitzpatrick, Douglas C.; Hall, Joseph W.

    2009-01-01

    Objectives The present study investigated interaural time discrimination for binaurally mismatched carrier frequencies in listeners with normal hearing. One goal of the investigation was to gain insights into binaural hearing in patients with bilateral cochlear implants, where the coding of interaural time differences may be limited by mismatches in the neural populations receiving stimulation on each side. Design Temporal envelopes were manipulated to present low frequency timing cues to high frequency auditory channels. Carrier frequencies near 4 kHz were amplitude modulated at 128 Hz via multiplication with a half-wave rectified sinusoid, and that modulation was either in-phase across ears or delayed to one ear. Detection thresholds for non-zero interaural time differences were measured for a range of stimulus levels and a range of carrier frequency mismatches. Data were also collected under conditions designed to limit cues based on stimulus spectral spread, including masking and truncation of sidebands associated with modulation. Results Listeners with normal hearing can detect interaural time differences in the face of substantial mismatches in carrier frequency across ears. Conclusions The processing of interaural time differences in listeners with normal hearing is likely based on spread of excitation into binaurally matched auditory channels. Sensitivity to interaural time differences in listeners with cochlear implants may depend upon spread of current that results in the stimulation of neural populations that share common tonotopic space bilaterally. PMID:18596646

  8. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers.

    PubMed

    Adelson, D; Lao, L; Zhang, G; Kim, W; Marvizón, J C G

    2009-06-30

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.

  9. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increases with the firing frequency of C-fibers

    PubMed Central

    Adelson, David; Lao, Lijun; Zhang, Guohua; Kim, Woojae; Marvizón, Juan Carlos G.

    2009-01-01

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1–10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Aδ-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli. PMID:19336248

  10. The role of frequency in the effects of long-term intermittent stimulation of denervated slow-twitch muscle in the rat.

    PubMed Central

    Al-Amood, W S; Lewis, D M

    1987-01-01

    1. Rat soleus muscle was denervated by sciatic transection and electrically stimulated for periods of between 3 and 9 weeks with intermittent 1 s bursts of pulses. Most of the bursts were either repeated every 90 s and pulses within them had frequencies between 10 and 100 Hz, or had a frequency of 50 Hz and were repeated at intervals between 60 and 600 s. Comparisons were made with continuous stimulation at 10 Hz. 2. At the end of the period of stimulation, isometric twitches and tetani were measured and, in a proportion, also isotonic shortening velocity. 3. Isometric twitch duration (contraction and relaxation) decreased with time of stimulation. Very similar effects were seen in all animals in which intermittent stimulation had been used. There was a significant relationship between the change in twitch duration and the frequency used within the bursts of chronic stimulation, with slightly larger effects at frequencies of 40 and 60 Hz. The lowest burst repetition rate produced the largest effects. 4. It was confirmed that similar changes were found in denervated muscles that were not stimulated, although these changes were smaller and developed more slowly. 5. The extreme loss of tetanic tension induced in the muscle by denervation was reduced by chronic stimulation, with no significant difference between different regimes, although there were small differences which showed the same patterns of effectiveness described for twitch durations. 6. Continuous stimulation at 10 Hz maintained the twitch contraction and relaxation phases at the values found 3 weeks after denervation, that is it prevented secondary shortening of the twitch. Continuous stimulation reduced tension loss but was, perhaps, less effective than intermittent stimulation. 7. Twitch-tetanus ratio increased with denervation with little spontaneous reversal later. Stimulation at all frequencies reduced the ratio, but it did not reach normal values. 8. Isotonic shortening velocity was measured in many of the muscles. Maximum velocity was estimated and normalized by muscle length.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 3 PMID:3446785

  11. Short-term plasticity impacts information transfer at glutamate synapses onto parvocellular neuroendocrine cells in the paraventricular nucleus of the hypothalamus

    PubMed Central

    Marty, Vincent; Kuzmiski, J Brent; Baimoukhametova, Dinara V; Bains, Jaideep S

    2011-01-01

    Abstract Glutamatergic synaptic inputs onto parvocellular neurosecretory cells (PNCs) in the paraventricular nucleus of the hypothalamus (PVN) regulate the hypothalamic-pituitary-adrenal (HPA) axis responses to stress and undergo stress-dependent changes in their capacity to transmit information. In spite of their pivotal role in regulating PNCs, relatively little is known about the fundamental rules that govern transmission at these synapses. Furthermore, since salient information in the nervous system is often transmitted in bursts, it is also important to understand the short-term dynamics of glutamate transmission under basal conditions. To characterize these properties, we obtained whole-cell patch clamp recordings from PNCs in brain slices from postnatal day 21–35 male Sprague–Dawley rats and examined EPSCs. EPSCs were elicited by electrically stimulating glutamatergic afferents along the periventricular aspect. In response to a paired-pulse stimulation protocol, EPSCs generally displayed a robust short-term depression that recovered within 5 s. Similarly, trains of synaptic stimuli (5–50 Hz) resulted in a frequency-dependent depression until a near steady state was achieved. Application of inhibitors of AMPA receptor (AMPAR) desensitization or the low-affinity, competitive AMPAR antagonist failed to affect the depression due to paired-pulse and trains of synaptic stimulation indicating that this use-dependent short-term synaptic depression has a presynaptic locus of expression. We used cumulative amplitude profiles during trains of stimulation and variance–mean analysis to estimate synaptic parameters. Finally, we report that these properties contribute to hamper the efficiency with which high frequency synaptic inputs generate spikes in PNCs, indicating that these synapses operate as effective low-pass filters in basal conditions. PMID:21727221

  12. Theta Frequency Stimulation Induces a Local Form of Late Phase LTP in the CA1 Region of the Hippocampus

    ERIC Educational Resources Information Center

    Huang, Yan-You; Kandel, Eric R.

    2005-01-01

    The late phase of LTP (L-LTP) is typically induced by repeated high-frequency stimulation. This form of LTP requires activation of transcription and translation and results in the cell-wide distribution of gene products that can be captured by other marked synapses. Here we report that theta frequency stimulation (5 Hz, 30 sec) applied to the…

  13. Differential Effects of Left and Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation on Resting-State Functional Magnetic Resonance Imaging in Healthy Individuals.

    PubMed

    Schluter, Renée S; Jansen, Jochem M; van Holst, Ruth J; van den Brink, Wim; Goudriaan, Anna E

    2018-03-01

    High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has gained great interest in multiple clinical and research fields and is believed to accomplish its effect by influencing neuronal networks. The dorsolateral prefrontal cortex (dlPFC) is frequently chosen as the cortical target for HF-rTMS. However, very little is known about the differential effect of HF-rTMS over the left and right dlPFC on intrinsic functional connectivity networks in patients or in healthy individuals. The current study assessed the differential effects of left or right HF-rTMS (corrected for sham) on intrinsic independent component analysis (ICA)-defined functional connectivity networks in a sample of 45 healthy individuals. All subjects had a first scanning session in which baseline functional connectivity was assessed. During the second session, individuals received one session of left, right, or sham dlPFC HF-rTMS (60 5-sec trains of 10 Hz at 110% motor threshold). The sham condition was used to correct for time and placebo effects. ICAs were performed to assess baseline differences and stimulation effects on within- and between-network functional connectivity. Stimulation of the left dlPFC resulted in decreased functional connectivity in the salience network, whereas right dlPFC stimulation resulted in increased functional connectivity within this network. No differences between left or right dlPFC stimulation were found in between-network connectivity. These results suggest that left and right HF-rTMS may have differential effects, and more research is needed on the clinical consequences.

  14. Carbon Dioxide and Fruit Odor Transduction in Drosophila Olfactory Neurons. What Controls their Dynamic Properties?

    PubMed Central

    French, Andrew S.; Meisner, Shannon; Su, Chih-Ying; Torkkeli, Päivi H.

    2014-01-01

    We measured frequency response functions between odorants and action potentials in two types of neurons in Drosophila antennal basiconic sensilla. CO2 was used to stimulate ab1C neurons, and the fruit odor ethyl butyrate was used to stimulate ab3A neurons. We also measured frequency response functions for light-induced action potential responses from transgenic flies expressing H134R-channelrhodopsin-2 (ChR2) in the ab1C and ab3A neurons. Frequency response functions for all stimulation methods were well-fitted by a band-pass filter function with two time constants that determined the lower and upper frequency limits of the response. Low frequency time constants were the same in each type of neuron, independent of stimulus method, but varied between neuron types. High frequency time constants were significantly slower with ethyl butyrate stimulation than light or CO2 stimulation. In spite of these quantitative differences, there were strong similarities in the form and frequency ranges of all responses. Since light-activated ChR2 depolarizes neurons directly, rather than through a chemoreceptor mechanism, these data suggest that low frequency dynamic properties of Drosophila olfactory sensilla are dominated by neuron-specific ionic processes during action potential production. In contrast, high frequency dynamics are limited by processes associated with earlier steps in odor transduction, and CO2 is detected more rapidly than fruit odor. PMID:24466044

  15. Frequency response of the renal vasculature in congestive heart failure.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2003-04-29

    The renal vasoconstrictor response to renal nerve stimulation is greater in congestive heart failure (CHF) rats than in control rats. This study tested the hypothesis that the enhanced renal vasoconstrictor response to renal nerve stimulation in CHF is a result of an impairment in the low-pass filter function of the renal vasculature. In response to conventional graded-frequency renal nerve stimulation, the reductions in renal blood flow at each stimulation frequency were greater in CHF rats than control rats. A pseudorandom binary sequence pattern of renal nerve stimulation was used to examine the frequency response of the renal vasculature. Although this did not affect the renal blood flow power spectrum in control rats, there was a 10-fold increase in renal blood flow power over the frequency range of 0.01 to 1.0 Hz in CHF rats. On analysis of transfer function gain, attenuation of the renal nerve stimulation input signal was similar in control and CHF rats over the frequency range of 0.001 to 0.1 Hz. However, over the frequency range of 0.1 to 1.0 Hz, although there was progressive attenuation of the input signal (-30 to -70 dB) in control rats, CHF rats exhibited a flat gain response (-20 dB) without progressive attenuation. The enhanced renal vasoconstrictor response to renal nerve stimulation in CHF rats is caused by an alteration in the low-pass filter function of the renal vasculature, resulting in a greater transfer of input signals into renal blood flow in the 0.1 to 1.0 Hz range.

  16. [Neurological and technical aspects of deep brain stimulation].

    PubMed

    Voges, J; Krauss, J K

    2010-06-01

    Deep brain stimulation (DBS) is an important component of the therapy of movement disorders and has almost completely replaced high-frequency coagulation of brain tissue in stereotactic neurosurgery. Despite the functional efficacy of DBS, which in parts is documented on the highest evidence level, the underlying mechanisms are still not completely understood. According to the current state of knowledge electrophysiological and functional data give evidence that high-frequency DBS has an inhibitory effect around the stimulation electrode whilst at the same time axons entering or leaving the stimulated brain area are excited leading to modulation of neuronal networks. The latter effect modifies pathological discharges of neurons in key structures of the basal ganglia network (e.g. irregular bursting activity, oscillations or synchronization) which are found in particular movement disorders such as Parkinson' s disease or dystonia. The introduction of technical standards, such as the integration of high resolution MRI into computer-assisted treatment planning, in combination with special treatment planning software have contributed significantly to the reduction of severe surgical complications (frequency of intracranial hemorrhaging 1-3%) in recent years. Future developments will address the modification of hardware components of the stimulation system, the evaluation of new brain target areas, the simultaneous stimulation of different brain areas and the assessment of different stimulation paradigms (high-frequency vs low-frequency DBS).

  17. Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon.

    PubMed Central

    Rubinstein, J T; Spelman, F A

    1988-01-01

    The cable model of a passive, unmyelinated fiber in an applied extracellular field is derived. The solution is valid for an arbitrary, time-varying, applied field, which may be determined analytically or numerically. Simple analytical computations are presented. They explain a variety of known phenomena and predict some previously undescribed properties of extracellular electrical stimulation. The polarization of a fiber in an applied field behaves like the output of a spatial high-pass and temporal low-pass filter of the stimulus. High-frequency stimulation results in a more spatially restricted region of fiber excitation, effectively reducing current spread relative to that produced by low-frequency stimulation. Chronaxie measured extracellularly is a function of electrode position relative to the stimulated fiber, and its value may differ substantially from that obtained intracellularly. Frequency dependence of psychophysical threshold obtained by electrical stimulation of the macaque cochlea closely follows the frequency dependence of single-fiber passive response. PMID:3233274

  18. Systematic studies of modified vocalization: effects of speech rate and instatement style during metronome stimulation.

    PubMed

    Davidow, Jason H; Bothe, Anne K; Richardson, Jessica D; Andreatta, Richard D

    2010-12-01

    This study introduces a series of systematic investigations intended to clarify the parameters of the fluency-inducing conditions (FICs) in stuttering. Participants included 11 adults, aged 20-63 years, with typical speech-production skills. A repeated measures design was used to examine the relationships between several speech production variables (vowel duration, voice onset time, fundamental frequency, intraoral pressure, pressure rise time, transglottal airflow, and phonated intervals) and speech rate and instatement style during metronome-entrained rhythmic speech. Measures of duration (vowel duration, voice onset time, and pressure rise time) differed across different metronome conditions. When speech rates were matched between the control condition and metronome condition, voice onset time was the only variable that changed. Results confirm that speech rate and instatement style can influence speech production variables during the production of fluency-inducing conditions. Future studies of normally fluent speech and of stuttered speech must control both features and should further explore the importance of voice onset time, which may be influenced by rate during metronome stimulation in a way that the other variables are not.

  19. Anodal Transcranial Direct Current Stimulation Shows Minimal, Measure-Specific Effects on Dynamic Postural Control in Young and Older Adults: A Double Blind, Sham-Controlled Study

    PubMed Central

    Doumas, Michail

    2017-01-01

    We investigated whether stimulating the cerebellum and primary motor cortex (M1) using transcranial direct current stimulation (tDCS) could affect postural control in young and older adults. tDCS was employed using a double-blind, sham-controlled design, in which young (aged 18–35) and older adults (aged 65+) were assessed over three sessions, one for each stimulatory condition–M1, cerebellar and sham. The effect of tDCS on postural control was assessed using a sway-referencing paradigm, which induced platform rotations in proportion to the participant’s body sway, thus assessing sensory reweighting processes. Task difficulty was manipulated so that young adults experienced a support surface that was twice as compliant as that of older adults, in order to minimise baseline age differences in postural sway. Effects of tDCS on postural control were assessed during, immediately after and 30 minutes after tDCS. Additionally, the effect of tDCS on corticospinal excitability was measured by evaluating motor evoked potentials using transcranial magnetic stimulation immediately after and 30 minutes after tDCS. Minimal effects of tDCS on postural control were found in the eyes open condition only, and this was dependent on the measure assessed and age group. For young adults, stimulation had only offline effects, as cerebellar stimulation showed higher mean power frequency (MPF) of sway 30 minutes after stimulation. For older adults, both stimulation conditions delayed the increase in sway amplitude witnessed between blocks one and two until stimulation was no longer active. In conclusion, despite tDCS’ growing popularity, we would caution researchers to consider carefully the type of measures assessed and the groups targeted in tDCS studies of postural control. PMID:28099522

  20. The inhibitory effect of sacral dorsal root ganglion stimulation on nociceptive and nonnociceptive bladder reflexes in cats.

    PubMed

    Wang, Zhaoxia; Liao, Limin; Deng, Han; Li, Xing; Chen, Guoqing

    2018-05-01

    To investigate the inhibitory effects of electrical stimulation of sacral dorsal root ganglion (DRG) on bladder activity under non-nociceptive and nociceptive bladder conditions in cats. 12 cats were divided into non-nociceptive and nociceptive groups. Saline was used to distend the bladder and induce non-nociceptive bladder activity, while acetic acid (AA, 0.25%) was used to induce nociceptive bladder overactivity, S1 or S2 DRG stimulation was applied via a pair of hook electrodes placed in the right S1 and S2 DRG. In both non-nociceptive and nociceptive groups, stimulation at 3 and 5 Hz significantly increased bladder capacity (BC) and no significantly different between the two frequencies. In non-nociceptive group, S1 DRG stimulation at 3 Hz was as effective (increasing BC to 139.7 ± 5.6 and 166.9 ± 12.21% of control at 1T and 3/2T, respectively) as S2 DRG stimulation (increases BC to 129.2 ± 5.6 and 160.5 ± 13.3% of control). In nociceptive group, AA reduced the BC to 62.6 ± 11.7% of saline control. S1 DRG stimulation at 3 Hz was also as effective (increasing BC to 54.9 ± 5.5 and 61.9 ± 6.0% of saline control at 1T and 3/2T, respectively) as S2 DRG stimulation (increases BC to 58.3 ± 3.7 and 65.6 ± 3.7% of control). This study showed the effective inhibition on bladder activity under both non-nociceptive and nociceptive conditions, suggesting the possibility of sacral DRG stimulation to treat bladder overactivity.

  1. Electrical and magnetic repetitive transcranial stimulation of the primary motor cortex in healthy subjects.

    PubMed

    Gilio, Francesca; Iacovelli, Elisa; Frasca, Vittorio; Gabriele, Maria; Giacomelli, Elena; De Lena, Carlo; Cipriani, Anna Maria; Inghilleri, Maurizio

    2009-05-08

    Repetitive transcranial magnetic stimulation (rTMS) delivered in short trains at 5Hz frequency and suprathreshold intensity over the primary motor cortex (M1) in healthy subjects facilitates the motor-evoked potential (MEP) amplitude by increasing cortical excitability through mechanisms resembling short-term synaptic plasticity. In this study, to investigate whether rTES acts through similar mechanisms we compared the effects of rTMS and repetitive transcranial electrical stimulation (rTES) (10 stimuli-trains, 5Hz frequency, suprathreshold intensity) delivered over the M1 on the MEP amplitude. Four healthy subjects were studied in two separate sessions in a relaxed condition. rTMS and anodal rTES were delivered in trains to the left M1 over the motor area for evoking a MEP in the right first dorsal interosseous muscle. Changes in MEP size and latency during the course of the rTMS and rTES trains were compared. The possible effects of muscle activation on MEP amplitude were evaluated, and the possible effects of cutaneous trigeminal fibre activation on corticospinal excitability were excluded in a control experiment testing the MEP amplitude before and after supraorbital nerve repetitive electrical stimulation. Repeated measures analysis of variance (ANOVA) showed that rTES and rTMS trains elicited similar amplitude first MEPs and a similar magnitude MEP amplitude facilitation during the trains. rTES elicited a first MEP with a shorter latency than rTMS, without significant changes during the course of the train of stimuli. The MEP elicited by single-pulse TES delivered during muscle contraction had a smaller amplitude than the last MEP in the rTES trains. Repetitive supraorbital nerve stimulation left the conditioned MEP unchanged. Our results suggest that 5 Hz-rTES delivered in short trains increases cortical excitability and does so by acting on the excitatory interneurones probably through mechanisms similar to those underlying the rTMS-induced MEP facilitation.

  2. Transcutaneous calf-muscle electro-stimulation: A prospective treatment for diabetic claudicants?

    PubMed

    Ellul, Christian; Gatt, Alfred

    2016-11-01

    First-line therapy for claudicants with diabetes include supervised exercise programmes to improve walking distance. However, exercise comes with a number of barriers and may be contraindicated in certain conditions. The aim of this study was to evaluate whether calf-muscle electro-stimulation improves claudication distance. A prospective, one-group, pretest-posttest study design was employed on 40 participants living with type 2 diabetes mellitus, peripheral artery disease (ankle-brachial pressure index < 0.90) and calf-muscle claudication. Calf-muscle electro-stimulation of varying frequencies (1-250 Hz) was applied on both ischaemic limbs (N = 80) for 1 h per day for 12 consecutive weeks. The absolute claudication distance was measured at baseline and following the intervention. The cohort (n = 40; 30 males; mean age = 71 years; mean ankle-brachial pressure index = 0.70) registered a mean baseline absolute claudication distance of 333.71 m (standard deviation = 208). Following 91.68 days (standard deviation = 6.23) of electrical stimulation, a significant mean increase of 137 m (standard deviation = 136) in the absolute claudication distance was registered (p = 0.000, Wilcoxon signed rank test). Electrical stimulation of varying low to high frequencies on ischaemic calf muscles significantly increased the maximal walking capacity in claudicants with type 2 diabetes. This therapeutic approach may be considered in patients with impaired exercise tolerance or as an adjunct treatment modality. © The Author(s) 2016.

  3. Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.

    PubMed

    Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P

    2012-01-01

    The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke.

    PubMed

    Chervyakov, Alexander V; Poydasheva, Alexandra G; Lyukmanov, Roman H; Suponeva, Natalia A; Chernikova, Ludmila A; Piradov, Michael A; Ustinova, Ksenia I

    2018-03-01

    The purpose of this study was to test the effects of navigated repetitive transcranial magnetic stimulation, delivered in different modes, on motor impairments and functional limitations after stroke. The study sample included 42 patients (58.5 ± 10.7 years; 26 males) who experienced a single unilateral stroke (1-12 months previously) in the area of the middle cerebral artery. Patients completed a course of conventional rehabilitation, together with 10 sessions of navigated repetitive transcranial magnetic stimulation or sham stimulation. Stimulation was scheduled five times a week over two consecutive weeks in an inpatient clinical setting. Patients were randomly assigned to one of four groups and received sham stimulation (n = 10), low-frequency (1-Hz) stimulation of the nonaffected hemisphere (n = 11), high-frequency (10-Hz) stimulation of the affected hemisphere (n = 13), or sequential combination of low- and high-frequency stimulations (n = 8). Participants were evaluated before and after stimulation with clinical tests, including the arm and hand section of the Fugl-Meyer Assessment Scale, modified Ashworth Scale of Muscle Spasticity, and Barthel Index of Activities of Daily Living. Participants in the three groups receiving navigated repetitive transcranial magnetic stimulation showed improvements in arm and hand functions on the Fugl-Meyer Stroke Assessment Scale. Ashworth Scale of Muscle Spasticity and Barthel Index scores were significantly reduced in groups receiving low- or high-frequency stimulation alone. Including navigated repetitive transcranial magnetic stimulation in a conventional rehabilitation program positively influenced motor and functional recovery in study participants, demonstrating the clinical potential of the method. The results of this study will be used for designing a large-scale clinical trial.

  5. Focal clonus elicited by electrical stimulation of the motor cortex in humans.

    PubMed

    Hamer, Hajo M; Lüders, Hans O; Rosenow, Felix; Najm, Imad

    2002-09-01

    Focal clonic seizures are a frequent epileptic phenomenon. However, there are little data about their pathomechanism. In four patients with focal epilepsy and subdural electrodes, focal clonus was elicited by electrical stimulation of the motor cortex. Three additional patients underwent intraoperative stimulation of the spinal cord. Rhythmic clonic muscle responses were elicited by cortical stimulation with 20-50 Hz. The clonus consisted of simultaneous trains of compound muscle action potentials (CMAP) in agonistic and antagonistic muscles alternating with periods of muscular silence despite continuous stimulation. Clonus frequency decreased from 4.0-8.0 Hz at 50 Hz stimulation to 3.0-3.5 Hz at 20 Hz paralleled by a prolongation of the trains of CMAP. The stimulation frequency correlated with the number of stimuli blocked during relaxation. During the stable stimulation periods, the clonus frequency decreased over time. The number of stimuli which formed a train of CMAP and which were blocked during relaxation increased towards the end of the stimulation periods. Increasing intensity of stimulation at the same frequency converted a clonic to a tonic response. There was always an 1:1 relationship between stimulus and CMAP during spinal cord stimulation. We hypothesize that during cortical stimulation, clonus is elicited by synchronous activation of pyramidal tract (PT) neurons which results in excitation of intracortical GABA(B)ergic interneurons by recurrent axon-collaterals. This leads to stepwise hyperpolarization of PT neurons intermittently suppressing the output of PT neurons despite continuous stimulation. This mechanism can explain our finding that temporal and spatial summation of the stimuli were needed for clonus generation. Copyright 2002 Elsevier Science B.V.

  6. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    PubMed

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  7. Manipulating neuronal activity with low frequency transcranial ultrasound

    NASA Astrophysics Data System (ADS)

    Moore, Michele Elizabeth

    Stimulation of the rodent cerebral cortex is used to investigate the underlying biological basis for the restorative effects of slow wave sleep. Neuronal activation by optogenetic and ultrasound stimulation elicits changes in action potentials across the cerebral cortex that are recorded as electroencephalograms. Optogenetic stimulation requires an invasive implantation procedure limiting its application in human studies. We sought to determine whether ultrasound stimulation could be as effective as optogenetic techniques currently used, in an effort to further understand the physiological and metabolic requirements of sleep. We successfully recorded electroencephalograms in response to transcranial ultrasound stimulation of the barrel cortex at 1 and 7 Hz frequencies, comparing them to those recorded in response to optogenetic stimuli applied at the same frequencies. Our results showed application of a 473 nm blue LED positioned 6 cm above the skull and ultrasound stimulation at an output voltage of 1000 mVpp produced electroencephalograms with physiological responses of similar amplitude. We concluded that there exists an intensity-proportionate response in the optogenetic stimulation, but not with ultrasound stimulation at the frequencies we surveyed. Activation of neuronal cells in response to optogenetic stimulation in a Thy1-ChR2 transgenic mouse line is specifically targeted to pyramidal cells in the cerebral cortex. ChR2 responses to optogenetic stimulation are mediated by a focal activation of neuronal ion channels. We measured electrophysiological responses to ultrasound stimulation, comparing them to those recorded from optogenetic stimuli. Our results show striking similarities between ultrasound-induced responses and optogenetically-induced responses, which may indicate that transcranial ultrasound stimulation is also mediated by ion channel dependent processes in cerebral cortical neurons. The biophysical substrates for electrical excitability of neurons impose temporal constraints on their response to stimulation. If ultrasound-mediated responses are, in fact, ion channel mediated responses, ultrasound-induced responses should exhibit time-dependence characteristics similar to those of optogenetically-triggered responses. Minimal stimulus duration thresholds and the temporal limits of paired pulse facilitation for ultrasound stimulation were identical to those of optogenetic stimulation. Collectively, these experiments demonstrate an electrophysiological basis for low-frequency transcranial ultrasound stimulation of cerebral cortical neuronal activity.

  8. Probing phase- and frequency-dependent characteristics of cortical interneurons using combined transcranial alternating current stimulation and transcranial magnetic stimulation.

    PubMed

    Hussain, Sara J; Thirugnanasambandam, Nivethida

    2017-06-01

    Paired-pulse transcranial magnetic stimulation (TMS) and peripheral stimulation combined with TMS can be used to study cortical interneuronal circuitry. By combining these procedures with concurrent transcranial alternating current stimulation (tACS), Guerra and colleagues recently showed that different cortical interneuronal populations are differentially modulated by the phase and frequency of tACS-imposed oscillations (Guerra A, Pogosyan A, Nowak M, Tan H, Ferreri F, Di Lazzaro V, Brown P. Cerebral Cortex 26: 3977-2990, 2016). This work suggests that different cortical interneuronal populations can be characterized by their phase and frequency dependency. Here we discuss how combining TMS and tACS can reveal the frequency at which cortical interneuronal populations oscillate, the neuronal origins of behaviorally relevant cortical oscillations, and how entraining cortical oscillations could potentially treat brain disorders. Copyright © 2017 the American Physiological Society.

  9. Preliminary Evidence of the Effects of High-frequency Repetitive Transcranial Magnetic Stimulation (rTMS) on Swallowing Functions in Post-Stroke Individuals with Chronic Dysphagia

    ERIC Educational Resources Information Center

    Cheng, Ivy K. Y.; Chan, Karen M. K.; Wong, C. S.; Cheung, Raymond T. F.

    2015-01-01

    Background: There is growing evidence of potential benefits of repetitive transcranial magnetic stimulation (rTMS) in the rehabilitation of dysphagia. However, the site and frequency of stimulation for optimal effects are not clear. Aims: The aim of this pilot study is to investigate the short-term effects of high-frequency 5 Hz rTMS applied to…

  10. Design and Application of a Circuit for Measuring Frequency and Duty Cycle of Stimulated Bioelectrical Signal

    NASA Astrophysics Data System (ADS)

    Tang, Li-Ming; Chang, Ben-Kang; Liu, Tie-Bing; Wu, Min; Ling, Gang

    2002-12-01

    To design a new type of circuit for measuring frequency & duty cycle of stimulated bioelectrical signal for the project of 'the map of neuron-threshold in human brain and its clinical application'. This circuit was designed according to the character of stimulated bioelectrical signals. It was tested and improved and then used in the neuron -threshold stimulator. The circuit was found to be very accurate for measuring frequency and the error for measuring duty cycle was below 0.2%. This circuit is well-designed, simple, easy to use, and can be applied in many systems.

  11. Potentials evoked by chirp-modulated tones: a new technique to evaluate oscillatory activity in the auditory pathway.

    PubMed

    Artieda, J; Valencia, M; Alegre, M; Olaziregi, O; Urrestarazu, E; Iriarte, J

    2004-03-01

    Steady-state potentials are oscillatory responses generated by a rhythmic stimulation of a sensory pathway. The frequency of the response, which follows the frequency of stimulation, is maximal at a stimulus rate of 40 Hz for auditory stimuli. The exact cause of these maximal responses is not known, although some authors have suggested that they might be related to the 'working frequency' of the auditory cortex. Testing of the responses to different frequencies of stimulation may be lengthy if a single frequency is studied at a time. Our aim was to develop a fast technique to explore the oscillatory response to auditory stimuli, using a tone modulated in amplitude by a sinusoid whose frequency increases linearly in frequency ('chirp') from 1 to 120 Hz. Time-frequency transforms were used for the analysis of the evoked responses in 10 subjects. Also, we analyzed whether the peaks in these responses were due to increases of amplitude or to phase-locking phenomena, using single-sweep time-frequency transforms and inter-trial phase analysis. The pattern observed in the time-frequency transform of the chirp-evoked potential was very similar in all subjects: a diagonal band of energy was observed, corresponding to the frequency of modulation at each time instant. Two components were present in the band, one around 45 Hz (30-60 Hz) and a smaller one between 80 and 120 Hz. Inter-trial phase analysis showed that these components were mainly due to phase locking phenomena. A simultaneous testing of the amplitude-modulation-following oscillatory responses to auditory stimulation is feasible using a tone modulated in amplitude at increasing frequencies. The maximal energies found at stimulation frequencies around 40 Hz are probably due to increased phase-locking of the individual responses.

  12. Modulation between high- and low-frequency transcutaneous electric nerve stimulation delays the development of analgesic tolerance in arthritic rats.

    PubMed

    Desantana, Josimari M; Santana-Filho, Valter J; Sluka, Kathleen A

    2008-04-01

    To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. Knee joint inflammation (3% carrageenan and kaolin) was induced in rats. Either mixed or alternating frequency was administered daily (20min) for 2 weeks to the inflamed knee under light halothane anesthesia (1%-2%). Laboratory. Adult male Sprague-Dawley rats (N=36). Mixed- (4Hz and 100Hz) or alternating- (4Hz on 1 day; 100Hz on the next day) frequency TENS at sensory intensity and 100micros pulse duration. Paw and joint withdrawal thresholds to mechanical stimuli were assessed before induction of inflammation, and before and after daily application of TENS. The reduced paw and joint withdrawal thresholds that occur 24 hours after the induction of inflammation were significantly reversed by the first administration of TENS when compared with sham treatment or to the condition before TENS treatment, which was observed through day 9. By the tenth day, repeated daily administration of either mixed- or alternating-frequency TENS did not reverse the decreased paw and joint withdrawal thresholds. These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop.

  13. Synchronous electrical stimulation of laryngeal muscles: an alternative for enhancing recovery of unilateral recurrent laryngeal nerve paralysis.

    PubMed

    Garcia Perez, Alejandro; Hernández López, Xochiquetzal; Valadez Jiménez, Víctor Manuel; Minor Martínez, Arturo; Ysunza, Pablo Antonio

    2014-07-01

    Although electrical stimulation of the larynx has been widely studied for treating voice disorders, its effectiveness has not been assessed under safety and comfortable conditions. This article describes design, theoretical issues, and preliminary evaluation of an innovative system for transdermal electrical stimulation of the larynx. The proposed design includes synchronization of electrical stimuli with laryngeal neuromuscular activity. To study whether synchronous electrical stimulation of the larynx could be helpful for improving voice quality in patients with dysphonia due to unilateral recurrent laryngeal nerve paralysis (URLNP). A 3-year prospective study was carried out at the Instituto Nacional de Rehabilitacion in the Mexico City. Ten patients were subjected to transdermal current electrical stimulation synchronized with the fundamental frequency of the vibration of the vocal folds during phonation. The stimulation was triggered during the phase of maximum glottal occlusion. A complete acoustic voice analysis was performed before and after the period of electrical stimulation. Acoustic analysis revealed significant improvements in all parameters after the stimulation period. Transdermal synchronous electrical stimulation of vocal folds seems to be a safe and reliable procedure for enhancing voice quality in patients with (URLNP). Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  14. Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats

    NASA Astrophysics Data System (ADS)

    Devecioğlu, İsmail; Güçlü, Burak

    2017-02-01

    Objective. Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. Approach. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. Main results. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. Significance. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.

  15. Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats.

    PubMed

    Devecioğlu, İsmail; Güçlü, Burak

    2017-02-01

    Recent studies showed that intracortical microstimulation (ICMS) generates artificial sensations which can be utilized as somatosensory feedback in cortical neuroprostheses. To mimic the natural psychophysical response, ICMS parameters are modulated according to psychometric equivalence functions (PEFs). PEFs match the intensity levels of ICMS and mechanical stimuli, which elicit equal detection probabilities, but they typically do not include the frequency as a control variable. We aimed to establish frequency-dependent PEFs for vibrotactile stimulation of the glabrous skin and ICMS in the primary somatosensory cortex of awake freely behaving rats. We collected psychometric data for vibrotactile and ICMS detection at three stimulation frequencies (40, 60 and 80 Hz). The psychometric data were fitted with a model equation of two independent variables (stimulus intensity and frequency) and four subject-dependent parameters. For each rat, we constructed a separate PEF which was used to estimate the ICMS current amplitude for a given displacement amplitude and frequency. The ICMS frequency was set equal to the vibrotactile frequency. We validated the PEFs in a modified task which included randomly selected probe trials presented either with a vibrotactile or an ICMS stimulus, and also at frequencies and intensity levels not tested before. The PEFs were generally successful in estimating the ICMS current intensities (no significant differences between vibrotactile and ICMS trials in Kolmogorov-Smirnov tests). Specifically, hit rates from both trial conditions were significantly correlated in 86% of the cases, and 52% of all data had perfect match in linear regression. The psychometric correspondence model presented in this study was constructed based on surface functions which define psychophysical detection probability as a function of stimulus intensity and frequency. Therefore, it may be used for the real-time modulation of the frequency and intensity of ICMS pulses in somatosensory neuroprostheses.

  16. Modulation of attentional processing by deep brain stimulation of the pedunculopontine nucleus region in patients with parkinsonian disorders.

    PubMed

    Fischer, Julia; Schwiecker, Kati; Bittner, Verena; Heinze, Hans-Jochen; Voges, Jürgen; Galazky, Imke; Zaehle, Tino

    2015-07-01

    Low-frequency electrical stimulation of the pedunculopontine nucleus (PPN) is a therapeutic approach aiming to improve motor symptoms such as freezing of gate and postural instability in parkinsonian disorders. Because the PPN is a component of the reticular activating system, we tested whether PPN stimulation directly affects attention and consciousness. Eight patients with parkinsonian disorders and implanted with electrodes in the bilateral PPN underwent computerized assessment of attention. Performance in 3 standard reaction time (RT) tasks was assessed at 5 different stimulation frequencies in 5 consecutive sessions. Stimulation of the PPN at low (8 Hz) and therapeutic (20 Hz) frequencies led to a significant improvement of performance in a simple RT task. Patients' RTs were significantly faster at stimulation frequencies of 8 Hz and 20 Hz relative to no stimulation. Stimulation did not affect patients' performance in more complex attentional tasks. Low-frequent stimulation of PPN improves basal attentional processing in patients with parkinsonian disorders, leading to an improved tonic alertness. As successful performance in this task requires the intrinsic ability to build up and keep a certain level of attention, this might be interpreted as attentional augmentation related to stimulation features. Stimulation had no effect on more complex attentional processing. Our results suggest an influence of the PPN on certain aspects of attention, supporting attentional augmentation as one possible mechanism to improve motor action and gait in patients with parkinsonian disorders. (c) 2015 APA, all rights reserved).

  17. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    PubMed

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Color-specific conditioning effects due to both orange and blue stimuli are observed in a Halobacterium salinarum strain devoid of putative methylatable sites on HtrI.

    PubMed

    Lucia, S; Cercignani, G; Frediani, A; Petracchi, D

    2003-01-01

    Behavioral responses of Halobacterium salinarum appear as changes in the frequency of motion reversals. Turning on orange light decreases the reversal frequency, whereas blue light induces reversals. Light pulses normally induce the same response as step-up stimuli. However, anomalous behavioral reactions, including inverse responses, are seen when stimuli are applied in sequence. The occurrence of a prior stimulus is conditioning for successive stimulation on a time scale of the same order of adaptational processes. These prolonged conditioning effects are color-specific. The only adaptation process identified so far is methylation of the transducers, and this could be somehow color-specific. Therefore we tested for the behavioral anomalies in a mutant in which all methylation sites on the transducer have been eliminated. The results show that behavioral anomalies are unaffected by the absence of methylation processes on the transducer.

  19. Recovery of supraspinal control of leg movement in a chronic complete flaccid paraplegic man after continuous low-frequency pelvic nerve stimulation and FES-assisted training

    PubMed Central

    Possover, Marc; Forman, Axel

    2017-01-01

    Introduction: More than 30 years ago, functional electrical stimulation (FES) was developed as an orthotic system to be used for rehabilitation for SCI patients. In the present case report, FES-assisted training was combined with continuous low-frequency stimulation of the pelvic somatic nerves in a SCI patient. Case Presentation: We report on unexpected findings in a 41-year-old man with chronic complete flaccid paraplegia, since he was 18 years old, who underwent spinal stem cell therapy and a laparoscopic implantation of neuroprosthesis (LION procedure) in the pelvic lumbosacral nerves. The patient had complete flaccid sensomotoric paraplegia T12 as a result of a motor vehicle accident in 1998. In June 2011, he underwent a laparoscopic implantation of stimulation electrodes to the sciatic and femoral nerves for continuous low-frequency electrical stimulation and functional electrical stimulation of the pelvic nerves. Neither intraoperative direct stimulation of the pelvic nerves nor postoperative stimulation induced any sensation or muscle reactions. After 2 years of passive continuous low-frequency stimulation, the patient developed progressive recovery of electrically assisted voluntary motor functions below the lesions: he was first able to extend the right knee and 6 months later, the left. He is currently capable of voluntary weight-bearing standing and walking (with voluntary knee movements) about 50 m with open cuff crutches and drop foot braces. Discussion: Our findings suggest that continuous low-frequency pelvic nerve stimulation in combination with FES-assisted training might induce changes that affect both the upper and the lower motor neuron and allow supra- and infra-spinal inputs to engage residual spinal and peripheral pathways. PMID:28503316

  20. Opposite effects of high- and low-frequency transcranial random noise stimulation probed with visual motion adaptation

    PubMed Central

    Campana, Gianluca; Camilleri, Rebecca; Moret, Beatrice; Ghin, Filippo; Pavan, Andrea

    2016-01-01

    Transcranial random noise stimulation (tRNS) is a recent neuro-modulation technique whose effects at both behavioural and neural level are still debated. Here we employed the well-known phenomenon of motion after-effect (MAE) in order to investigate the effects of high- vs. low-frequency tRNS on motion adaptation and recovery. Participants were asked to estimate the MAE duration following prolonged adaptation (20 s) to a complex moving pattern, while being stimulated with either sham or tRNS across different blocks. Different groups were administered with either high- or low-frequency tRNS. Stimulation sites were either bilateral human MT complex (hMT+) or frontal areas. The results showed that, whereas no effects on MAE duration were induced by stimulating frontal areas, when applied to the bilateral hMT+, high-frequency tRNS caused a significant decrease in MAE duration whereas low-frequency tRNS caused a significant corresponding increase in MAE duration. These findings indicate that high- and low-frequency tRNS have opposed effects on the adaptation-dependent unbalance between neurons tuned to opposite motion directions, and thus on neuronal excitability. PMID:27934947

  1. Evidence Gaps in the Use of Spinal Cord Stimulation for Treating Chronic Spine Conditions.

    PubMed

    Provenzano, David A; Amirdelfan, Kasra; Kapural, Leonardo; Sitzman, B Todd

    2017-07-15

    A review of literature. The aim of this study was to define and explore the current evidence gaps in the use of spinal cord stimulation (SCS) for treating chronic spine conditions. Although over the last 40 years SCS therapy has undergone significant technological advancements, evidence gaps still exist. A literature review was conducted to define current evidence gaps for the use of SCS. Areas of focus included 1) treatment of cervical spine conditions, 2) treatment of lumbar spine conditions, 3) technological advancement and device selection, 4) appropriate patient selection, 5) the ability to curb pharmacological treatment, and 6) methods to prolong efficacy over time. New SCS strategies using advanced waveforms are explored. The efficacy, safety, and cost-effectiveness of traditional SCS for chronic pain conditions are well-established. Evidence gaps do exist. Recently, advancement in waveforms and programming parameters have allowed for paresthesia-reduced/free stimulation that in specific clinical areas may improve clinical outcomes. New waveforms such as 10-kHz high-frequency have resulted in an improvement in back coverage. To date, clinical efficacy data are more prevalent for the treatment of painful conditions originating from the lumbar spine in comparison to the cervical spine. Evidence gaps still exist that require appropriate study designs with long-term follow-up to better define and improve the use of this therapy for the treatment of chronic spine pain in both the cervical and lumbar regions. N/A.

  2. Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant

    PubMed Central

    Ross, Deborah A.; Puñal, Vanessa M.; Agashe, Shruti; Dweck, Isaac; Mueller, Jerel; Grill, Warren M.; Wilson, Blake S.

    2016-01-01

    Understanding the relationship between the auditory selectivity of neurons and their contribution to perception is critical to the design of effective auditory brain prosthetics. These prosthetics seek to mimic natural activity patterns to achieve desired perceptual outcomes. We measured the contribution of inferior colliculus (IC) sites to perception using combined recording and electrical stimulation. Monkeys performed a frequency-based discrimination task, reporting whether a probe sound was higher or lower in frequency than a reference sound. Stimulation pulses were paired with the probe sound on 50% of trials (0.5–80 μA, 100–300 Hz, n = 172 IC locations in 3 rhesus monkeys). Electrical stimulation tended to bias the animals' judgments in a fashion that was coarsely but significantly correlated with the best frequency of the stimulation site compared with the reference frequency used in the task. Although there was considerable variability in the effects of stimulation (including impairments in performance and shifts in performance away from the direction predicted based on the site's response properties), the results indicate that stimulation of the IC can evoke percepts correlated with the frequency-tuning properties of the IC. Consistent with the implications of recent human studies, the main avenue for improvement for the auditory midbrain implant suggested by our findings is to increase the number and spatial extent of electrodes, to increase the size of the region that can be electrically activated, and to provide a greater range of evoked percepts. SIGNIFICANCE STATEMENT Patients with hearing loss stemming from causes that interrupt the auditory pathway after the cochlea need a brain prosthetic to restore hearing. Recently, prosthetic stimulation in the human inferior colliculus (IC) was evaluated in a clinical trial. Thus far, speech understanding was limited for the subjects and this limitation is thought to be partly due to challenges in harnessing the sound frequency representation in the IC. Here, we tested the effects of IC stimulation in monkeys trained to report the sound frequencies they heard. Our results indicate that the IC can be used to introduce a range of frequency percepts and suggest that placement of a greater number of electrode contacts may improve the effectiveness of such implants. PMID:27147659

  3. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at HAARP and EISCAT

    NASA Astrophysics Data System (ADS)

    Scales, W.; Mahmoudian, A.; Fu, H.; Bordikar, M. R.; Samimi, A.; Bernhardt, P. A.; Briczinski, S. J., Jr.; Kosch, M. J.; Senior, A.; Isham, B.

    2014-12-01

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities and computational modeling will be provided. Possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, electron temperature measurements in the heated volume and detection of heavy ion species. Finally potential for observing such SEE at the European Incoherent Scatter EISCAT facility will be discussed.

  4. Effects of metabotropic glutamate receptor block on the synaptic transmission and plasticity in the rat medial vestibular nuclei.

    PubMed

    Grassi, S; Malfagia, C; Pettorossi, V E

    1998-11-01

    In rat brainstem slices, we investigated the possible role of metabotropic glutamate receptors in modulating the synaptic transmission within the medial vestibular nuclei, under basal and plasticity inducing conditions. We analysed the effect of the metabotropic glutamate receptor antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine on the amplitude of the field potentials and latency of unitary potentials evoked in the ventral portion of the medial vestibular nuclei by primary vestibular afferent stimulation, and on the induction and maintenance of long-term potentiation, after high-frequency stimulation. Two effects were observed, consisting of a slight increase of the field potentials and reduction of unit latency during the drug infusion, and a further long-lasting development of these modifications after the drug wash-out. The long-term effect depended on N-methyl-D-aspartate receptor activation, as D,L-2-amino-5-phosphonopentanoic acid prevented its development. We suggest that (R,S)-alpha-methyl-4carboxyphenylglycine enhances the vestibular responses and induces N-methyl-D-aspartate-dependent long-term potentiation by increasing glutamate release, through the block of presynaptic metabotropic glutamate receptors which actively inhibit it. The block of these receptors was indirectly supported by the fact that the agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid reduced the vestibular responses and blocked the induction of long-term potentiation by high-frequency stimulation. The simultaneous block of metabotropic glutamate receptors facilitating synaptic plasticity, impedes the full expression of the long-term effect throughout the (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The involvement of such a facilitatory mechanism in the potentiation is supported by its reversible reduction following a second (R,S)-alpha-methyl-4-carboxyphenylglycine infusion. The drug also reduced the expression of potentiation induced by high-frequency stimulation. Conversely the electrical long-term potentiation was still induced, but it was occluded by the previous drug potentiation. We conclude that metabotropic glutamate receptors play a dual functional role in the medial vestibular nuclei, consisting in the inhibition of glutamate release under basal conditions, and the facilitation of N-methyl-D-aspartate-dependent plasticity phenomena.

  5. Time-frequency analysis of neuronal populations with instantaneous resolution based on noise-assisted multivariate empirical mode decomposition.

    PubMed

    Alegre-Cortés, J; Soto-Sánchez, C; Pizá, Á G; Albarracín, A L; Farfán, F D; Felice, C J; Fernández, E

    2016-07-15

    Linear analysis has classically provided powerful tools for understanding the behavior of neural populations, but the neuron responses to real-world stimulation are nonlinear under some conditions, and many neuronal components demonstrate strong nonlinear behavior. In spite of this, temporal and frequency dynamics of neural populations to sensory stimulation have been usually analyzed with linear approaches. In this paper, we propose the use of Noise-Assisted Multivariate Empirical Mode Decomposition (NA-MEMD), a data-driven template-free algorithm, plus the Hilbert transform as a suitable tool for analyzing population oscillatory dynamics in a multi-dimensional space with instantaneous frequency (IF) resolution. The proposed approach was able to extract oscillatory information of neurophysiological data of deep vibrissal nerve and visual cortex multiunit recordings that were not evidenced using linear approaches with fixed bases such as the Fourier analysis. Texture discrimination analysis performance was increased when Noise-Assisted Multivariate Empirical Mode plus Hilbert transform was implemented, compared to linear techniques. Cortical oscillatory population activity was analyzed with precise time-frequency resolution. Similarly, NA-MEMD provided increased time-frequency resolution of cortical oscillatory population activity. Noise-Assisted Multivariate Empirical Mode Decomposition plus Hilbert transform is an improved method to analyze neuronal population oscillatory dynamics overcoming linear and stationary assumptions of classical methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Improvement of Isolated Myoclonus Phenotype in Myoclonus Dystonia after Pallidal Deep Brain Stimulation

    PubMed Central

    Ramdhani, Ritesh A.; Frucht, Steven J.; Behnegar, Anousheh; Kopell, Brian H.

    2016-01-01

    Background Myoclonus–dystonia is a condition that manifests predominantly as myoclonic jerks with focal dystonia. It is genetically heterogeneous with most mutations in the epsilon sarcoglycan gene (SGCE). In medically refractory cases, deep brain stimulation (DBS) has been shown to provide marked sustainable clinical improvement, especially in SGCE-positive patients. We present two patients with myoclonus–dystonia (one SGCE positive and the other SGCE negative) who have the isolated myoclonus phenotype and had DBS leads implanted in the bilateral globus pallidus internus (GPi). Methods We review their longitudinal Unified Myoclonus Rating Scale scores along with their DBS programming parameters and compare them with published cases in the literature. Results Both patients demonstrated complete amelioration of all aspects of myoclonus within 6–12 months after surgery. The patient with the SGCE-negative mutation responded just as well as the patient who was SGCE positive. High-frequency stimulation (130 Hz) with amplitudes greater than 2.5 V provided therapeutic benefit. Discussion This case series demonstrates that high frequency GPi-DBS is effective in treating isolated myoclonus in myoclonus–dystonia, regardless of the presence of SGCE mutation. PMID:26989574

  7. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

    PubMed

    Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo

    2006-01-01

    We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.

  8. Altered impulse activity modifies synaptic physiology and mitochondria in crayfish phasic motor neurons.

    PubMed

    Nguyen, P V; Atwood, H L

    1994-12-01

    1. Crayfish phasic motor synapses produce large initial excitatory postsynaptic potentials (EPSPs) that fatigue rapidly during high-frequency stimulation. Periodic in vivo stimulation of an identified phasic abdominal extensor motor neuron (axon 3) induced long-term adaptation (LTA) of neuromuscular transmission: initial EPSP amplitude became smaller and synaptic depression was significantly reduced. We tested the hypothesis that activity-induced synaptic fatigue-resistance seen during LTA was dependent upon, or correlated with, mitochondrial oxidative competence. 2. Periodic unilateral conditioning stimulation of axon 3 entering each of two adjacent homologous abdominal segments (segments 2 and 3) increased the synaptic stamina in both "conditioned" axons; mean final EPSP amplitudes, recorded after 20 min of 5-Hz test stimulation, were significantly larger than those measured with the same protocol from contralateral unstimulated axons. 3. During 5-Hz test stimulation of the conditioned axon 3 of segment 3, acute superfusion with 0.8 mM dinitrophenol or 20 mM sodium azide [inhibitors of oxidative adenosinetriphosphate (ATP) synthesis] produced increased synaptic depression. Drug-free saline superfusion of the conditioned axon 3 of segment 2 in these same animals did not affect the increased synaptic fatigue resistance seen in this segment. Thus both successful induction (in axon 3 of saline-perfused segment 2) and attenuation (in axon 3 of drug-perfused segment 3) of the increased synaptic stamina can be demonstrated with this twin-segment conditioning protocol. 4. Confocal microscopic imaging of mitochondrial rhodamine-123 (Rh123) fluorescence was used to assess relative oxidative competence of conditioned and unconditioned phasic axons. Conditioned phasic axons showed significantly higher mean mitochondrial Rh123 fluorescence than contralateral unstimulated axons. In the same preparations that showed increased postconditioning Rh123 fluorescence, the synaptic fatigue resistance measured from conditioned axon 3 was also significantly greater than that recorded from contralateral unstimulated axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root. Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3. 5. Axotomy of the phasic extensor nerve root (containing axon 3), before in vivo conditioning stimulation of its decentralized segment, Prevented induction of both the increased synaptic stamina in axon 3 and the enhanced mitochondrial fluorescence in decentralized motor axons of the nerve root Hence, induction of both changes requires axonal transport of materials between the soma and the motor synapses of axon 3 6. Because mitochondrial Rh123 fluorescence is primarily dependent upon the oxidative activity of these organelles, our findings suggest that conditioning stimulation of phasic extensor axon 3 increases its mitochondrial oxidative competence and that the enhanced synaptic stamina seen during LTA in axon 3 is correlated with, and dependent upon, oxidative activity.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. High-Frequency Neuromuscular Electrical Stimulation Increases Anabolic Signaling.

    PubMed

    Mettler, Joni A; Magee, Dillon M; Doucet, Barbara M

    2018-03-16

    Neuromuscular electrical stimulation (NMES) is commonly used in rehabilitation settings to increase muscle mass and strength. However, the effects of NMES on muscle growth are not clear and no human studies have compared anabolic signaling between low-frequency (LF-) and high-frequency (HF-) NMES. The purpose of this study was to determine the skeletal muscle anabolic signaling response to an acute bout of LF- and HF-NMES. Eleven young healthy volunteers (6 men; 5 women) received an acute bout of LF- (20 Hz) and HF- (60 Hz) NMES. Muscle biopsies were obtained from the vastus lateralis muscle prior to the first NMES treatment and 30-mins following each NMES treatment. Phosphorylation of the following key anabolic signaling proteins was measured by Western blot and proteins are expressed as a ratio of phosphorylated to total: mammalian target of rapamycin (mTOR), p70-S6 kinase 1 (S6K1), and eukaryotic initiation factor 4E binding protein 1 (4E-BP1). Compared to Pre-NMES, phosphorylation of mTOR was upregulated 40.2% for LF-NMES (P = 0.018) and 68.4% for HF-NMES (P < 0.0001) and HF-NMES was 29.3% greater than LF-NMES (P = 0.026). Phosphorylation of S6K1 after HF-NMES was 96.6% higher than Pre-NMES (P = 0.001), was not different between Pre-NMES and LF-NMES (although was 50.4% higher after LF-) or LF- and HF-NMES (P > 0.05). There were no differences between treatment conditions for 4E-BP1 phosphorylation (P > 0.05). An acute bout of LF- and HF-NMES upregulated anabolic signaling with HF-NMES producing a greater anabolic response compared to LF-NMES, suggesting that HF-stimulation may provide a stronger stimulus for processes that initiate muscle hypertrophy. Additionally, the stimulation frequency parameter should be considered by clinicians in the design of optimal NMES treatment protocols.

  10. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    PubMed Central

    Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng

    2017-01-01

    Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946

  11. Effect of a single session of transcranial direct-current stimulation combined with virtual reality training on the balance of children with cerebral palsy: a randomized, controlled, double-blind trial

    PubMed Central

    Lazzari, Roberta Delasta; Politti, Fabiano; Santos, Cibele Alimedia; Dumont, Arislander Jonathan Lopes; Rezende, Fernanda Lobo; Grecco, Luanda André Collange; Braun Ferreira, Luiz Alfredo; Oliveira, Claudia Santos

    2015-01-01

    [Purpose] The aim of the present study was to investigate the effects of a single session of transcranial direct current stimulation combined with virtual reality training on the balance of children with cerebral palsy. [Subjetcs and Methods] Children with cerebral palsy between four and 12 years of age were randomly allocated to two groups: an experimental group which performed a single session of mobility training with virtual reality combined with active transcranial direct current stimulation; and a control group which performed a single session of mobility training with virtual reality combined with placebo transcranial direct current stimulation. The children were evaluated before and after the training protocols. Static balance (sway area, displacement, velocity and frequency of oscillations of the center of pressure on the anteroposterior and mediolateral axes) was evaluated using a force plate under four conditions (30-second measurements for each condition): feet on the force plate with the eyes open, and with the eyes closed; feet on a foam mat with the eyes open, and with the eyes closed. [Results] An increase in sway velocity was the only significant difference found. [Conclusion] A single session of anodal transcranial direct current stimulation combined with mobility training elicited to lead to an increase in the body sway velocity of children with cerebral palsy. PMID:25931726

  12. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  13. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    NASA Astrophysics Data System (ADS)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  14. Stimulated Brillouin scatter in a magnetized ionospheric plasma.

    PubMed

    Bernhardt, P A; Selcher, C A; Lehmberg, R H; Rodriguez, S P; Thomason, J F; Groves, K M; McCarrick, M J; Frazer, G J

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f(CI)) or an electrostatic ion cyclotron (EIC) wave just above f(CI) can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.

  15. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  16. Modulation of N400 in Chronic Non-Fluent Aphasia Using Low Frequency Repetitive Transcranial Magnetic Stimulation (rTMS)

    ERIC Educational Resources Information Center

    Barwood, Caroline H. S.; Murdoch, Bruce E.; Whelan, Brooke-Mai; Lloyd, David; Riek, Stephan; O'Sullivan, John D.; Coulthard, Alan; Wong, Andrew

    2011-01-01

    Low frequency Repetitive Transcranial Magnetic Stimulation (rTMS) has previously been applied to language homologues in non-fluent populations of persons with aphasia yielding significant improvements in behavioral language function up to 43 months post stimulation. The present study aimed to investigate the electrophysiological correlates…

  17. Dependences of the geometrical parameters of cell community on stimulation voltage and frequency in chick embryonic cardiomyocytes

    NASA Astrophysics Data System (ADS)

    Fujii, Koki; Nomura, Fumimasa; Kaneko, Tomoyuki

    2018-03-01

    To investigate the optimal conditions for electrical stimulation, communities of lined-up chick embryonic cardiomyocytes were evaluated in terms of their threshold voltage for pacing (PVMin) and the half-maximum paced frequency (PF50), with a focus on the following factors: (1) the orientation of the major axis of cell communities to the electric field (EF) direction as the external factor; (2) the number of cells in a cell community, the length of the cell community, and the mean length of cells comprising the community as the internal factors. Firstly, PVMin decreased with increasing length of the cell network oriented parallel to the EF. PVMin was approximately 0.041 ± 0.025 V/mm when the community was sufficiently long. On the other hand, PVMin in the orthogonal orientation was constant at 1.7 ± 0.047 V/mm with no dependence on the length of the cell network. Secondly, we found that PF50 increased with increasing length of the cell network or the number of cells in the network; the PF50 values were 2.03 ± 0.05 and 3.39 ± 0.05 Hz when the respective cell network lengths were 100 µm (n = 43) and more than 300 µm (n = 6) and the cells were oriented parallel to the EF. These findings indicate that it is important to suppress ventricular fibrillation with minimal efficient stimulation by considering the EF direction with respect to the orientation of cardiomyocytes. Furthermore, expanded cells showed the loss of ability to respond to stimulation at higher frequencies. Cardiomyocytes combined with seeded fibroblasts as a cell network at a low density are a possible model of a ventricular remodeling heart.

  18. The Effects of Electrical Stimuli on Calcium Change and Histamine Release in Rat Basophilic Leukemia Mast Cells

    NASA Astrophysics Data System (ADS)

    Zhu, Dan; Wu, Zu-Hui; Chen, Ji-Yao; Zhou, Lu-Wei

    2013-06-01

    We apply electric fields at different frequencies of 0.1, 1, 10 and 100 kHz to the rat basophilic leukemia (RBL) mast cells in calcium-containing or calcium-free buffers. The stimuli cause changes of the intracellular calcium ion concentration [Ca2+]i as well as the histamine. The [Ca2+]i increases when the frequency of the external electric field increases from 100 Hz to 10 kHz, and then decreases when the frequency further increases from 10 kHz to 100 kHz, showing a peak at 100 kHz. A similar frequency dependence of the histamine release is also found. The [Ca2+]i and the histamine releases at 100 Hz are about the same as the values of the control group with no electrical stimulation. The ruthenium red (RR), an inhibitor to the TRPV (transient receptor potential (TRP) family V) channels across the cell membrane, is used in the experiment to check whether the electric field stimuli act on the TRPV channels. Under an electric field of 10 kHz, the [Ca2+]i in a calcium-concentration buffer is about 3.5 times as much as that of the control group with no electric stimulation, while the [Ca2+]i in a calcium-free buffer is only about 2.2 times. Similar behavior is also found for the histamine release. RR blockage effect on the [Ca2+]i decrease is statistically significant (~75%) when mast cells in the buffer with calcium are stimulated with a 10 kHz electric field in comparison with the result without the RR treatment. This proves that TRPVs are the channels that calcium ions inflow through from the extracellular environment under electrical stimuli. Under this condition, the histamine is also released following a similar way. We suggest that, as far as an electric stimulation is concerned, an application of ac electric field of 10 kHz is better than other frequencies to open TRPV channels in mast cells, and this would cause a significant calcium influx resulting in a significant histamine release, which could be one of the mechanisms for electric therapy.

  19. Effects of stevia on synaptic plasticity and NADPH oxidase level of CNS in conditions of metabolic disorders caused by fructose.

    PubMed

    Chavushyan, V A; Simonyan, K V; Simonyan, R M; Isoyan, A S; Simonyan, G M; Babakhanyan, M A; Hovhannisyian, L E; Nahapetyan, Kh H; Avetisyan, L G; Simonyan, M A

    2017-12-19

    Excess dietary fructose intake associated with metabolic syndrome and insulin resistance and increased risk of developing type 2 diabetes. Previous animal studies have reported that diabetic animals have significantly impaired behavioural and cognitive functions, pathological synaptic function and impaired expression of glutamate receptors. Correction of the antioxidant status of laboratory rodents largely prevents the development of fructose-induced plurimetabolic changes in the nervous system. We suggest a novel concept of efficiency of Stevia leaves for treatment of central diabetic neuropathy. By in vivo extracellular studies induced spike activity of hippocampal neurons during high frequency stimulation of entorhinal cortex, as well as neurons of basolateral amygdala to high-frequency stimulation of the hippocampus effects of Stevia rebaudiana Bertoni plant evaluated in synaptic activity in the brain of fructose-enriched diet rats. In the conditions of metabolic disorders caused by fructose, antioxidant activity of Stevia rebaudiana was assessed by measuring the NOX activity of the hippocampus, amygdala and spinal cord. In this study, the characteristic features of the metabolic effects of dietary fructose on synaptic plasticity in hippocampal neurons and basolateral amygdala and the state of the NADPH oxidase (NOX) oxidative system of these brain formations are revealed, as well as the prospects for development of multitarget and polyfunctional phytopreparations (with adaptogenic, antioxidant, antidiabetic, nootropic activity) from native raw material of Stevia rebaudiana. Stevia modulates degree of expressiveness of potentiation/depression (approaches but fails to achieve the norm) by shifting the percentage balance in favor of depressor type of responses during high-frequency stimulation, indicating its adaptogenic role in plasticity of neural networks. Under the action of fructose an increase (3-5 times) in specific quantity of total fraction of NOX isoforms isolated from the central nervous system tissue (amygdala, hippocampus, spinal cord) was revealed. Stevia exhibits an antistress, membrane-stabilizing role reducing the level of total fractions of NOX isoforms from central nervous system tissues and regulates NADPH-dependent O 2 - -producing activity. Generally, in condition of metabolic disorders caused by intensive consumption of dietary fructose Stevia leaves contributes to the control of neuronal synaptic plasticity possibly influencing the conjugated NOX-specific targets.

  20. Different Stimulation Frequencies Alter Synchronous Fluctuations in Motor Evoked Potential Amplitude of Intrinsic Hand Muscles—a TMS Study

    PubMed Central

    Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.

    2016-01-01

    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031

  1. Binaural beats increase interhemispheric alpha-band coherence between auditory cortices.

    PubMed

    Solcà, Marco; Mottaz, Anaïs; Guggisberg, Adrian G

    2016-02-01

    Binaural beats (BBs) are an auditory illusion occurring when two tones of slightly different frequency are presented separately to each ear. BBs have been suggested to alter physiological and cognitive processes through synchronization of the brain hemispheres. To test this, we recorded electroencephalograms (EEG) at rest and while participants listened to BBs or a monaural control condition during which both tones were presented to both ears. We calculated for each condition the interhemispheric coherence, which expressed the synchrony between neural oscillations of both hemispheres. Compared to monaural beats and resting state, BBs enhanced interhemispheric coherence between the auditory cortices. Beat frequencies in the alpha (10 Hz) and theta (4 Hz) frequency range both increased interhemispheric coherence selectively at alpha frequencies. In a second experiment, we evaluated whether this coherence increase has a behavioral aftereffect on binaural listening. No effects were observed in a dichotic digit task performed immediately after BBs presentation. Our results suggest that BBs enhance alpha-band oscillation synchrony between the auditory cortices during auditory stimulation. This effect seems to reflect binaural integration rather than entrainment. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Muscle activation and the isokinetic torque-velocity relationship of the human triceps surae.

    PubMed

    Harridge, S D; White, M J

    1993-01-01

    The influence of muscle activation and the time allowed for torque generation on the angle-specific torque-velocity relationship of the triceps surae was studied during plantar flexion using supramaximal electrical stimulation and a release technique on six male subjects [mean (SD) age 25 (4) years]. Torque-velocity data were obtained under different levels of constant muscle activation by varying the stimulus frequency and the time allowed for isometric torque generation prior to release and isokinetic shortening. To eliminate the effects of the frequency response on absolute torque the isokinetic data were normalized to the maximum isometric torque values at 0.44 rad. There were no significant differences in the normalized torques generated at any angular velocity using stimulus frequencies of 20, 50 or 80 Hz. When the muscle was stimulated at 50 Hz the torques obtained after a 400 ms and 1 s pre-release isometric contraction did not differ significantly. However, with no pre-release contraction significantly less torque was generated at all angular velocities beyond 1.05 rad.s-1 when compared with either the 200, 400 ms or 1 s condition. With a 200 ms pre-release contraction significantly less torque was generated at angular velocities beyond 1.05 rad.s-1 when compared with the 400 ms or 1 s conditions. It would seem that the major factor governing the shape of the torque-velocity curve at a constant level of muscle activation is the time allowed for torque generation.

  3. Sacral Nerve Stimulation For Urinary Urge Incontinence, Urgency-Frequency, Urinary Retention, and Fecal Incontinence

    PubMed Central

    2005-01-01

    Executive Summary Objective The aim of this review was to assess the effectiveness, safety, and cost of sacral nerve stimulation (SNS) to treat urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence. Background: Condition and Target Population Urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence are prevalent, yet rarely discussed, conditions. They are rarely discussed because patients may be uncomfortable disclosing their symptoms to a health professional or may be unaware that there are treatment options for these conditions. Briefly, urge incontinence is an involuntary loss of urine upon a sudden urge. Urgency-frequency is an uncontrollable urge to void, which results in frequent, small-volume voids. People with urgency-frequency may or may not also experience chronic pelvic pain. Urinary retention refers to the inability to void despite having the urge to void. It can be caused by a hypocontractile detrusor (weak or no bladder muscle contraction) or obstruction due to urethral overactivity. Fecal incontinence is a loss of voluntary bowel control. The prevalence of urge incontinence, urgency-frequency, and urinary retention in the general population is 3.3% to 8.2%, and the prevalence of fecal incontinence is 1.4% to 1.9%. About three-quarters of these people will be successfully treated by behaviour and/or drug therapy. For those who do not respond to these therapies, the options for treatment are management with diapers or pads, or surgery. The surgical procedures are generally quite invasive, permanent, and are associated with complications. Pads and/or diapers are used throughout the course of treatment as different therapies are tried. Patients who respond successfully to treatment may still require pads or diapers, but to a lesser extent. The Technology Being Reviewed: Sacral Nerve Stimulation Sacral nerve stimulation is a procedure where a small device attached to an electrode is implanted in the abdomen or buttock to stimulate the sacral nerves in an attempt to manage urinary urge incontinence, urgency-frequency, urinary retention, and fecal incontinence. The device was originally developed to manage urinary urge incontinence; however, it has also been used in patients with urgency-frequency, urinary retention, and fecal incontinence. SNS is intended for patients who are refractory to behaviour, drug, and/or interventional therapy. There are 2 phases in the SNS process: first, patients must undergo a test stimulation phase to determine if they respond to sacral nerve stimulation. If there is a 50% or greater improvement in voiding function, then the patient is considered a candidate for the next phase, implantation. Review Strategy The standard Medical Advisory Secretariat search strategy was used to locate international health technology assessments and English-language journal articles published from 2000 to November 2004. The Medical Advisory Secretariat also conducted Internet searches of Medscape (1) and the manufacturer’s website (2) to identify product information and recent reports on trials that were unpublished but that were presented at international conferences. In addition, the Web site Current Controlled Trials (3) was searched for ongoing randomized controlled trials (RCTs) investigating the role of sacral nerve stimulation in the management of voiding conditions. Summary of Findings Four health technology assessments were found that reviewed SNS in patients with urge incontinence, urgency-frequency, and/or urinary retention. One assessment was found that reviewed SNS in patients with fecal incontinence. The assessments consistently reported that SNS was an effective technology in managing these voiding conditions in patients who did not respond to drug or behaviour therapy. They also reported that there was a substantial complication profile associated with SNS. Complication rates ranged from 33% to 50%. However, none of the assessments reported that they found any incidences of permanent injury or death associated with the device. The health technology assessments for urge incontinence, urgency-frequency, and urinary retention included (RCTs (level 2) as their primary source of evidence for their conclusions. The assessment of fecal incontinence based its conclusions on evidence from case series (level 4). Because there was level 2 data available for the use of SNS in patients with urinary conditions, the Medical Advisory Secretariat chose to review thoroughly the RCTs included in the assessments and search for publications since the assessments were released. However, for the health technology assessment for fecal incontinence, which contained only level 4 evidence, the Medical Advisory Secretariat searched for studies on SNS and fecal incontinence that were published since that assessment was released. Urge Incontinence Two RCTs were identified that compared SNS to no treatment in patients with refractory urge incontinence. Both RCTs reported significant improvements (> 50% improvement in voiding function) in the SNS group for number of incontinence episodes per day, number of pads used per day, and severity of incontinence episodes. Urgency-Frequency (With or Without Chronic Pelvic Pain) One RCT was identified that compared SNS to no treatment in patients with refractory urgency-frequency. The RCT reported significant improvements in urgency-frequency symptoms in the SNS group (average volume per void, detrusor pressure). In addition to the RCT, 1 retrospective review and 2 prospective case series were identified that measured pelvic pain associated with urgency-frequency in patients who underwent SNS. All 3 studies reported a significant decrease in pain at median follow-up. Urinary Retention One RCT was identified that compared SNS to no treatment in patients with refractory urinary retention. The RCT reported significant improvements in urinary retention in the SNS group compared to the control group for number of catheterizations required and number of voids per day. In addition to this RCT, 1 case series was also identified investigating SNS in women with urinary retention. This study also found that there were significant improvements in urinary retention after the women had received the SNS implants. Fecal Incontinence Three case series were identified that investigated the role of SNS in patients with fecal incontinence. All 3 reported significant improvements in fecal incontinence symptoms (number of incontinent episodes per week) after the patients received the SNS implants. Long-Term Follow-up None of the studies identified followed patients until the point of battery failure. Of the 6 studies identified describing the long-term follow-up of patients with SNS, follow-up periods ranged from 1.5 years to over 5 years. None of the long-term follow-up studies included patients with fecal incontinence. All of the studies reported that most of the patients who had SNS had at least a 50% improvement in voiding function (range 58%–77%). These studies also reported the number of patients who had their device explanted in the follow-up period. The rates of explantation ranged from 12% to 21%. Safety, Complications, and Quality of Life A 33% surgical revision rate was reported in an analysis of the safety of 3 RCTs comparing SNS to no treatment in patients with urge incontinence, urgency-frequency, or urinary retention. The most commonly reported adverse effects were pain at the implant site and lead migration. Despite the high rate of surgical revision, there were no reports of permanent injury or death in any of the studies or health technology assessments identified. Additionally, patients consistently said that they would recommend the procedure to a friend or family member. Economic Analysis One health technology assessment and 1 abstract were found that investigated the costing factors pertinent to SNS. The authors of this assessment did their own “indicative analysis” and found that SNS was not more cost-effective than using incontinence supplies. However, the assessment did not account for quality of life. Conversely, the authors of the abstract found that SNS was more cost-effective than incontinence supplies alone; however, they noted that in the first year after SNS, it is much more expensive than only incontinence supplies. This is owing to the cost of the procedure, and the adjustments required to make the device most effective. They also noted the positive effects that SNS had on quality of life. Conclusions and Implications In summary, there is level 2 evidence to support the effectiveness of SNS to treat people with urge incontinence, urgency-frequency, or urinary retention. There is level 4 evidence to support the effectiveness of SNS to treat people with fecal incontinence. To qualify for SNS, people must meet the following criteria: Be refractory to behaviour and/or drug therapy Have had a successful test stimulation before implantation; successful test stimulation is defined by a 50% or greater improvement in voiding function based on the results of a voiding diary. Test stimulation periods range from 3 to 7 days for patients with urinary dysfunctions, and from 2 to 3 weeks for patients with fecal incontinence. Be able to record voiding diary data, so that clinical results of the implantation can be evaluated. Patients with stress incontinence, urinary retention due to obstruction and neurogenic conditions (such as diabetes with peripheral nerve involvement) are ineligible for sacral nerve stimulation. Physicians will need to learn how to use the InterStim System for Urinary Control. Requirements for training include these: Physicians must be experienced in the diagnosis and treatment of lower urinary tract disorders and should be trained in the implantation and use of the InterStim System for Urinary Control. Training should include the following: Participation in a seminar or workshop that includes instructional and laboratory training on SNS. This seminar should include a review of the evidence on SNS with emphasis on techniques to prevent adverse events. Completion of proctoring by a physician experienced in SNS for the first 2 test stimulations and the first 2 implants PMID:23074472

  4. Beta-gamma burst stimulations of the inferior olive induce high-frequency oscillations in the deep cerebellar nuclei.

    PubMed

    Cheron, Julian; Cheron, Guy

    2018-02-20

    The cerebellum displays various sorts of rhythmic activities covering both low- and high-frequency oscillations. These cerebellar high-frequency oscillations were observed in the cerebellar cortex. Here, we hypothesised that not only is the cerebellar cortex a generator of high-frequency oscillations but also that the deep cerebellar nuclei may also play a similar role. Thus, we analysed local field potentials and single-unit activities in the deep cerebellar nuclei before, during and after electric stimulation in the inferior olive of awake mice. A high-frequency oscillation of 350 Hz triggered by the stimulation of the inferior olive, within the beta-gamma range, was observed in the deep cerebellar nuclei. The amplitude and frequency of the oscillation were independent of the frequency of stimulation. This oscillation emerged during the period of stimulation and persisted after the end of the stimulation. The oscillation coincided with the inhibition of deep cerebellar neurons. As the inhibition of the deep cerebellar nuclei is related to inhibitory inputs from Purkinje cells, we speculate that the oscillation represents the unmasking of the synchronous activation of another subtype of deep cerebellar neuronal subtype, devoid of GABA receptors and under the direct control of the climbing fibres from the inferior olive. Still, the mechanism sustaining this oscillation remains to be deciphered. Our study sheds new light on the role of the olivo-cerebellar loop as the final output control of the intercerebellar circuitry. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Stimulated Rayleigh-Bragg scattering in two-photon absorbing media

    NASA Astrophysics Data System (ADS)

    He, Guang S.; Lu, Changgui; Zheng, Qingdong; Prasad, Paras N.; Zerom, Petros; Boyd, Robert W.; Samoc, Marek

    2005-06-01

    The origin and mechanism of backward stimulated Rayleigh scattering in two-photon absorbing media are studied theoretically and experimentally. This type of stimulated scattering has the unusual features of no frequency shift and low pump threshold requirement compared to all other known stimulated scattering effects. This frequency-unshifted stimulated Rayleigh scattering effect can be well explained by a two-photon-excitation-enhanced Bragg grating reflection model. The reflection of the forward pump beam from this stationary Bragg grating may substantially enhance the backward Rayleigh scattering beam, providing a positive feedback mechanism without causing any frequency shift. A two-counterpropagating-beam-formed grating experiment in a two-photon absorbing dye solution is conducted. The measured dynamic behavior of Bragg grating formation and reflectivity properties are basically consistent with the predictions from the proposed model.

  6. Neural dynamics during repetitive visual stimulation

    NASA Astrophysics Data System (ADS)

    Tsoneva, Tsvetomira; Garcia-Molina, Gary; Desain, Peter

    2015-12-01

    Objective. Steady-state visual evoked potentials (SSVEPs), the brain responses to repetitive visual stimulation (RVS), are widely utilized in neuroscience. Their high signal-to-noise ratio and ability to entrain oscillatory brain activity are beneficial for their applications in brain-computer interfaces, investigation of neural processes underlying brain rhythmic activity (steady-state topography) and probing the causal role of brain rhythms in cognition and emotion. This paper aims at analyzing the space and time EEG dynamics in response to RVS at the frequency of stimulation and ongoing rhythms in the delta, theta, alpha, beta, and gamma bands. Approach.We used electroencephalography (EEG) to study the oscillatory brain dynamics during RVS at 10 frequencies in the gamma band (40-60 Hz). We collected an extensive EEG data set from 32 participants and analyzed the RVS evoked and induced responses in the time-frequency domain. Main results. Stable SSVEP over parieto-occipital sites was observed at each of the fundamental frequencies and their harmonics and sub-harmonics. Both the strength and the spatial propagation of the SSVEP response seem sensitive to stimulus frequency. The SSVEP was more localized around the parieto-occipital sites for higher frequencies (>54 Hz) and spread to fronto-central locations for lower frequencies. We observed a strong negative correlation between stimulation frequency and relative power change at that frequency, the first harmonic and the sub-harmonic components over occipital sites. Interestingly, over parietal sites for sub-harmonics a positive correlation of relative power change and stimulation frequency was found. A number of distinct patterns in delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz) and beta (15-30 Hz) bands were also observed. The transient response, from 0 to about 300 ms after stimulation onset, was accompanied by increase in delta and theta power over fronto-central and occipital sites, which returned to baseline after approx. 500 ms. During the steady-state response, we observed alpha band desynchronization over occipital sites and after 500 ms also over frontal sites, while neighboring areas synchronized. The power in beta band over occipital sites increased during the stimulation period, possibly caused by increase in power at sub-harmonic frequencies of stimulation. Gamma power was also enhanced by the stimulation. Significance. These findings have direct implications on the use of RVS and SSVEPs for neural process investigation through steady-state topography, controlled entrainment of brain oscillations and BCIs. A deep understanding of SSVEP propagation in time and space and the link with ongoing brain rhythms is crucial for optimizing the typical SSVEP applications for studying, assisting, or augmenting human cognitive and sensorimotor function.

  7. Differential changes in myoelectric characteristics of slow and fast fatigable frog muscle fibres during long-lasting activity.

    PubMed

    Vydevska-Chichova, M; Mileva, K; Radicheva, N

    2007-04-01

    The electrical activity of different muscle fibre types during fatigue at varying stimulation frequency and fibre stretch was studied. Extracellular action potentials (ECAPs) were recorded from isolated frog muscle fibres at initial length and stretched by 15%, 25% and 35% and stimulated for 180 s by suprathreshold pulses with frequencies of 5, 6.7 and 10Hz. The changes in ECAP negative phase duration (T(0)), propagation velocity of excitation (PV), potential power spectrum and its median frequency (MDF) were analysed for the period of uninterrupted activity (endurance time, ET). Slow (SMF) and fast (FMF) fatigable muscle fibre types were distinguished by the rate of PV decrease during ET. With the increase of stimulation frequency and fibre stretch, the rate of ECAP parameter changes increased and was larger in FMF, but this proportion was reversed with stretching over 25% and 10Hz stimulation. In both fibre types the power spectrum shift to lower frequencies during continuous activity was more pronounced with higher stimulation frequency. In FMFs the rates of MDF changes were positively and more strongly correlated with the rates of PV changes, whilst in SMFs the inverse correlation between the rates of changes of MDF and T(0) was stronger. The results indicate specific adaptation of slow and fast fatigable muscle fibres to stretch and activation frequency due to the differences in their membrane processes.

  8. Emotions induced by intracerebral electrical stimulation of the temporal lobe.

    PubMed

    Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo

    2006-01-01

    To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.

  9. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    NASA Astrophysics Data System (ADS)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  10. The effect of stimulus frequency on the analgesic response to percutaneous electrical nerve stimulation in patients with chronic low back pain.

    PubMed

    Ghoname, E S; Craig, W F; White, P F; Ahmed, H E; Hamza, M A; Gajraj, N M; Vakharia, A S; Noe, C E

    1999-04-01

    Low back pain (LBP) is one of the most common medical problems in our society. Increasingly, patients are turning to nonpharmacologic analgesic therapies such as percutaneous electrical nerve stimulation (PENS). We designed this sham-controlled study to compare the effect of three different frequencies of electrical stimulation on the analgesic response to PENS therapy. Sixty-eight consenting patients with LBP secondary to degenerative lumbar disc disease were treated with PENS therapy at 4 Hz, alternating 15 Hz and 30 Hz (15/30 Hz), and 100 Hz, as well as sham-PENS (0 Hz), according to a randomized, cross-over study design. Each treatment was administered for a period of 30 min three times per week for 2 wk. The pre- and posttreatment assessments included the health status survey short form and visual analog scales for pain, physical activity, and quality of sleep. After receiving all four treatments, patients completed a global assessment questionnaire. The sham-PENS treatments failed to produce changes in the degree of pain, physical activity, sleep quality, or daily intake of oral analgesic medications. In contrast, 4-Hz, 15/30-Hz, and 100-Hz stimulation all produced significant decreases in the severity of pain, increases in physical activity, improvements in the quality of sleep, and decreases in oral analgesic requirements (P < 0.01). Of the three frequencies, 15/30 Hz was the most effective in decreasing pain, increasing physical activity, and improving the quality of sleep (P < 0.05). In the global assessment, 40% of the patients reported that 15/30 Hz was the most desirable therapy, and it was also more effective in improving the patient's sense of well-being. We conclude that the frequency of electrical stimulation is an important determinant of the analgesic response to PENS therapy. Alternating stimulation at 15-Hz and 30-Hz frequencies was more effective than either 4 Hz or 100 Hz in improving outcome measures in patients with LBP. The frequency of electrical stimulation seems to be an important determinant of the analgesic efficacy of percutaneous electrical nerve stimulation. Mixed low- and high-frequency stimulation was more effective than either low or high frequencies alone in the treatment of patients with low back pain.

  11. A dominant bursting electromyograph pattern in dystonic conditions predicts an early response to pallidal stimulation.

    PubMed

    Yianni, John; Wang, Shou Yan; Liu, Xuguang; Bain, Peter G; Nandi, Dipankar; Gregory, Ralph; Joint, Carole; Stein, John F; Aziz, Tipu Z

    2006-08-01

    Although chronic pallidal deep brain stimulation (DBS) is effective in the treatment of medically intractable dystonia, there is no way of predicting the variations in clinical outcome, partly due to our limited understanding of the pathophysiological mechanisms underlying this condition. We recorded electromyographic (EMG) activity from the most severely affected muscle groups in seven dystonia patients before and after pallidal DBS. Patient EMG recordings could be classified into two groups: one consisting of patients who at rest demonstrated a dominant low frequency component of activity on power spectral analysis (ranging from 2 to 5 Hz), and one group in which this dominant pattern was absent. Early postoperative improvements (within 2-3 days) were observed in the former group, whereas the latter group benefited more gradually (over several months). Analysis of EMG activity may provide a sensitive means of identifying dystonic patients who are likely to be most responsive to functional neurosurgical intervention.

  12. Wireless Passive Stimulation of Engineered Cardiac Tissues.

    PubMed

    Liu, Shiyi; Navaei, Ali; Meng, Xueling; Nikkhah, Mehdi; Chae, Junseok

    2017-07-28

    We present a battery-free radio frequency (RF) microwave activated wireless stimulator, 25 × 42 × 1.6 mm 3 on a flexible substrate, featuring high current delivery, up to 60 mA, to stimulate engineered cardiac tissues. An external antenna shines 2.4 GHz microwave, which is modulated by an inverted pulse to directly control the stimulating waveform, to the wireless passive stimulator. The stimulator is equipped with an on-board antenna, multistage diode multipliers, and a control transistor. Rat cardiomyocytes, seeded on electrically conductive gelatin-based hydrogels, demonstrate synchronous contractions and Ca 2+ transients immediately upon stimulation. Notably, the stimulator output voltage and current profiles match the tissue contraction frequency within 0.5-2 Hz. Overall, our results indicate the promising potential of the proposed wireless passive stimulator for cardiac stimulation and therapy by induction of precisely controlled and synchronous contractions.

  13. Stimulated Brillouin Scatter in a Magnetized Ionospheric Plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, P. A.; Selcher, C. A.; Lehmberg, R. H.

    2010-04-23

    High power electromagnetic waves transmitted from the HAARP facility in Alaska can excite low-frequency electrostatic waves by magnetized stimulated Brillouin scatter. Either an ion-acoustic wave with a frequency less than the ion cyclotron frequency (f{sub CI}) or an electrostatic ion cyclotron (EIC) wave just above f{sub CI} can be produced. The coupled equations describing the magnetized stimulated Brillouin scatter instability show that the production of both ion-acoustic and EIC waves is strongly influenced by the wave propagation relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions using the HAARP transmitter have confirmed that only ion-acoustic waves aremore » excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The ion composition can be obtained from the measured EIC frequency.« less

  14. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    NASA Astrophysics Data System (ADS)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  15. Effects of hypoxia and hypercapnia on geniohyoid contractility and endurance.

    PubMed

    Salmone, R J; Van Lunteren, E

    1991-08-01

    Sleep apnea and other respiratory diseases produce hypoxemia and hypercapnia, factors that adversely affect skeletal muscle performance. To examine the effects of these chemical alterations on force production by an upper airway dilator muscle, the contractile and endurance characteristics of the geniohyoid muscle were examined in situ during severe hypoxia (arterial PO2 less than 40 Torr), mild hypoxia (PO2 45-65 Torr), and hypercapnia (PCO2 55-80 Torr) and compared with hyperoxic-normocapnic conditions in anesthetized cats. Muscles were studied at optimal length, and contractile force was assessed in response to supramaximal electrical stimulation of the hypoglossal nerve (n = 7 cats) or geniohyoid muscle (n = 2 cats). There were no significant changes in the twitch kinetics or force-frequency curve of the geniohyoid muscle during hypoxia or hypercapnia. However, the endurance of the geniohyoid, as reflected in the fatigue index (ratio of force at 2 min to initial force in response to 40-Hz stimulation at a duty cycle 0.33), was significantly reduced by severe hypoxia but not by hypercapnia or mild hypoxia. In addition, the downward shift in the force-frequency curve after the repetitive stimulation protocol was greater during hypoxia than hyperoxia, especially at higher frequencies. In conclusion, the ability of the geniohyoid muscle to maintain force output during high levels of activation is adversely affected by severe hypoxia but not mild hypoxia or hypercapnia. However, none of these chemical perturbations affected muscle contractility acutely.

  16. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.

  17. Mandarin Chinese Tone Identification in Cochlear Implants: Predictions from Acoustic Models

    PubMed Central

    Morton, Kenneth D.; Torrione, Peter A.; Throckmorton, Chandra S.; Collins, Leslie M.

    2015-01-01

    It has been established that current cochlear implants do not supply adequate spectral information for perception of tonal languages. Comprehension of a tonal language, such as Mandarin Chinese, requires recognition of lexical tones. New strategies of cochlear stimulation such as variable stimulation rate and current steering may provide the means of delivering more spectral information and thus may provide the auditory fine structure required for tone recognition. Several cochlear implant signal processing strategies are examined in this study, the continuous interleaved sampling (CIS) algorithm, the frequency amplitude modulation encoding (FAME) algorithm, and the multiple carrier frequency algorithm (MCFA). These strategies provide different types and amounts of spectral information. Pattern recognition techniques can be applied to data from Mandarin Chinese tone recognition tasks using acoustic models as a means of testing the abilities of these algorithms to transmit the changes in fundamental frequency indicative of the four lexical tones. The ability of processed Mandarin Chinese tones to be correctly classified may predict trends in the effectiveness of different signal processing algorithms in cochlear implants. The proposed techniques can predict trends in performance of the signal processing techniques in quiet conditions but fail to do so in noise. PMID:18706497

  18. The effect of high mesencephalic transection (cerveau isolé) and pentobarbital on basal forebrain mechanisms of EEG synchronization.

    PubMed

    Obál, F; Benedek, G; Szikszay, M; Obál, F

    1979-01-01

    A study was made of the effects of high mesencephalic transection (cerveau isolé) and low doses of pentobarbital on the cortical synchronizations elicited in acute immobilized cats by (a) low frequency stimulation of the lateral hypothalamus (HL) and nucleus ventralis anterior thalami (VA) and (b) by low and high frequency stimulation of the laterobasal preoptic region (RPO) and olfactory tubercle (TbOf). The results obtained were as follows: (1) The synchronizations induced by basal forebrain stimulations were found to survive in acute cerveau isolé cats, moreover, even a facilitation of the synchronizing effect were observed. (2) A gradual facilitation was observed upon TbOf and RPO stimulation, while in the case of VA and HL stimulations, the facilitation appeared immediately after the transection. (3) Low doses of pentobarbital depressed the cortical effects of TbOf stimulation, while an increase of the synchronizing effect of low frequency VA and HL stimulation was found. The observations suggested that (i) the synchronizing mechanism in the ventral part of the basal forebrain (RPO and TbOf) differs from that of the thalamus and HL; (ii) the basal forebrain synchronizing mechanism is effective without the contribution of the brain stem; (iii) the mechanism responsible for the synchronizing effect of low frequency HL stimulation is similar as that described for the thalamus.

  19. Modulation Between High- and Low-Frequency Transcutaneous Electric Nerve Stimulation Delays the Development of Analgesic Tolerance in Arthritic Rats

    PubMed Central

    DeSantana, Josimari M.; Santana-Filho, Valter J.; Sluka, Kathleen A.

    2009-01-01

    Objective To investigate whether repeated administration of modulating frequency transcutaneous electric nerve stimulation (TENS) prevents development of analgesic tolerance. Design Knee joint inflammation (3% carrageenan and kaolin) was induced in rats. Either mixed or alternating frequency was administered daily (20min) for 2 weeks to the inflamed knee under light halothane anesthesia (1%–2%). Setting Laboratory. Animals Adult male Sprague-Dawley rats (N=36). Intervention Mixed- (4Hz and 100Hz) or alternating- (4Hz on 1 day; 100Hz on the next day) frequency TENS at sensory intensity and 100μs pulse duration. Main Outcome Measures Paw and joint withdrawal thresholds to mechanical stimuli were assessed before induction of inflammation, and before and after daily application of TENS. Results The reduced paw and joint withdrawal thresholds that occur 24 hours after the induction of inflammation were significantly reversed by the first administration of TENS when compared with sham treatment or to the condition before TENS treatment, which was observed through day 9. By the tenth day, repeated daily administration of either mixed- or alternating-frequency TENS did not reverse the decreased paw and joint withdrawal thresholds. Conclusions These data suggest that repeated administration of modulating frequency TENS leads to a development of opioid tolerance. However, this tolerance effect is delayed by approximately 5 days compared with administration of low- or high-frequency TENS independently. Clinically, we can infer that a treatment schedule of repeated daily TENS administration will result in a tolerance effect. Moreover, modulating low and high frequency TENS seems to produce a better analgesic effect and tolerance is slower to develop. PMID:18374009

  20. Real-time CARS imaging reveals a calpain-dependent pathway for paranodal myelin retraction during high-frequency stimulation.

    PubMed

    Huff, Terry B; Shi, Yunzhou; Sun, Wenjing; Wu, Wei; Shi, Riyi; Cheng, Ji-Xin

    2011-03-03

    High-frequency electrical stimulation is becoming a promising therapy for neurological disorders, however the response of the central nervous system to stimulation remains poorly understood. The current work investigates the response of myelin to electrical stimulation by laser-scanning coherent anti-Stokes Raman scattering (CARS) imaging of myelin in live spinal tissues in real time. Paranodal myelin retraction at the nodes of Ranvier was observed during 200 Hz electrical stimulation. Retraction was seen to begin minutes after the onset of stimulation and continue for up to 10 min after stimulation was ceased, but was found to reverse after a 2 h recovery period. The myelin retraction resulted in exposure of Kv 1.2 potassium channels visualized by immunofluorescence. Accordingly, treating the stimulated tissue with a potassium channel blocker, 4-aminopyridine, led to the appearance of a shoulder peak in the compound action potential curve. Label-free CARS imaging of myelin coupled with multiphoton fluorescence imaging of immuno-labeled proteins at the nodes of Ranvier revealed that high-frequency stimulation induced paranodal myelin retraction via pathologic calcium influx into axons, calpain activation, and cytoskeleton degradation through spectrin break-down.

  1. Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation

    PubMed Central

    Lysyansky, Borys; Rosenblum, Michael; Pikovsky, Arkady; Tass, Peter A.

    2017-01-01

    High-frequency (HF) deep brain stimulation (DBS) is the gold standard for the treatment of medically refractory movement disorders like Parkinson’s disease, essential tremor, and dystonia, with a significant potential for application to other neurological diseases. The standard setup of HF DBS utilizes an open-loop stimulation protocol, where a permanent HF electrical pulse train is administered to the brain target areas irrespectively of the ongoing neuronal dynamics. Recent experimental and clinical studies demonstrate that a closed-loop, adaptive DBS might be superior to the open-loop setup. We here combine the notion of the adaptive high-frequency stimulation approach, that aims at delivering stimulation adapted to the extent of appropriately detected biomarkers, with specifically desynchronizing stimulation protocols. To this end, we extend the delayed feedback stimulation methods, which are intrinsically closed-loop techniques and specifically designed to desynchronize abnormal neuronal synchronization, to pulsatile electrical brain stimulation. We show that permanent pulsatile high-frequency stimulation subjected to an amplitude modulation by linear or nonlinear delayed feedback methods can effectively and robustly desynchronize a STN-GPe network of model neurons and suggest this approach for desynchronizing closed-loop DBS. PMID:28273176

  2. Probing neural mechanisms underlying auditory stream segregation in humans by transcranial direct current stimulation (tDCS).

    PubMed

    Deike, Susann; Deliano, Matthias; Brechmann, André

    2016-10-01

    One hypothesis concerning the neural underpinnings of auditory streaming states that frequency tuning of tonotopically organized neurons in primary auditory fields in combination with physiological forward suppression is necessary for the separation of representations of high-frequency A and low-frequency B tones. The extent of spatial overlap between the tonotopic activations of A and B tones is thought to underlie the perceptual organization of streaming sequences into one coherent or two separate streams. The present study attempts to interfere with these mechanisms by transcranial direct current stimulation (tDCS) and to probe behavioral outcomes reflecting the perception of ABAB streaming sequences. We hypothesized that tDCS by modulating cortical excitability causes a change in the separateness of the representations of A and B tones, which leads to a change in the proportions of one-stream and two-stream percepts. To test this, 22 subjects were presented with ambiguous ABAB sequences of three different frequency separations (∆F) and had to decide on their current percept after receiving sham, anodal, or cathodal tDCS over the left auditory cortex. We could confirm our hypothesis at the most ambiguous ∆F condition of 6 semitones. For anodal compared with sham and cathodal stimulation, we found a significant decrease in the proportion of two-stream perception and an increase in the proportion of one-stream perception. The results demonstrate the feasibility of using tDCS to probe mechanisms underlying auditory streaming through the use of various behavioral measures. Moreover, this approach allows one to probe the functions of auditory regions and their interactions with other processing stages. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    PubMed

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    PubMed Central

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  5. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  6. Cochlear Implant Electrode Effect on Sound Energy Transfer within the Cochlea during Acoustic Stimulation

    PubMed Central

    Greene, Nathaniel T.; Mattingly, Jameson K.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.

    2015-01-01

    Hypothesis Cochlear implants (CI) designed for hearing preservation will not alter mechanical properties of the middle and inner ear as measured by intracochlear pressure (PIC) and stapes velocity (Vstap). Background CIs designed to provide combined electrical and acoustic stimulation (EAS) are now available. To maintain functional acoustic hearing, it is important to know if a CI electrode can alter middle or inner ear mechanics, as any alteration could contribute to elevated low-frequency thresholds in EAS patients. Methods Seven human cadaveric temporal bones were prepared, and pure-tone stimuli from 120Hz–10kHz were presented at a range of intensities up to 110 dB SPL. PIC in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors concurrently with VStap using laser Doppler vibrometry. Five CI electrodes from two different manufacturers, with varying dimensions were inserted via a round window approach at six different depths (16–25 mm). Results The responses of PIC and VStap to acoustic stimulation were assessed as a function of stimulus frequency, normalized to SPL in the external auditory canal (EAC), in baseline and electrode inserted conditions. Responses measured with electrodes inserted were generally within ~5 dB of baseline, indicating little effect of cochlear implant electrode insertion on PIC and VStap. Overall, mean differences across conditions were small for all responses, and no substantial differences were consistently visible across electrode types. Conclusions Results suggest that the influence of a CI electrode on middle and inner ear mechanics is minimal, despite variation in electrode lengths and configurations. PMID:26333018

  7. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts

    PubMed Central

    Foisy, A.; Gaertner, C.; Matheron, E.; Kapoula, Z.

    2015-01-01

    The purpose of this study was to assess properties of vergence and saccade eye movements as well as posture in quiet stance, and the effects of thin plantar inserts upon postural and oculomotor control. The performances of 36 young healthy subjects were recorded by a force platform and an eye tracker in three testing conditions: without plantar stimulation, with a 3 millimetre-thick plantar insert, either a Medial or a Lateral Arch Support (MAS / LAS). The results showed a decrease of the Surface and Variance of Speed and a more posterior position of the CoP with either stimulation compared with the control condition. The fractal analysis showed a decrease with MAS. Wavelet analysis in the time-frequency domain revealed an increase in the Cancelling Time of the low frequency band with MAS. These results suggest a better stability for a lower energy cost. Concerning eye movements, the inserts influenced only vergence (not saccades): MAS caused an increase of the phasic amplitude of divergence, and conversely a decrease of the tonic amplitude. In contrast, LAS caused an increase of the tonic amplitude of convergence. Thus, MAS renders divergence less visually driven, while LAS renders convergence more visually driven. We conclude that the CNS uses the podal signal for both postural and vergence control via specific mechanisms. Plantar inserts have an influence upon posture and vergence movements in a different way according to the part of the foot sole being stimulated. These results can be useful to clinicians interested in foot or eye. PMID:26637132

  8. One year double blind study of high vs low frequency subcallosal cingulate stimulation for depression.

    PubMed

    Eitan, Renana; Fontaine, Denys; Benoît, Michel; Giordana, Caroline; Darmon, Nelly; Israel, Zvi; Linesky, Eduard; Arkadir, David; Ben-Naim, Shiri; Iserlles, Moshe; Bergman, Hagai; Hulse, Natasha; Abdelghani, Mohamed; McGuffin, Peter; Farmer, Anne; DeLea, Peichel; Ashkan, Keyoumars; Lerer, Bernard

    2018-01-01

    Subcallosal Brodmann's Area 25 (Cg25) Deep Brain Stimulation (DBS) is a new promising therapy for treatment resistant major depressive disorder (TR-MDD). While different DBS stimulating parameters may have an impact on the efficacy and safety of the therapy, there is no data to support a protocol for optimal stimulation parameters for depression. Here we present a prospective multi-center double-blind randomized crossed-over 13-month study that evaluated the effects of High (130 Hz) vs Low (20 Hz) frequency Cg25 stimulation for nine patients with TR-MDD. Four out of nine patients achieved response criteria (≥40% reduction of symptom score) compared to mean baseline values at the end of the study. The mean percent change of MADRS score showed a similar improvement in the high and low frequency stimulation groups after 6 months of stimulation (-15.4 ± 21.1 and -14.7 ± 21.1 respectively). The mean effect at the end of the second period (6 months after cross-over) was higher than the first period (first 6 months of stimulation) in all patients (-23.4 ± 19.9 (n = 6 periods) and -13.0 ± 22 (n = 9 periods) respectively). At the end of the second period, the mean percent change of the MADRS scores improved more in the high than low frequency groups (-31.3 ± 19.3 (n = 4 patients) and -7.7 ± 10.9 (n = 2 patients) respectively). Given the small numbers, detailed statistical analysis is challenging. Nonetheless the results of this study suggest that long term high frequency stimulation might confer the best results. Larger scale, randomized double blind trials are needed in order to evaluate the most effective stimulation parameters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization.

    PubMed

    Manos, Thanos; Zeitler, Magteld; Tass, Peter A

    2018-01-01

    In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies.

  10. Short-Term Dosage Regimen for Stimulation-Induced Long-Lasting Desynchronization

    PubMed Central

    Manos, Thanos; Zeitler, Magteld; Tass, Peter A.

    2018-01-01

    In this paper, we computationally generate hypotheses for dose-finding studies in the context of desynchronizing neuromodulation techniques. Abnormally strong neuronal synchronization is a hallmark of several brain disorders. Coordinated Reset (CR) stimulation is a spatio-temporally patterned stimulation technique that specifically aims at disrupting abnormal neuronal synchrony. In networks with spike-timing-dependent plasticity CR stimulation may ultimately cause an anti-kindling, i.e., an unlearning of abnormal synaptic connectivity and neuronal synchrony. This long-lasting desynchronization was theoretically predicted and verified in several pre-clinical and clinical studies. We have shown that CR stimulation with rapidly varying sequences (RVS) robustly induces an anti-kindling at low intensities e.g., if the CR stimulation frequency (i.e., stimulus pattern repetition rate) is in the range of the frequency of the neuronal oscillation. In contrast, CR stimulation with slowly varying sequences (SVS) turned out to induce an anti-kindling more strongly, but less robustly with respect to variations of the CR stimulation frequency. Motivated by clinical constraints and inspired by the spacing principle of learning theory, in this computational study we propose a short-term dosage regimen that enables a robust anti-kindling effect of both RVS and SVS CR stimulation, also for those parameter values where RVS and SVS CR stimulation previously turned out to be ineffective. Intriguingly, for the vast majority of parameter values tested, spaced multishot CR stimulation with demand-controlled variation of stimulation frequency and intensity caused a robust and pronounced anti-kindling. In contrast, spaced CR stimulation with fixed stimulation parameters as well as singleshot CR stimulation of equal integral duration failed to improve the stimulation outcome. In the model network under consideration, our short-term dosage regimen enables to robustly induce long-term desynchronization at comparably short stimulation duration and low integral stimulation duration. Currently, clinical proof of concept is available for deep brain CR stimulation for Parkinson's therapy and acoustic CR stimulation for tinnitus therapy. Promising first in human data is available for vibrotactile CR stimulation for Parkinson's treatment. For the clinical development of these treatments it is mandatory to perform dose-finding studies to reveal optimal stimulation parameters and dosage regimens. Our findings can straightforwardly be tested in human dose-finding studies. PMID:29706900

  11. High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R.; Lehmkuhle, Mark J.

    2013-12-01

    Objective. Cortical electrical stimulation (CES) has been used extensively in experimental neuroscience to modulate neuronal or behavioral activity, which has led this technique to be considered in neurorehabilitation. Because the cortex and the surrounding anatomy have irregular geometries as well as inhomogeneous and anisotropic electrical properties, the mechanism by which CES has therapeutic effects is poorly understood. Therapeutic effects of CES can be improved by optimizing the stimulation parameters based on the effects of various stimulation parameters on target brain regions. Approach. In this study we have compared the effects of CES pulse polarity, frequency, and amplitude on unit activity recorded from rat primary motor cortex with the effects on the corresponding local field potentials (LFP), and electrocorticograms (ECoG). CES was applied at the surface of the cortex and the unit activity and LFPs were recorded using a penetrating electrode array, which was implanted below the stimulation site. ECoGs were recorded from the vicinity of the stimulation site. Main results. Time-frequency analysis of LFPs following CES showed correlation of gamma frequencies with unit activity response in all layers. More importantly, high gamma power of ECoG signals only correlated with the unit activity in lower layers (V-VI) following CES. Time-frequency correlations, which were found between LFPs, ECoGs and unit activity, were frequency- and amplitude-dependent. Significance. The signature of the neural activity observed in LFP and ECoG signals provides a better understanding of the effects of stimulation on network activity, representative of large numbers of neurons responding to stimulation. These results demonstrate that the neurorehabilitation and neuroprosthetic applications of CES targeting layered cortex can be further improved by using field potential recordings as surrogates to unit activity aimed at optimizing stimulation efficacy. Likewise, the signatures of unit activity observed as changes in high gamma power in ECoGs suggest that future cortical stimulation studies could rely on less invasive feedback schemes that incorporate surface stimulation with ECoG reporting of stimulation efficacy.

  12. Interaction of semicircular canal stimulation with carotid baroreceptor reflex control of heart rate

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    The carotid-cardiac baroreflex contributes to the prediction of orthostatic tolerance; experimental attenuation of the reflex response leads to orthostatic hypotension in humans and animals. Anecdotal observations indicate that rotational head movements about the vertical axis of the body can also induce orthostatic bradycardia and hypotension through increased parasympathetic activity. We therefore measured the chronotropic response to carotid baroreceptor stimulation in 12 men during varying conditions of vestibulo-oculomotor stimulation to test the hypothesis that stimulation of the semicircular canals associated with head movements in the yaw plane inhibits cardioacceleration through a vagally mediated baroreflex. Carotid-cardiac baroreflex response was assessed by plotting R-R intervals (ms) at each of 8 neck pressure steps with their respective carotid distending pressures (mmHg). Calculated baroreflex gain (maximal slope of the stimulus-response relationship) was measured under 4 experimental conditions: 1) sinusoidal whole-body yaw rotation of the subject in the dark without visual fixation (combined vestibular-oculomotor stimulation); 2) yaw oscillation of the subject while tracking a small head-fixed light moving with the subject (vestibular stimulation without eye movements); 3) subject stationary while fixating on a small light oscillating in yaw at the same frequency, peak acceleration, and velocity as the chair (eye movements without vestibular stimulation); and 4) subject stationary in the dark (no eye or head motion). Head motion alone and with eye movement reduced baseline baroreflex responsiveness to the same stimulus by 30%. Inhibition of cardioacceleration during rotational head movements may have significant impact on functional performance in aerospace environments, particularly in high-performance aircraft pilots during high angular acceleration in aerial combat maneuvers or in astronauts upon return from spaceflight who already have attenuated baroreflex functions.

  13. Effects of contralateral white noise stimulation on distortion product otoacoustic emissions in myasthenic patients.

    PubMed

    Di Girolamo, S; d'Ecclesia, A; Quaranta, N; Garozzo, A; Evoli, A; Paludetti, G

    2001-12-01

    Myasthenia gravis (MG) induces a reduction of transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) that reverses partially after administration of an acetylcholinesterase (AChE) inhibitor. In normal subjects a contralateral acoustic stimulation (CAS) produces an amplitude reduction of TEOAEs and DPOAEs. This effect, called contralateral suppression (CS), is mediated by the efferent auditory system. Twenty subjects affected by MG underwent DPOAE recording with and without contralateral white noise in a drug-free baseline period ('basal') and 1 h ('post') after administration of a reversible AChE inhibitor. In 'basal' condition CAS did not induce significant DPOAE amplitude changes but a paradoxical slight increase was observed. After drug administration, CAS produced a significant decrease of DPOAE amplitudes for middle frequencies (f(2) between 1306 and 2600 Hz). In normal controls CAS caused a significant decrease (P<0.001) for all frequencies. The amount of CS in controls and in the MG 'post' condition was not significantly different. The increased acetylcholine (ACh) availability following drug consumption seems to partially restore outer hair cell function and enhances their electromotility; a further influx of ACh due to CAS yields to restoration of the CS. These findings also suggest that DPOAEs may be useful in the diagnosis of MG and for monitoring the effectiveness of treatment.

  14. Frequency specificity and left-ear advantage of medial olivocochlear efferent modulation: a study based on stimulus frequency otoacoustic emission.

    PubMed

    Xing, Dongjia; Gong, Qin

    2017-09-06

    The medial olivocochlear (MOC) bundle is an auditory nucleus that projects efferent nerve fibers to the outer hair cells (OHCs) for synaptic innervation. The aim of the present study was to investigate the possible existence of frequency and ear specificity in MOC efferent modulation, as well as how MOC activation influences cochlear tuning. Stimulus frequency otoacoustic emissions (SFOAEs) were used to study MOC efferent modulation. Therefore, the current experiment was designed to compare the degree of SFOAE suppression in the both ears of 20 individuals at 1, 2, 4, and 8 kHz. We also compared changes in Q10 values of SFOAE suppression tuning curves at 1, 2, and 4 kHz under contralateral acoustic stimulation (CAS) and no-CAS conditions. We observed a significant reduction in SFOAE magnitude in the CAS condition compared with the no-CAS condition at 1 and 2 kHz in the left ear. A significant difference in CAS suppression was also found between the left and right ears at 1 and 2 kHz, with larger CAS suppression in the left ear. CAS further produced a statistically significant increase in the Q10 value at 1 kHz and a significant reduction in Q10 values at 2 and 4 kHz. These findings suggest a left-ear advantage in terms of CAS-induced MOC efferent SFOAE suppression, with larger MOC efferent modulation for lower frequencies, and cochlear tuning was sharpened by means of MOC activation at lower frequencies and broadened at higher frequencies.

  15. Oscillatory Reinstatement Enhances Declarative Memory.

    PubMed

    Javadi, Amir-Homayoun; Glen, James C; Halkiopoulos, Sara; Schulz, Mei; Spiers, Hugo J

    2017-10-11

    Declarative memory recall is thought to involve the reinstatement of neural activity patterns that occurred previously during encoding. Consistent with this view, greater similarity between patterns of activity recorded during encoding and retrieval has been found to predict better memory performance in a number of studies. Recent models have argued that neural oscillations may be crucial to reinstatement for successful memory retrieval. However, to date, no causal evidence has been provided to support this theory, nor has the impact of oscillatory electrical brain stimulation during encoding and retrieval been assessed. To explore this we used transcranial alternating current stimulation over the left dorsolateral prefrontal cortex of human participants [ n = 70, 45 females; age mean (SD) = 22.12 (2.16)] during a declarative memory task. Participants received either the same frequency during encoding and retrieval (60-60 or 90-90 Hz) or different frequencies (60-90 or 90-60 Hz). When frequencies matched there was a significant memory improvement (at both 60 and 90 Hz) relative to sham stimulation. No improvement occurred when frequencies mismatched. Our results provide support for the role of oscillatory reinstatement in memory retrieval. SIGNIFICANCE STATEMENT Recent neurobiological models of memory have argued that large-scale neural oscillations are reinstated to support successful memory retrieval. Here we used transcranial alternating current stimulation (tACS) to test these models. tACS has recently been shown to induce neural oscillations at the frequency stimulated. We stimulated over the left dorsolateral prefrontal cortex during a declarative memory task involving learning a set of words. We found that tACS applied at the same frequency during encoding and retrieval enhances memory. We also find no difference between the two applied frequencies. Thus our results are consistent with the proposal that reinstatement of neural oscillations during retrieval supports successful memory retrieval. Copyright © 2017 Javadi et al.

  16. Compact, Energy-Efficient High-Frequency Switched Capacitor Neural Stimulator With Active Charge Balancing.

    PubMed

    Hsu, Wen-Yang; Schmid, Alexandre

    2017-08-01

    Safety and energy efficiency are two major concerns for implantable neural stimulators. This paper presents a novel high-frequency, switched capacitor (HFSC) stimulation and active charge balancing scheme, which achieves high energy efficiency and well-controlled stimulation charge in the presence of large electrode impedance variations. Furthermore, the HFSC can be implemented in a compact size without any external component to simultaneously enable multichannel stimulation by deploying multiple stimulators. The theoretical analysis shows significant benefits over the constant-current and voltage-mode stimulation methods. The proposed solution was fabricated using a 0.18 μm high-voltage technology, and occupies only 0.035 mm 2 for a single stimulator. The measurement result shows 50% peak energy efficiency and confirms the effectiveness of active charge balancing to prevent the electrode dissolution.

  17. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Coordination of eye and head components of movements evoked by stimulation of the paramedian pontine reticular formation.

    PubMed

    Gandhi, Neeraj J; Barton, Ellen J; Sparks, David L

    2008-07-01

    Constant frequency microstimulation of the paramedian pontine reticular formation (PPRF) in head-restrained monkeys evokes a constant velocity eye movement. Since the PPRF receives significant projections from structures that control coordinated eye-head movements, we asked whether stimulation of the pontine reticular formation in the head-unrestrained animal generates a combined eye-head movement or only an eye movement. Microstimulation of most sites yielded a constant-velocity gaze shift executed as a coordinated eye-head movement, although eye-only movements were evoked from some sites. The eye and head contributions to the stimulation-evoked movements varied across stimulation sites and were drastically different from the lawful relationship observed for visually-guided gaze shifts. These results indicate that the microstimulation activated elements that issued movement commands to the extraocular and, for most sites, neck motoneurons. In addition, the stimulation-evoked changes in gaze were similar in the head-restrained and head-unrestrained conditions despite the assortment of eye and head contributions, suggesting that the vestibulo-ocular reflex (VOR) gain must be near unity during the coordinated eye-head movements evoked by stimulation of the PPRF. These findings contrast the attenuation of VOR gain associated with visually-guided gaze shifts and suggest that the vestibulo-ocular pathway processes volitional and PPRF stimulation-evoked gaze shifts differently.

  19. In vivo electrochemical characterization and inflammatory response of multiwalled carbon nanotube-based electrodes in rat hippocampus

    NASA Astrophysics Data System (ADS)

    Minnikanti, Saugandhika; Pereira, Marilia G. A. G.; Jaraiedi, Sanaz; Jackson, Kassandra; Costa-Neto, Claudio M.; Li, Qiliang; Peixoto, Nathalia

    2010-02-01

    Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm-2) and in vitro (1.008 mC cm-2) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1β and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1β is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1β are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1β signaling cascade but not that of TLR2.

  20. High vs. Low Frequency Stimulation Effects on Fine Motor Control in Chronic Hemiplegia: A Pilot Study

    PubMed Central

    Doucet, Barbara M.; Griffin, Lisa

    2014-01-01

    Introduction The optimal parameters of neuromuscular electrical stimulation (NMES) for recovery of hand function following stroke are not known. This clinical pilot study examined whether higher or lower frequencies are more effective for improving fine motor control of the hand in a chronic post-stroke population. Methods A one-month, 4x/week in-home regimen of either a high frequency (40Hz) or low frequency (20Hz) NMES program was applied to the hemiplegic thenar muscles of 16 persons with chronic stroke. Participants were identified a priori as having a low level of function (LF) or a high level of function (HF). Outcome measures of strength, dexterity, and endurance were measured before and after participation in the regimen. Results LF subjects showed no significant changes with either the high or the low frequency NMES regimen. HF subjects showed significant changes in strength, dexterity and endurance. Within this group, higher frequencies of stimulation yielded strength gains and increased motor activation; lower frequencies impacted dexterity and endurance. Conclusions The results suggest that higher frequencies of stimulation could be more effective in improving strength and motor activation properties and that lower frequencies may impact coordination and endurance changes; results also indicate that persons with a higher functional level of recovery may respond more favorably to NMES regimens, but further study with larger patient groups is warranted. PMID:23893829

  1. Low Frequency Stimulation Decreases Seizure Activity in a Mutation Model of Epilepsy

    PubMed Central

    Kile, Kara Buehrer; Tian, Nan; Durand, Dominique M.

    2013-01-01

    Summary Purpose To investigate brain electrical activity in Q54 mice that display spontaneous seizures because of a gain-of-function mutation of the Scn2a sodium channel gene, and to evaluate the efficacy of low frequency deep brain stimulation (DBS) for seizure frequency reduction. Methods EEG, EMG, and hippocampal deep electrodes were implanted into Q54 mice expressing an epileptic phenotype (n = 6). Chronic six channel recordings (wideband, 0.1–300 Hz) were stored 24 hours a day for more than 12 days. Low Frequency stimulation (LFS) (3Hz, square wave, biphasic, 100μs, 400μA) was applied to the ventral hippocampal commisure (VHC) in alternating five minute cycles (on or off) 24 hours a day for a period of four days. Results LFS (3Hz) resulted in a significant reduction in seizure frequency and duration (21% and 35%, p<0.05), when applied to the VHC of epileptic Q54 mice (n = 6). Seizure frequency was not directly affected by stimulation state (“on” versus “off”). Conclusion LFS applied at a frequency of 3Hz significantly reduced seizure frequency and duration in the Q54 model. Furthermore, the reduction of seizure frequency and duration by LFS was not immediate but had a delayed and lasting effect, supporting complex, indirect mechanisms of action. PMID:20659150

  2. Colonic motor and vascular responses to pelvic nerve stimulation and their relation to local peptide release in the cat.

    PubMed Central

    Andersson, P O; Bloom, S R; Järhult, J

    1983-01-01

    1. The effects of stimulation of the pelvic nerves in atropinized cats at continuous, low frequencies from 1 to 16 Hz (continuous stimulation) were compared with those of stimulation at higher frequencies (10-160 Hz) delivered in 1 s bursts at 10 s intervals (stimulation in bursts), the latter simulating a commonly observed discharge pattern in vivo. Both types of stimulation evoked a transient vasodilatation. Stimulation in bursts at 20 and 40 Hz evoked more pronounced vasodilatations than continuous stimulation delivering exactly the same number of impulses over the whole period of excitation. 2. Stimulation of the pelvic nerves in bursts failed to elicit an effective contraction of the colon at any frequency tested, whereas continuous stimulation invariably evoked a contraction. 3. There was a clear-cut increase in the output of vasoactive intestinal polypeptide during both continuous and intermittent stimulation of the pelvic nerves. Stimulation in bursts caused a small but significant increase in the output of somatostatin but there was no change in the output of substance P in response to either type of pelvic nerve stimulation. 4. The colonic muscular contraction in response to continuous stimulation of the pelvic nerves was not affected by somatostatin when infused intra-arterially at the large dose of 1.0 microgram/min. 5. It is concluded that the colonic responses of atropinized cats to pelvic nerve stimulation can be substantially altered merely by changing the pattern of stimulation. Thus, whereas continuous stimulation produces both muscular contraction and vasodilatation, stimulation in bursts favours vasodilatation but is ineffective in eliciting colonic contraction. PMID:6191025

  3. Exercise training augments the dynamic heart rate response to vagal but not sympathetic stimulation in rats.

    PubMed

    Mizuno, Masaki; Kawada, Toru; Kamiya, Atsunori; Miyamoto, Tadayoshi; Shimizu, Shuji; Shishido, Toshiaki; Smith, Scott A; Sugimachi, Masaru

    2011-04-01

    We examined the transfer function of autonomic heart rate (HR) control in anesthetized sedentary and exercise-trained (16 wk, treadmill for 1 h, 5 times/wk at 15 m/min and 15-degree grade) rats for comparison to HR variability assessed in the conscious resting state. The transfer function from sympathetic stimulation to HR response was similar between groups (gain, 4.2 ± 1.5 vs. 4.5 ± 1.5 beats·min(-1)·Hz(-1); natural frequency, 0.07 ± 0.01 vs. 0.08 ± 0.01 Hz; damping coefficient, 1.96 ± 0.55 vs. 1.69 ± 0.15; and lag time, 0.7 ± 0.1 vs. 0.6 ± 0.1 s; sedentary vs. exercise trained, respectively, means ± SD). The transfer gain from vagal stimulation to HR response was 6.1 ± 3.0 in the sedentary and 9.7 ± 5.1 beats·min(-1)·Hz(-1) in the exercise-trained group (P = 0.06). The corner frequency (0.11 ± 0.05 vs. 0.17 ± 0.09 Hz) and lag time (0.1 ± 0.1 vs. 0.2 ± 0.1 s) did not differ between groups. When the sympathetic transfer gain was averaged for very-low-frequency and low-frequency bands, no significant group effect was observed. In contrast, when the vagal transfer gain was averaged for very-low-frequency, low-frequency, and high-frequency bands, exercise training produced a significant group effect (P < 0.05 by two-way, repeated-measures ANOVA). These findings suggest that, in the frequency domain, exercise training augments the dynamic HR response to vagal stimulation but not sympathetic stimulation, regardless of the frequency bands.

  4. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

    PubMed Central

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852

  5. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.

    PubMed

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.

  6. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats

    PubMed Central

    Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei

    2015-01-01

    Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425

  7. Alternative surgical approaches in epilepsy.

    PubMed

    Gigante, Paul R; Goodman, Robert R

    2011-08-01

    The mainstay of epilepsy surgery is the resection of a presumed seizure focus or disruption of seizure propagation pathways. These approaches cannot be applied to all patients with medically refractory epilepsy (MRE). Since 1997, vagus nerve stimulation has been a palliative adjunct to the care of MRE patients. Deep brain stimulation (DBS) in select locations has been reported to reduce seizure frequency in small studies over the past three decades. Recently published results from the SANTE (Stimulation of the Anterior Nuclei of Thalamus for Epilepsy) trial-the first large-scale, randomized, double-blind trial of bilateral anterior thalamus DBS for MRE-demonstrate a significant reduction in seizure frequency with programmed stimulation. Another surgical alternative is the RNS™ System (NeuroPace, Mountain View, CA), which uses a closed-loop system termed responsive neurostimulation to both detect apparent seizure onsets and deliver stimulation. Recently presented results from the RNS™ pivotal trial demonstrate a sustained reduction in seizure frequency with stimulation, although comprehensive trial results are pending.

  8. Frequency steps and compositions determine properties of nee- dling sensation during electroacupuncture.

    PubMed

    Xuan, Chen; Xiaoran, Ye; Suying, Ge; Zhifang, Yao; Xiaoqing, Huang

    2015-04-01

    To investigate the relationship of electro-parameters and the electroacupuncture sensation (EAS), which is thought to be an important factor for optimal treatment. The frequency steps and compositions of three frequently used electrical stimulations were set when the switch of the electroacupuncture apparatus was turned to the second or third grade of the dense-disperse frequency wave (DD2 and DD3, respectively) or the second grade of the continuous wave (C2). Three groups of patients according to the three electroacupuncture stimulations were divided again into three sub-groups according to the stimulated acupoints: the face acupoint Quanliao (SI 18), the upper-limb acupoint Quchi (LI 11) and the back acupoint Dachangshu (BL 25). The EAS values were measured every 5 min during 30 min electroacupuncture treatments using a visual analogue scale. The frequency compositions of the three electroacupuncture stimulations were 3.3 and 33 Hz, 12.5 and 66.7 Hz, and 3.3 and 3.3 Hz; each frequency step was 30, 54 and 0 Hz, respectively. In each sub-group of the C2 group, the EAS values from 10 to 30 min were significantly weaker than at 0 min. The sensation fluctuations in the DD2 and DD3 groups were different during the 30 min. The greater the frequency step of the electroacupuncture stimulation, the longer the needling sensation lasted. The electroacupuncture stimulations of the DD3 group were unsuitable for the facial acupoint because of its painful and uncomfortable EAS, but more suitable for the back acupoint.

  9. Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: a randomized controlled trial.

    PubMed

    Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie

    2008-12-01

    To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.

  10. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart.

    PubMed

    Gong, Guohua; Liu, Xiaoyun; Zhang, Huiliang; Sheu, Shey-Shing; Wang, Wang

    2015-10-01

    Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions. Copyright © 2015 the American Physiological Society.

  11. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    PubMed

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  12. Lasting EEG/MEG Aftereffects of Rhythmic Transcranial Brain Stimulation: Level of Control Over Oscillatory Network Activity

    PubMed Central

    Veniero, Domenica; Vossen, Alexandra; Gross, Joachim; Thut, Gregor

    2015-01-01

    A number of rhythmic protocols have emerged for non-invasive brain stimulation (NIBS) in humans, including transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS), and repetitive (also called rhythmic) transcranial magnetic stimulation (rTMS). With these techniques, it is possible to match the frequency of the externally applied electromagnetic fields to the intrinsic frequency of oscillatory neural population activity (“frequency-tuning”). Mounting evidence suggests that by this means tACS, otDCS, and rTMS can entrain brain oscillations and promote associated functions in a frequency-specific manner, in particular during (i.e., online to) stimulation. Here, we focus instead on the changes in oscillatory brain activity that persist after the end of stimulation. Understanding such aftereffects in healthy participants is an important step for developing these techniques into potentially useful clinical tools for the treatment of specific patient groups. Reviewing the electrophysiological evidence in healthy participants, we find aftereffects on brain oscillations to be a common outcome following tACS/otDCS and rTMS. However, we did not find a consistent, predictable pattern of aftereffects across studies, which is in contrast to the relative homogeneity of reported online effects. This indicates that aftereffects are partially dissociated from online, frequency-specific (entrainment) effects during tACS/otDCS and rTMS. We outline possible accounts and future directions for a better understanding of the link between online entrainment and offline aftereffects, which will be key for developing more targeted interventions into oscillatory brain activity. PMID:26696834

  13. Resting state cortical oscillations of patients with Parkinson disease and with and without subthalamic deep brain stimulation: a magnetoencephalography study.

    PubMed

    Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin

    2015-04-01

    In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.

  14. Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model

    NASA Astrophysics Data System (ADS)

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-08-01

    Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.

  15. Reflex effects on components of synchronized renal sympathetic nerve activity.

    PubMed

    DiBona, G F; Jones, S Y

    1998-09-01

    The effects of peripheral thermal receptor stimulation (tail in hot water, n = 8, anesthetized) and cardiac baroreceptor stimulation (volume loading, n = 8, conscious) on components of synchronized renal sympathetic nerve activity (RSNA) were examined in rats. The peak height and peak frequency of synchronized RSNA were determined. The renal sympathoexcitatory response to peripheral thermal receptor stimulation was associated with an increase in the peak height. The renal sympathoinhibitory response to cardiac baroreceptor stimulation was associated with a decrease in the peak height. Although heart rate was significantly increased with peripheral thermal receptor stimulation and significantly decreased with cardiac baroreceptor stimulation, peak frequency was unchanged. As peak height reflects the number of active fibers, reflex increases and decreases in synchronized RSNA are mediated by parallel increases and decreases in the number of active renal nerve fibers rather than changes in the centrally based rhythm or peak frequency. The increase in the number of active renal nerve fibers produced by peripheral thermal receptor stimulation reflects the engagement of a unique group of silent renal sympathetic nerve fibers with a characteristic response pattern to stimulation of arterial baroreceptors, peripheral and central chemoreceptors, and peripheral thermal receptors.

  16. Exploring the additivity of binaural and monaural masking release

    PubMed Central

    Hall, Joseph W.; Buss, Emily; Grose, John H.

    2011-01-01

    Experiment 1 examined comodulation masking release (CMR) for a 700-Hz tonal signal under conditions of NoSo (noise and signal interaurally in phase) and NoSπ (noise in phase, signal out of phase) stimulation. The baseline stimulus for CMR was either a single 24-Hz wide narrowband noise centered on the signal frequency [on-signal band (OSB)] or the OSB plus, a set of flanking noise bands having random envelopes. Masking noise was either gated or continuous. The CMR, defined with respect to either the OSB or the random noise baseline, was smaller for NoSπ than NoSo stimulation, particularly when the masker was continuous. Experiment 2 examined whether the same pattern of results would be obtained for a 2000-Hz signal frequency; the number of flanking bands was also manipulated (two versus eight). Results again showed smaller CMR for NoSπ than NoSo stimulation for both continuous and gated masking noise. The CMR was larger with eight than with two flanking bands, and this difference was greater for NoSo than NoSπ. The results of this study are compatible with serial mechanisms of binaural and monaural masking release, but they indicate that the combined masking release (binaural masking-level difference and CMR) falls short of being additive. PMID:21476663

  17. Gender-related asymmetric brain vasomotor response to color stimulation: a functional transcranial Doppler spectroscopy study.

    PubMed

    Njemanze, Philip C

    2010-11-30

    The present study was designed to examine the effects of color stimulation on cerebral blood mean flow velocity (MFV) in men and women. The study included 16 (8 men and 8 women) right-handed healthy subjects. The MFV was recorded simultaneously in both right and left middle cerebral arteries in Dark and white Light conditions, and during color (Blue, Yellow and Red) stimulations, and was analyzed using functional transcranial Doppler spectroscopy (fTCDS) technique. Color processing occurred within cortico-subcortical circuits. In men, wavelength-differencing of Yellow/Blue pairs occurred within the right hemisphere by processes of cortical long-term depression (CLTD) and subcortical long-term potentiation (SLTP). Conversely, in women, frequency-differencing of Blue/Yellow pairs occurred within the left hemisphere by processes of cortical long-term potentiation (CLTP) and subcortical long-term depression (SLTD). In both genders, there was luminance effect in the left hemisphere, while in men it was along an axis opposite (orthogonal) to that of chromatic effect, in women, it was parallel. Gender-related differences in color processing demonstrated a right hemisphere cognitive style for wavelength-differencing in men, and a left hemisphere cognitive style for frequency-differencing in women. There are potential applications of fTCDS technique, for stroke rehabilitation and monitoring of drug effects.

  18. Effect of high-frequency repetitive transcranial magnetic stimulation on chronic central pain after mild traumatic brain injury: A pilot study.

    PubMed

    Choi, Gyu-Sik; Kwak, Sang Gyu; Lee, Han Do; Chang, Min Cheol

    2018-02-28

    Central pain can occur following traumatic brain injury, leading to poor functional recovery, limitation of activities of daily living, and decreased quality of life. The aim of this study was to determine whether high-frequency (10 Hz) repetitive transcranial magnetic stimulation, applied over the primary motor cortex of the affected hemisphere, can be used to manage chronic central pain after mild traumatic brain injury. Prospective randomized feasibility study. Twelve patients with mild traumatic brain injury and chronic central pain were randomly assigned to transcranial magnetic stimulation (high-frequency stimulation, 10 sessions) or sham groups. Diffuse tensor tractography revealed partially injured spinothalamocortical tracts in all recruited patients. A numerical rating scale (NRS) was used to evaluate pain intensity during pre-treatment and immediately after the 5th transcranial magnetic stimulation session (post1), 10th transcranial magnetic stimulation session (post2), and 1 (post3), 2 (post4), and 4 weeks (post 5) after finishing treatment. Physical and mental health status were evaluated using the Short Form 36 Health Survey (SF-36), including physical and mental component scores (PCS, MCS). The NRS score of the repetitive transcranial magnetic stimulation group was significantly lower than the sham group score at all clinical evaluation time-points during and after transcranial magnetic stimulation sessions. The transcranial magnetic stimulation group's SF-36 PCS score was significantly higher at post2, post3, post4, and post5 compared with the sham group. High-frequency transcranial magnetic stimulation may be used to manage chronic central pain and improve quality of life in patients with mild traumatic brain injury. However, this is a pilot study and further research is needed.

  19. Examining the Frequency of Stimulant Misuse among Patients with Primary Disorders of Hypersomnolence: A Retrospective Cohort Study

    PubMed Central

    Mantyh, William G.; Auger, R. Robert; Morgenthaler, Timothy I.; Silber, Michael H.; Moore, Wendy R.

    2016-01-01

    Study Objectives: Narcolepsy and idiopathic hypersomnia are commonly treated by sleep specialists and encountered by other medical providers. Although pharmacotherapy with modafinil and traditional stimulants is considered the mainstay of treatment, physicians are often uncomfortable with their prescription because of concerns regarding misuse. The goal of this study was to assess the frequency of stimulant misuse in this population. Methods: A retrospective cohort study was performed evaluating patients 18 years and older diagnosed with narcolepsy with and without cataplexy and idiopathic hypersomnia with and without long sleep between 2003–2008. Patients were included if they obtained stimulant prescriptions from and had at least one follow-up visit subsequent to initial diagnosis at our center. Stimulant misuse was defined by multiple prescription sources or early refill requests, which are systematically entered into the record by nursing staff. Results: A total of 105 patients met inclusion criteria for the study; 45 (42%) were male. Mean age at multiple sleep latency test was 42 (± 16). Twelve (11%) patients had a history of illicit substance misuse, and one (1%) patient demonstrated previous stimulant misuse. Fifty-seven (54%) patients carried psychiatric diagnoses, 88% of whom reported depression. Median duration of monitored stimulant therapy was 26 months (range 1–250). None of the 105 patients was found to have evidence of stimulant misuse. Conclusion: This study suggests that the frequency of stimulant misuse in patients with narcolepsy and idiopathic hypersomnia is extremely low. Concerns regarding drug misuse should not leverage decisions to provide long-term therapy. Citation: Mantyh WG, Auger RR, Morgenthaler TI, Silber MH, Moore WR. Examining the frequency of stimulant misuse among patients with primary disorders of hypersomnolence: a retrospective cohort study. J Clin Sleep Med 2016;12(5):659–662. PMID:26943713

  20. Spend today, clean tomorrow: Predicting methamphetamine abstinence in a randomized controlled trial

    PubMed Central

    Murtaugh, Kimberly Ling; Krishnamurti, Tamar; Davis, Alexander L.; Reback, Cathy J.; Shoptaw, Steven

    2013-01-01

    Objective This secondary analysis of data from a randomized controlled trial tested two behavioral economics mechanisms (substitutability and delay discounting) to explain outcomes using contingency management (CM) for methamphetamine dependence. Frequency and purchase type (hedonic/utilitarian and consumable/durable) of CM payments were also examined. Methods 82 methamphetamine-dependent gay/bisexual men randomly assigned to conditions delivering CM received monetary vouchers in exchange for stimulant-negative urine samples in a 16-week trial requiring thrice weekly visits (Shoptaw et al., 2005). At any visit participants could redeem vouchers for goods. A time-lagged counting process Cox Proportional Hazards model for recurrent event survival analysis examined aspects of the frequency and type of these CM purchases. Results After controlling for severity of baseline methamphetamine use and accumulated CM wealth, as measured by cumulative successful earning days, participants who redeemed CM earnings at any visit (“spenders”) were significantly more likely to produce stimulant-negative urine samples in the subsequent visit, compared to those who did not redeem (“savers”) 1.011* [1.005, 1.017], Z=3.43, p<0.001. Conclusions Findings support the economic concept of substitutability of CM purchases and explain trial outcomes as a function of frequency of CM purchases rather than frequency or accumulated total CM earnings. Promotion of frequent purchases in incentive-based programs should facilitate substitution for the perceived value of methamphetamine and improve abstinence outcomes. PMID:24001246

  1. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    PubMed

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  2. Illusory movements induced by tendon vibration in right- and left-handed people.

    PubMed

    Tidoni, Emmanuele; Fusco, Gabriele; Leonardis, Daniele; Frisoli, Antonio; Bergamasco, Massimo; Aglioti, Salvatore Maria

    2015-02-01

    Frequency-specific vibratory stimulation of peripheral tendons induces an illusion of limb movement that may be useful for restoring proprioceptive information in people with sensorimotor disability. This potential application may be limited by inter- and intra-subject variability in the susceptibility to such an illusion, which may depend on a variety of factors. To explore the influence of stimulation parameters and participants' handedness on the movement illusion, we vibrated the right and left tendon of the biceps brachii in a group of right- and left-handed people with five stimulation frequencies (from 40 to 120 Hz in step of 20 Hz). We found that all participants reported the expected illusion of elbow extension, especially after 40 and 60 Hz. Left-handers exhibited less variability in reporting the illusion compared to right-handers across the different stimulation frequencies. Moreover, the stimulation of the non-dominant arm elicited a more vivid illusion with faster onset relative to the stimulation of the dominant arm, an effect that was independent from participants' handedness. Overall, our data show that stimulation frequency, handedness and arm dominance influence the tendon vibration movement illusion. The results are discussed in reference to their relevance in linking motor awareness, improving current devices for motor ability recovery after brain or spinal damage and developing prosthetics and virtual embodiment systems.

  3. Extreme sensitivity of graphene photoconductivity to environmental gases.

    PubMed

    Docherty, Callum J; Lin, Cheng-Te; Joyce, Hannah J; Nicholas, Robin J; Herz, Laura M; Li, Lain-Jong; Johnston, Michael B

    2012-01-01

    Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices.

  4. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  5. Influence of stimulus frequency and probe size on vibration-induced alleviation of acute orofacial pain.

    PubMed

    Hansson, P; Ekblom, A

    1986-01-01

    The pain-relieving effect of vibratory stimulation, using different stimulus parameters, and placebo stimulation in acute orofacial pain is reported. The influence of 10-, 100-, and 200-Hz vibrations on pain reduction was studied in 96 patients; two different probe sizes were used. 54 out of 76 patients, receiving vibrations at any of the above frequencies, reported relief of pain to some extent, while only 6 out of 20 patients receiving placebo treatment experienced pain alleviation. No significant differences were found between the different frequencies and probe sizes used regarding the pain-relieving effect. However, placebo stimulation was significantly less effective than any kind of vibratory stimulation. Induction time for pain relief was significantly shorter using the larger probe as compared to using the smaller probe, regardless of frequency. The results indicate that the vibratory frequency (10-200 Hz) for activation of pain-inhibitory mechanisms is not critical in acute orofacial pain. Also, spatial summation from vibration-sensitive afferents seems to be of importance for a fast activation of the inhibitory systems.

  6. Modeling high-frequency electromotility of cochlear outer hair cell in microchamber experiment.

    PubMed

    Liao, Zhijie; Popel, Aleksander S; Brownell, William E; Spector, Alexander A

    2005-04-01

    Cochlear outer hair cells (OHC) are critically important for the amplification and sharp frequency selectivity of the mammalian ear. The microchamber experiment has been an effective tool to analyze the OHC high-frequency performance. In this study, the OHC electrical stimulation in the microchamber is simulated. The model takes into account the inertial and viscous properties of fluids inside and outside the cell as well as the viscoelastic and piezoelectric properties of the cell composite membrane (wall). The closed ends of the cylindrical cell were considered as oscillatory rigid plates. The final solution was obtained in terms of Fourier series, and it was checked against the available results of the microchamber experiment. The conditions of the interaction between the cell and pipette was analyzed, and it was found that the amount of slip along the contact surface has a significant effect on the cell electromotile response. The cell's length changes were computed as a function of frequency, and their dependence on the viscosities of both fluids and the cell wall was analyzed. The distribution of the viscous losses inside the fluids was also estimated. The proposed approach can help in a better understanding of the high-frequency OHC electromotility under experimental and physiological conditions.

  7. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    PubMed

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 μm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca 2+ ] i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  8. Glia-derived signals induce synapse formation in neurones of the rat central nervous system

    PubMed Central

    Nägler, Karl; Mauch, Daniela H; Pfrieger, Frank W

    2001-01-01

    To study the effects of glial cells on synapse formation, we established microcultures of purified rat retinal ganglion cells (RGCs) and monitored synapse (autapse) development in single neurones using electrophysiological recordings, FM1-43 labelling and immunocytochemistry.Solitary neurones grew ramifying neurites, but formed only very few and inefficient excitatory autapses, when cultured for up to 2 weeks in defined medium and in the absence of glial cells.Treatment of glia-free microcultures of RGCs with glia-conditioned medium (GCM) increased the number of autapses per neurone by up to 10-fold. This was indicated by a similar increase in the frequency of spontaneous events and the number of FM1-43-labelled functional release sites and of puncta, where pre- and postsynaptic markers colocalized.In addition, GCM treatment enhanced the efficacy of presynaptic transmitter release as indicated by lower failure rates of stimulation-induced excitatory autaptic currents, a 200-fold increase in the frequency of asynchronous release and an accelerated stimulation-induced FM1-43 destaining. Furthermore, GCM induced an increase in the quantal size.GCM affected autaptic activity not immediately, but with a delay of 24 h, and the effects on stimulation-induced autaptic currents occurred before changes in the frequency of spontaneous events indicating an early strengthening of existing autapses followed by a later increase in autapse number.The observed effects were mediated by proteinase K-sensitive factors in GCM and occurred independently of electrical activity.These results suggest that soluble glia-derived signals induce synapse formation and maturation in neurones of the central nervous system (CNS). PMID:11410625

  9. Frequency dependence of behavioral modulation by hippocampal electrical stimulation

    PubMed Central

    La Corte, Giorgio; Wei, Yina; Chernyy, Nick; Gluckman, Bruce J.

    2013-01-01

    Electrical stimulation offers the potential to develop novel strategies for the treatment of refractory medial temporal lobe epilepsy. In particular, direct electrical stimulation of the hippocampus presents the opportunity to modulate pathological dynamics at the ictal focus, although the neuroanatomical substrate of this region renders it susceptible to altering cognition and affective processing as a side effect. We investigated the effects of three electrical stimulation paradigms on separate groups of freely moving rats (sham, 8-Hz and 40-Hz sine-wave stimulation of the ventral/intermediate hippocampus, where 8- and 40-Hz stimulation were chosen to mimic naturally occurring hippocampal oscillations). Animals exhibited attenuated locomotor and exploratory activity upon stimulation at 40 Hz, but not at sham or 8-Hz stimulation. Such behavioral modifications were characterized by a significant reduction in rearing frequency, together with increased freezing behavior. Logistic regression analysis linked the observed changes in animal locomotion to 40-Hz electrical stimulation independently of time-related variables occurring during testing. Spectral analysis, conducted to monitor the electrophysiological profile in the CA1 area of the dorsal hippocampus, showed a significant reduction in peak theta frequency, together with reduced theta power in the 40-Hz vs. the sham stimulation animal group, independent of locomotion speed (theta range: 4–12 Hz). These findings contribute to the development of novel and safe medical protocols by indicating a strategy to constrain or optimize parameters in direct hippocampal electrical stimulation. PMID:24198322

  10. Seizure Control in a Computational Model Using a Reinforcement Learning Stimulation Paradigm.

    PubMed

    Nagaraj, Vivek; Lamperski, Andrew; Netoff, Theoden I

    2017-11-01

    Neuromodulation technologies such as vagus nerve stimulation and deep brain stimulation, have shown some efficacy in controlling seizures in medically intractable patients. However, inherent patient-to-patient variability of seizure disorders leads to a wide range of therapeutic efficacy. A patient specific approach to determining stimulation parameters may lead to increased therapeutic efficacy while minimizing stimulation energy and side effects. This paper presents a reinforcement learning algorithm that optimizes stimulation frequency for controlling seizures with minimum stimulation energy. We apply our method to a computational model called the epileptor. The epileptor model simulates inter-ictal and ictal local field potential data. In order to apply reinforcement learning to the Epileptor, we introduce a specialized reward function and state-space discretization. With the reward function and discretization fixed, we test the effectiveness of the temporal difference reinforcement learning algorithm (TD(0)). For periodic pulsatile stimulation, we derive a relation that describes, for any stimulation frequency, the minimal pulse amplitude required to suppress seizures. The TD(0) algorithm is able to identify parameters that control seizures quickly. Additionally, our results show that the TD(0) algorithm refines the stimulation frequency to minimize stimulation energy thereby converging to optimal parameters reliably. An advantage of the TD(0) algorithm is that it is adaptive so that the parameters necessary to control the seizures can change over time. We show that the algorithm can converge on the optimal solution in simulation with slow and fast inter-seizure intervals.

  11. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice.

    PubMed

    Bruton, Joseph D; Place, Nicolas; Yamada, Takashi; Silva, José P; Andrade, Francisco H; Dahlstedt, Anders J; Zhang, Shi-Jin; Katz, Abram; Larsson, Nils-Göran; Westerblad, Håkan

    2008-01-01

    Skeletal muscle often shows a delayed force recovery after fatiguing stimulation, especially at low stimulation frequencies. In this study we focus on the role of reactive oxygen species (ROS) in this fatigue-induced prolonged low-frequency force depression. Intact, single muscle fibres were dissected from flexor digitorum brevis (FDB) muscles of rats and wild-type and superoxide dismutase 2 (SOD2) overexpressing mice. Force and myoplasmic free [Ca(2+)] ([Ca(2+)](i)) were measured. Fibres were stimulated at different frequencies before and 30 min after fatigue induced by repeated tetani. The results show a marked force decrease at low stimulation frequencies 30 min after fatiguing stimulation in all fibres. This decrease was associated with reduced tetanic [Ca(2+)](i) in wild-type mouse fibres, whereas rat fibres and mouse SOD2 overexpressing fibres instead displayed a decreased myofibrillar Ca(2+) sensitivity. The SOD activity was approximately 50% lower in wild-type mouse than in rat FDB muscles. Myoplasmic ROS increased during repeated tetanic stimulation in rat fibres but not in wild-type mouse fibres. The decreased Ca(2+) sensitivity in rat fibres could be partially reversed by application of the reducing agent dithiothreitol, whereas the decrease in tetanic [Ca(2+)](i) in wild-type mouse fibres was not affected by dithiothreitol or the antioxidant N-acetylcysteine. In conclusion, we describe two different causes of fatigue-induced prolonged low-frequency force depression, which correlate to differences in SOD activity and ROS metabolism. These findings may have clinical implications since ROS-mediated impairments in myofibrillar function can be counteracted by reductants and antioxidants, whereas changes in SR Ca(2+) handling appear more resistant to interventions.

  12. Tension-time index, fatigue, and energetics in isolated rat diaphragm: a new experimental model.

    PubMed

    Klawitter, Paul F; Clanton, Thomas L

    2004-01-01

    The tension-time index (TTI) has been used to estimate mechanical load, energy utilization, blood flow, and susceptibility to fatigue in contracting muscle. The TTI can be defined, for a rhythmically contracting muscle, as the product of average force development divided by maximum tetanic force times duty cycle [contraction time / (contraction + relaxation time)]. In this study, the TTI concept was applied to isolated diaphragm via a method that allowed TTI to be clamped at a predetermined value. The hypothesis tested was that, at constant TTI, muscle energetics and the extent of fatigue would vary with stimulation frequency. Isolated diaphragm strips were stimulated at 25, 50, 75, or 100 Hz for 4 min, one per second. Duty cycle was continuously adjusted to maintain TTI at 0.07, which was near the highest TTI tolerated for 4 min, at 20-Hz stimulation. At the end of the fatigue run, muscles were either immediately frozen for determination ATP, creatine, and creatine phosphate concentrations (n = 6) or stimulated for evaluation of low- and high-frequency fatigue (n = 5). Results demonstrated no difference in the extent of fatigue or in the final ATP and creatine phosphate concentrations between groups. Large within-run increases in duty cycle were required at low stimulation frequencies, but only small increases were required at the highest frequencies. The results demonstrate that, at a constant TTI, similar fatigue properties predominate at all stimulation frequencies with no clear distinction between high- and low-frequency fatigue. The method of clamping TTI during fatigue may be useful for evaluating energetics and contractile function between treatment groups in isolated muscle when treatment influences baseline contractile characteristics.

  13. Stratifying Parkinson's Patients With STN-DBS Into High-Frequency or 60 Hz-Frequency Modulation Using a Computational Model.

    PubMed

    Khojandi, Anahita; Shylo, Oleg; Mannini, Lucia; Kopell, Brian H; Ramdhani, Ritesh A

    2017-07-01

    High frequency stimulation (HFS) of the subthalamic nucleus (STN) is a well-established therapy for Parkinson's disease (PD), particularly the cardinal motor symptoms and levodopa induced motor complications. Recent studies have suggested the possible role of 60 Hz stimulation in STN-deep brain stimulation (DBS) for patients with gait disorder. The objective of this study was to develop a computational model, which stratifies patients a priori based on symptomatology into different frequency settings (i.e., high frequency or 60 Hz). We retrospectively analyzed preoperative MDS-Unified Parkinson's Disease Rating Scale III scores (32 indicators) collected from 20 PD patients implanted with STN-DBS at Mount Sinai Medical Center on either 60 Hz stimulation (ten patients) or HFS (130-185 Hz) (ten patients) for an average of 12 months. Predictive models using the Random Forest classification algorithm were built to associate patient/disease characteristics at surgery to the stimulation frequency. These models were evaluated objectively using leave-one-out cross-validation approach. The computational models produced, stratified patients into 60 Hz or HFS (130-185 Hz) with 95% accuracy. The best models relied on two or three predictors out of the 32 analyzed for classification. Across all predictors, gait and rest tremor of the right hand were consistently the most important. Computational models were developed using preoperative clinical indicators in PD patients treated with STN-DBS. These models were able to accurately stratify PD patients into 60 Hz stimulation or HFS (130-185 Hz) groups a priori, offering a unique potential to enhance the utilization of this therapy based on clinical subtypes. © 2017 International Neuromodulation Society.

  14. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.

    PubMed

    Auinger, Alice Barbara; Riss, Dominik; Liepins, Rudolfs; Rader, Tobias; Keck, Tilman; Keintzel, Thomas; Kaider, Alexandra; Baumgartner, Wolf-Dieter; Gstoettner, Wolfgang; Arnoldner, Christoph

    2017-07-01

    It has been shown that patients with electric acoustic stimulation (EAS) perform better in noisy environments than patients with a cochlear implant (CI). One reason for this could be the preserved access to acoustic low-frequency cues including the fundamental frequency (F0). Therefore, our primary aim was to investigate whether users of EAS experience a release from masking with increasing F0 difference between target talker and masking talker. The study comprised 29 patients and consisted of three groups of subjects: EAS users, CI users and normal-hearing listeners (NH). All CI and EAS users were implanted with a MED-EL cochlear implant and had at least 12 months of experience with the implant. Speech perception was assessed with the Oldenburg sentence test (OlSa) using one sentence from the test corpus as speech masker. The F0 in this masking sentence was shifted upwards by 4, 8, or 12 semitones. For each of these masker conditions the speech reception threshold (SRT) was assessed by adaptively varying the masker level while presenting the target sentences at a fixed level. A statistically significant improvement in speech perception was found for increasing difference in F0 between target sentence and masker sentence in EAS users (p = 0.038) and in NH listeners (p = 0.003). In CI users (classic CI or EAS users with electrical stimulation only) speech perception was independent from differences in F0 between target and masker. A release from masking with increasing difference in F0 between target and masking speech was only observed in listeners and configurations in which the low-frequency region was presented acoustically. Thus, the speech information contained in the low frequencies seems to be crucial for allowing listeners to separate multiple sources. By combining acoustic and electric information, EAS users even manage tasks as complicated as segregating the audio streams from multiple talkers. Preserving the natural code, like fine-structure cues in the low-frequency region, seems to be crucial to provide CI users with the best benefit. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Recent Observations and Modeling of Narrowband Stimulated Electromagnetic Emissions SEEs at the HAARP Facility

    NASA Astrophysics Data System (ADS)

    Scales, Wayne; Bernhardt, Paul; McCarrick, Michael; Briczinski, Stanley; Mahmoudian, Alireza; Fu, Haiyang; Ranade Bordikar, Maitrayee; Samimi, Alireza

    There has been significant interest in so-called narrowband Stimulated Electromagnetic Emission SEE over the past several years due to recent discoveries at the High Frequency Active Auroral Research Program HAARP facility near Gakone, Alaska. Narrowband SEE (NSEE) has been defined as spectral features in the SEE spectrum typically within 1 kHz of the transmitter (or pump) frequency. SEE is due to nonlinear processes leading to re-radiation at frequencies other than the pump wave frequency during heating the ionospheric plasma with high power HF radio waves. Although NSEE exhibits a richly complex structure, it has now been shown after a substantial number of observations at HAARP, that NSEE can be grouped into two basic classes. The first are those spectral features, associated with Stimulated Brillouin Scatter SBS, which typically occur when the pump frequency is not close to electron gyro-harmonic frequencies. Typically, these spectral features are within roughly 50 Hz of the pump wave frequency where it is to be noted that the O+ ion gyro-frequency is roughly 50 Hz. The second class of spectral features corresponds to the case when the pump wave frequency is typically within roughly 10 kHz of electron gyro-harmonic frequencies. In this case, spectral features ordered by harmonics of ion gyro-frequencies are typically observed, and termed Stimulated Ion Bernstein Scatter SIBS. There is also important parametric behavior on both classes of NSEE depending on the pump wave parameters including the field strength, antenna beam angle, and electron gyro-harmonic number. This presentation will first provide an overview of the recent NSEE experimental observations at HAARP. Both Stimulated Brillouin Scatter SBS and Stimulated Ion Bernstein Scatter SIBS observations will be discussed as well as their relationship to each other. Possible theoretical formulation in terms of parametric decay instabilities will be provided. Computer simulation model results will be presented to provide insight into associated higher order nonlinear effects including particle acceleration and wave-wave processes. Both theory and model results will be put into the context of the experimental observations. Finally, possible applications of NSEE will be pointed out including triggering diagnostics for artificial ionization layer formation, proton precipitation event diagnostics, and electron temperature measurements in the heated volume.

  16. Low-Force Muscle Activity Regulates Energy Expenditure after Spinal Cord Injury.

    PubMed

    Woelfel, Jessica R; Kimball, Amy L; Yen, Chu-Ling; Shields, Richard K

    2017-05-01

    Reduced physical activity is a primary risk factor for increased morbidity and mortality. People with spinal cord injury (SCI) have reduced activity for a lifetime, as they cannot volitionally activate affected skeletal muscles. We explored whether low-force and low-frequency stimulation is a viable strategy to enhance systemic energy expenditure in people with SCI. This study aimed to determine the effects of low stimulation frequency (1 and 3 Hz) and stimulation intensity (50 and 100 mA) on energy expenditure in people with SCI. We also examined the relationship between body mass index and visceral adipose tissue on energy expenditure during low-frequency stimulation. Ten individuals with complete SCI underwent oxygen consumption monitoring during electrical activation of the quadriceps and hamstrings at 1 and 3 Hz and at 50 and 100 mA. We calculated the difference in energy expenditure between stimulation and rest and estimated the number of days that would be necessary to burn 1 lb of body fat (3500 kcal) for each stimulation protocol (1 vs 3 Hz). Both training frequencies induced a significant increase in oxygen consumption above a resting baseline level (P < 0.05). Energy expenditure positively correlated with stimulus intensity (muscle recruitment) and negatively correlated with adiposity (reflecting the insulating properties of adipose tissue). We estimated that 1 lb of body fat could be burned more quickly with 1 Hz training (58 d) as compared with 3 Hz training (87 d) if an identical number of pulses were delivered. Low-frequency stimulation increased energy expenditure per pulse and may be a feasible option to subsidize physical activity to improve metabolic status after SCI.

  17. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  18. Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in feature-based local vs. global attention.

    PubMed

    Romei, Vincenzo; Thut, Gregor; Mok, Robert M; Schyns, Philippe G; Driver, Jon

    2012-03-01

    Although oscillatory activity in the alpha band was traditionally associated with lack of alertness, more recent work has linked it to specific cognitive functions, including visual attention. The emerging method of rhythmic transcranial magnetic stimulation (TMS) allows causal interventional tests for the online impact on performance of TMS administered in short bursts at a particular frequency. TMS bursts at 10 Hz have recently been shown to have an impact on spatial visual attention, but any role in featural attention remains unclear. Here we used rhythmic TMS at 10 Hz to assess the impact on attending to global or local components of a hierarchical Navon-like stimulus (D. Navon (1977) Forest before trees: The precedence of global features in visual perception. Cognit. Psychol., 9, 353), in a paradigm recently used with TMS at other frequencies (V. Romei, J. Driver, P.G. Schyns & G. Thut. (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr. Biol., 2, 334-337). In separate groups, left or right posterior parietal sites were stimulated at 10 Hz just before presentation of the hierarchical stimulus. Participants had to identify either the local or global component in separate blocks. Right parietal 10 Hz stimulation (vs. sham) significantly impaired global processing without affecting local processing, while left parietal 10 Hz stimulation vs. sham impaired local processing with a minor trend to enhance global processing. These 10 Hz outcomes differed significantly from stimulation at other frequencies (i.e. 5 or 20 Hz) over the same site in other recent work with the same paradigm. These dissociations confirm differential roles of the two hemispheres in local vs. global processing, and reveal a frequency-specific role for stimulation in the alpha band for regulating feature-based visual attention. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    PubMed Central

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the test signal does not itself confound electrode stability or sensation. DC-resistance to AC-impedance ratio was ~1:08, averaged across frequencies. Conclusion Using the methods developed here, a test signal can predict DC electrode resistance. Since unique test frequencies can be used at each tDCS electrode, specific electrode resistance can be resolved for any number of stimulating channels – a process made still more robust by the use of a sentinel electrode. These findings provide the first method for monitoring individual electrode resistance during tDCS that integrated into devices may minimize irritation at electrodes. PMID:25456981

  20. Assistive technology to help persons in a minimally conscious state develop responding and stimulation control: Performance assessment and social rating.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; D'Amico, Fiora; Buonocunto, Francesca; Navarro, Jorge; Lanzilotti, Crocifissa; Fiore, Piero; Megna, Marisa; Damiani, Sabino

    2015-01-01

    Post-coma persons in a minimally conscious state (MCS) and with extensive motor impairment and lack of speech tend to be passive and isolated. This study aimed to (a) further assess a technology-aided approach for fostering MCS participants' responding and stimulation control and (b) carry out a social validation check about the approach. Eight MCS participants were exposed to the aforementioned approach according to an ABAB design. The technology included optic, pressure or touch microswitches to monitor eyelid, hand or finger responses and a computer system that allowed those responses to produce brief periods of positive stimulation during the B (intervention) phases of the study. Eighty-four university psychology students and 42 care and health professionals were involved in the social validation check. The MCS participants showed clear increases in their response frequencies, thus producing increases in their levels of environmental stimulation input, during the B phases of the study. The students and care and health professionals involved in the social validation check rated the technology-aided approach more positively than a control condition in which stimulation was automatically presented to the participants. A technology-aided approach to foster responding and stimulation control in MCS persons may be effective and socially desirable.

  1. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  2. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  3. Auditory Inhibition of Rapid Eye Movements and Dream Recall from REM Sleep

    PubMed Central

    Stuart, Katrina; Conduit, Russell

    2009-01-01

    Study Objectives: There is debate in dream research as to whether ponto-geniculo-occipital (PGO) waves or cortical arousal during sleep underlie the biological mechanisms of dreaming. This study comprised 2 experiments. As eye movements (EMs) are currently considered the best noninvasive indicator of PGO burst activity in humans, the aim of the first experiment was to investigate the effect of low-intensity repeated auditory stimulation on EMs (and inferred PGO burst activity) during REM sleep. It was predicted that such auditory stimuli during REM sleep would have a suppressive effect on EMs. The aim of the second experiment was to examine the effects of this auditory stimulation on subsequent dream reporting on awakening. Design: Repeated measures design with counterbalanced order of experimental and control conditions across participants. Setting: Sleep laboratory based polysomnography (PSG) Participants: Experiment 1: 5 males and 10 females aged 18-35 years (M = 20.8, SD = 5.4). Experiment 2: 7 males and 13 females aged 18-35 years (M = 23.3, SD = 5.5). Interventions: Below-waking threshold tone presentations during REM sleep compared to control REM sleep conditions without tone presentations. Measurements and Results: PSG records were manually scored for sleep stages, EEG arousals, and EMs. Auditory stimulation during REM sleep was related to: (a) an increase in EEG arousal, (b) a decrease in the amplitude and frequency of EMs, and (c) a decrease in the frequency of visual imagery reports on awakening. Conclusions: The results of this study provide phenomenological support for PGO-based theories of dream reporting on awakening from sleep in humans. Citation: Stuart K; Conduit R. Auditory inhibition of rapid eye movements and dream recall from REM sleep. SLEEP 2009;32(3):399–408. PMID:19294960

  4. Low-frequency repetitive transcranial magnetic simulation prevents chronic epileptic seizure

    PubMed Central

    Wang, Yinxu; Wang, Xiaoming; Ke, Sha; Tan, Juan; Hu, Litian; Zhang, Yaodan; Cui, Wenjuan

    2013-01-01

    Although low-frequency repetitive transcranial magnetic simulation can potentially treat epilepsy, its underlying mechanism remains unclear. This study investigated the influence of low-frequency re-petitive transcranial magnetic simulation on changes in several nonlinear dynamic electroence-phalographic parameters in rats with chronic epilepsy and explored the mechanism underlying petitive transcranial magnetic simulation-induced antiepileptic effects. An epilepsy model was es-tablished using lithium-pilocarpine intraperitoneal injection into adult Sprague-Dawley rats, which were then treated with repetitive transcranial magnetic simulation for 7 consecutive days. Nonlinear electroencephalographic parameters were obtained from the rats at 7, 14, and 28 days post-stimulation. Results showed significantly lower mean correlation-dimension and Kolmogo-rov-entropy values for stimulated rats than for non-stimulated rats. At 28 days, the complexity and point-wise correlation dimensional values were lower in stimulated rats. Low-frequency repetitive transcranial magnetic simulation has suppressive effects on electrical activity in epileptic rats, thus explaining its effectiveness in treating epilepsy. PMID:25206567

  5. A feasible repetitive transcranial magnetic stimulation clinical protocol in migraine prevention.

    PubMed

    Zardouz, Shawn; Shi, Lei; Leung, Albert

    2016-01-01

    This case series was conducted to determine the clinical feasibility of a repetitive transcranial magnetic stimulation protocol for the prevention of migraine (with and without aura). Five patients with migraines underwent five repetitive transcranial magnetic stimulation sessions separated in 1- to 2-week intervals for a period of 2 months at a single tertiary medical center. Repetitive transcranial magnetic stimulation was applied to the left motor cortex with 2000 pulses (20 trains with 1s inter-train interval) delivered per session, at a frequency of 10 Hz and 80% resting motor threshold. Pre- and post-treatment numerical rating pain scales were collected, and percent reductions in intensity, frequency, and duration were generated. An average decrease in 37.8%, 32.1%, and 31.2% were noted in the intensity, frequency, and duration of migraines post-repetitive transcranial magnetic stimulation, respectively. A mean decrease in 1.9±1.0 (numerical rating pain scale ± standard deviation; range: 0.4-2.8) in headache intensity scores was noted after the repetitive transcranial magnetic stimulation sessions. The tested repetitive transcranial magnetic stimulation protocol is a well-tolerated, safe, and effective method for migraine prevention.

  6. High frequency repetitive sensory stimulation improves temporal discrimination in healthy subjects.

    PubMed

    Erro, Roberto; Rocchi, Lorenzo; Antelmi, Elena; Palladino, Raffaele; Tinazzi, Michele; Rothwell, John; Bhatia, Kailash P

    2016-01-01

    High frequency electrical stimulation of an area of skin on a finger improves two-point spatial discrimination in the stimulated area, likely depending on plastic changes in the somatosensory cortex. However, it is unknown whether improvement also applies to temporal discrimination. Twelve young and ten elderly volunteers underwent the stimulation protocol onto the palmar skin of the right index finger. Somatosensory temporal discrimination threshold (STDT) was evaluated before and immediately after stimulation as well as 2.5h and 24h later. There was a significant reduction in somatosensory temporal threshold only on the stimulated finger. The effect was reversible, with STDT returning to the baseline values within 24h, and was smaller in the elderly than in the young participants. High frequency stimulation of the skin focally improves temporal discrimination in the area of stimulation. Given previous suggestions that the perceptual effects rely on plastic changes in the somatosensory cortex, our results are consistent with the idea that the timing of sensory stimuli is, at least partially, encoded in the primary somatosensory cortex. Such a protocol could potentially be used as a therapeutic intervention to ameliorate physiological decline in the elderly or in other disorders of sensorimotor integration. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model

    PubMed Central

    Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.

    2009-01-01

    Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730

  8. Frequency-dependent, transient effects of subthalamic nucleus deep brain stimulation on methamphetamine-induced circling and neuronal activity in the hemiparkinsonian rat.

    PubMed

    So, Rosa Q; McConnell, George C; Grill, Warren M

    2017-03-01

    Methamphetamine-induced circling is used to quantify the behavioral effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in hemiparkinsonian rats. We observed a frequency-dependent transient effect of DBS on circling, and quantified this effect to determine its neuronal basis. High frequency STN DBS (75-260Hz) resulted in transient circling contralateral to the lesion at the onset of stimulation, which was not sustained after the first several seconds of stimulation. Following the transient behavioral change, DBS resulted in a frequency-dependent steady-state reduction in pathological ipsilateral circling, but no change in overall movement. Recordings from single neurons in globus pallidus externa (GPe) and substantia nigra pars reticulata (SNr) revealed that high frequency, but not low frequency, STN DBS elicited transient changes in both firing rate and neuronal oscillatory power at the stimulation frequency in a subpopulation of GPe and SNr neurons. These transient changes were not sustained, and most neurons exhibited a different response during the steady-state phase of DBS. During the steady-state, DBS produced elevated neuronal oscillatory power at the stimulus frequency in a majority of GPe and SNr neurons, and the increase was more pronounced during high frequency DBS than during low frequency DBS. Changes in oscillatory power during both transient and steady-state DBS were highly correlated with changes in firing rates. These results suggest that distinct neural mechanisms were responsible for transient and sustained behavioral responses to STN DBS. The transient contralateral turning behavior following the onset of high frequency DBS was paralleled by transient changes in firing rate and oscillatory power in the GPe and SNr, while steady-state suppression of ipsilateral turning was paralleled by sustained increased synchronization of basal ganglia neurons to the stimulus pulses. Our analysis of distinct frequency-dependent transient and steady-state responses to DBS lays the foundation for future mechanistic studies of the immediate and persistent effects of DBS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. New Stimulation Strategy to Improve the Bladder Function in Paraplegics: Chronic Experiments in Dogs

    DTIC Science & Technology

    2001-10-25

    urinary system [4]. More recently, neurostimulation and neuromodulation of the sacral nerve root seems to be one of the most promising options to enhance...day. Expelled and residual urine volumes were measured. Also the applied parameters for the continuous low frequency / low amplitude neuromodulation ...VCUG) with neurostimulation was carried out after IVU study. Low-frequency only stimulation During the 7th month, daily stimulations were performed

  10. An Objective Estimation of Air-Bone-Gap in Cochlear Implant Recipients with Residual Hearing Using Electrocochleography.

    PubMed

    Koka, Kanthaiah; Saoji, Aniket A; Attias, Joseph; Litvak, Leonid M

    2017-01-01

    Although, cochlear implants (CI) traditionally have been used to treat individuals with bilateral profound sensorineural hearing loss, a recent trend is to implant individuals with residual low-frequency hearing. Notably, many of these individuals demonstrate an air-bone gap (ABG) in low-frequency, pure-tone thresholds following implantation. An ABG is the difference between audiometric thresholds measured using air conduction (AC) and bone conduction (BC) stimulation. Although, behavioral AC thresholds are straightforward to assess, BC thresholds can be difficult to measure in individuals with severe-to-profound hearing loss because of vibrotactile responses to high-level, low-frequency stimulation and the potential contribution of hearing in the contralateral ear. Because of these technical barriers to measuring behavioral BC thresholds in implanted patients with residual hearing, it would be helpful to have an objective method for determining ABG. This study evaluated an innovative technique for measuring electrocochleographic (ECochG) responses using the cochlear microphonic (CM) response to assess AC and BC thresholds in implanted patients with residual hearing. Results showed high correlations between CM thresholds and behavioral audiograms for AC and BC conditions, thereby demonstrating the feasibility of using ECochG as an objective tool for quantifying ABG in CI recipients.

  11. The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion.

    PubMed

    Edom, Elisabeth; Obrist, Dominik; Henniger, Rolf; Kleiser, Leonhard; Sim, Jae Hoon; Huber, Alexander M

    2013-11-01

    The basilar membrane (BM) and perilymph motion in the cochlea due to rocking stapes motion (RSM) and piston-like stapes motion (PSM) is modeled by numerical simulations. The full Navier-Stokes equations are solved in a two-dimensional box geometry. The BM motion is modeled by independent oscillators using an immersed boundary technique. The traveling waves generated by both stimulation modes are studied. A comparison of the peak amplitudes of the BM motion is presented and their dependence on the frequency and on the model geometry (stapes position and cochlear channel height) is investigated. It is found that the peak amplitudes for the RSM are lower and decrease as frequency decreases whereas those for the PSM increase as frequency decreases. This scaling behavior can be explained by the different mechanisms that excite the membrane oscillation. Stimulation with both modes at the same time leads to either a slight increase or a slight decrease of the peak amplitudes compared to the pure PSM, depending on the phase shift between the two modes. While the BM motion is dominated by the PSM mode under normal conditions, the RSM may lead to hearing if no PSM is present or possible, e.g., due to round window atresia.

  12. Use of a Novel Cell Adhesion Method and Digital Measurement to Show Stimulus-dependent Variation in Somatic and Oral Ciliary Beat Frequency in Paramecium

    PubMed Central

    Bell, Wade E.; Hallworth, Richard; Wyatt, Todd A.; Sisson, Joseph H.

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. PMID:25066640

  13. Axono-cortical evoked potentials: A proof-of-concept study.

    PubMed

    Mandonnet, E; Dadoun, Y; Poisson, I; Madadaki, C; Froelich, S; Lozeron, P

    2016-04-01

    Awake surgery is currently considered the best method to tailor intraparenchymatous resections according to functional boundaries. However, the exact mechanisms by which electrical stimulation disturbs behavior remain largely unknown. In this case report, we describe a new method to explore the propagation toward cortical sites of a brief pulse applied to an eloquent white matter pathway. We present a patient, operated on in awake condition for removal of a cavernoma of the left ventral premotor cortex. At the end of the resection, the application of 60Hz stimulation in the white matter of the operculum induced anomia. Stimulating the same site at a frequency of 1Hz during 70seconds allowed to record responses on electrodes put over Broca's area and around the inferior part of central sulcus. Axono-cortical evoked potentials were then obtained by averaging unitary responses, time-locked to the stimulus. We then discuss the origin of these evoked axono-cortical potentials and the likely pathway connecting the stimulation site to the recorded cortical sites. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. A Wireless Optogenetic Headstage with Multichannel Electrophysiological Recording Capability

    PubMed Central

    Gagnon-Turcotte, Gabriel; Avakh Kisomi, Alireza; Ameli, Reza; Dufresne Camaro, Charles-Olivier; LeChasseur, Yoan; Néron, Jean-Luc; Brule Bareil, Paul; Fortier, Paul; Bories, Cyril; de Koninck, Yves; Gosselin, Benoit

    2015-01-01

    We present a small and lightweight fully wireless optogenetic headstage capable of optical neural stimulation and electrophysiological recording. The headstage is suitable for conducting experiments with small transgenic rodents, and features two implantable fiber-coupled light-emitting diode (LED) and two electrophysiological recording channels. This system is powered by a small lithium-ion battery and is entirely built using low-cost commercial off-the-shelf components for better flexibility, reduced development time and lower cost. Light stimulation uses customizable stimulation patterns of varying frequency and duty cycle. The optical power that is sourced from the LED is delivered to target light-sensitive neurons using implantable optical fibers, which provide a measured optical power density of 70 mW/mm2 at the tip. The headstage is using a novel foldable rigid-flex printed circuit board design, which results into a lightweight and compact device. Recording experiments performed in the cerebral cortex of transgenic ChR2 mice under anesthetized conditions show that the proposed headstage can trigger neuronal activity using optical stimulation, while recording microvolt amplitude electrophysiological signals. PMID:26371006

  15. Stimulated emission and lasing from all-inorganic perovskite quantum dots

    NASA Astrophysics Data System (ADS)

    Sun, Handong; Wang, Yue; Li, Xiaoming; Haibo, Zeng

    We present superior optical gain and lasing properties in a new class of emerging quantum materials, the colloidal all-inorganic cesium lead halide perovskite quantum dots (IPQDs) (CsPbX3, X = Cl, Br, I). Our result has indicated that such material system show combined merits of both colloidal quantum dots and halide perovskites. Low-threshold and ultrastable stimulated emission was demonstrated under atmospheric condition. The flexibility and advantageous optical gain properties of these CsPbX3 IPQDs were manifested by demonstration of an optically pumped micro-laser. The nonlinear optical properties including the multi-photon absorption and resultant photoluminescence of the CsPbX3 nanocrystals were investigated. A large two-photon absorption cross-section of up to ~1.2×105 GM is determined from 9 nm-sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin films of close-packed CsPbBr3 nanocrystals. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal IPQD.

  16. Simultaneous masking between electric and acoustic stimulation in cochlear implant users with residual low-frequency hearing.

    PubMed

    Krüger, Benjamin; Büchner, Andreas; Nogueira, Waldo

    2017-09-01

    Ipsilateral electric-acoustic stimulation (EAS) is becoming increasingly important in cochlear implant (CI) treatment. Improvements in electrode designs and surgical techniques have contributed to improved hearing preservation during implantation. Consequently, CI implantation criteria have been expanded toward people with significant residual low-frequency hearing, who may benefit from the combined use of both the electric and acoustic stimulation in the same ear. However, only few studies have investigated the mutual interaction between electric and acoustic stimulation modalities. This work characterizes the interaction between both stimulation modalities using psychophysical masking experiments and cone beam computer tomography (CBCT). Two psychophysical experiments for electric and acoustic masking were performed to measure the hearing threshold elevation of a probe stimulus in the presence of a masker stimulus. For electric masking, the probe stimulus was an acoustic tone while the masker stimulus was an electric pulse train. For acoustic masking, the probe stimulus was an electric pulse train and the masker stimulus was an acoustic tone. Five EAS users, implanted with a CI and ipsilateral residual low-frequency hearing, participated in the study. Masking was determined at different electrodes and different acoustic frequencies. CBCT scans were used to determine the individual place-pitch frequencies of the intracochlear electrode contacts by using the Stakhovskaya place-to-frequency transformation. This allows the characterization of masking as a function of the difference between electric and acoustic stimulation sites, which we term the electric-acoustic frequency difference (EAFD). The results demonstrate a significant elevation of detection thresholds for both experiments. In electric masking, acoustic-tone thresholds increased exponentially with decreasing EAFD. In contrast, for the acoustic masking experiment, threshold elevations were present regardless of the tested EAFDs. Based on the present findings, we conclude that there is an asymmetry between the electric and the acoustic masker modalities. These observations have implications for the design and fitting of EAS sound-coding strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation.

    PubMed

    Stepp, Cara E; Matsuoka, Yoky

    2012-01-01

    Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation.

  18. Functional connectivity and activity of white matter in somatosensory pathways under tactile stimulations.

    PubMed

    Wu, Xi; Yang, Zhipeng; Bailey, Stephen K; Zhou, Jiliu; Cutting, Laurie E; Gore, John C; Ding, Zhaohua

    2017-05-15

    Functional MRI has proven to be effective in detecting neural activity in brain cortices on the basis of blood oxygenation level dependent (BOLD) contrast, but has relatively poor sensitivity for detecting neural activity in white matter. To demonstrate that BOLD signals in white matter are detectable and contain information on neural activity, we stimulated the somatosensory system and examined distributions of BOLD signals in related white matter pathways. The temporal correlation profiles and frequency contents of BOLD signals were compared between stimulation and resting conditions, and between relevant white matter fibers and background regions, as well as between left and right side stimulations. Quantitative analyses show that, overall, MR signals from white matter fiber bundles in the somatosensory system exhibited significantly greater temporal correlations with the primary sensory cortex and greater signal power during tactile stimulations than in a resting state, and were stronger than corresponding measurements for background white matter both during stimulations and in a resting state. The temporal correlation and signal power under stimulation were found to be twice those observed from the same bundle in a resting state, and bore clear relations with the side of stimuli. These indicate that BOLD signals in white matter fibers encode neural activity related to their functional roles connecting cortical volumes, which are detectable with appropriate methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. [The specific features of the development of metabolic and regenerative processes under the action of low-intensity electromagnetic radiation in radiation exposure conditions (an experimental study)].

    PubMed

    Korolev, Yu N; Mihajlik, L V; Nikulina, L A; Geniatulina, M S

    The experiments on male white rats with the use of biochemical, photo-optical, and electron-microscopic techniques have demonstrated that the use of low-intensity electromagnetic radiation of ultrahigh frequency (EMR UHF) and low-intensity low-frequency magnetic field (MF) during the post-irradiation period (within 21 days after exposure to radiation) enhanced the metabolic and regenerative processes in the testes and liver. It was shown that the application of MF largely intensified the antioxidant activity whereas EMR UHF preferentially stimulated the biosynthetic processes as well as the processes of cellular and intracellular regeneration.

  20. Taurine supplementation increases skeletal muscle force production and protects muscle function during and after high-frequency in vitro stimulation.

    PubMed

    Goodman, Craig A; Horvath, Deanna; Stathis, Christos; Mori, Trevor; Croft, Kevin; Murphy, Robyn M; Hayes, Alan

    2009-07-01

    Recent studies report that depletion and repletion of muscle taurine (Tau) to endogenous levels affects skeletal muscle contractility in vitro. In this study, muscle Tau content was raised above endogenous levels by supplementing male Sprague-Dawley rats with 2.5% (wt/vol) Tau in drinking water for 2 wk, after which extensor digitorum longus (EDL) muscles were examined for in vitro contractile properties, fatigue resistance, and recovery from fatigue after two different high-frequency stimulation bouts. Tau supplementation increased muscle Tau content by approximately 40% and isometric twitch force by 19%, shifted the force-frequency relationship upward and to the left, increased specific force by 4.2%, and increased muscle calsequestrin protein content by 49%. Force at the end of a 10-s (100 Hz) continuous tetanic stimulation was 6% greater than controls, while force at the end of the 3-min intermittent high-frequency stimulation bout was significantly higher than controls, with a 12% greater area under the force curve. For 1 h after the 10-s continuous stimulation, tetanic force in Tau-supplemented muscles remained relatively stable while control muscle force gradually deteriorated. After the 3-min intermittent bout, tetanic force continued to slowly recover over the next 1 h, while control muscle force again began to decline. Tau supplementation attenuated F(2)-isoprostane production (a sensitive indicator of reactive oxygen species-induced lipid peroxidation) during the 3-min intermittent stimulation bout. Finally, Tau transporter protein expression was not altered by the Tau supplementation. Our results demonstrate that raising Tau content above endogenous levels increases twitch and subtetanic and specific force in rat fast-twitch skeletal muscle. Also, we demonstrate that raising Tau protects muscle function during high-frequency in vitro stimulation and the ensuing recovery period and helps reduce oxidative stress during prolonged stimulation.

  1. Threshold Evolution as an Analysis of the Different Pulse Frequencies in Rechargeable Systems for Spinal Cord Stimulation.

    PubMed

    Abejón, David; Rueda, Pablo; Vallejo, Ricardo

    2016-04-01

    Pulse frequency (Fc) is one of the most important parameters in neurostimulation, with Pulse Amplitude (Pw) and Amplitude (I). Up to certain Fc, increasing the number of pulses will generate action potentials in neighboring neural structures and may facilitate deeper penetration of the electromagnetic fields. In addition, changes in frequency modify the patient's sensation with stimulation. Fifty patients previously implanted with rechargeable current control spinal cord stimulation. With pulse width fixed at 300 μsec, we stimulated at 26 different Fc values between 40 and 1200 Hz and determine the influence of these changes on different stimulation thresholds: perception threshold (Tp ), therapeutic perception (Tt), and discomfort threshold (Td). Simultaneously, paresthesia coverage of the painful area and patient's sensation and satisfaction related to the quality of stimulation were recorded. Pulse Fc is inversely proportional to stimulation thresholds and this influence is statistically significant (p < 0.05). As Pulse Fc increased from 40 to 1200 Hz, the mean threshold decreases from 7.25 to 1.38 mA (Tp ), 8.17 to 1.63 (Tt ), and 9.20 to 1.85 (Td). Significant differences for Tp and Tt began at 750 Hz (Tp , Tt ) and at 650 Hz for Td. No significant influence was found regarding paresthesia coverage. As expected, Fc affects significantly patient's sensation and satisfaction. Changes in Fc affect the quality of paresthesias. Within the evaluated parameters higher frequencies are inversely proportional to stimulation thresholds and Tt. It seems that Fc is a vital parameter to achieve therapeutic success. Changes in Fc is a useful parameter to modulate the patient's sensory perception. Fc can be successfully used to adjust the quality of the paresthesias and to modify patient's subjective sensation. We showed that as the frequency increases, the patient's satisfaction with the perceived sensation decreases, suggesting that higher Fc may need to be set up at subthreshold amplitude to achieve positive response. © 2016 International Neuromodulation Society.

  2. Recent Advances in Narrowband Stimulated Electromagnetic Emission NSEE Investigations at HAARP and EISCAT

    NASA Astrophysics Data System (ADS)

    Scales, Wayne

    2016-07-01

    Investigation of stimulated radiation, commonly known as Stimulated Electromagnetic Emissions (SEE), produced by the interaction of high-power, High Frequency HF radiowaves with the ionospheric plasma has been a vibrant area of research since the early 1980's. Substantial diagnostic information about ionospheric plasma characteristics, dynamics, and turbulence can be obtained from the frequency spectrum of the stimulated radiation. During the past several decades, so-called wideband SEE (WSEE) which exists in a frequency band of ±100 KHz or so of the transmit wave frequency (which is several MHz) has been investigated relatively thoroughly. Upgrades both in transmitter power and diagnostic receiver frequency sensitivity at major ionosphere interaction facilities (i.e. HAARP and EISCAT) have allowed new breakthroughs in the ability to study a plethora of processes associated with the ionospheric plasma during these active experiments. A primary advance is in observations of so-called narrowband SEE (NSEE) which exists roughly within ±1 kHz of the transmit wave frequency. NSEE investigation has opened the door for a potentially powerful tool for aeronomy investigations as well. An overview of several important new results associated with NSEE are discussed in this presentation, including observations, theory, computational modeling, as well as implications to new diagnostics of space plasma physics occurring during ionospheric interaction experiments.

  3. Effect of low-level laser stimulation on EEG.

    PubMed

    Wu, Jih-Huah; Chang, Wen-Dien; Hsieh, Chang-Wei; Jiang, Joe-Air; Fang, Wei; Shan, Yi-Chia; Chang, Yang-Chyuan

    2012-01-01

    Conventional laser stimulation at the acupoint can induce significant brain activation, and the activation is theoretically conveyed by the sensory afferents. Whether the insensible low-level Laser stimulation outside the acupoint could also evoke electroencephalographic (EEG) changes is not known. We designed a low-level laser array stimulator (6 pcs laser diode, wavelength 830 nm, output power 7 mW, and operation frequency 10 Hz) to deliver insensible laser stimulations to the palm. EEG activities before, during, and after the laser stimulation were collected. The amplitude powers of each EEG frequency band were analyzed. We found that the low-level laser stimulation was able to increase the power of alpha rhythms and theta waves, mainly in the posterior head regions. These effects lasted at least 15 minutes after cessation of the laser stimulation. The amplitude power of beta activities in the anterior head regions decreased after laser stimulation. We thought these EEG changes comparable to those in meditation.

  4. Modulating the Behaviors of Mesenchymal Stem Cells Via the Combination of High-Frequency Vibratory Stimulations and Fibrous Scaffolds

    PubMed Central

    Tong, Zhixiang; Duncan, Randall L.

    2013-01-01

    We are interested in the in vitro engineering of artificial vocal fold tissues via the strategic combination of multipotent mesenchymal stem cells (MSCs), physiologically relevant mechanical stimulations, and biomimetic artificial matrices. We have constructed a vocal fold bioreactor that is capable of imposing vibratory stimulations on the cultured cells at human phonation frequencies. Separately, fibrous poly (ɛ-caprolactone) (PCL) scaffolds emulating the ligamentous structure of the vocal fold were prepared by electrospinning, were incorporated in the vocal fold bioreactor, and were driven into a wave-like motion in an axisymmetrical fashion by the oscillating air. MSC-laden PCL scaffolds were subjected to vibrations at 200 Hz with a normal center displacement of ∼40 μm for a total of 7 days. A continuous (CT) or a 1 h-on-1 h-off (OF) regime with a total dynamic culture time of 12 h per day was applied. The dynamic loading did not cause any physiological trauma to the cells. Immunohistotochemical staining revealed the reinforcement of the actin filament and the enhancement of α5β1 integrin expression under selected dynamic culture conditions. Cellular expression of essential vocal fold extracellular matrix components, such as elastin, hyaluronic acid, and matrix metalloproteinase-1, was significantly elevated as compared with the static controls, and the OF regime is more conducive to matrix production than the CT vibration mode. Analyses of genes of typical fibroblast hallmarks (tenascin-C, collagen III, and procollagen I) as well as markers for MSC differentiation into nonfibroblastic lineages confirmed MSCs' adaptation of fibroblastic behaviors. Overall, the high-frequency vibratory stimulation, when combined with a synthetic fibrous scaffold, serves as a potent modulator of MSC functions. The novel bioreactor system presented here, as a versatile, yet well-controlled model, offers an in vitro platform for understanding vibration-induced mechanotransduction and for engineering of functional vocal fold tissues. PMID:23516973

  5. [The application of high-frequency and iTBS transcranial magnetic stimulation for the treatment of spasticity in the patients presenting with secondary progressive multiple sclerosis].

    PubMed

    Korzhova, J E; Chervyakov, A V; Poydasheva, A G; Kochergin, I A; Peresedova, A V; Zakharova, M N; Suponeva, N A; Chernikova, L A; Piradov, M A

    Spasticity is considered to be a common manifestation of multiple sclerosis. Muscle relaxants are not sufficiently effective; more than that, some of them often cause a variety of adverse reactions. Transcranial magnetic stimulation (TMS) can be a promising new tool for the treatment of spasticity. The objective of the present study was to compare the effectiveness of the two TMS protocols: rhythmic (high-frequency) TMS (rTMS) and stimulation with the theta bursts (iTBS) in terms of their ability to reduce spasticity in the patients presenting with multiple sclerosis. Twenty two patients with secondary-progressive multiple sclerosis were pseudo-randomized into two groups: those in the first (high-frequency) group received the treatment with the use of rTMS therapy at a frequency of 10 Hz; the patients of the second group, underwent stimulation with the theta bursts (iTBS). All the patients received 10 sessions of either stimulation applied to the primary motor area (M1) of both legs. The effectiveness of TMS protocols was evaluated before therapy and after 10 sessions of stimulation based on the Modified Ashworth scale (MAS), the expanded disability status scale (EDSS), and the Kurtzke functional scale (Kfs). In addition, the patients were interviewed before treatment, after 10 rTMS sessions, immediately after and within 2 and 12 weeks after the completion of the treatment using questionnaires for the evaluation of spasticity (SESS) , fatigue, and dysfunction of the pelvic organs (severity of defecation and urination disorders), fatigue. The study has demonstrated a significant reduction in spasticity in the patients of both groups at the end of the TMS protocol based on the MAS scale. There was no significant difference between the outcomes of the two protocols. Both had positive effect on the concomitant «non-motor» symptoms (fatigue, dysfunction of the pelvic organs). High-frequency transcranial magnetic stimulation (10 sessions of rTMS therapy at a frequency of 10 Hz) and stimulation with the theta-bursts applied to the M1 area in both legs can be an effective alternative treatment of spasticity in the patients with secondary-progressive multiple sclerosis. Further research is needed to detect more accurately the differences between the outcomes of the two stimulation protocols and the development of indications for their application on an individual basis.

  6. A simple handheld pupillometer for chromatic Flicker studies

    NASA Astrophysics Data System (ADS)

    Bernabei, M.; Tinarelli, R.; Peretto, L.; Rovati, L.

    2014-02-01

    A portable pupillometer has been developed which is capable of performing accurate measurements of the pupil diameter during chromatic flicker stimulations. The handheld measuring system records the near-infrared image of the pupil at the rate of 25 fps and simultaneously stimulates the eye using a diffused flicker light generated by light emitting diodes (LEDs). Intensity, frequency and chromatic coordinates of the stimulus can be easily adjusted using a user-friendly graphical interface. Thanks to a chromatic monitoring of the stimulus close to the plane of the eye, photopically matched conditions can be easily achieved. The pupil diameter/area can be measured during flickering stimuli that are generated with frequency in a range of 0.1-20 Hz. The electronic unit, properly connected to the personal computer through a USB port, drives the optical unit, which can be easily held in a hand. The software interface controlling the system was developed in LabVIEW. This paper describes the instrument optical setup, front-end electronics and data processing. Moreover preliminary results obtained on a voluntary are reported.

  7. Laser Stimulated Genomic Exchange in Stem Cells. Laser Non-cloning Techniques

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2012-02-01

    I propose a novel technique for a pluripotent stem cell generation. Genomic exchange is stimulated by the beat-wave free electron laser, (B-W FEL), frequency matching with the frequencies of the DNAootnotetextJ.D. Watson and F. H. C. Crick, Nature, 171, 737-738 (1953). eigen-oscillations. B-W FEL-1ootnotetextV. Stefan, B.I.Cohen, C. Joshi Science, 243,4890, (Jan 27,1989); Stefan, et al., Bull. APS. 32, No. 9, 1713 (1987); Stefan, APS March-2011, #S1.143; APS- March-2009, #K1.276. scans entire stem cell; B-W FEL-2 probes the chromosomes. The scanning and probing lasers: 300-500nm and 100-300nm, respectively; irradiances: the order-of-10s mW/cm^2 (above the threshold value for a particular gene structure); repetition rate of few-100s Hz. A variety of genetic-matching conditions can be arranged. Genomic glitches, (the cell nucleus transferootnotetextScott Noggle et al. Nature, 478, 70-75 (06 October 2011).), can be hedged by the use of lasers.

  8. Analysis of skin blood microflow oscillations in patients with rheumatic diseases

    NASA Astrophysics Data System (ADS)

    Mizeva, Irina; Makovik, Irina; Dunaev, Andrey; Krupatkin, Alexander; Meglinski, Igor

    2017-07-01

    Laser Doppler flowmetry (LDF) has been applied for the assessment of variation in blood microflows in patients with rheumatic diseases and healthy volunteers. Oscillations of peripheral blood microcirculation observed by LDF have been analyzed utilizing a wavelet transform. A higher amplitude of blood microflow oscillations has been observed in a high frequency band (over 0.1 Hz) in patients with rheumatic diseases. Oscillations in the high frequency band decreased in healthy volunteers in response to the cold pressor test, whereas lower frequency pulsations prevailed in patients with rheumatic diseases. A higher perfusion rate at normal conditions was observed in patients, and a weaker response to cold stimulation was observed in healthy volunteers. Analysis of blood microflow oscillations has a high potential for evaluation of mechanisms of blood flow regulation and diagnosis of vascular abnormalities associated with rheumatic diseases.

  9. Driving working memory with frequency-tuned noninvasive brain stimulation.

    PubMed

    Albouy, Philippe; Baillet, Sylvain; Zatorre, Robert J

    2018-04-29

    Frequency-tuned noninvasive brain stimulation is a recent approach in cognitive neuroscience that involves matching the frequency of transcranially applied electromagnetic fields to that of specific oscillatory components of the underlying neurophysiology. The objective of this method is to modulate ongoing/intrinsic brain oscillations, which correspond to rhythmic fluctuations of neural excitability, to causally change behavior. We review the impact of frequency-tuned noninvasive brain stimulation on the research field of human working memory. We argue that this is a powerful method to probe and understand the mechanisms of memory functions, targeting specifically task-related oscillatory dynamics, neuronal representations, and brain networks. We report the main behavioral and neurophysiological outcomes published to date, in particular, how functionally relevant oscillatory signatures in signal power and interregional connectivity yield causal changes of working memory abilities. We also present recent developments of the technique that aim to modulate cross-frequency coupling in polyrhythmic neural activity. Overall, the method has led to significant advances in our understanding of the mechanisms of systems neuroscience, and the role of brain oscillations in cognition and behavior. We also emphasize the translational impact of noninvasive brain stimulation techniques in the development of therapeutic approaches. © 2018 New York Academy of Sciences.

  10. Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest.

    PubMed

    Nir, Rony-Reuven; Sinai, Alon; Moont, Ruth; Harari, Eyal; Yarnitsky, David

    2012-03-01

    Pain neurophysiology has been chiefly characterized via event-related potentials (ERPs), which are exerted using brief, phase-locked noxious stimuli. Striving for objectively characterizing clinical pain states using more natural, prolonged stimuli, tonic pain has been recently associated with the individual peak frequency of alpha oscillations. This finding encouraged us to explore whether alpha power, reflecting the magnitude of the synchronized activity within this frequency range, will demonstrate a corresponding relationship with subjective perception of tonic pain. Five-minute-long continuous EEG was recorded in 18 healthy volunteers under: (i) resting-state; (ii) innocuous temperature; and (iii) psychophysically-anchored noxious temperature. Numerical pain scores (NPSs) collected during the application of tonic noxious stimuli were tested for correlation with alpha-1 and alpha-2 power. NPSs and alpha power remained stable throughout the recording conditions (Ps⩾0.381). In the noxious condition, alpha-1 power obtained at the bilateral temporal scalp was negatively correlated with NPSs (Ps⩽0.04). Additionally, resting-state alpha-1 power recorded at the bilateral temporal scalp was negatively correlated with NPSs reported during the noxious condition (Ps⩽0.038). Current findings suggest alpha-1 power may serve as a direct, objective and experimentally stable measure of subjective perception of tonic pain. Furthermore, resting-state alpha-1 power might reflect individuals' inherent tonic pain responsiveness. The relevance of alpha-1 power to tonic pain perception may deepen the understanding of the mechanisms underlying the processing of prolonged noxious stimulation. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Time-frequency analysis of stimulus frequency otoacoustic emissions and their changes with efferent stimulation in guinea pigs

    NASA Astrophysics Data System (ADS)

    Berezina-Greene, Maria A.; Guinan, John J.

    2015-12-01

    To aid in understanding their origin, stimulus frequency otoacoustic emissions (SFOAEs) were measured at a series of tone frequencies using the suppression method, both with and without stimulation of medial olivocochlear (MOC) efferents, in anesthetized guinea pigs. Time-frequency analysis showed SFOAE energy peaks in 1-3 delay components throughout the measured frequency range (0.5-12 kHz). One component's delay usually coincided with the phase-gradient delay. When multiple delay components were present, they were usually near SFOAE dips. Below 2 kHz, SFOAE delays were shorter than predicted from mechanical measurements. With MOC stimulation, SFOAE amplitude was decreased at most frequencies, but was sometimes enhanced, and all SFOAE delay components were affected. The MOC effects and an analysis of model data suggest that the multiple SFOAE delay components arise at the edges of the traveling-wave peak, not far basal of the peak. Comparisons with published guinea-pig neural data suggest that the short latencies of low-frequency SFOAEs may arise from coherent reflection from an organ-of-Corti motion that has a shorter group delay than the traveling wave.

  12. Stimulated low-frequency Raman scattering in aqueous suspension of nanoparticles

    NASA Astrophysics Data System (ADS)

    Averyushkin, Anatolii S.; Baranov, Anatoly N.; Bulychev, Nikolay A.; Kazaryan, Mishik A.; Kudryavtseva, Anna D.; Shevchenko, Mikhail A.; Strokov, Maxim A.; Tcherniega, Nikolay V.; Zemskov, Konstantin I.

    2018-04-01

    The low-frequency acoustic mode in nanoparticles of different nature in aqueous suspension has been studied by stimulated low-frequency Raman scattering (SLFRS). Nanoparticles investigated (CuO, Ag, Au, ZnS) had different dimensions and different vibrational properties. Synthesis of cupric oxide nanoparticles in acoustoplasma discharge is described in details. SLFRS has been excited by nanosecond pulses of ruby laser. Spectra of the scattered light had been registered with the help of Fabry-Perot interferometer. SLFRS conversion efficiency, threshold and frequency shift of the scattered light are measured.

  13. Basal ganglia dysfunction in OCD: subthalamic neuronal activity correlates with symptoms severity and predicts high-frequency stimulation efficacy.

    PubMed

    Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L

    2011-05-03

    Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.

  14. Excited stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy.

    PubMed

    Weigel, A; Ernsting, N P

    2010-06-17

    Excited-state relaxation of cis- and trans-stilbene is traced with femtosecond stimulated Raman spectroscopy, exploiting S(n) <-- S(1) resonance conditions. For both isomers, decay in Raman intensity, shift of spectral positions, and broadening of the bands indicate intramolecular vibrational redistribution (IVR). In n-hexane this process effectively takes 0.5-0.7 ps. Analysis of the intensity decay allows us to further distinguish two phases for trans-stilbene: fast IVR within a subset of modes (approximately 0.3 ps) followed by slower equilibration over the full vibrational manifold (approximately 0.9 ps). In acetonitrile IVR completes with 0.15 ps; this acceleration may originate from symmetry breakage induced by the polar solvent. Another process, dynamic solvation by acetonitrile, is seen as spectral narrowing and characteristic band shifts of the C=C stretch and phenyl bending modes with 0.69 ps. Wavepacket motion is observed in both isomers as oscillation of low-frequency bands with their pertinent mode frequency (90 or 195 cm(-1) in trans-stilbene; 250 cm(-1) in cis-stilbene). Anharmonic coupling shows up as a modulation of high-frequency peak positions by phenyl/ethylene torsion modes of 57 and 90 cm(-1). Decay and shift of the 90 cm(-1) inverse Raman band within the first 0.3 ps suggests a gradual involvement of phenyl/ethylene torsion in relaxation. In cis- and trans-stilbene, low-frequency spectral changes are found within 0.15 ps, indicating an additional ultrafast process.

  15. Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats.

    PubMed

    Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-07-01

    The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.

  16. Experimental results on mechanisms of action of electrical neuromodulation in chronic urinary retention.

    PubMed

    Schultz-Lampel, D; Jiang, C; Lindström, S; Thüroff, J W

    1998-01-01

    Sacral foramen neuromodulation--initially applied for the treatment of urinary incontinence--has proved to be effective in patients with chronic urinary retention. Thus far, the underlying neurophysiological mechanisms have not been elucidated. In an experimental study on the neurophysiological basis of sacral neurostimulation, one objective was to investigate the mechanisms responsible for initiation of micturition in chronic urinary retention. In ten female cats anesthetized with alpha-chloralose the clinical situation of sacral foramen stimulation was experimentally reproduced by isolated S2 nerve stimulation after L6-S3 laminectomy. Stimulation responses were recorded from the bladder, peripheral nerves, and striated muscles of the foot and pelvic floor. The effect of sudden cessation of prolonged S2 stimulation, during which the bladder was completely inhibited, was evaluated in 70 stimulation sequences in 5 cats. Sacral nerve stimulation induced excitatory and inhibitory effects on the bladder, depending on the frequency and intensity of stimulation. With unilateral S2 stimulation, bladder excitation was best at frequencies of 2-5 Hz and at intensities ranging between 0.8 and 1.4 times the threshold for the M-response of the foot muscle. Inhibition was the dominating effect at frequencies of 7-10 Hz and at intensities exceeding 1.4 times the threshold. Prolonged S2 stimulation above the threshold produced complete bladder inhibition during stimulation but induced strong bladder contractions after sudden interruption of stimulation, with amplitudes being significantly higher than that of spontaneous contractions preceding the stimulation. These results confirm the hypothesis of a "rebound" phenomenon as the mechanism of action for induction of spontaneous voiding in patients with chronic urinary retention.

  17. Exploring the additivity of binaural and monaural masking release.

    PubMed

    Hall, Joseph W; Buss, Emily; Grose, John H

    2011-04-01

    Experiment 1 examined comodulation masking release (CMR) for a 700-Hz tonal signal under conditions of N(o)S(o) (noise and signal interaurally in phase) and N(o)S(π) (noise in phase, signal out of phase) stimulation. The baseline stimulus for CMR was either a single 24-Hz wide narrowband noise centered on the signal frequency [on-signal band (OSB)] or the OSB plus, a set of flanking noise bands having random envelopes. Masking noise was either gated or continuous. The CMR, defined with respect to either the OSB or the random noise baseline, was smaller for N(o)S(π) than N(o)S(o) stimulation, particularly when the masker was continuous. Experiment 2 examined whether the same pattern of results would be obtained for a 2000-Hz signal frequency; the number of flanking bands was also manipulated (two versus eight). Results again showed smaller CMR for N(o)S(π) than N(o)S(o) stimulation for both continuous and gated masking noise. The CMR was larger with eight than with two flanking bands, and this difference was greater for N(o)S(o) than N(o)S(π). The results of this study are compatible with serial mechanisms of binaural and monaural masking release, but they indicate that the combined masking release (binaural masking-level difference and CMR) falls short of being additive.

  18. [Transcranial magnetic stimulation and motor cortex stimulation in neuropathic pain].

    PubMed

    Mylius, V; Ayache, S S; Teepker, M; Kappus, C; Kolodziej, M; Rosenow, F; Nimsky, C; Oertel, W H; Lefaucheur, J P

    2012-12-01

    Non-invasive and invasive cortical stimulation allows the modulation of therapy-refractory neuropathic pain. High-frequency repetitive transcranial magnetic stimulation (rTMS) of the contralateral motor cortex yields therapeutic effects at short-term and predicts the benefits of epidural motor cortex stimulation (MCS). The present article summarizes the findings on application, mechanisms and therapeutic effects of cortical stimulation in neuropathic pain.

  19. Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers.

    PubMed

    Kang, Lucia H D; Hoh, Joseph F Y

    2011-09-01

    Cat masticatory muscle during regeneration expresses masticatory-specific myofibrillar proteins upon innervation by a fast muscle nerve but acquires the jaw-slow phenotype when innervated by a slow muscle nerve. Here, we test the hypothesis that chronic low-frequency stimulation simulating impulses from the slow nerve can result in masticatory-to-slow fiber-type transformation. In six cats, the temporalis muscle was continuously stimulated directly at 10 Hz for up to 12 weeks using a stimulator affixed to the skull. Stimulated muscles were analyzed by immunohistochemistry using, among others, monoclonal antibodies against masticatory-specific myosin heavy chain (MyHC), myosin binding protein-C, and tropomyosins. Under the electrodes, stimulation induced muscle regeneration, which generated slow fibers. Deep to the electrodes, at two to three weeks, two distinct populations of masticatory fibers began to express slow MyHC: 1) evenly distributed fibers that completely suppressed masticatory-specific proteins but transiently co-expressed fetal MyHCs, and 2) incompletely transformed fibers that express slow and masticatory but not fetal MyHCs. SDS-PAGE confirmed de novo expression of slow MyHC and β-tropomyosin in the stimulated muscles. We conclude that chronic low-frequency stimulation induces masticatory-to-slow fiber-type conversion. The two populations of transforming masticatory fibers may differ in their mode of activation or lineage of their myogenic cells.

  20. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    PubMed

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).

  1. Interactions between rewarding lateral hypothalamic and aversive nucleus reticularis gigantocellularis stimulation.

    PubMed

    Diotte, M; Miguelez, M; Miliaressis, E; Bielajew, C

    2000-12-05

    The interaction between rewarding and aversive consequences of brain stimulation were assessed in two studies. In the first, the frequency threshold for 300 ms trains of combined lateral hypothalamic (LH) and nucleus reticularis gigantocellularis (Gi) stimulation, in which each LH pulse was followed 2 ms later by the Gi one, was determined for one month. Compared to the threshold for trains of single LH pulses, combined LH-Gi stimulation initially increased the frequency threshold; however, this effect reversed within one session and was subsequently maintained for the duration of the study. The aversion produced by Gi stimulation, as measured by latency to escape, was abolished following a single session of LH-Gi pairs. In the second study, a subset of animals received both presentations of combined pulses, LH followed by Gi, and the reverse; the interval between pulses was varied from 0.2 to 6.4 ms. The effectiveness of combined stimulation, determined by the ratio of LH frequency thresholds to that of the LH-Gi ranged from 0 to 50% across animals but the individual effectiveness functions within animals did not vary with different intervals. In addition, the order of presentation of pulses was of no consequence. Thus, not only did exposure to LH stimulation appear to obliterate Gi aversion, but the combination of LH and Gi pulses added to the rewarding effect produced by LH stimulation alone.

  2. Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Azuero, Andres

    2012-01-01

    A fundamental barrier to using electrical stimulation in the clinical setting is an inability to maintain torque production secondary to muscle fatigue. Electrical stimulation parameters are manipulated to influence muscle torque production, and they may also influence fatigability during repetitive stimulation. Our purpose was to determine the response of the quadriceps femoris to three different fatigue protocols using the same initial torque obtained by altering stimulator parameter settings. Participants underwent fatigue protocols in which either pulse frequency (lowHz), pulse duration (lowPD), or voltage (lowV) was manipulated to obtain an initial torque that equaled 25% of maximum voluntary isometric contraction. Muscle soreness was reported on a visual analog scale 48 h after each fatigue test. The lowHz protocol resulted in the least fatigue (25% +/- 14%); the lowPD (50% +/- 13%) and lowV (48% +/- 14%) protocols had similar levels of fatigue. The lowHz protocol resulted in significantly less muscle soreness than the higher frequency protocols. Stimulation protocols that use a lower frequency coupled with long pulse durations and high voltages result in lesser amounts of muscle fatigue and perceived soreness. The identification of optimal stimulation patterns to maximize muscle performance will reduce the effect of muscle fatigue and potentially improve clinical efficacy.

  3. Visual cortex responses reflect temporal structure of continuous quasi-rhythmic sensory stimulation.

    PubMed

    Keitel, Christian; Thut, Gregor; Gross, Joachim

    2017-02-01

    Neural processing of dynamic continuous visual input, and cognitive influences thereon, are frequently studied in paradigms employing strictly rhythmic stimulation. However, the temporal structure of natural stimuli is hardly ever fully rhythmic but possesses certain spectral bandwidths (e.g. lip movements in speech, gestures). Examining periodic brain responses elicited by strictly rhythmic stimulation might thus represent ideal, yet isolated cases. Here, we tested how the visual system reflects quasi-rhythmic stimulation with frequencies continuously varying within ranges of classical theta (4-7Hz), alpha (8-13Hz) and beta bands (14-20Hz) using EEG. Our findings substantiate a systematic and sustained neural phase-locking to stimulation in all three frequency ranges. Further, we found that allocation of spatial attention enhances EEG-stimulus locking to theta- and alpha-band stimulation. Our results bridge recent findings regarding phase locking ("entrainment") to quasi-rhythmic visual input and "frequency-tagging" experiments employing strictly rhythmic stimulation. We propose that sustained EEG-stimulus locking can be considered as a continuous neural signature of processing dynamic sensory input in early visual cortices. Accordingly, EEG-stimulus locking serves to trace the temporal evolution of rhythmic as well as quasi-rhythmic visual input and is subject to attentional bias. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test

    PubMed Central

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong

    2017-01-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test. PMID:28442945

  5. Use of Vagus Nerve Stimulator on Children With Primary Generalized Epilepsy.

    PubMed

    Welch, William P; Sitwat, Bilal; Sogawa, Yoshimi

    2018-06-01

    To describe the response to vagus nerve stimulator (VNS) in otherwise neurotypical children with medically intractable primary generalized epilepsy. Retrospective chart review of patients who underwent vagus nerve stimulator surgery between January 2011 and December 2015. Eleven patients were identified. Median follow-up duration was 2.5 years (1.2-8.4 years). Prior to vagus nerve stimulator surgery, all patients had at least 1 seizure per week, and 7/11 (64%) had daily seizures. At 1-year follow-up after vagus nerve stimulator, 7/11 (64%) reported improved seizure frequency and 6/11 (55%) reported fewer than 1 seizure per month. Three patients (27%) reported complications related to vagus nerve stimulator surgery, and no patients required device removal. In children with medically intractable primary generalized epilepsy, vagus nerve stimulator is well tolerated and appears to lead to improvement in seizure frequency. Improvement was not attributable to epilepsy classification, age at vagus nerve stimulator implantation, output current, duty cycle, or follow-up duration.

  6. Muscarinic contribution to the acute cortical effects of vagus nerve stimulation

    NASA Astrophysics Data System (ADS)

    Nichols, Justin A.

    2011-12-01

    Electrical stimulation of the vagus nerve (VNS) has been used to treat more than 60,000 patients with drug-resistant epilepsy and is under investigation as a treatment for several other neurological disorders and conditions. Among these, VNS increases memory performance and enhances recovery of motor and cognitive function in animal models of traumatic brain injury. Recent research indicates that pairing brief VNS with tones multiple-times a day for several weeks induces long-term, input specific cortical plasticity, which can be used to re-normalize the pathological cortical reorganization and eliminate a behavioral correlate of chronic tinnitus in noise exposed rats. Despite the therapeutic potential, the mechanisms of action of VNS remain speculative. In chapter 2 of this dissertation, the acute effects of VNS on cortical synchrony, excitability, and temporal processing are examined. In anesthetized rats implanted with multi-electrode arrays, VNS increased and decorrelated spontaneous multi-unit activity, and suppressed entrainment to repetitive noise burst stimulation at 6 to 8 Hz, but not after systemic administration of the muscarinic antagonist scopolamine. Chapter 3 focuses on VNS-tone pairing induced cortical plasticity. Pairing VNS with a tone one hundred times in anesthetized rats resulted in frequency specific plasticity in 31% of the auditory cortex sites. Half of these sites exhibited a frequency specific increase in firing rate and half exhibited a frequency specific decrease. Muscarinic receptor blockade with scopolamine almost entirely prevented the frequency specific increases, but not decreases. Collectively, these experiments demonstrate the capacity for VNS to not only acutely influence cortical synchrony, and excitability, but to also influence temporal and spectral tuning via muscarinic receptor activation. These results strengthen the hypothesis that acetylcholine and muscarinic receptors are involved in the mechanisms of action of VNS and are discussed with respect to their possible implications for sensory processing, neural plasticity, and epilepsy.

  7. Deep brain stimulation, histone deacetylase inhibitors and glutamatergic drugs rescue resistance to fear extinction in a genetic mouse model

    PubMed Central

    Whittle, Nigel; Schmuckermair, Claudia; Gunduz Cinar, Ozge; Hauschild, Markus; Ferraguti, Francesco; Holmes, Andrew; Singewald, Nicolas

    2013-01-01

    Anxiety disorders are characterized by persistent, excessive fear. Therapeutic interventions that reverse deficits in fear extinction represent a tractable approach to treating these disorders. We previously reported that 129S1/SvImJ (S1) mice show no extinction learning following normal fear conditioning. We now demonstrate that weak fear conditioning does permit fear reduction during massed extinction training in S1 mice, but reveals specific deficiency in extinction memory consolidation/retrieval. Rescue of this impaired extinction consolidation/retrieval was achieved with d-cycloserine (N-methly-d-aspartate partial agonist) or MS-275 (histone deacetylase (HDAC) inhibitor), applied after extinction training. We next examined the ability of different drugs and non-pharmacological manipulations to rescue the extreme fear extinction deficit in S1 following normal fear conditioning with the ultimate aim to produce low fear levels in extinction retrieval tests. Results showed that deep brain stimulation (DBS) by applying high frequency stimulation to the nucleus accumbens (ventral striatum) during extinction training, indeed significantly reduced fear during extinction retrieval compared to sham stimulation controls. Rescue of both impaired extinction acquisition and deficient extinction consolidation/retrieval was achieved with prior extinction training administration of valproic acid (a GABAergic enhancer and HDAC inhibitor) or AMN082 [metabotropic glutamate receptor 7 (mGlu7) agonist], while MS-275 or PEPA (AMPA receptor potentiator) failed to affect extinction acquisition in S1 mice. Collectively, these data identify potential beneficial effects of DBS and various drug treatments, including those with HDAC inhibiting or mGlu7 agonism properties, as adjuncts to overcome treatment resistance in exposure-based therapies. This article is part of a Special Issue entitled ‘Cognitive Enhancers’. PMID:22722028

  8. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion

    PubMed Central

    Nishitani, Wagner Shin; Alencar, Adriano Mesquita; Wang, Yingxiao

    2015-01-01

    A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs) in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7) expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount) and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment) and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion. PMID:25946314

  9. Hair growth-promotion effects of different alternating current parameter settings are mediated by the activation of Wnt/β-catenin and MAPK pathway.

    PubMed

    Sohn, Ki Min; Jeong, Kwan Ho; Kim, Jung Eun; Park, Young Min; Kang, Hoon

    2015-12-01

    Electrical stimulation is being used in variable skin therapeutic conditions. There have been clinical studies demonstrating the positive effect of electrical stimuli on hair regrowth. However, the underlying exact mechanism and optimal parameter settings are not clarified yet. To investigate the effects of different parameter settings of electrical stimuli on hair growth by examining changes in human dermal papilla cells (hDPCs) in vitro and by observing molecular changes in animal tissue. In vitro, cultured hDPCs were electrically stimulated with different parameter settings at alternating current (AC). Cell proliferation was measured by MTT assay. The Ki67 expression was measured by immunofluorescence. Hair growth-related gene expressions were measured by RT-PCR. In animal model, different parameter settings of AC were applied to the shaved dorsal skin of rabbit for 8 weeks. Expression of hair-related genes in the skin of rabbit was examined by RT-PCR. At low voltage power (3.5 V) and low frequency (1 or 2 MHz) with AC, in vitro proliferation of hDPCs was successfully induced. A significant increase in Wnt/β-catenin, Ki67, p-ERK and p-AKT expressions was observed under the aforementioned settings. In animal model, hair regrowth was observed in the entire stimulated areas under individual conditions. Expression of hair-related genes in the skin significantly increased on the 6th week of treatment. There are optimal conditions for electrical stimulated hair growth, and they might be different in the cells, animals and human tissues. Electrical stimuli induce mechanisms such as the activation of Wnt/β-catenin and MAPK pathway in hair follicles. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Visual communication stimulates reproduction in Nile tilapia, Oreochromis niloticus (L.).

    PubMed

    Castro, A L S; Gonçalves-de-Freitas, E; Volpato, G L; Oliveira, C

    2009-04-01

    Reproductive fish behavior is affected by male-female interactions that stimulate physiological responses such as hormonal release and gonad development. During male-female interactions, visual and chemical communication can modulate fish reproduction. The aim of the present study was to test the effect of visual and chemical male-female interaction on the gonad development and reproductive behavior of the cichlid fish Nile tilapia, Oreochromis niloticus (L.). Fifty-six pairs were studied after being maintained for 5 days under one of the four conditions (N = 14 for each condition): 1) visual contact (V); 2) chemical contact (Ch); 3) chemical and visual contact (Ch+V); 4) no sensory contact (Iso) - males and females isolated. We compared the reproductive behavior (nesting, courtship and spawning) and gonadosomatic index (GSI) of pairs of fish under all four conditions. Visual communication enhanced the frequency of courtship in males (mean +/- SEM; V: 24.79 +/- 3.30, Ch+V: 20.74 +/- 3.09, Ch: 0.1 +/- 0.07, Iso: 4.68 +/- 1.26 events/30 min; P < 0.05, two-way ANOVA with LSD post hoc test), induced spawning in females (3 spawning in V and also 3 in Ch+V condition), and increased GSI in males (mean +/- SEM; V: 1.39 +/- 0.08, Ch+V: 1.21 +/- 0.08, Ch: 1.04 +/- 0.07, Iso: 0.82 +/- 0.07%; P < 0.05, two-way ANOVA with LSD post hoc test). Chemical communication did not affect the reproductive behavior of pairs nor did it enhance the effects of visual contact. Therefore, male-female visual communication is an effective cue, which stimulates reproduction among pairs of Nile tilapia.

  11. Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease.

    PubMed

    Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim

    2003-03-01

    High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.

  12. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.

    PubMed

    Maier, Hannes; Salcher, Rolf; Schwab, Burkard; Lenarz, Thomas

    2013-07-01

    The Direct Acoustic Cochlea Stimulator Partial Implant (DACS PI, Phonak Acoustic Implants SA, Switzerland) is intended to stimulate the cochlea by a conventional stapedotomy piston that is crimped onto the DACS PI artificial incus. An alternative approach to the round window (RW) is successfully done with other devices, having the advantage of being also independent of the existence of middle ear structure (e.g. ossicles). Here the possibility of stimulating the RW with the DACS actuator is investigated including the impact of static force on sound transmission to the cochlea. The maximum equivalent sound pressure output with RW stimulation was determined experimentally in fresh human temporal bones. Experiments were performed in analogy to the ASTM standard (F2504.24930-1) method for the output determination of implantable middle ear hearing devices (IMEHDs) in human cadaveric temporal bones (TBs). ASTM compliant temporal bones were stimulated with a prosthesis having a spherical tip (∅0.5 mm) attached to the actuator. The stimulation was performed perpendicular to the round window membrane (RWM) at varying position relative to the RW and the resulting static force on the RW membrane was determined. At each position the displacement output of the DACS PI actuator and the stapes footplate (SFP) vibration in response to actuator stimulation was measured with a Laser Doppler Velocimeter (LDV). By comparison of the achieved output at the stapes footplate in response to sound and transducer stimulation the equivalent sound pressure level at the tympanic membrane at 1Vrms input voltage was calculated assuming that the SFP displacement in both conditions is a measure of perceived loudness, as it is done in the ASTM standard. Ten TB preparations within the acceptance range of the ASTM standard were used for analysis. The actuator driven stapes footplate displacement amplitude as well as the resulting equivalent sound pressure level was highly dependent on the static force applied to the RW. The sound transfer efficiency from the RW to the stapes footplate increased monotonically with increasing static load. At a moderate static force load (approx. 3.9 mN) the obtained average sound equivalent sound pressure level was 102-120 eq. dB SPL @ nominally 1Vrms input for frequencies ≤4 kHz. At higher frequencies (6-10 kHz) the achieved output dropped to ∼90 dB SPL. This output was obtained at loading conditions compatible with the actuator safe operating range, although it was possible to increase the output further by increasing the static force load. Our results demonstrate for a first time that static force applied to the RW is crucial for sound transmission efficiency. Further we could show that RW stimulation with the DACS PI actuator is possible having a maximum output that is sufficient to treat moderate and pronounced sensorineural hearing losses (SNHL). This article is part of a Special Issue entitled "MEMRO 2012". Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Bilateral Transcranial Direct Current Stimulation Reshapes Resting-State Brain Networks: A Magnetoencephalography Assessment

    PubMed Central

    Turco, Cristina; Di Pino, Giovanni; Arcara, Giorgio

    2018-01-01

    Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (−) centered over C4 and the anode (+) centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may be of help in personalizing treatments in neurological disorders. PMID:29593782

  14. Role of group II metabotropic glutamate receptors 2/3 and group I metabotropic glutamate receptor 5 in developing rat medial vestibular nuclei.

    PubMed

    Grassi, Silvarosa; Frondaroli, Adele; Pettorossi, Vito Enrico

    2005-08-22

    In brainstem slices from developing rats, metabotropic glutamate receptors mGluR2/3 and mGluR5 play different inhibitory roles in synaptic transmission and plasticity of the medial vestibular nuclei. The mGluR2/3 block (LY341495) reduces the occurrence of long-term depression after vestibular afferent high frequency stimulation at P8-P10, and increases that of long-term potentiation, while the mGluR5 block prevents high frequency stimulation long-term depression. Later on, the receptor block does not influence high frequency stimulation effects. In addition, while mGluR2/3 agonist (APDC) always provokes a transient reduction of synaptic responses, that of mGluR5 (CHPG) induces long-term depression per se at P8-P10. These results show a key role of mGluR5 in inducing high frequency stimulation long-term depression in developing medial vestibular nuclei, while mGluR2/3 modulate synaptic transmission, probably through presynaptic control of glutamate release.

  15. Association of auricular pressing and heart rate variability in pre-exam anxiety students.

    PubMed

    Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong

    2013-03-25

    A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety.

  16. Association of auricular pressing and heart rate variability in pre-exam anxiety students

    PubMed Central

    Wu, Wocao; Chen, Junqi; Zhen, Erchuan; Huang, Huanlin; Zhang, Pei; Wang, Jiao; Ou, Yingyi; Huang, Yong

    2013-01-01

    A total of 30 students scoring between 12 and 20 on the Test Anxiety Scale who had been exhibiting an anxious state > 24 hours, and 30 normal control students were recruited. Indices of heart rate variability were recorded using an Actiheart electrocardiogram recorder at 10 minutes before auricular pressing, in the first half of stimulation and in the second half of stimulation. The results revealed that the standard deviation of all normal to normal intervals and the root mean square of standard deviation of normal to normal intervals were significantly increased after stimulation. The heart rate variability triangular index, very-low-frequency power, low-frequency power, and the ratio of low-frequency to high-frequency power were increased to different degrees after stimulation. Compared with normal controls, the root mean square of standard deviation of normal to normal intervals was significantly increased in anxious students following auricular pressing. These results indicated that auricular pressing can elevate heart rate variability, especially the root mean square of standard deviation of normal to normal intervals in students with pre-exam anxiety. PMID:25206734

  17. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed

    Evans, P D; Siegler, M V

    1982-03-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion.

  18. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed Central

    Evans, P D; Siegler, M V

    1982-01-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion. PMID:6808122

  19. Phase-locked and non-phase-locked EEG responses to pinprick stimulation before and after experimentally-induced secondary hyperalgesia.

    PubMed

    van den Broeke, Emanuel N; de Vries, Bart; Lambert, Julien; Torta, Diana M; Mouraux, André

    2017-08-01

    Pinprick-evoked brain potentials (PEPs) have been proposed as a technique to investigate secondary hyperalgesia and central sensitization in humans. However, the signal-to-noise (SNR) of PEPs is low. Here, using time-frequency analysis, we characterize the phase-locked and non-phase-locked EEG responses to pinprick stimulation, before and after secondary hyperalgesia. Secondary hyperalgesia was induced using high-frequency electrical stimulation (HFS) of the left/right forearm skin in 16 volunteers. EEG responses to 64 and 96mN pinprick stimuli were elicited from both arms, before and 20min after HFS. Pinprick stimulation applied to normal skin elicited a phase-locked low-frequency (<5Hz) response followed by a reduction of alpha-band oscillations (7-10Hz). The low-frequency response was significantly increased when pinprick stimuli were delivered to the area of secondary hyperalgesia. There was no change in the reduction of alpha-band oscillations. Whereas the low-frequency response was enhanced for both 64 and 96mN intensities, PEPs analyzed in the time domain were only significantly enhanced for the 64mN intensity. Time-frequency analysis may be more sensitive than conventional time-domain analysis in revealing EEG changes associated to secondary hyperalgesia. Time-frequency analysis of PEPs can be used to investigate central sensitization in humans. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  20. Effects of varying subthalamic nucleus stimulation on apraxia of lid opening in Parkinson's disease.

    PubMed

    Tommasi, Giorgio; Krack, Paul; Fraix, Valérie; Pollak, Pierre

    2012-09-01

    Apraxia of lid opening (ALO) is a non-paralytic inability to open the eyes or sustain lid elevation at will. The exact pathophysiological mechanisms underlying the syndrome are still unknown. ALO has been reported in patients with Parkinson's disease (PD) after subthalamic nucleus (STN) deep brain stimulation (DBS), suggesting a possible involvement of the basal ganglia. We aimed to assess the effects of varying STN stimulation voltage on ALO in PD patients. Seven out of 14 PD patients with bilateral STN stimulation consecutively seen in our centre presented with ALO. We progressively increased voltage on each STN, using either 130 Hz (high-frequency stimulation, HFS) or 2 or 3 Hz (low-frequency stimulation, LFS). In five patients, HFS induced ALO time-locked to stimulation in 7 out of 10 STNs at a voltage higher than that used for chronic stimulation. LFS induced myoclonus in the pretarsal orbicularis oculi muscle (pOOm) with a rhythm synchronous to the frequency. In the other two patients with ALO already present at the time of the study, HFS improved ALO in 3 out of 4 STNs. ALO recurred within minutes of stimulation arrest. Our findings show that STN-DBS can have opposite effects on ALO. On the one hand, ALO is thought to be a corticobulbar side effect due to lateral current spreading from the STN, in which case it is necessary to use voltages below the ALO-inducing threshold. On the other hand, ALO may be considered a form of off-phase focal dystonia possibly improved by increasing the stimulation voltages.

  1. Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli

    PubMed Central

    Peters, Ryan M.; Rasman, Brandon G.; Inglis, J. Timothy

    2015-01-01

    Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. PMID:25925318

  2. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    PubMed Central

    Ioannou, Christos I.; Pereda, Ernesto; Lindsen, Job P.; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies. PMID:26065708

  3. Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise.

    PubMed

    Ioannou, Christos I; Pereda, Ernesto; Lindsen, Job P; Bhattacharya, Joydeep

    2015-01-01

    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies.

  4. Gain and phase of perceived virtual rotation evoked by electrical vestibular stimuli.

    PubMed

    Peters, Ryan M; Rasman, Brandon G; Inglis, J Timothy; Blouin, Jean-Sébastien

    2015-07-01

    Galvanic vestibular stimulation (GVS) evokes a perception of rotation; however, very few quantitative data exist on the matter. We performed psychophysical experiments on virtual rotations experienced when binaural bipolar electrical stimulation is applied over the mastoids. We also performed analogous real whole body yaw rotation experiments, allowing us to compare the frequency response of vestibular perception with (real) and without (virtual) natural mechanical stimulation of the semicircular canals. To estimate the gain of vestibular perception, we measured direction discrimination thresholds for virtual and real rotations. Real direction discrimination thresholds decreased at higher frequencies, confirming multiple previous studies. Conversely, virtual direction discrimination thresholds increased at higher frequencies, implying low-pass filtering of the virtual perception process occurring potentially anywhere between afferent transduction and cortical responses. To estimate the phase of vestibular perception, participants manually tracked their perceived position during sinusoidal virtual and real kinetic stimulation. For real rotations, perceived velocity was approximately in phase with actual velocity across all frequencies. Perceived virtual velocity was in phase with the GVS waveform at low frequencies (0.05 and 0.1 Hz). As frequency was increased to 1 Hz, the phase of perceived velocity advanced relative to the GVS waveform. Therefore, at low frequencies GVS is interpreted as an angular velocity signal and at higher frequencies GVS becomes interpreted increasingly as an angular position signal. These estimated gain and phase spectra for vestibular perception are a first step toward generating well-controlled virtual vestibular percepts, an endeavor that may reveal the usefulness of GVS in the areas of clinical assessment, neuroprosthetics, and virtual reality. Copyright © 2015 the American Physiological Society.

  5. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.

  6. Treatment pattern and frequency of serum TSH measurement in users of different levothyroxine formulations: a population-based study during the years 2009-2015.

    PubMed

    Ferrara, Rosarita; Ientile, Valentina; Arcoraci, Vincenzo; Ferrajolo, Carmen; Piccinni, Carlo; Fontana, Andrea; Benvenga, Salvatore; Trifirò, Gianluca

    2017-10-01

    Several conditions can modify the intestinal absorption of levothyroxine tablets, with potential consequences on their therapeutic effect. Pre-dosed ampoules and oral drops have been recently made available to overcome this limitation. To describe the pattern of use of different formulations of levothyroxine in a general population of Southern Italy and to perform an exploratory analysis investigating the effect of switching from levothyroxine tablets to oral liquid formulations. Data were extracted from the Caserta Local Health Unit database. All patients receiving at least one levothyroxine prescription during the years 2009-2015 were identified. 1-year incidence of use of formulation-specific levothyroxine was calculated. Switchers between levothyroxine tablets and oral liquid formulations were identified and the frequency of thyroid-stimulating hormone measurement within 2 years prior and after the switch date was explored. Overall, 56,354 levothyroxine users were included in the study. Of these, 55,147 patients received at least one prescription for tablets (97.9%), 1867 pre-dosed ampoules (3.3%) and 1550 oral drops (2.8%). The proportion of levothyroxine users receiving oral liquid formulations slightly increased over time. Patients switching from tablets to oral liquid formulations showed a statistically significant reduction in the number of thyroid-stimulating hormone measurements after switching from tablets, especially in presence of drugs interacting with levothyroxine potentially altering its absorption. Use of levothyroxine oral liquid formulations is increasing over time even though their use is still limited in a general population of Southern Italy. Our exploratory analysis showed that the frequency of thyroid-stimulating hormone measurement was reduced in patients switching from levothyroxine tablet to new formulations.

  7. On the biological plausibility of Wind Turbine Syndrome.

    PubMed

    Harrison, Robert V

    2015-01-01

    An emerging environmental health issue relates to potential ill-effects of wind turbine noise. There have been numerous suggestions that the low-frequency acoustic components in wind turbine signals can cause symptoms associated with vestibular system disorders, namely vertigo, nausea, and nystagmus. This constellation of symptoms has been labeled as Wind Turbine Syndrome, and has been identified in case studies of individuals living close to wind farms. This review discusses whether it is biologically plausible for the turbine noise to stimulate the vestibular parts of the inner ear and, by extension, cause Wind Turbine Syndrome. We consider the sound levels that can activate the semicircular canals or otolith end organs in normal subjects, as well as in those with preexisting conditions known to lower vestibular threshold to sound stimulation.

  8. Estimation of critical end-test torque using neuromuscular electrical stimulation of the quadriceps in humans.

    PubMed

    Janzen, Natalie R; Hight, Robert E; Patel, Darshit S; Campbell, Jason A; Larson, Rebecca D; Black, Christopher D

    2018-05-02

    Characterization of critical power/torque (CP/CT) during voluntary exercise requires maximal effort, making difficult for those with neuromuscular impairments. To address this issue we sought to determine if electrically stimulated intermittent isometric exercise resulted in a critical end-test torque (ETT) that behaved similar to voluntary CT. In the first experiment participants (n = 9) completed four bouts of stimulated exercise at a 3:2 duty cycle, at frequencies of 100, 50, 25 Hz, and a low frequency below ETT (Sub-ETT; ≤ 15 Hz). The second experiment (n = 20) consisted of four bouts at a 2:2 duty cycle-two bouts at 100 Hz, one at an intermediate frequency (15-30 Hz), and one at Sub-ETT. The third experiment (n = 12) consisted of two bouts at 50 Hz at a 3:2 duty* cycle with proximal blood flow occlusion during one of the bouts. ETT torque was similar (p ≥ 0.43) within and among stimulation frequencies in experiment 1. No fatigue was observed during the Sub-ETT bouts (p > 0.05). For experiment 2, ETT was similar at 100 Hz and at the intermediate frequency (p ≥ 0.29). Again, Sub-ETT stimulation did not result in fatigue (p > 0.05). Altering oxygen delivery by altering the duty cycle (3:2 vs. 2:2; p = 0.02) and by occlusion (p < 0.001) resulted in lower ETT values. Stimulated exercise resulted in an ETT that was consistent from day-to-day and similar regardless of initial torque, as long as that torque exceeded ETT, and was sensitive to oxygen delivery. As such we propose it represents a parameter similar to voluntary CT.

  9. Stimulated scattering in Ag nanoparticle colloids

    NASA Astrophysics Data System (ADS)

    Averyushkin, A. S.; Bulychev, N. A.; Efimkov, V. F.; Erokhin, A. I.; Kazaryan, M. A.; Mikhailov, S. I.; Saraeva, I. N.; Zubarev, I. G.

    2017-05-01

    A number of features of stimulated thermal Rayleigh scattering (STRS) in pure liquids and nanoparticle solutions are investigated in this work. It is shown that scattering efficiency is not reduced in the case of wide spectral bandwidth pump radiation. It is shown experimentally that the frequency shift of the scattered signal relative to the pump frequency greatly exceeds the theoretical value. It is also shown theoretically that the frequency shift value does not depend on the linewidth of the pump.

  10. Volumetric abnormalities of the brain in a rat model of recurrent headache.

    PubMed

    Jia, Zhihua; Tang, Wenjing; Zhao, Dengfa; Hu, Guanqun; Li, Ruisheng; Yu, Shengyuan

    2018-01-01

    Voxel-based morphometry is used to detect structural brain changes in patients with migraine. However, the relevance of migraine and structural changes is not clear. This study investigated structural brain abnormalities based on voxel-based morphometry using a rat model of recurrent headache. The rat model was established by infusing an inflammatory soup through supradural catheters in conscious male rats. Rats were subgrouped according to the frequency and duration of the inflammatory soup infusion. Tactile sensory testing was conducted prior to infusion of the inflammatory soup or saline. The periorbital tactile thresholds in the high-frequency inflammatory soup stimulation group declined persistently from day 5. Increased white matter volume was observed in the rats three weeks after inflammatory soup stimulation, brainstem in the in the low-frequency inflammatory soup-infusion group and cortex in the high-frequency inflammatory soup-infusion group. After six weeks' stimulation, rats showed gray matter volume changes. The brain structural abnormalities recovered after the stimulation was stopped in the low-frequency inflammatory soup-infused rats and persisted even after the high-frequency inflammatory soup stimulus stopped. The changes of voxel-based morphometry in migraineurs may be the result of recurrent headache. Cognition, memory, and learning may play an important role in the chronification of migraines. Reducing migraine attacks has the promise of preventing chronicity of migraine.

  11. Rapid Electrical Stimulation Increased Cardiac Apoptosis Through Disturbance of Calcium Homeostasis and Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes.

    PubMed

    Geng, Le; Wang, Zidun; Cui, Chang; Zhu, Yue; Shi, Jiaojiao; Wang, Jiaxian; Chen, Minglong

    2018-06-15

    Heart failure induced by tachycardia, the most common arrhythmia, is frequently observed in clinical practice. This study was designed to investigate the underlying mechanisms. Rapid electrical stimulation (RES) at a frequency of 3 Hz was applied on human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) for 7 days, with 8 h/day and 24 h/day set to represent short-term and long-term tachycardia, respectively. Age-matched hiPSC-CMs without electrical stimulation or with slow electrical stimulation (1 Hz) were set as no electrical stimulation (NES) control or low-frequency electrical stimulation (LES) control. Following stimulation, JC-1 staining flow cytometry analysis was performed to examine mitochondrial conditions. Apoptosis in hiPSC-CMs was evaluated using Hoechst staining and Annexin V/propidium iodide (AV/PI) staining flow cytometry analysis. Calcium transients and L-type calcium currents were recorded to evaluate calcium homeostasis. Western blotting and qPCR were performed to evaluate the protein and mRNA expression levels of apoptosis-related genes and calcium homeostasis-regulated genes. Compared to the controls, hiPSC-CMs following RES presented mitochondrial dysfunction and an increased apoptotic percentage. Amplitudes of calcium transients and L-type calcium currents were significantly decreased in hiPSC-CMs with RES. Molecular analysis demonstrated upregulated expression of Caspase3 and increased Bax/Bcl-2 ratio. Genes related to calcium re-sequence were downregulated, while phosphorylated Ca2+/calmodulin-dependent protein kinase II (CaMKII) was significantly upregulated following RES. There was no significant difference between the NES control and LES control groups in these aspects. Inhibition of CaMKII with 1 µM KN93 partly reversed these adverse effects of RES. RES on hiPSC-CMs disturbed calcium homeostasis, which led to mitochondrial stress, promoted cell apoptosis and caused electrophysiological remodeling in a time-dependent manner. CaMKII played a central role in the damages induced by RES, pharmacological inhibition of CaMKII activity partly reversed the adverse effects of RES on both structural and electrophysiological properties of cells. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Alpha-Band Rhythms in Visual Task Performance: Phase-Locking by Rhythmic Sensory Stimulation

    PubMed Central

    de Graaf, Tom A.; Gross, Joachim; Paterson, Gavin; Rusch, Tessa; Sack, Alexander T.; Thut, Gregor

    2013-01-01

    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8–12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles. PMID:23555873

  13. Numerical investigation of bubble nonlinear dynamics characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jie, E-mail: shijie@hrbeu.edu.cn; Yang, Desen; Shi, Shengguo

    2015-10-28

    The complicated dynamical behaviors of bubble oscillation driven by acoustic wave can provide favorable conditions for many engineering applications. On the basis of Keller-Miksis model, the influences of control parameters, including acoustic frequency, acoustic pressure and radius of gas bubble, are discussed by utilizing various numerical analysis methods, Furthermore, the law of power spectral variation is studied. It is shown that the complicated dynamic behaviors of bubble oscillation driven by acoustic wave, such as bifurcation and chaos, further the stimulated scattering processes are revealed.

  14. Novel Neurostimulation of Autonomic Pelvic Nerves Overcomes Bladder-Sphincter Dyssynergia

    PubMed Central

    Peh, Wendy Yen Xian; Mogan, Roshini; Thow, Xin Yuan; Chua, Soo Min; Rusly, Astrid; Thakor, Nitish V.; Yen, Shih-Cheng

    2018-01-01

    The disruption of coordination between smooth muscle contraction in the bladder and the relaxation of the external urethral sphincter (EUS) striated muscle is a common issue in dysfunctional bladders. It is a significant challenge to overcome for neuromodulation approaches to restore bladder control. Bladder-sphincter dyssynergia leads to undesirably high bladder pressures, and poor voiding outcomes, which can pose life-threatening secondary complications. Mixed pelvic nerves are potential peripheral targets for stimulation to treat dysfunctional bladders, but typical electrical stimulation of pelvic nerves activates both the parasympathetic efferent pathway to excite the bladder, as well as the sensory afferent pathway that causes unwanted sphincter contractions. Thus, a novel pelvic nerve stimulation paradigm is required. In anesthetized female rats, we combined a low frequency (10 Hz) stimulation to evoke bladder contraction, and a more proximal 20 kHz stimulation of the pelvic nerve to block afferent activation, in order to produce micturition with reduced bladder-sphincter dyssynergia. Increasing the phase width of low frequency stimulation from 150 to 300 μs alone was able to improve voiding outcome significantly. However, low frequency stimulation of pelvic nerves alone evoked short latency (19.9–20.5 ms) dyssynergic EUS responses, which were abolished with a non-reversible proximal central pelvic nerve cut. We demonstrated that a proximal 20 kHz stimulation of pelvic nerves generated brief onset effects at lower current amplitudes, and was able to either partially or fully block the short latency EUS responses depending on the ratio of the blocking to stimulation current. Our results indicate that ratios >10 increased the efficacy of blocking EUS contractions. Importantly, we also demonstrated for the first time that this combined low and high frequency stimulation approach produced graded control of the bladder, while reversibly blocking afferent signals that elicited dyssynergic EUS contractions, thus improving voiding by 40.5 ± 12.3%. Our findings support advancing pelvic nerves as a suitable neuromodulation target for treating bladder dysfunction, and demonstrate the feasibility of an alternative method to non-reversible nerve transection and sub-optimal intermittent stimulation methods to reduce dyssynergia. PMID:29618971

  15. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    PubMed

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem responses in long-term severely-hearing impaired CI users could be an attribute of processes associated with long-term hearing impairment and/or electrical stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle force reproduction and muscle fatigue reduction.

  17. Imaging of the interaction of low frequency electric fields with biological tissues by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Peña, Adrian F.; Devine, Jack; Doronin, Alexander; Meglinski, Igor

    2014-03-01

    We report the use of conventional Optical Coherence Tomography (OCT) for visualization of propagation of low frequency electric field in soft biological tissues ex vivo. To increase the overall quality of the experimental images an adaptive Wiener filtering technique has been employed. Fourier domain correlation has been subsequently applied to enhance spatial resolution of images of biological tissues influenced by low frequency electric field. Image processing has been performed on Graphics Processing Units (GPUs) utilizing Compute Unified Device Architecture (CUDA) framework in the frequencydomain. The results show that variation in voltage and frequency of the applied electric field relates exponentially to the magnitude of its influence on biological tissue. The magnitude of influence is about twice more for fresh tissue samples in comparison to non-fresh ones. The obtained results suggest that OCT can be used for observation and quantitative evaluation of the electro-kinetic changes in biological tissues under different physiological conditions, functional electrical stimulation, and potentially can be used non-invasively for food quality control.

  18. Extreme sensitivity of graphene photoconductivity to environmental gases

    PubMed Central

    Docherty, Callum J.; Lin, Cheng-Te; Joyce, Hannah J.; Nicholas, Robin J.; Herz, Laura M.; Li, Lain-Jong; Johnston, Michael B.

    2012-01-01

    Graphene is a single layer of covalently bonded carbon atoms, which was discovered only 8 years ago and yet has already attracted intense research and commercial interest. Initial research focused on its remarkable electronic properties, such as the observation of massless Dirac fermions and the half-integer quantum Hall effect. Now graphene is finding application in touch-screen displays, as channels in high-frequency transistors and in graphene-based integrated circuits. The potential for using the unique properties of graphene in terahertz-frequency electronics is particularly exciting; however, initial experiments probing the terahertz-frequency response of graphene are only just emerging. Here we show that the photoconductivity of graphene at terahertz frequencies is dramatically altered by the adsorption of atmospheric gases, such as nitrogen and oxygen. Furthermore, we observe the signature of terahertz stimulated emission from gas-adsorbed graphene. Our findings highlight the importance of environmental conditions on the design and fabrication of high-speed, graphene-based devices. PMID:23187628

  19. Evaluation of stimulation parameters on aortomyoplasty, using Latissimus Dorsi muscle in a goat model: an acute study.

    PubMed

    Hakami, A; Santamore, W P; Stremel, R W; Tobin, G; Hjortdal, V E

    1999-08-01

    Dynamic aortomyoplasty using Latissimus Dorsi muscle (LDM) has been shown to improve myocardial function. However, systematic examination of the effects of stimulation parameters on aortic wrap function has not been done. Thus, the present study measures the direct effect of stimulation voltage, pulse train duration, frequency of the pulses, and the duration of the stimulation delay from R wave on the aortic wrap function. In eight female goats, the left LDM was wrapped around the descending aorta. The muscle was then subjected to electrical stimulation, altering frequency of stimulation pulses (16.6, 20, 25, 33 and 50 Hz), amplitude (2, 4, 6, 8 and 10 V), and number of pulses (2, 4, 6, 8 and 10 pulses) in a train stimulation. Left ventricular, aortic pressure, and pressure generated by LDM on aorta (wrap pressure) was measured. The changes in hemodynamic parameters mentioned above were calculated and compared for different stimulation parameters during unassisted and assisted cardiac cycles. Aortomyoplasty counterpulsation using LDM provided significant improvement in wrap pressure (78 mmHg +/- 2), aortic diastolic pressure, and changes in aortic diastolic pressure from 2 to 4 V (P < 0.05). Further increase in amplitude did not make any significant improvements of the above mentioned parameters. Significant augmentation of wrap pressure (82 mmHg +/- 2), aortic diastolic pressure (79 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) occurred at 6 pulses (P < 0.05). Other changes in number of pulses did not show any significant improvements. Significant improvement of wrap pressure (80 mmHg +/- 2), aortic diastolic pressure (73 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) was observed with a frequency of 33 Hz. To examine a wide range of delays from the onset of the QRS complex to LDM stimulation, stimulation was delivered randomly. The exact delay was determined from the ECG signal and superimposed LDM stimulation pulses. In this study we present a new measurement, wrap pressure. We also present that in aortomyoplasty using LDM, the most significant improvement in wrap pressure, aortic diastolic pressure and changes in aortic diastolic pressure occurs when the stimulation consists of an amplitude of 4 V, a frequency of 33 Hz and a train stimulation of 6 pulses.

  20. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    NASA Astrophysics Data System (ADS)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  1. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    Electrical stimulation has a long history of use in medicine dating back to 46 A.D. when the Roman physician Largus found the electrical discharge of torpedo fishes useful in the treatment of pain produced by headache and gout. A rival Greek physician, Dioscorides, discounted the value of the torpedo fish for headache relief but did recommend its use in the treatment of hemorrhoids. In 1745, the Leyden jar and various sized electrostatic generators were used to treat angina pectoris, epilepsy, hemiplegia, kidney stones, and sciatica. Benjamin Franklin used an electrical device to treat successfully a young woman suffering from convulsive fits. In the late 1800's battery powered hydroelectric baths were used to treat chronic inflammation of the uterus while electrified athletic supporters were advertised for the treatment of male problems. Fortunately, such an amusing early history of the simple beginnings of electrical stimulation did not prevent eventual development of a variety of useful therapeutic and rehabilitative applications of electrical stimulation. Over the centuries electrical stimulation has survived as a modality in the treatment of various medical disorders with its primary application being in the rehabilitation area. Recently, a surge of new interest in electrical stimulation has been kindled by the work of a Russian sport scientist who reported remarkable muscle strength and endurance improvements in elite athletes. Yakov Kots reported his research on electric stimulation and strength improvements in 1977 at a Canadian-Soviet Exchange Symposium held at Concordia University in Montreal. Since then an explosion of new studies has been seen in both sport science and in medicine. Based upon the reported works of Kots and the present surge of new investigations, one could be misled as to the origin of electrical stimulation as a technique to increase muscle strength. As a matter of fact, electric stimulation has been used as a technique to improve muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  2. Bacillus thuringiensis Conjugation in Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Beuls, Elise; van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0-g position (simulated microgravity) were compared to those obtained under 1-g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  3. Bacillus thuringiensis conjugation in simulated microgravity.

    PubMed

    Beuls, Elise; Van Houdt, Rob; Leys, Natalie; Dijkstra, Camelia; Larkin, Oliver; Mahillon, Jacques

    2009-10-01

    Spaceflight experiments have suggested a possible effect of microgravity on the plasmid transfer among strains of the Gram-positive Bacillus thuringiensis, as opposed to no effect recorded for Gram-negative conjugation. To investigate these potential effects in a more affordable experimental setup, three ground-based microgravity simulators were tested: the Rotating Wall Vessel (RWV), the Random Positioning Machine (RPM), and a superconducting magnet. The bacterial conjugative system consisted in biparental matings between two B. thuringiensis strains, where the transfer frequencies of the conjugative plasmid pAW63 and its ability to mobilize the nonconjugative plasmid pUB110 were assessed. Specifically, potential plasmid transfers in a 0 g position (simulated microgravity) were compared to those obtained under 1 g (normal gravity) condition in each device. Statistical analyses revealed no significant difference in the conjugative and mobilizable transfer frequencies between the three different simulated microgravitational conditions and our standard laboratory condition. These important ground-based observations emphasize the fact that, though no stimulation of plasmid transfer was observed, no inhibition was observed either. In the case of Gram-positive bacteria, this ability to exchange plasmids in weightlessness, as occurs under Earth's conditions, should be seen as particularly relevant in the scope of spread of antibiotic resistances and bacterial virulence.

  4. The Influence of Skin Redness on Blinding in Transcranial Direct Current Stimulation Studies: A Crossover Trial.

    PubMed

    Ezquerro, Fernando; Moffa, Adriano H; Bikson, Marom; Khadka, Niranjan; Aparicio, Luana V M; de Sampaio-Junior, Bernardo; Fregni, Felipe; Bensenor, Isabela M; Lotufo, Paulo A; Pereira, Alexandre Costa; Brunoni, Andre R

    2017-04-01

    To evaluate whether and to which extent skin redness (erythema) affects investigator blinding in transcranial direct current stimulation (tDCS) trials. Twenty-six volunteers received sham and active tDCS, which was applied with saline-soaked sponges of different thicknesses. High-resolution skin images, taken before and 5, 15, and 30 min after stimulation, were randomized and presented to experienced raters who evaluated erythema intensity and judged on the likelihood of stimulation condition (sham vs. active). In addition, semi-automated image processing generated probability heatmaps and surface area coverage of erythema. Adverse events were also collected. Erythema was present, but less intense in sham compared to active groups. Erythema intensity was inversely and directly associated to correct sham and active stimulation group allocation, respectively. Our image analyses found that erythema also occurs after sham and its distribution is homogenous below electrodes. Tingling frequency was higher using thin compared to thick sponges, whereas erythema was more intense under thick sponges. Optimal investigator blinding is achieved when erythema after tDCS is mild. Erythema distribution under the electrode is patchy, occurs after sham tDCS and varies according to sponge thickness. We discuss methods to address skin erythema-related tDCS unblinding. © 2016 International Neuromodulation Society.

  5. Calcium channel dynamics limit synaptic release in response to prosthetic stimulation with sinusoidal waveforms

    PubMed Central

    Freeman, Daniel K.; Jeng, Jed S.; Kelly, Shawn K.; Hartveit, Espen; Fried, Shelley I.

    2011-01-01

    Extracellular electric stimulation with sinusoidal waveforms has been shown to allow preferential activation of individual types of retinal neurons by varying stimulus frequency. It is important to understand the mechanisms underlying this frequency dependence as a step towards improving methods of preferential activation. In order to elucidate these mechanisms, we implemented a morphologically realistic model of a retinal bipolar cell and measured the response to extracellular stimulation with sinusoidal waveforms. We compared the frequency response of a passive membrane model to the kinetics of voltage-gated calcium channels that mediate synaptic release. The passive electrical properties of the membrane exhibited lowpass filtering with a relatively high cutoff frequency (nominal value = 717 Hz). This cutoff frequency was dependent on intra-axonal resistance, with shorter and wider axons yielding higher cutoff frequencies. However, we found that the cutoff frequency of bipolar cell synaptic release was primarily limited by the relatively slow opening kinetics of Land T-type calcium channels. The cutoff frequency of calcium currents depended nonlinearly on stimulus amplitude, but remained lower than the cutoff frequency of the passive membrane model for a large range of membrane potential fluctuations. These results suggest that while it may be possible to modulate the membrane potential of bipolar cells over a wide range of stimulus frequencies, synaptic release will only be initiated at the lower end of this range. PMID:21628768

  6. Common therapeutic mechanisms of pallidal deep brain stimulation for hypo- and hyperkinetic movement disorders

    PubMed Central

    Iriki, Atsushi; Isoda, Masaki

    2015-01-01

    Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles. PMID:26180116

  7. Feasibility and first results of a group program to increase the frequency of cognitively stimulating leisure activities in people with mild cognitive impairment (AKTIVA-MCI)

    PubMed Central

    Tesky, Valentina A; Köbe, Theresa; Witte, A Veronica; Flöel, Agnes; Schuchardt, Jan Philipp; Hahn, Andreas; Pantel, Johannes

    2017-01-01

    AKTIVA-MCI is a program for patients with mild cognitive impairment (MCI) that aims to enhance participation in cognitively stimulating leisure activities. Participation in cognitively stimulating activities seems to be a potential strategy for people with MCI delaying cognitive decline for a while. In total, 35 MCI patients were enrolled in the pilot study of whom 29 completed the whole program (16 female, 71.1±7.5 years; Mini Mental Status Examination score: 28±2.2). Daily activity protocols were used to measure the frequency of participation in cognitively stimulating activities during the program (12 sessions). Additional standardized psychometric tests and questionnaires were used to assess cognition, mood, and subjective memory decline. Analyses of the daily activity protocols showed that during the intervention participants increased the frequency of several cognitively stimulating leisure activities. Comparison of pre-post data indicates no changes in cognitive status, mood, and subjective memory decline. These findings indicate that the program is suitable for patients with MCI. PMID:28979108

  8. Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation

    PubMed Central

    Kim, Jin-Seop; Yi, Seung-Ju

    2014-01-01

    [Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC. PMID:25013277

  9. Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation.

    PubMed

    Kim, Jin-Seop; Yi, Seung-Ju

    2014-06-01

    [Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC.

  10. Use of a novel cell adhesion method and digital measurement to show stimulus-dependent variation in somatic and oral ciliary beat frequency in Paramecium.

    PubMed

    Bell, Wade E; Hallworth, Richard; Wyatt, Todd A; Sisson, Joseph H

    2015-01-01

    When Paramecium encounters positive stimuli, the membrane hyperpolarizes and ciliary beat frequency increases. We adapted an established immobilization protocol using a biological adhesive and a novel digital analysis system to quantify beat frequency in immobilized Paramecium. Cells showed low mortality and demonstrated beat frequencies consistent with previous studies. Chemoattractant molecules, reduction in external potassium, and posterior stimulation all increased somatic beat frequency. In all cases, the oral groove cilia maintained a higher beat frequency than mid-body cilia, but only oral cilia from cells stimulated with chemoattactants showed an increase from basal levels. © 2014 The Author(s) Journal of Eukaryotic Microbiology © 2014 International Society of Protistologists.

  11. Transcutaneous Electrical Nerve Stimulation in Children with Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo Controlled Study.

    PubMed

    Jørgensen, Cecilie Siggaard; Kamperis, Konstantinos; Borch, Luise; Borg, Britt; Rittig, Søren

    2017-09-01

    In a third of all children with monosymptomatic nocturnal enuresis their condition is refractory to first line treatments. Transcutaneous electrical nerve stimulation has been documented to be efficacious in children with daytime incontinence. We investigated the effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Children with monosymptomatic nocturnal enuresis (3 or more wet nights per week) and no nocturnal polyuria were randomized to treatment with active or sham transcutaneous electrical nerve stimulation involving 1-hour sessions twice daily for 10 weeks in a double-blind design. Of the 52 children with monosymptomatic nocturnal enuresis included in the study 47 completed treatment (mean age 9.5 ± 2.1 years, 38 males). None of the children experienced a full response with complete remission of enuresis. Treatment with transcutaneous electrical nerve stimulation did not lead to significant changes in number of wet nights, nocturnal urine production on wet or dry nights, maximum voided volume with and without first morning voided volume, or voiding frequency when comparing parameters before and after treatment. The present study demonstrates no anti-enuretic effect of transcutaneous electrical nerve stimulation in children with monosymptomatic nocturnal enuresis without nocturnal polyuria. Nocturnal urine production and bladder capacity remained unchanged during and after treatment with transcutaneous electrical nerve stimulation. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Bidirectional Modulation of Recognition Memory

    PubMed Central

    Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.

    2015-01-01

    Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of the PER could increase or decrease exploration of novel and familiar images depending on the frequency of stimulation. Our findings suggest that optical stimulation of PER at specific frequencies can predictably alter recognition memory. PMID:26424881

  13. Electrochemical characterization of high frequency stimulation electrodes: role of electrode material and stimulation parameters on electrode polarization

    NASA Astrophysics Data System (ADS)

    Ghazavi, Atefeh; Cogan, Stuart F.

    2018-06-01

    Objective. With recent interest in kilohertz frequency electrical stimulation for nerve conduction block, understanding the electrochemistry and role of electrode material is important for assessing the safety of these stimulus protocols. Here we describe an approach to determining electrode polarization in response to continuous kilohertz frequency sinusoidal current waveforms. We have also investigated platinum, iridium oxide, and titanium nitride as coatings for high frequency electrodes. The current density distribution at 50 kHz at the electrode–electrolyte interface was also modeled to demonstrate the importance of the primary current distribution in supporting charge injection at high frequencies. Approach. We determined electrode polarization in response to sinusoidal currents with frequencies in the 1–50 kHz range and current amplitudes from 100 to 500 µA and 1–5 mA, depending on the electrode area. The current density distribution at the interface was modeled using the finite element method (FEM). Main results. At low frequencies, 1–5 kHz, polarization on the platinum electrode was significant, exceeding the water oxidation potential for high amplitude (5 mA) waveforms. At frequencies of 20 kHz or higher, the polarization was less than 300 mV from the electrode open circuit potential. The choice of electrode material did not play a significant role in electrode polarization at frequencies higher than 10 kHz. The current density distribution modeled at 50 kHz is non-uniform and this non-uniformity persists throughout charge delivery. Significance. At high frequencies (>10 kHz) electrode double-layer charging is the principal mechanism of charge-injection and selection of the electrode material has little effect on polarization, with platinum, iridium oxide, and titanium nitride exhibiting similar behavior. High frequency stimulation is dominated by a highly nonuniform primary current distribution.

  14. Integration of auditory and vibrotactile stimuli: Effects of frequency

    PubMed Central

    Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.

    2010-01-01

    Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754

  15. The Effect of Surface Wave Propagation on Neural Responses to Vibration in Primate Glabrous Skin

    PubMed Central

    Manfredi, Louise R.; Baker, Andrew T.; Elias, Damian O.; Dammann, John F.; Zielinski, Mark C.; Polashock, Vicky S.; Bensmaia, Sliman J.

    2012-01-01

    Because tactile perception relies on the response of large populations of receptors distributed across the skin, we seek to characterize how a mechanical deformation of the skin at one location affects the skin at another. To this end, we introduce a novel non-contact method to characterize the surface waves produced in the skin under a variety of stimulation conditions. Specifically, we deliver vibrations to the fingertip using a vibratory actuator and measure, using a laser Doppler vibrometer, the surface waves at different distances from the locus of stimulation. First, we show that a vibration applied to the fingertip travels at least the length of the finger and that the rate at which it decays is dependent on stimulus frequency. Furthermore, the resonant frequency of the skin matches the frequency at which a subpopulation of afferents, namely Pacinian afferents, is most sensitive. We show that this skin resonance can lead to a two-fold increase in the strength of the response of a simulated afferent population. Second, the rate at which vibrations propagate across the skin is dependent on the stimulus frequency and plateaus at 7 m/s. The resulting delay in neural activation across locations does not substantially blur the temporal patterning in simulated populations of afferents for frequencies less than 200 Hz, which has important implications about how vibratory frequency is encoded in the responses of somatosensory neurons. Third, we show that, despite the dependence of decay rate and propagation speed on frequency, the waveform of a complex vibration is well preserved as it travels across the skin. Our results suggest, then, that the propagation of surface waves promotes the encoding of spectrally complex vibrations as the entire neural population is exposed to essentially the same stimulus. We also discuss the implications of our results for biomechanical models of the skin. PMID:22348055

  16. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research

    PubMed Central

    Klein, Max M.; Treister, Roi; Raij, Tommi; Pascual-Leone, Alvaro; Park, Lawrence; Nurmikko, Turo; Lenz, Fred; Lefaucheur, Jean-Pascal; Lang, Magdalena; Hallett, Mark; Fox, Michael; Cudkowicz, Merit; Costello, Ann; Carr, Daniel B.; Ayache, Samar S.; Oaklander, Anne Louise

    2015-01-01

    Abstract Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation with prespecified statistical analyses. Multigroup collaborations or registry studies may be needed for pivotal trials. PMID:25919472

  17. Cognitive effects of bilateral high frequency repetitive transcranial magnetic stimulation in early phase psychosis: a pilot study.

    PubMed

    Francis, Michael M; Hummer, Tom A; Vohs, Jenifer L; Yung, Matthew G; Visco, Andrew C; Mehdiyoun, Nikki F; Kulig, Teresa C; Um, Miji; Yang, Ziyi; Motamed, Mehrdad; Liffick, Emily; Zhang, Ying; Breier, Alan

    2018-05-31

    Cognitive dysfunction is a core facet of schizophrenia that is present early in the course of the illness and contributes to diminished functioning and outcomes. Repetitive transcranial magnetic stimulation (rTMS) is a relatively new neuropsychiatric intervention. Initially used in treatment resistant depression, investigators are now studying rTMS for other psychiatric diseases such as schizophrenia. In this study we examined the effect of high frequency rTMS on cognitive function in a group of individuals with early phase psychosis. Twenty subjects were randomized (1:1) in double-blind fashion to rTMS or sham condition. Over two weeks subjects underwent ten sessions of high frequency, bilateral, sequential rTMS targeting the dorsolateral prefrontal cortex (DLPFC). Prior to beginning and following completion of study treatment, subjects completed a cognitive assessment and magnetic resonance imaging. Subjects receiving rTMS, compared to sham treatment, displayed improvement on a standardized cognitive battery both immediately following the course of study treatment and at follow-up two weeks later. Imaging results revealed that left frontal cortical thickness at baseline was correlated with treatment response. The study treatment was found to be safe and well tolerated. These results suggest that rTMS may hold promise for the treatment of cognitive dysfunction in the early phase of psychosis, and that MRI may provide biomarkers predicting response to the treatment.

  18. Understanding hypnosis metacognitively: rTMS applied to left DLPFC increases hypnotic suggestibility.

    PubMed

    Dienes, Zoltan; Hutton, Sam

    2013-02-01

    According to the cold control theory of hypnosis (Dienes and Perner, 2007), hypnotic response occurs because of inaccurate higher order thoughts of intending. The dorsolateral prefrontal cortex (DLPFC) is a region likely involved in constructing accurate higher order thoughts. Thus, disrupting DLPFC with low frequency repetitive transcranial magnetic stimulation (rTMS) should make it harder to be aware of intending to perform an action. That is, it should be easier to respond to a hypnotic suggestion. Twenty-four medium hypnotisable subjects received low frequency rTMS to the left DLPFC and to a control site, the vertex, in counterbalanced order. The hypnotist was blind to which site had been stimulated. Subjects rated how strongly they expected to respond to each suggestion, and gave ratings on a 0-5 scale of the extent to which they experienced the response, for four suggestions (magnetic hands, arm levitation, rigid arm and taste hallucination). The experimenter also rated behavioural response. Low frequency rTMS to the DLPFC rather than vertex increased the degree of combined behavioural and subjective response. Further, subjects did not differ in their expectancy that they would respond in the two conditions, so the rTMS had an effect on hypnotic response above and beyond expectancies. The results support theories, including cold control theory, postulating a component of hypofrontality in hypnotic response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Examining the Frequency of Stimulant Misuse among Patients with Primary Disorders of Hypersomnolence: A Retrospective Cohort Study.

    PubMed

    Mantyh, William G; Auger, R Robert; Morgenthaler, Timothy I; Silber, Michael H; Moore, Wendy R

    2016-05-15

    Narcolepsy and idiopathic hypersomnia are commonly treated by sleep specialists and encountered by other medical providers. Although pharmacotherapy with modafinil and traditional stimulants is considered the mainstay of treatment, physicians are often uncomfortable with their prescription because of concerns regarding misuse. The goal of this study was to assess the frequency of stimulant misuse in this population. A retrospective cohort study was performed evaluating patients 18 years and older diagnosed with narcolepsy with and without cataplexy and idiopathic hypersomnia with and without long sleep between 2003-2008. Patients were included if they obtained stimulant prescriptions from and had at least one follow-up visit subsequent to initial diagnosis at our center. Stimulant misuse was defined by multiple prescription sources or early refill requests, which are systematically entered into the record by nursing staff. A total of 105 patients met inclusion criteria for the study; 45 (42%) were male. Mean age at multiple sleep latency test was 42 (± 16). Twelve (11%) patients had a history of illicit substance misuse, and one (1%) patient demonstrated previous stimulant misuse. Fifty-seven (54%) patients carried psychiatric diagnoses, 88% of whom reported depression. Median duration of monitored stimulant therapy was 26 months (range 1-250). None of the 105 patients was found to have evidence of stimulant misuse. This study suggests that the frequency of stimulant misuse in patients with narcolepsy and idiopathic hypersomnia is extremely low. Concerns regarding drug misuse should not leverage decisions to provide long-term therapy. © 2016 American Academy of Sleep Medicine.

  20. Muscarinic inhibition of [3H]-noradrenaline release on rabbit iris in vitro: effects of stimulation conditions on intrinsic activity of methacholine and pilocarpine.

    PubMed Central

    Bognar, I. T.; Pallas, S.; Fuder, H.; Muscholl, E.

    1988-01-01

    1. Rabbit isolated irides were loaded with [3H]-noradrenaline and superfused with Tyrode solution. The inhibition by the muscarinic agonists (+/-)-methacholine and pilocarpine of the [3H]-noradrenaline overflow into the superfusate evoked by field stimulation (pulses of 1 ms duration, 75 mA) was measured as an index of activation of presynaptic muscarinic receptors. 2. The fractional rate of release per pulse during the first stimulation period (S1) was low with 360 pulses at 3 Hz, intermediate with 360 pulses at 10 Hz and high with 1200 pulses at 10 Hz. Upon repetitive stimulation (7 periods at 20 min intervals), the fractional rates of release per pulse during S7 no longer differed, suggesting a 'long-term' regulation of [3H]-noradrenaline release depending on the stimulation conditions. 3. The evoked [3H]-noradrenaline overflow was depressed by (+/-)-methacholine in a concentration-dependent manner. The EC50 ranged from 0.29 to 0.42 microM. Methacholine nearly abolished the transmitter release evoked at 3 Hz but reduced that induced at 10 Hz by only 50%. Under the latter condition the methacholine concentration-inhibition curve was bell-shaped and no muscarinic inhibition was observed in the presence of methacholine 30 microM. After washout of methacholine the evoked [3H]-noradrenaline release was temporarily enhanced. 4. Atropine 0.1 microM enhanced the [3H]-noradrenaline overflow (evoked by stimulation with 360 or 1200 pulses at 10 Hz), probably antagonizing a presynaptic inhibition by endogenous acetylcholine. The inhibition by methacholine was competitively antagonized by atropine 0.1 microM (apparent -log KB = 8.5-9.0). 5. Depending on the concentration, pilocarpine reduced the [3H]-noradrenaline overflow evoked by 360 pulses at 3 Hz up to 63%. However, at 10 Hz stimulation frequency the compound was inactive as an agonist but competitively antagonized the presynaptic inhibition induced by methacholine. The KB under the latter condition (0.95 microM) was very close to the EC50 value determined at 3 Hz (0.85 microM). 6. The results demonstrate a muscarinic inhibition of noradrenaline release from the rabbit isolated iris. The activation by pilocarpine of the presynaptic receptors provides an alternative explanation for the miosis induced in the rabbit in vivo, which might be the result of a decreased sympathetic tone in the iris dilator muscle. PMID:3052680

  1. The Efficacy of High-Frequency Repetitive Transcranial Magnetic Stimulation for Improving Apathy in Chronic Stroke Patients.

    PubMed

    Sasaki, Nobuyuki; Hara, Takatoshi; Yamada, Naoki; Niimi, Masachika; Kakuda, Wataru; Abo, Masahiro

    2017-01-01

    Although repetitive transcranial magnetic stimulation (rTMS) for hemiparesis is beneficial, so far no study has examined the usefulness of rTMS for apathy. Thirteen patients with chronic stroke were assigned randomly to 2 groups: rTMS group (n = 7) and sham stimulation group (n = 6). The patients received 5 sessions of either high-frequency rTMS over the region spanning from the dorsal anterior cingulate cortex (dACC) to medial prefrontal cortex (mPFC) or sham stimulation for 5 days. The severity of apathy was evaluated using the Apathy Scale (AS) and the severity of depression was evaluated using the Quick Inventory of Depressive Symptomatology (QIDS) serially before and after the 5-day protocol. The AS and QIDS scores were significantly improved in the rTMS group, although they were not changed in the sham stimulation group. The degree of change in the AS score was significantly greater in the rTMS group than that in the sham stimulation group. The degree of change in the QIDS score was greater in the rTMS group than that in the sham stimulation group, although the difference was not statistically significant. The application of high frequency rTMS over the dACC and mPFC may be a useful intervention for apathy due to stroke. © 2017 S. Karger AG, Basel.

  2. Electrical Stimulation of Lateral Habenula during Learning: Frequency-Dependent Effects on Acquisition but Not Retrieval of a Two-Way Active Avoidance Response

    PubMed Central

    Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W.

    2013-01-01

    The lateral habenula (LHb) is an epithalamic structure involved in signaling reward omission and aversive stimuli, and it inhibits dopaminergic neurons during motivated behavior. Less is known about LHb involvement in the acquisition and retrieval of avoidance learning. Our previous studies indicated that brief electrical stimulation of the LHb, time-locked to the avoidance of aversive footshock (presumably during the positive affective “relief” state that occurs when an aversive outcome is averted), inhibited the acquisition of avoidance learning. In the present study, we used the same paradigm to investigate different frequencies of LHb stimulation. The effect of 20 Hz vs. 50 Hz vs. 100 Hz stimulation was investigated during two phases, either during acquisition or retrieval in Mongolian gerbils. The results indicated that 50 Hz, but not 20 Hz, was sufficient to produce a long-term impairment in avoidance learning, and was somewhat more effective than 100 Hz in this regard. None of the stimulation parameters led to any effects on retrieval of avoidance learning, nor did they affect general motor activity. This suggests that, at frequencies in excess of the observed tonic firing rates of LHb neurons (>1–20 Hz), LHb stimulation may serve to interrupt the consolidation of new avoidance memories. However, these stimulation parameters are not capable of modifying avoidance memories that have already undergone extensive consolidation. PMID:23840355

  3. The otolithic contribution to vertical ocular stability in the cat.

    PubMed

    Pettorossi, V E; Draicchio, F; Ferraresi, A; Bruni, R

    1994-10-01

    In cats, horizontal (HVOR) and vertical (VVOR) vestibulo-ocular reflexes were studied alone and combined with optokinetic stimulation. The upright VVOR (VVOR O degree) only showed higher gain and smaller phase lead compared to those of HVOR at frequencies below 0.05 Hz. The addition of optokinetic stimulation to the vestibular stimulation increased the gain of the horizontal and vertical ocular responses close to 1. VVOR was also studied in side down position (VVOR 90 degrees). In VVOR 90 degrees the ocular responses were asymmetric. The downward directed eye responses of VVOR 90 degrees showed lower gain and greater phase lead compared to those of VVOR 0 degree for the whole range of tested frequencies (0.01-0.4 Hz), while the upward eye responses only showed a lower gain at the lower range of frequencies tested. In the light the gain of VVOR 90 degrees increased, but the gain of downward directed eye responses was consistently lower than 1 at lower frequencies. The higher gain of the VVOR 0 degree compared to the VVOR 90 degrees and HVOR was attributed to the maculo-ocular reflex (MOR) evoked by the gravity modulation of the otolithic receptors, when the animals were oscillated in the pitch plane. The MOR was isolated from the VVOR 0 degree by plugging all semicircular canals. At very low frequencies the gain of the MOR was 0.3-0.35 and the phase was close to 0 degree. This reflex showed a progressive gain decrease and phase lag by increasing the stimulation frequencies. This suggests a low pass filtering process of the otolithic signal. Furthermore in plugged animals the asymmetry of the vertical optokinetic responses was reduced by adding the MOR. The quick phases (QPs) of the vestibular responses were also different depending upon the stimulation plane. The QPs of VVOR 0 degree were smaller and more delayed than those of HVOR and VVOR 90 degrees. In conclusion the main effects observed during otolithic coactivation in the VVOR 0 of the cat are: 1) the enhancement of gain and reduction of phase lead at low frequency vestibular stimulation, resulting in similar vertical and horizontal gaze stability; 2) the equalization of the upward and downward responses of both vestibulo-ocular and optokinetic responses; 3) the reduction of the amplitude and frequency of vertical quick phases.

  4. Transcranial Alternating Current Stimulation (tACS) Enhances Mental Rotation Performance during and after Stimulation

    PubMed Central

    Kasten, Florian H.; Herrmann, Christoph S.

    2017-01-01

    Transcranial alternating current stimulation (tACS) has been repeatedly demonstrated to modulate endogenous brain oscillations in a frequency specific manner. Thus, it is a promising tool to uncover causal relationships between brain oscillations and behavior or perception. While tACS has been shown to elicit a physiological aftereffect for up to 70 min, it remains unclear whether the effect can still be elicited if subjects perform a complex task interacting with the stimulated frequency band. In addition, it has not yet been investigated whether the aftereffect is behaviorally relevant. In the current experiment, participants performed a Shepard-like mental rotation task for 80 min. After 10 min of baseline measurement, participants received either 20 min of tACS at their individual alpha frequency (IAF) or sham stimulation (30 s tACS in the beginning of the stimulation period). Afterwards another 50 min of post-stimulation EEG were recorded. Task performance and EEG were acquired during the whole experiment. While there were no effects of tACS on reaction times or event-related-potentials (ERPs), results revealed an increase in mental rotation performance in the stimulation group as compared to sham both during and after stimulation. This was accompanied by increased ongoing alpha power and coherence as well as event-related-desynchronization (ERD) in the alpha band in the stimulation group. The current study demonstrates a behavioral and physiological aftereffect of tACS in parallel. This indicates that it is possible to elicit aftereffects of tACS during tasks interacting with the alpha band. Therefore, the tACS aftereffect is suitable to achieve an experimental manipulation. PMID:28197084

  5. Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.

    PubMed

    Becher, Ann-Katrin; Höhne, Marlene; Axmacher, Nikolai; Chaieb, Leila; Elger, Christian E; Fell, Juergen

    2015-01-01

    Auditory stimulation with monaural or binaural auditory beats (i.e. sine waves with nearby frequencies presented either to both ears or to each ear separately) represents a non-invasive approach to influence electrical brain activity. It is still unclear exactly which brain sites are affected by beat stimulation. In particular, an impact of beat stimulation on mediotemporal brain areas could possibly provide new options for memory enhancement or seizure control. Therefore, we examined how electroencephalography (EEG) power and phase synchronization are modulated by auditory stimulation with beat frequencies corresponding to dominant EEG rhythms based on intracranial recordings in presurgical epilepsy patients. Monaural and binaural beat stimuli with beat frequencies of 5, 10, 40 and 80 Hz and non-superposed control signals were administered with low amplitudes (60 dB SPL) and for short durations (5 s). EEG power was intracranially recorded from mediotemporal, temporo-basal and temporo-lateral and surface sites. Evoked and total EEG power and phase synchronization during beat vs. control stimulation were compared by the use of Bonferroni-corrected non-parametric label-permutation tests. We found that power and phase synchronization were significantly modulated by beat stimulation not only at temporo-basal, temporo-lateral and surface sites, but also at mediotemporal sites. Generally, more significant decreases than increases were observed. The most prominent power increases were seen after stimulation with monaural 40-Hz beats. The most pronounced power and synchronization decreases resulted from stimulation with monaural 5-Hz and binaural 80-Hz beats. Our results suggest that beat stimulation offers a non-invasive approach for the modulation of intracranial EEG characteristics. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.

    PubMed

    Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S

    2015-11-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Modulation of the masseteric reflex by gastric vagal afferents.

    PubMed

    Pettorossi, V E

    1983-04-01

    Several investigations have shown that the vagal nerve can affect the reflex responses of the masticatory muscles acting at level either of trigeminal motoneurons or of the mesencephalic trigeminal nucleus (MTN). The present experiments have been devoted to establish the origin of the vagal afferent fibres involved in modulating the masseteric reflex. In particular, the gastric vagal afferents were taken into consideration and selective stimulations of such fibres were performed in rabbit. Conditioning electrical stimulation of truncus vagalis ventralis (TVV) reduced the excitability of the MTN cells as shown by a decrease of the antidromic response recorded from the semilunar ganglion and elicited by MTN single-shock electrical stimulation. Sympathetic and cardiovascular influences were not involved in these responses. Mechanical stimulation of gastric receptors, by means of gastric distension, clearly diminished the amplitude of twitch tension of masseteric reflex and inhibited the discharge frequency of proprioceptive MTN units. The effect was phasic and depended upon the velocity of distension. Thus the sensory volleys originating from rapid adapting receptors reach the brain stem through vagal afferents and by means of a polysynaptic connection inhibits the masseteric reflex at level of MTN cells.

  8. Frequency-dependent acceleration of relaxation in mammalian heart: a property not relying on phospholamban and SERCA2a phosphorylation

    PubMed Central

    Valverde, Carlos A; Mundiña-Weilenmann, Cecilia; Said, Matilde; Ferrero, Paola; Vittone, Leticia; Salas, Margarita; Palomeque, Julieta; Petroff, Martín Vila; Mattiazzi, Alicia

    2005-01-01

    An increase in stimulation frequency causes an acceleration of myocardial relaxation (FDAR). Several mechanisms have been postulated to explain this effect, among which is the Ca2+–calmodulin-dependent protein kinase (CaMKII)-dependent phosphorylation of the Thr17 site of phospholamban (PLN). To gain further insights into the mechanisms of FDAR, we studied the FDAR and the phosphorylation of PLN residues in perfused rat hearts, cat papillary muscles and isolated cat myocytes. This allowed us to sweep over a wide range of frequencies, in species with either positive or negative force–frequency relationships, as well as to explore the FDAR under isometric (or isovolumic) and isotonic conditions. Results were compared with those produced by isoprenaline, an intervention known to accelerate relaxation (IDAR) via PLN phosphorylation. While IDAR occurs tightly associated with a significant increase in the phosphorylation of Ser16 and Thr17 of PLN, FDAR occurs without significant changes in the phosphorylation of PLN residues in the intact heart and cat papillary muscles. Moreover, in intact hearts, FDAR was not associated with any significant change in the CaMKII-dependent phosphorylation of sarcoplasmic/endoplasmic Ca2+ ATPase (SERCA2a), and was not affected by the presence of the CaMKII inhibitor, KN-93. In isolated myocytes, FDAR occurred associated with an increase in Thr17 phosphorylation. However, for a similar relaxant effect produced by isoprenaline, the phosphorylation of PLN (Ser16 and Thr17) was significantly higher in the presence of the β-agonist. Moreover, the time course of Thr17 phosphorylation was significantly delayed with respect to the onset of FDAR. In contrast, the time course of Ser16 phosphorylation, the first residue that becomes phosphorylated with isoprenaline, was temporally associated with IDAR. Furthermore, KN-93 significantly decreased the phosphorylation of Thr17 that was evoked by increasing the stimulation frequency, but failed to affect FDAR. Taken together, the results provide direct evidence indicating that CaMKII phosphorylation pathways are not involved in FDAR and that FDAR and IDAR do not share a common underlying mechanism. More likely, a CaMKII-independent mechanism could be involved, whereby increasing stimulation frequency would disrupt the SERCA2a–PLN interaction, leading to an increase in SR Ca2+ uptake and myocardial relaxation. PMID:15528241

  9. Low-frequency stimulation in anterior nucleus of thalamus alleviates kainate-induced chronic epilepsy and modulates the hippocampal EEG rhythm.

    PubMed

    Wang, Yi; Liang, Jiao; Xu, Cenglin; Wang, Ying; Kuang, Yifang; Xu, Zhenghao; Guo, Yi; Wang, Shuang; Gao, Feng; Chen, Zhong

    2016-02-01

    High-frequency stimulation (HFS) of the anterior nucleus of thalamus (ANT) is a new and alternative option for the treatment of intractable epilepsy. However, the responder rate is relatively low. The present study was designed to determine the effect of low-frequency stimulation (LFS) in ANT on chronic spontaneous recurrent seizures and related pathological pattern in intra-hippocampal kainate mouse model. We found that LFS (1 Hz, 100 μs, 300 μA), but not HFS (100 Hz, 100 μs, 30 μA), in bilateral ANT significantly decreased the frequency of spontaneous recurrent seizures, either non-convulsive focal seizures or tonic-clonic generalized seizures. The anti-epileptic effect persisted for one week after LFS cessation, which manifested as a long-term inhibition of the frequency of seizures with short (20-60 s) and intermediate duration (60-120 s). Meanwhile, LFS decreased the frequency of high-frequency oscillations (HFOs) and interictal spikes, two indicators of seizure severity, whereas HFS increased the HFO frequency. Furthermore, LFS decreased the power of the delta band and increased the power of the gamma band of hippocampal background EEG. In addition, LFS, but not HFS, improved the performance of chronic epileptic mice in objection-location task, novel objection recognition and freezing test. These results provide the first evidence that LFS in ANT alleviates kainate-induced chronic epilepsy and cognitive impairment, which may be related to the modulation of the hippocampal EEG rhythm. This may be of great therapeutic significance for clinical treatment of epilepsy with deep brain stimulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Innocuous cooling can produce nociceptive sensations that are inhibited during dynamic mechanical contact.

    PubMed

    Green, Barry G; Pope, Jennifer V

    2003-02-01

    In a previous study of the heat grill illusion, sensations of burning and stinging were sometimes reported when the skin was cooled by as little as 2 degrees C. Informal tests subsequently indicated that these nociceptive sensations were experienced if cooling occurred when the stimulating thermode rested on the skin, but not when the thermode was cooled and then touched to the skin. In experiment 1 subjects judged the intensity of thermal (cold/warm) and nociceptive (burning/stinging) sensations when the volar surface of the forearm was cooled to 25 degrees C (1) via a static thermode (Static condition), or (2) via a cold thermode touched to the skin (Dynamic condition). The total area of stimulation was varied from 2.6 to 10.4 cm(2) to determine if the occurrence of nociceptive sensations depended upon stimulus size. Burning/stinging was rated 10.3 times stronger in the Static condition than in the Dynamic condition, and this difference did not vary significantly with stimulus size. In experiment 2, thermal and nociceptive sensations were measured during cooling to just 31 degrees, 29 degrees or 27 degrees C, and data were obtained on the frequency at which different sensation qualities were experienced. Stinging was the most frequently reported nociceptive quality in the Static condition, and stinging and burning were both markedly reduced in the Dynamic condition. In experiment 3 we tested the possibility that dynamic contact might have inhibited burning and stinging not because of mechanical contact per se, but rather because dynamic contact caused higher rates of cooling. However, varying cooling rate over a tenfold range (-0.5 degrees to -5.0 degrees /s) had no appreciable effect on the frequency of stinging and burning. Overall, the data show that mild cooling can produce nociceptive sensations that are suppressed under conditions of dynamic mechanical contact. The latter observation suggests that cold is perceived differently during active contact with objects than during passive heat loss to the environment. Hypotheses about the physiological basis of the nociceptive sensations at mild temperatures and their possible role in the phenomena of paradoxical heat and synthetic heat are discussed.

  11. Electrical Stimuli Are Anti-Apoptotic in Skeletal Muscle via Extracellular ATP. Alteration of This Signal in Mdx Mice Is a Likely Cause of Dystrophy

    PubMed Central

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies. PMID:24282497

  12. Electrical stimuli are anti-apoptotic in skeletal muscle via extracellular ATP. Alteration of this signal in Mdx mice is a likely cause of dystrophy.

    PubMed

    Valladares, Denisse; Almarza, Gonzalo; Contreras, Ariel; Pavez, Mario; Buvinic, Sonja; Jaimovich, Enrique; Casas, Mariana

    2013-01-01

    ATP signaling has been shown to regulate gene expression in skeletal muscle and to be altered in models of muscular dystrophy. We have previously shown that in normal muscle fibers, ATP released through Pannexin1 (Panx1) channels after electrical stimulation plays a role in activating some signaling pathways related to gene expression. We searched for a possible role of ATP signaling in the dystrophy phenotype. We used muscle fibers from flexor digitorum brevis isolated from normal and mdx mice. We demonstrated that low frequency electrical stimulation has an anti-apoptotic effect in normal muscle fibers repressing the expression of Bax, Bim and PUMA. Addition of exogenous ATP to the medium has a similar effect. In dystrophic fibers, the basal levels of extracellular ATP were higher compared to normal fibers, but unlike control fibers, they do not present any ATP release after low frequency electrical stimulation, suggesting an uncoupling between electrical stimulation and ATP release in this condition. Elevated levels of Panx1 and decreased levels of Cav1.1 (dihydropyridine receptors) were found in triads fractions prepared from mdx muscles. Moreover, decreased immunoprecipitation of Cav1.1 and Panx1, suggest uncoupling of the signaling machinery. Importantly, in dystrophic fibers, exogenous ATP was pro-apoptotic, inducing the transcription of Bax, Bim and PUMA and increasing the levels of activated Bax and cytosolic cytochrome c. These evidence points to an involvement of the ATP pathway in the activation of mechanisms related with cell death in muscular dystrophy, opening new perspectives towards possible targets for pharmacological therapies.

  13. PubMed Central

    DI NARDO, W.; GIANNANTONIO, S.; DI GIUDA, D.; DE CORSO, E.; SCHINAIA, L.; PALUDETTI, G.

    2013-01-01

    SUMMARY Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult with current audiological methods. PMID:23620636

  14. Low and High Frequency Repetitive Transcranial Magnetic Stimulation for the Treatment of Spasticity

    ERIC Educational Resources Information Center

    Valle, Angela C.; Dionisio, Karen; Pitskel, Naomi Bass; Pascual-Leone, Alvaro; Orsati, Fernanda; Ferreira, Merari J. L.; Boggio, Paulo S.; Lima, Moises C.; Rigonatti, Sergio P.; Fregni, Felipe

    2007-01-01

    The development of non-invasive techniques of cortical stimulation, such as transcranial magnetic stimulation (TMS), has opened new potential avenues for the treatment of neuropsychiatric diseases. We hypothesized that an increase in the activity in the motor cortex by cortical stimulation would increase its inhibitory influence on spinal…

  15. Restoration of gait by functional electrical stimulation in paraplegic patients: a modified programme of treatment.

    PubMed

    Malezic, M; Hesse, S

    1995-03-01

    Restoration of standing and of gait by functional electrical stimulation in clinically complete paraplegic patients was modified in the course of treatment and in the stimulation parameters. By substituting an initial cyclic muscle strengthening with an active stimulated standing, four patients with T3-11 lesions started walking with electrical stimulation in 10-17 days. They walked without ankle-foot orthoses. With a satisfactory stride length of 0.75-0.97 m, their gait velocity ranged from very slow to that of a leisurely healthy gait. Already established stimulation of the quadriceps muscles for standing and of the peroneal nerves for lower limb flexion during the swing phase of gait was applied. Diminished limb flexion after several weeks was restored by an increase of the stimulation frequency of the peroneal nerve from 20 to 60 Hz. EMG and kinesiological measurements displayed an improved direct response of the ankle as well as of the reflex mediated hip, knee and ankle flexion response. At the same time stimulation frequency was reduced to 16 Hz for the quadriceps muscles in order to reduce fatigue.

  16. Neural vasodilator control in the rectum of the cat and its possible mediation by vasoactive intestinal polypeptide.

    PubMed Central

    Andersson, P O; Bloom, S R; Edwards, A V; Järhult, J; Mellander, S

    1983-01-01

    Vascular and motor responses in the rectum to pelvic nerve stimulation are described in the anaesthetized cat and compared with corresponding effects observed in the colon. The responses comprise a cholinergic and a non-cholinergic component, and an attempt has been made to elucidate the latter. Pelvic nerve stimulation evoked a pronounced and well maintained vasodilator response in the rectum whereas that in the colon was transient. Maximal vasodilatation occurred at much lower stimulus frequencies in the rectum (2-4 Hz) than it did in the colon (8-16 Hz) and maximal blood flow under these conditions was also greater in the rectum (greater than 200 ml 100 g-1 min-1) than the colon (less than 150 ml 100 g-1 min-1). Muscarinic blockade further curtailed the colonic vasodilator response to pelvic nerve stimulation, whereas the rectal dilatation was only slightly reduced in the presence of atropine. Pelvic nerve stimulation caused a substantial release of vasoactive intestinal polypeptide (VIP) from the rectum, which was related both in magnitude and duration to the vasodilatation. Intra-arterial infusions of VIP, which reproduced this rise in rectal venous VIP concentration, caused a rectal vasodilator response which closely resembled that during pelvic nerve stimulation after cholinergic blockade. The rectal vasculature was estimated to be 50-100 times more sensitive to VIP than the colonic vasculature. VIP therefore seems to be the most likely putative neurotransmitter responsible for non-cholinergic rectal vasodilatation. Stimulation of the pelvic nerves also caused rapid contractile motor responses before, and more gradual motor responses after, muscarinic blockade in both the colon and rectum, in the latter preceded by a non-cholinergic relaxation. These patterns of motor activity largely confirm previous results. Infusions of substance P effectively mimicked the non-cholinergic contractile motor responses but failed to demonstrate significant release of this peptide during pelvic nerve stimulation in the present experiments. However, substance P is rapidly inactivated and might possibly be involved in these responses. Stimulation of the pelvic nerves in bursts at high frequencies (up to 80 Hz), simulating a discharge pattern observed electrophysiologically in vivo, was effective in eliciting all the above responses, with the exception of the colonic contraction. PMID:6197521

  17. Autonomic dysfunction affects cerebral neurovascular coupling.

    PubMed

    Azevedo, Elsa; Castro, Pedro; Santos, Rosa; Freitas, João; Coelho, Teresa; Rosengarten, Bernhard; Panerai, Ronney

    2011-12-01

    Autonomic failure (AF) affects the peripheral vascular system, but little is known about its influence on cerebrovascular regulation. Patients with familial amyloidotic polyneuropathy (FAP) were studied as a model for AF. Ten mild (FAPm), 10 severe (FAPs) autonomic dysfunction FAP patients, and 15 healthy controls were monitored in supine and sitting positions for arterial blood pressure (ABP) and heart rate (HR) with arterial volume clamping, and for blood flow velocity (BFV) in posterior (PCA) and contralateral middle cerebral arteries (MCA) with transcranial Doppler. Analysis included resting BFV, cerebrovascular resistance parameters (cerebrovascular resistance index, CVRi; resistance area product, RAP; and critical closing pressure, CrCP), and neurovascular coupling through visually evoked BFV responses in PCA (gain, rate time, attenuation, and natural frequency). In non-stimulation conditions, in each position, there were no significant differences between the groups, regarding HR, BP, resting BFV, and vascular resistance parameters. Sitting ABP was higher than in supine in the three groups, although only significantly in controls. Mean BFV was lower in sitting in all the groups, lacking statistical significance only in FAPs PCA. CVRi and CrCP increased with sitting in all the groups, while RAP increased in controls but decreased in FAPm and FAPs. In visual stimulation conditions, FAPs comparing to controls had a significant decrease of natural frequency, in supine and sitting, and of rate time and gain in sitting position. These results demonstrate that cerebrovascular regulation is affected in FAP subjects with AF, and that it worsens with orthostasis.

  18. Proprioceptive impairments in high fall risk older adults: the effect of mechanical calf vibration on postural balance.

    PubMed

    Toosizadeh, Nima; Ehsani, Hossein; Miramonte, Marco; Mohler, Jane

    2018-05-02

    Impairments in proprioceptive mechanism with aging has been observed and associated with fall risk. The purpose of the current study was to assess proprioceptive deficits among high fall risk individuals in comparison with healthy participants, when postural performance was disturbed using low-frequency mechanical gastrocnemius vibratory stimulation. Three groups of participants were recruited: healthy young (n = 10; age = 23 ± 2 years), healthy elders (n = 10; age = 73 ± 3 years), and high fall risk elders (n = 10; age = 84 ± 9 years). Eyes-open and eyes-closed upright standing balance performance was measured with no vibration, and 30 and 40 Hz vibration of both calves. Vibration-induced changes in balance behaviors, compared to baseline (no vibratory stimulation) were compared between three groups using multivariable repeated measures analysis of variance models. Overall, similar results were observed for two vibration frequencies. However, changes in body sway due to vibration were more obvious within the eyes-closed condition, and in the medial-lateral direction. Within the eyes-closed condition high fall risk participants showed 83% less vibration-induced change in medial-lateral body sway, and 58% less sway velocity, when compared to healthy participants (p < 0.001; effect size = 0.45-0.64). The observed differences in vibration effects on balance performance may be explained by reduced sensitivity in peripheral nervous system among older adults with impaired balance.

  19. High-Frequency Stimulation of Dorsal Column Axons: Potential Underlying Mechanism of Paresthesia-Free Neuropathic Pain Relief.

    PubMed

    Arle, Jeffrey E; Mei, Longzhi; Carlson, Kristen W; Shils, Jay L

    2016-06-01

    Spinal cord stimulation (SCS) treats neuropathic pain through retrograde stimulation of dorsal column axons and their inhibitory effects on wide dynamic range (WDR) neurons. Typical SCS uses frequencies from 50-100 Hz. Newer stimulation paradigms use high-frequency stimulation (HFS) up to 10 kHz and produce pain relief but without paresthesia. Our hypothesis is that HFS preferentially blocks larger diameter axons (12-15 µm) based on dynamics of ion channel gates and the electric potential gradient seen along the axon, resulting in inhibition of WDR cells without paresthesia. We input field potential values from a finite element model of SCS into an active axon model with ion channel subcomponents for fiber diameters 1-20 µm and simulated dynamics on a 0.001 msec time scale. Assuming some degree of wave rectification seen at the axon, action potential (AP) blockade occurs as hypothesized, preferentially in larger over smaller diameters with blockade in most medium and large diameters occurring between 4.5 and 10 kHz. Simulations show both ion channel gate and virtual anode dynamics are necessary. At clinical HFS frequencies and pulse widths, HFS preferentially blocks larger-diameter fibers and concomitantly recruits medium and smaller fibers. These effects are a result of interaction between ion gate dynamics and the "activating function" (AF) deriving from current distribution over the axon. The larger fibers that cause paresthesia in low-frequency simulation are blocked, while medium and smaller fibers are recruited, leading to paresthesia-free neuropathic pain relief by inhibiting WDR cells. © 2016 International Neuromodulation Society.

  20. Low-threshold collinear parametric Raman comb generation in calcite under 532 and 1064 nm picosecond laser pumping

    NASA Astrophysics Data System (ADS)

    Smetanin, S. N.; Jelínek, M., Jr.; Kubeček, V.; Jelínková, H.

    2015-09-01

    Optimal conditions of low-threshold collinear parametric Raman comb generation in calcite (CaCO3) are experimentally investigated under 20 ps laser pulse excitation, in agreement with the theoretical study. The collinear parametric Raman generation of the highest number of Raman components in the short calcite crystals corresponding to the optimal condition of Stokes-anti-Stokes coupling was achieved. At the excitation wavelength of 1064 nm, using the optimum-length crystal resulted in the effective multi-octave frequency Raman comb generation containing up to five anti-Stokes and more than four Stokes components (from 674 nm to 1978 nm). The 532 nm pumping resulted in the frequency Raman comb generation from the 477 nm 2nd anti-Stokes up to the 692 nm 4th Stokes component. Using the crystal with a non-optimal length leads to the Stokes components generation only with higher thresholds because of the cascade-like stimulated Raman scattering with suppressed parametric coupling.

  1. When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics.

    PubMed

    Joseph, Kevin; Mottaghi, Soheil; Christ, Olaf; Feuerstein, Thomas J; Hofmann, Ulrich G

    2018-01-01

    Modern electroceuticals are bound to employ the usage of electrical high frequency (130-180 Hz) stimulation carried out under closed loop control, most prominent in the case of movement disorders. However, particular challenges are faced when electrical recordings of neuronal tissue are carried out during high frequency electrical stimulation, both in-vivo and in-vitro . This stimulation produces undesired artifacts and can render the recorded signal only partially useful. The extent of these artifacts is often reduced by temporarily grounding the recording input during stimulation pulses. In the following study, we quantify the effects of this method, "blanking," on the spike count and spike train statistics. Starting from a theoretical standpoint, we calculate a loss in the absolute number of action potentials, depending on: width of the blanking window, frequency of stimulation, and intrinsic neuronal activity. These calculations were then corroborated by actual high signal to noise ratio (SNR) single cell recordings. We state that, for clinically relevant frequencies of 130 Hz (used for movement disorders) and realistic blanking windows of 2 ms, up to 27% of actual existing spikes are lost. We strongly advice cautioned use of the blanking method when spike rate quantification is attempted. Blanking (artifact removal by temporarily grounding input), depending on recording parameters, can lead to significant spike loss. Very careful use of blanking circuits is advised.

  2. When the Ostrich-Algorithm Fails: Blanking Method Affects Spike Train Statistics

    PubMed Central

    Joseph, Kevin; Mottaghi, Soheil; Christ, Olaf; Feuerstein, Thomas J.; Hofmann, Ulrich G.

    2018-01-01

    Modern electroceuticals are bound to employ the usage of electrical high frequency (130–180 Hz) stimulation carried out under closed loop control, most prominent in the case of movement disorders. However, particular challenges are faced when electrical recordings of neuronal tissue are carried out during high frequency electrical stimulation, both in-vivo and in-vitro. This stimulation produces undesired artifacts and can render the recorded signal only partially useful. The extent of these artifacts is often reduced by temporarily grounding the recording input during stimulation pulses. In the following study, we quantify the effects of this method, “blanking,” on the spike count and spike train statistics. Starting from a theoretical standpoint, we calculate a loss in the absolute number of action potentials, depending on: width of the blanking window, frequency of stimulation, and intrinsic neuronal activity. These calculations were then corroborated by actual high signal to noise ratio (SNR) single cell recordings. We state that, for clinically relevant frequencies of 130 Hz (used for movement disorders) and realistic blanking windows of 2 ms, up to 27% of actual existing spikes are lost. We strongly advice cautioned use of the blanking method when spike rate quantification is attempted. Impact statement Blanking (artifact removal by temporarily grounding input), depending on recording parameters, can lead to significant spike loss. Very careful use of blanking circuits is advised. PMID:29780301

  3. Naturalistic stimulation changes the dynamic response of action potential encoding in a mechanoreceptor

    PubMed Central

    Pfeiffer, Keram; French, Andrew S.

    2015-01-01

    Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975

  4. Increased work in cardiac trabeculae causes decreased mitochondrial NADH fluorescence followed by slow recovery.

    PubMed Central

    Brandes, R; Bers, D M

    1996-01-01

    The oxidative phosphorylation rate in isolated mitochondria is stimulated by increased [ADP], resulting in decreased [NADH]. In intact hearts, however, increased mechanical work has generally not been shown to cause an increase in [ADP]. Therefore, increased [NADH] has been suggested as an alternative for stimulating the phosphorylation rate. Such a rise in [NADH] could result from stimulation of various substrate dehydrogenases by increased intracellular [Ca2+] (e.g., during increased pacing frequency). We have monitored mitochondrial [NADH] in isolated rat ventricular trabeculae, using a novel fluorescence spectroscopy method where a native fluorescence signal was used to correct for motion artifacts. Work was controlled by increased pacing frequency and assessed using time-averaged force. At low-pacing rates (approximately 0.1 Hz), [NADH] immediately decreased during contraction and then slowly recovered (approximately 5 s) before the next contraction. At higher rates, [NADH] initially decreased by an amount related to pacing rate (i.e., work). However, during prolonged stimulation, [NADH] slowly (approximately 60 s) recovered to a new steady-state level below the initial level. We conclude that 1) during increased work, oxidative phosphorylation is not initially stimulated by increased mitochondrial [NADH]; and 2) increased pacing frequency slowly causes stimulation of NADH production. Images FIGURE 2 FIGURE 4 PMID:8842239

  5. The effects of neuromuscular electrical stimulation at different frequencies on the activations of deep abdominal stabilizing muscles.

    PubMed

    Cho, Hee Kyung; Jung, Gil Su; Kim, Eun Hyuk; Cho, Yun Woo; Kim, Sang Woo; Ahn, Sang Ho

    2016-01-01

    Low back pain is associated with transversus abdominis (TrA) dysfunction. Recently, it was proposed that Neuromuscular Electrical Stimulation (NMES) could be used to stimulate deep abdominal muscle contractions and improve lumbopelvic stability. The purpose of this study was to determine the optimal stimulation frequency required during NMES for the activation of deep abdominal muscles. Twenty healthy volunteers between the ages of 24 and 32 were included. The portable research-stimulator was applied using a 10 second contraction time, and a 10 second resting time at 20 Hz, 50 Hz, and 80 Hz. Changes in muscle thicknesses were determined for the TrA, obliquus internus (OI), and obliquus externus (OE) by real time ultrasound imaging. Significant thickness increases in the TrA, OI, and OE were observed during NMES versus the resting state (p < 0.05). Of the frequencies examined, 50 Hz NMES produced the greatest increase in TrA thickness (1.33 fold as compared with 1.22 fold at 20 Hz and 1.21 fold at 80 Hz) (p < 0.05). Our results indicate that NMES can preferentially stimulate contractions in deep abdominal stabilizing muscles. Most importantly, 50 Hz NMES produced greater muscle thickness increases than 20 or 80 Hz.

  6. Electromotile hearing: Acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleaea)

    PubMed Central

    Le Prell, Colleen G.; Kawamoto, Kohei; Raphael, Yehoash; Dolan, David F.

    2011-01-01

    When sinusoidal electric stimulation is applied to the intact cochlea, a frequency-specific acoustic emission can be recorded in the ear canal. Acoustic emissions are produced by basilar membrane motion, and have been used to suggest a corresponding acoustic sensation termed “electromotile hearing.” Electromotile hearing has been specifically attributed to electric stimulation of outer hair cells in the intact organ of Corti. To determine the nature of the auditory perception produced by electric stimulation of a cochlea with intact outer hair cells, we tested guinea pigs in a psychophysical task. First, subjects were trained to report detection of sinusoidal acoustic stimuli and dynamic range was assessed using response latency. Subjects were then implanted with a ball electrode placed into scala tympani. Following the surgical implant procedure, subjects were transferred to a task in which acoustic signals were replaced by sinusoidal electric stimulation, and dynamic range was assessed again. Finally, the ability of acoustic pure-tone stimuli to mask the detection of the electric signals was assessed. Based on the masking effects, we conclude that sinusoidal electric stimulation of the intact cochlea results in perception of a tonal (rather than a broad-band or noisy) sound at a frequency of 8 kHz or above. PMID:17225416

  7. Influence of different frequencies of transcutaneous electrical nerve stimulation on the threshold and pain intensity in young subjects

    PubMed Central

    Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2014-01-01

    Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453

  8. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  9. 8. Occipital neuralgia.

    PubMed

    Vanelderen, Pascal; Lataster, Arno; Levy, Robert; Mekhail, Nagy; van Kleef, Maarten; Van Zundert, Jan

    2010-01-01

    Occipital neuralgia is defined as a paroxysmal shooting or stabbing pain in the dermatomes of the nervus occipitalis major and/or nervus occipitalis minor. The pain originates in the suboccipital region and radiates over the vertex. A suggestive history and clinical examination with short-term pain relief after infiltration with local anesthetic confirm the diagnosis. No data are available about the prevalence or incidence of this condition. Most often, trauma or irritation of the nervi occipitales causes the neuralgia. Imaging studies are necessary to exclude underlying pathological conditions. Initial therapy consists of a single infiltration of the culprit nervi occipitales with local anesthetic and corticosteroids (2 C+). The reported effects of botulinum toxin A injections are contradictory (2 C+/-). Should injection of local anesthetic and corticosteroids fail to provide lasting relief, pulsed radio-frequency treatment of the nervi occipitales can be considered (2 C+). There is no evidence to support pulsed radio-frequency treatment of the ganglion spinale C2 (dorsal root ganglion). As such, this should only be done in a clinical trial setting. Subcutaneous occipital nerve stimulation can be considered if prior therapy with corticosteroid infiltration or pulsed radio-frequency treatment failed or provided only short-term relief (2 C+).

  10. Frequency-dependent baroreflex control of blood pressure and heart rate during physical exercise.

    PubMed

    Spadacini, Giammario; Passino, Claudio; Leuzzi, Stefano; Valle, Felice; Piepoli, Massimo; Calciati, Alessandro; Sleight, Peter; Bernardi, Luciano

    2006-02-15

    It is widely recognised that during exercise vagal heart rate control is markedly impaired but blood pressure control may or may not be retained. We hypothesised that this uncertainty arose from the differing responses of the vagus (fast) and sympathetic (slow) arms of the autonomic effectors, and to differing sympatho-vagal balance at different exercise intensities. We studied 12 normals at rest, during moderate (50% maximal heart rate) and submaximal (80% maximal heart rate) exercise. The carotid baroreceptors were stimulated by sinusoidal neck suction at the frequency of the spontaneous high- (during moderate exercise) and low-frequency (during submaximal) fluctuations in heart period and blood pressure. The increases in these oscillations induced by neck suction were measured by autoregressive spectral analysis. At rest neck stimulation increased variability at low frequency (RR: from 6.99+/-0.24 to 8.87+/-0.18 ln-ms2; systolic pressure: from 3.05+/-1.7 to 4.09+/-0.17 ln-mm Hg2) and high frequency (RR: from 4.67+/-0.25 to 6.79+/-0.31 ln-ms2; systolic pressure: from 1.93+/-0.2 to 2.67+/-0.125 ln-mm Hg2) (all p<0.001). During submaximal exercise RR variability decreased but systolic pressure variability rose (p<0.01 vs rest); during submaximal exercise low-frequency neck stimulation increased the low-frequency fluctuations in blood pressure (2.35+/-0.51 to 4.25+/-0.38 ln-mm Hg2, p<0.05) and RR. Conversely, neck suction at high frequency was ineffective on systolic pressure, and had only minor effects on RR interval during moderate exercise. During exercise baroreflex control is active on blood pressure, but the efferent response on blood pressure and heart rate is only detected during low frequency stimulation, indicating a frequency-dependent effect.

  11. A Lack of Clinical Effect of High-frequency rTMS to Dorsolateral Prefrontal Cortex on Bulimic Symptoms: A Randomised, Double-blind Trial.

    PubMed

    Gay, Aurelia; Jaussent, Isabelle; Sigaud, Torrance; Billard, Stephane; Attal, Jerome; Seneque, Maude; Galusca, Bogdan; Van Den Eynde, Frederique; Massoubre, Catherine; Courtet, Philippe; Guillaume, Sebastien

    2016-11-01

    Studies suggest that stimulation of the left dorsolateral prefrontal cortex (DLPFC) reduces food craving in bulimic patients, but evidence supporting repetitive transcranial magnetic stimulation (rTMS) as a therapeutic tool is lacking. We investigated the safety and therapeutic efficacy of an adjunct high-frequency rTMS programme targeting the left DLPFC. Forty-seven women with bulimia nervosa were randomised to a real or sham stimulation group. The real group underwent 10 rTMS sessions, each consisting of 20 trains of 5 seconds with 55-second intervals between trains, at a frequency of 10 Hz. The main outcome was the number of binge episodes in the 15 days following the end of stimulation. Overall, no significant improvement in bingeing and purging symptoms was noted after the programme. rTMS was well tolerated. This suggests that 10 sessions of high-frequency rTMS to the left DLPFC provide no greater benefit than placebo. Future studies should consider methodological issues as well as alternative targets. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  12. Stimulated Brillouin scattering during electron gyro-harmonic heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Fu, H. Y.; Scales, W. A.; Bernhardt, P. A.; Briczinski, S. J.; Kosch, M. J.; Senior, A.; Rietveld, M. T.; Yeoman, T. K.; Ruohoniemi, J. M.

    2015-08-01

    Observations of secondary radiation, stimulated electromagnetic emission (SEE), produced during ionospheric modification experiments using ground-based, high-power, high-frequency (HF) radio waves are considered. The High Frequency Active Auroral Research Program (HAARP) facility is capable of generating narrowband SEE in the form of stimulated Brillouin scatter (SBS) and stimulated ion Bernstein scatter (SIBS) in the SEE spectrum. Such narrowband SEE spectral lines have not been reported using the European Incoherent Scatter (EISCAT) heater facility before. This work reports the first EISCAT results of narrowband SEE spectra and compares them to SEE previously observed at HAARP during electron gyro-harmonic heating. An analysis of experimental SEE data shows observations of emission lines within 100 Hz of the pump frequency, interpreted as SBS, during the 2012 July EISCAT campaign. Experimental results indicate that SBS strengthens as the pump frequency approaches the third electron gyro-harmonic. Also, for different heater antenna beam angles, the CUTLASS radar backscatter induced by HF radio pumping is suppressed near electron gyro-harmonics, whereas electron temperature enhancement weakens as measured by EISCAT/UHF radar. The main features of these new narrowband EISCAT observations are generally consistent with previous SBS measurements at HAARP.

  13. Suitability of the Binaural Interaction Component for Interaural Electrode Pairing of Bilateral Cochlear Implants.

    PubMed

    Hu, Hongmei; Kollmeier, Birger; Dietz, Mathias

    2016-01-01

    Although bilateral cochlear implants (BiCIs) have succeeded in improving the spatial hearing performance of bilateral CI users, the overall performance is still not comparable with normal hearing listeners. Limited success can be partially caused by an interaural mismatch of the place-of-stimulation in each cochlea. Pairing matched interaural CI electrodes and stimulating them with the same frequency band is expected to facilitate binaural functions such as binaural fusion, localization, or spatial release from masking. It has been shown in animal experiments that the magnitude of the binaural interaction component (BIC) derived from the wave-eV decreases for increasing interaural place of stimulation mismatch. This motivated the investigation of the suitability of an electroencephalography-based objective electrode-frequency fitting procedure based on the BIC for BiCI users. A 61 channel monaural and binaural electrically evoked auditory brainstem response (eABR) recording was performed in 7 MED-EL BiCI subjects so far. These BiCI subjects were directly stimulated at 60% dynamic range with 19.9 pulses per second via a research platform provided by the University of Innsbruck (RIB II). The BIC was derived for several interaural electrode pairs by subtracting the response from binaural stimulation from their summed monaural responses. The BIC based pairing results are compared with two psychoacoustic pairing methods: interaural pulse time difference sensitivity and interaural pitch matching. The results for all three methods analyzed as a function of probe electrode allow for determining a matched pair in more than half of the subjects, with a typical accuracy of ± 1 electrode. This includes evidence for statistically significant tuning of the BIC as a function of probe electrode in human subjects. However, results across the three conditions were sometimes not consistent. These discrepancies will be discussed in the light of pitch plasticity versus less plastic brainstem processing.

  14. Audio-visual synchrony and spatial attention enhance processing of dynamic visual stimulation independently and in parallel: A frequency-tagging study.

    PubMed

    Covic, Amra; Keitel, Christian; Porcu, Emanuele; Schröger, Erich; Müller, Matthias M

    2017-11-01

    The neural processing of a visual stimulus can be facilitated by attending to its position or by a co-occurring auditory tone. Using frequency-tagging, we investigated whether facilitation by spatial attention and audio-visual synchrony rely on similar neural processes. Participants attended to one of two flickering Gabor patches (14.17 and 17 Hz) located in opposite lower visual fields. Gabor patches further "pulsed" (i.e. showed smooth spatial frequency variations) at distinct rates (3.14 and 3.63 Hz). Frequency-modulating an auditory stimulus at the pulse-rate of one of the visual stimuli established audio-visual synchrony. Flicker and pulsed stimulation elicited stimulus-locked rhythmic electrophysiological brain responses that allowed tracking the neural processing of simultaneously presented Gabor patches. These steady-state responses (SSRs) were quantified in the spectral domain to examine visual stimulus processing under conditions of synchronous vs. asynchronous tone presentation and when respective stimulus positions were attended vs. unattended. Strikingly, unique patterns of effects on pulse- and flicker driven SSRs indicated that spatial attention and audiovisual synchrony facilitated early visual processing in parallel and via different cortical processes. We found attention effects to resemble the classical top-down gain effect facilitating both, flicker and pulse-driven SSRs. Audio-visual synchrony, in turn, only amplified synchrony-producing stimulus aspects (i.e. pulse-driven SSRs) possibly highlighting the role of temporally co-occurring sights and sounds in bottom-up multisensory integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Change in the P300 index - a pilot randomized controlled trial of low-frequency electrical stimulation of acupuncture points in middle-aged men and women.

    PubMed

    Choi, Kwang-Ho; Kwon, O Sang; Cho, Seong Jin; Lee, Sanghun; Kang, Seok-Yun; Ryu, Yeon Hee

    2017-05-03

    The P300 is a major index used to evaluate improvements in brain function. Although a few studies have reported evaluating the effectiveness of manual acupuncture or electro-acupuncture by monitoring the P300, research in this field is not yet very active. The aim of this study was to investigate the effects of periodic low-frequency electrical stimulation applied to BL62 and KI6 on brain activity by analyzing the P300. The study was conducted as a randomized double-blind test of 55 subjects in their 50s, including 26 males and 29 females. Each subject received 12 sessions of stimulation over a one-month period. In each session, low-frequency electrical stimulation at an average of 24 μA and 2 Hz was applied to the acupuncture points BL62 and KI6, and event-related potentials (ERPs) were measured before the first session and after the last session of the electrical stimulation. The results of a chi-square test indicated that the double-blind test was conducted correctly. Compared to the Sham group, all the subjects in the Real stimulation group showed a tendency toward a decreasing P300 latency and increasing P300 amplitude after all 12 sessions of stimulation. In the women, the amplitude significantly increased at Fz, Fcz, Cz, Cpz, and Pz. With this experiment, the low-frequency electrical stimulation of two acupuncture points (BL62 and K16) was confirmed to have a positive influence on the prevention of natural cerebral aging. This study was registered at the Clinical Research Information Service (CRIS) of the National Research Institute of Health ( https://cris.nih.go.kr/cris/search/search_result_st01_en.jsp? , Registration Number: KCT0001940). The date of registration was June 9, 2016.

  16. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve

    PubMed Central

    Dean, Jesse C.; Clair-Auger, Joanna M.; Lagerquist, Olle; Collins, David F.

    2014-01-01

    Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10–100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with “time-locked” discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in “physiological” recruitment which adheres to Henneman’s size principle and results in relatively low discharge rates and asynchronous firing. PMID:25566025

  17. Polarity of cortical electrical stimulation differentially affects neuronal activity of deep and superficial layers of rat motor cortex.

    PubMed

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R; Lehmkuhle, Mark J

    2011-10-01

    Cortical electrical stimulation (CES) techniques are practical tools in neurorehabilitation that are currently being used to test models of functional recovery after neurologic injury. However, the mechanisms by which CES has therapeutic effects, are not fully understood. In this study, we investigated the effects of CES on unit activity of different neuronal elements in layers of rat primary motor cortex after the offset of stimulation. We evaluated the effects of monopolar CES pulse polarity (anodic-first versus cathodic-first) using various stimulation frequencies and amplitudes on unit activity after stimulation. A penetrating single shank silicon microelectrode array enabled us to span the entirety of six layer motor cortex allowing simultaneous electrophysiologic recordings from different depths after monopolar CES. Neural spiking activity before the onset and after the offset of CES was modeled using point processes fit to capture neural spiking dynamics as a function of extrinsic stimuli based on generalized linear model methods. We found that neurons in lower layers have a higher probability of being excited after anodic CES. Conversely, neurons located in upper cortical layers have a higher probability of being excited after cathodic stimulation. The opposing effects observed following anodic versus cathodic stimulation in upper and lower layers were frequency- and amplitude-dependent. The data demonstrates that the poststimulus changes in neural activity after manipulation of CES parameters changes according to the location (depth) of the recorded units in rat primary motor cortex. The most effective pulse polarity for eliciting action potentials after stimulation in lower layers was not as effective in upper layers. Likewise, lower amplitudes and frequencies of CES were more effective than higher amplitudes and frequencies for eliciting action potentials. These results have important implications in the context of maximizing efficacy of CES for neurorehabilitation and neuroprosthetic applications. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Asynchronous recruitment of low-threshold motor units during repetitive, low-current stimulation of the human tibial nerve.

    PubMed

    Dean, Jesse C; Clair-Auger, Joanna M; Lagerquist, Olle; Collins, David F

    2014-01-01

    Motoneurons receive a barrage of inputs from descending and reflex pathways. Much of our understanding about how these inputs are transformed into motor output in humans has come from recordings of single motor units during voluntary contractions. This approach, however, is limited because the input is ill-defined. Herein, we quantify the discharge of soleus motor units in response to well-defined trains of afferent input delivered at physiologically-relevant frequencies. Constant frequency stimulation of the tibial nerve (10-100 Hz for 30 s), below threshold for eliciting M-waves or H-reflexes with a single pulse, recruited motor units in 7/9 subjects. All 25 motor units recruited during stimulation were also recruited during weak (<10% MVC) voluntary contractions. Higher frequencies recruited more units (n = 3/25 at 10 Hz; n = 25/25 at 100 Hz) at shorter latencies (19.4 ± 9.4 s at 10 Hz; 4.1 ± 4.0 s at 100 Hz) than lower frequencies. When a second unit was recruited, the discharge of the already active unit did not change, suggesting that recruitment was not due to increased synaptic drive. After recruitment, mean discharge rate during stimulation at 20 Hz (7.8 Hz) was lower than during 30 Hz (8.6 Hz) and 40 Hz (8.4 Hz) stimulation. Discharge was largely asynchronous from the stimulus pulses with "time-locked" discharge occurring at an H-reflex latency with only a 24% probability. Motor units continued to discharge after cessation of the stimulation in 89% of trials, although at a lower rate (5.8 Hz) than during the stimulation (7.9 Hz). This work supports the idea that the afferent volley evoked by repetitive stimulation recruits motor units through the integration of synaptic drive and intrinsic properties of motoneurons, resulting in "physiological" recruitment which adheres to Henneman's size principle and results in relatively low discharge rates and asynchronous firing.

  19. Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics.

    PubMed

    Shannon, R V

    1983-08-01

    Basic psychophysical measurements were obtained from three patients implanted with multichannel cochlear implants. This paper presents measurements from stimulation of a single channel at a time (either monopolar or bipolar). The shape of the threshold vs. frequency curve can be partially related to the membrane biophysics of the remaining spiral ganglion and/or dendrites. Nerve survival in the region of the electrode may produce some increase in the dynamic range on that electrode. Loudness was related to the stimulus amplitude by a power law with exponents between 1.6 and 3.4, depending on frequency. Intensity discrimination was better than for normal auditory stimulation, but not enough to offset the small dynamic range for electrical stimulation. Measures of temporal integration were comparable to normals, indicating a central mechanism that is still intact in implant patients. No frequency analysis of the electrical signal was observed. Each electrode produced a unique pitch sensation, but they were not simply related to the tonotopic position of the stimulated electrode. Pitch increased over more than 4 octaves (for one patient) as the frequency was increased from 100 to 300 Hz, but above 300 Hz no pitch change was observed. Possibly the major limitation of single channel cochlear implants is the 1-2 ms integration time (probably due to the capacitative properties of the nerve membrane which acts as a low-pass filter at 100 Hz). Another limitation of electrical stimulation is that there is no spectral analysis of the electrical waveform so that temporal waveform alone determines the effective stimulus.

  20. Characterization of EEG patterns in brain-injured subjects and controls after a Snoezelen(®) intervention.

    PubMed

    Gómez, Carlos; Poza, Jesús; Gutiérrez, María T; Prada, Esther; Mendoza, Nuria; Hornero, Roberto

    2016-11-01

    The aim of this study was to assess the changes induced in electroencephalographic (EEG) activity by a Snoezelen(®) intervention on individuals with brain-injury and control subjects. EEG activity was recorded preceding and following a Snoezelen(®) session in 18 people with cerebral palsy (CP), 18 subjects who have sustained traumatic brain-injury (TBI) and 18 controls. EEG data were analyzed by means of spectral and nonlinear measures: median frequency (MF), individual alpha frequency (IAF), sample entropy (SampEn) and Lempel-Ziv complexity (LZC). Our results showed decreased values for MF, IAF, SampEn and LZC as a consequence of the therapy. The main changes between pre-stimulation and post-stimulation conditions were found in occipital and parietal brain areas. Additionally, these changes are more widespread in controls than in brain-injured subjects, which can be due to cognitive deficits in TBI and CP groups. Our findings support the notion that Snoezelen(®) therapy affects central nervous system, inducing a slowing of oscillatory activity, as well as a decrease of EEG complexity and irregularity. These alterations seem to be related with higher levels of relaxation of the participants. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Functionalized anatomical models for EM-neuron Interaction modeling

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  2. Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarnecchi, Emiliano; Polizzotto, Nicola Riccardo; Godone, Marco

    Everyday problem solving requires the ability to go beyond experience by efficiently encoding and manipulating new information, i.e., fluid intelligence (Gf) [1]. Performance in tasks involving Gf, such as logical and abstract reasoning, has been shown to rely on distributed neural networks, with a crucial role played by prefrontal regions [2]. Synchronization of neuronal activity in the gamma band is a ubiquitous phenomenon within the brain; however, no evidence of its causal involvement in cognition exists to date [3]. Here, we show an enhancement of Gf ability in a cognitive task induced by exogenous rhythmic stimulation within the gamma band.more » Imperceptible alternating current [4] delivered through the scalp over the left middle frontal gyrus resulted in a frequency-specific shortening of the time required to find the correct solution in a visuospatial abstract reasoning task classically employed to measure Gf abilities (i.e., Raven’s matrices) [5]. Crucially, gamma-band stimulation (γ-tACS) selectively enhanced performance only on more complex trials involving conditional/logical reasoning. The finding presented here supports a direct involvement of gamma oscillatory activity in the mechanisms underlying higher-order human cognition.« less

  3. Frequency sensitive mechanism in low-intensity ultrasound enhanced bioeffects

    PubMed Central

    Chama, Abdoulkadri; Subramanian, Anuradha; Viljoen, Hendrik J.

    2017-01-01

    This study presents two novel theoretical models to elucidate frequency sensitive nuclear mechanisms in low-intensity ultrasound enhanced bioeffects. In contrast to the typical 1.5 MHz pulsed ultrasound regime, our group previously experimentally confirmed that ultrasound stimulation of anchored chondrocytes at resonant frequency maximized gene expression of load inducible genes which are regulatory markers for cellular response to external stimuli. However, ERK phosphorylation displayed no frequency dependency, suggesting that the biochemical mechanisms involved in enhanced gene expression is downstream of ERK phosphorylation. To elucidate such underlying mechanisms, this study presents a theoretical model of an anchored cell, representing an in vitro chondrocyte, in an ultrasound field. The model results showed that the mechanical energy storage is maximized at the chondrocyte’s resonant frequency and the energy density in the nucleus is almost twice as high as in the cytoplasm. Next, a mechanochemical model was developed to link the mechanical stimulation of ultrasound and the increased mechanical energy density in the nucleus to the downstream targets of the ERK pathway. This study showed for the first time that ultrasound stimulation induces frequency dependent gene expression as a result of altered rates of transcription factors binding to chromatin. PMID:28763448

  4. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an acceleration of Ca2+ release. In conclusion: rapid increases in [Ca2+]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat‐to‐beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering. PMID:28028811

  5. Flicker illness: an underrecognized but preventable complication of helicopter transport.

    PubMed

    Cushman, Jeremy T; Floccare, Douglas J

    2007-01-01

    A case report of seizure due to photic stimulation from sunlight shining through spinning helicopter rotor blades is discussed. A review of photosensitive epilepsy is provided with particular emphasis on the effects and frequencies of photic stimulation required to induce symptoms. The frequencies of flashing light produced by spinning helicopter rotor blades commonly used in air medical transport range from 24 to 27 flashes per second. These frequencies are well within the range reported in the literature to produce symptoms in the laboratory setting. The literature provides only a few case reports of individuals sustaining a seizure after photic stimulation from spinning turboprop or helicopter blades. Symptoms range from mild discomfort and headache to profound spatial disorientation and seizures and may be an underrecognized but preventable complication of air medical transport.

  6. Arousal mechanisms related to posture and locomotion: 1. Descending modulation.

    PubMed

    Garcia-Rill, Edgar; Homma, Yutaka; Skinner, Robert D

    2004-01-01

    Much of the controversy surrounding the induction of locomotion following stimulation of mesopontine sites, including the pedunculopontine nucleus (PPN), appears based on procedural differences, including stimulus onset, delay preceding stepping, and frequency of stimuli. The results reviewed in this chapter address these issues and provide novel information suggesting that descending projections from the PPN may exert a frequency-dependent effect. Stimulation at approximately 60 Hz (which induces prolonged tonic firing) may exercise a "push" towards locomotion (activation of pontine interneurons) as well as a "pull" away from decreased muscle tone (inhibiting giant pontine reticulospinal cells). Higher frequencies of stimulation (> 100 Hz, which induces phasic burst-like activity) may "push" towards decreases in muscle tone, including the atonia of rapid eye movement sleep (activating giant pontine reticulospinal cells).

  7. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    PubMed

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  8. Background sounds contribute to spectrotemporal plasticity in primary auditory cortex.

    PubMed

    Moucha, Raluca; Pandya, Pritesh K; Engineer, Navzer D; Rathbun, Daniel L; Kilgard, Michael P

    2005-05-01

    The mammalian auditory system evolved to extract meaningful information from complex acoustic environments. Spectrotemporal selectivity of auditory neurons provides a potential mechanism to represent natural sounds. Experience-dependent plasticity mechanisms can remodel the spectrotemporal selectivity of neurons in primary auditory cortex (A1). Electrical stimulation of the cholinergic nucleus basalis (NB) enables plasticity in A1 that parallels natural learning and is specific to acoustic features associated with NB activity. In this study, we used NB stimulation to explore how cortical networks reorganize after experience with frequency-modulated (FM) sweeps, and how background stimuli contribute to spectrotemporal plasticity in rat auditory cortex. Pairing an 8-4 kHz FM sweep with NB stimulation 300 times per day for 20 days decreased tone thresholds, frequency selectivity, and response latency of A1 neurons in the region of the tonotopic map activated by the sound. In an attempt to modify neuronal response properties across all of A1 the same NB activation was paired in a second group of rats with five downward FM sweeps, each spanning a different octave. No changes in FM selectivity or receptive field (RF) structure were observed when the neural activation was distributed across the cortical surface. However, the addition of unpaired background sweeps of different rates or direction was sufficient to alter RF characteristics across the tonotopic map in a third group of rats. These results extend earlier observations that cortical neurons can develop stimulus specific plasticity and indicate that background conditions can strongly influence cortical plasticity.

  9. Frequency-dependent glycinergic inhibition modulates plasticity in hippocampus.

    PubMed

    Keck, Tara; Lillis, Kyle P; Zhou, Yu-Dong; White, John A

    2008-07-16

    Previous studies have demonstrated the presence of functional glycine receptors (GlyRs) in hippocampus. In this work, we examine the baseline activity and activity-dependent modulation of GlyRs in region CA1. We find that strychnine-sensitive GlyRs are open in the resting CA1 pyramidal cell, creating a state of tonic inhibition that "shunts" the magnitude of EPSPs evoked by electrical stimulation of the Schaffer collateral inputs. This GlyR-mediated shunting conductance is independent of the presynaptic stimulation rate; however, pairs of presynaptic and postsynaptic action potentials, repeated at frequencies above 5 Hz, reduce the GlyR-mediated conductance and increase peak EPSP magnitudes to levels at least 20% larger than those seen with presynaptic stimulation alone. We refer to this phenomenon as rate-dependent efficacy (RDE). Exogenous GlyR agonists (glycine, taurine) block RDE by preventing the closure of postsynaptic GlyRs. The GlyR antagonist strychnine blocks postsynaptic GlyRs under all conditions, occluding RDE. During RDE, GlyRs are less responsive to local glycine application, suggesting that a reduction in the number or sensitivity of membrane-inserted GlyRs underlies RDE. By extending the RDE induction protocol to include 500 paired presynaptic and postsynaptic spikes, we can induce long-term synaptic depression (LTD). Manipulations that lead to reduced functionality of GlyRs, either pharmacologically or through RDE, also lead to increased LTD. This result suggests that RDE contributes to long-term synaptic plasticity in the hippocampus.

  10. Possible relationship between the stress-induced synaptic response and metaplasticity in the hippocampal CA1 field of freely moving rats.

    PubMed

    Hirata, Riki; Matsumoto, Machiko; Judo, Chika; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro; Togashi, Hiroko

    2009-07-01

    Hippocampal long-term potentiation (LTP) is suppressed not only by stress paradigms but also by low frequency stimulation (LFS) prior to LTP-inducing high frequency stimulation (HFS; tetanus), termed metaplasticity. These synaptic responses are dependent on N-methyl-D-aspartate receptors, leading to speculations about the possible relationship between metaplasticity and stress-induced LTP impairment. However, the functional significance of metaplasticity has been unclear. The present study elucidated the electrophysiological and neurochemical profiles of metaplasticity in the hippocampal CA1 field, with a focus on the synaptic response induced by the emotional stress, contextual fear conditioning (CFC). The population spike amplitude in the CA1 field was decreased during exposure to CFC, and LTP induction was suppressed after CFC in conscious rats. The synaptic response induced by CFC was mimicked by LFS, i.e., LFS impaired the synaptic transmission and subsequent LTP. Plasma corticosterone levels were increased by both CFC and LFS. Extracellular levels of gamma-aminobutyric acid (GABA), but not glutamate, in the hippocampus increased during exposure to CFC or LFS. Furthermore, electrical stimulation of the medial prefrontal cortex (mPFC), which caused decreases in freezing behavior during exposure to CFC, counteracted the LTP impairment induced by LFS. These findings suggest that metaplasticity in the rat hippocampal CA1 field is related to the neural basis of stress experience-dependent fear memory, and that hippocampal synaptic response associated stress-related processes is under mPFC regulation.

  11. Validation of trophic and anthropic underwater noise as settlement trigger in blue mussels

    NASA Astrophysics Data System (ADS)

    Jolivet, Aurélie; Tremblay, Rejean; Olivier, Fréderic; Gervaise, Cédric; Sonier, Rémi; Genard, Bertrand; Chauvaud, Laurent

    2016-09-01

    Like the majority of benthic invertebrates, the blue mussel Mytilus edulis has a bentho-pelagic cycle with its larval settlement being a complex phenomenon involving numerous factors. Among these factors, underwater noise and pelagic trophic conditions have been weakly studied in previous researches. Under laboratory conditions, we tested the hypothesis that picoplankton assimilation by the pediveliger blue mussel larvae acts as a food cue that interacts with anthropic underwater sound to stimulate settlement. We used 13C-labeling microalgae to validate the assimilation of different picoplankton species in the tissues of pediveliger larvae. Our results clearly confirm our hypothesis with a significant synergic effect of these two factors. However, only the picoeukaryotes strains assimilated by larvae stimulated the settlement, whereas the non-ingested picocyanobacteria did not. Similar positive responses were observed with underwater sound characterized by low frequency vessel noises. The combination of both factors (trophic and vessel noise) drastically increased the mussel settlement by an order of 4 compared to the control (without picoplankton and noise). Settlement levels ranged from 16.5 to 67% in 67 h.

  12. Experimental neck muscle pain impairs standing balance in humans.

    PubMed

    Vuillerme, Nicolas; Pinsault, Nicolas

    2009-02-01

    Impaired postural control has been reported in patients with chronic neck pain of both traumatic and non-traumatic etiologies, but whether painful stimulation of neck muscle per se can affect balance control during quiet standing in humans remains unclear. The purpose of the present experiment was thus to investigate the effect of experimental neck muscle pain on standing balance in young healthy adults. To achieve this goal, 16 male university students were asked to stand upright as still as possible on a force platform with their eyes closed in two conditions of No pain and Pain of the neck muscles elicited by experimental painful electrical stimulation. Postural control and postural performance were assessed by the displacements of the center of foot pressure (CoP) and of the center of mass (CoM), respectively. The results showed increased CoP and CoM displacements variance, range, mean velocity, and mean and median frequencies in the Pain relative to the No pain condition. The present findings emphasize the destabilizing effect of experimental neck muscle pain per se, and more largely stress the importance of intact neck neuromuscular function on standing balance.

  13. Sensory trigeminal ULF-TENS stimulation reduces HRV response to experimentally induced arithmetic stress: A randomized clinical trial.

    PubMed

    Monaco, Annalisa; Cattaneo, Ruggero; Ortu, Eleonora; Constantinescu, Marian Vladimir; Pietropaoli, Davide

    2017-05-01

    Ultra Low Frequency Transcutaneous Electric Nervous Stimulation (ULF-TENS) is extensively used for pain relief and for the diagnosis and treatment of temporomandibular disorders (TMD). In addition to its local effects, ULF-TENS acts on the autonomic nervous system (ANS), with particular reference to the periaqueductal gray (PAG), promoting the release of endogenous opioids and modulating descending pain systems. It has been suggested that the PAG participates in the coupling between the emotional stimulus and the appropriate behavioral autonomic response. This function is successfully investigated by HRV. Therefore, our goal is to investigate the effects of trigeminal ULF-TENS stimulation on autonomic behavior in terms of HRV and respiratory parameters during an experimentally-induced arithmetic stress test in healthy subjects. Thirty healthy women between 25 and 35years of age were enrolled and randomly assigned to either the control (TENS stimulation off) or test group (TENS stimulation on). Heart (HR, LF, HF, LF/HF ratio, DET, RMSSD, PNN50, RR) and respiratory (BR) rate were evaluated under basal, T1 (TENS off/on), and stress (mathematical task) conditions. Results showed that HRV parameters and BR significantly changed during the arithmetic stress paradigm (p<0.01). Independently of stress conditions, TENS and control group could be discriminated only by non-linear HRV data, namely RR and DET (p=0.038 and p=0.027, respectively). During the arithmetic task, LF/HF ratio was the most sensitive parameter to discriminate between groups (p=0.019). Our data suggest that trigeminal sensory ULF-TENS reduces the autonomic response in terms of HRV and BR during acute mental stress in healthy subjects. Future directions of our work aim at applying the HRV and BR analysis, with and without TENS stimulation, to individuals with dysfunctional ANS among those with TMD. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The application of direct current electrical stimulation of the ear and cervical spine kinesitherapy in tinnitus treatment.

    PubMed

    Mielczarek, Marzena; Konopka, Wieslaw; Olszewski, Jurek

    2013-02-01

    The aim of the study was to evaluate the effectiveness of electrical stimulations of the hearing organ in tinnitus treatment adapting the frequency of stimulation according to tinnitus frequency, to assess the influence of cervical spine kinesitherapy on tinnitus, as well as to evaluate hearing after electrical stimulations alone and together with cervical spine kinesitherapy. The study comprised 80 tinnitus, sensorineural hearing loss patients (119 tinnitus ears) divided into two groups. In group I (n - 58 tinnitus ears) electrical stimulation of the hearing organ was performed, in group II (n - 61 tinnitus ears) electrical stimulation together with cervical spine kinesitherapy. Hydrotransmissive, selective electrical stimulations were conducted using direct, rectangular current. The passive electrode was placed on the forehead, the active--a silver probe--was immersed in the external ear canal in 0.9% saline solution. The treatment involved fifteen applications of electrical stimulations (each lasted for 4 min) administered three or four times a week (whole treatment lasted approximately 30 days). The evaluation of the results considered a case history (change from permanent to temporary tinnitus), questionnaires (the increase/decrease of the total points) and the audiometric evaluation of hearing level. Before the treatment, group I comprised 51 ears (87.93%) with permanent, and 7 ears (12.07%) with temporary tinnitus; group II - 55 ears (90.17%) with permanent and 6 ears (9.83%) with temporary tinnitus. After the treatment, in both groups the number of ears with permanent tinnitus decreased considerably obtaining the pauses or disappearing of tinnitus. Directly after the treatment, group I comprised 25 ears (43.11%) with permanent, and 10 ears (17.24%) with temporary tinnitus, in 23 ears (39.65%) tinnitus disappeared; group II - 33 ears (54.1%) with permanent and 11 ears (18.03%) with temporary tinnitus, in 17 ears (27.87%) tinnitus disappeared. Regarding questionnaires, improvement was observed in group I - in 43.11% of ears, in group II - 32.8%. In both groups audiometric improvement of hearing was recognized. (1) Electrical stimulation of the hearing organ, with the application of current frequencies according to tinnitus frequencies (selective electrical stimulation), was an efficient method in severe tinnitus treatment. (2) Cervical spine kinesitherapy in the treatment of tinnitus, using electrical stimulation, did not have any supporting influence. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  16. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  17. Cell-stimulation therapy of lateral epicondylitis with frequency-modulated low-intensity electric current.

    PubMed

    Aliyev, R M; Geiger, G

    2012-03-01

    In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.

  18. Effects of chronic baroreceptor stimulation on the autonomic cardiovascular regulation in patients with drug-resistant arterial hypertension.

    PubMed

    Wustmann, Kerstin; Kucera, Jan P; Scheffers, Ingrid; Mohaupt, Markus; Kroon, Abraham A; de Leeuw, Peter W; Schmidli, Jürg; Allemann, Yves; Delacrétaz, Etienne

    2009-09-01

    In patients with drug-resistant hypertension, chronic electric stimulation of the carotid baroreflex is an investigational therapy for blood pressure reduction. We hypothesized that changes in cardiac autonomic regulation can be demonstrated in response to chronic baroreceptor stimulation, and we analyzed the correlation with blood pressure changes. Twenty-one patients with drug-resistant hypertension were prospectively included in a substudy of the Device Based Therapy in Hypertension Trial. Heart rate variability and heart rate turbulence were analyzed using 24-hour ECG. Recordings were obtained 1 month after device implantation with the stimulator off and after 3 months of chronic electric stimulation (stimulator on). Chronic baroreceptor stimulation decreased office blood pressure from 185+/-31/109+/-24 mm Hg to 154+/-23/95+/-16 mm Hg (P<0.0001/P=0.002). Mean heart rate decreased from 81+/-11 to 76+/-10 beats per minute(-1) (P=0.001). Heart rate variability frequency-domain parameters assessed using fast Fourier transformation (FFT; ratio of low frequency:high frequency: 2.78 versus 2.24 for off versus on; P<0.001) were significantly changed during stimulation of the carotid baroreceptor, and heart rate turbulence onset was significantly decreased (turbulence onset: -0.002 versus -0.015 for off versus on; P=0.004). In conclusion, chronic baroreceptor stimulation causes sustained changes in heart rate variability and heart rate turbulence that are consistent with inhibition of sympathetic activity and increase of parasympathetic activity in patients with drug-resistant systemic hypertension; these changes correlate with blood pressure reduction. Whether the autonomic modulation has favorable cardiovascular effects beyond blood pressure control should be investigated in further studies.

  19. Trunk isometric force production parameters during erector spinae muscle vibration at different frequencies

    PubMed Central

    2013-01-01

    Background Vibration is known to alter proprioceptive afferents and create a tonic vibration reflex. The control of force and its variability are often considered determinants of motor performance and neuromuscular control. However, the effect of vibration on paraspinal muscle control and force production remains to be determined. Methods Twenty-one healthy adults were asked to perform isometric trunk flexion and extension torque at 60% of their maximal voluntary isometric contraction, under three different vibration conditions: no vibration, vibration frequencies of 30 Hz and 80 Hz. Eighteen isometric contractions were performed under each condition without any feedback. Mechanical vibrations were applied bilaterally over the lumbar erector spinae muscles while participants were in neutral standing position. Time to peak torque (TPT), variable error (VE) as well as constant error (CE) and absolute error (AE) in peak torque were calculated and compared between conditions. Results The main finding suggests that erector spinae muscle vibration significantly decreases the accuracy in a trunk extension isometric force reproduction task. There was no difference between both vibration frequencies with regard to force production parameters. Antagonist muscles do not seem to be directly affected by vibration stimulation when performing a trunk isometric task. Conclusions The results suggest that acute erector spinae muscle vibration interferes with torque generation sequence of the trunk by distorting proprioceptive information in healthy participants. PMID:23919578

  20. Deep brain stimulation improves orthostatic regulation of patients with Parkinson disease.

    PubMed

    Stemper, B; Beric, A; Welsch, G; Haendl, T; Sterio, D; Hilz, M J

    2006-11-28

    To evaluate whether subthalamic nucleus (STN) stimulation has an effect on the orthostatic regulation of patients with Parkinson disease (PD), we studied cardiovascular regulation during on and off phases of STN stimulation. We examined 14 patients with PD (mean age 58.1 +/- 5.8 years, 4 women, 10 men) with bilateral STN stimulators. Patients underwent 3 minutes of head-up tilt (HUT) testing during STN stimulation and after 90 minutes interruption of stimulation. We monitored arterial blood pressure (BP), RR intervals (RRI), respiration, and skin blood flow (SBF). Baroreflex sensitivity (BRS) was assessed as the square root of the ratio of low-frequency power of RRI to the low-frequency power of systolic BP for coherences above 0.5. During the on phase of the STN stimulation, HUT induced no BP decrease, a significant tachycardia, and a significant decrease of SBF. During the off phase of stimulation, HUT resulted in significant decreases in BPsys and RRI and only a slight SBF decrease. HUT induced no change of BRS during stimulation, but lowered BRS when the stimulator was off (p < 0.05). STN stimulation of patients with PD increases peripheral vasoconstriction and BRS and stabilizes BP, thereby improving postural hypotension in patients with PD. The results indicate that STN stimulation not only alleviates motor deficits but also influences autonomic regulation in patients with PD.

Top