Solar radio continuum storms and a breathing magnetic field model
NASA Technical Reports Server (NTRS)
1975-01-01
Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.
NASA Technical Reports Server (NTRS)
1974-01-01
Radio noise continuum emission observed in metric and decametric wave frequencies is discussed. The radio noise is associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. It is shown that the S-component emission in microwave frequencies generally occurs several days before the emission of the noise continuum storms of lower frequencies. It is likely that energetic electrons, 10 to 100 Kev, accelerated in association with the variation of sunspot magnetic fields, are the sources of the radio emissions. A model is considered to explain the relation of burst storms on radio noise. An analysis of the role of energetic electrons on the emissions of both noise continuum and type III burst storms is presented. It is shown that instabilities associated with the electrons and their relation to their own stabilizing effects are important in interpreting both of these storms.
Relation between metric and decametric noise storm sources and microwave S-component emissions
NASA Technical Reports Server (NTRS)
Sakurai, K.
1974-01-01
Various activities are reported by taking into account the properties of the active region and its relationship to low frequency burst emissions observed by the IMP-6 satellite. The relation of metric noise continuum storms (200 MHz) with the S-component of microwave emissions (2800 MHz) are examined. Taking the results analyzed, a model on the growth of radio noise continuum sources in metric and decametric frequencies and its relation to microwave and other solar active phenomena are considered.
The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum
NASA Astrophysics Data System (ADS)
Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.
2018-02-01
We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
Z mode radiation in Jupiter's magnetosphere - The source of Jovian continuum radiation
NASA Technical Reports Server (NTRS)
Barbosa, D. D.; Kurth, W. S.; Moses, S. L.; Scarf, F. L.
1990-01-01
Observations of Z-mode waves in Jupiter's magnetosphere are analyzed. The assumption that the frequency of the intensity minimum, which isolates the signal, corresponds to the electron plasma frequency provides a consistent interpretation of all spectral features in terms of plasma resonances and cutoffs. It is shown that the continuum radiation is composed of both left-hand and right-hand polarized waves with distinct cutoffs observed at the plasma frequency and right-hand cutoff frequency, respectively. It is found that the Z-mode peak frequency lies close to the left-hand cutoff frequency, suggesting that the observed characteristics of the emission are the result of wave reflection at the cutoff layer. Another distinct emission occurring near the upper hybrid resonance frequency is detected simultaneously with the Z mode. The entire set of observations gives strong support to the linear mode theory of the conversion of upper hybrid waves to continuum radiation mediated by the Z mode via the Budden radio window mechanism.
Kilometric Continuum Radiation
NASA Technical Reports Server (NTRS)
Green, James L.; Boardsen, Scott
2006-01-01
Kilometric continuum (KC) is the high frequency component (approximately 100 kHz to approximately 800 kHz) of nonthermal continuum (NTC). Unlike the lower frequency portion of NTC (approximately 5 kHz to approximately 100 kHz) whose source is around the dawn sector, the source of KC occurs at all magnetic local times. The latitudinal beaming of KC as observed by GEOTAIL is, for most events, restricted to plus or minus 15 degrees magnetic latitude. KC has been observed during periods of both low and strong geomagnetic activity, with no significant correlation of wave intensity with K(sub p), index. However statistically the maximum observed frequency of KC emission tends to increase with K(sub p) index, the effect is more pronounced around solar maximum, but is also detected near solar minimum. There is strong evidence that the source region of KC is from the equatorial plasmapause during periods when a portion of the plasmapause moves significantly inwards from its nominal position. Case studies have shown that KC emissions are nearly always associated with plasmaspheric notches, shoulders, and tails. There is a recent focus on trying to understand the banded frequency structure of this emission and its relationship to plasmaspheric density ducts and irregularities in the source region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onić, D.; Urošević, D.; Leahy, D., E-mail: donic@matf.bg.ac.rs
Recent observations of the microwave sky, by space telescopes such as the Wilkinson Microwave Anisotropy Probe and Planck , have opened a new window into the analysis of continuum emission from supernova remnants (SNRs). In this paper, different emission models that can explain the characteristic shape of currently known integrated radio/microwave continuum spectrum of the Galactic SNR IC 443 are tested and discussed. In particular, the possibility is emphasized that the slight bump in the integrated continuum of this remnant around 20–70 GHz is genuine and that it can be explained by the contribution of an additional emission mechanism suchmore » as spinning dust. We find that adding a spinning dust component to the emission model improves the fit of the integrated spectrum of this SNR while at the same time preserving the physically probable parameter values. Finally, models that include the high-frequency synchrotron bending of the IC 443 radio to microwave continuum are favored.« less
STATCONT: A statistical continuum level determination method for line-rich sources
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Schilke, P.; Ginsburg, A.; Cesaroni, R.; Schmiedeke, A.
2018-01-01
STATCONT is a python-based tool designed to determine the continuum emission level in spectral data, in particular for sources with a line-rich spectrum. The tool inspects the intensity distribution of a given spectrum and automatically determines the continuum level by using different statistical approaches. The different methods included in STATCONT are tested against synthetic data. We conclude that the sigma-clipping algorithm provides the most accurate continuum level determination, together with information on the uncertainty in its determination. This uncertainty can be used to correct the final continuum emission level, resulting in the here called `corrected sigma-clipping method' or c-SCM. The c-SCM has been tested against more than 750 different synthetic spectra reproducing typical conditions found towards astronomical sources. The continuum level is determined with a discrepancy of less than 1% in 50% of the cases, and less than 5% in 90% of the cases, provided at least 10% of the channels are line free. The main products of STATCONT are the continuum emission level, together with a conservative value of its uncertainty, and datacubes containing only spectral line emission, i.e., continuum-subtracted datacubes. STATCONT also includes the option to estimate the spectral index, when different files covering different frequency ranges are provided.
A Close Look At The Relationship Between WMAP (ILC) Small-Scale Features And Galactic HI Structure
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit L.
2012-05-01
Galactic HI emission profiles surrounding two pairs of features located where large-scale filaments at very different velocities overlap were decomposed into Gaussian components. Families of components defined by similarity of center velocities and line widths were identified and found to be spatially related. Each of the two pairs of HI peaks straddle a high-frequency continuum source revealed in the WMAP survey data. It is suggested that where filamentary HI features are directly interacting high-frequency continuum radiation is being produced. The previously hypothesized mechanism for producing high-frequency continuum radiation involving free-free emission from electrons in the interstellar medium, in this case created where HI filaments interact to produce fractional ionizations of order 5 to 15%, fit the data very closely. The results confirm that WMAP data on small-scale structures believed to be cosmological in origin are in fact compromised by the presence of intervening galactic sources of interstellar electrons clumped on scales typical of interstellar HI structure.
Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies
NASA Astrophysics Data System (ADS)
Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira
2018-03-01
A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.
Continuum radiation in planetary magnetospheres
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1991-01-01
With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.
Plasma waves near the magnetopause
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, R.R.; Haravey, C.C.; Hoppe, M.M.
1982-04-01
Plasma waves associated with the magnetopause, from the magnetosheath to the outer magnetosphere, are examined with an emphasis on high time resolution data and the comparison between measurements by using different antenna systems. An early ISEE crossing of the magnetopause region, including passage through two well-defined flux transfer events, the magentopause current layer, and boundary plasma, is studied in detail. The waves in these regions are compared and contrasted with the waves in the adjoining magnetosheath and outer magnetosphere. Four types of plamsa wave emissions are characteristic of the nominal magnetosheat: (1) a very low frequency continuum, (2) short wavelengthmore » spikes, (3) 'festoon-shaped' emissions below about 2 kHz, and (4) 'lion roars'. The latter two emissions are well correlated with ultra-low frequency magnetic field fluctuations. The dominant plasma wave features during flux transfer events are (1) an intense low-frequency continuum, which includes a substantial electromagnetic component, (2) a dramatic increase in the frequency of occurrence of the spikes, (3) quasi-periodic electron cyclotron harmonics correlated with approx.1-Hz magnetic field fluctuations, and (4) enhanced electron plasma oscillations. The plasma wave characteristics in the current layer and in the boundary layer are quite similar to the features in the flux transfer events. Upon entry into the outer magnetosphere, the plasma wave spectra are dominated by intense electromagnetic chorus bursts and electrosatic (n+1/2)f/sup -//sub g/ emissions. Wavelength determinations made by comparing the various antenna responses and polarization measurements for the different waves are also presented.« less
NASA Technical Reports Server (NTRS)
Menietti, J. D.; Christopher, I.; Granroth, L. J.
2001-01-01
We have conducted a study of quasiperiodic emission observed by the plasma wave instrument on board the Galileo spacecraft. These emissions appear as broadband bursts with dominant periods ranging from 10 min to over 40 min. For these emissions we have explicitly analyzed the high-resolution (waveform) data to determine the presence of impulsive, solitary signatures. Our investigations have indicated that the broadband bursts, as well as the background more narrowband continuum emission, are composed of a highly turbulent spectrum. Within the broadband burst, however, there are higher-frequency components present, but no impulsive electrostatic signatures. Also significantly, the broadband bursts show no low-frequency dispersion. We conclude that the bursts are consistent with a distant, electromagnetic source, probably in the near-Jupiter vicinity.
Submillimeter array observations of NGC 2264-C: molecular outflows and driving sources
NASA Astrophysics Data System (ADS)
Cunningham, Nichol; Lumsden, Stuart L.; Cyganowski, Claudia J.; Maud, Luke T.; Purcell, Cormac
2016-05-01
We present 1.3 mm Submillimeter Array (SMA) observations at ˜3 arcsec resolution towards the brightest section of the intermediate/massive star-forming cluster NGC 2264-C. The millimetre continuum emission reveals ten 1.3 mm continuum peaks, of which four are new detections. The observed frequency range includes the known molecular jet/outflow tracer SiO (5-4), thus providing the first high-resolution observations of SiO towards NGC 2264-C. We also detect molecular lines of 12 additional species towards this region, including CH3CN, CH3OH, SO, H2CO, DCN, HC3N, and 12CO. The SiO (5-4) emission reveals the presence of two collimated, high-velocity (up to 30 km s-1 with respect to the systemic velocity) bipolar outflows in NGC 2264-C. In addition, the outflows are traced by emission from 12CO, SO, H2CO, and CH3OH. We find an evolutionary spread between cores residing in the same parent cloud. The two unambiguous outflows are driven by the brightest mm continuum cores, which are IR-dark, molecular line weak, and likely the youngest cores in the region. Furthermore, towards the Red MSX Source AFGL 989-IRS1, the IR-bright and most evolved source in NGC 2264-C, we observe no molecular outflow emission. A molecular line rich ridge feature, with no obvious directly associated continuum source, lies on the edge of a low-density cavity and may be formed from a wind driven by AFGL 989-IRS1. In addition, 229 GHz class I maser emission is detected towards this feature.
Continuum radio emission from Virgo galaxies
NASA Technical Reports Server (NTRS)
Turner, Kenneth C.; Helou, George; Terzian, Yervant
1988-01-01
The paper presents single-antenna measurements of radio emission from 120 galaxies in the Virgo cluster at 2380 MHz using a 2.6 arc min beam (half-power beam width). It also presents interferometric measurements at the same frequency for 48 galaxies with less than or equal to 1 arc sec resolution. The relative concentration of the radio emission for these galaxies, particularly the emission from the galactic disk compared with that from the nucleus is discussed. It is found that the disk emission dominates in most cases. Some indications that the flux concentration is greater in elliptical and lenticular galaxies than it is in spirals are also found.
NASA Technical Reports Server (NTRS)
Israel, F. P.; Mahoney, M. J.; Howarth, N.
1992-01-01
We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.
Is the Linear Mode Conversion Theory Viable for Generating Kilometric Continuum?
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Green, James L.; Hashimoto, K.; Gallagher, Dennis L.; Webb, P. A.
2006-01-01
Kilometric Continuum (KC) usually exhibits a complicated banded radiation pattern observed in frequency time spectrograms. Can the number of bands, the frequency range over which the bands are observed, and their time variation be explained with Linear Mode Conversion Theory (LMCT) using realistic plasmapause models and Extreme Ultraviolet (EUV) plasmaspheric observations? In this paper we compare KC observations with simulated frequency emission bands based on LMCT for a number of cases. In LMCT the allowed frequency range across the equatorial plasmapause is restricted to frequencies much greater than the electron cyclotron frequency (fce) and less than the maximum plasma frequency in this region. Fce also determines the number of allowed bands in this range. Is the observed frequency range and number of bands consistent with the predications of LMCT? Can irregularities in the shape of plasmaspheric structures like notches be observed in the time variations of KC emissions? We will investigate these and other questions. Simulated radiation patterns will be generated by ray tracing calculations in the L-O mode from the radio window at the near equatorial plasmapause. The KC observations used in this study are from the Plasma Wave Instrument on the Geotail spacecraft and from the Radio Plasma Imager on the IMAGE spacecraft. The plasmasphere and plasmapause will be derived either from plasmasphere simulations, from images by the EUV imager on the IMAGE spacecraft, and by using empirical models. In situ plasma density measurements from a number of spacecraft will also be used in order to reconstruct the plasmasphere for these case studies.
On the Origin of the Flare Emission in IRIS ’ SJI 2832 Filter:Balmer Continuum or Spectral Lines?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, Lucia; Krucker, Säm; Heinzel, Petr
Continuum (“white-light,” WL) emission dominates the energetics of flares. Filter-based observations, such as the IRIS SJI 2832 filter, show WL-like brightenings during flares, but it is unclear whether the emission arises from real continuum emission or enhanced spectral lines, possibly turning into emission. The difficulty in filter-based observations, contrary to spectral observations, is to determine which processes contribute to the observed brightening during flares. Here we determine the contribution of the Balmer continuum and the spectral line emission to IRIS ’ SJI 2832 emission by analyzing the appropriate passband in simultaneous IRIS NUV spectra. We find that spectral line emissionmore » can contribute up to 100% to the observed slitjaw images (SJI) emission, that the relative contributions usually temporally vary, and that the highest SJI enhancements that are observed are most likely because of the Balmer continuum. We conclude that care should be taken when calling SJI 2832 a continuum filter during flares, because the influence of the lines on the emission can be significant.« less
NASA Astrophysics Data System (ADS)
Hew, Y. M.; Linscott, I.; Close, S.
2015-12-01
Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation.
Wan, W J; Li, H; Zhou, T; Cao, J C
2017-03-08
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification.
Homogeneous spectral spanning of terahertz semiconductor lasers with radio frequency modulation
Wan, W. J.; Li, H.; Zhou, T.; Cao, J. C.
2017-01-01
Homogeneous broadband and electrically pumped semiconductor radiation sources emitting in the terahertz regime are highly desirable for various applications, including spectroscopy, chemical sensing, and gas identification. In the frequency range between 1 and 5 THz, unipolar quantum cascade lasers employing electron inter-subband transitions in multiple-quantum-well structures are the most powerful semiconductor light sources. However, these devices are normally characterized by either a narrow emission spectrum due to the narrow gain bandwidth of the inter-subband optical transitions or an inhomogeneous broad terahertz spectrum from lasers with heterogeneous stacks of active regions. Here, we report the demonstration of homogeneous spectral spanning of long-cavity terahertz semiconductor quantum cascade lasers based on a bound-to-continuum and resonant phonon design under radio frequency modulation. At a single drive current, the terahertz spectrum under radio frequency modulation continuously spans 330 GHz (~8% of the central frequency), which is the record for single plasmon waveguide terahertz lasers with a bound-to-continuum design. The homogeneous broadband terahertz sources can be used for spectroscopic applications, i.e., GaAs etalon transmission measurement and ammonia gas identification. PMID:28272492
NASA Technical Reports Server (NTRS)
Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.;
2011-01-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.
Detection of Heating Processes in Coronal Loops by Soft X-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Kawate, Tomoko; Narukage, Noriyuki; Ishikawa, Shin-nosuke; Imada, Shinsuke
2017-08-01
Imaging and Spectroscopic observations in the soft X-ray band will open a new window of the heating/acceleration/transport processes in the solar corona. The soft X-ray spectrum between 0.5 and 10 keV consists of the electron thermal free-free continuum and hot coronal lines such as O VIII, Fe XVII, Mg XI, Si XVII. Intensity of free-free continuum emission is not affected by the population of ions, whereas line intensities especially from highly ionized species have a sensitivity of the timescale of ionization/recombination processes. Thus, spectroscopic observations of both continuum and line intensities have a capability of diagnostics of heating/cooling timescales. We perform a 1D hydrodynamic simulation coupled with the time-dependent ionization, and calculate continuum and line intensities under different heat input conditions in a coronal loop. We also examine the differential emission measure of the coronal loop from the time-integrated soft x-ray spectra. As a result, line intensity shows a departure from the ionization equilibrium and shows different responses depending on the frequency of the heat input. Solar soft X-ray spectroscopic imager will be mounted in the sounding rocket experiment of the Focusing Optics X-ray Solar Imager (FOXSI). This observation will deepen our understanding of heating processes to solve the “coronal heating problem”.
Detailed observations of the source of terrestrial narrowband electromagnetic radiation
NASA Technical Reports Server (NTRS)
Kurth, W. S.
1982-01-01
Detailed observations are presented of a region near the terrestrial plasmapause where narrowband electromagnetic radiation (previously called escaping nonthermal continuum radiation) is being generated. These observations show a direct correspondence between the narrowband radio emissions and electron cyclotron harmonic waves near the upper hybrid resonance frequency. In addition, electromagnetic radiation propagating in the Z-mode is observed in the source region which provides an extremely accurate determination of the electron plasma frequency and, hence, density profile of the source region. The data strongly suggest that electrostatic waves and not Cerenkov radiation are the source of the banded radio emissions and define the coupling which must be described by any viable theory.
Spiky Fine Structure of Type III-like Radio Bursts in Absorption
NASA Astrophysics Data System (ADS)
Chernov, G. P.; Yan, Y. H.; Tan, C. M.; Chen, B.; Fu, Q. J.
2010-03-01
An uncommon fine structure in the radio spectrum consisting of bursts in absorption was observed with the Chinese Solar Broadband Radiospectrometer (SBRS) in the frequency range of 2.6 - 3.8 GHz during an X3.4/4B flare on 13 December 2006 in active region NOAA 10930 (S05W33). Usual fine structures in emission such as spikes, zebra stripes, and drifting fibers were observed at the peak of every new flare brightening. Within an hour at the decay phase of the event we observed bursts consisting of spikes in absorption, which pulsated periodically in frequency. Their instantaneous frequency bandwidths were found to be in the 75 MHz range. Moreover, in the strongest Type III-like bursts in absorption, the spikes showed stripes of the zebra-pattern (ZP) that drifted to higher frequencies. All spikes had the duration as short as down to the limit of the instrument resolution of ≈8 ms. The TRACE 195 Å images indicate that the magnetic reconnection at this moment occurred in the western edge of the flare loop arcade. Taking into account the presence of the reverse-drifting bursts in emission, in the course of the restoration of the magnetic structures in the corona, the acceleration of the beams of fast particles must have occurred both upward and downward at different heights. The upward beams will be captured by the magnetic trap, where the loss-cone distribution of fast particles (responsible for the emission of continuum and ZP) were formed. An additional injection of fast particles will fill the loss-cone later, breaking the loss-cone distribution. Therefore, the generation of continuum will be quenched at these moments, which was evidenced by the formation of bursts in absorption.
Models of Uranium continuum radio emission
NASA Technical Reports Server (NTRS)
Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.
1987-01-01
Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.
NASA Technical Reports Server (NTRS)
Rahoui, Farid; Lee, Julia C.; Heinz, Sebastian; Hines, Dean C.; Pottschmidt, Katja; Wilms, Joern
2011-01-01
We report on a Spitzer/IRS (mid-infrared), RXTE /PCA+HEXTE (X-ray), and Ryle (radio) simultaneous multi-wavelength study of the micro quasar Cygnus X-I, which aimed at an investigation of the origin of its mid-infrared emission. Compact jets were present in two out of three observations, and we show that they strongly contribute to the mid-infrared continuum. During the first observation, we detect the spectral break - where the transition from the optically thick to the optically thin regime takes place - at about 2.9 x 10(exp 13) Hz. We then show that the jet's optically thin synchrotron emission accounts for the Cygnus X-1's emission beyond 400 keY, although it cannot alone explain its 3-200 keV continuum. A compact jet was also present during the second observation, but we do not detect the break, since it has likely shifted to higher frequencies. In contrast, the compact jet was absent during the last observation, and we show that the 5-30 micron mid-infrared continuum of Cygnus X-I stems from the blue supergiant companion star HD 226868. Indeed, the emission can then be understood as the combination of the photospheric Raleigh-Jeans tail and the bremsstrahlung from the expanding stellar wind. Moreover, the stellar wind is found to be clumpy, with a filling factor f(sub infinity) approx.= 0.09-0.10. Its bremsstrahlung emission is likely anti-correlated to the soft X-ray emission, suggesting an anticorrelation between the mass-loss and mass-accretion rates. Nevertheless, we do not detect any mid-infrared spectroscopic evidence of interaction between the jets and the Cygnus X-1's environment and/or companion star's stellar wind.
2- to 3-kHz continuum emissions as possible indications of global heliospheric 'breathing'
NASA Technical Reports Server (NTRS)
Grzedzielski, S.; Lazarus, A. J.
1993-01-01
The paper analyzes the main features of 2- to 3-kHz heliospheric emissions in the context of a general heliospheric 'breathing' as inferred from the Voyager 2 solar wind average ram pressure data. Triggers for the three 3-kHz emission events seen to date are suggested, and good agreement is obtained in timing and expected postshock frequency for termination shock distances of about 90 AU. It is suggested that the visibility of the individual 3-kHz events and their observed upward frequency drift are enhanced when the postulated global heliospheric expansion results in the formation of a transient, compressed external plasma barrier around the heliopause that prevents radiation escape for several months. The average termination shock distance is estimated to be in the range 80-90 AU.
The influence of continuum radiation fields on hydrogen radio recombination lines
NASA Astrophysics Data System (ADS)
Prozesky, Andri; Smits, Derck P.
2018-05-01
Calculations of hydrogen departure coefficients using a model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. New numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. Our results differ from previous results by up to 20 per cent. A direct solver with a similar accuracy but more efficient than the iterative method is used to evaluate the influence of continuum radiation on the hydrogen population structure. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Tables of emission and absorption coefficients for interpreting observed radio recombination lines are provided.
Aatrokoski, J.
2011-12-01
Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativisticmore » jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleint, Lucia; Krucker, Säm; Heinzel, Petr
2016-01-10
Enhanced continuum brightness is observed in many flares (“white light flares”), yet it is still unclear which processes contribute to the emission. To understand the transport of energy needed to account for this emission, we must first identify both the emission processes and the emission source regions. Possibilities include heating in the chromosphere causing optically thin or thick emission from free-bound transitions of Hydrogen, and heating of the photosphere causing enhanced H{sup −} continuum brightness. To investigate these possibilities, we combine observations from Interface Region Imaging Spectrograph (IRIS), SDO/Helioseismic and Magnetic Imager, and the ground-based Facility Infrared Spectrometer instrument, coveringmore » wavelengths in the far-UV, near-UV (NUV), visible, and infrared during the X1 flare SOL20140329T17:48. Fits of blackbody spectra to infrared and visible wavelengths are reasonable, yielding radiation temperatures ∼6000–6300 K. The NUV emission, formed in the upper photosphere under undisturbed conditions, exceeds these simple fits during the flare, requiring extra emission from the Balmer continuum in the chromosphere. Thus, the continuum originates from enhanced radiation from photosphere (visible-IR) and chromosphere (NUV). From the standard thick-target flare model, we calculate the energy of the nonthermal electrons observed by Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and compare it to the energy radiated by the continuum emission. We find that the energy contained in most electrons >40 keV, or alternatively, of ∼10%–20% of electrons >20 keV is sufficient to explain the extra continuum emission of ∼(4–8) × 10{sup 10} erg s{sup −1} cm{sup −2}. Also, from the timing of the RHESSI HXR and the IRIS observations, we conclude that the NUV continuum is emitted nearly instantaneously when HXR emission is observed with a time difference of no more than 15 s.« less
Radio continuum from FU Orionis stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, L.F.; Hartmann, L.W.; Chavira, E.
1990-12-01
Using the very large array a sensitive search is conducted for 3.6-cm continuum emission toward four FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, and Elias 1-12. V1057 Cyg and Elias 1-12 at the level of about 0.1 mJy is detected. The association of radio continuum emission with these FU Ori objects strengthens a possible relation between FU Ori stars and objects like L 1551 IRS 5 and Z CMa that are also sources of radio continuum emission and have been proposed as post-FU Ori objects. Whether the radio continuum emission is caused by free-free emission from ionized ejectamore » or if it is optically thin emission from a dusty disk is discussed. It was determined that, in the archives of the Tonantzintla Observatory, a plate taken in 1957 does not show Elias 1-12. This result significantly narrows the time range for the epoch of the outburst of this source to between 1957 and 1965. 38 refs.« less
Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M
2016-06-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.
ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Catherine; Maud, Luke T.; Juhász, Attila
Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048more » is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.« less
ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk
NASA Astrophysics Data System (ADS)
Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko
2016-11-01
Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.
Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris
NASA Technical Reports Server (NTRS)
Lang, K. R.; Willson, R. F.
1986-01-01
Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.
NASA Astrophysics Data System (ADS)
Tereshchenko, E. D.; Yurik, R. Yu.; Yeoman, T. K.; Robinson, T. R.
2008-11-01
We present the first results of observations of the stimulated electromagnetic emission (SEE) in the ionosphere modified by the Space Plasma Exploration by Active Radar (SPEAR) heating facility. Observation of the SEE is the key method of ground-based diagnostics of the ionospheric plasma disturbances due to high-power HF radiation. The presented results were obtained during the heating campaign performed at the SPEAR facility in February-March 2007. Prominent SEE special features were observed in periods in which the critical frequency of the F 2 layer was higher than the pump-wave frequency (4.45 MHz). As an example, such special features as the downshifted maximum and the broad continuum in the region of negative detunings from the pump-wave frequency are presented. Observations clearly demonstrate that the ionosphere was efficiently excited by the SPEAR heating facility despite the comparatively low pump-wave power.
SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Plas, G.; Casassus, S.; Perez, S.
2014-09-10
The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less
Radio Emission from the Exoplanetary System ɛ Eridani
NASA Astrophysics Data System (ADS)
Bastian, T. S.; Villadsen, J.; Maps, A.; Hallinan, G.; Beasley, A. J.
2018-04-01
As part of a wider search for radio emission from nearby systems known or suspected to contain extrasolar planets, ɛ Eridani was observed by the Jansky Very Large Array (VLA) in the 2–4 GHz and 4–8 GHz frequency bands. In addition, as part of a separate survey of thermal emission from solar-like stars, ɛ Eri was observed in the 8–12 GHz and the 12–18 GHz bands of the VLA. Quasi-steady continuum radio emission from ɛ Eri was detected in the three high-frequency bands at levels ranging from 67 to 83 μJy. No significant variability is seen in the quasi-steady emission. The emission in the 2–4 GHz emission, however, is shown to be the result of a circularly polarized (up to 50%) radio pulse or flare of a few minutes in duration that occurred at the beginning of the observation. We consider the astrometric position of the radio source in each frequency band relative to the expected position of the K2V star and the purported planet. The quasi-steady radio emission at frequencies ≥8 GHz is consistent with a stellar origin. The quality of the 4–8 GHz astrometry provides no meaningful constraint on the origin of the emission. The location of the 2–4 GHz radio pulse is >2.5σ from the star; however, based on the ephemeris of Benedict et al., it is not consistent with the expected location of the planet either. If the radio pulse has a planetary origin, then either the planetary ephemeris is incorrect or the emission originates from another planet.
Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.
We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGCmore » 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).« less
Gravitational instabilities in a protosolar-like disc - II. Continuum emission and mass estimates
NASA Astrophysics Data System (ADS)
Evans, M. G.; Ilee, J. D.; Hartquist, T. W.; Caselli, P.; Szűcs, L.; Purser, S. J. D.; Boley, A. C.; Durisen, R. H.; Rawlings, J. M. C.
2017-09-01
Gravitational instabilities (GIs) are most likely a fundamental process during the early stages of protoplanetary disc formation. Recently, there have been detections of spiral features in young, embedded objects that appear consistent with GI-driven structure. It is crucial to perform hydrodynamic and radiative transfer simulations of gravitationally unstable discs in order to assess the validity of GIs in such objects, and constrain optimal targets for future observations. We utilize the radiative transfer code lime (Line modelling Engine) to produce continuum emission maps of a 0.17 M⊙ self-gravitating protosolar-like disc. We note the limitations of using lime as is and explore methods to improve upon the default gridding. We use casa to produce synthetic observations of 270 continuum emission maps generated across different frequencies, inclinations and dust opacities. We find that the spiral structure of our protosolar-like disc model is distinguishable across the majority of our parameter space after 1 h of observation, and is especially prominent at 230 GHz due to the favourable combination of angular resolution and sensitivity. Disc mass derived from the observations is sensitive to the assumed dust opacities and temperatures, and therefore can be underestimated by a factor of at least 30 at 850 GHz and 2.5 at 90 GHz. As a result, this effect could retrospectively validate GIs in discs previously thought not massive enough to be gravitationally unstable, which could have a significant impact on the understanding of the formation and evolution of protoplanetary discs.
Zhang, Zhi-Yu; Smith, M. W. L.; Xilouris, Emmanuel M.
2016-01-01
Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB. PMID:27429763
The February 15 2011 CME-CME interaction and possibly associated radio emission
NASA Astrophysics Data System (ADS)
Magdalenic, Jasmina; Temmer, Manuela; Krupar, Vratislav; Marque, Christophe; Veronig, Astrid; Eastwood, Jonathan
2017-04-01
On February 15, 2011 a particular, continuum-like radio emission was observed by STEREO WAVES and WIND WAVES spacecraft. The radio event appeared to be associated with the complex interaction of two coronal mass ejections (CMEs) successively launched (February 14 and February 15) from the same active region. Although the CME-CME interaction was widely studied (e.g. Temmer et al., 2014, Maricic et al., 2014, Mishra & Srivastava, 2014) none of the analyses confirmed an association with the continuum-like radio emission. The usual method of establishing temporal coincidence of radio continuum and a CME-CME interaction is not applicable in this event due to a complex and long-lasting interaction of the CMEs. Therefore, we performed radio triangulation studies (see also Magdalenic et al., 2014) which provided us with the 3D source positions of the radio emission. Comparison of the positions of radio sources and the reconstructed positions of the interacting CMEs, shows that the source position of the continuum-like radio emission is about 0.5 AU away from the interacting CMEs. We can therefore concluded that, in this event, the continuum-like emission is not the radio signature of the CME-CME interaction.
Radiation of partially ionized atomic hydrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1990-01-01
A nonlinear collisional-radiative model for determination of production of electrons, positive and negative ions, excited atoms, and spectral and continuum line intensities in stationary partially ionized atomic hydrogen is presented. Transport of radiation is included by coupling the rate equations for production of the electrons, ions, and excited atoms with the radiation escape factors, which are not constant but depend on plasma conditions. It is found that the contribution of the negative ion emission to the total continuum emission can be important. Comparison of the calculated total continuum emission coefficient, including the negative ion emission, is in good agreement with experimental results.
Limb observations of the 12.32 micron solar emission line during the 1991 July total eclipse
NASA Technical Reports Server (NTRS)
Deming, Drake; Jennings, Donald E.; Mccabe, George; Noyes, Robert; Wiedemann, Gunter; Espenak, Fred
1992-01-01
The limb profile of the Mg I 12.32-micron emission line is determined by occultation in the July 11, 1991 total solar eclipse over Mauna Kea. It is shown that the emission peaks are very close to the 12-micron continuum limb, as predicted by recent theory for this line as a non-LTE photospheric emission. The increase in optical depth for this extreme limb-viewing situation indicates that most of the observed emission arises from above the chromospheric temperature minimum, and it is found that this emission is extended to heights well in excess of the model predictions. The line emission can be observed as high as 2000 km above the 12-micron continuum limb, whereas theory predicts it to remain observable no higher than about 500 km above the continuum limb. The substantial limb extension observed in this line is quantitatively consistent with limb extensions seen in the far-IR continuum, and it is concluded that it is indicative of departures from gravitational hydrostatic equilibrium, or spatial inhomogeneities, in the upper solar atmosphere.
High density terahertz frequency comb produced by coherent synchrotron radiation
Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.
2015-01-01
Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043
The Lyman Continuum Escape Fraction of Emission Line-selected z ∼ 2.5 Galaxies Is Less Than 15%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutkowski, Michael J.; Hayes, Matthew; Scarlata, Claudia
Recent work suggests that strong emission line, star-forming galaxies (SFGs) may be significant Lyman continuum leakers. We combine archival Hubble Space Telescope broadband ultraviolet and optical imaging (F275W and F606W, respectively) with emission line catalogs derived from WFC3 IR G141 grism spectroscopy to search for escaping Lyman continuum (LyC) emission from homogeneously selected z ∼ 2.5 SFGs. We detect no escaping Lyman continuum from SFGs selected on [O ii] nebular emission ( N = 208) and, within a narrow redshift range, on [O iii]/[O ii]. We measure 1 σ upper limits to the LyC escape fraction relative to the non-ionizingmore » UV continuum from [O ii] emitters, f {sub esc} ≲ 5.6%, and strong [O iii]/[O ii] > 5 ELGs, f {sub esc} ≲ 14.0%. Our observations are not deep enough to detect f {sub esc} ∼ 10% typical of low-redshift Lyman continuum emitters. However, we find that this population represents a small fraction of the star-forming galaxy population at z ∼ 2. Thus, unless the number of extreme emission line galaxies grows substantially to z ≳ 6, such galaxies may be insufficient for reionization. Deeper survey data in the rest-frame ionizing UV will be necessary to determine whether strong line ratios could be useful for pre-selecting LyC leakers at high redshift.« less
ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.
2016-12-20
We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less
Accretion Signatures on Massive Young Stellar Objects
NASA Astrophysics Data System (ADS)
Navarete, F.; Damineli, A.; Barbosa, C. L.; Blum, R. D.
2015-01-01
We present preliminary results from a survey of molecular H2 (2.12 μm) emission in massive young stellar objects (MYSO) candidates selected from the Red MSX Source survey. We observed 354 MYSO candidates through the H2 S(1) 1-0 transition (2.12 μm) and an adjacent continuum narrow-band filters using the Spartan/SOAR and WIRCam/CFHT cameras. The continuum-subtracted H2 maps were analyzed and extended H2 emission was found in 50% of the sample (178 sources), and 38% of them (66) have polar morphology, suggesting collimated outflows. The polar-like structures are more likely to be driven on radio-quiet sources, indicating that these structures occur during the pre-ultra compact H ii phase. We analyzed the continuum images and found that 54% (191) of the sample displayed extended continuum emission and only ~23% (80) were associated to stellar clusters. The extended continuum emission is correlated to the H2 emission and those sources within stellar clusters does display diffuse H2 emission, which may be due to fluorescent H2 emission. These results support the accretion scenario for massive star formation, since the merging of low-mass stars would not produce jet-like structures. Also, the correlation between jet-like structures and radio-quiet sources indicates that higher inflow rates are required to form massive stars in a typical timescale less than 105 years.
Earth-based remote sensing of planetary surfaces and atmospheres at radio wavelengths
NASA Technical Reports Server (NTRS)
Dickel, J. R.
1982-01-01
Two reasons for remote sensing from the Earth are given: (1) space exploration, particularly below the surfaces or underneath cloud layers, is limited to only a very few planets; and (2) a program of regular monitoring, currently impractical with a limited number of space probes, is required. Reflected solar and nonthermal radiation are discussed. Relativistic electrons, trapped in large magnetospheres on Saturn and Jupiter, are discussed. These electrons produce synchrotron radiation and also interact with the ionosphere to produce bursts of low frequency emission. Because most objects are black-bodies, continuum radiometry is emphasized. Spectroscopic techniques and the measurement of nonthermal emission are also discussed.
Observations of neutral iron emission in twilight spectra
NASA Technical Reports Server (NTRS)
Tepley, C. A.; Meriwether, J. W., Jr.; Walker, J. C. G.; Mathews, J. D.
1981-01-01
A method is presented for the analysis of twilight airglow spectra that may be contaminated by atmospheric continuum emission of unknown brightness. The necessity of correcting for this continuum emission when measuring weak airglow features in twilight is illustrated by application of the method to the neutral iron line at 3860 A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ran; Wu, Xue-Bing; Jiang, Linhua
We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of themore » radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.« less
ALMA REVEALS POTENTIAL LOCALIZED DUST ENRICHMENT FROM MASSIVE STAR CLUSTERS IN II Zw 40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara
2016-12-10
We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ∼0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μ m continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μ m continuum emission, with free–free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free–free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggestmore » that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.« less
WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosero, V.; Hofner, P.; Claussen, M.
2016-12-01
We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10 μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sourcesmore » associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.« less
Solar flare microwave observations with high spectral resolution
NASA Astrophysics Data System (ADS)
Bruggmann, G.; Magun, A.; Benz, A. O.; Stehling, W.
1990-12-01
The solar flare radio emission in the 6-8 GHz range was observed with a high resolution spectrometer. The observed band corresponds to the plasma frequencies and gyrofrequencies of the transition region and the lowest part of the corona in active regions. Most of the emissions were found to be broadbanded, as expected from the gyrosynchrotron mechanism. In eight out of 46 observed events, spectral structures of three types were detected: spikes below the time resolution of 100 ms, slowly drifting broadband structures, and a narrow bandwidth patch of continuum emission. These first narrowband bursts spectrally recorded in the 6-8 GHz range are generally weak. Slowly drifting structures are the only type compatible with the gyrosynchrotron emission mechanism. A simple argument based on free-free absorption shows that plasma emission can only be propagated if the radiation originates in a dense region with a small density-scale length. The same holds for maser emission at a low harmonic of the electron gyrofrequency. Possible emission mechanisms and diagnostic capabilities are discussed.
Detection of 3-Minute Oscillations in Full-Disk Lyman-alpha Emission During A Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, R. O.; Ireland, J.; Fleck, B.; Hudson, H. S.; Fletcher, L.; Dennis, B. R.
2017-12-01
We report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyman-alpha (from GOES/EUVS) and Lyman continuum (from SDO/EVE) emission from the 2011 February 15 X-class flare revealed a 3-minute period present during the flare's main phase. The formation temperature of this emission locates this radiation to the flare's chromospheric footpoints, and similar behaviour is found in the SDO/AIA 1600A and 1700A channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray energies (50-100 keV) in RHESSI data we can state that this 3-minute oscillation does not depend on the rate of energization of, or energy deposition by, non-thermal electrons. However, a second period of 120 s found in both hard X-ray and chromospheric emission is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyman-alpha line may influence the composition and dynamics of planetary atmospheres during periods of high activity.
HUBBLE SPACE TELESCOPE AND GROUND-BASED OBSERVATIONS OF V455 ANDROMEDAE POST-OUTBURST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szkody, Paula; Mukadam, Anjum S.; Brown, Justin
2013-09-20
Hubble Space Telescope spectra obtained in 2010 and 2011, 3 and 4 yr after the large amplitude dwarf nova outburst of V455 And, were combined with optical photometry and spectra to study the cooling of the white dwarf, its spin, and possible pulsation periods after the outburst. The modeling of the ultraviolet (UV) spectra shows that the white dwarf temperature remains ∼600 K hotter than its quiescent value at 3 yr post-outburst, and still a few hundred degrees hotter at 4 yr post-outburst. The white dwarf spin at 67.6 s and its second harmonic at 33.8 s are visible inmore » the optical within a month of outburst and are obvious in the later UV observations in the shortest wavelength continuum and the UV emission lines, indicating an origin in high-temperature regions near the accretion curtains. The UV light curves folded on the spin period show a double-humped modulation consistent with two-pole accretion. The optical photometry 2 yr after outburst shows a group of frequencies present at shorter periods (250-263 s) than the periods ascribed to pulsation at quiescence, and these gradually shift toward the quiescent frequencies (300-360 s) as time progresses past outburst. The most surprising result is that the frequencies near this period in the UV data are only prominent in the emission lines, not the UV continuum, implying an origin away from the white dwarf photosphere. Thus, the connection of this group of periods with non-radial pulsations of the white dwarf remains elusive.« less
Crack Tip Dislocation Nucleation in FCC Solids
NASA Astrophysics Data System (ADS)
Knap, J.; Sieradzki, K.
1999-02-01
We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.
NASA Technical Reports Server (NTRS)
Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.
1993-01-01
Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Schilke, P.; Schmiedeke, A.; Ginsburg, A.; Cesaroni, R.; Lis, D. C.; Qin, S.-L.; Müller, H. S. P.; Bergin, E.; Comito, C.; Möller, Th.
2017-07-01
Context. The two hot molecular cores Sgr B2(M) and Sgr B2(N), which are located at the center of the giant molecular cloud complex Sagittarius B2, have been the targets of numerous spectral line surveys, revealing a rich and complex chemistry. Aims: We seek to characterize the physical and chemical structure of the two high-mass star-forming sites Sgr B2(M) and Sgr B2(N) using high-angular resolution observations at millimeter wavelengths, reaching spatial scales of about 4000 au. Methods: We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an unbiased spectral line survey of both regions in the ALMA band 6 with a frequency coverage from 211 GHz to 275 GHz. The achieved angular resolution is 0.̋4, which probes spatial scales of about 4000 au, I.e., able to resolve different cores and fragments. In order to determine the continuum emission in these line-rich sources, we used a new statistical method, STATCONT, which has been applied successfully to this and other ALMA datasets and to synthetic observations. Results: We detect 27 continuum sources in Sgr B2(M) and 20 sources in Sgr B2(N). We study the continuum emission variation across the ALMA band 6 (I.e., spectral index) and compare the ALMA 1.3 mm continuum emission with previous SMA 345 GHz and VLA 40 GHz observations to study the nature of the sources detected. The brightest sources are dominated by (partially optically thick) dust emission, while there is an important degree of contamination from ionized gas free-free emission in weaker sources. While the total mass in Sgr B2(M) is distributed in many fragments, most of the mass in Sgr B2(N) arises from a single object, with filamentary-like structures converging toward the center. There seems to be a lack of low-mass dense cores in both regions. We determine H2 volume densities for the cores of about 107-109 cm-3 (or 105-107 M⊙ pc-3), I.e., one to two orders of magnitude higher than the stellar densities of super star clusters. We perform a statistical study of the chemical content of the identified sources. In general, Sgr B2(N) is chemically richer than Sgr B2(M). The chemically richest sources have about 100 lines per GHz and the fraction of luminosity contained in spectral lines at millimeter wavelengths with respect to the total luminosity is about 20%-40%. There seems to be a correlation between the chemical richness and the mass of the fragments, where more massive clumps are more chemically rich. Both Sgr B2(N) and Sgr B2(M) harbor a cluster of hot molecular cores. We compare the continuum images with predictions from a detailed 3D radiative transfer model that reproduces the structure of Sgr B2 from 45 pc down to 100 au. Conclusions: This ALMA dataset, together with other ongoing observational projects in the range 5 GHz to 200 GHz, better constrain the 3D structure of Sgr B2 and allow us to understand its physical and chemical structure. FITS files of the continuum images as well as the spectral index are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A6
Microwave coherent emissions from solar flares - a look at through a large interferometer
NASA Astrophysics Data System (ADS)
Altyntsev, Alexandre; Sergei, Lesovoi; Natalia, Meshalkina; Dmitrii, Zhdanov; Natalia, Korolkova
2013-04-01
The report discusses the results of microwave observations of coherent emission sources with broadband spectropolarimeters and the Siberian Solar Radio Telescope (receiving frequency about 5.7 GHz). To date, more than 300 events with narrowband subsecond pulses were recorded. It is revealed that at the small real sizes of sources their apparent sizes can reach the SSRT beam width (≥ 15 arcsec) due to electromagnetic wave scattering by density fluctuations in the lower corona, or due to emission reflection from the underlying layers of the solar atmosphere. The fine emission sources usually occur near tops of the flare loops. In some events it was possible to reveal plasma parameters in the vicinity of the fine emission exciters from the X-ray, optical and continuum microwave images, and to identify the mechanisms of the coherent emission. The SSRT is an interferometer that allows to record spatial brightness distributions of a flare region at two close frequencies simultaneously. Such observations have showed that the frequency dynamics of fast drifting narrowband bursts (type III - like) is controlled not only by the velocity of exciter movement through gradients of the plasma parameters, but also by rapid changes in plasma parameters over time. We discuss the diagnostic potential of the observations of coherent emission sources and new possibilities of the instruments which are under construction now. The work is supported by the Ministry of education and science of the Russian Federation (State Contracts 16.518.11.7065 and 02.740.11.0576), and by the grants RFBR (12-02-91161-GFEN-a, 12-02-00616 and 12-02-00173-a
The search for faint radio supernova remnants in the outer Galaxy: five new discoveries
NASA Astrophysics Data System (ADS)
Gerbrandt, Stephanie; Foster, Tyler J.; Kothes, Roland; Geisbüsch, Jörn; Tung, Albert
2014-06-01
Context. High resolution and sensitivity large-scale radio surveys of the Milky Way are critical in the discovery of very low surface brightness supernova remnants (SNRs), which may constitute a significant portion of the Galactic SNRs still unaccounted for (ostensibly the "missing SNR problem"). Aims: The overall purpose here is to present the results of a systematic, deep data-mining of the Canadian Galactic plane Survey (CGPS) for faint, extended non-thermal and polarized emission structures that are likely the shells of uncatalogued SNRs. Methods: We examine 5 × 5 degree mosaics from the entire 1420 MHz continuum and polarization dataset of the CGPS after removing unresolved "point" sources and subsequently smoothing them. Newly revealed extended emission objects are compared to similarly prepared CGPS 408 MHz continuum mosaics, as well as to source-removed mosaics from various existing radio surveys at 4.8 GHz, 2.7 GHz, and 327 MHz, to identify candidates with non-thermal emission characteristics. We integrate flux densities at each frequency to characterise the radio spectra behaviour of these candidates. We further look for mid- and high-frequency (1420 MHz, 4.8 GHz) ordered polarized emission from the limb brightened "shell"-like continuum features that the candidates sport. Finally, we use IR and optical maps to provide additional backing evidence. Results: Here we present evidence that five new objects, identified as filling all or some of the criteria above, are strong candidates for new SNRs. These five are designated by their Galactic coordinate names G108.5+11.0, G128.5+2.6, G149.5+3.2, G150.8+3.8, and G160.1-1.1. The radio spectrum of each is presented, highlighting their steepness, which is characteristic of synchrotron radiation. CGPS 1420 MHz polarization data and 4.8 GHz polarization data also provide evidence that these objects are newly discovered SNRs. These discoveries represent a significant increase in the number of SNRs known in the outer Galaxy second quadrant of longitude (90° < ℓ < 180°), and suggests that deep mining of other current and future Milky Way surveys will find even more objects and help to reconcile the difference between expected numbers of Galactic SNRs and the smaller number of currently known SNRs.
Terrestrial FeO Continuum Emission Observed in Sky Spectra
NASA Astrophysics Data System (ADS)
Slanger, Tom G.; Melchiorri, R.; Saran, D. V.
2011-01-01
The terrestrial continuum emission in the visible spectral region has often been studied by both astronomers and aeronomers, in order to clarify backgrounds and the nature of the emissions. New observations from the ESI spectrograph on the Keck II telescope, as well as from the OSIRIS/Odin spectrograph and orbiter, have established that a major component of the emission originates with the FeO molecule [Evans et al., 2010]. This quasi-continuum peaks at 5950 A and extends from 5000 A well into the infrared. The identity has been demonstrated by comparison with meteor trains and laboratory measurements [Jenniskens et al., 2000]. Early studies of the continuum show consistency with the FeO emission as presently observed [Gadsden and Marovich, 1973]. Analysis of spectra from Kitt Peak [Neugent and Massey, 2010] demonstrates the great similarity between FeO emission in a clean atmosphere and high pressure sodium lamp emission in a polluted atmosphere. This research was supported by NSF Aeronomy under Grant ATM-0637433 . Evans, W.F.J., et al., Geophys. Res. Lett. [in press, 2010] Gadsden, M. and E. Marovich, J. Atm. Terr. Phys., 35, 1601-1614 [1973] Jenniskens, P., et al., Earth, Moon and Planets, 82-83, 429-434 [2000] Neugent, K.F. and P. Massey, PASP [in press, 2010
Extended Millimeter Emission in the HD 141569 Circumstellar Disk Detected with ALMA
NASA Astrophysics Data System (ADS)
White, Jacob Aaron; Boley, A. C.
2018-06-01
We present archival Atacama Large Millimeter/submillimeter Array (ALMA) observations of the HD 141569 circumstellar disk at 345, 230, and 100 GHz. These data detect extended millimeter emission that is exterior to the inner disk. We find through simultaneous visibility modeling of all three data sets that the system’s morphology is described well by a two-component disk model. The inner disk ranges from approximately 16–45 au with a spectral index of 1.81 (q = 2.95), and the outer disk ranges from 95 to 300 au with a spectral index of 2.28 (q = 3.21). Azimuthally averaged radial emission profiles derived from the continuum images at each frequency show potential emission that is consistent with the visibility modeling. The analysis presented here shows that at ∼5 Myr, HD 141569's grain size distribution is steeper and therefore possibly evolved in the outer disk than in the inner disk.
Z mode radiation in Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Chen, R. F.; Moses, S. L.; Coroniti, F.; Kurth, W. S.
1987-01-01
Results of a survey of the Voyager plasma wave instrument wide-band frames that exhibit a narrow-band emission below the low-frequency cutoff of the continuum band are discussed. The analysis of these waves made it possible to identify them as the slow branch of the X mode, the so-called Z mode. As the Voyager 1 spacecraft approached the plasma sheet on March 8, 1979, the Z mode intensified and then disappeared on plasma sheet entry. This observation is interpreted as evidence of local Z mode generation.
Near-infrared line and continuum emission from the blue dwarf galaxy II Zw 40
NASA Technical Reports Server (NTRS)
Joy, Marshall; Lester, Daniel F.
1988-01-01
A multicolor analysis of new near-infrared line and continuum measurements indicates that nebular recombination emission and photospheric radiation from young blue stars produce most of the near-infrared continuum emission in the central 6 arcsec of the dwarf galaxy II Zw 40. The derived nebular recombination level is in excellent agreement with independent observations of the radio free-free continuum. It is found that evolved stars, which dominate the near-infrared emission from normal galaxies, contribute no more than 25 percent of the total 2.2 micron flux in the central region of II Zw 40. It is concluded that the total mass of the evolved stellar population in the central 400 pc of the galaxy is less than about two hundred million solar. The total mass of recently formed stars is about two million solar, and the stellar mass ratio is exceptionally large. Thus, II Zw 40 is a quintessential starburst galaxy.
On the Nature of Orion Source I
NASA Astrophysics Data System (ADS)
Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.
2018-01-01
The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.
Simulation and theory of spontaneous TAE frequency sweeping
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, H. L.
2012-09-01
A simulation model, based on the linear tip model of Rosenbluth, Berk and Van Dam (RBV), is developed to study frequency sweeping of toroidal Alfvén eigenmodes (TAEs). The time response of the background wave in the RBV model is given by a Volterra integral equation. This model captures the properties of TAE waves both in the gap and in the continuum. The simulation shows that phase space structures form spontaneously at frequencies close to the linearly predicted frequency, due to resonant particle-wave interactions and background dissipation. The frequency sweeping signals are found to chirp towards the upper and lower continua. However, the chirping signals penetrate only the lower continuum, whereupon the frequency chirps and mode amplitude increases in synchronism to produce an explosive solution. An adiabatic theory describing the evolution of a chirping signal is developed which replicates the chirping dynamics of the simulation in the lower continuum. This theory predicts that a decaying chirping signal will terminate at the upper continuum though in the numerical simulation the hole disintegrates before the upper continuum is reached.
IUE observations of circumstellar emission from the late-type variable R AQR (M6 + pec)
NASA Technical Reports Server (NTRS)
Hobbs, R. W.; Michalitsianos, A. G.; Kafatos, M.
1981-01-01
The IUE observations of R Aqr (M7 + pec) obtained in low dispersion are discussed with particular reference to circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are seen, superimposed on a bright ultraviolet continuum. It is deduced that the strong emission line spectrum that involves C III, C IV, Si III, (0 II) and (0 III) probably arises from a dense compact nebula the size of which is comparable to the orbital radius of the binary system of which R Aqr is the primary star. The low excitation emission lines of Fe II, Mg II, 0 I, and Si II probably a white dwarf, comparable to or somewhat brighter than the Sun, since such a star can produce enough ionizing photons to excite the continuum and emission line spectrum and yet be sufficiently faint as to escape detection by direct observation. The UV continuum is attributed to Balmer recombination from the dense nebula and not to blackbody emission from the hot companion.
NASA Astrophysics Data System (ADS)
González-López, J.; Bauer, F. E.; Aravena, M.; Laporte, N.; Bradley, L.; Carrasco, M.; Carvajal, R.; Demarco, R.; Infante, L.; Kneissl, R.; Koekemoer, A. M.; Muñoz Arancibia, A. M.; Troncoso, P.; Villard, E.; Zitrin, A.
2017-12-01
Context. Most sub-mm emission line studies of galaxies to date have targeted sources with known redshifts where the frequencies of the lines are well constrained. Recent blind line scans circumvent the spectroscopic redshift requirement, which could represent a selection bias. Aims: Our aim is to detect emission lines present in continuum oriented observations. The detection of these lines provides spectroscopic redshift information and yields important properties of the galaxies. Methods: We perform a search for emission lines in the Atacama Large Millimeter/submillimeter Array observations of five clusters which are part of the Frontier Fields and assess the reliability of our detection. We additionally investigate plausibility by associating line candidates with detected galaxies in deep near-infrared imaging. Results: We find 26 significant emission lines candidates, with observed line fluxes between 0.2-4.6 Jy kms-1and velocity dispersions (FWHM) of 25-600kms-1. Nine of these candidates lie in close proximity to near-infrared sources, boosting their reliability; in six cases the observed line frequency and strength are consistent with expectations given the photometric redshift and properties of the galaxy counterparts. We present redshift identifications, magnifications, and molecular gas estimates for the galaxies with identified lines. We show that two of these candidates likely originate from starburst galaxies, one of which is a so-called jellyfish galaxy that is strongly affected by ram pressure stripping, while another two are consistent with being main sequence galaxies based in their depletion times. Conclusions: This work highlights the degree to which serendipitous emission lines can be discovered in large mosaic continuum observations when deep ancillary data are available. The low number of high-significance line detections, however, confirms that such surveys are not as optimal as blind line scans. We stress that Monte Carlo simulations should be used to assess the line detection significances since using the negative noise suffers from stochasticity and incurs significantly larger uncertainties.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline; Hallinan, Gregg; Monroe, Ryan; Bourke, Stephen; Starburst Program Team
2017-01-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. My thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs.Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (JVLA), detecting 12 bright (>10 mJy) radio bursts in 58 hours. This survey’s ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light.To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the JVLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission.These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
The Search for Stellar Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Villadsen, Jacqueline Rose
2017-05-01
Coronal mass ejections (CMEs) may dramatically impact habitability and atmospheric composition of planets around magnetically active stars, including young solar analogs and many M dwarfs. Theoretical predictions of such effects are limited by the lack of observations of stellar CMEs. This thesis addresses this gap through a search for the spectral and spatial radio signatures of CMEs on active M dwarfs. Solar CMEs produce radio bursts with a distinctive spectral signature, narrow-band plasma emission that drifts to lower frequency as a CME expands outward. To search for analogous events on nearby stars, I worked on system design, software, and commissioning for the Starburst project, a wideband single-baseline radio interferometry backend dedicated to stellar observations. In addition, I led a survey of nearby active M dwarfs with the Karl G. Jansky Very Large Array (VLA), detecting coherent radio bursts in 13 out of 23 epochs, over a total of 58 hours. This survey's ultra-wide bandwidth (0.23-6.0 GHz) dynamic spectroscopy, unprecedented for stellar observations, revealed diverse behavior in the time-frequency plane. Flare star UV Ceti produced complex, luminous events reminiscent of brown dwarf aurorae; AD Leo sustained long-duration, intense, narrow-band "storms"; and YZ CMi emitted a burst with substructure with rapid frequency drift, resembling solar Type III bursts, which are attributed to electrons moving at speeds of order 10% of the speed of light. To search for the spatial signature of CMEs, I led 8.5-GHz observations with the Very Long Baseline Array simultaneous to 24 hours of the VLA survey. This program detected non-thermal continuum emission from the stars in all epochs, as well as continuum flares on AD Leo and coherent bursts on UV Ceti, enabling measurement of the spatial offset between flaring and quiescent emission. These observations demonstrate the diversity of stellar transients that can be expected in time-domain radio surveys, especially with the advent of large low-frequency radio telescopes. Wide bandwidth radio dynamic spectroscopy, complemented by high-resolution imaging of the radio corona, is a powerful technique for detecting stellar eruptions and characterizing dynamic processes in the stellar corona.
ANOMALOUS MICROWAVE EMISSION IN H ii REGIONS: IS IT REALLY ANOMALOUS? THE CASE OF RCW 49
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paladini, Roberta; Ingallinera, Adriano; Agliozzo, Claudia
2015-11-01
The detection of an excess of emission at microwave frequencies with respect to the predicted free–free emission has been reported for several Galactic H ii regions. Here, we investigate the case of RCW 49, for which the Cosmic Background Imager tentatively (∼3σ) detected Anomalous Microwave Emission (AME) at 31 GHz on angular scales of 7′. Using the Australia Telescope Compact Array, we carried out a multi-frequency (5, 19, and 34 GHz) continuum study of the region, complemented by observations of the H109α radio recombination line. The analysis shows that: (1) the spatial correlation between the microwave and IR emission persistsmore » on angular scales from 3.′4 to 0.″4, although the degree of the correlation slightly decreases at higher frequencies and on smaller angular scales; (2) the spectral indices between 1.4 and 5 GHz are globally in agreement with optically thin free–free emission, however, ∼30% of these are positive and much greater than −0.1, consistent with a stellar wind scenario; and (3) no major evidence for inverted free–free radiation is found, indicating that this is likely not the cause of the Anomalous Emission in RCW 49. Although our results cannot rule out the spinning dust hypothesis to explain the tentative detection of AME in RCW 49, they emphasize the complexity of astronomical sources that are very well known and studied, such as H ii regions, and suggest that, at least in these objects, the reported excess of emission might be ascribed to alternative mechanisms such as stellar winds and shocks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. Themore » NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color–color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 10{sup 4} K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100.« less
High-resolution Observations of the Massive Protostar in IRAS 18566+0408
NASA Astrophysics Data System (ADS)
Hofner, P.; Cesaroni, R.; Kurtz, S.; Rosero, V.; Anderson, C.; Furuya, R. S.; Araya, E. D.; Molinari, S.
2017-07-01
We report 3 mm continuum, CH3CN(5-4) and 13CS(2-1) line observations with CARMA (Combined Array for Research in Millimeter-wave Astronomy), in conjunction with 6 and 1.3 cm continuum VLA data, and 12 and 25 μm broadband data from the Subaru Telescope toward the massive proto-star IRAS 18566+0408. The VLA data resolve the ionized jet into four components aligned in the E-W direction. Radio components A, C, and D have flat centimeter SEDs indicative of optically thin emission from ionized gas, and component B has a spectral index α = 1.0, and a decreasing size with frequency \\propto {ν }-0.5. Emission from the CARMA 3 mm continuum and from the 13CS(2-1) and CH3CN(5-4) spectral lines is compact (I.e., < 6700 {au}) and peaks near the position of the VLA centimeter source, component B. Analysis of these lines indicates hot and dense molecular gas, which is typical for HMCs. Our Subaru telescope observations detect a single compact source, coincident with radio component B, demonstrating that most of the energy in IRAS 18566+0408 originates from a region of size < 2400 {au}. We also present UKIRT near-infrared archival data for IRAS 18566+0408, which show extended K-band emission along the jet direction. We detect an E-W velocity shift of about 10 km s-1 over the HMC in the CH3CN lines possibly tracing the interface of the ionized jet with the surrounding core gas. Our data demonstrate the presence of an ionized jet at the base of the molecular outflow and support the hypothesis that massive protostars with O-type luminosity form with a mechanism similar to lower mass stars.
NASA Astrophysics Data System (ADS)
Druett, M. K.; Zharkova, V. V.
2018-03-01
Aim. Sharp rises of hard X-ray (HXR) emission accompanied by Hα line profiles with strong red-shifts up to 4 Å from the central wavelength, often observed at the onset of flares with the Specola Solare Ticinese Telescope (STT) and the Swedish Solar Telescope (SST), are not fully explained by existing radiative models. Moreover, observations of white light (WL) and Balmer continuum emission with the Interface Region Imaging Spectrograph (IRISH) reveal strong co-temporal enhancements and are often nearly co-spatial with HXR emission. These effects indicate a fast effective source of excitation and ionisation of hydrogen atoms in flaring atmospheres associated with HXR emission. In this paper, we investigate electron beams as the agents accounting for the observed hydrogen line and continuum emission. Methods: Flaring atmospheres are considered to be produced by a 1D hydrodynamic response to the injection of an electron beam defining their kinetic temperatures, densities, and macro velocities. We simulated a radiative response in these atmospheres using a fully non-local thermodynamic equilibrium (NLTE) approach for a 5-level plus continuum hydrogen atom model, considering its excitation and ionisation by spontaneous, external, and internal diffusive radiation and by inelastic collisions with thermal and beam electrons. Simultaneous steady-state and integral radiative transfer equations in all optically thick transitions (Lyman and Balmer series) were solved iteratively for all the transitions to define their source functions with the relative accuracy of 10-5. The solutions of the radiative transfer equations were found using the L2 approximation. Resulting intensities of hydrogen line and continuum emission were also calculated for Balmer and Paschen series. Results: We find that inelastic collisions with beam electrons strongly increase excitation and ionisation of hydrogen atoms from the chromosphere to photosphere. This leads to an increase in Lyman continuum radiation, which has high optical thickness, and after the beam is off it governs hydrogen ionisation and leads to the long lasting orders of magnitude enhancement of emission in Balmer and Paschen continua. The ratio of Balmer-to-other-continuum head intensities are found to be correlated with the initial flux of the beam. The height distribution of contribution functions for Paschen continuum emission indicate a close correlation with the observations of heights of WL and HXR emission reported for limb flares. This process also leads to a strong increase of wing emission (Stark's wings) in Balmer and Paschen lines, which is superimposed on large red-shifted enhancements of Hα-Hγ line emission resulting from a downward motion by hydrodynamic shocks. The simulated line profiles are shown to fit closely the observations for various flaring events.
NASA Technical Reports Server (NTRS)
Fausnaugh, M. M.; Denney, K. D.; Barth, A.J.; Bentz, M.C.; Bottorff, M.C.; Carini, M.T.; Croxall, K. V.; Rosa, G. De; Goad, M.R.; Gehrels, Cornelis;
2016-01-01
We present ground-based optical photometric monitoring data for NGC 5548, part of an extended multiwavelength reverberation mapping campaign. The light curves have nearly daily cadence from 2014 January to July in ninefilters (BVRI and ugriz). Combined with ultraviolet data from the Hubble Space Telescope and Swift, we confirm significant time delays between the continuum bands as a function of wavelength, extending the wavelength coverage from 1158 Angstrom to the z band (approximately 9160 angstrom). We find that the lags at wavelengths longer than the V band are equal to or greater than the lags of high-ionization-state emission lines (such as He pi lambdal1640 and lambda 4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region (BLR). The trend of lag with wavelength is broadly consistent with the prediction for continuum reprocessing by an accretion disk with (tau varies as lambda(exp 4/3)). However, the lags also imply a disk radius that is 3 times larger than the prediction from standardthin-disk theory, assuming that the bolometric luminosity is 10 percent of the Eddington luminosity (L 0.1L(sub Edd)).Using optical spectra from the Large Binocular Telescope, we estimate the bias of the interband continuum lagsdue to BLR emission observed in the filters. We find that the bias for filters with high levels of BLR contamination(20 percent) can be important for the shortest continuum lags and likely has a significant impact on the u and U bandsowing to Balmer continuum emission.
A Comparison of the Radio and Optical Time-Evolution of HH 1 and 2
NASA Astrophysics Data System (ADS)
Rodríguez, L. F.; Raga, A. C.; Rodríguez-Kamenetzky, A.; Carrasco-González, C.
2018-04-01
We present a comparison between the time-evolution over the past ≍20 years of the radio continuum and Hα emission of HH 1 and 2. We find that the radio continuum and the Hα emission of both objects show very similar trends, with HH 1 becoming fainter and HH 2 brightening quite considerably (by about a factor of 2). We also find that the FHα /Fff (Hα to freefree continuum) ratio of HH 1 and 2 has higher values than the ones typically found in planetary nebulae (PNe), which we interpret as an indication that the Hα and free-free emission of HH 1/2 is produced in emitting regions with lower temperatures (≍2000 K) than the emission of PNe (with ≍104 K).
Tracking Jupiter at microwave frequencies after the 2009 impact
NASA Astrophysics Data System (ADS)
Horiuchi, Shinji; García-Miró, Cristina; Rizzo, Ricardo; Forster, James; Hofstadter, Mark; Dorcey, Ryan; Jauncey, David; de Pater, Imke; Baines, Graham; Sotuela, Ioanna
2010-05-01
On 19 July 2009, amateur astronomer Anthony Wesley located near Canberra, Australia, discovered an anomalous dark feature near Jupiter's south pole. It was soon confirmed with additional observations that the new feature was an impact site created by an unknown object. The only other observed collision with Jupiter occurred 15 years earlier with the catastrophic impact of the Shoemaker-Levy 9 Comet (SL9). Unlike the well-predicted SL9 event, the biggest question to answer this time is whether the impact body was a comet or an asteroid. We started a campaign to track Jupiter at microwave frequencies with NASA's Deep Space Network (DSN), in Canberra, Goldstone (California), and Madrid, and the Allen Telescope Array (ATA) in California. A 34m DSN radio telescope at Goldstone was operated by students through GAVRT program. Our primary goal was first to detect molecular radio emissions possibly originating from cometary core components, such as OH, H2O, and NH3, and second to detect radio burst in non-thermal continuum emissions, as observed after the SL-9 impact 15 years ago. We used a 70m radio telescope in Canberra and another 70m in Madrid to search for molecular emissions at 1.6 GHz for OH, 22 GHz for water vapors, 23 GHz for ammonia. Several radio spectroscopy observing sessions have been successfully conducted from 23 July to 1 August. We also started continuum emission monitoring, mainly at 2.3 GHz and 8.4 GHz using 34m and 70m DSN telescopes and the ATA. At early stage of this still on-going monitoring, joint observations were conducted with two 34m telescopes in Canberra and the ATA on 30 July and 9 August in order to have long continuous time coverage and to check flux density scales using a common calibrator source. To highlight this campaign, on 22 November we undertook the Jupiter: Project 24 for the International Year of Astronomy. This campaign was over 24 hours of continuous observation of Jupiter using all three DSN complexes around the world. A couple of DSN 34m telescopes were operated by students organized by two educational programs: GAVRT in California and PARTNeR in Madrid. The Jupiter: Project 24 observations were broadcasted to the world in real time via the Internet. In this talk, we will present a summary of results from the molecular emission search and the continuum flux density monitoring. The evolution of the non-thermal Jupiter radio emission after the July 2009 impact will be discussed, along with a comparison to the increase in the synchrotron radiation caused by the SL9 impact in 1994.
Natural radio noise - A mini-review
NASA Technical Reports Server (NTRS)
Flock, W. L.; Smith, E. K.
1984-01-01
Natural radio noise in telecommunication systems can be accounted for by the contribution which it makes to antenna noise temperature. Attenuation due to water vapor and oxygen, clouds, and precipitation is accompanied by thermal noise which further degrades the applicable signal-to-noise ratio. Extraterrestrial noise may be of thermal or nonthermal origin and may cover a continuum of frequencies or occur at discrete frequencies. The spectral index n (the exponent giving the variation of noise power density with wavelength) is -2 for a black body and between 0 and -2 for thermal emission in general. The mechanism responsible for much of the extensive nonthermal extraterrestrial noise is synchrotron radiation, characterized by a positive spectral index.
New radio detections of early-type pre-main-sequence stars
NASA Technical Reports Server (NTRS)
Skinner, Stephen L.; Brown, Alexander; Linsky, Jeffrey L.
1990-01-01
Results of VLA radio continuum observations of 13 early-type pre-main-sequence stars selected from the 1984 catalog of Finkenzeller and Mundt are presented. The stars HD 259431 and MWC 1080 were detected at 3.6 cm, while HD 200775 and TY CrA were detected at both 3.6 and 6 cm. The flux density of HD 200775 has a frequency dependence consistent with the behavior expected for free-free emission originating in a fully ionized wind. However, an observation in A configuration suggests that the source geometry may not be spherically symmetric. In contrast, the spectral index of TY CrA is negative with a flux behavior implying nonthermal emission. The physical mechanism responsible for the nonthermal emission has not yet been identified, although gyrosynchrotron and synchrotron processes cannot be ruled out.
NASA Astrophysics Data System (ADS)
Sun, Mouyuan; Trump, Jonathan R.; Shen, Yue; Brandt, W. N.; Dawson, Kyle; Denney, Kelly D.; Hall, Patrick B.; Ho, Luis C.; Horne, Keith; Jiang, Linhua; Richards, Gordon T.; Schneider, Donald P.; Bizyaev, Dmitry; Kinemuchi, Karen; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey
2015-09-01
We explore the variability of quasars in the Mg ii and {{H}}β broad emission lines and ultraviolet/optical continuum emission using the Sloan Digital Sky Survey Reverberation Mapping project (SDSS-RM). This is the largest spectroscopic study of quasar variability to date: our study includes 29 spectroscopic epochs from SDSS-RM over 6 months, containing 357 quasars with Mg ii and 41 quasars with {{H}}β . On longer timescales, the study is also supplemented with two-epoch data from SDSS-I/II. The SDSS-I/II data include an additional 2854 quasars with Mg ii and 572 quasars with {{H}}β . The Mg ii emission line is significantly variable ({{Δ }}f/f∼ 10% on ∼100-day timescales), a necessary prerequisite for its use for reverberation mapping studies. The data also confirm that continuum variability increases with timescale and decreases with luminosity, and the continuum light curves are consistent with a damped random-walk model on rest-frame timescales of ≳ 5 days. We compare the emission-line and continuum variability to investigate the structure of the broad-line region. Broad-line variability shows a shallower increase with timescale compared to the continuum emission, demonstrating that the broad-line transfer function is not a δ-function. {{H}}β is more variable than Mg ii (roughly by a factor of ∼1.5), suggesting different excitation mechanisms, optical depths and/or geometrical configuration for each emission line. The ensemble spectroscopic variability measurements enabled by the SDSS-RM project have important consequences for future studies of reverberation mapping and black hole mass estimation of 1\\lt z\\lt 2 quasars.
NASA Technical Reports Server (NTRS)
Howard, Christian; Sandell, Goeran; Vacca, William D.; Duchene, Gaspard; Matthews, Geoffrey; Augereau, Jean-Charles; Barbado, David; Dent, William R. F.; Eiroa, Carlos; Grady, Carol;
2013-01-01
The Herschel Space Observatory was used to observe approx. 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 micron, [O I] 145 micron, [C II] 158, micron OH, H2O, and CO. The strongest line seen is [O I] at 63 micron. We find a clear correlation between the strength of the [O I] 63 micron line and the 63 micron continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 micron is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 micron emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 micron to [O I] 145 micron are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 micron and only three in continuum, at least one of which is a candidate debris disk.
Imaging the cold molecular gas in SDSS J1148 + 5251 at z = 6.4
NASA Astrophysics Data System (ADS)
Stefan, Irina I.; Carilli, Chris L.; Wagg, Jeff; Walter, Fabian; Riechers, Dominik A.; Bertoldi, Frank; Green, David A.; Fan, Xiaohui; Menten, Karl; Wang, Ran
2015-08-01
We present Karl G. Jansky Very Large Array (VLA) observations of the CO (J = 2 → 1) line emission towards the z = 6.419 quasar SDSS J114816.64 + 525150.3 (J1148 + 5251). The molecular gas is found to be marginally resolved with a major axis of 0.9 arcsec (consistent with previous size measurements of the CO (J = 7 → 6) emission). We observe tentative evidence for extended line emission towards the south-west on a scale of ˜1.4 arcsec, but this is only detected at 3.3σ significance and should be confirmed. The position of the molecular emission region is in excellent agreement with previous detections of low-frequency radio continuum emission as well as [C II] line and thermal dust continuum emission. These CO (J = 2 → 1) observations provide an anchor for the low-excitation part of the molecular line spectral energy distribution. We find no evidence for extended low-excitation component, neither in the spectral line energy distribution nor the image. We fit a single kinetic gas temperature model of 50 K. We revisit the gas and dynamical masses in light of this new detection of a low-order transition of CO, and confirm previous findings that there is no extended reservoir of cold molecular gas in J1148 + 5251, and that the source departs substantially from the low-z relationship between black hole mass and bulge mass. Hence, the characteristics of J1148 + 5251 at z = 6.419 are very similar to z ˜ 2 quasars, in the lack of a diffuse cold gas reservoir and kpc-size compactness of the star-forming region.
Star-formation in the central kpc of the starburst/LINER galaxy NGC 1614
NASA Astrophysics Data System (ADS)
Olsson, E.; Aalto, S.; Thomasson, M.; Beswick, R.
2010-04-01
Aims: The aim is to investigate the star-formation and LINER (low ionization nuclear emission line region) activity within the central kiloparsec of the galaxy NGC 1614. In this paper the radio continuum morphology, which provides a tracer of both nuclear and star-formation activity, and the distribution and dynamics of the cold molecular and atomic gas feeding this activity, are studied. In particular, the nature of an R ≈ 300 pc nuclear ring of star-formation and its relationship to the LINER activity in NGC 1614 is addressed. Methods: A high angular resolution, multi-wavelength study of the LINER galaxy NGC 1614 has been performed. Deep observations of the CO 1-0 spectral line were performed using the Owens Valley Radio Observatory (OVRO). These data have been complemented by extensive multi-frequency radio continuum and Hi absorption observations using the Very Large Array (VLA) and Multi-Element Radio Linked Interferometer Network (MERLIN). Results: Toward the center of NGC 1614, we have detected a ring of radio continuum emission with a radius of 300 pc. This ring is coincident with previous radio and Paα observations. The dynamical mass of the ring based on Hi absorption is 3.1 × 109 M⊙. The peak of the integrated CO 1-0 emission is shifted by 1” to the north-west of the ring center. An upper limit to the molecular gas mass in the ring region is ~1.7 × 109 M⊙. Inside the ring, there is a north to south elongated 1.4 GHz radio continuum feature, with a nuclear peak. This peak is also seen in the 5 GHz radio continuum and in the CO. Conclusions: We suggest that the R = 300 pc star forming ring represents the radius of a dynamical resonance - as an alternative to the scenario that the starburst is propagating outwards from the center into a molecular ring. The ring-like appearance is probably part of a spiral structure. Substantial amounts of molecular gas have passed the radius of the ring and reached the nuclear region. The nuclear peak seen in 5 GHz radio continuum and CO is likely related to previous star formation, where all molecular gas was not consumed. The LINER-like optical spectrum observed in NGC 1614 may be due to nuclear starburst activity, and not to an active galactic nucleus (AGN). Although the presence of an AGN cannot be excluded.
Understanding the variation in the millimeter-wave emission of Venus
NASA Technical Reports Server (NTRS)
Fahd, Antoine K.; Steffes, Paul G.
1992-01-01
Recent observations of the millimeter-wave emission from Venus at 112 GHz (2.6 mm) have shown significant variations in the continuum flux emission that may be attributed to the variability in the abundances of absorbing constituents in the Venus atmosphere. Such constituents include gaseous H2SO4, SO2, and liquid sulfuric acid (cloud condensates). Recently, Fahd and Steffes have shown that the effects of liquid H, SO4, and gaseous SO2 cannot completely account for this measured variability in the millimeter-wave emission of Venus. Thus, it is necessary to study the effect of gaseous H2SO4 on the millimeter-wave emission of Venus. This requires knowledge of the millimeter-wavelength (MMW) opacity of gaseous H2SO4, which unfortunately has never been determined for Venus-like conditions. We have measured the opacity of gaseous H2SO4 in a CO2 atmosphere at 550, 570, and 590 K, at 1 and 2 atm total pressure, and at a frequency of 94.1 GHz. Our results, in addition to previous centimeter-wavelength results are used to verify a modeling formalism for calculating the expected opacity of this gaseous mixture at other frequencies. This formalism is incorporated into a radiative transfer model to study the effect of gaseous H2SO4 on the MMW emission of Venus.
Multiwavelength Photometric and Spectropolarimetric Analysis of the FSRQ 3C 279
NASA Astrophysics Data System (ADS)
Patiño-Álvarez, V. M.; Fernandes, S.; Chavushyan, V.; López-Rodríguez, E.; León-Tavares, J.; Schlegel, E. M.; Carrasco, L.; Valdés, J.; Carramiñana, A.
2018-06-01
In this paper, we present light curves for 3C 279 over a time period of six years; from 2008 to 2014. Our multiwavelength data comprise 1 mm to gamma-rays, with additional optical polarimetry. Based on the behaviour of the gamma-ray light curve with respect to other bands, we identified three different activity periods. One of the activity periods shows anomalous behaviour with no gamma-ray counterpart associated with optical and NIR flares. Another anomalous activity period shows a flare in gamma-rays, 1 mm and polarization degree, however, it does not have counterparts in the UV continuum, optical and NIR bands. We find a significant overall correlation of the UV continuum emission, the optical and NIR bands. This correlation suggests that the NIR to UV continuum is co-spatial. We also find a correlation between the UV continuum and the 1 mm data, which implies that the dominant process in producing the UV continuum is synchrotron emission. The gamma-ray spectral index shows statistically significant variability and an anti-correlation with the gamma-ray luminosity. We demonstrate that the dominant gamma-ray emission mechanism in 3C 279 changes over time. Alternatively, the location of the gamma-ray emission zone itself may change depending on the activity state of the central engine.
A test of two theories for the low-frequency cutoffs of nonthermal continuum radiation
NASA Technical Reports Server (NTRS)
Shaw, R. R.; Gurnett, D. A.
1980-01-01
A discussion and analysis of two theories that differently identify the low-frequency cutoffs of nonthermal continuum radiation are presented. The cold plasma theory and an alternate one proposed by Jones (1976) are compared experimentally with the use of continuum radiation data obtained in the outer magnetosphere by the Imp 6 and ISEE 1 spacecraft. It is found that the characteristics of this specific radiation are consistent with those expected of ordinary and extraordinary mode waves described by the cold plasma theory and it is shown that the cutoff frequencies occur at the local plasma frequency and R = 0 cutoff frequency as proposed by the same theory. The inconsistencies which were found between the Jones theory (1976) and observation are presented, and in addition no evidence is found for a component of continuum radiation propagating in the Z mode in the outer magnetosphere.
Multi-tone suppression of distortion-product otoacoustic emissions in humans.
Sieck, Nicole E; Rasetshwane, Daniel M; Kopun, Judy G; Jesteadt, Walt; Gorga, Michael P; Neely, Stephen T
2016-05-01
The purpose of this study was to investigate the combined effect of multiple suppressors. Distortion-product otoacoustic emission (DPOAE) measurements were made in normal-hearing participants. Primary tones had fixed frequencies (f2 = 4000 Hz; f1 / f2 = 1.22) and a range of levels. Suppressor tones were at three frequencies (fs = 2828, 4100, 4300 Hz) and range of levels. Decrement was defined as the attenuation in DPOAE level due to the presence of a suppressor. A measure of suppression called suppressive intensity was calculated by an equation previously shown to fit DPOAE suppression data. Suppressor pairs, which were the combination of two different frequencies, were presented at levels selected to have equal single-suppressor decrements. A hybrid model that represents a continuum between additive intensity and additive attenuation best described the results. The suppressor pair with the smallest frequency ratio produced decrements that were more consistent with additive intensity. The suppressor pair with the largest frequency ratio produced decrements at the highest level that were consistent with additive attenuation. Other suppressor-pair conditions produced decrements that were intermediate between these two alternative models. The hybrid model provides a useful framework for representing the observed range of interaction when two suppressors are combined.
Multi-tone suppression of distortion-product otoacoustic emissions in humans
Sieck, Nicole E.; Rasetshwane, Daniel M.; Kopun, Judy G.; Jesteadt, Walt; Gorga, Michael P.; Neely, Stephen T.
2016-01-01
The purpose of this study was to investigate the combined effect of multiple suppressors. Distortion-product otoacoustic emission (DPOAE) measurements were made in normal-hearing participants. Primary tones had fixed frequencies (f2 = 4000 Hz; f1 / f2 = 1.22) and a range of levels. Suppressor tones were at three frequencies (fs = 2828, 4100, 4300 Hz) and range of levels. Decrement was defined as the attenuation in DPOAE level due to the presence of a suppressor. A measure of suppression called suppressive intensity was calculated by an equation previously shown to fit DPOAE suppression data. Suppressor pairs, which were the combination of two different frequencies, were presented at levels selected to have equal single-suppressor decrements. A hybrid model that represents a continuum between additive intensity and additive attenuation best described the results. The suppressor pair with the smallest frequency ratio produced decrements that were more consistent with additive intensity. The suppressor pair with the largest frequency ratio produced decrements at the highest level that were consistent with additive attenuation. Other suppressor-pair conditions produced decrements that were intermediate between these two alternative models. The hybrid model provides a useful framework for representing the observed range of interaction when two suppressors are combined. PMID:27250125
Speckle imaging of active galactic nuclei: NGC 1068 and NGC 4151
NASA Astrophysics Data System (ADS)
Ebstein, Steven Michael
High resolution images of NGC 1068 and NGC 4151 in the 5007 A line and the nearby continuum produced from data taken with the PAPA photon counting imaging detector using the technique of speckle imaging are presented. The images show an unresolved core of 5007 A emission in the middle of an extended emission region. The extended emission tends to lie alongside the subarcsecond radio structure. In NGC 4151, the extended emission comes from a nearly linear structure extending on both sides of the unresolved core. In NGC 1068, the extended emission is concentrated in lobes lying to the unresolved core but the emission is concentrated in lobes lying to either side of the major axis. The continuum of NGC 4151 is spatially unresolved. The continuum of NGC 1068 is extended approx. 1 in to the SW of the center of the 5007 A emission. Certain aspects of the PAPA detector are discussed, including the variable threshold discriminators that track the image intensifier pulse height and the camera artifacts. The data processing is described in detail.
Ly α and UV Sizes of Green Pea Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huan; Wang, Junxian; Malhotra, Sangeeta
Green Peas are nearby analogs of high-redshift Ly α -emitting galaxies (LAEs). To probe their Ly α escape, we study the spatial profiles of Ly α and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope . We extract the spatial profiles of Ly α emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Ly α emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lymore » α spatial profile is about 2–4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high- z LAEs probably have larger Ly α sizes than UV sizes. We also compare the spatial profiles of Ly α photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Ly α line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Ly α line wings. We show that Green Peas and MUSE z = 3–6 LAEs have similar Ly α and UV continuum sizes, which probably suggests that starbursts in both low- z and high- z LAEs drive similar gas outflows illuminated by Ly α light. Five Lyman continuum (LyC) leakers in this sample have similar Ly α to UV continuum size ratios (∼1.4–4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.« less
Modification of Jupiter's Stratosphere Three Weeks After the 2009 Impact
NASA Technical Reports Server (NTRS)
Fast, Kelly E.; Kostiuk, Theodor; Livengood, Timothy A.; Hewagama, Tilak; Annen, John
2011-01-01
Infrared spectroscopy sensitive to thermal emission from Jupiter's stratosphere reveals effects persisting 23 days after the impact of a body in late July 2009. Measurements obtained on 2009 August II UT at the impact latitude of 56 S (planetocentric), using the Goddard Heterodyne Instrument for Planetary Wind and Composition mounted on the NASA Infrared Telescope Facility, reveal increased ethane abundance and the effects of aerosol opacity. An interval of reduced thermal continuum emission at 11. 744 lm is measured 60o-80 towards planetary east of the impact site, estimated to be at 3050 longitude (System Ill). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to -60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris blocking contribution from the continuum formed in the upper troposphere and indicating the local temperature, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting an upper limit on the pressure and therefore a lower limit on the altitude of the top of the impact debris at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, which is consistent with a lower altitude of ejecta/impactor-formed opacity or significantly lesser column density of opaque haze material. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (planetary east) from the impact.
Lyα and UV Sizes of Green Pea Galaxies
NASA Astrophysics Data System (ADS)
Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Leitherer, Claus; Wofford, Aida; Jiang, Tianxing; Wang, Junxian
2017-03-01
Green Peas are nearby analogs of high-redshift Lyα-emitting galaxies (LAEs). To probe their Lyα escape, we study the spatial profiles of Lyα and UV continuum emission of 24 Green Pea galaxies using the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope. We extract the spatial profiles of Lyα emission from their 2D COS spectra, and of the UV continuum from both 2D spectra and NUV images. The Lyα emission shows more extended spatial profiles than the UV continuum, in most Green Peas. The deconvolved full width at half maximum of the Lyα spatial profile is about 2-4 times that of the UV continuum, in most cases. Because Green Peas are analogs of high z LAEs, our results suggest that most high-z LAEs probably have larger Lyα sizes than UV sizes. We also compare the spatial profiles of Lyα photons at blueshifted and redshifted velocities in eight Green Peas with sufficient data quality, and find that the blue wing of the Lyα line has a larger spatial extent than the red wing in four Green Peas with comparatively weak blue Lyα line wings. We show that Green Peas and MUSE z = 3-6 LAEs have similar Lyα and UV continuum sizes, which probably suggests that starbursts in both low-z and high-z LAEs drive similar gas outflows illuminated by Lyα light. Five Lyman continuum (LyC) leakers in this sample have similar Lyα to UV continuum size ratios (˜1.4-4.3) to the other Green Peas, indicating that their LyC emissions escape through ionized holes in the interstellar medium.
The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs
NASA Astrophysics Data System (ADS)
Armitage, Philip J.; Reynolds, Christopher S.
2003-05-01
We use global magnetohydrodynamic simulations, in a pseudo-Newtonian potential, to investigate the temporal variability of accretion discs around Schwarzschild black holes. We use the vertically averaged magnetic stress in the simulated disc as a proxy for the rest-frame dissipation, and compute the observed emission by folding this through the transfer function describing the relativistic beaming, light bending and time delays near a non-rotating black hole. The temporal power spectrum of the predicted emission from individual annuli in the disc is described by a broken power law, with indices of ~-3.5 at high frequency and ~0 to -1 at low frequency. Integrated over the disc, the power spectrum is approximated by a single power law with an index of -2. Increasing inclination boosts the relative power at frequencies around ~0.3fms, where fms is the orbital frequency at the marginally stable orbit, but no evidence is found for sharp quasi-periodic oscillations in the light curve. Assuming that fluorescent iron line emission locally tracks the continuum flux, we compute simulated broad iron line profiles. We find that relativistic beaming of the non-axisymmetric emission profile, induced by turbulence, produces high-amplitude variability in the iron line profile. We show that this substructure within the broad iron line profile can survive averaging over a number of orbital periods, and discuss the origin of the anomalous X-ray spectral features, recently reported by Turner et al. for the Seyfert galaxy NGC 3516, in the context of turbulent disc models.
The electron-cyclotron maser instability as a source of plasma radiation. [Solar radio bursts
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Dulk, G. A.
1986-01-01
The generation of continuum bursts from the sun at dm and m wavelengths (in particular, type IV bursts) via the electron-cyclotron-maser instability is examined. The maser instability can be driven by an electron distribution with either a loss-cone anisotropy or a peak at large pitch angles. For omega(p)/Omega(e) much greater than 1, the maser emission is produced by electrons interacting through a harmonic (cyclotron) resonance and is electrostatic, being in the upper hybrid mode at frequencies approximately equal to omega(p). Coalescence processes are required to convert the electrostatic waves into transverse radiation which can escape from the source region. Whether the resultant spectrum is nearly a smooth continuum or has a zebra-stripe pattern (both of which occur in type IV bursts) depends on the form of the electron distribution, inhomogeneities in the density and magnetic field, and whether the maser reaches saturation. For at least the case of some type IV dm bursts with fine structure, comparison with observations seems to indicate that the electrons producing the emission are more likely to have a loss-cone distribution, and that the maser instability is not at saturation.
ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ˜ 7
NASA Astrophysics Data System (ADS)
Strandet, M. L.; Weiss, A.; De Breuck, C.; Marrone, D. P.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Cunningham, D. J. M.; Chen, Chian-Chou; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hayward, C. C.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Menten, K. M.; Miller, T.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Spilker, J. S.; Sreevani, J.
2017-06-01
We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z=6.900+/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [{{C}} {{I}}](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and [{{C}} {{II}}] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [{{C}} {{I}}] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of {M}{gas}=3.3+/- 1.9× {10}11 {M}⊙ . Its large mass and intense star formation is very rare for a source well into the epoch of reionization.
Time-Resolved Properties and Global Trends in dMe Flares from Simultaneous Photometry and Spectra
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.
We present a homogeneous survey of near-ultraviolet (NUV) /optical line and continuum emission during twenty M dwarf flares with simultaneous, high cadence photometry and spectra. These data were obtained to study the white-light continuum components to the blue and red of the Balmer jump to break the degeneracy with fitting emission mechanisms to broadband colors and to provide constraints for radiative-hydrodynamic flare models that seek to reproduce the white-light flare emission. The main results from the continuum analysis are the following: 1) the detection of Balmer continuum (in emission) that is present during all flares, with a wide range of relative contribution to the continuum flux in the NUV; 2) a blue continuum at the peak of the photometry that is linear with wavelength from λ = 4000 - 4800Å, matched by the spectral shape of hot, blackbody emission with typical temperatures of 10 000 - 12 000 K; 3) a redder continuum apparent at wavelengths longer than Hβ; this continuum becomes relatively more important to the energy budget during the late gradual phase. The hot blackbody component and redder continuum component (which we call "the conundruum") have been detected in previous UBVR colorimetry studies of flares. With spectra, one can compare the properties and detailed timings of all three components. Using time-resolved spectra during the rise phase of three flares, we calculate the speed of an expanding flare region assuming a simple geometry; the speeds are found to be ~5- 10 km s-1 and 50 - 120 km s -1, which are strikingly consistent with the speeds at which two-ribbon flares develop on the Sun. The main results from the emission line analysis are 1) the presentation of the "time-decrement", a relation between the timescales of the Balmer series; 2) a Neupert-like relation between Ca \\pcy K and the blackbody continuum, and 3) the detection of absorption wings in the Hydrogen Balmer lines during times of peak continuum emission, indicative of hot-star spectra forming during the flare. A byproduct of this study is a new method for deriving absolute fluxes during M dwarf flare observations obtained from narrow-slit spectra or during variable weather conditions. This technique allows us to analyze the spectra and photometry independently of one another, in order to connect the spectral properties to the rise, peak, and decay phases of broadband light curve morphology. We classify the light curve morphology according to an "impulsiveness index" and find that the fast (impulsive) flares have less Balmer continuum at peak emission than the slow (gradual) flares. In the gradual phase, the energy budget of the flare spectrum during almost all flares has a larger contribution from the Hydrogen Balmer component than in the impulsive phase, suggesting that the heating and cooling processes evolve over the course of a flare. We find that, in general, the evolution of the hot blackbody is rapid, and that the blackbody temperature decreases to ~8000 K in the gradual phase. The Balmer continuum evolves more slowly than the blackbody ¨C similar to the higher order Balmer lines but faster than the lower order Balmer lines. The height of the Balmer jump increases during the gradual decay phase. We model the Balmer continuum emission using the RHD F11 model spectrum from Allred et al. (2006), but we discuss several important systematic uncertainties in relating the apparent amount of Balmer continuum to a given RHD beam model. Good fits to the shape of the RHD F11 model spectrum are not obtained at peak times, in contrast to the gradual phase. We model the blackbody component using model hot star atmospheres from Castelli & Kurucz (2004) in order to account for the effects of flux redistribution in the flare atmosphere. This modeling is motivated by observations during a secondary flare in the decay phase of a megaflare, when the newly formed flare spectrum resembled that of Vega with the Balmer continuum and lines in absorption. We model this continuum phenomenologically with the RH code using hot spots placed at high column mass in the M dwarf quiescent atmosphere; a superposition of hot spot models and the RHD model are used to explain the anti-correlation in the apparent amount of Balmer continuum in emission and the U-band light curve. We attempt to reproduce the blackbody component in self-consistent 1D radiative hydrodynamic flare models using the RADYN code. We simulate the flare using a solar-type nonthermal electron beam heating function with a total energy flux of 1012 ergs cm-2 s-1 (F12) for a duration of 5 seconds and a subsequent gradual phase. Although there is a larger amount of NUV backwarming at log mc/(1g cm-2)~0 than in the F11 model, the resulting flare continuum shape is similar to the F11 model spectrum with a larger Balmer jump and a much redder spectral shape than is seen in the observations. We do not find evidence of white-light emitting chromospheric condensations, in contrast to the previous F12 model of Livshits et al. (1981). We discuss future avenues for RHD modeling in order to produce a hot blackbody component, including the treatment of nonthermal protons in M dwarf flares.
NASA Astrophysics Data System (ADS)
Sánchez-Monge, Á.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Brand, J.; Molinari, S.; Testi, L.; Burton, M.
2013-02-01
Aims: We present Australia Telescope Compact Array (ATCA) observations of the H2O maser line and radio continuum at 18.0 GHz and 22.8 GHz toward a sample of 192 massive star-forming regions containing several clumps already imaged at 1.2 mm. The main aim of this study is to investigate the water maser and centimeter continuum emission (that likely traces thermal free-free emission) in sources at different evolutionary stages, using evolutionary classifications previously published. Methods: We used the recently comissioned Compact Array Broadband Backend (CABB) at ATCA that obtains images with ~20'' resolution in the 1.3 cm continuum and H2O maser emission in all targets. For the evolutionary analysis of the sources we used millimeter continuum emission from the literature and the infrared emission from the MSX Point Source Catalog. Results: We detect centimeter continuum emission in 88% of the observed fields with a typical rms noise level of 0.45 mJy beam-1. Most of the fields show a single radio continuum source, while in 20% of them we identify multiple components. A total of 214 cm continuum sources have been identified, that likely trace optically thin H ii regions, with physical parameters typical of both extended and compact H ii regions. Water maser emission was detected in 41% of the regions, resulting in a total of 85 distinct components. The low angular (~20'') and spectral (~14 km s-1) resolutions do not allow a proper analysis of the water maser emission, but suffice to investigate its association with the continuum sources. We have also studied the detection rate of H ii regions in the two types of IRAS sources defined in the literature on the basis of the IRAS colors: High and Low. No significant differences are found, with high detection rates (>90%) for both High and Low sources. Conclusions: We classify the millimeter and infrared sources in our fields in three evolutionary stages following the scheme presented previously: (Type 1) millimeter-only sources, (Type 2) millimeter plus infrared sources, (Type 3) infrared-only sources. We find that H ii regions are mainly associated with Type 2 and Type 3 objects, confirming that these are more evolved than Type 1 sources. The H ii regions associated with Type 3 sources are slightly less dense and larger in size than those associated with Type 2 sources, as expected if the H ii region expands as it evolves, and Type 3 objects are older than Type 2 objects. The maser emission is mostly found to be associated with Type 1 and Type 2 sources, with a higher detection rate toward Type 2, consistent with the results of the literature. Finally, our results on H ii region and H2O maser association with different evolutionary types confirm the evolutionary classification proposed previously. Appendices are available in electronic form at http://www.aanda.orgTables 3-5, 7-9 are only, and Table 1 is also available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/550/A21
The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H{sub 2}O Dissociation
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, Kevin; Roueff, Evelyne; Abgrall, Hervé, E-mail: kevin.france@colorado.edu
The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we havemore » assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope -Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100–1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST -COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490–1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L (Bump) ≈ 7 × 10{sup 29} erg s{sup −1}. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ {sub o} = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H{sub 2} excited by electron -impact. We show that this Bump makes up between 5%–50% of the total FUV continuum emission in the 1490–1690 Å band and emits roughly 10%–80% of the total fluorescent H{sub 2} luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Ly α photons. We argue that the most likely mechanism is Ly α -driven dissociation of H{sub 2}O in the inner disk, r ≲ 2 au. We demonstrate that non-thermally populated H{sub 2}O fragments can qualitatively account for the observed emission (discrete and continuum) and find that the average Ly α -driven H{sub 2}O dissociation rate is 1.7 × 10{sup 42} water molecules s{sup −1}.« less
Multi-time-scale X-ray reverberation mapping of accreting black holes
NASA Astrophysics Data System (ADS)
Mastroserio, Guglielmo; Ingram, Adam; van der Klis, Michiel
2018-04-01
Accreting black holes show characteristic reflection features in their X-ray spectrum, including an iron Kα line, resulting from hard X-ray continuum photons illuminating the accretion disc. The reverberation lag resulting from the path-length difference between direct and reflected emission provides a powerful tool to probe the innermost regions around both stellar-mass and supermassive black holes. Here, we present for the first time a reverberation mapping formalism that enables modelling of energy-dependent time lags and variability amplitude for a wide range of variability time-scales, taking the complete information of the cross-spectrum into account. We use a pivoting power-law model to account for the spectral variability of the continuum that dominates over the reverberation lags for longer time-scale variability. We use an analytic approximation to self-consistently account for the non-linear effects caused by this continuum spectral variability, which have been ignored by all previous reverberation studies. We find that ignoring these non-linear effects can bias measurements of the reverberation lags, particularly at low frequencies. Since our model is analytic, we are able to fit simultaneously for a wide range of Fourier frequencies without prohibitive computational expense. We also introduce a formalism of fitting to real and imaginary parts of our cross-spectrum statistic, which naturally avoids some mistakes/inaccuracies previously common in the literature. We perform proof-of-principle fits to Rossi X-ray Timing Explorer data of Cygnus X-1.
NASA Astrophysics Data System (ADS)
Fabbiano, G.; Elvis, M.; Paggi, A.; Karovska, M.; Maksym, W. P.; Raymond, J.; Risaliti, G.; Wang, Junfeng
2017-06-01
We report the discovery of kiloparsec-scale diffuse emission in both the hard continuum (3-6 keV) and in the Fe-Kα line in the Compton thick (CT) Seyfert galaxy ESO 428-G014. This extended hard component contains at least ˜24% of the observed 3-8 keV emission, and follows the direction of the extended optical line emission (ionization cone) and radio jet. The extended hard component has ˜0.5% of the intrinsic 2-10 keV luminosity within the bi-cones. A uniform scattering medium of density 1 {{cm}}-3 would produce this luminosity in a 1 kpc path length in the bi-cones. Alternatively, higher column density molecular clouds in the disk of ESO 428-G014 may be responsible for these components. The continuum may also be enhanced by the acceleration of charged particles in the radio jet. The steeper spectrum (Γ ˜ 1.7 ± 0.4) of the hard continuum outside of the central 1.″5 radius nuclear region suggests a contribution of scattered/fluorescent intrinsic Seyfert emission. Ultrafast nuclear outflows cannot explain the extended Fe-Kα emission. This discovery suggests that we may need to revise the picture at the base of our interpretation of CT AGN spectra.
Characterizing the Dust-Correlated Anomalous Emission in LDN 1622
NASA Astrophysics Data System (ADS)
Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki
2008-03-01
The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.
Huang, Yang; Yasarer, Lindsey M W; Li, Zhe; Sturm, Belinda S M; Zhang, Zengyu; Guo, Jinsong; Shen, Yu
2017-05-01
Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river-reservoir continuum will create distinctive patterns in water surface GHG emissions. A one-year field survey was carried out in the Pengxi River-reservoir continuum, a part of the Three Gorges Reservoir (TGR) immediately after the TGR reached its maximum water level. The annual average water surface CO 2 and CH 4 emissions at the riverine background sampling sites were 6.23 ± 0.93 and 0.025 ± 0.006 mmol h -1 m -2 , respectively. The CO 2 emissions were higher than those in the downstream reservoirs. The development of phytoplankton controlled the downstream decrease in water surface CO 2 emissions. The presence of thermal stratification in the permanent backwater area supported extensive phytoplankton blooms, resulting in a carbon sink during several months of the year. The CH 4 emissions were mainly impacted by water temperature and dissolved organic carbon. The greatest water surface CH 4 emission was detected in the fluctuating backwater area, likely due to a shallower water column and abundant organic matter. The Pengxi River backwater area did not show significant increase in water surface GHG emissions reported in tropical reservoirs. In evaluating the net GHG emissions by the impoundment of TGR, the net change in the carbon budget and the contribution of nitrogen and phosphorus should be taken into consideration in this eutrophic river-reservoir continuum.
Spectroscopic monitoring of active Galactic nuclei from CTIO. 1: NGC 3227
NASA Technical Reports Server (NTRS)
Winge, Claudia; Peterson, Bradley M.; Horne, Keith; Pogge, Richard W.; Pastoriza, Miriani G.; Storchi-Bergmann, Thaisa
1995-01-01
The results of a five-month monitoring campaign on the Seyfert 1.5 galaxy NGC 3227 are presented. Variability was detected in the continuum and in the broad emission lines. Cross correlations of the 4200 A continuum light curve with the H beta and He II wavelength 4686 emission-line light curves indicate delays of 18 +/- 5 and 16 +/- 2 days, respectively, between the continuum variations and the response of the lines. We apply a maximum entropy method to solve for the transfer function that relates the H beta and He II wavelength 4686 lines and 4200 A continuum variability and the result of this analysis suggests that there is a deficit of emission-line response due to gas along the line of sight to the continuum source for both lines. Using a composite off-nuclear spectrum, we synthesize the bulge stellar population, which is found to be mainly old (77% with age greater than 10 Gyr) with a metallicity twice the solar value. The synthesis also yields an internal color excess E(B - V) approximately equal 0.04. The mean contribution of the stellar population to the inner 5 sec x 10 sec spectra during the campaign was approximately equal 40%.
Radio continuum of galaxies with H2O megamaser disks: 33 GHz VLA data
NASA Astrophysics Data System (ADS)
Kamali, F.; Henkel, C.; Brunthaler, A.; Impellizzeri, C. M. V.; Menten, K. M.; Braatz, J. A.; Greene, J. E.; Reid, M. J.; Condon, J. J.; Lo, K. Y.; Kuo, C. Y.; Litzinger, E.; Kadler, M.
2017-09-01
Context. Galaxies with H2O megamaser disks are active galaxies in whose edge-on accretion disks 22 GHz H2O maser emission has been detected. Because their geometry is known, they provide a unique view into the properties of active galactic nuclei. Aims: The goal of this work is to investigate the nuclear environment of galaxies with H2O maser disks and to relate the maser and host galaxy properties to those of the radio continuum emission of the galaxy. Methods: The 33 GHz (9 mm) radio continuum properties of 24 galaxies with reported 22 GHz H2O maser emission from their disks are studied in the context of the multiwavelength view of these sources. The 29-37 GHz Ka-band observations are made with the Karl Jansky Very Large Array in B, CnB, or BnA configurations, achieving a resolution of 0.2-0.5 arcsec. Hard X-ray data from the Swift/BAT survey and 22 μm infrared data from WISE, 22 GHz H2O maser data and 1.4 GHz data from NVSS and FIRST surveys are also included in the analysis. Results: Eighty-seven percent (21 out of 24) galaxies in our sample show 33 GHz radio continuum emission at levels of 4.5-240σ. Five sources show extended emission (deconvolved source size larger than 2.5 times the major axis of the beam), including one source with two main components and one with three main components. The remaining detected 16 sources (and also some of the above-mentioned targets) exhibit compact cores within the sensitivity limits. Little evidence is found for extended jets (>300 pc) in most sources. Either they do not exist, or our chosen frequency of 33 GHz is too high for a detection of these supposedly steep spectrum features. In NGC 4388, we find an extended jet-like feature that appears to be oriented perpendicular to the H2O megamaser disk. NGC 2273 is another candidate whose radio continuum source might be elongated perpendicular to the maser disk. Smaller 100-300 pc sized jets might also be present, as is suggested by the beam-deconvolved morphology of our sources. Whenever possible, central positions with accuracies of 20-280 mas are provided. A correlation analysis shows that the 33 GHz luminosity weakly correlates with the infrared luminosity. The 33 GHz luminosity is anticorrelated with the circular velocity of the galaxy. The black hole masses show stronger correlations with H2O maser luminosity than with 1.4 GHz, 33 GHz, or hard X-ray luminosities. Furthermore, the inner radii of the disks show stronger correlations with 1.4 GHz, 33 GHz, and hard X-ray luminosities than their outer radii, suggesting that the outer radii may be affected by disk warping, star formation, or peculiar density distributions.
Radio synchrotron spectra of star-forming galaxies
NASA Astrophysics Data System (ADS)
Klein, U.; Lisenfeld, U.; Verley, S.
2018-03-01
We investigated the radio continuum spectra of 14 star-forming galaxies by fitting nonthermal (synchrotron) and thermal (free-free) radiation laws. The underlying radio continuum measurements cover a frequency range of 325 MHz to 24.5 GHz (32 GHz in case of M 82). It turns out that most of these synchrotron spectra are not simple power-laws, but are best represented by a low-frequency spectrum with a mean slope αnth = 0.59 ± 0.20 (Sν ∝ ν-α), and by a break or an exponential decline in the frequency range of 1-12 GHz. Simple power-laws or mildly curved synchrotron spectra lead to unrealistically low thermal flux densities, and/or to strong deviations from the expected optically thin free-free spectra with slope αth = 0.10 in the fits. The break or cutoff energies are in the range of 1.5-7 GeV. We briefly discuss the possible origin of such a cutoff or break. If the low-frequency spectra obtained here reflect the injection spectrum of cosmic-ray electrons, they comply with the mean spectral index of Galactic supernova remnants. A comparison of the fitted thermal flux densities with the (foreground-corrected) Hα fluxes yields the extinction, which increases with metallicity. The fraction of thermal emission is higher than believed hitherto, especially at high frequencies, and is highest in the dwarf galaxies of our sample, which we interpret in terms of a lack of containment in these low-mass systems, or a time effect caused by a very young starburst.
NASA Technical Reports Server (NTRS)
Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.
1985-01-01
The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.
IUE observations of two late-type stars Bx Mon (M + pec) and TV Gem (M1 Iab)
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.
1981-01-01
The IUE observations of two late type stars BX Mon and TV Gem that reveal the emission properties in the ultraviolet of subluminous companions are discussed. Analysis of the continuum emission observed from BX Mon suggests the companion, is a middle A III star. High excitation emission lines observed between 1200 A and 2000 A that generally do not typify emission observed in either late M type variables or A type stars are also detected. It is suggested that these strong high excitation lines arise in a large volume of gas heated by nonradiation processes that could be the result of tidal interaction and mass exchange in the binary system. In contrast to stars such as BX Mon, the luminous M1 supergiant TV Gem shows unexpected intense UV continuum throughout the sensitivity range of IUE. The UV spectrum of TV Gem is characterized by intense continuum with broad absorption features detected in the short wavelength range. The analysis shows that the companion could be a B9 or A1 III-IV star. Alternate suggestions are presented for explaining the UV continuum in terms of an accretion disk in association with TV Gem.
Temperature distribution in a stellar atmosphere diagnostic basis
NASA Technical Reports Server (NTRS)
Jefferies, J. T.; Morrison, N. D.
1973-01-01
A stellar chromosphere is considered a region where the temperature increases outward and where the temperature structure of the gas controls the shape of the spectral lines. It is shown that lines which have collision-dominated source sink terms, like the Ca(+) and Mg(+) H and K lines, can be used to obtain the distribution of temperature with height from observed line profiles. Intrinsic emission lines and geometrical emission lines are found in spectral regions where the continuum is depressed. In visual regions, where the continuum is not depressed, emission core in absorption lines are attributed to reflections of intrinsic emission lines.
Nebular Continuum and Line Emission in Stellar Population Synthesis Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie
Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less
Exocometary gas in the HD 181327 debris ring
NASA Astrophysics Data System (ADS)
Marino, S.; Matrà, L.; Stark, C.; Wyatt, M. C.; Casassus, S.; Kennedy, G.; Rodriguez, D.; Zuckerman, B.; Perez, S.; Dent, W. R. F.; Kuchner, M.; Hughes, A. M.; Schneider, G.; Steele, A.; Roberge, A.; Donaldson, J.; Nesvold, E.
2016-08-01
An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 au and a radial width of 23.2 ± 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to ˜200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 × 10-6 M⊕ and 2.9 × 10-6 M⊕, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, I.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.
Unveiling the radio counterparts of two binary AGN candidates: J1108+0659 and J1131-0204
NASA Astrophysics Data System (ADS)
Bondi, M.; Pérez-Torres, M. A.; Piconcelli, E.; Fu, H.
2016-04-01
The sources SDSS J113126.08-020459.2 and SDSS J110851.04+065901.4 are two double-peaked [O III] emitting active galactic nuclei (AGNs), identified as candidate binary AGNs by optical and near infrared (NIR) observations. We observed the two sources with high resolution Very Long Baseline Interferometry (VLBI) using the European VLBI Network at 5 GHz, reduced VLA observations at three frequencies available for one of the sources, and used archival HST observations. For the source SDSS J113126.08-020459.2, the VLBI observations detected only one single compact component associated with the eastern NIR nucleus. In SDSS J110851.04+065901.4, the VLBI observations did not detect any compact components, but the VLA observations allowed us to identify a possible compact core in the region of the north-western optical/NIR nucleus. In this source we find kpc-scale extended radio emission that is spatially coincident to the ultraviolet continuum and to the extended emission narrow line region. The UV continuum is significantly obscured since the amount of extended radio emission yields a star formation rate of about 110 M⊙ yr-1, which is an order of magnitude larger than implied by the observed ultraviolet emission. Our analysis confirms the presence of only one AGN in the two candidate binary AGNs. FITS files of the reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A102
MONITORING H{alpha} EMISSION AND CONTINUUM OF UXORs: RR Tauri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedell, Megan; Villaume, Alexa; Weiss, Lauren
2011-11-15
The Maria Mitchell Observatory, in collaboration with the Astrokolkhoz Observatory, started a program of photometric monitoring of UX Ori-type stars (UXORs) with narrowband interference filters (IFs; augmented with the traditional broadband filters) aimed at separating the H{alpha} emission variations from those of the continuum. We present the method of separation and the first results for RR Tau obtained in two seasons, each roughly 100 days long (2010 Winter-Spring and 2010 Fall-2011 Spring). We confirm the conclusion from previous studies that the H{alpha} emission in this star is less variable than the continuum. Although some correlation between the two is notmore » excluded, the amplitude of H{alpha} variations is much smaller (factors of 3-5) than that of the continuum. These results are compatible with Grinin's model of UXORs, which postulates the presence of small obscuring circumstellar clouds as the cause of the continuum fading, as well as the presence of a circumstellar reflection/emission nebula, larger than the star and the obscuring clouds, which is responsible for H{alpha} emission and the effect of the 'color reversal' in deep minima. However, the results of both our broadband and narrowband photometry indicate that the obscuration model may be insufficient to explain all of the observations. Disk accretion, the presence of stellar or (proto) planetary companion(s), as well as the intrinsic variations of the star, may contribute to the observed light variations. We argue, in particular, that the H{alpha} emission may be more closely correlated with the intrinsic variations of the star than with the much stronger observed variations caused by the cloud obscuration. If this hypothesis is correct, the close monitoring of H{alpha} emission with IFs, accessible to small-size telescopes, may become an important tool in studying the physical nature of the UXORs' central stars.« less
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.; Mathioudakis, Mihalis; Hawley, Suzanne L.; Wisniewski, John P.; Dhillon, Vik S.; Marsh, Tom R.; Hilton, Eric J.; Brown, Benjamin P.
2016-04-01
We present a large data set of high-cadence dMe flare light curves obtained with custom continuum filters on the triple-beam, high-speed camera system ULTRACAM. The measurements provide constraints for models of the near-ultraviolet (NUV) and optical continuum spectral evolution on timescales of ≈1 s. We provide a robust interpretation of the flare emission in the ULTRACAM filters using simultaneously obtained low-resolution spectra during two moderate-sized flares in the dM4.5e star YZ CMi. By avoiding the spectral complexity within the broadband Johnson filters, the ULTRACAM filters are shown to characterize bona fide continuum emission in the NUV, blue, and red wavelength regimes. The NUV/blue flux ratio in flares is equivalent to a Balmer jump ratio, and the blue/red flux ratio provides an estimate for the color temperature of the optical continuum emission. We present a new “color-color” relationship for these continuum flux ratios at the peaks of the flares. Using the RADYN and RH codes, we interpret the ULTRACAM filter emission using the dominant emission processes from a radiative-hydrodynamic flare model with a high nonthermal electron beam flux, which explains a hot, T ≈ 104 K, color temperature at blue-to-red optical wavelengths and a small Balmer jump ratio as observed in moderate-sized and large flares alike. We also discuss the high time resolution, high signal-to-noise continuum color variations observed in YZ CMi during a giant flare, which increased the NUV flux from this star by over a factor of 100. Based on observations obtained with the Apache Point Observatory 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium, based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofsica de Canarias, and observations, and based on observations made with the ESO Telescopes at the La Silla Paranal Observatory under programme ID 085.D-0501(A).
ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya
We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, andmore » brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.« less
VizieR Online Data Catalog: B213 filament 150 and 260GHz emission maps (Bracco+, 2017)
NASA Astrophysics Data System (ADS)
Bracco, A.; Palmeirim, P.; Andre, P.; Adam, R.; Ade, P.; Bacmann, A.; Beelen, A.; Benoeet, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Desert, F.-X.; Didelon, P.; Doyle, S.; Goupy, J.; Konyves, V.; Kramer, C.; Lagache, G.; Leclercq, S.; Macias-Perez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Motte, F.; Pajot, F.; Pascale, E.; Peretto, N.; Perotto, L.; Pisano, G.; Ponthieu, N.; Reveret, V.; Rigby, A.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roy, A.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.
2017-07-01
We present the continuum emission maps at 150 and 260GHz of the B213 filament in the Taurus molecular complex obtained with the NIKA camera at IRAM 30m. Observations were performed during the first NIKA open pool, in February 2014, and are presented in the paper. The maps FWHM angular resolution is 24" (see Fig. 1). Due to the scanning strategy, the noise rms is relatively constant in the central part of maps but rapidly increase towards the edge. Scales larger than 2' are filtered during the data reduction. The image coordinates can be found in the FITS header. Three maps per frequency are provided: flux density, noise, and time-per-pixel. Units are MJy/sr and second, respectively. (2 data files).
The 'Baldwin Effect' in Wolf-Rayet stars
NASA Technical Reports Server (NTRS)
Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria
1993-01-01
The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.
Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock
NASA Technical Reports Server (NTRS)
Cairns, Iver H.
1994-01-01
Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are identified. Empirically, the observed fine structures appear very similar to those in split bnad and multiple-lane type II solar radio bursts; interpretation of both these type II fine structures in terms of f(sub ce)/2 splitting is suggested, thereby supporting and generalizing a suggestion by Wild (1950). A possible application to continuum radiation is mentioned. The ubiquity of these fine structures in the Earth's f(sub p) radiation and foreshock waves remains unknown. Only the ISEE 1 wideband receiver has sufficient frequency resolution (approximately less than or equal to 100 Hz) to perform a dedicated search. Further study of the ubiquity of these fine structures, of how reliably the splitting corresponds to f(sub ce)/2, and of the other interpretations above is necessary.
Modification of Jupiter's Stratosphere Three Weeks After the 2009 Impact
NASA Technical Reports Server (NTRS)
Fast, Kelly Elizabeth; Kostiuk, T.; Livengood, T. A.; Hewagama, T.; Annen, J.
2010-01-01
Infrared spectroscopy sensitive to thermal emission from Jupiter's stratosphere reveals effects persisting 3 1/2 weeks after the impact of a body in late July 2009. Measurements obtained at 11.7 microns on 2009 August 11 UT at the impact latitude of 56degS (planetocentric), using the Goddard Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) mounted on the NASA Infrared Telescope facility, reveal an interval of reduced thermal continuum emission that extends approx.60deg-80deg towards planetary East of the impact site, estimated to be at 305deg longitude (System III). Retrieved stratospheric ethane mole fraction in the near vicinity of the impact site is enhanced by up to approx.60% relative to quiescent regions at this latitude. Thermal continuum emission at the impact site, and somewhat west of it, is significantly enhanced in the same spectra that retrieve enhanced ethane mole fraction. Assuming that the enhanced continuum brightness near the impact site results from thermalized aerosol debris, then continuum emission by a haze layer can be approximated by an opaque surface inserted at the 45-60 mbar pressure level in the stratosphere in an unperturbed thermal profile, setting a lower limit on the altitude of the top of the ejecta cloud at this time. The reduced continuum brightness east of the impact site can be modeled by an opaque surface near the cold tropopause, consistent with a lower altitude of ejecta/impactor-formed opacity or significantly lesser column density of opaque haze material. The physical extent of the observed region of reduced continuum implies a minimum average velocity of 21 m/s transporting material prograde (East) from the impact. Spectra acquired further East, with quiescent characteristics, imply an average zonal velocity of less than 63 m/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian
2017-02-10
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramatymore » High Energy Solar Spectroscopic Imager . We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe ii chromospheric emission line profiles observed in the impulsive phase.« less
NASA Technical Reports Server (NTRS)
Kowalski, Adam F.; Allred, Joel C.; Daw, Adrian N.; Cauzzi, Gianna; Carlsson, Mats
2017-01-01
The 2014 March 29 X1 solar flare (SOL20140329T17:48) produced bright continuum emission in the far- and near-ultraviolet (NUV) and highly asymmetric chromospheric emission lines, providing long-sought constraints on the heating mechanisms of the lower atmosphere in solar flares. We analyze the continuum and emission line data from the Interface Region Imaging Spectrograph (IRIS) of the brightest flaring magnetic footpoints in this flare. We compare the NUV spectra of the brightest pixels to new radiative-hydrodynamic predictions calculated with the RADYN code using constraints on a nonthermal electron beam inferred from the collisional thick-target modeling of hard X-ray data from Reuven Ramaty High Energy Solar Spectroscopic Imager. We show that the atmospheric response to a high beam flux density satisfactorily achieves the observed continuum brightness in the NUV. The NUV continuum emission in this flare is consistent with hydrogen (Balmer) recombination radiation that originates from low optical depth in a dense chromospheric condensation and from the stationary beam-heated layers just below the condensation. A model producing two flaring regions (a condensation and stationary layers) in the lower atmosphere is also consistent with the asymmetric Fe II chromospheric emission line profiles observed in the impulsive phase.
NASA Technical Reports Server (NTRS)
Maoz, Dan; Smith, Paul S.; Jannuzi, Buell T.; Kaspi, Shai; Netzer, Hagai
1994-01-01
We have monitored spectrophotometrically a subsample (28) of the Palomar-Green Bright Quasar Sample for 2 years in order to test for correlations between continuum and emission-line variations and to determine the timescales relevant to mapping the broad-line regions of high-luminosity active galactic nuclei (AGNs). Half of the quasars showed optical continuum variations with amplitudes in the range 20-75%. The rise and fall time for the continuum variations is typically 0.5-2 years. In most of the objects with continuum variations, we detect correlated variations in the broad H-alpha and H-beta emission lines. The amplitude of the line variations is usually 2-4 times smaller than the optical continuum fluctuations. We present light curves and analyze spectra for six of the variable quasars with 1000-10,000 A luminosity in the range 0.3-4 x 10(exp 45) ergs/s. In four of these objects the lines respond to the continuum variations with a lag that is smaller than or comparable to our typical sampling interval (a few months). Although continued monitoring is required to confirm these results and increase their accuracy, the present evidence indicates that quasars with the above luminosities have broad-line regions smaller than about 1 1t-yr. Two of the quasars monitored show no detectable line variations despite relatively large-amplitude continuum changes. This could be a stronger manifestation of the low-amplitude line-response phenomenon we observe in the other quasars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting
We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less
NASA Technical Reports Server (NTRS)
Peterson, B. M.; Berlind, P.; Bertram, R.; Bischoff, K.; Bochkarev, N. G.; Burenkov, A. N.; Calkins, M.; Carrasco, L.; Chavushyan, V. H.
2002-01-01
We present the final installment of an intensive 13 year study of variations of the optical continuum and broad H beta emission line in the Seyfert 1 galaxy NGC 5548. The database consists of 1530 optical continuum measurements and 1248 H beta measurements. The H beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction between the size of the broad-line region and the ionizing luminosity, r is proportional to L(sup 1/2)(sub ion). Moreover, the apparently linear nature of the correlation between the H beta response time and the nonstellar optical continuum F(sub opt) arises as a consequence of the changing shape of the continuum as it varies, specifically F(sub opt) is proportional to F(sup 0.56)(sub UV).
Analytical theory of the shear Alfvén continuum in the presence of a magnetic island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, C. R., E-mail: cook@physics.wisc.edu; Hegna, C. C.
2015-04-15
The effect of a magnetic island chain on the shear Alfvén continuum is calculated analytically. Using a WKB approximation of the linearized ideal MHD equations, the island is shown to cause an upshift in the continuum accumulation point frequency. This minimum of the frequency spectrum is shifted from the rational surface to the island separatrix. The structure of the eigenmodes is also presented.
The 1600 Å Emission Bump in Protoplanetary Disks: A Spectral Signature of H2O Dissociation
NASA Astrophysics Data System (ADS)
France, Kevin; Roueff, Evelyne; Abgrall, Hervé
2017-08-01
The FUV continuum spectrum of many accreting pre-main sequence stars, Classical T Tauri Stars (CTTSs), does not continue smoothly from the well-studied Balmer continuum emission in the NUV, suggesting that additional processes contribute to the short-wavelength emission in these objects. The most notable spectral feature in the FUV continuum of some CTTSs is a broad emission approximately centered at 1600 Å, which has been referred to as the “1600 Å Bump.” The origin of this feature remains unclear. In an effort to better understand the molecular properties of planet-forming disks and the UV spectral properties of accreting protostars, we have assembled archival FUV spectra of 37 disk-hosting systems observed by the Hubble Space Telescope-Cosmic Origins Spectrograph. Clear 1600 Å Bump emission is observed above the smooth, underlying 1100-1800 Å continuum spectrum in 19/37 Classical T Tauri disks in the HST-COS sample, with the detection rate in transition disks (8/8) being much higher than that in primordial or non-transition sources (11/29). We describe a spectral deconvolution analysis to separate the Bump (spanning 1490-1690 Å) from the underlying FUV continuum, finding an average Bump luminosity L(Bump) ≈ 7 × 1029 erg s-1. Parameterizing the Bump with a combination of Gaussian and polynomial components, we find that the 1600 Å Bump is characterized by a peak wavelength λ o = 1598.6 ± 3.3 Å, with FWHM = 35.8 ± 19.1 Å. Contrary to previous studies, we find that this feature is inconsistent with models of H2 excited by electron -impact. We show that this Bump makes up between 5%-50% of the total FUV continuum emission in the 1490-1690 Å band and emits roughly 10%-80% of the total fluorescent H2 luminosity for stars with well-defined Bump features. Energetically, this suggests that the carrier of the 1600 Å Bump emission is powered by Lyα photons. We argue that the most likely mechanism is Lyα-driven dissociation of H2O in the inner disk, r ≲ 2 au. We demonstrate that non-thermally populated H2O fragments can qualitatively account for the observed emission (discrete and continuum) and find that the average Lyα-driven H2O dissociation rate is 1.7 × 1042 water molecules s-1. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS 5-26555.
Low-frequency Carbon Radio Recombination Lines. II. The Diffuse Interstellar Medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salgado, F.; Morabito, L. K.; Oonk, J. B. R.
In the second paper of the series, we have modeled low-frequency carbon radio recombination lines (CRRLs) from the interstellar medium. Anticipating the Low Frequency Array survey of Galactic CRRLs, we focus our study on the physical conditions of the diffuse, cold neutral medium. We have used the improved departure coefficients computed in the first paper of the series to calculate line-to-continuum ratios. The results show that the line width and integrated optical depths of CRRLs are sensitive probes of the electron density, gas temperature, and emission measure of the cloud. Furthermore, the ratio of CRRL to the [C ii] atmore » the 158 μ m line is a strong function of the temperature and density of diffuse clouds. Guided by our calculations, we analyze CRRL observations and illustrate their use with data from the literature.« less
NASA Astrophysics Data System (ADS)
Shibata, Katsunori M.; Chung, Hyung-Soo; Kameno, Seiji; Roh, Duk-Gyoo; Umemoto, Tomofumi; Kim, Kwang-Dong; Asada, Keiichi; Han, Seog-Tae; Mochizuki, Nanako; Cho, Se-Hyung; Sawada-Satoh, Satoko; Kim, Hyun-Goo; Bushimata, Takeshi; Minh, Young Chol; Miyaji, Takeshi; Kuno, Nario; Mikoshiba, Hiroshi; Sunada, Kazuyoshi; Inoue, Makoto; Kobayashi, Hideyuki
2004-06-01
We have made VLBI observations at 86GHz using a 1000-km baseline between Korea and Japan with successful detections of SiO v = 1, J = 2 - 1 maser emissions from VY CMa and Orion KL in 2001 June. This was the first VLBI result for this baseline and the first astronomical VLBI observation for the Korean telescope. Since then, we observed SiO v = 1, J = 2 - 1 maser emission in VY CMa in 2002 January and 2003 February and derived the distributions of the maser emissions. Our results show that the maser emissions extend over 2-4 stellar radii, and were within the inner radius of the dust shell. We observed other SiO maser sources and continuum sources, and 86-GHz continuum emissions were detected from three continuum sources. It was verified that this baseline has a performance comparable to the most sensitive baseline in the VLBA and the CMVA, and is capable of investigating the proper motions of maser features in circumstellar envelopes using monitoring observations.
Haro 11: Where is the Lyman Continuum Source?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne E.
2017-10-10
Identifying the mechanism by which high-energy Lyman continuum (LyC) photons escaped from early galaxies is one of the most pressing questions in cosmic evolution. Haro 11 is the best known local LyC-leaking galaxy, providing an important opportunity to test our understanding of LyC escape. The observed LyC emission in this galaxy presumably originates from one of the three bright, photoionizing knots known as A, B, and C. It is known that Knot C has strong Ly α emission, and Knot B hosts an unusually bright ultraluminous X-ray source, which may be a low-luminosity active galactic nucleus. To clarify the LyCmore » source, we carry out ionization-parameter mapping (IPM) by obtaining narrow-band imaging from the Hubble Space Telescope WFC3 and ACS cameras to construct spatially resolved ratio maps of [O iii]/[O ii] emission from the galaxy. IPM traces the ionization structure of the interstellar medium and allows us to identify optically thin regions. To optimize the continuum subtraction, we introduce a new method for determining the best continuum scale factor derived from the mode of the continuum-subtracted, image flux distribution. We find no conclusive evidence of LyC escape from Knots B or C, but instead we identify a high-ionization region extending over at least 1 kpc from Knot A. This knot shows evidence of an extremely young age (≲1 Myr), perhaps containing very massive stars (>100 M {sub ⊙}). It is weak in Ly α , so if it is confirmed as the LyC source, our results imply that LyC emission may be independent of Ly α emission.« less
Detection of Three-minute Oscillations in Full-disk Lyα Emission during a Solar Flare
NASA Astrophysics Data System (ADS)
Milligan, Ryan O.; Fleck, Bernhard; Ireland, Jack; Fletcher, Lyndsay; Dennis, Brian R.
2017-10-01
In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Lyα (from GOES/EUVS) and Lyman continuum (from Solar Dynamics Observatory (SDO)/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ˜3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO/Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is that the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50-100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Lyα line may influence the composition and dynamics of planetary atmospheres during periods of high activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kleint, L., E-mail: pheinzel@asu.cas.cz
We present a novel observation of the white light flare (WLF) continuum, which was significantly enhanced during the X1 flare on 2014 March 29 (SOL2014-03-29T17:48). Data from the Interface Region Imaging Spectrograph (IRIS) in its near-UV channel show that at the peak of the continuum enhancement, the contrast at the quasi-continuum window above 2813 Å reached 100%-200% and can be even larger closer to Mg II lines. This is fully consistent with the hydrogen recombination Balmer-continuum emission, which follows an impulsive thermal and non-thermal ionization caused by the precipitation of electron beams through the chromosphere. However, a less probable photosphericmore » continuum enhancement cannot be excluded. The light curves of the Balmer continuum have an impulsive character with a gradual fading, similar to those detected recently in the optical region on the Solar Optical Telescope on board Hinode. This observation represents a first Balmer-continuum detection from space far beyond the Balmer limit (3646 Å), eliminating seeing effects known to complicate the WLF detection. Moreover, we use a spectral window so far unexplored for flare studies, which provides the potential to study the Balmer continuum, as well as many metallic lines appearing in emission during flares. Combined with future ground-based observations of the continuum near the Balmer limit, we will be able to disentangle various scenarios of the WLF origin. IRIS observations also provide a critical quantitative measure of the energy radiated in the Balmer continuum, which constrains various models of the energy transport and deposit during flares.« less
Comparison of solar hard X-ray and UV line and continuum bursts with high time resolution
NASA Technical Reports Server (NTRS)
Orwig, L. E.; Woodgate, B. E.
1986-01-01
A comparison of data sets from the UV Spectrometer and Polarimeter and Hard X-ray Burst Spectrometer instruments on SMM has established the close relationship of the impulsive phase hard X-ray and UV continuum and OV line emissions, lending support to the notion that they have a similar origin low in the solar atmosphere. These results severely constrain models that attempt to explain impulsive phase hard X-rays and UV emission; alternative processes of impulsive-phase UV continuum production should accordingly be considered. Attention is given to an electron beam 'hole boring' mechanism and a photoionization radiation transport mechanism.
Ionized absorbers, ionized emitters, and the X-ray spectrum of active galactic nuclei
NASA Technical Reports Server (NTRS)
Netzer, Hagai
1993-01-01
Broad absorption features are common in the X-ray spectrum of low-luminosity AGNs. The features have been modeled by leaky neutral absorbers or by highly ionized gas that completely occult the continuum source. Such models are incomplete since they do not take into account all the physical processes in the gas. In particular, no previous model included the X-ray emission by the ionized absorbing gas and the reflection of the continuum source radiation. The present work discusses the emission, absorption, and reflection properties of photoionized gases with emphasis on conditions thought to prevail in AGNs. It shows that such gas is likely to produce intense X-ray line and continuum radiation and to reflect a sizable fraction of the nonstellar continuum at all energies. If such gas is indeed responsible for the observed X-ray absorption, then absorption edges are much weaker than commonly assumed, and some residual X-ray continuum is likely to be observed even if the line of sight is completely blocked. Moreover, X-ray emission features may show up in sources not showing X-ray absorption. This has immense consequences for medium-resolution X-ray missions, such as BBXRT and Astro-D, and for the planned high-resolution experiments on board XMM and AXAF.
Digital filtering of plume emission spectra
NASA Technical Reports Server (NTRS)
Madzsar, George C.
1990-01-01
Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, X. Q.; Xiong, Z.; Nevins, W. M.
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio {epsilon} scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
Tempest Simulations of Collisionless Damping of the Geodesic-Acoustic Mode in Edge-Plasma Pedestals
NASA Astrophysics Data System (ADS)
Xu, X. Q.; Xiong, Z.; Gao, Z.; Nevins, W. M.; McKee, G. R.
2008-05-01
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio γ scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
TEMPEST simulations of collisionless damping of the geodesic-acoustic mode in edge-plasma pedestals.
Xu, X Q; Xiong, Z; Gao, Z; Nevins, W M; McKee, G R
2008-05-30
The fully nonlinear (full-f) four-dimensional TEMPEST gyrokinetic continuum code correctly produces the frequency and collisionless damping of geodesic-acoustic modes (GAMs) and zonal flow, with fully nonlinear Boltzmann electrons for the inverse aspect ratio scan and the tokamak safety factor q scan in homogeneous plasmas. TEMPEST simulations show that the GAMs exist in the edge pedestal for steep density and temperature gradients in the form of outgoing waves. The enhanced GAM damping may explain experimental beam emission spectroscopy measurements on the edge q scaling of the GAM amplitude.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momose, Munetake; Hiramatsu, Masaaki; Tsukagoshi, Takashi
2009-08-05
We carried out an imaging survey of dust continuum emissions toward the Chamaeleon and Lupus regions. Observations were made with the 144-element bolometer array camera AzTEC mounted on the 10-meter sub-millimeter telescope ASTE during 2007-2008. The preliminary results of disk search and the cloud structure of Lupus III are presented.
NASA Technical Reports Server (NTRS)
Adler, David S.; Lo, K. Y.; Allen, Ronald J.
1991-01-01
The relationship between the velocity-integrated CO emission and the nonthermal radio continuum brightness in the disks of normal spiral galaxies is examined on a variety of length scales. On a global scale, the total CO intensity correlates strongly with the total radio continuum flux density for a sample of 31 galaxies. On scales of about 2 kpc or more in the disk of individual galaxies, it is found that the ratio I(CO)/T(20) remains fairly constant over the entire disk as well as from galaxy to galaxy. For the eight spirals in the sample, the disk-averaged values of I(CO)/T(20) range from 0.6-2.4, with the average over all eight galaxies being 1.3 +/- 0.6. It is concluded that what these various length scales actually trace are differences in the primary heating mechanism of the gas in the beam. The observed relationship between CO and nonthermal radio continuum emission can be explained by assuming that molecular gas in galactic disks is heated primarily by cosmic rays. The observed relationship is used to show that the brightness of synchrotron emission is proportional to n(cr) exp 0.4 - 0.9 in galactic disks.
An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines
NASA Astrophysics Data System (ADS)
Korista, Kirk; Baldwin, Jack; Ferland, Gary; Verner, Dima
We present graphically the results of several thousand photoionization calculations of broad emission-line clouds in quasars, spanning 7 orders of magnitude in hydrogen ionizing flux and particle density. The equivalent widths of 42 quasar emission lines are presented as contours in the particle density-ionizing flux plane for a typical incident continuum shape, solar chemical abundances, and cloud column density of N(H) = 1023 cm-2. Results are similarly given for a small subset of emission lines for two other column densities (1022 and 1024 cm-2), five other incident continuum shapes, and a gas metallicity of 5 Z⊙. These graphs should prove useful in the analysis of quasar emission-line data and in the detailed modeling of quasar broad emission-line regions. The digital results of these emission-line grids and many more are available over the Internet.
NASA Technical Reports Server (NTRS)
Hora, Joseph L.; Latter, William B.; Deutsch, Lynne K.
1998-01-01
We present medium-resolution (R approximately 700) near-infrared (lambda = 1 - 2.5 micrometers) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H1 emission line-dominated PNe, H1 and H2 emission line PNe, H2 emission line-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H2 and continuum emission groups. The categories also correlate with C/O ratio, with the O-rich objects falling into the first group and the C-rich objects in the groups. Other spectral features were observed in all catagories, such as continuum emission from the central star, and warm dust continuum emission towards the long wavelength end of the spectra. H2 was detected in four PNe in this survey for the first time. An analysis was performed using the H2 line ratios in all of the PN spectra in the survey where a sufficient number of lines were observed to determine the ortho-to-para ratio and the rotational and vibrational excitation temperatures of the H-2 in those objects. One unexpected result from this analysis is that the H-2 is excited by absorption of ultraviolet photons in most of the PNe, although there are several PNe in which collisional excitation plays an important role. The correlation between bipolar morphology and H2 emission has been strengthened with the new detections of H2 in this survey.
A singular finite element technique for calculating continuum damping of Alfvén eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, G. W.; Hole, M. J.
2015-02-15
Damping due to continuum resonances can be calculated using dissipation-less ideal magnetohydrodynamics provided that the poles due to these resonances are properly treated. We describe a singular finite element technique for calculating the continuum damping of Alfvén waves. A Frobenius expansion is used to determine appropriate finite element basis functions on an inner region surrounding a pole due to the continuum resonance. The location of the pole due to the continuum resonance and mode frequency is calculated iteratively using a Galerkin method. This method is used to find the complex frequency and mode structure of a toroidicity-induced Alfvén eigenmode inmore » a large aspect ratio circular tokamak and is shown to agree closely with a complex contour technique.« less
THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.
2016-09-20
Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less
RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr
The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less
Spectral Variations of T Tauri stars
NASA Astrophysics Data System (ADS)
Guenther, E.
1994-02-01
Although it can now be taken for granted that T Tauri stars accrete matter from circumstellar disks, the way in which the matter is ultimately accreted by the star is still under discussion. Boundary layer models, as well as models of magnetic accretion are considered. Since the very inner part of the disk, the star, and the boundary layer or the accretion shock radiate mainly in the optical, it is necessary to investigate this wavelength region. Optical spectra of classical T Tauri stars consist of emission lines superimposed on a late-type photospheric spectrum, but the photospheric lines in T Tauri stars are much weaker than the lines of main sequence stars of the same spectral type. This is generally attributed to the presence of an additional continuum which veils the photospheric spectrum of the star, which may be be the emission of the boundary layer, or the emission of the immediate vicinity of an accretion shock. The aim of this work is to give additional information on the nature of the region that emits the veiling continuum by investigating the correlations between the veiling and line fluxes in time serieses of T Tauri stars. For this work a time series of 27, 117, and 89 spectra of BM And, DI Cep and DG Tau, were taken in 9, 13, and 12 nights, using the Echellette-Spectrograph of the 2.2m telescope on Calar Alto, Spain. These T Tauri stars were selected because of their different of levels of activity. The spectra cover the whole region between 3200Å and 11000Å with a resolution of about Δ λ λ = 3000. Using 32 template stars the spectral types of the stars were determined, which is found to remain unchanged during the whole time series. The wavelengths of all photospheric lines are in agreement with a single doppler shift (+/- 6 km/s), which is taken as the systemic velocity. It is thus assumed that the low excitation lines are indeed the photospheric lines of the star and the veiling is an additional continuum source. The spectrum of the veiling continuum is determined by subtracting a flux calibrated, scaled template spectrum from the flux calibrated, deredened T Taui star spectrum. The spectra of the veiling continuum exhibit a strong, variable Balmer Jump, but no Pashen Jump is seen. Hα is the only emission line in the spectrum of BM And, all other Balmer lines and the lines of He I appear in absorption, and are redshifted by at least 100 km/s. While the correlation between Hα and the veiling continuum is high, the correlation between all redshifted absorption lines and the veiling continuum is very low. From a comparison of observed and computed profiles of He I it is concluded that this line might form close to an accretion shock, and so should the higher Balmer. Since no redshifted absorption component is seen in Hα, the emission component must be optically thick, and should then be formed at a larger distance from the star than the redshifted absorption components, and hence the veiling continuum. The observations of BM And clearly show that the magnetic model is valid in this case, but the veiling continuum is not the emission of the accretion shock itself. DG Tau and DI Cep show the same kind of behavior. All emission lines have correlation factors between about 0.3 and 0.8. The highest correlations are found in the Balmer lines and low excitation Fe I and Fe II lines. There are no delay effects between the lines, all lines reach their maxima and minima at the same time. From the large Balmer decrement, and calculation of the Balmer lines and the veiling continuum in a simple slab model, it is concluded that the emitting region that is responsible for the emission lines and the veiling continuum has a temperature of 10000 K, and a density of 3**1018m-3 or less. In the slab geometry this corresponds to an emitting region which is at least 10000 km (≅ 0.01 R*) thick. It can thus be concluded that the region emitting the veiling continuum is relatively large and thin.
2008-05-02
information is estimated to average 1 hour per response, including g the time for reviewing instructions, searching existing data sources, gathering...their central engines cannot be resolved with ordinary telescopes. Gravitational telescopes, however, provide the necessary resolution to study the...structure of the continuum emission regions at optical and X-ray wavelengths and make time delay estimates in the systems in which sufficient data were
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagg, J.; Carilli, C. L.; Lentati, L.
2014-03-10
We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J = 2-1 line emission in BRI 1202–0725 at z = 4.7 (a starburst galaxy and quasar pair) and BRI 1335–0417 at z = 4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the low-J CO line emission. The measured CO J = 2-1 line luminosities of BRI 1202–0725 are L{sub CO}{sup ′}=(8.7±0.8)×10{sup 10} Kmore » km s{sup –1} pc{sup 2} and L{sub CO}{sup ′}=(6.0 ± 0.5)×10{sup 10} K km s{sup –1} pc{sup 2} for the submillimeter galaxy (SMG) and quasar, respectively, which are equal to previous measurements of the CO J = 5-4 line luminosities implying thermalized line emission, and we estimate a combined cold molecular gas mass of ∼9×10{sup 10} M {sub ☉}. In BRI 1335–0417 we measure L{sub CO}{sup ′}=(7.3±0.6)×10{sup 10} K km s{sup –1} pc{sup 2}. We detect continuum emission in the SMG BRI 1202–0725 North (S {sub 44} {sub GHz} = 51 ± 6 μJy), while the quasar is detected with S {sub 44} {sub GHz} = 24 ± 6 μJy and in BRI 1335–0417 we measure S {sub 44} {sub GHz} = 40 ± 7 μJy. Combining our continuum observations with previous data at (rest-frame) far-infrared and centimeter wavelengths, we fit three-component models in order to estimate the star formation rates. This spectral energy distribution fitting suggests that the dominant contribution to the observed 44 GHz continuum is thermal dust emission, while either thermal free-free or synchrotron emission contributes less than 30%.« less
Origin of the 30 THz Emission Detected During the Solar Flare on 2012 March 13 at 17:20 UT
NASA Astrophysics Data System (ADS)
Trottet, G.; Raulin, J.-P.; Mackinnon, A.; Giménez de Castro, G.; Simões, P. J. A.; Cabezas, D.; de La Luz, V.; Luoni, M.; Kaufmann, P.
2015-10-01
Solar observations in the infrared domain can bring important clues on the response of the low solar atmosphere to primary energy released during flares. At present, the infrared continuum has been detected at 30 THz (10 μm) in only a few flares. SOL2012-03-13, which is one of these flares, has been presented and discussed in Kaufmann et al. ( Astrophys. J. 768, 134, 2013). No firm conclusions were drawn on the origin of the mid-infrared radiation. In this work we present a detailed multi-frequency analysis of the SOL2012-03-13 event, including observations at radio-millimeter and submillimeter wavelengths, in hard X-rays (HXR), gamma-rays (GR), Hα, and white light. The HXR/GR spectral analysis shows that SOL2012-03-13 is a GR line flare and allows estimating the numbers of and energy contents in electrons, protons, and α particles produced during the flare. The energy spectrum of the electrons producing the HXR/GR continuum is consistent with a broken power-law with an energy break at {˜} 800 keV. We show that the high-energy part (above {˜} 800 keV) of this distribution is responsible for the high-frequency radio emission ({>} 20 GHz) detected during the flare. By comparing the 30 THz emission expected from semi-empirical and time-independent models of the quiet and flare atmospheres, we find that most ({˜} 80 %) of the observed 30 THz radiation can be attributed to thermal free-free emission of an optically thin source. Using the F2 flare atmospheric model (Machado et al. in Astrophys. J. 242, 336, 1980), this thin source is found to be at temperatures T {˜} 8000 K and is located well above the minimum temperature region. We argue that the chromospheric heating, which results in 80 % of the 30 THz excess radiation, can be due to energy deposition by nonthermal flare-accelerated electrons, protons, and α particles. The remaining 20 % of the 30 THz excess emission is found to be radiated from an optically thick atmospheric layer at T {˜} 5000 K, below the temperature minimum region, where direct heating by nonthermal particles is insufficient to account for the observed infrared radiation.
Observations of the May 1979 outburst of Centaurus X-4
NASA Technical Reports Server (NTRS)
Blair, W. P.; Raymand, J. C.; Dupree, A. K.
1982-01-01
The IUE spectra of the X-ray transient/X-ray burst source Cen X-4 at three intervals during the peak and decline of the May 1979 transient event were studied. The spectrum is characterized by a blue continuum and strong emission lines of N V lambda 1240, Si IV lambda 1398 and C IV lambda 1550. The origin of these emission components in the context of an X-ray dwarf nova model is investigated. It is suggested that an accretion disk plays a prominent role in the generation of the continuum emission and that X-ray heating of the accretion disk and the companion star may be important in the formation of the emission lines.
Ultraviolet continuum and H2 fluorescent emission in Herbig-Haro objects 43 and 47
NASA Technical Reports Server (NTRS)
Schwartz, R. D.
1983-01-01
IUE short wavelength spectra are presented for the low excitation Herbig-Haro objects HH 43 and HH 47. In the former, several emission lines in the Lyman band of H2 from an excited state are observed which are due to fluorescence from the H Ly-alpha line pumping a lower state (that is in turn excited by a low-velocity shock wave). No evidence of highly ionized gas emission is found in the UV spectra, and both objects exhibit a UV continuum which peaks in the vicinity of 1500 A and is probably caused by H two-photon emission enhanced by low velocity shock collisional excitation.
Evolution of Cold Circumstellar Dust around Solar-type Stars
NASA Astrophysics Data System (ADS)
Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Thomas
2005-02-01
We present submillimeter (Caltech Submillimeter Observatory 350 μm) and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, Owens Valley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-type stars from the Formation and Evolution of Planetary Systems Spitzer Legacy program that have masses between ~0.5 and 2.0 Msolar and ages from ~3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal-to-noise ratio>=3: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RX J1852.3-3700 are located in projection near the R CrA molecular cloud, with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66 is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup of the Scorpius-Centaurus OB association (Mamajek et al.). The continuum emission toward these three sources is unresolved at the 24" SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5×10-5 Msolar. Analysis of the visibility data toward HD 107146 (age~80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the astrometric uncertainties and resolved with a Gaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or 185AU×120 AU. The results from our continuum survey are combined with published observations to quantify the evolution of dust mass with time by comparing the mass distributions for samples with different stellar ages. The frequency distribution of circumstellar dust masses around solar-type stars in the Taurus molecular cloud (age~2 Myr) is distinguished from that around 3-10 Myr and 10-30 Myr old stars at a significance level of ~1.5 and ~3 σ, respectively. These results suggest a decrease in the mass of dust contained in small dust grains and/or changes in the grain properties by stellar ages of 10-30 Myr, consistent with previous conclusions. Further observations are needed to determine if the evolution in the amount of cold dust occurs on even shorter timescales.
Broad-Band Continuum and Line Emission of the gamma-Ray Blazar PKS 0537-441
NASA Technical Reports Server (NTRS)
Pian, E.; Falomo, R.; Hartman, R. C.; Maraschi, L.; Tavecchio, F.; Tornikoski, M.; Treves, A.; Urry, C. M.; Ballo, L.; Mukherjee, R.;
2002-01-01
PKS 0537-441, a bright gamma ray emitting blazar was observed at radio, optical, UV and X-ray frequencies during various EGRET paintings, often quasi-simultaneously. In 1995 the object was found in an intense emission state at all wavelengths. BeppoSAX observations made in 1998, non-simultaneously with exposures at other frequencies, allow us to characterize precisely the spectral shape of the high energy blazer component, which we attribute to inverse Compton scatter in The optical-to-gamma-ray spectral energy distributions at the different epochs show that the gamma-ray luminosity dominates the barometric output. This, together with the presence of optical and UV line emission, suggests that, besides the synchrotron self-Compton mechanism, the Compton upscattering of photons external to the jet (e.g., in the broad line region) may have a significant role for high energy radiation. The multiwavelength variability can be reproduced by changes of the plasma bulk Lorentz factor. The spectrum secured by ICE in 1995 appears to be partially absorbed shortward of approximately 1700 Angstroms. However, this signature is not detected in the HST spectrum taker during a lower state of the source. The presence of intervening absorbers is not supported by optical imaging and spectroscopy of the field.
NASA Astrophysics Data System (ADS)
Harkema, Nathan; Liao, Chen-Ting; Sandhu, Arvinder
2017-04-01
Attosecond transient absorption spectroscopy (ATAS) enables the study of excited electron dynamics with unprecedented temporal and energy resolution. Many ATAS experiments use an extreme ultraviolet (XUV) pump pulse and a near-infrared (NIR) probe fixed at the fundamental laser frequency ( 800 nm) to study the light induced effects on electronic structure of atoms and molecules. We extend the technique by using an optical parametric amplifier in one arm of our setup, which allows us to independently tune the frequency of the probe pulse from 1200 to 1800 nm. These long-wavelength pulses allow us to explore a new regime, where we can control the couplings between nearby electronic states to alter the transient absorption lineshapes in atoms. We use this technique to investigate the 4p-3s detuning dependent Autler-Townes splitting of the 4p state in Helium. Light induced Floquet structures extending into the continuum are observed in our study. We demonstrate new tunable XUV emission channels from four-wave mixing processes, and the efficiency of these emissions can be strongly enhanced through resonant couplings. The tunable IR induced electronic couplings are also used to influence the autoionization dynamics in Argon. This work is supported by NSF Grant No. PHY-1505556 and ARO Grant No. W911NF-14-1-0383.
International Ultraviolet Explorer (IUE)
NASA Technical Reports Server (NTRS)
Boehm, Karl-Heinz
1992-01-01
The observation, data reduction, and interpretation of ultraviolet spectra (obtained with the International Ultraviolet Explorer) of Herbig-Haro objects, stellar jets, and (in a few cases) reflection nebulae in star-forming regions is discussed. Intermediate results have been reported in the required semi-annual reports. The observations for this research were obtained in 23 (US1) IUE shifts. The spectra were taken in the low resolution mode with the large aperture. The following topics were investigated: (1) detection of UV spectra of high excitation Herbig-Haro (HH) objects, identification of emission lines, and a preliminary study of the energy distribution of the ultraviolet continuum; (2) details of the continuum energy distribution of these spectra and their possible interpretation; (3) the properties of the reddening (extinction) of HH objects; (4) the possible time variation of strong emission lines in high excitation HH objects; (5) the ultraviolet emission of low excitation HH objects, especially in the fluorescent lines of the H2 molecule; (6) the ultraviolet emission in the peculiar object HH24; (7) the spatial emission distribution of different lines and different parts of the continuum in different HH objects; and (8) some properties of reflection nebula, in the environment of Herbig-Haro objects. Each topic is discussed.
Space shuttle ram glow: Implication of NO2 recombination continuum
NASA Technical Reports Server (NTRS)
Swenson, G. R.; Mende, S. B.; Clifton, S.
1985-01-01
The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.
Space shuttle Ram glow: Implication of NO2 recombination continuum
NASA Astrophysics Data System (ADS)
Swenson, G. R.; Mende, S. B.; Clifton, S.
1985-09-01
The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.
Frequency chirpings in Alfven continuum
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
Luminescence in Primordial Helium Lines at the Pre-recombination Epoch
NASA Astrophysics Data System (ADS)
Dubrovich, V. K.; Grachev, S. I.
2018-04-01
The formation of luminescent subordinate He I lines by the absorption of radiation from a source in lines of the main He I series in an expanding Universe is considered. A burst of radiation in continuum is assumed to occur at some instant of time corresponding to redshift z 0. This radiation is partially absorbed at different z < z 0 in lines of the main He I series (different pumping channels) and then is partially converted into radiation in subordinate lines. If ν ik is the laboratory transition frequency of some subordinate line emerging at some z, then at the present epoch its frequency will be ν = ν ik /(1 + z). The quantum yield, i.e., the number of photons emitted in the subordinate line per initial excited atom, has been calculated for different z (and, consequently, for different ν). Several pumping channels have been considered. We show that the luminescent lines can be both emission and absorption ones; the same line can be an emission one for one of the pumping channels and an absorption one for another. For example, the 1s2s-1s2p (1S-1P*) line is an emission one for the 1s2-1s2p pumping and an absorption one for the 1s2-1s3p pumping. We show that in the frequency range 30-80 GHz the total quantum yield for the first and second of the above channels can reach +50 and -50%, respectively.
The Association of Molecular Gas and Natal Super Star Clusters in Henize 2–10
NASA Astrophysics Data System (ADS)
Johnson, Kelsey E.; Brogan, Crystal L.; Indebetouw, Remy; Testi, Leonardo; Wilner, David J.; Reines, Amy E.; Chen, C.-H. Rosie; Vanzi, Leonardo
2018-02-01
We present ALMA observations of the dwarf starburst galaxy He 2–10 in combination with previous SMA CO observations to probe the molecular environments of natal super star clusters (SSCs). These observations include the HCO+(1-0), HCN(1-0), HNC(1-0), and CCH(1-0) molecular lines, as well as 88 GHz continuum with a spatial resolution of 1\\buildrel{\\prime\\prime}\\over{.} 7× 1\\buildrel{\\prime\\prime}\\over{.} 6. After correcting for the contribution from free–free emission to the 88 GHz continuum flux density (∼60% of the 88 GHz emission), we derive a total gas mass for He 2–10 of {M}{gas}=4{--}6× {10}8 M ⊙, roughly 5%–20% of the dynamical mass. Based on a principle component analysis, HCO+ is found to be the best “general” tracer of molecular emission. The line widths and luminosities of the CO emission suggests that the molecular clouds could either be as small as ∼8 pc, or alternately have enhanced line widths. The CO emission and 88 GHz continuum are anti-correlated, suggesting that either the dust and molecular gas are not cospatial, which could reflect that the 88 GHz continuum is dominated by free–free emission. The CO and CCH emission are also relatively anti-correlated, which is consistent with the CCH being photo-enhanced, and/or the CO being dissociated in the regions near the natal SSCs. The molecular line ratios of regions containing the natal star clusters are different from the line ratios observed for regions elsewhere in the galaxy. In particular, the regions with thermal radio emission all have {CO}(2{--}1)/{{HCO}}+(1-0)< 16, and the HCO+/CO ratio appears to be correlated with the evolutionary stage of the clusters.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-07-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleusNGC 1052, using a high-angular resolution data set that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
NASA Astrophysics Data System (ADS)
Reb, Lennart; Fernández-Ontiveros, Juan A.; Prieto, M. Almudena; Dolag, Klaus
2018-05-01
We investigate the central sub-arcsec region of the low-luminosity active galactic nucleus NGC 1052, using a high-angular resolution dataset that covers 10 orders of magnitude in frequency. This allows us to infer the continuum emission within the innermost ˜17 pc around the black hole to be of non-thermal, synchrotron origin and to set a limit to the maximum contribution of a standard accretion disc. Assuming the canonical 10 per cent mass-light conversion efficiency for the standard accretion disc, its inferred accretion power would be too low by one order of magnitude to account for the observed continuum luminosity. We thus introduce a truncated accretion disc and derive a truncation radius to mass-light conversion efficiency relation, which we use to reconcile the inferred accretion power with the continuum luminosity. As a result we find that a truncated disc providing the necessary accretion power must be truncated at rtr ≳ 26 rg, consistent with the inner radius derived from the observations of the Fe Kα line in the X-ray spectrum of this nucleus. This is the first time to derive a limit on the truncation radius of the accretion disc from high-angular resolution data only.
IUE observations of circumstellar emission from the late type variable R Aquarii /M7 + pec/
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Hobbs, R. W.; Kafatos, M.
1980-01-01
IUE observations of R Aquarii (M7 + pec) have been obtained in low dispersion in order to study its circumstellar emission. Strong permitted, semiforbidden, and forbidden emission lines are identified that are superposed on a bright ultraviolet continuum. From the analysis it is deduced that the strong emission-line spectrum that involves semiforbidden C III, C IV, semiforbidden Si III, forbidden O II, and forbidden O III probably arises from a dense compact nebula the size of which is comparable to the binary system of which R Aqr is the primary star. Low-excitation emission lines of Fe II, Mg II, O I, and Si II suggest the presence of a warm chromosphere (T less than about 10,000 K) in the primary M7 late type giant. The secondary is identified as a white dwarf, comparable to or somewhat brighter than the sun, since such a star can produce enough ionizing photons to excite the continuum and emission-line spectrum and yet be sufficiently faint to escape detection by direct observation. The UV continuum observed is attributed to Balmer recombination and not to blackbody emission from the hot companion. The general spectral properties of R Aqr between 1200 A and 3200 A are discussed in the context of the model for the circumstellar nebula, the companion, and the mass-loss rate of the primary star.
NASA Technical Reports Server (NTRS)
Feldman, P. D.; Davidsen, A. F.; Blair, W. P.; Bowers, C. W.; Durrance, S. T.; Kriss, G. A.; Ferguson, H. C.; Kimble, R. A.; Long, K. S.
1992-01-01
Ultraviolet spectra of the tropical oxygen nightglow in the range of 830 to 1850 A (in first order) at 3 A resolution were obtained with the Hopkins Ultraviolet Telescope in December 1990. The data are presented which were obtained on a setting celestial target as the zenith angle of the line-of-sight varied from 77 to 95 deg. The dominant features in the spectrum (other than geocoronal hydrogen) are O I 1304 and 1356 and the radiative recombination continuum near 911 A. The continuum is resolved and found to be consistent with an electron temperature in the range 1000-1250 K. The observed ratio of the brightness of O I 1356 to the continuum suggests that O(+)-O(-) mutual neutralization contributes about 40 percent to the 1356 A emission. The dependence of the optically thin emissions on zenith angle is consistent with a simple ionospheric model. Weak O I 989 emission is also detected, but there is no evidence for any similarly produced atomic nitrogen emissions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Bo; Zeng, Yong Quan; Liang, Guozhen
2015-09-14
We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.
Coherent ultra-violet to near-infrared generation in silica ridge waveguides
Yoon Oh, Dong; Yang, Ki Youl; Fredrick, Connor; Ycas, Gabriel; Diddams, Scott A.; Vahala, Kerry J.
2017-01-01
Short duration, intense pulses of light can experience dramatic spectral broadening when propagating through lengths of optical fibre. This continuum generation process is caused by a combination of nonlinear optical effects including the formation of dispersive waves. Optical analogues of Cherenkov radiation, these waves allow a pulse to radiate power into a distant spectral region. In this work, efficient and coherent dispersive wave generation of visible to ultraviolet light is demonstrated in silica waveguides on a silicon chip. Unlike fibre broadeners, the arrays provide a wide range of emission wavelength choices on a single, compact chip. This new capability is used to simplify offset frequency measurements of a mode-locked frequency comb. The arrays can also enable mode-locked lasers to attain unprecedented tunable spectral reach for spectroscopy, bioimaging, tomography and metrology. PMID:28067233
SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana
We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. Themore » polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.« less
NASA Astrophysics Data System (ADS)
Verschuur, Gerrit L.
2014-06-01
The archive of IRIS, PLANCK and WMAP data available at the IRSA website of IPAC allows the apparent associations between galactic neutral hydrogen (HI) features and small-scale structure in WMAP and PLANCK data to be closely examined. In addition, HI new observations made with the Green Bank Telescope are used to perform a statistical test of putative associations. It is concluded that attention should be paid to the possibility that some of the small-scale structure found in WMAP and PLANCK data harbors the signature of a previously unrecognized source of high-frequency continuum emission in the Galaxy.
Visible and near-ultraviolet spectra of low-pressure rare-gas microwave discharges
NASA Technical Reports Server (NTRS)
Campbell, J. P.; Spisz, E. W.; Bowman, R. L.
1971-01-01
The spectral emission characteristics of three commercial low pressure rare gas discharge lamps wire obtained in the near ultraviolet and visible wavelength range. All three lamps show a definite continuum over the entire wavelength range from 0.185 to 0.6 micrometers. Considerable line emission is superimposed on much of the continuum for wavelengths greater than 0.35 micrometers. These sources were used to make transmittance measurements on quartz samples in the near ultraviolet wavelength range.
The Compact, ˜1 kpc Host Galaxy of a Quasar at a Redshift of 7.1
NASA Astrophysics Data System (ADS)
Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Hodge, Jacqueline; Hewett, Paul; McMahon, Richard G.; Mortlock, Daniel J.; Simpson, Chris
2017-03-01
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1). We also present observations targeting the CO(2-1), CO(7-6), and [C I] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C II] line flux of {F}[{{C}{{II}}]}=1.11+/- 0.10 Jy {km} {{{s}}}-1 and a continuum flux density of {S}227{GHz}=0.53+/- 0.04 mJy beam-1, consistent with previous unresolved measurements. No other source is detected in continuum or [C II] emission in the field covered by ALMA (˜ 25″). At the resolution of our ALMA observations (0.″23, or 1.2 kpc, a factor of ˜70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (˜80%) of the total line and continuum flux is associated with a region 1-1.5 kpc in diameter. The remaining ˜20% of the emission is distributed over a larger area with radius ≲4 kpc. The [C II] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3+/- 0.9)× {10}10 {M}⊙ , only ˜20 × higher than the central black hole (BH). The other targeted lines (CO(2-1), CO(7-6), and [C I]) are not detected, but the limits of the line ratios with respect to the [C II] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105-340 {M}⊙ {{yr}}-1, with a resulting SFR surface density of ˜100-350 {M}⊙ {{yr}}-1 kpc-2, well below the value for Eddington-accretion-limited star formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Ryan O.; Fletcher, Lyndsay; Fleck, Bernhard
In this Letter we report the detection of chromospheric 3-minute oscillations in disk-integrated EUV irradiance observations during a solar flare. A wavelet analysis of detrended Ly α (from GOES /EUVS) and Lyman continuum (from Solar Dynamics Observatory ( SDO )/EVE) emission from the 2011 February 15 X-class flare (SOL2011-02-15T01:56) revealed a ∼3 minute period present during the flare’s main phase. The formation temperature of this emission locates this radiation at the flare’s chromospheric footpoints, and similar behavior is found in the SDO /Atmospheric Imaging Assembly 1600 and 1700 Å channels, which are dominated by chromospheric continuum. The implication is thatmore » the chromosphere responds dynamically at its acoustic cutoff frequency to an impulsive injection of energy. Since the 3-minute period was not found at hard X-ray (HXR) energies (50–100 keV) in Reuven Ramaty High Energy Solar Spectroscopic Imager data we can state that this 3-minute oscillation does not depend on the rate of energization of non-thermal electrons. However, a second period of 120 s found in both HXR and chromospheric lightcurves is consistent with episodic electron energization on 2-minute timescales. Our finding on the 3-minute oscillation suggests that chromospheric mechanical energy should be included in the flare energy budget, and the fluctuations in the Ly α line may influence the composition and dynamics of planetary atmospheres during periods of high activity.« less
NASA Astrophysics Data System (ADS)
Mallick, L.; Alston, W. N.; Parker, M. L.; Fabian, A. C.; Pinto, C.; Dewangan, G. C.; Markowitz, A.; Gandhi, P.; Kembhavi, A. K.; Misra, R.
2018-06-01
We present the first results from a detailed spectral-timing analysis of a long (˜130 ks) XMM-Newton observation and quasi-simultaneous NuSTAR and Swift observations of the highly-accreting narrow-line Seyfert 1 galaxy Mrk 1044. The broadband (0.3-50 keV) spectrum reveals the presence of a strong soft X-ray excess emission below ˜1.5 keV, iron Kα emission complex at ˜6 -7 keV and a `Compton hump' at ˜15 -30 keV. We find that the relativistic reflection from a high-density accretion disc with a broken power-law emissivity profile can simultaneously explain the soft X-ray excess, highly ionized broad iron line and the Compton hump. At low frequencies ([2 - 6] × 10-5 Hz), the power-law continuum dominated 1.5-5 keV band lags behind the reflection dominated 0.3-1 keV band, which is explained with a combination of propagation fluctuation and Comptonization processes, while at higher frequencies ([1 - 2] × 10-4 Hz), we detect a soft lag which is interpreted as a signature of X-ray reverberation from the accretion disc. The fractional root-mean-squared (rms) variability of the source decreases with energy and is well described by two variable components: a less variable relativistic disc reflection and a more variable direct coronal emission. Our combined spectral-timing analyses suggest that the observed broadband X-ray variability of Mrk 1044 is mainly driven by variations in the location or geometry of the optically thin, hot corona.
Reverberation Mapping of the Continuum Source in Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael Martin
I present results from a monitoring campaign of 11 active galactic nuclei (AGN) conducted in Spring of 2014. I use the reverberation mapping method to probe the interior structures of the AGN, specifically the broad line regions (BLRs) and accretion disks. One of these AGN, NGC 5548, was also subject to multi-wavelength (X-ray, UV, optical, and near-IR) monitoring using 25 ground-based telescopes and four space-based facilities. For NGC 5548, I detect lags between the continuum emission at different wavelengths that follow a trend consistent with the prediction for continuum reprocessing by an accretion disk with temperature profile T ∝ R -3/4. However, the lags imply a disk radius that is 3 times larger than the prediction from standard thin-disk models. The lags at wavelengths longer than the Vband are also equal to or greater than the lags of high-ionization-state emission lines (such as HeII lambda1640 and lambda4686), suggesting that the continuum-emitting source is of a physical size comparable to the inner broad-line region. Using optical spectra from the Large Binocular Telescope, I estimate the bias of the interband continuum lags due to BLR emission observed in the filters, and I find that the bias for filters with high levels of BLR contamination (˜20%) can be important for the shortest continuum lags. This likely has a significant impact on the u and U bands owing to Balmer continuum emission. I then develop a new procedure for the internal (night-to-night) calibration of time series spectra that can reach precisions of ˜1 millimagnitude and improves traditional techniques by up to a factor of 5. At this level, other systematic issues (e.g., the nightly sensitivity functions and Fe II contamination) limit the final precision of the observed light curves. Using the new calibration method, I next present the data and first results from the optical spectroscopic monitoring component of the reverberation mapping campaign. Five AGN were sufficiently variable to measure continuum-Hbeta lags and super-massive black hole masses: MCG+08-11-011, NGC 2617, NGC 4051, 3C 382, and Mrk 374. I also obtain Hgamma and HeII lags for all objects except 3C 382. The HeII lags indicate radial stratification of the BLR, and the masses derived from different emission lines are in general agreement. The relative responsivities of these lines to continuum variations are also in qualitative agreement with photoionization models. Finally, I measure optical continuum lags for the two most variable targets, MCG+08-11-011 and NGC 2617. I again find lags consistent with geometrically thin accretion-disk models that have temperature profiles T ∝ R-3/4. The observed lags are larger than predictions based on standard thin-disk theory by factors of 3.3 for MCG+08-11-011 and 2.3 for NGC 2617. Using a physical model, these differences can be explained if the mass accretion rates are larger than inferred from the optical continuum luminosity by a factor of 4.3 in MCG+08-11-011 and a factor of 1.3 in NGC 2617. While the X-ray variability in NGC 2617 precedes the UV/optical variability, the long 2.6 day lag is problematic for coronal reprocessing models.
NASA Astrophysics Data System (ADS)
Loru, S.; Pellizzoni, A.; Egron, E.; Righini, S.; Iacolina, M. N.; Mulas, S.; Cardillo, M.; Marongiu, M.; Ricci, R.; Bachetti, M.; Pilia, M.; Trois, A.; Ingallinera, A.; Petruk, O.; Murtas, G.; Serra, G.; Concu, F. Buffa R.; Gaudiomonte, F.; Melis, A.; Navarrini, A.; Perrodin, D.; Valente, G.
2018-05-01
The main characteristics in the radio continuum spectra of Supernova Remnants (SNRs) result from simple synchrotron emission. In addition, electron acceleration mechanisms can shape the spectra in specific ways, especially at high radio frequencies. These features are connected to the age and the peculiar conditions of the local interstellar medium interacting with the SNR. Whereas the bulk radio emission is expected at up to 20 - 50 GHz, sensitive high-resolution images of SNRs above 10 GHz are lacking and are not easily achievable, especially in the confused regions of the Galactic Plane. In the framework of the early science observations with the Sardinia Radio Telescope in February-March 2016, we obtained high-resolution images of SNRs Tycho, W44 and IC443 that provided accurate integrated flux density measurements at 21.4 GHz: 8.8 ± 0.9 Jy for Tycho, 25 ± 3 Jy for W44 and 66 ± 7 Jy for IC443. We coupled the SRT measurements with radio data available in the literature in order to characterise the integrated and spatially-resolved spectra of these SNRs, and to find significant frequency- and region-dependent spectral slope variations. For the first time, we provide direct evidence of a spectral break in the radio spectral energy distribution of W44 at an exponential cutoff frequency of 15 ± 2 GHz. This result constrains the maximum energy of the accelerated electrons in the range 6 - 13 GeV, in agreement with predictions indirectly derived from AGILE and Fermi-LAT gamma-ray observations. With regard to IC443, our results confirm the noticeable presence of a bump in the integrated spectrum around 20 - 70 GHz that could result from a spinning dust emission mechanism.
The Southern HII Region Discovery Survey: Preliminary Results
NASA Astrophysics Data System (ADS)
Shea, Jeanine; Wenger, Trey; Balser, Dana S.; Anderson, Loren D.; Armentrout, William P.; Bania, Thomas M.; Dawson, Joanne; Miller Dickey, John; Jordan, Christopher; McClure-Griffiths, Naomi M.
2017-01-01
HII regions are some of the brightest sources at radio frequencies in the Milky Way and are the sites of massive O and B-type star formation. They have relatively short (< 10 Myr) lifetimes compared to other Galactic objects and therefore reveal information about spiral structure and the chemical evolution of the Galaxy. The HII Region Discovery Surveys (HRDS) discovered about 800 new HII regions in the Galactic longitude range -20 degrees to 270 degrees using primarily the Green Bank Telescope. Candidate HII regions were selected from mid-infrared emission coincident with radio continuum emission, and confirmed as HII regions by the detection of radio recombination lines. Here we discuss the Southern HII Region Discovery Survey (SHRDS), a continuation of the HRDS using the Australia Telescope Compact Array over the Galactic longitude range 230 to 360 degrees. We have reduced and analyzed a small sub-set of the SHRDS sources and discuss preliminary results, including kinematic distances and metallicities.
X-ray and radio observations of flares from the RS Canum Venaticorum system UX ARIETIS
NASA Astrophysics Data System (ADS)
Tsuru, T.; Makishima, K.; Ohashi, T.; Inoue, H.; Koyama, K.; Turner, M. J. L.; Barstow, M. A.; McHardy, I. M.; Pye, J. P.; Tsunemi, H.; Kitamoto, S.; Taylor, A. R.; Nelson, R. F.
In July 1987 the RS CVn system UX Ari was observed in the 2-20-keV X-ray band by Ginga, immediately followed by 5-GHz radio observations. UX Ari was found to be very active at both radio and X-ray frequencies. Quiescent X-ray emission with a luminosity of 3 x 10 to the 31st erg/s (in the 2-20-keV band) was detected, together with two intense X-ray flares up to 2 x 10 to the 32nd and 6 x 10 to the 31st erg/s, respectively. Both flare and quiescent X-ray spectra are well fitted by single-temperature thermal bremsstrahlung models, with the continuum temperature and emission measure in the range 4-7 kev (in kT) and (2-10) x 10 to the 54th/cu cm, respectively.
Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap
Li, M.; Breizman, B. N.; Zheng, L. J.; ...
2015-12-04
Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less
NASA Technical Reports Server (NTRS)
Stern, Robert A.; Lemen, James R.; Schmitt, Jurgen H. M. M.; Pye, John P.
1995-01-01
We report results from the first extreme ultraviolet spectrum of the prototypical eclipsing binary Algol (beta Per), obtained with the spectrometers on the Extreme Ultraviolet Explorer (EUVE). The Algol spectrum in the 80-350 A range is dominated by emission lines of Fe XVI-XXIV, and the He II 304 A line. The Fe emission is characteristic of high-temperature plasma at temperatures up to at least log T approximately 7.3 K. We have successfully modeled the observed quiescent spectrum using a continuous emission measure distribution with the bulk of the emitting material at log T greater than 6.5. We are able to adequately fit both the coronal lines and continuum data with a cosmic abundance plasma, but only if Algol's quiescent corona is dominated by material at log T greater than 7.5, which is physically ruled out by prior X-ray observations of the quiescent Algol spectrum. Since the coronal (Fe/H) abundance is the principal determinant of the line-to-continuum ratio in the EUV, allowing the abundance to be a free parameter results in models with a range of best-fit abundances approximately = 15%-40% of solar photospheric (Fe/H). Since Algol's photospheric (Fe/H) appears to be near-solar, the anomalous EUV line-to-continuum ratio could either be the result of element segregation in the coronal formation process, or other, less likely mechanisms that may enhance the continuum with respect to the lines.
Cinematica del gas ionizado y perfiles de luminosidad de las Galaxias Porotos Verdes
NASA Astrophysics Data System (ADS)
Diaz, R. J.; Aguero, M.; Schirmer, M.; Holheim, K.; Levenson, N.; Winge, C.
We present preliminary spectroscopic results of a sample of green bean galaxies (GBG); known to show ultra-luminous; galaxy-wide; narrow-line regions. We analyze Gemini GMOS-S;N spectra of a sample of 12 GBG in order to obtain emission line ratios; gas kinematics and luminosity profiles in some continuous bands. We report here new results that confirm that the 5008 emission extends from 5 to 17 kpc; in all cases scales similar or larger than the stellar continuums at the spectra. In the extreme case of J145533.6+044643 the emission reaches a diameter of 17.51.6kpc. We find that the continuum half light radii extend from 3 to 7 kpc; the largest scale radius at shortest wavelengths; which is consistent with the scale lengths of large spiral galaxies or merging systems. Another new result is that the spatial variation of the continuum color profiles indicate the presence of extinction and possibly star formation. FULL TEXT IN SPANISH
Heating mechanism(s) for transition layers in giants
NASA Technical Reports Server (NTRS)
Bohm-Vitense, Erika; Mena-Werth, Jose
1991-01-01
The emission-line fluxes of lines originating in the lower parts of the transition layers between stellar chromospheres and coronas are studied. Simon and Drake (1989) suspect different heating mechanisms for 'hot' and cool stars. Changes in the flux ratios for the C IV to C II emission lines support this suspicion. Large C IV/C II line flux ratios appear to be indicative of magnetically controlled heating. A correlation between excess continuum flux around 1950 A and C II emission-line fluxes are confirmed for the cooler giants (late F and cooler). Excess continuum flux correlates positively with large C IV/C II line flux ratio. The excess continuum flux corresponds to an increase in temperature by several hundred degrees in layers with a mean optical depth of about 0.03. For chromospherically active stars these layers experience a mechanical flux deposition of the order of 1 percent of the total radiative flux. This flux is tentatively identified as an MHD wave flux similar to Alfven waves.
Empirical Temperature Measurement in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Weaver, Erik; Isella, Andrea; Boehler, Yann
2018-02-01
The accurate measurement of temperature in protoplanetary disks is critical to understanding many key features of disk evolution and planet formation, from disk chemistry and dynamics, to planetesimal formation. This paper explores the techniques available to determine temperatures from observations of single, optically thick molecular emission lines. Specific attention is given to issues such as the inclusion of optically thin emission, problems resulting from continuum subtraction, and complications of real observations. Effort is also made to detail the exact nature and morphology of the region emitting a given line. To properly study and quantify these effects, this paper considers a range of disk models, from simple pedagogical models to very detailed models including full radiative transfer. Finally, we show how the use of the wrong methods can lead to potentially severe misinterpretations of data, leading to incorrect measurements of disk temperature profiles. We show that the best way to estimate the temperature of emitting gas is to analyze the line peak emission map without subtracting continuum emission. Continuum subtraction, which is commonly applied to observations of line emission, systematically leads to underestimation of the gas temperature. We further show that once observational effects such as beam dilution and noise are accounted for, the line brightness temperature derived from the peak emission is reliably within 10%–15% of the physical temperature of the emitting region, assuming optically thick emission. The methodology described in this paper will be applied in future works to constrain the temperature, and related physical quantities, in protoplanetary disks observed with ALMA.
Terahertz atmospheric attenuation and continuum effects
NASA Astrophysics Data System (ADS)
Slocum, David M.; Goyette, Thomas M.; Slingerland, Elizabeth J.; Giles, Robert H.; Nixon, William E.
2013-05-01
Remote sensing over long path lengths has become of greater interest in the terahertz frequency region. Applications such as pollution monitoring and detection of energetic chemicals are of particular interest. Although there has been much attention to atmospheric effects over narrow frequency windows, accurate measurements across a wide spectrum is lacking. The water vapor continuum absorption spectrum was investigated using Fourier Transform Spectroscopy. The continuum effect gives rise to an excess absorption that is unaccounted for in just a resonant line spectrum simulation. The transmission of broadband terahertz radiation from 0.300THz - 1.5THz through air with varying relative humidity levels was recorded for multiple path lengths. From these data, the absorption coefficient as a function of frequency was determined and compared with model calculations. The intensity and location of the strong absorption lines were in good agreement with spectral databases such as the 2008 HITRAN database and the JPL database. However, a noticeable continuum effect was observed particularly in the atmospheric transmission windows. A small discrepancy still remained even after accounting for continuum absorption using the best available data from the literature. This discrepancy, when projected over a one kilometer path length, typical of distances used in remote sensing, can cause a 30dB difference between calculated and observed attenuation. From the experimental and resonant line simulation spectra the air-broadening continuum parameter was calculated and compared with values available in the literature.
COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, S.; Casassus, S.; Perez, S.
2015-11-01
The formation of planetesimals requires that primordial dust grains grow from micron- to kilometer-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka and Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk, indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensitymore » maximum to the northwest of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a nonaxisymmetric parametric model inspired by a steady-state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarized emission. Continuum observations at a different wavelength are necessary to conclude whether the VLA-ALMA difference is an opacity or a real dust segregation.« less
Changes in the ultraviolet spectrum of EG Andromedae
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1984-01-01
Ultraviolet observations of EG Andromedae, a symbiotic star, are reported which clearly show pronounced eclipse-like effects on the high-temperature far-UV continuum. Continuum and emission-line variations with phase are reported and related to synoptic hydrogen alpha data. System parameters are characterized.
Dasari, Ramachandra Rao; Barman, Ishan; Gundawar, Manoj Kumar
2014-01-01
We demonstrate the application of non-gated laser induced breakdown spectroscopy (LIBS) for characterization and classification of organic materials with similar chemical composition. While use of such a system introduces substantive continuum background in the spectral dataset, we show that appropriate treatment of the continuum and characteristic emission results in accurate discrimination of pharmaceutical formulations of similar stoichiometry. Specifically, our results suggest that near-perfect classification can be obtained by employing suitable multivariate analysis on the acquired spectra, without prior removal of the continuum background. Indeed, we conjecture that pre-processing in the form of background removal may introduce spurious features in the signal. Our findings in this report significantly advance the prior results in time-integrated LIBS application and suggest the possibility of a portable, non-gated LIBS system as a process analytical tool, given its simple instrumentation needs, real-time capability and lack of sample preparation requirements. PMID:25084522
Observations of Cygnus X-2 with IUE: Ultraviolet results from a multiwavelength campaign
NASA Technical Reports Server (NTRS)
Vrtilek, S. D.; Raymond, J. C.; Garcia, M. R.; Verbunt, F.; Hasinger, Guenther; Kuerster, M.
1989-01-01
The observations of the low-mass x ray binary, Cyg X-2, taken with the International Ultraviolet Explorer (IUE) in a campaign conducted in June and October of 1988 are reported. A direct relationship between the strength of the UV continuum and line emission and the placement of the x ray spectrum in one of three branches of the so-called Z-shaped curve is found by comparison with simultaneous x ray observations. All three previously known x ray spectral states are detected; the UV continuum and line emission increase monotonically along the Z with the least emission in the horizontal branch, and the most in the flaring branch. Emission lines due to HeII, CIV, NIII, NIV, NV, SiIV, and MgII are observed.
Direct Lyman continuum and Ly α escape observed at redshift 4
NASA Astrophysics Data System (ADS)
Vanzella, E.; Nonino, M.; Cupani, G.; Castellano, M.; Sani, E.; Mignoli, M.; Calura, F.; Meneghetti, M.; Gilli, R.; Comastri, A.; Mercurio, A.; Caminha, G. B.; Caputi, K.; Rosati, P.; Grillo, C.; Cristiani, S.; Balestra, I.; Fontana, A.; Giavalisco, M.
2018-05-01
We report on the serendipitous discovery of a z = 4.0, M1500 = -22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (˜60 per cent escaping), a remarkable multiple peaked Ly α emission, and significant Ly α radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionizing and Ly α radiation possibly share a common ionized channel (with NH I < 1017.2 cm-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni N Vλ1240 profile, and has blue ultraviolet continuum (β = -2.5 ± 0.25, Fλ ˜ λβ) with weak low-ionization interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6 and 4.5μm imaging show a clear photometric signature of the H α line with equivalent width of 1000 Å rest-frame emerging over a flat continuum (Ks - 4.5μm ≃ 0). From the SED fitting, we derive a stellar mass of 1.5 × 109 M⊙, SFR of 140 M⊙ yr-1 and age of ˜10 Myr, with a low dust extinction, E(B - V) ≲ 0.1, placing the source in the starburst region of the SFR-M* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z = 3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionizing sources at z > 6.5 with JWST.
NASA Astrophysics Data System (ADS)
Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.
2018-07-01
To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects (MYSOs), but instead is only detected towards approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near-infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳10-4 M⊙ yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲10-6 M⊙ yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.
NASA Astrophysics Data System (ADS)
Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.
2018-04-01
To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.
NASA Technical Reports Server (NTRS)
Korista, K.; Alloin, D.; Barr, P.; Clavel, J.; Cohen, R. D.; Crenshaw, D. M.; Evans, I. N.; Horne, K.; Koratkar, A. P.; Kriss, G. A.
1994-01-01
We present the data and initial results from a combined HST/IUE/ground-based spectroscopic monitoring campaign on the Seyfert 1 galaxy NGC 5548 that was undertaken in order to address questions that require both higher temporal resolution and higher signal-to-noise ratios than were obtained in our previous multiwavelength monitoring of this galaxy in 1988-89. IUE spectra were obtained once every two days for a period of 74 days beginning on 14 March 1993. During the last 39 days of this campaign, spectroscopic observations were also made with the HST Faint Object Spectrograph (FOS) on a daily basis. Ground-based observations, consisting of 165 optical spectra and 77 photometric observations (both CCD imaging and aperture photometry), are reported for the period 1992 October to 1993 September, although much of the data are concentrated around the time of the satellite-based program. These data constitute a fifth year of intensive optical monitoring of this galaxy. In this contribution, we describe the acquisition and reduction of all of the satellite and ground-based data obtained in this program. We describe in detail various photometric problems with the FOS and explain how we identified and corrected for various anomalies. During the HST portion of the monitoring campaign, the 1350 A continuum flux is found to have varied by nearly a factor of two. In other wavebands, the continuum shows nearly identical behavior, except that the amplitude of variability is larger at shorter wavelengths, and the continuum light curves appear to show more short time-scale variability at shorter wavelengths. The broad emission lines also vary in flux, with amplitudes that are slightly smaller than the UV continuum variations and with a small time delay relative to the UV continuum. On the basis of simple time-series analysis of the UV and optical continuum and emission line light curves, we find (1) that the ultraviolet and optical continuum variations are virtually simultaneous, with any lag between the 1350 A continuum and the 5100 A continuum amounting to less than about one day; (2) that the variations in the highest ionization lines observed, He II lambda 1640 and N V lambda 1240, lag behind the continuum variations by somewhat less than 2 days, and (3) that the velocity field of the C IV-emitting region is not dominated by radial motion. The results on the C IV velocity field are preliminary and quite uncertain, but there are some weak indications that the emission-line (wings absolute value of Delta upsilon is greater than or equal to 3000 km/s) respond to continuum variations slightly more rapidly than does the core. The optical observations show that the variations in the broad H beta line flux follow the continuum variations with a time lag of around two weeks, about twice the lag for Ly alpha and C IV, as in our previous monitoring campaign on this same galaxy. However, the lags measured for Ly alpha, C IV, and H Beta are each slightly smaller than previously determined. We confirm two trends reported earlier, namely (1) that the UV/optical continuum becomes 'harder' as it gets brighter, and (2) that the highest ionization emission lines have the shortest lags, thus indicating radial ionization stratificatin of a broad-line region that spans over an order of magnitude range in radius.
Generation of nonthermal continuum radiation in the magnetosphere
NASA Technical Reports Server (NTRS)
Okuda, H.; Chance, M. S.; Ashour-Abdalla, M.; Kurth, W. S.
1982-01-01
Generation of electromagnetic continuum radiation from electrostatic fluctuations near the upper hybrid resonance frequency has been calculated by using cold plasma theory in an inhomogeneous plasma near the plasmapause. It is shown that both the polarization and the amplitude of electromagnetic radiation are in good quantitative agreement with spacecraft observations for nonthermal continuum radiation.
OBSERVATIONS OF ENHANCED EXTREME ULTRAVIOLET CONTINUA DURING AN X-CLASS SOLAR FLARE USING SDO/EVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milligan, Ryan O.; Mathioudakis, Mihalis; Keenan, Francis P.
2012-03-20
Observations of extreme ultraviolet (EUV) emission from an X-class solar flare that occurred on 2011 February 15 at 01:44 UT are presented, obtained using the EUV Variability Experiment (EVE) on board the Solar Dynamics Observatory. The complete EVE spectral range covers the free-bound continua of H I (Lyman continuum), He I, and He II, with recombination edges at 91.2, 50.4, and 22.8 nm, respectively. By fitting the wavelength ranges blueward of each recombination edge with an exponential function, light curves of each of the integrated continua were generated over the course of the flare, as was emission from the free-freemore » continuum (6.5-37 nm). The He II 30.4 nm and Ly{alpha} 121.6 nm lines, and soft X-ray (SXR; 0.1-0.8 nm) emission from GOES are also included for comparison. Each free-bound continuum was found to have a rapid rise phase at the flare onset similar to that seen in the 25-50 keV light curves from RHESSI, suggesting that they were formed by recombination with free electrons in the chromosphere. However, the free-free emission exhibited a slower rise phase seen also in the SXR emission from GOES, implying a predominantly coronal origin. By integrating over the entire flare the total energy emitted via each process was determined. We find that the flare energy in the EVE spectral range amounts to at most a few percent of the total flare energy, but EVE gives us a first comprehensive look at these diagnostically important continuum components.« less
Spectral Analysis of Vibrational Harmonic Motion by use of a Continuous-Wave CO2 Doppler Lidar
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Srivastava, Vandana
1999-01-01
Vibrational motion of a harmonic oscillator was investigated using a focused continuous wave CO2 Doppler lidar at 9.1 microns wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. The spectra revealed departures from linear motion for vigorous vibrations of the oscillator. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation.
The negative ions emission in nitrogen
NASA Technical Reports Server (NTRS)
Soon, W. H.; Kunc, J. A.
1991-01-01
The contribution of negative atomic ions to continuum radiation in nitrogen plasma is discussed. It is shown that both unstable N(-)(3P) and metastable N(-)(1D) ions have a significant effect on the total production of the continuum radiation at electron temperatures below 12,000 K.
A Size-Luminosity Relationship for Protoplanetary Disks in Lupus
NASA Astrophysics Data System (ADS)
Terrell, Marie; Andrews, Sean
2018-01-01
The sizes of the 340 GHz continuum emission from 56 protoplanetary disks in the Lupus star-forming region were measured by modeling their ALMA visibility profiles. We describe the mechanism for these measurements and some preliminary results regarding the correlation between the continuum luminosities and sizes.
THE CLIMATE-AIR QUALITY SCALE CONTINUUM AND THE GLOBAL EMISSION INVENTORY ACTIVITY
The Global Emissions Inventory Activity (GEIA), a core program activity of the International Global Atmospheric Chemistry (IGAC) Project of the International Geosphere-Biosphere Program, develops data and other related information on key chemical emissions to the atmosphere and...
Luminous clusters of Wolf-Rayet stars in the SBmIII galaxy NGC 4214
NASA Technical Reports Server (NTRS)
Sargent, Wallace L. W.; Filippenko, Alexei V.
1991-01-01
Observations are reported of strong broad emission lines attributed to WR stars in the spectra of several bright knots in the nearby Magellanic irregular galaxy NGC 4214 (classified as type SBmIII), in addition to the emission produced by the more prevalent WN stars). Data are presented on measurements of the line fluxes, the line equivalent widths, and continuum flux densities in the four observed knots, showing that the strongest WR lines generally appear in knots having the most luminous stellar continuum. The significance of this observation is discussed.
Wavelet-based Characterization of Small-scale Solar Emission Features at Low Radio Frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh, A.; Sharma, R.; Oberoi, D.
Low radio frequency solar observations using the Murchison Widefield Array have recently revealed the presence of numerous weak short-lived narrowband emission features, even during moderately quiet solar conditions. These nonthermal features occur at rates of many thousands per hour in the 30.72 MHz observing bandwidth, and hence necessarily require an automated approach for their detection and characterization. Here, we employ continuous wavelet transform using a mother Ricker wavelet for feature detection from the dynamic spectrum. We establish the efficacy of this approach and present the first statistically robust characterization of the properties of these features. In particular, we examine distributionsmore » of their peak flux densities, spectral spans, temporal spans, and peak frequencies. We can reliably detect features weaker than 1 SFU, making them, to the best of our knowledge, the weakest bursts reported in literature. The distribution of their peak flux densities follows a power law with an index of −2.23 in the 12–155 SFU range, implying that they can provide an energetically significant contribution to coronal and chromospheric heating. These features typically last for 1–2 s and possess bandwidths of about 4–5 MHz. Their occurrence rate remains fairly flat in the 140–210 MHz frequency range. At the time resolution of the data, they appear as stationary bursts, exhibiting no perceptible frequency drift. These features also appear to ride on a broadband background continuum, hinting at the likelihood of them being weak type-I bursts.« less
NASA Astrophysics Data System (ADS)
Forn-Díaz, P.; García-Ripoll, J. J.; Peropadre, B.; Orgiazzi, J.-L.; Yurtalan, M. A.; Belyansky, R.; Wilson, C. M.; Lupascu, A.
2017-01-01
The study of light-matter interaction has led to important advances in quantum optics and enabled numerous technologies. Over recent decades, progress has been made in increasing the strength of this interaction at the single-photon level. More recently, a major achievement has been the demonstration of the so-called strong coupling regime, a key advancement enabling progress in quantum information science. Here, we demonstrate light-matter interaction over an order of magnitude stronger than previously reported, reaching the nonperturbative regime of ultrastrong coupling (USC). We achieve this using a superconducting artificial atom tunably coupled to the electromagnetic continuum of a one-dimensional waveguide. For the largest coupling, the spontaneous emission rate of the atom exceeds its transition frequency. In this USC regime, the description of atom and light as distinct entities breaks down, and a new description in terms of hybrid states is required. Beyond light-matter interaction itself, the tunability of our system makes it a promising tool to study a number of important physical systems, such as the well-known spin-boson and Kondo models.
STAR FORMATION AND FEEDBACK: A MOLECULAR OUTFLOW–PRESTELLAR CORE INTERACTION IN L1689N
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lis, D. C.; Pagani, L.; Wootten, H. A.
2016-08-20
We present Herschel ,{sup 11} ALMA Compact Array (ACA), and Caltech Submillimeter Observatory observations of the prestellar core in L1689N, which has been suggested to be interacting with a molecular outflow driven by the nearby solar-type protostar IRAS 16293-2422. This source is characterized by some of the highest deuteration levels observed in the interstellar medium. The change in the NH{sub 2}D line velocity and width across the core provides clear evidence of an interaction with the outflow, traced by the high-velocity water emission. Quiescent, cold gas characterized by narrow line widths is seen in the NE part of the core,more » while broader, more disturbed line profiles are seen in the W/SW part. Strong N{sub 2}D{sup +} and ND{sub 3} emission is detected with ACA extending S/SW from the peak of the single-dish NH{sub 2}D emission. The ACA data also reveal the presence a compact dust continuum source with a mean size of ∼1100 au, a central density of (1–2) × 10{sup 7} cm{sup −3}, and a mass of 0.2–0.4 M {sub ⊙}. The dust emission peak is displaced ∼5″ to the south with respect to the N{sub 2}D{sup +} and ND{sub 3} emission, as well as the single-dish dust continuum peak, suggesting that the northern, quiescent part of the core is characterized by spatially extended continuum emission, which is resolved out by the interferometer. We see no clear evidence of fragmentation in this quiescent part of the core, which could lead to a second generation of star formation, although a weak dust continuum source is detected in this region in the ACA data.« less
Spectropolarimetry of Post-AGB Stars
NASA Astrophysics Data System (ADS)
Trammell, S. R.; Goodrich, R. W.; Dinerstein, H. L.
1992-12-01
We have used the technique of optical spectropolarimetry to investigate post-AGB stars, objects that represent the first stages of the transition from the AGB to a planetary nebula. Several of the observed objects display unpolarized emission lines superimposed on a highly polarized continuum. The continuum polarization provides evidence for the presence of an aspherical dust envelope early in the transition process. The observed objects were chosen from several samples: high latitude supergiants with IR excesses that are thought to be post-AGB stars (e.g. Bond et. al. 1984, PASP, 96, 176), their lower latitude counterparts (e.g. Hrivnak et. al. 1989, ApJ, 346, 265), post-AGB stars shown by Johnson & Jones (1991, AJ, 101, 1735) to have high broad band polarizations, and three highly polarized extreme carbon stars investigated by Cohen & Schmidt (1982, ApJ, 259, 693). GL 1403, an extreme carbon star, shows an abrupt position angle rotation at 6000 Angstroms, implying that at blue wavelengths we see a scattered stellar continuum, while the star itself is hidden from direct view. Longward of the position angle rotation, we begin to see the star directly. Menzies & Whitelock (1988, MNRAS, 233, 697) proposed that IRAS 20056+1834, an unreddened GO supergiant with very strong Na I emission lines and a large infrared excess, is a mass-losing star obscured from direct view, in which the photospheric light is seen in reflection. Our data support this interpretation; the Na I emission is unpolarized, indicating that it is produced in the shell, while the continuum is scattered and polarized (5-7%) by the aspherical shell of material. IRAS 20000+3239 also shows unpolarized Na I D emission and is probably similar to IRAS 20056+1834. IRC +10420 exhibits unpolarized Hα emission and GL 2699, an extreme carbon star, displays both polarized and unpolarized Hα as well as unpolarized low excitation forbidden [S II] and [O I] emission lines.
The polarization and ultraviolet spectrum of Markarian 231
NASA Technical Reports Server (NTRS)
Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.
1995-01-01
Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.
THE LICK AGN MONITORING PROJECT 2011: SPECTROSCOPIC CAMPAIGN AND EMISSION-LINE LIGHT CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela
2015-04-15
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hβ line widths in mean and rms spectra. For the most highly variable AGNs wemore » also measured broad Hβ line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad Hβ width and luminosity, demonstrating that the broad-line region “breathes” on short timescales of days to weeks in response to continuum variations. We also find that broad Hβ velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad Hβ velocity shifted by ∼250 km s{sup −1} over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.« less
The Lick AGN Monitoring Project 2011: Spectroscopic Campaign and Emission-line Light Curves
NASA Technical Reports Server (NTRS)
Barth, Aaron J.; Bennert, Vardha N.; Canalizo, Gabriela; Filippenko, Alexei V.; Gates, Elinor L.; Greene, Jenny E..; Li, Weidong; Malkan, Matthew A.; Pancoast, Anna; Sand, David J.;
2016-01-01
In the Spring of 2011 we carried out a 2.5 month reverberation mapping campaign using the 3 m Shane telescope at Lick Observatory, monitoring 15 low-redshift Seyfert 1 galaxies. This paper describes the observations, reductions and measurements, and data products from the spectroscopic campaign. The reduced spectra were fitted with a multicomponent model in order to isolate the contributions of various continuum and emission-line components. We present light curves of broad emission lines and the active galactic nucleus (AGN) continuum, and measurements of the broad Hß line widths in mean and rms spectra. For the most highly variable AGNs we also measured broad H beta line widths and velocity centroids from the nightly spectra. In four AGNs exhibiting the highest variability amplitudes, we detect anticorrelations between broad H beta width and luminosity, demonstrating that the broad-line region "breathes" on short timescales of days to weeks in response to continuum variations. We also find that broad H beta velocity centroids can undergo substantial changes in response to continuum variations; in NGC 4593, the broad H beta velocity shifted by approximately 250 km s(exp -1) over a 1 month period. This reverberation-induced velocity shift effect is likely to contribute a significant source of confusion noise to binary black hole searches that use multi-epoch quasar spectroscopy to detect binary orbital motion. We also present results from simulations that examine biases that can occur in measurement of broad-line widths from rms spectra due to the contributions of continuum variations and photon-counting noise.
2.0 to 2.4 micron spectroscopy of T Tauri stars
NASA Astrophysics Data System (ADS)
Hamann, F.; Simon, M.; Ridgway, S. T.
1988-03-01
Velocity-resolved 2.0-2.5-micron observations of the T Tau stars T, DF, DG, DK, HL, and RY Tau, SU Aur, and GW Ori are presented. For each of these stars except SU Aur, the Brackett gamma line was detected in emission with line widths inthe range of about 130-230 km/s. The Brackett gamma line profile of SU Aur is complex, having components of both emission and absorption. The first measurement of CO band-head emission in DG Tau is reported, and it is shown that published radio continuum fluxes of young stars far exceed what could be produced in an envelope ionized by only the stellar photospheric Lyman continuum. The excess of radio emission is found to be much greater in low-luminosity sources (e.g., the T Tau stars).
DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.
2011-08-01
Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Ly{alpha} emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Ly{alpha} halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central {approx}1''-more luminous halos are observed for galaxies with stronger central Ly{alpha} emission. We show that whether or not a galaxy is classified as a giant 'Ly{alpha} blob' (LAB) depends sensitively on the Ly{alpha} surface brightness threshold reached by an observation. Accounting for diffuse Ly{alpha} halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Ly{alpha} surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.« less
Stochastic three-wave interaction in flaring solar loops
NASA Technical Reports Server (NTRS)
Vlahos, L.; Sharma, R. R.; Papadopoulos, K.
1983-01-01
A model is proposed for the dynamic structure of high-frequency microwave bursts. The dynamic component is attributed to beams of precipitating electrons which generate electrostatic waves in the upper hybrid branch. Coherent upconversion of the electrostatic waves to electromagnetic waves produces an intrinsically stochastic emission component which is superposed on the gyrosynchrotron continuum generated by stably trapped electron fluxes. The role of the density and temperature of the ambient plasma in the wave growth and the transition of the three wave upconversion to stochastic, despite the stationarity of the energy source, are discussed in detail. The model appears to reproduce the observational features for reasonable parameters of the solar flare plasma.
CCE plasma wave observations during the storm of September 4, 5, 1984. [Charge Composition Explorer
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1985-01-01
Near 0700 on September 4, 1984 a series of interplanetary discontinuities arrived at earth when the AMPTE Charge Composition Explorer (CCE) was near apogee. During the next few hours the spacecraft passed in and out of the magnetosheath. At the magnetopause boundary, the CCE wave instrument detected strong electron plasma oscillations, weaker electromagnetic waves at the electron plasma frequency, and broadband electrostatic waves. During the subsequent perigee passes on September 4 and 5, the wave observations of upper hybrid resonance emissions, continuum radiation, electrostatic noise bands and unusual low latitude auroral kilometic radiation were used to monitor significant variations in the magnetospheric characteristics as the main storm phases developed.
The discovery of nonthermal radio emission from magnetic Bp-Ap stars
NASA Technical Reports Server (NTRS)
Drake, Stephen A.; Abbott, David C.; Bastian, T. S.; Bieging, J. H.; Churchwell, E.
1987-01-01
In a VLA survey of chemically peculiar B- and A-type stars with strong magnetic fields, five of the 34 stars observed have been identified as 6 cm continuum sources. Three of the detections are helium-strong early Bp stars (Sigma Ori E, HR 1890, and Delta Ori C), and two are helium weak, silicon-strong stars with spectral types near A0p (IQ Aur = HD 34452, Babcock's star = HD 215441). The 6 cm luminosities L6 (ergs/s Hz) range from log L6 = 16.2 to 17.9, somewhat less than the OB supergiants and W-R stars. Three-frequency observations indicate that the helium-strong Bp stars are variable nonthermal sources.
NASA Technical Reports Server (NTRS)
Wilkes, B. J.; Mcdowell, J.
1994-01-01
Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.
On the Nature of Off-limb Flare Continuum Sources Detected by SDO /HMI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinzel, P.; Kašparová, J.; Kleint, L.
The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory has provided unique observations of off-limb flare emission. White-light continuum enhancements were detected in the “continuum” channel of the Fe 6173 Å line during the impulsive phase of the observed flares. In this paper we aim to determine which radiation mechanism is responsible for such enhancement being seen above the limb, at chromospheric heights around or below 1000 km. Using a simple analytical approach, we compare two candidate mechanisms, the hydrogen recombination continuum (Paschen) and the Thomson continuum due to scattering of disk radiation on flare electrons. Both mechanismsmore » depend on the electron density, which is typically enhanced during the impulsive phase of a flare as the result of collisional ionization (both thermal and also non-thermal due to electron beams). We conclude that for electron densities higher than 10{sup 12} cm{sup −3}, the Paschen recombination continuum significantly dominates the Thomson scattering continuum and there is some contribution from the hydrogen free–free emission. This is further supported by detailed radiation-hydrodynamical (RHD) simulations of the flare chromosphere heated by the electron beams. We use the RHD code FLARIX to compute the temporal evolution of the flare-heating in a semi-circular loop. The synthesized continuum structure above the limb resembles the off-limb flare structures detected by HMI, namely their height above the limb, as well as the radiation intensity. These results are consistent with recent findings related to hydrogen Balmer continuum enhancements, which were clearly detected in disk flares by the IRIS near-ultraviolet spectrometer.« less
CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations
NASA Astrophysics Data System (ADS)
Huang, Jane; Andrews, Sean M.; Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Bai, Xuening; Birnstiel, Til; Carpenter, John; Hughes, A. Meredith; Isella, Andrea; Pérez, Laura M.; Ricci, Luca; Zhu, Zhaohuan
2018-01-01
We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the 12CO J = 3 ‑ 2 line at a spatial resolution of 8 au (0.″14). The CO emission exhibits a bright inner core, a shoulder at r ≈ 70 au, and a prominent break in slope at r ≈ 90 au. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a 12CO column density profile featuring a steep decrease at r ≈ 15 au and a secondary bump peaking at r ≈ 70 au. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disk’s vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 μm continuum observations to produce a spectral index map at a spatial resolution of 2 au. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 au. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of α ≈ 2 indicate either that grains up to centimeter size are present or that the bright continuum rings are marginally optically thick at millimeter wavelengths.
Understanding the HMI Pseudocontinuum in White-light Solar Flares
NASA Astrophysics Data System (ADS)
Švanda, Michal; Jurčák, Jan; Kašparová, Jana; Kleint, Lucia
2018-06-01
We analyze observations of the X9.3 solar flare (SOL2017-09-06T11:53) observed by SDO/HMI and Hinode/Solar Optical Telescope. Our aim is to learn about the nature of the HMI pseudocontinuum I c used as a proxy for the white-light continuum. From model atmospheres retrieved by an inversion code applied to the Stokes profiles observed by the Hinode satellite, we synthesize profiles of the Fe I 617.3 nm line and compare them to HMI observations. Based on a pixel-by-pixel comparison, we show that the value of I c represents the continuum level well in quiet-Sun regions only. In magnetized regions, it suffers from a simplistic algorithm that is applied to a complex line shape. During this flare, both instruments also registered emission profiles in the flare ribbons. Such emission profiles are poorly represented by the six spectral points of HMI and the MDI-like algorithm does not account for emission profiles in general; thus, the derived pseudocontinuum intensity does not approximate the continuum value properly.
EVIDENCE FOR PHOTOIONIZATION-DRIVEN BROAD ABSORPTION LINE VARIABILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Tinggui; Yang, Chenwei; Wang, Huiyuan
2015-12-01
We present a qualitative analysis of the variability of quasar broad absorption lines using the large multi-epoch spectroscopic data set of the Sloan Digital Sky Survey Data Release 10. We confirm that variations of absorption lines are highly coordinated among different components of the same ion or the same absorption component of different ions for C iv, Si iv, and N v. Furthermore, we show that the equivalent widths (EWs) of the lines decrease or increase statistically when the continuum brightens or dims. This is further supported by the synchronized variations of emission and absorption-line EWs when the well-established intrinsicmore » Baldwin effect for emission lines is taken into account. We find that the emergence of an absorption component is usually accompanied by the dimming of the continuum while the disappearance of an absorption-line component is accompanied by the brightening of the continuum. This suggests that the emergence or disappearance of a C iv absorption component is only the extreme case, when the ionic column density is very sensitive to continuum variations or the continuum variability the amplitude is larger. These results support the idea that absorption-line variability is driven mainly by changes in the gas ionization in response to continuum variations, that the line-absorbing gas is highly ionized, and in some extreme cases, too highly ionized to be detected in UV absorption lines. Due to uncertainties in the spectroscopic flux calibration, we cannot quantify the fraction of quasars with asynchronized continuum and absorption-line variations.« less
NREL Analysis: Reimagining What's Possible for Clean Energy - Continuum
Analysis Helps Enable the Energy System of the Future NREL Helps Countries Build Stronger Economies with Low-Emission Development NREL Helps Countries Build Stronger Economies with Low-Emission Development
Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core
NASA Technical Reports Server (NTRS)
Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.
1994-01-01
We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is relatively constant over approximately 14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (less than 5 solar luminosity) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust.
The Green Bank Telescope: First Full Winter of Operation at 3mm
NASA Astrophysics Data System (ADS)
Lockman, Felix J.
2017-06-01
The winter of 2016-2017 marks the first season for the Green Bank Telescope (GBT) with full instrumentation in the 3mm band. ARGUS, a 16-pixel array, provides spectroscopic capabilities over 80-116 GHz. MUSTANG-2, a 223 pixel bolometer array, provides extremely sensitive continuum mapping capabilities over a 30 GHz band centered on 90 GHz at an angular resolution of 9”. In addition, there is a 2-pixel receiver that covers the lower part of the 3mm band, 67-93 GHz, for spectroscopy, continuum measurements, and VLBI.In March, under good night-time conditions, the GBT angular resolution at 109 GHz was measured to be 6.5”. This corresponds to 1.16 lambda/Diameter, exactly as expected from theoretical considerations and identical to the wavelength/Diameter ratio measured at much lower frequencies. Near sidelobe levels are below -20 dB.This poster will review some results that highlight the GBT’s new capabilities in the 3mm band, including new insights into the origin of the anomalous microwave emission, 13CO measurements of a cloud in the Milky Way halo that is in the process making the transition between atomic and molecular gas, HCO+ measurements of infall in a star-forming region, and measurements of dust emission and its spectrum in Orion.The Green Bank Observatory is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.
A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569
NASA Astrophysics Data System (ADS)
Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker
2018-04-01
We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.
The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum
NASA Astrophysics Data System (ADS)
Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita
2011-06-01
We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.
The high velocity symbiotic star AG Draconis after its 1980 outburst
NASA Technical Reports Server (NTRS)
Viotti, R.; Altamore, A.; Baratta, G. B.; Cassatella, A.; Friedjung, M.; Giangrande, A.; Ponz, D.; Ricciardi, O.
1982-01-01
High and low resolution spectra of AG Dra taken in 1981 are analyzed. The UV spectrum of AG Dra is characterized by prominent high ionization emission lines superimposed on a strong continuum. At high resolution, several intense absorption lines of interstellar origin are seen, in spite of the low interstellar extinction. A similar situation is displayed by the high galactic latitude sd0 stars. The radial velocity difference between the emission lines and the i.s. lines is about -105 Km/sec in agreement with the optical observations. The He II 1640 A line appears much stronger than in other symbiotic stars and suggests the presence of a hot source which is variable according to the activity of the star. The line also exhibits broad emission wings which could be formed in a rotating disk. The NV resonance doublet displays a P Cygni profile and is probably formed in a warm wind. Two components in the UV continuum are identified: a steep component dominating the far UV probably associated with the hot source, and a flatter continuum in the near UV which cannot be accounted for by f-f and f-b emission alone, but which is probably emitted by an optically thick region or disk.
The flaring activity of Markarian 421 during April 2000
NASA Astrophysics Data System (ADS)
Fegan, D. J.; VERITAS Collaboration
2001-08-01
Evidence for correlated TeV γ and X-ray flaring of the extreme blazar Mrk421 during April 2000 is presented and discussed. The remarkably persistent TeV flare of April 30th 2000 (40 σ significance), exhibiting structure over almost six hours of continuous observation, is analysed in detail. 1 Extreme BL Lac objects The most extreme members of the Active Galactic Nucleus (AGN) family are BL Lac objects and optically violently variable (OVV) quasars, collectively known as blazars. These objects are dominated by the presence of relativistic jets. For jets fortuitously aligned with an observers line of sight, emission may exhibit dramatic variability over very short time scales, in turn implying remarkably compact emission regions. For blazars, the Spectral Energy Distribution (SED) is dominated by non-thermal continuum emission, extending from radio to TeV gamma rays. The broadband nature of the blazar emission offers unique insights into energetic physical processes at work in a very compact region, close to the base of the jet and near the underlying central engine, most likely a supermassive black hole. BL Lacs are very effectively characterized on the basis of their SED shape. X-ray and radio flux limited surveys apear to display a bimodal distribution of properties, with LBL (Low-energy peaked, or "Red" BL Lacs) having synchrotron peaks in the IR-optical bands, and HBL (High-energy peaked, or "Blue" BL Lacs) in the UV to soft X-ray band. Recent comprehensive surveys such as DXRBS, REX and RGB have extended, by almost two orders of magnitude, the range of observable synchrotron peak frequencies. For blazar class objects, broadband emission confirms that the synchrotron peak may span the entire IR Xray range, thus accounting for the multi-frequency emission properties of this class of object. Mrk421, Mrk501, 1ES2344 and 1H1426 all exhibit broadband emission properties, high
ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description
NASA Astrophysics Data System (ADS)
Walter, Fabian; Decarli, Roberto; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Riechers, Dominik; Smail, Ian; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto; Bacon, Roland; Bauer, Franz; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Inami, Hanae; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Popping, Gergö; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff
2016-12-01
We present the rationale for and the observational description of ASPECS: the ALMA SPECtroscopic Survey in the Hubble Ultra-Deep Field (UDF), the cosmological deep field that has the deepest multi-wavelength data available. Our overarching goal is to obtain an unbiased census of molecular gas and dust continuum emission in high-redshift (z > 0.5) galaxies. The ˜1‧ region covered within the UDF was chosen to overlap with the deepest available imaging from the Hubble Space Telescope. Our ALMA observations consist of full frequency scans in band 3 (84-115 GHz) and band 6 (212-272 GHz) at approximately uniform line sensitivity ({L}{CO}\\prime ˜ 2 × 109 K km s-1 pc2), and continuum noise levels of 3.8 μJy beam-1 and 12.7 μJy beam-1, respectively. The molecular surveys cover the different rotational transitions of the CO molecule, leading to essentially full redshift coverage. The [C II] emission line is also covered at redshifts 6.0\\lt z\\lt 8.0. We present a customized algorithm to identify line candidates in the molecular line scans and quantify our ability to recover artificial sources from our data. Based on whether multiple CO lines are detected, and whether optical spectroscopic redshifts as well as optical counterparts exist, we constrain the most likely line identification. We report 10 (11) CO line candidates in the 3 mm (1 mm) band, and our statistical analysis shows that <4 of these (in each band) are likely spurious. Less than one-third of the total CO flux in the low-J CO line candidates are from sources that are not associated with an optical/NIR counterpart. We also present continuum maps of both the band 3 and band 6 observations. The data presented here form the basis of a number of dedicated studies that are presented in subsequent papers.
MIRO Continuum Calibration for Asteroid Mode
NASA Technical Reports Server (NTRS)
Lee, Seungwon
2011-01-01
MIRO (Microwave Instrument for the Rosetta Orbiter) is a lightweight, uncooled, dual-frequency heterodyne radiometer. The MIRO encountered asteroid Steins in 2008, and during the flyby, MIRO used the Asteroid Mode to measure the emission spectrum of Steins. The Asteroid Mode is one of the seven modes of the MIRO operation, and is designed to increase the length of time that a spectral line is in the MIRO pass-band during a flyby of an object. This software is used to calibrate the continuum measurement of Steins emission power during the asteroid flyby. The MIRO raw measurement data need to be calibrated in order to obtain physically meaningful data. This software calibrates the MIRO raw measurements in digital units to the brightness temperature in Kelvin. The software uses two calibration sequences that are included in the Asteroid Mode. One sequence is at the beginning of the mode, and the other at the end. The first six frames contain the measurement of a cold calibration target, while the last six frames measure a warm calibration target. The targets have known temperatures and are used to provide reference power and gain, which can be used to convert MIRO measurements into brightness temperature. The software was developed to calibrate MIRO continuum measurements from Asteroid Mode. The software determines the relationship between the raw digital unit measured by MIRO and the equivalent brightness temperature by analyzing data from calibration frames. The found relationship is applied to non-calibration frames, which are the measurements of an object of interest such as asteroids and other planetary objects that MIRO encounters during its operation. This software characterizes the gain fluctuations statistically and determines which method to estimate gain between calibration frames. For example, if the fluctuation is lower than a statistically significant level, the averaging method is used to estimate the gain between the calibration frames. If the fluctuation is found to be statistically significant, a linear interpolation of gain and reference power is used to estimate the gain between the calibration frames.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabidoux, Katie; Pisano, D. J.; Kepley, Amanda A.
2014-01-01
We observed radio continuum emission in 27 local (D < 70 Mpc) star-forming galaxies with the Robert C. Byrd Green Bank Telescope between 26 GHz and 40 GHz using the Caltech Continuum Backend. We obtained detections for 22 of these galaxies at all four sub-bands and four more marginal detections by taking the average flux across the entire bandwidth. This is the first detection (full or marginal) at these frequencies for 22 of these galaxies. We fit spectral energy distributions (SEDs) for all of the four sub-band detections. For 14 of the galaxies, SEDs were best fit by a combinationmore » of thermal free-free and nonthermal synchrotron components. Eight galaxies with four sub-band detections had steep spectra that were only fit by a single nonthermal component. Using these fits, we calculated supernova rates, total number of equivalent O stars, and star formation rates within each ∼23'' beam. For unresolved galaxies, these physical properties characterize the galaxies' recent star formation on a global scale. We confirm that the radio-far-infrared correlation holds for the unresolved galaxies' total 33 GHz flux regardless of their thermal fractions, though the scatter on this correlation is larger than that at 1.4 GHz. In addition, we found that for the unresolved galaxies, there is an inverse relationship between the ratio of 33 GHz flux to total far-infrared flux and the steepness of the galaxy's spectral index between 1.4 GHz and 33 GHz. This relationship could be an indicator of the timescale of the observed episode of star formation.« less
Passing waves from atomistic to continuum
NASA Astrophysics Data System (ADS)
Chen, Xiang; Diaz, Adrian; Xiong, Liming; McDowell, David L.; Chen, Youping
2018-02-01
Progress in the development of coupled atomistic-continuum methods for simulations of critical dynamic material behavior has been hampered by a spurious wave reflection problem at the atomistic-continuum interface. This problem is mainly caused by the difference in material descriptions between the atomistic and continuum models, which results in a mismatch in phonon dispersion relations. In this work, we introduce a new method based on atomistic dynamics of lattice coupled with a concurrent atomistic-continuum method to enable a full phonon representation in the continuum description. This permits the passage of short-wavelength, high-frequency phonon waves from the atomistic to continuum regions. The benchmark examples presented in this work demonstrate that the new scheme enables the passage of all allowable phonons through the atomistic-continuum interface; it also preserves the wave coherency and energy conservation after phonons transport across multiple atomistic-continuum interfaces. This work is the first step towards developing a concurrent atomistic-continuum simulation tool for non-equilibrium phonon-mediated thermal transport in materials with microstructural complexity.
The Northern Middle Lobe of Centaurus A: Circumgalactic Gas in a Starburst Wind
NASA Technical Reports Server (NTRS)
Neff, S. G.; Eilek, J. A.; Owen, F. N.; Schiminovich, D.; Seibert, M.; Thilker, D.
2012-01-01
We present deep ultraviolet (GALEX), radio continuum (VLA) and H-alpha (Magellan) images of the circumgalactic medium around Centaurus A (NGC5128). We focus on the Northern Middle Lobe (NML), a region extending more than 50kpc beyond the galaxy and known to host a collection of striking phenomena: emission line filaments, recent star formation, disrupted HI/molecular gas streams, and short-lived X-ray clouds. Far UV emission is tightly correlated with H-alpha emission for more than 50kpc, and loosely associated with a filament of X-ray clouds and with the radio continuum emission. The radio emission in the NML region does not appear to be an extension of the inner radio jet (10kpc) or a typical radio lobe. We speculate that the "weather" seen in the NML region is a short-lived phenomenon, caused by an outflow encountering cool gas deposited by one of the recent merger/encounter events which have characterized the history of NGC5128.
Garcia-Allende, P Beatriz; Mirapeix, Jesus; Conde, Olga M; Cobo, Adolfo; Lopez-Higuera, Jose M
2009-01-01
Plasma optical spectroscopy is widely employed in on-line welding diagnostics. The determination of the plasma electron temperature, which is typically selected as the output monitoring parameter, implies the identification of the atomic emission lines. As a consequence, additional processing stages are required with a direct impact on the real time performance of the technique. The line-to-continuum method is a feasible alternative spectroscopic approach and it is particularly interesting in terms of its computational efficiency. However, the monitoring signal highly depends on the chosen emission line. In this paper, a feature selection methodology is proposed to solve the uncertainty regarding the selection of the optimum spectral band, which allows the employment of the line-to-continuum method for on-line welding diagnostics. Field test results have been conducted to demonstrate the feasibility of the solution.
ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin
2016-04-01
In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s{sup −1} and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggestingmore » that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.« less
NASA Astrophysics Data System (ADS)
Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.
2018-03-01
We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.
NASA Technical Reports Server (NTRS)
Hora, Joseph L.; Latter, William B.
1994-01-01
High-resolution near-infrared images and moderate resolution spectra were obtained of the bipolar nebulae M2-9 and AFGL 2688. The ability to spatially and spectrally resolve the various components of the nebulae has proved to be important in determining their physical structure and characteristics. In M2-9, the lobes are found to have a double-shell structure. The inner shell is dominated by emission from hydrogen recombination lines, and the outer shell is primarily emission from H2 lines in teh 2-2.5 micron region. Analysis of H2 line ratios indicates that the H2 emission is radiatively excited. A well-resolved photodissociation region is observed in the lobes. The spectrum of the central source is dominated by H recombination lines and a strong continuum rising toward longer wavelengths consistent with a T = 795 K blackbody. Also present are lines of He I and Fe II. In contrast, the N knot and E lobe of M2-9 show little continuum emission. The N knot spectrum consists of lines of (Fe II) and hydrogen recombination lines. In AGFL 2688, the emission from the bright lobes is mainly continuum reflected from the central star. Several molecular features from C2 and CN are present. In the extreme end of the N lobe and in the E equatorial region, the emission is dominated by lines of H2 in the 2-2.5 region. The observed H2 line ratios indicate that the emission is collisionally excited, with an excitation temperature T(sub ex) approixmately = 1600 +/- 100 K.
Spectral structure and stability studies on microstructure-fiber continuum
NASA Astrophysics Data System (ADS)
Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.
2003-07-01
Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.
Study of transmission line attenuation in broad band millimeter wave frequency range.
Pandya, Hitesh Kumar B; Austin, M E; Ellis, R F
2013-10-01
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.
Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR
NASA Astrophysics Data System (ADS)
Heesen, V.; Rafferty, D. A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K. T.; Scaife, A. M. M.; Brüggen, M.; Heald, G.; Fletcher, A.; Horellou, C.; Tabatabaei, F. S.; Paladino, R.; Nikiel-Wroczyński, B.; Hoeft, M.; Dettmar, R.-J.
2018-05-01
Low-mass galaxies are subject to strong galactic outflows, in which cosmic rays may play an important role; they can be best traced with low-frequency radio continuum observations, which are less affected by spectral ageing. We present a study of the nearby starburst dwarf irregular galaxy IC 10 using observations at 140 MHz with the Low-Frequency Array (LOFAR), at 1580 MHz with the Very Large Array (VLA), and at 6200 MHz with the VLA and the 100-m Effelsberg telescope. We find that IC 10 has a low-frequency radio halo, which manifests itself as a second component (thick disc) in the minor axis profiles of the non-thermal radio continuum emission at 140 and 1580 MHz. These profiles are then fitted with 1D cosmic ray transport models for pure diffusion and advection. We find that a diffusion model fits best, with a diffusion coefficient of D = (0.4-0.8) × 1026(E/GeV)0.5 cm2 s-1, which is at least an order of magnitude smaller than estimates both from anisotropic diffusion and the diffusion length. In contrast, advection models, which cannot be ruled out due to the mild inclination, while providing poorer fits, result in advection speeds close to the escape velocity of ≈ 50 km s- 1, as expected for a cosmic ray-driven wind. Our favoured model with an accelerating wind provides a self-consistent solution, where the magnetic field is in energy equipartition with both the warm neutral and warm ionized medium with an important contribution from cosmic rays. Consequently, cosmic rays can play a vital role for the launching of galactic winds in the disc-halo interface.
FLARE-LIKE VARIABILITY OF THE Mg II {lambda}2800 EMISSION LINE IN THE {gamma}-RAY BLAZAR 3C 454.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon-Tavares, J.; Chavushyan, V.; Patino-Alvarez, V.
2013-02-01
We report the detection of a statistically significant flare-like event in the Mg II {lambda}2800 emission line of 3C 454.3 during the outburst of autumn 2010. The highest levels of emission line flux recorded over the monitoring period (2008-2011) coincide with a superluminal jet component traversing through the radio core. This finding crucially links the broad emission line fluctuations to the non-thermal continuum emission produced by relativistically moving material in the jet and hence to the presence of broad-line region clouds surrounding the radio core. If the radio core were located at several parsecs from the central black hole, thenmore » our results would suggest the presence of broad-line region material outside the inner parsec where the canonical broad-line region is envisaged to be located. We briefly discuss the implications of broad emission line material ionized by non-thermal continuum in the context of virial black hole mass estimates and gamma-ray production mechanisms.« less
The gamma ray continuum spectrum from the galactic center disk and point sources
NASA Technical Reports Server (NTRS)
Gehrels, Neil; Tueller, Jack
1992-01-01
A light curve of gamma-ray continuum emission from point sources in the galactic center region is generated from balloon and satellite observations made over the past 25 years. The emphasis is on the wide field-of-view instruments which measure the combined flux from all sources within approximately 20 degrees of the center. These data have not been previously used for point-source analyses because of the unknown contribution from diffuse disk emission. In this study, the galactic disk component is estimated from observations made by the Gamma Ray Imaging Spectrometer (GRIS) instrument in Oct. 1988. Surprisingly, there are several times during the past 25 years when all gamma-ray sources (at 100 keV) within about 20 degrees of the galactic center are turned off or are in low emission states. This implies that the sources are all variable and few in number. The continuum gamma-ray emission below approximately 150 keV from the black hole candidate 1E1740.7-2942 is seen to turn off in May 1989 on a time scale of less than two weeks, significantly shorter than ever seen before. With the continuum below 150 keV turned off, the spectral shape derived from the HEXAGONE observation on 22 May 1989 is very peculiar with a peak near 200 keV. This source was probably in its normal state for more than half of all observations since the mid-1960's. There are only two observations (in 1977 and 1979) for which the sum flux from the point sources in the region significantly exceeds that from 1E1740.7-2942 in its normal state.
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; ...
2017-03-10
Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less
NASA Astrophysics Data System (ADS)
Engelke, Philip D.; Allen, Ronald J.
2018-05-01
We present excitation temperatures T ex for the OH 18 cm main lines at 1665 and 1667 MHz measured directly in front of the W5 star-forming region, using observations from the Green Bank Telescope and the Very Large Array. We find unequivocally that T ex at 1665 MHz is greater than T ex at 1667 MHz. Our method exploits variations in the continuum emission from W5, and the fact that the continuum brightness temperatures T C in this nebula are close to the excitation temperatures of the OH lines in the foreground gas. The result is that an OH line can appear in emission in one location and in absorption in a neighboring location, and the value of T C where the profiles switch from emission to absorption indicates T ex. Absolute measurements of T ex for the main lines were subject to greater uncertainty because of unknown effects of geometry of the OH features. We also employed the traditional “expected profile” method for comparison with our “continuum background” method and found that the continuum background method provided more precise results and was the one to definitively show the T ex difference. Our best estimate values are {T}ex}65=6.0+/- 0.5 K, {T}ex}67=5.1+/- 0.2 K, and {T}ex}65-{T}ex}67=0.9+/- 0.5 K. The T ex values we have measured for the ISM in front of W5 are similar to those found in the quiescent ISM, indicating that proximity to massive star-forming regions does not generally result in widespread anomalous excitation of OH emission.
NASA Astrophysics Data System (ADS)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.; Peterson, B. M.; Bentz, M. C.; De Rosa, G.; Denney, K. D.; Goad, M. R.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Pogge, R. W.; Bennert, V. N.; Brotherton, M.; Clubb, K. I.; Dalla Bontà, E.; Filippenko, A. V.; Greene, J. E.; Grier, C. J.; Vestergaard, M.; Zheng, W.; Adams, Scott M.; Beatty, Thomas G.; Bigley, A.; Brown, Jacob E.; Brown, Jonathan S.; Canalizo, G.; Comerford, J. M.; Coker, Carl T.; Corsini, E. M.; Croft, S.; Croxall, K. V.; Deason, A. J.; Eracleous, Michael; Fox, O. D.; Gates, E. L.; Henderson, C. B.; Holmbeck, E.; Holoien, T. W.-S.; Jensen, J. J.; Johnson, C. A.; Kelly, P. L.; Kim, S.; King, A.; Lau, M. W.; Li, Miao; Lochhaas, Cassandra; Ma, Zhiyuan; Manne-Nicholas, E. R.; Mauerhan, J. C.; Malkan, M. A.; McGurk, R.; Morelli, L.; Mosquera, Ana; Mudd, Dale; Muller Sanchez, F.; Nguyen, M. L.; Ochner, P.; Ou-Yang, B.; Pancoast, A.; Penny, Matthew T.; Pizzella, A.; Poleski, Radosław; Runnoe, Jessie; Scott, B.; Schimoia, Jaderson S.; Shappee, B. J.; Shivvers, I.; Simonian, Gregory V.; Siviero, A.; Somers, Garrett; Stevens, Daniel J.; Strauss, M. A.; Tayar, Jamie; Tejos, N.; Treu, T.; Van Saders, J.; Vican, L.; Villanueva, S., Jr.; Yuk, H.; Zakamska, N. L.; Zhu, W.; Anderson, M. D.; Arévalo, P.; Bazhaw, C.; Bisogni, S.; Borman, G. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Cackett, E. M.; Carini, M. T.; Crenshaw, D. M.; De Lorenzo-Cáceres, A.; Dietrich, M.; Edelson, R.; Efimova, N. V.; Ely, J.; Evans, P. A.; Ferland, G. J.; Flatland, K.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Grupe, D.; Gupta, A.; Hall, P. B.; Hicks, S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kennea, J. A.; Kim, M.; Kim, S. C.; Klimanov, S. A.; Lee, J. C.; Leonard, D. C.; Lira, P.; MacInnis, F.; Mathur, S.; McHardy, I. M.; Montouri, C.; Musso, R.; Nazarov, S. V.; Netzer, H.; Norris, R. P.; Nousek, J. A.; Okhmat, D. N.; Papadakis, I.; Parks, J. R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Saylor, D. A.; Schnülle, K.; Sergeev, S. G.; Siegel, M.; Skielboe, A.; Spencer, M.; Starkey, D.; Sung, H.-I.; Teems, K. G.; Turner, C. S.; Uttley, P.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Zu, Y.
2017-03-01
We present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum by {4.17}-0.36+0.36 {days} and {0.79}-0.34+0.35 {days}, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ˜50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ˜50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He II emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C IV, Lyα, He II(+O III]), and Si IV(+O IV]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR-L AGN relation based on the past behavior of NGC 5548.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Fausnaugh, M. M.; Barth, A. J.
Here, we present the results of an optical spectroscopic monitoring program targeting NGC 5548 as part of a larger multiwavelength reverberation mapping campaign. The campaign spanned 6 months and achieved an almost daily cadence with observations from five ground-based telescopes. The Hβ and He II λ4686 broad emission-line light curves lag that of the 5100 Å optical continuum bymore » $${4.17}_{-0.36}^{+0.36}\\,\\mathrm{days}$$ and $${0.79}_{-0.34}^{+0.35}\\,\\mathrm{days}$$, respectively. The Hβ lag relative to the 1158 Å ultraviolet continuum light curve measured by the Hubble Space Telescope is ~50% longer than that measured against the optical continuum, and the lag difference is consistent with the observed lag between the optical and ultraviolet continua. This suggests that the characteristic radius of the broad-line region is ~50% larger than the value inferred from optical data alone. We also measured velocity-resolved emission-line lags for Hβ and found a complex velocity-lag structure with shorter lags in the line wings, indicative of a broad-line region dominated by Keplerian motion. The responses of both the Hβ and He ii emission lines to the driving continuum changed significantly halfway through the campaign, a phenomenon also observed for C iv, Lyα, He II(+O III]), and Si Iv(+O Iv]) during the same monitoring period. Finally, given the optical luminosity of NGC 5548 during our campaign, the measured Hβ lag is a factor of five shorter than the expected value implied by the R BLR–L AGN relation based on the past behavior of NGC 5548.« less
The spatial extent of polycyclic aromatic hydrocarbons emission in the Herbig star HD 179218
NASA Astrophysics Data System (ADS)
Taha, A. S.; Labadie, L.; Pantin, E.; Matter, A.; Alvarez, C.; Esquej, P.; Grellmann, R.; Rebolo, R.; Telesco, C.; Wolf, S.
2018-04-01
Aim. We investigate, in the mid-infrared, the spatial properties of the polycyclic aromatic hydrocarbons (PAHs) emission in the disk of HD 179218, an intermediate-mass Herbig star at 300 pc. Methods: We obtained mid-infrared images in the PAH-1, PAH-2 and Si-6 filters centered at 8.6, 11.3, and 12.5 μm, and N-band low-resolution spectra using CanariCam on the 10-m Gran Telescopio Canarias (GTC). We compared the point spread function (PSF) profiles measured in the PAH filters to the profile derived in the Si-6 filter, where the thermal continuum emission dominates. We performed radiative transfer modeling of the spectral energy distribution (SED) and produced synthetic images in the three filters to investigate different spatial scenarios. Results: Our data show that the disk emission is spatially resolved in the PAH-1 and PAH-2 filters, while unresolved in the Si-6 filter. Thanks to very good observing conditions, an average full width at half maximum (FWHM) of 0.232'', 0.280'' and 0.293'' is measured in the three filters, respectively. Gaussian disk fitting and quadratic subtraction of the science and calibrator PSFs suggests a lower-limit characteristic angular diameter of the emission of 100 mas, or 30 au. The photometric and spectroscopic results are compatible with previous findings. Our radiative transfer (RT) modeling of the continuum suggests that the resolved emission should result from PAH molecules on the disk atmosphere being UV-excited by the central star. Simple geometrical models of the PAH component compared to the underlying continuum point to a PAH emission uniformly extended out to the physical limits of the disk model. Furthermore, our RT best model of the continuum requires a negative exponent of the surface density power-law, in contrast with earlier modeling pointing to a positive exponent. Conclusions: We have spatially resolved - for the first time to our knowledge - the PAHs emission in the disk of HD 179218 and set constraints on its spatial extent. Based on spatial and spectroscopic considerations as well as on qualitative comparison with IRS 48 and HD 97048, we favor a scenario in which PAHs extend out to large radii across the flared disk surface and are at the same time predominantly in an ionized charge state due to the strong UV radiation field of the 180 L⊙ central star.
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1972-01-01
Shock structure during ionization of a hydrogen-helium mixture was studied using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement was achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2 - 0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.
Measurements of the structure of an ionizing shock wave in a hydrogen-helium mixture.
NASA Technical Reports Server (NTRS)
Leibowitz, L. P.
1973-01-01
Shock structure during ionization of a hydrogen-helium mixture has been followed using hydrogen line and continuum emission measurements. A reaction scheme is proposed which includes hydrogen dissociation and a two-step excitation-ionization mechanism for hydrogen ionization by atom-atom and atom-electron collisions. Agreement has been achieved between numerical calculations and measurements of emission intensity as a function of time for shock velocities from 13 to 20 km/sec in a 0.208 H2-0.792 He mixture. The electron temperature was found to be significantly different from the heavy particle temperature during much of the ionization process. Similar time histories for H beta and continuum emission indicate upper level populations of hydrogen in equilibrium with the electron concentration during the relaxation process.
Catastrophic Disruption of Comet ISON
NASA Technical Reports Server (NTRS)
Keane, Jacqueline V.; Milam, Stefanie N.; Coulson, Iain M.; Kleyna, Jan T.; Sekanina, Zdenek; Kracht, Rainer; Riesen, Timm-Emmanuel; Meech, Karen J.; Charnley, Steven B.
2016-01-01
We report submillimeter 450 and 850 microns dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31-0.08 au prior to perihelion on 2013 November 28 (rh?=?0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60? (greater than 10(exp 5) km in the anti-solar direction. Deconvolution of the November 28.04 850 microns image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing approximately 5.2?×?10(exp 10) kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.
Spectroscopic Peculiarity of the Herbig Be Star HD 259431
NASA Astrophysics Data System (ADS)
Pogodin, M. A.; Pavlovskij, S. E.; Drake, N. A.; Beskrovnaya, N. G.; Kozlova, O. V.; Alekseev, I. Yu.; Borges Fernandes, M.; Pereira, C. B.; Valyavin, G.
2017-06-01
High-resolution spectra of the Herbig Be star HD 259431 obtained in 2010-2016 at three observatories (Crimean AO, ESO in Chile, and OAN SPN in Mexico) are analysed. The object demonstrates a very rich emission line profile spectrum. The bulk of the lines exhibit double-peaked emission profiles and originate in the gaseous disk. The atmospheric lines are unusually shallow, and majority of them are distorted by the circumstellar (CS) contribution. Moreover, we have revealed that they are overlapped with an additional continuum emission. Using the observed ratio of the equivalent widths of two He I λ 4009 and 4026 lines, we estimated the spectral type of the object as B5 V. We also constructed the spectral energy distribution of the additional continuum using wide wings of the atmospheric Hβ-Hɛ lines free of the CS contribution. The continuum corresponds to the blue part of the black body spectrum. The Hβ - Hɛ Balmer emission lines show very variable profiles looking as either of P Cyg-type or a double-peaked emission line with a depression of the red wing. We found the period of this variability P = 2.630d and interpreted it as a sign of a rotating magnetosphere of the star with the magnetic axis inclined to the rotation axis. At different phases of rotation, the observer can see either an accretion flow at high magnetic latitudes or a wind zone at lower latitudes. We also estimated the inclination of the rotation axis i = 52°±1°.
NASA Astrophysics Data System (ADS)
Beuther, H.; Bihr, S.; Rugel, M.; Johnston, K.; Wang, Y.; Walter, F.; Brunthaler, A.; Walsh, A. J.; Ott, J.; Stil, J.; Henning, Th.; Schierhuber, T.; Kainulainen, J.; Heyer, M.; Goldsmith, P. F.; Anderson, L. D.; Longmore, S. N.; Klessen, R. S.; Glover, S. C. O.; Urquhart, J. S.; Plume, R.; Ragan, S. E.; Schneider, N.; McClure-Griffiths, N. M.; Menten, K. M.; Smith, R.; Roy, N.; Shanahan, R.; Nguyen-Luong, Q.; Bigiel, F.
2016-10-01
Context. The past decade has witnessed a large number of Galactic plane surveys at angular resolutions below 20''. However, no comparable high-resolution survey exists at long radio wavelengths around 21 cm in line and continuum emission. Aims: We remedy this situation by studying the northern Galactic plane at 20'' resolution in emission of atomic, molecular, and ionized gas. Methods: Employing the Karl G. Jansky Very Large Array (VLA) in the C-array configuration and a large program, we observe the HI 21 cm line, four OH lines, nineteen Hnα radio recombination lines as well as the continuum emission from 1 to 2 GHz in full polarization over a large part of the first Galactic quadrant. Results: Covering Galactic longitudes from 14.5 to 67.4 deg and latitudes between ± 1.25 deg, we image all of these lines and the continuum at 20'' resolution. These data allow us to study the various components of the interstellar medium (ISM): from the atomic phase, traced by the HI line, to the molecular phase, observed by the OH transitions, to the ionized medium, revealed by the cm continuum and the Hnα radio recombination lines. Furthermore, the polarized continuum emission enables magnetic field studies. In this overview paper, we discuss the survey outline and present the first data release as well as early results from the different datasets. We now release the first half of the survey; the second half will follow later after the ongoing data processing has been completed. The data in fits format (continuum images and line data cubes) can be accessed through the project web-page. Conclusions: The HI/OH/Recombination line survey of the Milky Way (THOR) opens a new window to the different parts of the ISM. It enables detailed studies of molecular cloud formation, conversion of atomic to molecular gas, and feedback from Hii regions as well as the magnetic field in the Milky Way. It is highly complementary to other surveys of our Galaxy, and comparing the different datasets will allow us to address many open questions. Based on observations carried out with the Karl Jansky Very Large Array (VLA). http://www.mpia.de/thor
Toward unbiased determination of the redshift evolution of Lyman-alpha forest clouds
NASA Technical Reports Server (NTRS)
Lu, Limin; Zuo, Lin
1994-01-01
The possibility of using D(sub A), the mean depression of a quasar spectrum due to Ly-alpha forest absorption, to study the number density evolution of the Ly-alpha forest clouds is examined in some detail. Current D(sub A) measurements are made against a continuum that is a power-law extrapolation from the continuum longward of Ly-alpha emission. Compared to the line-counting approach, the D(sub A)-method has the advantage that the D(sub A) measurements are not affected by line-blending effects. However, we find using low-redshift quasar spectra obtained with the Hubble Space Telescope (HST), where the true continuum in the Ly-alpha forest can be estimated fairly reliably because of the much lower density of the Ly-alpha forest lines, that the extrapolated continuum often deviates systematically from the true continuum in the forest region. Such systematic continuum errors introduce large errors in the D(sub A) measurements. The current D(sub A) measurements may also be significantly biased by the possible presence of the Gunn-Peterson absorption. We propose a modification to the existing D(sub A)-method, namely, to measure D(sub A) against a locally established continuum in the Ly-alpha forest. Under conditions that the quasar spectrum has good resolution and S/N to allow for a reliable estimate of the local continuum in the Ly-alpha forest, the modified D(sub A) measurements should be largely free of the systematic uncertainties suffered by the existing D(sub A) measurements. We also introduce a formalism based on the work of Zuo (1993) to simplify the application of the D(sub A)-method(s) to real data. We discuss the merits and limitations of the modified D(sub A)-method, and conclude that it is a useful alternative. Our findings that the extrapolated continuum from longward of Ly-alpha emission often deviates systematically from the true continuum in the Ly-alpha forest present a major problem in the study of the Gunn-Peterson absorption.
NASA Astrophysics Data System (ADS)
Fedele, D.; Carney, M.; Hogerheijde, M. R.; Walsh, C.; Miotello, A.; Klaassen, P.; Bruderer, S.; Henning, Th.; van Dishoeck, E. F.
2017-04-01
The protoplanetary system HD 169142 is one of the few cases where a potential candidate protoplanet has recently been detected by direct imaging in the near-infrared. To study the interaction between the protoplanet and the disk itself, observations of the gas and dust surface density structure are needed. This paper reports new ALMA observations of the dust continuum at 1.3 mm, 12CO, 13CO, and C18O J = 2-1 emission from the system HD 169142 (which is observed almost face-on) at an angular resolution of 0.3 arcsec × 0.2 arcsec ( 35 × 20 au). The dust continuum emission reveals a double-ring structure with an inner ring between 0.17 arcsec{-0.28 arcsec} ( 20-35 au) and an outer ring between 0.48 arcsec{-0.64 arcsec} ( 56-83 au). The size and position of the inner ring is in good agreement with previous polarimetric observations in the near-infrared and is consistent with dust trapping by a massive planet. No dust emission is detected inside the inner dust cavity (R ≲ 20 au) or within the dust gap ( 35-56 au) down to the noise level. In contrast, the channel maps of the J = 2-1 line of the three CO isotopologs reveal gas inside the dust cavity and dust gap. The gaseous disk is also much larger than the compact dust emission; it extends to 1.5 arcsec ( 180 au) in radius. This difference and the sharp drop of the continuum emission at large radii point to radial drift of large dust grains (>μm size). Using the thermo-chemical disk code dali, we modeled the continuum and the CO isotopolog emission to quantitatively measure the gas and dust surface densities. The resulting gas surface density is reduced by a factor of 30-40 inward of the dust gap. The gas and dust distribution indicate that two giant planets shape the disk structure through dynamical clearing (dust cavity and gap) and dust trapping (double-ring dust distribution).
NASA Astrophysics Data System (ADS)
Braibant, L.; Hutsemékers, D.; Sluse, D.; Goosmann, R.
2017-11-01
Recent studies have shown that line profile distortions are commonly observed in gravitationally lensed quasar spectra. Often attributed to microlensing differential magnification, line profile distortions can provide information on the geometry and kinematics of the broad emission line region (BLR) in quasars. We investigate the effect of gravitational microlensing on quasar broad emission line profiles and their underlying continuum, combining the emission from simple representative BLR models with generic microlensing magnification maps. Specifically, we considered Keplerian disk, polar, and equatorial wind BLR models of various sizes. The effect of microlensing has been quantified with four observables: μBLR, the total magnification of the broad emission line; μcont, the magnification of the underlying continuum; as well as red/blue, RBI and wings/core, WCI, indices that characterize the line profile distortions. The simulations showed that distortions of line profiles, such as those recently observed in lensed quasars, can indeed be reproduced and attributed to the differential effect of microlensing on spatially separated regions of the BLR. While the magnification of the emission line μBLR sets an upper limit on the BLR size and, similarly, the magnification of the continuum μcont sets an upper limit on the size of the continuum source, the line profile distortions mainly depend on the BLR geometry and kinematics. We thus built (WCI,RBI) diagrams that can serve as diagnostic diagrams to discriminate between the various BLR models on the basis of quantitative measurements. It appears that a strong microlensing effect puts important constraints on the size of the BLR and on its distance to the high-magnification caustic. In that case, BLR models with different geometries and kinematics are more prone to produce distinctive line profile distortions for a limited number of caustic configurations, which facilitates their discrimination. When the microlensing effect is weak, there is a larger overlap between the characteristics of the line profile distortions produced by the different models, and constraints can only be derived on a statistical basis.
NASA Astrophysics Data System (ADS)
Gullberg, B.; Swinbank, A. M.; Smail, I.; Biggs, A. D.; Bertoldi, F.; De Breuck, C.; Chapman, S. C.; Chen, C.-C.; Cooke, E. A.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Dunlop, J. S.; Edge, A. C.; Farrah, D.; Geach, J. E.; Greve, T. R.; Hodge, J.; Ibar, E.; Ivison, R. J.; Karim, A.; Schinnerer, E.; Scott, D.; Simpson, J. M.; Stach, S. M.; Thomson, A. P.; van der Werf, P.; Walter, F.; Wardlow, J. L.; Weiss, A.
2018-05-01
We present deep, high-resolution (0.″03, 200 pc) ALMA Band 7 observations covering the dust continuum and [C II] λ157.7 μm emission in four z ∼ 4.4–4.8 sub-millimeter galaxies (SMGs) selected from the ALESS and AS2UDS surveys. The data show that the rest-frame 160 μm (observed 345 GHz) dust emission is consistent with smooth morphologies on kpc scales for three of the sources. One source, UDS 47.0, displays apparent substructure, but this is also consistent with a smooth morphology—as indicated by simulations showing that smooth exponential disks can appear clumpy when observed at the high angular resolution (0.″03) and depth of these observations ({σ }345{GHz}∼ 27{--}47 μJy beam‑1). The four SMGs are bright [C II] emitters. We extract [C II] spectra from the high-resolution data, and recover ∼20%–100% of the [C II] flux and ∼40%–80% of the dust continuum emission, compared to the previous lower-resolution observations. When tapered to 0.″2 resolution, our maps recover ∼80%–100% of the continuum emission, indicating that ∼60% of the emission is resolved out on ∼200 pc scales. We find that the [C II] emission in high-redshift galaxies is more spatially extended than the rest-frame 160 μm dust continuum by a factor of 1.6 ± 0.4. By considering the {L}[{{C}{{II}}]}/{L}FIR} ratio as a function of the star formation rate surface density ({{{Σ }}}SFR}), we revisit the [C II] deficit and suggest that the decline in the {L}[{{C}{{II}}]}/{L}FIR} ratio as a function of {{{Σ }}}SFR} is consistent with local processes. We also explore the physical drivers that may be responsible for these trends and can give rise to the properties found in the densest regions of SMGs.
Theory of the water vapor continuum and validations
NASA Technical Reports Server (NTRS)
Tipping, Richard H.; Ma, Q.
1995-01-01
A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of the vibration-rotational bands has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations were made assuming an interaction potential consisting of an isotropic Lennard-Jones part with two parameters that are consistent with values obtained from other data, and the leading long-range anisotropic part, together with the measured line strengths and transition frequencies. The results, obtained without the introduction of adjustable parameters, compare well with the existing laboratory data, both in magnitude and in temperature dependence. This leads us to the conclusion that the water continuum can be explained in terms of far-wing absorption. Current work in progress to extend the theory and to validate the theoretically calculated continuum will be discussed briefly.
Anomalous vibrational properties in the continuum limit of glasses
NASA Astrophysics Data System (ADS)
Shimada, Masanari; Mizuno, Hideyuki; Ikeda, Atsushi
2018-02-01
The low-temperature thermal properties of glasses are anomalous with respect to those of crystals. These thermal anomalies indicate that the low-frequency vibrational properties of glasses differ from those of crystals. Recent studies revealed that, in the simplest model of glasses, i.e., the harmonic potential system, phonon modes coexist with soft localized modes in the low-frequency (continuum) limit. However, the nature of low-frequency vibrational modes of more realistic models is still controversial. In the present work, we study the Lennard-Jones (LJ) system using large-scale molecular-dynamics (MD) simulation and establish that the vibrational property of the LJ glass converges to coexistence of the phonon modes and the soft localized modes in the continuum limit as in the case of the harmonic potential system. Importantly, we find that the low-frequency vibrations are rather sensitive to the numerical scheme of potential truncation, which is usually implemented in the MD simulation, and this is the reason why contradictory arguments have been reported by previous works. We also discuss the physical origin of this sensitiveness by means of a linear stability analysis.
Observations of cataclysmic variables with IUE
NASA Technical Reports Server (NTRS)
Hartmann, L.; Raymond, J.
1981-01-01
Observations are reported of the cataclysmic variables AN UMa, 2AO311-227, VV Pup, DQ Her, and GK Per. Continuum emission was detected in the short wavelength region in DQ Her. This object exhibits a quasi-blackbody spectrum at short wavelengths, such blackbody components are a common property of the variables AM Her, SS Cyg, and U Gem, suggesting an underlying similarity in the activity of these diverse systems. Flat continuum components at longer wavelengths in general are not compatible with standard disk models. The emission line ratios in AE Aqr are anomalous in that C IV is absent to a very low level relative to N V.
The 1982 ultraviolet eclipse of the symbiotic binary AR Pav
NASA Technical Reports Server (NTRS)
Hutchings, J. B.; Cowley, A. P.; Ake, T. B.; Imhoff, C. L.
1983-01-01
Observations with the International Ultraviolet Explorer (IUE) of the symbiotic binary AR Pav through its 1982 eclipse show that the hot star is not eclipsed. The hot star is associated with an extended region of continuum emission which is partially eclipsed. The eclipsed radiation is hotter near to its center, with a maximum temperature of about 9000 K. The uneclipsed flux is hotter than this. UV emission lines are not measurably eclipsed and presumably arise in a much larger region than the continuum. These data provide new constraints on models of the system but also are apparently in contradiction to those based on ground-based data.
A near-infrared relationship for estimating black hole masses in active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita
2013-06-01
Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.
NASA Astrophysics Data System (ADS)
Kriss, G.; Storm Team
2015-07-01
The Space Telescope and Optical Reverberation Mapping (STORM) project monitored the Seyfert 1 galaxy NGC 5548 over a six-month period, obtaining 171 far-ultraviolet HST/COS spectra at approximately daily intervals. We find significant correlated variability in the continuum and broad emission lines, with amplitudes ranging from a factor of two in the emission lines to a factor of three in the continuum. The variations of all the strong emission lines lag behind those of the continuum, with He II lagging by ˜ 2.5 days and Ly&alpha,; C IV, and Si IV lagging by 5 to 6 days. The broad UV absorption lines discovered by Kaastra et al. (2014) and associated with the new soft X-ray obscurer are continuously present in the STORM campaign COS spectra. Their strength varies with the degree of soft X-ray obscuration as revealed by the Swift X-ray spectra. The narrow absorption lines associated with the historical warm absorber varied in response to the changing UV flux on a daily basis with lags of 3 to 8 days. The ionization response allows precise determinations of the locations, mass flux, and kinetic luminosities of the absorbers.
Observations of far-infrared fine structure lines: o III88.35 micrometer and oI 63.2 micrometer
NASA Technical Reports Server (NTRS)
Storey, J. W. V.; Watson, D. M.; Townes, C. H.
1979-01-01
Observations of the O III 88.35 micrometer line and the O I63.2 micrometer were made with a far infrared spectrometer. The sources M17, NGC 7538, and W51 were mapped in the O III line with 1 arc minute resolution and the emission is found to be quite widespread. In all cases the peak of the emission coincides with the maximum radio continuum. The far infrared continuum was mapped simultaneously and in M17, NGC 7538, and W51 the continuum peak is found to be distinct from the center of ionization. The O III line was also detected in W3, W49, and in a number of positions in the Orion nebula. Upper limits were obtained on NGS 7027, NGC 6572, DR21, G29.9-0.0 and M82. The 63.2 micrometer O I line was detected in M17, M42, and marginally in DR21. A partial map of M42 in this line shows that most of the emission observed arises from the Trapezium and from the bright optical bar to the southeast.
2013-01-01
Background The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. Results The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94–106% in atomic absorption and 97–103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6–5.2% in atomic absorption, similar with that of 1.9–6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. Conclusions High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry. PMID:23452327
Frentiu, Tiberiu; Ponta, Michaela; Hategan, Raluca
2013-03-01
The aim of this paper was the validation of a new analytical method based on the high-resolution continuum source flame atomic absorption spectrometry for the fast-sequential determination of several hazardous/priority hazardous metals (Ag, Cd, Co, Cr, Cu, Ni, Pb and Zn) in soil after microwave assisted digestion in aqua regia. Determinations were performed on the ContrAA 300 (Analytik Jena) air-acetylene flame spectrometer equipped with xenon short-arc lamp as a continuum radiation source for all elements, double monochromator consisting of a prism pre-monocromator and an echelle grating monochromator, and charge coupled device as detector. For validation a method-performance study was conducted involving the establishment of the analytical performance of the new method (limits of detection and quantification, precision and accuracy). Moreover, the Bland and Altman statistical method was used in analyzing the agreement between the proposed assay and inductively coupled plasma optical emission spectrometry as standardized method for the multielemental determination in soil. The limits of detection in soil sample (3σ criterion) in the high-resolution continuum source flame atomic absorption spectrometry method were (mg/kg): 0.18 (Ag), 0.14 (Cd), 0.36 (Co), 0.25 (Cr), 0.09 (Cu), 1.0 (Ni), 1.4 (Pb) and 0.18 (Zn), close to those in inductively coupled plasma optical emission spectrometry: 0.12 (Ag), 0.05 (Cd), 0.15 (Co), 1.4 (Cr), 0.15 (Cu), 2.5 (Ni), 2.5 (Pb) and 0.04 (Zn). Accuracy was checked by analyzing 4 certified reference materials and a good agreement for 95% confidence interval was found in both methods, with recoveries in the range of 94-106% in atomic absorption and 97-103% in optical emission. Repeatability found by analyzing real soil samples was in the range 1.6-5.2% in atomic absorption, similar with that of 1.9-6.1% in optical emission spectrometry. The Bland and Altman method showed no statistical significant difference between the two spectrometric methods for 95% confidence interval. High-resolution continuum source flame atomic absorption spectrometry can be successfully used for the rapid, multielemental determination of hazardous/priority hazardous metals in soil with similar analytical performances to those in inductively coupled plasma optical emission spectrometry.
Elemental Abundances in NGC 3516
NASA Technical Reports Server (NTRS)
Turner, T. J.; Kraemer, S. B.; Mushotzky, R. F.; George, I. M.; Gabel, J. R.
2003-01-01
We present Reflection Grating Spectrometer data from an XMM-Newton observation of the Seyfert 1 galaxy NGC 3516, taken while the continuum source was in an extremely low flux state. This observation offers a rare opportunity for a detailed study of emission from a Seyfert 1 galaxy as these are usually dominated by high nuclear continuum levels and heavy absorption. The spectrum shows numerous narrow emission lines (FWHM approximately less than 1300 kilometers per second) in the 0.3 - 2 keV range, including the H-like lines of C, N, and O and the He-like lines of N, O and Ne. The emission-line ratios and the narrow width of the radiative recombination continuum of CVI indicate that the gas is photoionized and of fairly low temperature (kT approximately less than 0.01 keV). The availability of emission lines from different elements for two iso-electronic sequences allows us to constrain the element abundances. These data show that the N lines are far stronger than would be expected from gas of solar abundances. Based on our photoionization models we find that nitrogen is overabundant in the central regions of the galaxy, compared to carbon, oxygen and neon by at least a factor of 2.5. We suggest that this is the result of secondary production of nitrogen in intermediate mass stars, and indicative of the history of star formation in NGC 3516.
Continuum sources from the THOR survey between 1 and 2 GHz
NASA Astrophysics Data System (ADS)
Bihr, S.; Johnston, K. G.; Beuther, H.; Anderson, L. D.; Ott, J.; Rugel, M.; Bigiel, F.; Brunthaler, A.; Glover, S. C. O.; Henning, T.; Heyer, M. H.; Klessen, R. S.; Linz, H.; Longmore, S. N.; McClure-Griffiths, N. M.; Menten, K. M.; Plume, R.; Schierhuber, T.; Shanahan, R.; Stil, J. M.; Urquhart, J. S.; Walsh, A. J.
2016-04-01
We carried out a large program with the Karl G. Jansky Very Large Array (VLA): "THOR: The H I, OH, Recombination line survey of the Milky Way". We observed a significant portion (~100 deg2) of the Galactic plane in the first quadrant of the Milky Way in the 21 cm H I line, 4 OH transitions, 19 radio recombination lines, and continuum from 1 to 2 GHz. In this paper we present a catalog of the continuum sources in the first half of the survey (l = 14.0-37.9° and l = 47.1-51.2°, | b | ≤ 1.1°) at a spatial resolution of 10-25″, depending on the frequency and sky position with a spatially varying noise level of ~0.3-1 mJy beam-1. The catalog contains ~4400 sources. Around 1200 of these are spatially resolved, and ~1000 are possible artifacts, given their low signal-to-noise ratios. Since the spatial distribution of the unresolved objects is evenly distributed and not confined to the Galactic plane, most of them are extragalactic. Thanks to the broad bandwidth of the observations from 1 to 2 GHz, we are able to determine a reliable spectral index for ~1800 sources. The spectral index distribution reveals a double-peaked profile with maxima at spectral indices of α ≈ -1 and α ≈ 0, corresponding to steep declining and flat spectra, respectively. This allows us to distinguish between thermal and non-thermal emission, which can be used to determine the nature of each source. We examine the spectral index of ~300 known H II regions, for which we find thermal emission with spectral indices around α ≈ 0. In contrast, supernova remnants (SNR) show non-thermal emission with α ≈ -0.5 and extragalactic objects generally have a steeper spectral index of α ≈ -1. Using the spectral index information of the THOR survey, we investigate potential SNR candidates. We classify the radiation of four SNR candidates as non-thermal, and for the first time, we provide strong evidence for the SNR origin of these candidates. Full Table C.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A97
High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission
NASA Technical Reports Server (NTRS)
Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa
1990-01-01
Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.
An Automated Scheme for the Large-Scale Survey of Herbig-Haro Objects
NASA Astrophysics Data System (ADS)
Deng, Licai; Yang, Ji; Zheng, Zhongyuan; Jiang, Zhaoji
2001-04-01
Owing to their spectral properties, Herbig-Haro (HH) objects can be discovered using photometric methods through a combination of filters, sampling the characteristic spectral lines and the nearby continuum. The data are commonly processed through direct visual inspection of the images. To make data reduction more efficient and the results more uniform and complete, an automated searching scheme for HH objects is developed to manipulate the images using IRAF. This approach helps to extract images with only intrinsic HH emissions. By using this scheme, the pointlike stellar sources and extended nebulous sources with continuum emission can be eliminated from the original images. The objects with only characteristic HH emission become prominent and can be easily picked up. In this paper our scheme is illustrated by a sample field and has been applied to our surveys for HH objects.
Ultraviolet and optical spectrophotometry of the Seyfert 1.8 galaxy Markarian 609
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Cohen, Ross D.; Ake, T. B.
1988-01-01
Ultraviolet and optical observations of the Seyfert 1.8 galaxy Mrk 609 were collected simultaneously. The observations reveal strong line and continuum emission in the UV, an increase in the flux of H-beta and He I 5876, and a decrease in the H-alpha/H-beta value since the measurements by Osterbrock (1978, 1981), as well as an extended population of early-type stars, which is considered to be the source powering the larger part of the far-IR emission. Special attention is given to the origin of steep broad-line Balmer decrement measured by Osterbrock, since the strong UV continuum and the emission lines of Mrk 609 observed rule out reddening as the cause of the Balmer decrement. It is suggested that smaller-than-normal optical depths are likely to be the cause of the decrement.
CATASTROPHIC DISRUPTION OF COMET ISON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keane, Jacqueline V.; Kleyna, Jan T.; Riesen, Timm-Emmanuel
2016-11-10
We report submillimeter 450 and 850 μ m dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31–0.08 au prior to perihelion on 2013 November 28 ( r {sub h} = 0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60″ (>10{sup 5} km) in the anti-solar direction. Deconvolution of the November 28.04 850 μ m image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producingmore » ∼5.2 × 10{sup 10} kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.« less
The Cygnus OB2 Star Forming Complex
NASA Astrophysics Data System (ADS)
Rybarczyk, Daniel R.; Bania, Thomas
2018-01-01
Almost all astrophysical systems—from planets to stars to supernovae to entire galaxies—are impacted by the process of star formation. The brightest, most massive stars (OB stars) form in hot young clusters called OB associations. Cygnus OB2 is an OB association containing over 160 OB stars, making it one of the largest in the Milky Way Galaxy. At a distance of less than 1.5 kpc, its proximity to the Sun makes it optimal for assessing the process of Galactic star formation and its implications for stellar evolution, Galactic structure, and Galactic chemical evolution. Using existing data sets, we derive comprehensive maps of the distribution of thermal continuum, atomic, and molecular emission from the interstellar gas in Cyg OB2. The thermal continuum emission stems from the plasma ionized by OB stars. The atomic gas is probed by emission from atomic hydrogen, HI, at 21 cm wavelength. The molecular gas is traced by emission from the CO molecule which is a proxy for molecular hydrogen, H2. We combine these atomic and molecular data to derive a map of the total proton column density distribution in Cyg OB2. We also analyze the velocity fields of the OB stars, the atomic and molecular hydrogen gas, and the HII regions' radio recombination emission. As expected, we find HII regions to be spatially coincident with zones of higher cloud density. Surrounding the greatest concentration of OB stars is a cavity in the radio continuum and CO emission. This results from shock waves produced by the combined action of the high HII region pressure and winds from the OB stars. Such a distribution implies that Cyg OB2 is old enough to have evolved to this state.
NASA Technical Reports Server (NTRS)
Martin, Crystal L.; Dijkstra, Mark; Henry, Alaina L.; Soto, Kurt T.; Danforth, Charles W.; Wong, Joseph
2015-01-01
We present new Hubble Space Telescope Cosmic Origins Spectrograph far-ultraviolet (far-UV) spectroscopy and Keck Echellete optical spectroscopy of 11 ultraluminous infrared galaxies (ULIRGs), a rare population of local galaxies experiencing massive gas inflows, extreme starbursts, and prominent outflows. We detect Ly(alpha) emission from eight ULIRGs and the companion to IRAS09583+4714. In contrast to the P Cygni profiles often seen in galaxy spectra, the Ly(alpha) profiles exhibit prominent, blueshifted emission out to Doppler shifts exceeding -1000 km/s in three H II-dominated and two AGN-dominated ULIRGs. To better understand the role of resonance scattering in shaping the Ly(alpha) line profiles, we directly compare them to non-resonant emission lines in optical spectra. We find that the line wings are already present in the intrinsic nebular spectra, and scattering merely enhances the wings relative to the line core. The Ly(alpha) attenuation (as measured in the COS aperture) ranges from that of the far-UV continuum to over 100 times more. A simple radiative transfer model suggests the Ly(alpha) photons escape through cavities which have low column densities of neutral hydrogen and become optically thin to the Lyman continuum in the most advanced mergers. We show that the properties of the highly blueshifted line wings on the Ly(alpha) and optical emission-line profiles are consistent with emission from clumps of gas condensing out of a fast, hot wind. The luminosity of the Ly(alpha) emission increases nonlinearly with the ULIRG bolometric luminosity and represents about 0.1-1% of the radiative cooling from the hot winds in the H II-dominated ULIRGs.
Planned Visible Emission Line Space Solar Coronagraph on-board Aditya-1
NASA Astrophysics Data System (ADS)
Singh, Jagdev
2012-07-01
An imaging visible emission line internally occulted coronagraph using 20 cm off axis parabolic mirror has been designed and planned to be launched in 2014. The coronagraph will have the facility to take images of the solar simultaneously, in the green [Fe xiv] and the red [Fe x] emission lines up to 1.5 solar radii with a frequency of about 3 Hz using 0.5 nm pass band filters and the images in continuum at 580 nm up to 3 solar radii. The satellite has been named as Aditya-1 and the scientific objectives of this payload are: (i) to investigate the existence of intensity oscillations for the study of wave driven coronal heating, (ii) to study the dynamics and formation of coronal loops and temperature structure of the coronal features, (iii) to study the origin, cause and acceleration of Coronal Mass Ejections (CME's) and other solar active features, and (iv) Coronal magnetic field topology and the 3-dimensional structures of the CMEs using polarization information. The fabrication of the pay load will be done in the laboratories of LEOS, SAC, ISAC, IIA and USO and launched by ISRO. Here we shall discuss the design and the realization of the mission.
Hard X-ray quiescent emission in magnetars via resonant Compton upscattering
NASA Astrophysics Data System (ADS)
Baring, M. G.; Wadiasingh, Z.; Gonthier, P. L.; Harding, A. K.
2017-12-01
Non-thermal quiescent X-ray emission extending between 10 keV and around 150 keV has been seen in about 10 magnetars by RXTE, INTEGRAL, Suzaku, NuSTAR and Fermi-GBM. For inner magnetospheric models of such hard X-ray signals, inverse Compton scattering is anticipated to be the most efficient process for generating the continuum radiation, because the scattering cross section is resonant at the cyclotron frequency. We present hard X-ray upscattering spectra for uncooled monoenergetic relativistic electrons injected in inner regions of pulsar magnetospheres. These model spectra are integrated over bundles of closed field lines and obtained for different observing perspectives. The spectral turnover energies are critically dependent on the observer viewing angles and electron Lorentz factor. We find that electrons with energies less than around 15 MeV will emit most of their radiation below 250 keV, consistent with the turnovers inferred in magnetar hard X-ray tails. Electrons of higher energy still emit most of the radiation below around 1 MeV, except for quasi-equatorial emission locales for select pulse phases. Our spectral computations use a new state-of-the-art, spin-dependent formalism for the QED Compton scattering cross section in strong magnetic fields.
Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low Temperature Sugar
NASA Technical Reports Server (NTRS)
Hollis, J. M.; Jewell, P. R.; Lovas, F. J.; Remijan, A.
2004-01-01
Interstellar glycolaldehyde (CH20HCHO) has been detected with the 100-m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of the 1(sub 10)-1(sub 01),2(sub 11)-2(sub 02),3(sub 12)-3(sub 0), and 4(sub 13)-4(sub 04) rotational transitions at 13.48, 15.18, 17.98, and 22.14 GHz, respectively. An analysis of these four high signal- to-noise rotational transitions yields a glycolaldehyde state temperature of 8 K. Previously reported emission line detections of glycolaldehyde with the NRAO 12-m telescope at mm-wavelengths (71 GHz to 103 GHz) are characterized by a state temperature of -50 K. By comparison the GBT detections are surprisingly strong and seen in emission at 13.48 GHz, emission and absorption at 15.18 GHz, and absorption at 17.98 GHz and 22.14 GHz. We attribute the strong absorption observed by the GBT at the higher frequencies to the correspondingly smaller GBT beams coupling better to the continuum source(s) in Sagittarius B2(N). A possible model for the two-temperature regions of glycolaldehyde is discussed.
NASA Technical Reports Server (NTRS)
Alloin, D.; Santos-Lleo, M.; Peterson, B. M.; Wamsteker, W.; Altieri, B.; Brinkmann, W.; Clavel, J.; Crenshaw, D. M.; George, I. M.; Glass, I. S.;
1995-01-01
To better understand the physical processes that produce the continuous emission in active galactic nuclei (AGN), a snapshot of the overall continuous energy distribution of NGC 3783, from gamma ray to radio wavelengths, has been obtained within the framework of the World Astronomy Days. The data collected in this campaign are from GRO, ROSAT, Voyager 2, IUE, HST, CTIO, SAAO, and the VLA. Great care has been taken in disentangling the genuine AGN continusous emission from other contributions; depending on the waveband, the latter might be (1) unrelated contaminating sources in cases where the instrument field of view is large (2) components within which the AGN is embedded, such as the stellar bulge population which accounts for a significant fraction of the optical continuum, and free-bound and FE2 blends wich contribute to the ultraviolet flux. After correction for these other contributins, the continuous emission of the isolated AGN appears to be rather flat (i.e., approximately equal energy per unit logarithmic frequency) from soft gamma ray to infrared wavelengths. At high energies (0.1 MeV to 0.1 keV), the AGN continuum can be fitted by a power law F nu approaches Nu(exp -a) with a spectral index of alpha approximately 1. At longer wavelengths, two excesses above this power law ('bumps') appear: in the ultraviolet, the classical big blue bump, which can be interpreted as thermal emission from the accretion disc surrounding a massive black hole, and in the infrared, a second bump which can be ascribed to thermal emission from dust in the vicinity of the AGN, heated by ultraviolet radiation from the central source. By fitting accretion-disk models to the observed AGN spectral energy distribution, we find values for the accretion disk innermost temperature, accretion rate, and black hole mass, with some differences that depend on whether or not we extrapolate the high energy power law up to infrared wavelengths. A fit to the IR bump above the extended alpha equals 1 power law suggests the presence of a dust component covering the region from a distance rho approximately equals 80 light days (hot grains at a temperature of approximately equals 1500 K) to rho approximately equals 60 light years (cool grains at T approximately equals 200 K). The total mass of dust is around 60 solar masses.
Magnetic Fields in Evolved Stars: Imaging the Polarized Emission of High-frequency SiO Masers
NASA Astrophysics Data System (ADS)
Vlemmings, W. H. T.; Humphreys, E. M. L.; Franco-Hernández, R.
2011-02-01
We present Submillimeter Array observations of high-frequency SiO masers around the supergiant VX Sgr and the semi-regular variable star W Hya. The J = 5-4, v = 128SiO and v = 029SiO masers of VX Sgr are shown to be highly linearly polarized with a polarization from ~5% to 60%. Assuming the continuum emission peaks at the stellar position, the masers are found within ~60 mas of the star, corresponding to ~100 AU at a distance of 1.57 kpc. The linear polarization vectors are consistent with a large-scale magnetic field, with position and inclination angles similar to that of the dipole magnetic field inferred in the H2O and OH maser regions at much larger distances from the star. We thus show for the first time that the magnetic field structure in a circumstellar envelope can remain stable from a few stellar radii out to ~1400 AU. This provides further evidence supporting the existence of large-scale and dynamically important magnetic fields around evolved stars. Due to a lack of parallactic angle coverage, the linear polarization of masers around W Hya could not be determined. For both stars, we observed the 28SiO and 29SiO isotopologues and find that they have a markedly different distributions and that they appear to avoid each other. Additionally, emission from the SO 55-44 line was imaged for both sources. Around W Hya, we find a clear offset between the red- and blueshifted SO emission. This indicates that W Hya is likely host to a slow bipolar outflow or a rotating disk-like structure.
Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei
2015-06-01
In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.
The quantum emission spectra of rapidly-rotating Kerr black holes: Discrete or continuous?
NASA Astrophysics Data System (ADS)
Hod, Shahar
2015-10-01
Bekenstein and Mukhanov (BM) have suggested that, in a quantum theory of gravity, black holes may have discrete emission spectra. Using the time-energy uncertainty principle they have also shown that, for a (non-rotating) Schwarzschild black hole, the natural broadening δω of the black-hole emission lines is expected to be small on the scale set by the characteristic frequency spacing Δω of the spectral lines: ζSch ≡ δω / Δω ≪ 1. BM have therefore concluded that the expected discrete emission lines of the quantized Schwarzschild black hole are unlikely to overlap. In this paper we calculate the characteristic dimensionless ratio ζ (a bar) ≡ δω / Δω for the predicted BM emission spectra of rapidly-rotating Kerr black holes (here a bar ≡ J /M2 is the dimensionless angular momentum of the black hole). It is shown that ζ (a bar) is an increasing function of the black-hole angular momentum. In particular, we find that the quantum emission lines of Kerr black holes in the regime a bar ≳ 0.9 are characterized by the dimensionless ratio ζ (a bar) ≳ 1 and are therefore effectively blended together. Our results thus suggest that, even if the underlying mass (energy) spectrum of these rapidly-rotating Kerr black holes is fundamentally discrete as suggested by Bekenstein and Mukhanov, the natural broadening phenomenon (associated with the time-energy uncertainty principle) is expected to smear the black-hole radiation spectrum into a continuum.
NASA Astrophysics Data System (ADS)
Navrátil, Zdeněk; Morávek, Tomáš; Ráheľ, Jozef; Čech, Jan; Lalinský, Ondřej; Trunec, David
2017-05-01
Weak light emission (˜10-3 of active discharge signal; average count rate ˜ 1 photon s-1 nm-1) associated with surface charge relaxation during the dark phase of a helium diffuse coplanar barrier discharge was studied by optical emission spectroscopy, using a technique of phase-resolved single photon counting. The optical emission spectra of the dark phase contained luminescent bands of the dielectrics used (Al2O3, AlN) and spectral lines from the gas constituents (OH*, {{{N}}}2* , {{{N}}}2+* , He*, He{}2* , O*). During the charge relaxation event, a broad continuum appeared in the optical emission spectra, consisting of bremsstrahlung radiation and amplified luminescence of the dielectric barrier. The analysis presented suggests that the bremsstrahlung radiation originated from slow electrons colliding with neutral helium atoms. The fitting procedure we developed reproduced well the observed shape of the continuum. Moreover, it provided a method for the determination of electric field strength in the discharge during this particular phase. The electric field reached 1 kV cm-1 during the charge relaxation event.
Dynamic Spectral Imaging of Decimetric Fiber Bursts in an Eruptive Solar Flare
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhitao; Chen, Bin; Gary, Dale E., E-mail: zw56@njit.edu
Fiber bursts are a type of fine structure that is often superposed on type IV radio continuum emission during solar flares. Although studied for many decades, its physical exciter, emission mechanism, and association with the flare energy release remain unclear, partly due to the lack of simultaneous imaging observations. We report the first dynamic spectroscopic imaging observations of decimetric fiber bursts, which occurred during the rise phase of a long-duration eruptive flare on 2012 March 3, as obtained by the Karl G. Jansky Very Large Array in 1–2 GHz. Our results show that the fiber sources are located near andmore » above one footpoint of the flare loops. The fiber source and the background continuum source are found to be co-spatial and share the same morphology. It is likely that they are associated with nonthermal electrons trapped in the converging magnetic fields near the footpoint, as supported by a persistent coronal hard X-ray source present during the flare rise phase. We analyze three groups of fiber bursts in detail with dynamic imaging spectroscopy and obtain their mean frequency-dependent centroid trajectories in projection. By using a barometric density model and magnetic field based on a potential field extrapolation, we further reconstruct the 3D source trajectories of fiber bursts, for comparison with expectations from the whistler wave model and two MHD-based models. We conclude that the observed fiber burst properties are consistent with an exciter moving at the propagation velocity expected for whistler waves, or models that posit similar exciter velocities.« less
A Study of the Radio Continuum Far Infrared Correlation at Small Scales in the Galaxy
NASA Astrophysics Data System (ADS)
Rodriguez-Martinez, Monica I.; Allen, R. J.; Wiklind, T.; Loinard, L.
2006-12-01
We present a study of the behavior of the Radio Continuum (RC) Far Infrared (FIR) correlation on scales corresponding to the size of small molecular clouds. This was done by comparing the spatial distribution of RC emission and FIR emission from a sample of several regions, distributed within the range 79∘ ≤ l ≤ 174∘ in the Galaxy. We have examined the 408 and 1420 MHz mosaic images of the sample, from the Canadian Galactic Plane Survey (CGPS), which later were compared with images at 60 and 100 μm. Preliminary results suggest that the RC -FIR correlation still holds at small scales, since a good qualitative correlation between RC and FIR emission is found. The physical process involved that may cause such correlation will be discussed as well as the nature of the RC emission. This research makes use of data from the Canadian Galactic Plane Survey.
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane
2003-01-01
We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.
An ISO far-infrared survey of line and continuum emission for 227 galaxies
NASA Technical Reports Server (NTRS)
Brauher, J. R.
2002-01-01
Far-infrared line and continuum fluxes are presented for a sample of 227 galaxies observed with the Long Wavelength Spectrometer on the Infrared Space Observatory, selected from the ISO Data Archive and having an IRAS 60/100 mu m color ration of 0.2-1.4 and IRAS 60 mu m flux density between 0.1 Jy and 1300 Jy.
USDA-ARS?s Scientific Manuscript database
Water surface greenhouse gas (GHG) emissions in freshwater reservoirs are closely related to limnological processes in the water column. Affected by both reservoir operation and seasonal changes, variations in the hydro-morphological conditions in the river–reservoir continuum will create distinctiv...
PAHFIT: Properties of PAH Emission
NASA Astrophysics Data System (ADS)
Smith, J. D.; Draine, Bruce
2012-10-01
PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code. PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.
Red Fluorescent Line Emission from Hydrogen Molecules in Diffuse Molecular Clouds
NASA Technical Reports Server (NTRS)
Neufeld, David A.; Spaans, Marco
1996-01-01
We have modeled the fluorescent pumping of electronic and vibrational emissions of molecular hydrogen (H2) within diffuse molecular clouds that are illuminated by ultraviolet continuum radiation. Fluorescent line intensities are predicted for transitions at ultraviolet, infrared, and red visible wavelengths as functions of the gas density, the visual extinction through the cloud, and the intensity of the incident UV continuum radiation. The observed intensity in each fluorescent transition is roughly proportional to the integrated rate of H2 photodissociation along the line of sight. Although the most luminous fluorescent emissions detectable from ground-based observatories lie at near-infrared wavelengths, we argue that the lower sky brightness at visible wavelengths makes the red fluorescent transitions a particularly sensitive probe. Fabry-Perot spectrographs of the type that have been designed to observe very faint diffuse Ha emissions are soon expected to yield sensitivities that will be adequate to detect H2 vibrational emissions from molecular clouds that are exposed to ultraviolet radiation no stronger than the mean radiation field within the Galaxy. Observations of red H2 fluorescent emission together with cospatial 21 cm H I observations could serve as a valuable probe of the gas density in diffuse molecular clouds.
The Lyman continuum escape fraction of low mass star-forming galaxies at z~1.
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian D.; Rafelski, Marc; Henry, Alaina L.; Hayes, Matthew; Salvato, Mara; Pahl, Anthony; Mehta, Vihang; Beck, Melanie; Malkan, Matthew Arnold; Teplitz, Harry I.
2016-01-01
Star-forming galaxies (SFGs) in the high redshift universe (z>6) are believed to ionize neutral hydrogen in the intergalactic medium during the epoch of reionization. We tested this assumption by studying likely analogs of these SFGs in archival HST grism spectroscopy with GALEX UV and ground-based optical images at the redshift range in which we can directly measure the rest-frame Lyman continuum (λ<912Å, LyC) emission. We selected ~1400 SFGs for study on the presence of strong Hα emission and strongly selected against those SFGs whose GALEX FUV photometry could be contaminated by low redshift interlopers along the line of sight to produce a sample of ~600 z~1 SFGs. We made no unambiguous detection of escaping Lyman continuum radiation in individual galaxies in this sample, and stacked the individual non-detections in order to constrain the absolute Lyman continuum escape fraction, fesc<2% (3σ). We sub-divided this sample and stacked SFGs to measure upper limits to fesc with respect to stellar mass,luminosity and relative orientation. For z~1 high Hα equivalent width (EW>200Å) SFGs, we found for the first time an upper limit to fesc<9%. We discuss the implications of these limits for the ionizing emissivity of high redshift SFGs during the epoch of reionization. We conclude that reionization by SFGs is only marginally consistent with independent Planck observations of the CMB electron scattering opacity unless the LyC escape fraction of SFGs increases with redshift and an unobserved population of faint (MUV<-13 AB) SFGs contributes significantly to the UV background.
The Southern H ii Region Discovery Survey (SHRDS): Pilot Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.; Dickey, John M.; Jordan, C.
The Southern H ii Region Discovery Survey is a survey of the third and fourth quadrants of the Galactic plane that will detect radio recombination line (RRL) and continuum emission at cm-wavelengths from several hundred H ii region candidates using the Australia Telescope Compact Array. The targets for this survey come from the WISE Catalog of Galactic H ii Regions and were identified based on mid-infrared and radio continuum emission. In this pilot project, two different configurations of the Compact Array Broad Band receiver and spectrometer system were used for short test observations. The pilot surveys detected RRL emission frommore » 36 of 53 H ii region candidates, as well as seven known H ii regions that were included for calibration. These 36 recombination line detections confirm that the candidates are true H ii regions and allow us to estimate their distances.« less
SPECTRAL OPTICAL MONITORING OF THE NARROW-LINE SEYFERT 1 GALAXY Ark 564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapovalova, A. I.; Burenkov, A. N.; Popovic, L. C.
2012-09-15
We present the results of a long-term (1999-2010) spectral optical monitoring campaign of the active galactic nucleus (AGN) Ark 564, which shows a strong Fe II line emission in the optical. This AGN is a narrow-line Seyfert 1 (NLS1) galaxy, a group of AGNs with specific spectral characteristics. We analyze the light curves of the permitted H{alpha}, H{beta}, optical Fe II line fluxes, and the continuum flux in order to search for a time lag between them. Additionally, in order to estimate the contribution of iron lines from different multiplets, we fit the H{beta} and Fe II lines with amore » sum of Gaussian components. We find that during the monitoring period the spectral variation (F{sub max}/F{sub min}) of Ark 564 is between 1.5 for H{alpha} and 1.8 for the Fe II lines. The correlation between the Fe II and H{beta} flux variations is of higher significance than that of H{alpha} and H{beta} (whose correlation is almost absent). The permitted-line profiles are Lorentzian-like and do not change shape during the monitoring period. We investigate, in detail, the optical Fe II emission and find different degrees of correlation between the Fe II emission arising from different spectral multiplets and the continuum flux. The relatively weak and different degrees of correlations between permitted lines and continuum fluxes indicate a rather complex source of ionization of the broad-line emission region.« less
Baldwin Effect and Additional BLR Component in AGN with Superluminal Jets
NASA Astrophysics Data System (ADS)
Patiño Álvarez, Víctor; Torrealba, Janet; Chavushyan, Vahram; Cruz González, Irene; Arshakian, Tigran; León Tavares, Jonathan; Popovic, Luka
2016-06-01
We study the Baldwin Effect (BE) in 96 core-jet blazars with optical and ultraviolet spectroscopic data from a radio-loud AGN sample obtained from the MOJAVE 2cm survey. A statistical analysis is presented of the equivalent widths W_lambda of emission lines H beta 4861, Mg II 2798, C IV 1549, and continuum luminosities at 5100, 3000, and 1350 angstroms. The BE is found statistically significant (with confidence level c.l. > 95%) in H beta and C IV emission lines, while for Mg II the trend is slightly less significant (c.l. = 94.5%). The slopes of the BE in the studied samples for H beta and Mg II are found steeper and with statistically significant difference than those of a comparison radio-quiet sample. We present simulations of the expected BE slopes produced by the contribution to the total continuum of the non-thermal boosted emission from the relativistic jet, and by variability of the continuum components. We find that the slopes of the BE between radio-quiet and radio-loud AGN should not be different, under the assumption that the broad line is only being emitted by the canonical broad line region around the black hole. We discuss that the BE slope steepening in radio AGN is due to a jet associated broad-line region.
RXTE and BeppoSAX Observations of MCG-5-23-16: Reflection From Distant Cold Material
NASA Technical Reports Server (NTRS)
Mattson, B. J.; Weaver, K. A.
2003-01-01
We examine the spectral variability of the Seyfert 1.9 galaxy MCG-5-23-16 using RXTE and BeppoSAX observations spanning 2 years from April 1996 to April 1998. During the first year the X-ray source brightens by a factor of approximately 25% on timescales of days to months. During this time, the reprocessed continuum emission seen with RXTE does not respond measurably to the continuum increase. However, by the end of the second year during the BeppoSAX epoch the X-ray source has faded again. This time, the reprocessed emission has also faded, indicating that the reprocessed flux has responded to the continuum. If these effects are caused by time delays due to the distance between the X-ray source and the reprocessing region, we derive a light crossing time of between approximately 1 light day and approximately 1.5 light years. This corresponds to a distance of 0.001 pc to 0.55 pc, which implies that the reprocessed emission originates between 3 x 10(exp 15) cm and 1.6 x 10(exp l8) cm from the X-ray source. In other words, the reprocessing in MCG-5-23-16 is not dominated by the inner regions of a standard accretion disk.
NASA Astrophysics Data System (ADS)
Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.
2016-12-01
We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L [C II] ˜ (1.6-2.5) × 108 L ⊙. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.
NASA Astrophysics Data System (ADS)
Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.
2014-05-01
Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in electronic form at http://www.aanda.org
KWIC: A Widefield Mid-Infrared Array Camera/Spectrometer for the KAO
NASA Technical Reports Server (NTRS)
Stacey, Gordon J.
1999-01-01
This grant covered a one year data analysis period for the data we obtained with the Kuiper Widefield Infrared Camera (KWIC) on the KAO during CY94 and CY95. A fairly complete list of scientific papers produced, or soon to be produced under this award is contained at the end of this report. Below we summarize some of the highlights of the work we did under this grant. KWIC Imaging of the Orion Nebula. KWIC was successfully developed under the KAO grants program (NASA grant NAG2-800). First funding arrived in November of 1992, and we flew our first two flights in February of 1994 -just 15 months later. These flights were very successful. We imaged the Orion Nebula in the 37.7 micron continuum and [SiII] 35 micron line and imaged M82 and Arp299 in the 37.7 micron continuum. Our Orion image demonstrates that the 37.7 micron continuum arises in the warm dust associated with the photodissociated surfaces (photodissociation regions, or PDRs) of molecular clouds. We use the brightness and color temperature distribution to ascertain the morphology of the Orion PDR. The [SiII] image of Orion encompassed the entire Orion A HII region and its enveloping PDR. Most of the emission in the PDR regions of the map appears to coincide very well with our 37.7 micron continuum map indicating a PDR origin for the [SiII] in agreement with theoretical predictions. The [SiII] line emission is very clumpy in the PDR directly imaging the clump spectrum indirectly ascertained by examining the distribution and flux ratios of [CII] and [0I] far-IR fine structure line, and high J CO emission. We also detected very strong [SiII] line emission from the embedded BN-KL star formation region tracing the morphology and physical conditions of the high velocity shock from these very young stars.
NASA Astrophysics Data System (ADS)
Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.
2017-09-01
We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.
Multiwavelength spectropolarimetric observations of an Ellerman bomb
NASA Astrophysics Data System (ADS)
Rezaei, R.; Beck, C.
2015-10-01
Context. Ellerman bombs (EBs) are enhanced emission in the wings of the Hα line in the solar spectrum. Aims: We study the structure of an EB in the photosphere and chromosphere. Methods: We analyze simultaneous observations of four chromospheric lines (Hα, Ca ii H, Ca ii IR 854 nm, and He i 1083 nm) as well as two photospheric lines (Fe i 630 and Si i 1082.7 nm) along with high-cadence 160 and 170 nm ultraviolet (UV) continuum filtergrams. Full Stokes data from the Helioseismic and Magnetic Imager (HMI) are used to trace the temporal evolution of the magnetic structure. Results: We identify the EB by excess emission in the wings of the Hα line, a brightening in the UV continuum, and large emission peaks in the core of the two Ca ii lines. The EB shows a blueshift in all chromospheric lines, while no shifts are observed in the photospheric lines. The blueshift in the chromospheric layer causes very asymmetric emission peaks in the Ca ii H line. The photospheric Si i spectral line shows a shallower line depth at the location of the EB. The UV continuum maps show that the EB was substantially brighter than its surroundings for about 30 min. The continuum contrast of the EB from 170 nm to 1080 nm shows a power-law dependency on the wavelength. The temperature enhancement amounts to 130 K in the low photosphere and 400 K at the temperature minimum level. This temperature excess is also seen in an LTE inversion of the Ca ii spectra. The total thermal and radiative energy content of the EB is about 1020 J and 1018 J in the photosphere and chromosphere, respectively. The HMI data hints at a photospheric magnetic flux cancellation as the driver of the EB. Conclusions: Ellerman bombs release the energy in a height range of several pressure scale heights around the temperature minimum such that they affect both the photosphere and the lower chromosphere.
NASA Astrophysics Data System (ADS)
Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.
2015-09-01
We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.
Study of transmission line attenuation in broad band millimeter wave frequency range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.
2013-10-15
Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmosphericmore » water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.« less
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-06-01
Hubble view of the Homunculus Nebula surrounding Eta Carinae [NASA Hubble Space Telescope/Jon Morse (University of Colorado)]The incredibly luminous massive star Eta Carinae has long posed a challenge for astronomers to model. New observations are now in so were our models correct?Dramatic TargetThe massive evolved star Eta Carinae, located 7,500 light-years away in the constellation Carina, is the most luminous star in the Milky Way. Eta Carinae has a quite a reputation for drama: it has been very unstable in the past, exhibiting repeated eruptions that have created the spectacular Homunculus Nebula surrounding it. Its present-day wind has the highest mass-loss rate of any hot star weve observed.Picture of Stellar WindTop panel: February 2017 observations of Eta Carinae in continuum (left) and H-alpha. Middle panel: the normalized radial profile for H-alpha and continuum emission. Bottom panel: the full width at half maximum for H-alpha and continuum emission of Eta Carinae. The H-alpha is about 2.5 to 3 milliarcseconds wider than the continuum. [Adapted from Wu et al. 2017]In our goal to understand the late evolutionary phases of very massive stars, weve developed radiative-transfer models to explain the behavior of Eta Carinae. One of the most well-known models, developed by John Hillier and collaborators in 2001, describes Eta Carinaes mass loss via stellar winds. With the right observations, this model is testable, since it predicts observable locations for different types of emission. In particular, one prediction of the Hillier et al. model is that the dense, ionized winds surrounding the star should emit in H-alpha at distances between 6 and 60 AU, with a peak around 20 AU.This nicely testable hypothesis is rendered less convenient by the fact that its hard to get resolved images of Eta Carinaes H-alpha emission. Its distance from us and the fact that its shrouded in the complex nebula it created have thus far prevented us from resolving the H-alpha emission from this star. Now, however, a team of scientists from Steward Observatory, University of Arizona have changed this.Confirming the ModelLed by Ya-Lin Wu, the team obtained diffraction-limited images of Eta Carinae using the Magellan adaptive optics system. The observations, made in both H-alpha and continuum, show that the H-alpha emitting region is significantly wider than the continuum emitting region, as predicted by the model. In fact, the measured emission implies that the H-alpha line-forming region may have a characteristic emitting radius of 2530 AU in very good agreement with the Hillier et al. stellar-wind model.This confirmation is strong support of the physical wind parameters estimated for Eta Carinae in the model, like the mass-loss rate of 10^-3 solar masses per year. These parameters are enormously helpful as we attempt to understand the physics of strong stellar-wind mass loss and the late evolutionary phases of very massive stars.CitationYa-Lin Wu et al 2017 ApJL 841 L7. doi:10.3847/2041-8213/aa70ed
NASA Astrophysics Data System (ADS)
Kehrig, C.; Monreal-Ibero, A.; Papaderos, P.; Vílchez, J. M.; Gomes, J. M.; Masegosa, J.; Sánchez, S. F.; Lehnert, M. D.; Cid Fernandes, R.; Bland-Hawthorn, J.; Bomans, D. J.; Marquez, I.; Mast, D.; Aguerri, J. A. L.; López-Sánchez, Á. R.; Marino, R. A.; Pasquali, A.; Perez, I.; Roth, M. M.; Sánchez-Blázquez, P.; Ziegler, B.
2012-04-01
As part of the ongoing CALIFA survey, we have conducted a thorough bidimensional analysis of the ionized gas in two E/S0 galaxies, NGC 6762 and NGC 5966, aiming to shed light on the nature of their warm ionized ISM. Specifically, we present optical (3745-7300 Å) integral field spectroscopy obtained with the PMAS/PPAK integral field spectrophotometer. Its wide field-of-view (1' × 1') covers the entire optical extent of each galaxy down to faint continuum surface brightnesses. To recover the nebular lines, we modeled and subtracted the underlying stellar continuum from the observed spectra using the STARLIGHT spectral synthesis code. The pure emission-line spectra were used to investigate the gas properties and determine the possible sources of ionization. We show the advantages of IFU data in interpreting the complex nature of the ionized gas in NGC 6762 and NGC 5966. In NGC 6762, the ionized gas and stellar emission display similar morphologies, while the emission line morphology is elongated in NGC 5966, spanning ~6 kpc, and is oriented roughly orthogonal to the major axis of the stellar continuum ellipsoid. Whereas gas and stars are kinematically aligned in NGC 6762, the gas is kinematically decoupled from the stars in NGC 5966. A decoupled rotating disk or an "ionization cone" are two possible interpretations of the elongated ionized gas structure in NGC 5966. The latter would be the first "ionization cone" of such a dimension detected within a weak emission-line galaxy. Both galaxies have weak emission-lines relative to the continuum[EW(Hα) ≲ 3 Å] and have very low excitation, log([Oiii]λ5007/Hβ) ≲ 0.5. Based on optical diagnostic ratios ([Oiii]λ5007/Hβ, [Nii]λ6584/Hα, [Sii]λ6717, 6731/Hα, [Oi]λ6300/Hα), both objects contain a LINER nucleus and an extended LINER-like gas emission. The emission line ratios do not vary significantly with radius or aperture, which indicates that the nebular properties are spatially homogeneous. The gas emission in NGC 6762 can be best explained by photoionization by pAGB stars without the need of invoking any other excitation mechanism. In the case of NGC 5966, the presence of a nuclear ionizing source seems to be required to shape the elongated gas emission feature in the "ionization cone" scenario, although ionization by pAGB stars cannot be ruled out. Further study of this object is needed to clarify the nature of its elongated gas structure. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).
A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results
NASA Technical Reports Server (NTRS)
Drake, S. A.; Simon, T.; Linsky, J. L.
1985-01-01
Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.
EVLA Observation of Centimeter Continuum Emission from Protostars in Serpens South
NASA Astrophysics Data System (ADS)
Kern, Nicholas S.; Tobin, John J.; Keown, Jared A.; Gutermuth, Robert A.
2015-01-01
Serpens South is a protocluster with an unusually high abundance of Class 0 and I protostars, suggesting it is in a very early phase of star formation and may eventually form a star cluster. Following its discovery in 2008 with the Spitzer space telescope, infrared and millimeter observations and analysis quickly followed, however, Serpens South has yet to be fully explored in the radio. Radio observations at centimeter wavelengths have long been used as a tool to probe the dynamical processes of young protostars that are still heavily shrouded in their protostellar envelopes and thus cannot be seen at longer wavelengths. Radio observations then become an important tool in understanding Serpens South due to its young age. To this end, we have conducted EVLA C band continuum observations of the central region of the Serpens South protostellar cluster in order to map the centimeter continuum emission in a region of high Class 0 / I protostellar surface density. We report the detection of centimeter emission corresponding to protostars identified by Spitzer, and to protostars identified but blended by Herschel. We characterize their centimeter emission, and put them in context with previous Spitzer and Herschel infrared and far-infrared observations, as well as IRAM millimeter observations. Additionally, we make an assessment of the protostars' bolometric luminosity, and compare them to the known protostellar 3.6 cm to 6.0 cm luminosity vs. bolometric luminosity relation. With the EVLA, we present a mid-resolution map of centimeter emission from the central region of Serpens South with the highest sensitivity to date, with a beam size of ~5 arcseconds and rms on the order of 15 microJansky.
[Continuum based fast Fourier transform processing of infrared spectrum].
Liu, Qing-Jie; Lin, Qi-Zhong; Wang, Qin-Jun; Li, Hui; Li, Shuai
2009-12-01
To recognize ground objects with infrared spectrum, high frequency noise removing is one of the most important phases in spectrum feature analysis and extraction. A new method for infrared spectrum preprocessing was given combining spectrum continuum processing and Fast Fourier Transform (CFFT). Continuum was firstly removed from the noise polluted infrared spectrum to standardize hyper-spectra. Then the spectrum was transformed into frequency domain (FD) with fast Fourier transform (FFT), separating noise information from target information After noise eliminating from useful information with a low-pass filter, the filtered FD spectrum was transformed into time domain (TD) with fast Fourier inverse transform. Finally the continuum was recovered to the spectrum, and the filtered infrared spectrum was achieved. Experiment was performed for chlorite spectrum in USGS polluted with two kinds of simulated white noise to validate the filtering ability of CFFT by contrast with cubic function of five point (CFFP) in time domain and traditional FFT in frequency domain. A circle of CFFP has limited filtering effect, so it should work much with more circles and consume more time to achieve better filtering result. As for conventional FFT, Gibbs phenomenon has great effect on preprocessing result at edge bands because of special character of rock or mineral spectra, while works well at middle bands. Mean squared error of CFFT is 0. 000 012 336 with cut-off frequency of 150, while that of FFT and CFFP is 0. 000 061 074 with cut-off frequency of 150 and 0.000 022 963 with 150 working circles respectively. Besides the filtering result of CFFT can be improved by adjusting the filter cut-off frequency, and has little effect on working time. The CFFT method overcomes the Gibbs problem of FFT in spectrum filtering, and can be more convenient, dependable, and effective than traditional TD filter methods.
Longitudinal bunch dynamics study with coherent synchrotron radiation
NASA Astrophysics Data System (ADS)
Billinghurst, B. E.; Bergstrom, J. C.; Baribeau, C.; Batten, T.; May, T. E.; Vogt, J. M.; Wurtz, W. A.
2016-02-01
An electron bunch circulating in a storage ring constitutes a dynamical system with both longitudinal and transverse degrees of freedom. Through a self-interaction with the wakefields created by the bunch, certain of these degrees may get excited, defining a set of eigenmodes analogous to a spectroscopic series. The present study focuses on the longitudinal modes of a single bunch. The excitation of a mode appears as an amplitude modulation at the mode frequency of the coherent synchrotron radiation (CSR) emitted by the bunch. The modulations are superimposed on a much larger continuum from CSR emission in the continuous mode. A given eigenmode is classified by the integer m which is the ratio of the mode frequency to the synchrotron frequency. The present measurements extend up to m =8 and focus on the region near the instability thresholds. At threshold the modes are excited sequentially, resembling a staircase when the mode frequencies are plotted as a function of bunch length or synchrotron frequency. Adjacent modes are observed to coexist at the boundaries between the modes. An energy-independent correlation is observed between the threshold current for an instability and the corresponding zero-current bunch length. Measurements were made at five beam energies between 1.0 and 2.9 GeV at the Canadian Light Source. The CSR was measured in the time domain using an unbiased Schottky diode spanning 50-75 GHz.
Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 3
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1991-01-01
The computer programs developed to calculate the shock wave precursor and the method of using them are described. This method calculated the precursor flow field in a nitrogen gas including the effects of emission and absorption of radiation on the energy and composition of gas. The radiative transfer is calculated including the effects of absorption and emission through the line as well as the continuum process in the shock layer and through the continuum processes only in the precursor. The effects of local thermodynamic nonequilibrium in the shock layer and precursor regions are also included in the radiative transfer calculations. Three computer programs utilized by this computational scheme to calculate the precursor flow field solution for a given shock layer flow field are discussed.
Optical and infrared spectrophotometry of the symbiotic system V1016 Cygni
NASA Technical Reports Server (NTRS)
Rudy, Richard J.; Rossano, George S.; Cohen, Ross D.; Puetter, R. C.
1990-01-01
Spectrophotometry from 0.46 to 1.3 micron of the peculiar emission-line object V1016 Cyg is presented. The optical region displays a weak continuum underlying the rich emission-line spectrum detailed in past studies. The infrared spectrum consists of prominent emission lines of H I, He I, He II, forbidden Ni, O I, and forbidden S III overlying a strong stellar continuum. The latter displays bands at 0.94 micron and 1.13 micron characteristic of a late-type, oxygen-rich giant as well as an absorption at 1.05 micron which is due to VO. The presence of these molecular features indicates a spectral class of M6 or later for the cool secondary. The reddening of the secondary does not appear to be much different from that of the emission lines. Among the infrared emission features is the rarely seen permitted transition of neutral oxygen at 1.1287 micron. Its presence at a strength comparable to O I 8446 A, together with the absence of O I 13164 A, confirms the result of Strafella that the strong O I lines arise primarily from fluorescent excitation by Ly-beta.
Continuum limit of the vibrational properties of amorphous solids.
Mizuno, Hideyuki; Shiba, Hayato; Ikeda, Atsushi
2017-11-14
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law.
Continuum limit of the vibrational properties of amorphous solids
Mizuno, Hideyuki; Ikeda, Atsushi
2017-01-01
The low-frequency vibrational and low-temperature thermal properties of amorphous solids are markedly different from those of crystalline solids. This situation is counterintuitive because all solid materials are expected to behave as a homogeneous elastic body in the continuum limit, in which vibrational modes are phonons that follow the Debye law. A number of phenomenological explanations for this situation have been proposed, which assume elastic heterogeneities, soft localized vibrations, and so on. Microscopic mean-field theories have recently been developed to predict the universal non-Debye scaling law. Considering these theoretical arguments, it is absolutely necessary to directly observe the nature of the low-frequency vibrations of amorphous solids and determine the laws that such vibrations obey. Herein, we perform an extremely large-scale vibrational mode analysis of a model amorphous solid. We find that the scaling law predicted by the mean-field theory is violated at low frequency, and in the continuum limit, the vibrational modes converge to a mixture of phonon modes that follow the Debye law and soft localized modes that follow another universal non-Debye scaling law. PMID:29087941
A Suzaku Observation of the Neutral Fe-line Emission from RCW 86
NASA Technical Reports Server (NTRS)
Ueno, Masaru; Sato, Rie; Kataoka, Jun; Bamba, Aya; Harrus, Ilana; Hiraga, Junko; Hughes, John P.; Kilbourne, Caroline A.; Koyama, Katsuji; Kokubun, Motohide;
2007-01-01
The newly operational X-ray satellite Suzaku observed the supernova remnant (SNR) RCW 86 in February 2006 to study the nature of the 6.4 keV emission line first detected with the Advanced Satellite for Cosmology and Astronomy (ASCA). The new data confirms the existence of the line, localizing it for the first time inside a low temperature emission region and not at the locus of the continuum hard X-ray emission. We also report the first detection of a 7.1 keV line that we interpret as the K(beta) emission from neutral or low-ionized iron. The Fe-K line features are consistent with a non-equilibrium plasma of Fe-rich ejecta with n(sub e) less than or approx. equal to 10(exp 9)/cu cm s and kT(sub e) > 1 keV. We found a sign that Fe K(alpha) line is intrinsically broadened 47 (35-57) eV (99% error region). Cr-K line is also marginally detected, which is supporting the ejecta origin for the Fe-K line. By showing that the hard continuum above 3 keV has different spatial distribution from the Fe-K line, we confirmed it to be synchrotron X-ray emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Toshiki; Masai, Kuniaki; Maeda, Yoshitomo
2017-02-20
We found a simultaneous decrease of the Fe–K line and 4.2–6 keV continuum of Cassiopeia A with the monitoring data taken by the Chandra X-ray Observatory in 2000–2013. The flux change rates in the whole remnant are −0.65 ± 0.02% yr{sup −1} in the 4.2–6.0 keV continuum and −0.6 ± 0.1% yr{sup −1} in the Fe–K line. In the eastern region where the thermal emission is considered to dominate, the variations show the largest values: −1.03 ± 0.05% yr{sup −1} (4.2–6 keV band) and −0.6 ± 0.1% yr{sup −1} (Fe–K line). In this region, the time evolution of the emissionmore » measure and the temperature have a decreasing trend. This could be interpreted as adiabatic cooling with the expansion of m = 0.66. On the other hand, in the non-thermal emission dominated regions, variations of the 4.2–6 keV continuum show smaller rates: −0.60 ± 0.04% yr{sup −1} in the southwestern region, −0.46 ± 0.05% yr{sup −1} in the inner region, and +0.00 ± 0.07% yr{sup −1} in the forward shock region. In particular, flux does not show significant change in the forward shock region. These results imply that strong braking in shock velocity has not been occurring in Cassiopeia A (<5 km s{sup −1} yr{sup −1}). All of our results support the idea that X-ray flux decay in the remnant is mainly caused by thermal components.« less
NASA Astrophysics Data System (ADS)
Monfardini, A.; Trampus, P.; Stalio, R.; Mahne, N.; Battiston, R.; Menichelli, M.; Mazzinghi, P.
2001-08-01
A low-mass, low-cost photon-counting scientific payload has been developed and launched on a commercial microsatellite in order to study the near-UV night-sky background emission with a telescope nicknamed ``Notte'' and the Aurora emission with ``Alba''. AURORA, this is the name of the experiment, will determine, with the ``Notte'' channel, the overall night-side photon background in the 300-400nm spectral range, together with a particular 2+N2 line (λc=337nm). The ``Alba'' channel, on the other hand, will study the Aurora emissions in four different spectral bands (FWHM=8.4-9.6nm) centered on: 367nm (continuum evaluation), 391nm (1-N+2), 535nm (continuum evaluation), 560nm (OI). The instrument has been launched on the 26 September, 2000 from the Baikonur cosmodrome on a modified SS18 Dnepr-1 ``Satan'' rocket. The satellite orbit is nearly circular (hapogee=648km, /e=0.0022), and the inclination of the orbital plane is 64.56°. An overview of the techniques adopted is given in this paper.
Continuum Absorption Coefficient of Atoms and Ions
NASA Technical Reports Server (NTRS)
Armaly, B. F.
1979-01-01
The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.
Atomic hydrogen bridge fueling NGC 4418 with gas from VV 655
NASA Astrophysics Data System (ADS)
Varenius, E.; Costagliola, F.; Klöckner, H.-R.; Aalto, S.; Spoon, H.; Martí-Vidal, I.; Conway, J. E.; Privon, G. C.; König, S.
2017-11-01
Context. The galaxy NGC 4418 harbours a compact (<20 pc) core with a very high bolometric luminosity ( 1011L⊙). As most of the galaxy energy output comes from this small region, it is of interest to determine what fuels this intense activity. An interaction with the nearby blue irregular galaxy VV 655 has been proposed, where gas acquired by NGC 4418 could trigger intense star formation and/or black hole accretion in the centre. Aims: We aim to constrain the interaction hypothesis by studying neutral hydrogen structures that could reveal tails and debris connecting NGC 4418 to the nearby galaxy VV 655. Methods: We present observations at 1.4 GHz with the Very Large Array (VLA) of the radio continuum as well as emission and absorption from atomic hydrogen. Gaussian distributions are fitted to observed HI emission and absorption spectra. We estimate the star formation rates (SFRs) of NGC 4418 and VV 655 from the 1.4 GHz radio emission and compare them with estimates from archival 70 μm Herschel observations. Results: An atomic HI bridge is seen in emission, connecting NGC 4418 to the nearby galaxy VV 655. An HI tail is also seen extending south-west from VV 655. While NGC 4418 is bright in continuum emission and seen in HI absorption, VV 655 is barely detected in the continuum, but shows bright HI emission (MHI 109 M⊙). We estimate SFRs from the 1.4 GHz continuum of 3.2 M⊙ yr-1 and 0.13 M⊙ yr-1 for NGC 4418 and VV 655, respectively. Systemic HI velocities of 2202 ± 20 km s-1 (emission) and 2105.4 ± 10 km s-1 (absorption) are measured for VV 655 and NGC 4418, respectively. Redshifted HI absorption is seen (vc = 2194.0 ± 4.4 km s-1) towards NGC 4418, suggesting gas infall. North-west of NGC 4418, we detect HI in emission, blueshifted (vc = 2061.9 ± 5.1 km s-1) with respect to NGC 4418, consistent with an outflow perpendicular to the galaxy disk. We derive a deprojected outflow speed of 178 km s-1, which, assuming a simple cylindrical model, gives an order-of-magnitude estimate of the HI mass outflow rate of 2.5 M⊙ yr-1. Conclusions: The morphology and velocity structure seen in HI is consistent with an interaction scenario where gas was transferred from VV 655 to NGC 4418. We argue that the galaxies have passed each other once, about 190 Myr ago, and that this interaction has caused the tidal HI bridge and HI tail seen today. Some gas is falling towards NGC 4418, and may fuel the activity in the centre. We interpret blueshifted HI-emission north-west of NGC 4418 as a continuation of the outflow previously reported on smaller scales, powered by star formation and/or black hole accretion in the centre. The movie associated to Fig. 4 is available at http://www.aanda.orgThe radio continuum image and the spectral cube presented in Fig. 1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A43
The correlation between far-IR and radio continuum emission from spiral galaxies
NASA Technical Reports Server (NTRS)
Dickey, John M.; Garwood, Robert W.; Helou, George
1987-01-01
A sample of 30 galaxies selected for their intense IRAS flux at 60 and 100 micron using the Arecibo telescope at 21 cm to measure the continuum and HI line luminosities were observed. The centimeter wave continuum correlates very well with the far-infrared flux, with a correlation coefficient as high as that found for other samples, and the same ratio between FIR and radio luminosities. Weaker correlations are seen between the FIR and optical luminosity and between the FIR and radio continuum. There is very little correlation between the FIR and the HI mass deduced from the integral of the 21 cm line. The strength of the radio continuum correlation suggests that there is little contribution to either the radio and FIR from physical processes not affecting both. If they each reflect time integrals of the star formation rate then the time constants must be similar, or the star formation rate must change slowly in these galaxies.
FeO "Orange Arc" Emission Detected in Optical Spectrum of Leonid Persistent Trains
NASA Technical Reports Server (NTRS)
Jenniskens, Peter; Lacey, Matt; Allan, Beverly J.; Self, Daniel E.; Plane, John M. C.; DeVincenzi, Donald L. (Technical Monitor)
2000-01-01
We report the detection of a broad continuum emission dominating the visual spectrum of a Leonid persistent train. A comparison with laboratory spectra of FeO 1 "orange arc" emission at I mbar shows a general agreement of the band position and shape. The detection of FeO confirms the classical mechanism of metal atom catalyzed recombination of ozone and oxygen atoms as the driving force behind optical emission from persistent trains. Sodium and iron atoms are now confirmed catalysts.
An XMM-Newton Study of the Bright Narrow-Line Seyfert 1 Galaxy Arakelian 564
NASA Technical Reports Server (NTRS)
Brandt, Niel
2004-01-01
We report on two XMM-Newton observations of the bright Narrow-Line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kT - 140-150 eV) plus a steep power law (Gamma - 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is - 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of - 0.73 keV, corresponding to 0 VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shows two breaks, although the location of the high-frequency break requires further constraints.
Arakelian 564: An XMM-Newton View
NASA Technical Reports Server (NTRS)
Vignali, Cristian; Brandt, W. N.; Boller, Th.; Fabian, A. C.; Vaughan, Simon
2003-01-01
We report on two XMM-Newton observations of the bright narrow-line Seyfert 1 galaxy Ark 564 taken one year apart (2000 June and 2001 June). The 0.6-10 keV continuum is well described by a soft blackbody component (kTau approximately equal 140-150 eV) plus a steep power law (Tau approximately equal to 2.50-2.55). No significant spectral changes are observed between the two observations, although the X-ray flux in the second observation is approximately equal to 40-50 per cent lower. In both observations we detect a significant absorption edge at a rest-frame energy of approximately equal to 0.73 keV, corresponding to O VII. The presence of the absorption feature is confirmed by a simultaneous Chandra grating observation in 2000 June, although the best-fitting edge threshold is at a slightly lower energy in the Chandra data, possibly because of a different parameterization of the underlying X-ray continuum. We find tentative evidence for a broad iron emission line in the 2000 June observation. The results from an analysis of the power spectral density (PSD) function are also presented. The present XMM-Newton data support the idea that the PSD shown two breads, although the location of the high-frequency break requires further constraints.
Exploring the engines of molecular outflows. Radio continuum and H_2_O maser observations.
NASA Astrophysics Data System (ADS)
Tofani, G.; Felli, M.; Taylor, G. B.; Hunter, T. R.
1995-09-01
We present A-configuration VLA observations of the 22GHz H_2_O maser line and 8.4GHz continuum emission of 22 selected CO bipolar outflows associated with water masers. These observations allow us to study the region within 10^4^AU of the engine powering the outflow. The positions of the maser spots are compared with those of ultra-compact (UC) continuum sources found in our observations, with IRAS data and with data from the literature on the molecular outflows. Weak unresolved continuum sources are found in several cases associated with the maser. Most probably they represent the ionized envelope surrounding the young stellar object (YSO) which powers the maser and the outflow. These weak radio continuum sources are not necessarily associated with the IRAS sources, which are more representative of the global emission from the star forming region. A comparison of the velocity pattern of the CO outflow with those of the maser spots detected with the VLA is also made. Asymmetries in the H_2_O velocities are found on opposite sides of the YSO, suggesting that the outflow acceleration begins from the YSO itself. In a few cases we find evidence for two outflows in different evolutionary stages. The H_2_O masers in these sources are always found at the centre of the younger outflow. The degree of variability of each maser is derived from single dish observations obtained with the Medicina radiotelescope before and after the VLA observations. Velocity drifts of some features are interpreted as acceleration of the maser.
UNVEILING THE PHYSICS OF LOW-LUMINOSITY AGNs THROUGH X-RAY VARIABILITY: LINER VERSUS SEYFERT 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernández-García, L.; Masegosa, J.; Márquez, I.
X-ray variability is very common in active galactic nuclei (AGNs), but these variations may not occur similarly in different families of AGNs. We aim to disentangle the structure of low-ionization nuclear emission-line regions (LINERs) compared to Seyfert 2s by the study of their spectral properties and X-ray variations. We assembled the X-ray spectral parameters and variability patterns, which were obtained from simultaneous spectral fittings. Major differences are observed in the X-ray luminosities and the Eddington ratios, which are higher in Seyfert 2s. Short-term X-ray variations were not detected, while long-term changes are common in LINERs and Seyfert 2s. Compton-thick sourcesmore » generally do not show variations, most probably because the AGN is not accesible in the 0.5–10 keV energy band. The changes are mostly related to variations in the nuclear continuum, but other patterns of variability show that variations in the absorbers and at soft energies can be present in a few cases. We conclude that the X-ray variations may occur similarly in LINERs and Seyfert 2s, i.e., they are related to the nuclear continuum, although they might have different accretion mechanisms. Variations at UV frequencies are detected in LINER nuclei but not in Seyfert 2s. This is suggestive of at least some LINERs having an unobstructed view of the inner disk where the UV emission might take place, with UV variations being common in them. This result might be compatible with the disappeareance of the torus and/or the broad-line region in at least some LINERs.« less
NASA Technical Reports Server (NTRS)
West, R. A.; Kupferman, P. N.; Hart, H.
1984-01-01
Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.
Evidence for a supermassive black hole in the nucleus of the Seyfert galaxy NGC 5548
NASA Technical Reports Server (NTRS)
Crenshaw, D. Michael; Blackwell, James H., Jr.
1990-01-01
The international campaign to monitor the variable Seyfert 1 galaxy NGC 5548 with the IUE has provided an extensive and well-sampled set of spectroscopic observations. These observations are used to study the response of the C IV 1550 A emission-line profile to changes in the photoionizing continuum. Near the end of the IUE campaign, the continuum flux at 1440 A and the total C IV flux dopped by factors of 2.9 and 1.8, respectively, in 16 days. The red wing of the C IV profile responded more rapidly to the sharp continuum drop than the blue wing, indicating that clouds in the inner broad-line region (BLR) are undergoing gravitational infall. These results provide direct evidence that the central engine is a supermassive object, presumably a black hole, with a mass on the order of 10 to the 7th solar masses. Analysis of the profile variations also demonstrates that excess emission in the blue wing of C IV is from a component that is physically distinct from the bulk of the BLR.
NASA Technical Reports Server (NTRS)
West, R. A.; Kupferman, P. N.; Hart, H.
1985-01-01
Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.
Constraints on the outer radius of the broad emission line region of active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Ward, Martin J.; Elvis, Martin; Karovska, Margarita
2014-03-01
Here we present observational evidence that the broad emission line region (BELR) of active galactic nuclei (AGN) generally has an outer boundary. This was already clear for sources with an obvious transition between the broad and narrow components of their emission lines. We show that the narrow component of the higher-order Paschen lines is absent in all sources, revealing a broad emission line profile with a broad, flat top. This indicates that the BELR is kinematically separate from the narrow emission line region. We use the virial theorem to estimate the BELR outer radius from the flat top width of the unblended profiles of the strongest Paschen lines, Paα and Paβ, and find that it scales with the ionizing continuum luminosity roughly as expected from photoionization theory. The value of the incident continuum photon flux resulting from this relationship corresponds to that required for dust sublimation. A flat-topped broad emission line profile is produced by both a spherical gas distribution in orbital motion and an accretion disc wind if the ratio between the BELR outer and inner radius is assumed to be less than ˜100-200. On the other hand, a pure Keplerian disc can be largely excluded, since for most orientations and radial extents of the disc the emission line profile is double-horned.
NASA Astrophysics Data System (ADS)
McCray, Richard; France, K.; Kirshner, R. P.; SAINTS Collaboration
2012-01-01
We present the most sensitive ultraviolet observations of Supernova 1987A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (v - 300 km/s) emission lines from the circumstellar ring, broad (v - 10 - 20 × 103 km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise (> 40 per resolution element) broad Ly α emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at - > 1350 A can be explained by H I 2-photon (2s 2S1/2 - 1s 2S1/2) emission from the same region. We confirm our earlier, tentative detection of N V -1240 emission from the reverse shock and we present the first detections of broad He II 1640, C IV -1550, and N IV] 1486 emission lines from the reverse shock. The helium abundance in the high velocity material is He/H = 0.14 +/- 0.06. The N V/H line ratio requires partial ion-electron equilibration (Te/Tp - 0.14 - 0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result we attribute to continued CNO processing in the supernova progenitor subsequent to the expulsion of the circumstellar ring.
Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495.
Fabian, A C; Zoghbi, A; Ross, R R; Uttley, P; Gallo, L C; Brandt, W N; Blustin, A J; Boller, T; Caballero-Garcia, M D; Larsson, J; Miller, J M; Miniutti, G; Ponti, G; Reis, R C; Reynolds, C S; Tanaka, Y; Young, A J
2009-05-28
Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG-6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.
NASA Astrophysics Data System (ADS)
Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr
2018-03-01
Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.
ALMA Reveals Metals yet No Dust within Multiple Components in CR7
NASA Astrophysics Data System (ADS)
Matthee, J.; Sobral, D.; Boone, F.; Röttgering, H.; Schaerer, D.; Girard, M.; Pallottini, A.; Vallini, L.; Ferrara, A.; Darvish, B.; Mobasher, B.
2017-12-01
We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]{}158μ {{m}} line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by ≈ 150 km s‑1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by ≈ 300 and ≈80 km s‑1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity {L}{IR}({T}d=35 {{K}})< 3.1× {10}10 {L}ȯ . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 {M}ȯ yr‑1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and {L}[{{C}{{II}}]}, implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7's clumps have metallicities of 0.1< {{Z}}/{{{Z}}}ȯ < 0.2. The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites.
I. S. Shklovsky and Low-Frequency Radio Astronomy
NASA Astrophysics Data System (ADS)
Konovalenko, A. A.
2017-03-01
Purpose: Proving of the high astrophysical significance of the low-frequency radio astronomy (decameter and adjacent hectometer and meter wavelengths), demonstration of the priority results of the Ukrainian low-frequency radio astronomy as well as significant contribution of I. S. Shklovsky to its development. Design/methodology/approach: The requirements to characteristics of high efficiency radio telescopes UTR-2, URAN, GURT and to sensitive and interference immune observational methods at low frequencies are formulated by using the theoretical analysis and astrophysical predictions including those I. S. Shklovsky’s. Findings: New generation radio telescopes UTR-2, URAN, GURT are created and modernized. New observational methods at low frequencies are introduced. Large-scale investigations of the Solar system, Galaxy and Methagalaxy are carried out. They have allowed to detect new objects and phenomena for the continuum, monochromatic, pulse and sporadic cosmic radio emission. The role of I. S. Shklovsky in the development of many low-frequency radio astronomy directions is noted, too. Conclusions: The unique possibilities of the low-frequency radio astronomy which gives new information about the Universe, inaccessible with the other astrophysical methods, are shown. The progress of the low-frequency radio astronomy opens the impressive possibilities for the future. It includes modernization of the largest radio telescopes UTR-2, URAN, NDA and creation of new instruments GURT, NenuFAR, LOFAR, LWA, MWA, SKA as well as making multi-antenna and ground-space experiments. The contribution of outstanding astrophysicist of the XX century I. S. Shklovsky to this part of actual astronomical science is evident, claiming for attention and will never be forgotten.
Investigating the temporal domain of massive ionized jets - I. A pilot study
NASA Astrophysics Data System (ADS)
Purser, S. J. D.; Lumsden, S. L.; Hoare, M. G.; Cunningham, N.
2018-03-01
We present sensitive (σ < 10 μJy beam- 1), radio continuum observations using the Australian Telescope Compact Array at frequencies of 6 and 9 GHz towards four massive young stellar objects (MYSOs). From a previous, less sensitive work, these objects are known to harbour ionized jets associated with radio lobes, which result from shock processes. In comparison with that work, further emission components are detected towards each MYSO. These include extended, direct, thermal emission from the ionized jet's stream, new radio lobes indicative of shocks close (<105 au) to the MYSO, three radio Herbig-Haro objects separated by up to 3.8 pc from the jet's launching site, and an IR-dark source coincident with CH3OH maser emission. No significant, integrated flux variability is detected towards any jets or shocked lobes, and only one proper motion is observed (1806± 596{{ km}{ s}^{-1}{ }} parallel to the jet axis of G310.1420+00.7583A). Evidence for precession is detected in all four MYSOs with precession periods and angles within the ranges 66-15 480 yr and 6°-36°, respectively. Should precession be the result of the influence from a binary companion, we infer orbital radii of 30-1800 au.
Advances In Understanding Solar And Stellar Flares
NASA Astrophysics Data System (ADS)
Kowalski, Adam F.
2016-07-01
Flares result from the sudden reconnection and relaxation of magnetic fields in the coronae of stellar atmospheres. The highly dynamic atmospheric response produces radiation across the electromagnetic spectrum, from the radio to X-rays, on a range of timescales, from seconds to days. New high resolution data of solar flares have revealed the intrinsic spatial properties of the flaring chromosphere, which is thought to be where the majority of the flare energy is released as radiation in the optical and near-UV continua and emission lines. New data of stellar flares have revealed the detailed properties of the broadband (white-light) continuum emission, which provides straightforward constraints for models of the transformation of stored magnetic energy in the corona into thermal energy of the lower atmosphere. In this talk, we discuss the physical processes that produce several important spectral phenomena in the near-ultraviolet and optical as revealed from new radiative-hydrodynamic models of flares on the Sun and low mass stars. We present recent progress with high-flux nonthermal electron beams in reproducing the observed optical continuum color temperature of T 10,000 K and the Balmer jump properties in the near-ultraviolet. These beams produce dense, heated chromospheric condensations, which can explain the shape and strength of the continuum emission in M dwarf flares and the red-wing asymmetries in the chromospheric emission lines in recent observations of solar flares from the Interface Region Imaging Spectrograph. Current theoretical challenges and future modeling directions will be discussed, as well as observational synergies between solar and stellar flares.
Gamma rays from active galactic nuclei
NASA Technical Reports Server (NTRS)
Kazanas, Demosthenes
1990-01-01
The general properties of Active Galactic Nuclei (AGN) and quasars are reviewed with emphasis on their continuum spectral emission. Two general classes of models for the continuum are outlined and critically reviewed in view of the impending GRO (Gamma Ray Observatory) launch and observations. The importance of GRO in distinguishing between these models and in general in furthering the understanding of AGN is discussed. The very broad terms the status of the current understanding of AGN are discussed.
NASA Technical Reports Server (NTRS)
Sakurai, K.
1972-01-01
Active heliographic longitudes at the sun are investigated by using the observational data for long-lived metric continuum noise sources. It is shown that, for the period from 1963 to 1969, the number of such longitudes was four in general and these longitudes were very stable for this radio activity since 1963. A discussion is given on the relationship between those longitudes and the sector structure of the interplanetary magnetic field.
VizieR Online Data Catalog: G346.056-0.021 and G346.077-0.056 radio images (Das+, 2018)
NASA Astrophysics Data System (ADS)
Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.
2018-02-01
To probe the ionized emission associated with the HII regions, radio continuum mapping was carried out at 610 and 1280MHz using the Giant Metrewave Radio Telescope (GMRT), Pune India. The continuum observations were carried out at 610 and 1280MHz with a bandwidth of 32MHz. For any clarification kindly contact : swagat.12(at)iist.ac.in / dasswagat77(at)gmail.com (2 data files).
1.4 GHz continuum sources in the Cancer cluster
NASA Technical Reports Server (NTRS)
Salpeter, E. E.; Dickey, J. M.
1987-01-01
Results of 1.4-GHz continuum observations are presented for 11 VLA fields, using the D-configuration, which contain the A group of the Cnc cluster (CC). Sixteen Zwicky spiral galaxies in the CC were detected, but no ellipticals, confirming the finding that spiral galaxies with close companions tend to have enhanced radio emission. Over 200 continuum sources beyond the CC are tabulated. The spectral index (relative to 610 MHz) is given for many of the sources, including some of the Zwicky galaxies. There is a suggestion for a nonuniform number surface-density distribution of the sources, not correlated with the CC. Possible predictions of such nonuniformities, from assumptions on 'super-superclusters', are discussed.
UV spectroscopy of Z Chamaeleontis. II - The 1988 January normal outburst
NASA Technical Reports Server (NTRS)
Harlaftis, E. T.; Naylor, T.; Hassall, B. J. M.; Charles, P. A.; Sonneborn, G.; Bailey, J.
1992-01-01
IUE observations taken during the 1988 January normal outburst of Z Cha are presented and a detailed comparison with the 1987 April superoutburst is made. The most important difference from the superoutburst is that the normal outburst continuum flux shows less than 10 percent orbital variation away from the eclipse, implying that there is no 'cool' bulge on the disk to occult the brighter inner disk periodically. The implications for the outburst mechanism in the types of outburst are discussed. The evolution of the continuum flux distribution and emission-line fluxes, the modulation of the continuum and line fluxes with orbital phase, and the behavior of the mideclipse spectral during normal outburst are investigated.
NASA Astrophysics Data System (ADS)
Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton
2017-06-01
Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.
A sensitive continuum analysis method for gamma ray spectra
NASA Technical Reports Server (NTRS)
Thakur, Alakh N.; Arnold, James R.
1993-01-01
In this work we examine ways to improve the sensitivity of the analysis procedure for gamma ray spectra with respect to small differences in the continuum (Compton) spectra. The method developed is applied to analyze gamma ray spectra obtained from planetary mapping by the Mars Observer spacecraft launched in September 1992. Calculated Mars simulation spectra and actual thick target bombardment spectra have been taken as test cases. The principle of the method rests on the extraction of continuum information from Fourier transforms of the spectra. We study how a better estimate of the spectrum from larger regions of the Mars surface will improve the analysis for smaller regions with poorer statistics. Estimation of signal within the continuum is done in the frequency domain which enables efficient and sensitive discrimination of subtle differences between two spectra. The process is compared to other methods for the extraction of information from the continuum. Finally we explore briefly the possible uses of this technique in other applications of continuum spectra.
Attosecond time-energy structure of X-ray free-electron laser pulses
NASA Astrophysics Data System (ADS)
Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.
2018-04-01
The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.
IUE observations of Centaurus X-4 during the 1979 May outburst
NASA Technical Reports Server (NTRS)
Blair, W. P.; Raymond, J. C.; Dupree, A. K.; Wu, C.-C.; Holm, A. V.; Swank, J. H.
1984-01-01
Ultraviolet spectrophotometry of the X-ray transient/burst source Centaurus X-4 at several intervals during the peak and decay of the May 1979 X-ray transient event was obtained. The spectrum was characterized by a blue continuum with alpha = 0.0 + or - 0.3 (F/nu/ varies as nu to the alpha power) and strong emission lines of N V lambda 1240, C IV lambda 1550, and Si IV lambda 1398. The relative intensities of the emission lines and the ratio of line to continuum strengths remained nearly constant during the decline. The emission lines may have arisen from a 'disk chromosphere', from X-ray heating of the K4 V companion star, or both. The ultraviolet data are combined with previously published optical and X-ray data to determine some of the physical characteristics of the system and to show that X-ray reprocessing plays an important role in producing the optical and ultraviolet continua.
SWIFT Observations of a Far UV Luminosity Component in SS433
NASA Technical Reports Server (NTRS)
Cannizzo, J. K.; Boyd, P. T.; Dolan, J. F.
2007-01-01
SS433 is a binary system showing relativistic Doppler shifts in its two sets of emission lines. The origin of its UV continuum is not well established. We observed SS433 to determine the emission mechanism responsible for its far UV spectrum. The source was observed at several different phases of both its 13 d orbital period and 162.5 d precession period using the UVOT and XRT detector systems on Swift. The far UV spectrum down to 1880 Angstrom lies significantly above the spectral flux distribution predicted by extrapolating the reddened blackbody continuum that fits the spectrum above 3500 Angstroms. The intensity of the far UV flux varies over a period of days and the variability is correlated with the variability of the soft X-ray flux from the source. An emission mechanism in addition to those previously detected in the optical and X-ray regions must exist in the far UV spectrum of SS433.
Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232
NASA Astrophysics Data System (ADS)
Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.
2017-11-01
Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.
A spectrum of the veiled T Tauri star CY Tau
NASA Technical Reports Server (NTRS)
Stuewe, J. A.; Schultz, R.
1994-01-01
We present a flux calibrated spectrum of the star listed as CY Tau in the `General Catalog of Variable Stars 4th ed.' in the spectral range 3700 A less than or equal to lambda less than or equal to 6400 A with a resolution of approximately equals 15 A showing the Balmer-Series from H(sub beta) to H(sub 10) as well as the CaII H (in blend with H(sub epsilon) and K lines in emission. Apart from the emission lines the spectrum is composed of a continuum equivalent to that of an ordinary pre-main sequence star (i.e. a `naked' T Tau) of spectral type M2 V with emission lines plus a `blue' veiling continuum that can be described as black body radiation of temperature T(sub BL) approximately equals 7000K due to accretion onto a boundary layer at a rate of M-dot(sub acc) greater than or approximately = 2.18 10(exp -8) solar mass/a.
A high-sensitivity survey of radio continuum emission from Herbig Ae/Be stars
NASA Technical Reports Server (NTRS)
Skinner, Stephen L.; Brown, Alexander; Stewart, Ron T.
1993-01-01
Results of a high-sensitivity VLA/Australia Telescope survey of radio continuum emission from the 57 Herbig Ae/Be stars and candidates in the 1984 catalog of Finkenzeller and Mundt are presented. Twelve stars were detected at the primary observing wavelength of 3.6 cm, on the basis that not less than 4 sigma radio sources lie within 1 arcsec of the optical positions. It is suggested that the radio emission is predominantly thermal and in many cases wind-related. The unusual eclipsing binary TY CrA is an exception and is classified as a nonthermal radio source on the basis of its decidedly negative spectral index (alpha = -1.2). A simple spherically symmetric free-fall accretion model is used to show that the predicted radio fluxes due to accretion at rates, estimated in the literature, of about 10 exp -6 to 10 exp -5 solar mass/yr are one to four orders of magnitude larger than observed.
An analysis of scattered light in low dispersion IUE spectra
NASA Technical Reports Server (NTRS)
Basri, G.; Clarke, J. T.; Haisch, B. M.
1985-01-01
A detailed numerical simulation of light scattering from the low-resolution grating in the short wavelength spectrograph of the IUE Observatory was developed, in order to quantitatively analyze the effects of scattering on both continuum and line emission spectra. It is found that: (1) the redistribution of light by grating scattering did not appreciably alter either the shape or the absolute flux level of continuum spectra for A-F stars; (2) late-type stellar continua showed a tendency to flatten when observed in scattered light toward the shorter wavelengths; and (3) the effect of grating scattering on emission lines is to decrease measured line intensities by an increasing percentage toward the shorter wavelengths. The spectra obtained from scattering experiments for solar-type and late type stars are reproduced in graphic form.
Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero
NASA Technical Reports Server (NTRS)
Pottschmidt, Katja
2008-01-01
We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).
The wind geometry of the Wolf-Rayet star HD 191765
NASA Technical Reports Server (NTRS)
Schulte-Ladbeck, R. F.; Nordsieck, K. H.; Taylor, M.; Bjorkman, K. S.; Magalhaes, A. M.; Wolff, M. J.
1992-01-01
A time-dependent spectropolarimetric data set of HD 191765 in the wavelength range 3159-7593 A is presented. At all epochs the present observations display a large and strongly wavelength-dependent continuum polarization and reduced levels of polarization across the emission lines. The data imply a significant intrinsic continuum polarization which requires a general deviation of the electron distribution from spherical symmetry. The global shape is quite stable as a function of time; small fluctuations may arise from localized density/temperature changes. The line polarizations are consistent with an axisymmetric wind geometry and ionization stratification. A qualitative model for polarization in a Wolf-Rayet atmosphere is developed. It is argued that the blueward rise of the continuum polarization in HD 191765 can be explained if the density in the wind is high, resulting in a competition of thermal and electron-scattering continuum opacity in the vertical.
High-resolution radio study of SNR IC 443 at low radio frequencies
NASA Astrophysics Data System (ADS)
Castelletti, G.; Dubner, G.; Clarke, T.; Kassim, N. E.
2011-10-01
Aims: We investigate the morphology at low radio frequencies of the supernova remnant (SNR) IC 443 in detail and accurately establish its radio continuum spectral properties. Methods: We used the VLA in multiple configurations to produce high-resolution radio images of IC 443 at 74 and 330 MHz. From these data we produced the first sensitive, spatially resolved spectral analysis of the radio emission at long wavelengths. The changes with position in the radio spectral index were correlated with data in near infrared (NIR) from 2MASS, in gamma-rays from VERITAS, and with the molecular 12CO (J = 1 - 0) line emission. Results: The new image at 74 MHz has HPBW = 35'' and rms = 30 mJy beam-1 and at 330 MHz HPBW = 17'' and rms = 1.7 mJy beam-1. The integrated flux densities for the whole SNR are S74 MHzSNR=470±51 Jy and S330 MHzSNR=248±15 Jy. Improved estimates of the integrated spectrum were derived taking a turnover into account to fit the lowest frequency measurements in the literature. Combining our measurements with existing data, we derive an integrated spectral index α10 MHz10700 MHz=-0.39±0.01 with a free-free continuum optical depth at 330 MHz τ330 ~ 7 × 10-4 (τ10 = 1.07); all measurements above ~ 10 MHz are equally consistent with a power law spectrum. For the pulsar wind nebula associated with the compact source CXOU J061705.3+222127, we calculated S330 MHzPWN=0.23±0.05 Jy, S1420 MHzPWN=0.20±0.04 Jy, and α330 MHz8460 MHz˜ 0.0. Substantial variations are observed in spectral index between 74 and 330 MHz across IC 443. The flattest spectral components ( - 0.25 ≤ α ≤ - 0.05) coincide with the brightest parts of the SNR along the eastern border, with an impressive agreement with ionic lines as observed in the 2MASS J and H bands. The diffuse interior of IC 443 has a spectrum steeper than found anywhere in the SNR ( - 0.85 ≤ α ≤ - 0.6), while the southern ridge again has a flatter spectrum (α ~ -0.4). With the available statistics the VERITAS γ-ray emission strikingly matches the CO distribution, but no clear evidence is found for a morphological correlation between the TeV distribution and radio emission. Conclusions: The excellent correspondence between the eastern radio flattest spectrum region and NIR ionic lines strongly suggests that the passage of a fast, dissociating J-type shock across the interacting molecular cloud dissociated the molecules and ionized the gas. We therefore conclude that thermal absorption at 74 MHz (τ74 up to ~0.3) is responsible for the localized spectral index flattening observed along the eastern border of IC 443. Towards the interior of IC 443, the spectrum is consistent with those expected from linear diffusive shock acceleration, while the flatter spectrum in the southern ridge is a consequence of the strong shock/molecular cloud interaction.
The Role of Cerenkov Radiation in the Pressure Balance of Cool Core Clusters of Galaxies
NASA Astrophysics Data System (ADS)
Lieu, Richard
2017-03-01
Despite the substantial progress made recently in understanding the role of AGN feedback and associated non-thermal effects, the precise mechanism that prevents the core of some clusters of galaxies from collapsing catastrophically by radiative cooling remains unidentified. In this Letter, we demonstrate that the evolution of a cluster's cooling core, in terms of its density, temperature, and magnetic field strength, inevitably enables the plasma electrons there to quickly become Cerenkov loss dominated, with emission at the radio frequency of ≲350 Hz, and with a rate considerably exceeding free-free continuum and line emission. However, the same does not apply to the plasmas at the cluster's outskirts, which lacks such radiation. Owing to its low frequency, the radiation cannot escape, but because over the relevant scale size of a Cerenkov wavelength the energy of an electron in the gas cannot follow the Boltzmann distribution to the requisite precision to ensure reabsorption always occurs faster than stimulated emission, the emitting gas cools before it reheats. This leaves behind the radiation itself, trapped by the overlying reflective plasma, yet providing enough pressure to maintain quasi-hydrostatic equilibrium. The mass condensation then happens by Rayleigh-Taylor instability, at a rate determined by the outermost radius where Cerenkov radiation can occur. In this way, it is possible to estimate the rate at ≈2 M ⊙ year-1, consistent with observational inference. Thus, the process appears to provide a natural solution to the longstanding problem of “cooling flow” in clusters; at least it offers another line of defense against cooling and collapse should gas heating by AGN feedback be inadequate in some clusters.
The Role of Cerenkov Radiation in the Pressure Balance of Cool Core Clusters of Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieu, Richard
2017-03-20
Despite the substantial progress made recently in understanding the role of AGN feedback and associated non-thermal effects, the precise mechanism that prevents the core of some clusters of galaxies from collapsing catastrophically by radiative cooling remains unidentified. In this Letter, we demonstrate that the evolution of a cluster's cooling core, in terms of its density, temperature, and magnetic field strength, inevitably enables the plasma electrons there to quickly become Cerenkov loss dominated, with emission at the radio frequency of ≲350 Hz, and with a rate considerably exceeding free–free continuum and line emission. However, the same does not apply to themore » plasmas at the cluster's outskirts, which lacks such radiation. Owing to its low frequency, the radiation cannot escape, but because over the relevant scale size of a Cerenkov wavelength the energy of an electron in the gas cannot follow the Boltzmann distribution to the requisite precision to ensure reabsorption always occurs faster than stimulated emission, the emitting gas cools before it reheats. This leaves behind the radiation itself, trapped by the overlying reflective plasma, yet providing enough pressure to maintain quasi-hydrostatic equilibrium. The mass condensation then happens by Rayleigh–Taylor instability, at a rate determined by the outermost radius where Cerenkov radiation can occur. In this way, it is possible to estimate the rate at ≈2 M {sub ⊙} year{sup −1}, consistent with observational inference. Thus, the process appears to provide a natural solution to the longstanding problem of “cooling flow” in clusters; at least it offers another line of defense against cooling and collapse should gas heating by AGN feedback be inadequate in some clusters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verschuur, Gerrit L., E-mail: gverschu@naic.edu
High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While severalmore » attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.« less
NASA Astrophysics Data System (ADS)
France, Kevin; Schindhelm, Eric; Burgh, Eric B.; Herczeg, Gregory J.; Harper, Graham M.; Brown, Alexander; Green, James C.; Linsky, Jeffrey L.; Yang, Hao; Abgrall, Hervé; Ardila, David R.; Bergin, Edwin; Bethell, Thomas; Brown, Joanna M.; Calvet, Nuria; Espaillat, Catherine; Gregory, Scott G.; Hillenbrand, Lynne A.; Hussain, Gaitee; Ingleby, Laura; Johns-Krull, Christopher M.; Roueff, Evelyne; Valenti, Jeff A.; Walter, Frederick M.
2011-06-01
We exploit the high sensitivity and moderate spectral resolution of the Hubble Space Telescope Cosmic Origins Spectrograph to detect far-ultraviolet (UV) spectral features of carbon monoxide (CO) present in the inner regions of protoplanetary disks for the first time. We present spectra of the classical T Tauri stars HN Tau, RECX-11, and V4046 Sgr, representative of a range of CO radiative processes. HN Tau shows CO bands in absorption against the accretion continuum. The CO absorption most likely arises in warm inner disk gas. We measure a CO column density and rotational excitation temperature of N(CO) = (2 ± 1) × 1017 cm-2 and T rot(CO) 500 ± 200 K for the absorbing gas. We also detect CO A-X band emission in RECX-11 and V4046 Sgr, excited by UV line photons, predominantly H I Lyα. All three objects show emission from CO bands at λ > 1560 Å, which may be excited by a combination of UV photons and collisions with non-thermal electrons. In previous observations these emission processes were not accounted for due to blending with emission from the accretion shock, collisionally excited H2, and photo-excited H2, all of which appeared as a "continuum" whose components could not be separated. The CO emission spectrum is strongly dependent upon the shape of the incident stellar Lyα emission profile. We find CO parameters in the range: N(CO) ~ 1018-1019 cm-2, T rot(CO) >~ 300 K for the Lyα-pumped emission. We combine these results with recent work on photo-excited and collisionally excited H2 emission, concluding that the observations of UV-emitting CO and H2 are consistent with a common spatial origin. We suggest that the CO/H2 ratio (≡ N(CO)/N(H2)) in the inner disk is ~1, a transition between the much lower interstellar value and the higher value observed in solar system comets today, a result that will require future observational and theoretical study to confirm. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Nova Oph 2017 (TCP J17394608-2457555) detected at millimeter wavelengths
NASA Astrophysics Data System (ADS)
Kaminski, T.; Gehrz, R.
2017-06-01
Millimeter-wave continuum emission was detected in Nova Oph 2017 (ATel #10366, #10367) with the Submillimeter Array in Hawaii. The object was observed on July 20, 2017 in four spectral ranges: 224.3-232.3, 240.6-248.6, 336-344, and 352-360 GHz. The combined continuum flux in the two lower ranges (i.e., at a wavelength of 1.3 mm) is of 4.8 mJy, well above the noise with an rms of 0.6 mJy per beam.
IRAS 21391 + 5802 - A study in intermediate mass star formation
NASA Technical Reports Server (NTRS)
Wilking, Bruce; Mundy, Lee; Mcmullin, Joseph; Hezel, Thomas; Keene, Jocelyn
1993-01-01
We present infrared and millimeter wavelength observations of the cold IRAS source 21391 + 5802 and its associated molecular core. Infrared observations at lambda = 3.5 microns reveal a heavily obscured, central point source which is coincident with a compact lambda = 2.7 mm continuum and C18O emission region. The source radiates about 310 solar luminosities, primarily at FIR wavelengths, suggesting that it is a young stellar object of intermediate mass. The steeply rising spectral energy distribution and the large fraction of the system mass residing in circumstellar material imply that IRAS 21391 + 5802 is in an early stage of evolution. The inferred dust temperature indicates a temperature gradient in the core. A comprehensive model for the surrounding core of dust and gas is devised to match the observed dust continuum emission and multitransition CS emission from this and previous studies. We find a r exp -1.5 +/- 0.2 density gradient consistent with that of a gravitationally evolved core and a total core mass of 380 solar masses. The observed dust emission is most consistent with a lambda exp -1.5 - lambda exp -2 dust emissivity law; for a lambda exp -2 law, the data are best fit by a mass opacity coefficient of 3.6 x 10 exp -3 sq cm/g at lambda = 1.25 mm.
A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau
NASA Astrophysics Data System (ADS)
Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; MacGregor, Meredith A.
2017-05-01
AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (˜0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission that connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO+ and 13CO (J = 3-2) line emission. The HCO+ emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO+ line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.
AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (∼0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission thatmore » connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO{sup +} and {sup 13}CO ( J = 3–2) line emission. The HCO{sup +} emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO{sup +} line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.« less
NASA Astrophysics Data System (ADS)
Mathur, S.; Gupta, A.; Page, K.; Pogge, R. W.; Krongold, Y.; Goad, M. R.; Adams, S. M.; Anderson, M. D.; Arévalo, P.; Barth, A. J.; Bazhaw, C.; Beatty, T. G.; Bentz, M. C.; Bigley, A.; Bisogni, S.; Borman, G. A.; Boroson, T. A.; Bottorff, M. C.; Brandt, W. N.; Breeveld, A. A.; Brown, J. E.; Brown, J. S.; Cackett, E. M.; Canalizo, G.; Carini, M. T.; Clubb, K. I.; Comerford, J. M.; Coker, C. T.; Corsini, E. M.; Crenshaw, D. M.; Croft, S.; Croxall, K. V.; Dalla Bontà, E.; Deason, A. J.; Denney, K. D.; De Lorenzo-Cáceres, A.; De Rosa, G.; Dietrich, M.; Edelson, R.; Ely, J.; Eracleous, M.; Evans, P. A.; Fausnaugh, M. M.; Ferland, G. J.; Filippenko, A. V.; Flatland, K.; Fox, O. D.; Gates, E. L.; Gehrels, N.; Geier, S.; Gelbord, J. M.; Gorjian, V.; Greene, J. E.; Grier, C. J.; Grupe, D.; Hall, P. B.; Henderson, C. B.; Hicks, S.; Holmbeck, E.; Holoien, T. W.-S.; Horenstein, D.; Horne, Keith; Hutchison, T.; Im, M.; Jensen, J. J.; Johnson, C. A.; Joner, M. D.; Jones, J.; Kaastra, J.; Kaspi, S.; Kelly, B. C.; Kelly, P. L.; Kennea, J. A.; Kim, M.; Kim, S.; Kim, S. C.; King, A.; Klimanov, S. A.; Kochanek, C. S.; Korista, K. T.; Kriss, G. A.; Lau, M. W.; Lee, J. C.; Leonard, D. C.; Li, M.; Lira, P.; Ma, Z.; MacInnis, F.; Manne-Nicholas, E. R.; Malkan, M. A.; Mauerhan, J. C.; McGurk, R.; McHardy, I. M.; Montouri, C.; Morelli, L.; Mosquera, A.; Mudd, D.; Muller-Sanchez, F.; Musso, R.; Nazarov, S. V.; Netzer, H.; Nguyen, M. L.; Norris, R. P.; Nousek, J. A.; Ochner, P.; Okhmat, D. N.; Ou-Yang, B.; Pancoast, A.; Papadakis, I.; Parks, J. R.; Pei, L.; Peterson, B. M.; Pizzella, A.; Poleski, R.; Pott, J.-U.; Rafter, S. E.; Rix, H.-W.; Runnoe, J.; Saylor, D. A.; Schimoia, J. S.; Schnülle, K.; Sergeev, S. G.; Shappee, B. J.; Shivvers, I.; Siegel, M.; Simonian, G. V.; Siviero, A.; Skielboe, A.; Somers, G.; Spencer, M.; Starkey, D.; Stevens, D. J.; Sung, H.-I.; Tayar, J.; Tejos, N.; Turner, C. S.; Uttley, P.; Van Saders, J.; Vestergaard, M.; Vican, L.; Villanueva, S., Jr.; Villforth, C.; Weiss, Y.; Woo, J.-H.; Yan, H.; Young, S.; Yuk, H.; Zheng, W.; Zhu, W.; Zu, Y.
2017-09-01
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide the Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.
NASA Technical Reports Server (NTRS)
Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.
1989-01-01
A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1992-01-01
The far wing line shape theory developed previously and applied to the calculation of the continuum absorption of pure water vapor is extended to foreign-broadened continua. Explicit results are presented for H2O-N2 and H2O-CO2 in the frequency range from 0 to 10,000/cm. For H2O-N2 the positive and negative resonant frequency average line shape functions and absorption coefficients are computed for a number of temperatures between 296 and 430 K for comparison with available laboratory data. In general the agreement is very good.
Energy absorption due to spatial resonance of Alfven waves at continuum tip
NASA Astrophysics Data System (ADS)
Chen, Eugene; Berk, Herb; Breizman, Boris; Zheng, Linjin
2011-10-01
We investigate the response of tokamak plasma to an external driving source. An impedance-like function depending on the driving frequency that is growing at a small rate, is calculated and interpreted with different source profiles. Special attention is devoted to the case where driving frequency approaches that of the TAE continuum tip. The calculation can be applied to the estimation of TAE damping rate by analytically continuing the inverse of the impedance function to the lower half plane. The root of the analytic continuation corresponds to the existence of a quasi-mode, from which the damping rate can be found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Hong, E-mail: h-yu@seu.edu.cn; Chen, Hong-Bo
In this article, a new semi-continuum model is built to describe the fundamental vibration frequency of the silicon nanowires in <111> orientation. The Keating potential model and the discrete nature in the width and the thickness direction of the silicon nanowires in <111> orientation are applied in the new semi-continuum model. Based on the Keating model and the principle of conservation of energy, the vibration frequency of the silicon nanowires with the triangle, the rhombus, and the hexagon cross sections are derived. It is indicated that the calculation results based on this new model are accordant with the simulation resultsmore » of the software based on molecular dynamics (MD).« less
The low-frequency continuum as observed in the solar wind from ISEE 3 - Thermal electrostatic noise
NASA Technical Reports Server (NTRS)
Hoang, S.; Steinberg, J.-L.; Epstein, G.; Tilloles, P.; Fainberg, J.; Stone, R. G.
1980-01-01
The low frequency continuum (LFC) noise between 30 and 200 kHz has been investigated from the ISEE 3 spacecraft in the solar wind by means of a radio astronomy experiment more sensitive than previously available. It is demonstrated that the LFC radiation observed in the solar wind is in the form of longitudinal plasma waves rather than transverse electromagnetic waves. The observed spectral characteristics are found to be a function of antenna length. In addition, both the absence of antenna spin modulation and the fact that these plasma waves do not propagate to large distances imply a local origin for the LFC.
Triggered star-formation in the bright rimmed globule IC1396A
NASA Astrophysics Data System (ADS)
Patel, Nimesh A.; Sicilia-Aguilar, Aurora; Goldsmith, Paul
2015-01-01
IC1396 is a well known HII region and molecular cloud complex surrounding the Trumpler 37 cluster of OB stars in the Cepheus OB2 association. The dense, elephant trunk shaped globules in this region typically show bright rims facing the central exciting O6 star HD~206267. This region, at a distance of 870 pc, is an excellent astrophysical laboratory for studying the feedback effects of massive stars on neighboring molecular clouds. Triggered star formation occurs when dense cores (which would otherwise remain stable) are compressed and made unstable by the sustained energy input from the OB association. Observationally it remains challenging to prove whether the onset of star-formation in such globules is triggered or spontaneous.Using the Submillimeter Array (SMA), we observed IC1396 globule A (Pottasch 1958 nomenclature), targeting four newly discovered protostars from recent Herschel PACS observations. Here we present 230 GHz molecular line (CO, 13CO, C18O, N2D+ and H2CO) and continuum results for the source IC1396A-PACS-1 (Sicilia-Aguilar et al. 2014). This is a Class 0 source very close to the edge of the ionization front and Herschel observations show this to be a most promisingcase of triggered star-formation. The SMA 230 GHz continuum source has a flux density of 280 mJy. We estimate a dust mass of about 0.1 Msun in this source which appears very compact in our 5" beam. CO, 13CO and C18O emission is largely resolved out by the interferometer and will require combined imaging with single-dish observations. (We have a parallel ongoing study being carried out with the IRAM 30m telescope). SMA N2D+ emission peaks on the continuum sourceand is partially resolved. H2CO emission appears to avoid the peak of continuum and N2D+, suggesting depletion. Both the morphology and kinematics in H2CO emission are indicative of internal disturbance, away from the PDR region into the globule.
Lyman Continuum Escape Fraction of Star-forming Dwarf Galaxies at z ˜ 1
NASA Astrophysics Data System (ADS)
Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian; Henry, Alaina; Rafelski, Marc; Hayes, Matthew; Salvato, Mara; Pahl, Anthony J.; Mehta, Vihang; Beck, Melanie; Malkan, Matthew; Teplitz, Harry I.
2016-03-01
To date, no direct detection of Lyman continuum emission has been measured for intermediate-redshift (z˜ 1) star-forming galaxies. We combine Hubble Space Telescope grism spectroscopy with GALEX UV and ground-based optical imaging to extend the search for escaping Lyman continuum to a large (˜600) sample of z˜ 1 low-mass ({log}(\\bar{M}) ≃ 9.3{M}⊙ ), moderately star-forming (\\bar{{{\\Psi }}} ≲ 10{M}⊙ yr-1) galaxies selected initially on Hα emission. The characteristic escape fraction of LyC from star-forming galaxies (SFGs) that populate this parameter space remains weakly constrained by previous surveys, but these faint (sub-L⋆) SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift z\\gt 6. We do not make an unambiguous detection of escaping LyC radiation from this z˜ 1 sample, individual non-detections to constrain the absolute Lyman continuum escape fraction, {f}{esc} \\lt 2.1% (3σ). We measure an upper limit of {f}{esc} \\lt 9.6% from a sample of SFGs selected on high Hα equivalent width (EW \\gt 200 {{\\mathringA }}), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity-weighted escape fraction that is useful for measuring the general contribution SFGs to the ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the reionization of hydrogen in the IGM at high (z\\gt 6) redshift. If we assume our z˜ 1 SFGs, for which we measure this emissivity-weighted {f}{esc}, are analogs to the high redshift sources of reionization, we find it is difficult to reconcile reionization by faint ({M}{UV}≲ -13) SFGs with a low escape fraction ({f}{esc} \\lt 3%), with constraints from independent high redshift observations. If {f}{esc} evolves with redshift, reionization by SFGs may be consistent with observations from Planck.
Singular unlocking transition in the Winfree model of coupled oscillators.
Quinn, D Dane; Rand, Richard H; Strogatz, Steven H
2007-03-01
The Winfree model consists of a population of globally coupled phase oscillators with randomly distributed natural frequencies. As the coupling strength and the spread of natural frequencies are varied, the various stable states of the model can undergo bifurcations, nearly all of which have been characterized previously. The one exception is the unlocking transition, in which the frequency-locked state disappears abruptly as the spread of natural frequencies exceeds a critical width. Viewed as a function of the coupling strength, this critical width defines a bifurcation curve in parameter space. For the special case where the frequency distribution is uniform, earlier work had uncovered a puzzling singularity in this bifurcation curve. Here we seek to understand what causes the singularity. Using the Poincaré-Lindstedt method of perturbation theory, we analyze the locked state and its associated unlocking transition, first for an arbitrary distribution of natural frequencies, and then for discrete systems of N oscillators. We confirm that the bifurcation curve becomes singular for a continuum uniform distribution, yet find that it remains well behaved for any finite N , suggesting that the continuum limit is responsible for the singularity.
Local Group dSph radio survey with ATCA - II. Non-thermal diffuse emission
NASA Astrophysics Data System (ADS)
Regis, Marco; Richter, Laura; Colafrancesco, Sergio; Profumo, Stefano; de Blok, W. J. G.; Massardi, Marcella
2015-04-01
Our closest neighbours, the Local Group dwarf spheroidal (dSph) galaxies, are extremely quiescent and dim objects, where thermal and non-thermal diffuse emissions lack, so far, of detection. In order to possibly study the dSph interstellar medium, deep observations are required. They could reveal non-thermal emissions associated with the very low level of star formation, or to particle dark matter annihilating or decaying in the dSph halo. In this work, we employ radio observations of six dSphs, conducted with the Australia Telescope Compact Array in the frequency band 1.1-3.1 GHz, to test the presence of a diffuse component over typical scales of few arcmin and at an rms sensitivity below 0.05 mJy beam-1. We observed the dSph fields with both a compact array and long baselines. Short spacings led to a synthesized beam of about 1 arcmin and were used for the extended emission search. The high-resolution data mapped background sources, which in turn were subtracted in the short-baseline maps, to reduce their confusion limit. We found no significant detection of a diffuse radio continuum component. After a detailed discussion on the modelling of the cosmic ray (CR) electron distribution and on the dSph magnetic properties, we present bounds on several physical quantities related to the dSphs, such that the total radio flux, the angular shape of the radio emissivity, the equipartition magnetic field, and the injection and equilibrium distributions of CR electrons. Finally, we discuss the connection to far-infrared and X-ray observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, B.; Menten, K. M.; Wu, Y.
We conducted Very Large Array C-configuration observations to measure positions and luminosities of Galactic Class II 6.7 GHz methanol masers and their associated ultra-compact H ii regions. The spectral resolution was 3.90625 kHz and the continuum sensitivity reached 45 μ Jy beam{sup −1}. We mapped 372 methanol masers with peak flux densities of more than 2 Jy selected from the literature. Absolute positions have nominal uncertainties of 0.″3. In this first paper on the data analysis, we present three catalogs; the first gives information on the strongest feature of 367 methanol maser sources, and the second provides information on allmore » detected maser spots. The third catalog presents derived data of the 127 radio continuum counterparts associated with maser sources. Our detection rate of radio continuum counterparts toward methanol masers is approximately one-third. Our catalogs list properties including distance, flux density, luminosity, and the distribution in the Galactic plane. We found no significant relationship between luminosities of masers and their associated radio continuum counterparts, however, the detection rate of radio continuum emission toward maser sources increases statistically with the maser luminosities.« less
Kityk, A V
2014-07-15
A long-range-corrected time-dependent density functional theory (LC-TDDFT) in combination with polarizable continuum model (PCM) have been applied to study charge transfer (CT) optical absorption and fluorescence emission energies basing on parameterized LC-BLYP xc-potential. The molecule of 4-(9-acridyl)julolidine selected for this study represents typical CT donor-acceptor dye with strongly solvent dependent optical absorption and fluorescence emission spectra. The result of calculations are compared with experimental spectra reported in the literature to derive an optimal value of the model screening parameter ω. The first absorption band appears to be quite well predictable within DFT/TDDFT/PCM with the screening parameter ω to be solvent independent (ω ≈ 0.245 Bohr(-1)) whereas the fluorescence emission exhibits a strong dependence on the range separation with ω-value varying on a rising solvent polarity from about 0.225 to 0.151 Bohr(-1). Dipolar properties of the initial state participating in the electronic transition have crucial impact on the effective screening. Copyright © 2014 Elsevier B.V. All rights reserved.
A spectrum of an extrasolar planet.
Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph
2007-02-22
Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.
NASA Technical Reports Server (NTRS)
Pounds, K. A.; Reeves, J. N.; Page, K. L.; OBrien, P. T.
2004-01-01
An XMM-Newton observation of the luminous Seyfert 1 galaxy 1H 0419-577 in September 2002, when the source was in an extreme low-flux state, found a very hard X-ray spectrum at 1-10 keV with a strong soft excess below -1 keV. Comparison with an earlier XMM-Newton observation when 1H 0419-577 was X-ray bright indicated the dominant spectral variability was due to a steep power law or cool Comptonised thermal emission. Four further XMM-Newton observations, with 1H 0419-577 in intermediate flux states, now support that conclusion, while we also find the variable emission component in intermediate state difference spectra to be strongly modified by absorption in low ionisation matter. The variable soft excess then appears to be an artefact of absorption of the underlying continuum while the core soft emission can be attributed to re- combination in an extended region of more highly ionised gas. We note the wider implications of finding substantial cold dense matter overlying (or embedded in) the X-ray continuum source in a luminous Seyfert 1 galaxy.
On the structure of the outer layers of cool carbon stars
NASA Technical Reports Server (NTRS)
Querci, F.; Querci, M.; Wing, R. F.; Cassatella, A.; Heck, A.
1982-01-01
Exposures on the spectra of four late C-type stars have been made with the IUE satellite in the wavelength range of the LWR camera (1900-3200 A). Two Mira variables near maximum light and two semiregular variables were observed. Although the exposure times used, which range up to 240 min in the low-resolution mode, were more than sufficient to record the continuum and emission lines of Mg II, Fe II, and Al II in normal M stars of similar magnitude and temperature, no light was recorded. It is concluded that the far-ultraviolet continuum is strongly depressed in these cool carbon stars. The absence of UV emission lines implies either that the chromospheric lines observed in M stars require an ultraviolet flux for their excitation, or that cool carbon stars have no chromosphere at all or that the opacity source is located above even the emission-line-forming region. This opacity source, which is probably some carbon condensate since it is weak or absent in M stars while absorbing strongly in C stars, is discussed both in terms of the chromospheric interpretation of the emission lines and in terms of their shock-wave interpretation.
NASA Astrophysics Data System (ADS)
Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark
2018-01-01
We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.
A SUZAKU OBSERVATION OF Mkn 590 REVEALS A VANISHING SOFT EXCESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, Elizabeth; Markowitz, Alex; Rothschild, Richard
2012-11-01
We have analyzed a long-look Suzaku observation of the Seyfert 1.2 Mkn 590. We aimed to measure the Compton reflection strength, Fe K complex properties, and soft excess emission as had been observed previously in this source. The Compton reflection strength was measured to be in the range 0.2-1.0 depending on the model used. A moderately strong Fe K{alpha} emission line was detected with an equivalent width of {approx}120 {+-} 25 eV and an Fe K{beta} line was identified with an equivalent width of {approx}30 {+-} 20 eV, although we could not rule out contribution from ionized Fe emission atmore » this energy. Surprisingly, we found no evidence for soft excess emission. Comparing our results with a 2004 observation from XMM-Newton we found that either the soft excess has decreased by a factor of 20-30 in 7 years or the photon index has steepened by 0.10 (with no soft excess present) while the continuum flux in the range 2-10 keV has varied only minimally (10%). This result could support recent claims that the soft excess is independent of the X-ray continuum.« less
Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts
NASA Astrophysics Data System (ADS)
Arnold Malkan, Matthew
2009-05-01
Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.
NASA Astrophysics Data System (ADS)
Kong, Shuo; Tan, Jonathan C.; Arce, Héctor G.; Caselli, Paola; Fontani, Francesco; Butler, Michael J.
2018-03-01
Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The Atacama Large Millimeter/submillimeter Array (ALMA) is extremely powerful for identifying dense gas structures, including cores, at millimeter wavelengths via their dust continuum emission. Here, we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (∼105 M ⊙) infrared dark cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12 m array and produces an unprecedented view of the densest structures of this IRDC. In this first Letter about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the “dense gas” detection probability function (DPF), i.e., as a function of the local mass surface density, Σ, for various choices of thresholds of millimeter continuum emission to define “dense gas.” We then estimate the dense gas mass fraction, f dg, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ probability distribution function, to the larger-scale surrounding regions, finding values of about 5% to 15% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ɛ ff ∼ 10%, with approximately a factor of two systematic uncertainties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastian, T. S.; Chintzoglou, G.; De Pontieu, B.
We present joint observations of the Sun by the Atacama Large Millimeter/submillimeter Array (ALMA) and the Interface Region Imaging Spectrograph ( IRIS ). Both millimeter/submillimeter- λ continuum emission and ultraviolet (UV) line emission originate from the solar chromosphere and both have the potential to serve as powerful and complementary diagnostics of physical conditions in this enigmatic region of the solar atmosphere. The observations were made of a solar active region on 2015 December 18 as part of the ALMA science verification effort. A map of the Sun’s continuum emission was obtained by ALMA at a wavelength of 1.25 mm (239more » GHz). A contemporaneous map was obtained by IRIS in the Mg ii h doublet line at 2803.5 Å. While a clear correlation between the 1.25 mm brightness temperature T{sub B} and the Mg ii h line radiation temperature T {sub rad} is observed, the slope is <1, perhaps as a result of the fact that these diagnostics are sensitive to different parts of the chromosphere and that the Mg ii h line source function includes a scattering component. There is a significant difference (35%) between the mean T{sub B} (1.25 mm) and mean T {sub rad} (Mg ii). Partitioning the maps into “sunspot,” “quiet areas,” and “plage regions” we find the relation between the IRIS Mg ii h line T {sub rad} and the ALMA T {sub B} region-dependent. We suggest this may be the result of regional dependences of the formation heights of the IRIS and ALMA diagnostics and/or the increased degree of coupling between the UV source function and the local gas temperature in the hotter, denser gas in plage regions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunter, T. R.; Brogan, C. L.; Indebetouw, R.
Based on sub-arcsecond Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array (SMA) 1.3 mm continuum images of the massive protocluster NGC 6334I obtained in 2015 and 2008, we find that the dust emission from MM1 has increased by a factor of 4.0 ± 0.3 during the intervening years, and undergone a significant change in morphology. The continuum emission from the other cluster members (MM2, MM4, and the UCH ii region MM3 = NGC 6334F) has remained constant. Long-term single-dish maser monitoring at HartRAO finds that multiple maser species toward NGC 6334I flared beginning in early 2015, a few months beforemore » our ALMA observation, and some persist in that state. New ALMA images obtained in 2016 July–August at 1.1 and 0.87 mm confirm the changes with respect to SMA 0.87 mm images from 2008, and indicate that the (sub)millimeter flaring has continued for at least a year. The excess continuum emission, centered on the hypercompact H ii region MM1B, is extended and elongated (1.″6 × 1.″0 ≈ 2100 × 1300 au) with multiple peaks, suggestive of general heating of the surrounding subcomponents of MM1, some of which may trace clumps in a fragmented disk rather than separate protostars. In either case, these remarkable increases in maser and dust emission provide direct observational evidence of a sudden accretion event in the growth of a massive protostar yielding a sustained luminosity surge by a factor of 70 ± 20, analogous to the largest events in simulations by Meyer et al. This target provides an excellent opportunity to assess the impact of such a rare event on a protocluster over many years.« less
Putting On the Brakes to Protect America's Natural Treasures - Continuum
and emission-reducing strategies include: Promoting alternative transportation practices Replacing , natural gas, and electricity Promoting alternative fueling stations Analyzing fleet and fuel-use data to
ERIC Educational Resources Information Center
Rigby, Ken
2005-01-01
The tendency for school children to bully others was conceived as lying along a continuum of frequency, ranging from zero to very high. To examine social factors that may influence the position of individual students on this continuum, questionnaires were administered to Australian school children attending state coeducational schools: primary (N…
ALMA sub-mm maser and dust distribution of VY Canis Majoris
NASA Astrophysics Data System (ADS)
Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.
2014-12-01
Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org
Inference of the electron temperature in ICF implosions from the hard X-ray spectral continuum
NASA Astrophysics Data System (ADS)
Kagan, Grigory; Landen, O. L.; Svyatsky, D.; Sio, H.; Kabadi, N. V.; Simpson, R. A.; Gatu Johnson, M.; Frenje, J. A.; Petrasso, R. D.; Shah, R. C.; Joshi, T. R.; Hakel, P.; Weber, T. E.; Rinderknecht, H. G.; Thorn, D.; Schneider, M.; Bradley, D.; Kilkenny, J.
2017-10-01
The NIF Continuum Spectrometer, scheduled to be first deployed in Fall of 2017, will infer the imploded core electron temperature from the free-free continuum self-emission spectra of photons with energies of 20 to 30 keV. However, this hard X-ray radiation is emitted by the tail of the electron distribution, which likely deviates from Maxwellian and thus obscures interpretation of the data. We investigate resulting modifications to the X-ray spectra. The logarithmic slope of the spectrum from the more realistic, non-thermal tail of the electron distribution is found to decrease more rapidly at higher photon energies, as compared to the perfectly Maxwellian case. Interpreting the spectrum with assumption of Maxwellian electrons enforced is shown to give an electron temperature that is lower than the actual one. Conversely, due to its connection with the non-thermal features in the electron distribution, hard X-ray emission can provide unprecedented information about kinetic processes in the hot DT core. This work was performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function ismore » expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.« less
Detection of H I absorption in the dwarf galaxy Haro 11
NASA Astrophysics Data System (ADS)
MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C.; Cormier, Diane; Rémy-Ruyer, Aurélie
2014-02-01
We present the results of an analysis of archival 21 cm (H I) data of the blue compact dwarf galaxy Haro 11 (ESO 350-IG038). Observations were obtained at the Very Large Array, and the presence of a compact absorption feature near the optical centre of the galaxy has been detected. The central location of the absorption feature coincides with the centre of the continuum background of the galaxy, as well as with the location of knot B. The absorption feature yields an H I mass in the range of 3-10 × 108 M⊙, corresponding to spin temperatures from 91 K to 200 K, respectively. The absence of H I seen in emission places an upper limit of 1.7 × 109 M⊙ on the mass. To our knowledge this is the first example of a dwarf galaxy that shows H I absorption from its own background continuum. The continuum emission from the galaxy is also used to determine star formation rates, namely 6.85 ± 0.05 M⊙ yr-1 (for a stellar mass range of 5 M⊙ < M < 100 M⊙), or 32.8 ± 0.2 M⊙ yr-1 (for an extended range of 0.1 M⊙ < M < 100 M⊙).
The secrets of T Pyxidis. I. UV observations
NASA Astrophysics Data System (ADS)
Gilmozzi, R.; Selvelli, P.
2007-01-01
Aims:We study the UV spectral behavior of the recurrent nova T Pyx during 16 years of
Silicon X-ray line emission from solar flares and active regions
NASA Technical Reports Server (NTRS)
Parkinson, J. H.; Wolff, R. S.; Kestenbaum, H. L.; Ku, W. H.-M.; Lemen, J. R.; Long, K. S.; Novick, R.; Suozzo, R. J.; Weisskopf, M. C.
1978-01-01
New observations of solar flare and active region X-ray spectra obtained with the Columbia University instrument on OSO-8 are presented and discussed. The high sensitivity of the graphite crystal panel has allowed both line and continuum spectra to be served with moderate spectral resolution. Observations with higher spectral resolution have been made with a panel of pentaerythritol crystals. Twenty-nine lines between 1.5 and 7.0 A have been resolved and identified, including several dielectronic recombination satellite lines to Si XIV and Si XIII lines which have been observed for the first time. It has been found that thermal continuum models specified by single values of temperature and emission measure have fitted the data adequately, there being good agreement with the values of these parameters derived from line intensity ratios.
NASA Astrophysics Data System (ADS)
Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.
2011-07-01
Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.
Time Resolved Spectroscopy, High Sensitivity Power Spectrum & a Search for the X-Ray QPO in NGC 5548
NASA Astrophysics Data System (ADS)
Yaqoob, Tahir
1999-09-01
Controversy surrounds the EXOSAT discovery of a QPO (period ~500 s) in NGC 5548 due to the data being plagued by high background and instrumental systematics. If the NGC 5548 QPO is real, the implications for the physics of the X-ray emission mechanism and inner-most disk/black-hole system are enormous. AXAF provides the first opportunity to settle the issue, capable of yielding power spectra with unprecedented sensitivity, pushing the limit on finding new features. Using HETG/ACIS we will also perform time-resolved spectroscopy of the ionized absorption features and Fe-K emission line, search for energy-dependent time lags in the continuum, between the continuum and spectral features, and between the spectral features. These data will provide powerful constraints on models of AGN.
The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236
NASA Technical Reports Server (NTRS)
Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa
1994-01-01
The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.
Outflow and Infall in Star-forming Region L1221
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Ho, Paul T. P.
2005-10-01
We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.
How to Detect Inclined Water Maser Disks (and Possibly Measure Black Hole Masses)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darling, Jeremy, E-mail: jdarling@colorado.edu
We describe a method for identifying inclined water maser disks orbiting massive black holes and for potentially using them to measure black hole masses. Owing to the geometry of maser amplification pathways, the minority of water maser disks are observable: only those viewed nearly edge-on have been identified, suggesting that an order of magnitude additional maser disks exist. We suggest that inward-propagating masers are gravitationally deflected by the central black hole, thereby scattering water maser emission out of the disk plane and enabling detection. The signature of an inclined water maser disk would be narrow masers near the systemic velocitymore » that appear to emit from the black hole position, as identified by the radio continuum core. To explore this possibility, we present high-resolution (0.″07–0.″17) Very Large Array line and continuum observations of 13 galaxies with narrow water maser emission and show that three are good inclined-disk candidates (five remain ambiguous). For the best case, CGCG 120−039, we show that the maser and continuum emission are coincident to within 3.5 ± 1.4 pc (6.7 ± 2.7 mas). Subsequent very long baseline interferometric maps can confirm candidate inclined disks and have the potential to show maser rings or arcs that provide a direct measurement of black hole mass, although the mass precision will rely on knowledge of the size of the maser disk.« less
NASA Astrophysics Data System (ADS)
MacLeod, Chelsea L.; Morgan, Christopher W.; Mosquera, A.; Kochanek, C. S.; Tewes, M.; Courbin, F.; Meylan, G.; Chen, B.; Dai, X.; Chartas, G.
2015-06-01
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089 Å) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770 Å) monitoring spanning 11 years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5× {10}13 and 1015 cm, and we find an upper limit of 1015 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7{{GM}}{BH}/{c}2 for a 2.8× {10}8 {M}⊙ black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 1014 cm \\lt {r}1/2,{UV}\\lt 3× {10}15 cm. Finally, the optical size is significantly larger, by 1.5σ, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.
Time-frequency representation of autoionization dynamics in helium
NASA Astrophysics Data System (ADS)
Busto, D.; Barreau, L.; Isinger, M.; Turconi, M.; Alexandridi, C.; Harth, A.; Zhong, S.; Squibb, R. J.; Kroon, D.; Plogmaker, S.; Miranda, M.; Jiménez-Galán, Á.; Argenti, L.; Arnold, C. L.; Feifel, R.; Martín, F.; Gisselbrecht, M.; L'Huillier, A.; Salières, P.
2018-02-01
Autoionization, which results from the interference between direct photoionization and photoexcitation to a discrete state decaying to the continuum by configuration interaction, is a well known example of the important role of electron correlation in light-matter interaction. Information on this process can be obtained by studying the spectral, or equivalently, temporal complex amplitude of the ionized electron wave packet. Using an energy-resolved interferometric technique, we measure the spectral amplitude and phase of autoionized wave packets emitted via the sp2+ and sp3+ resonances in helium. These measurements allow us to reconstruct the corresponding temporal profiles by Fourier transform. In addition, applying various time-frequency representations, we observe the build-up of the wave packets in the continuum, monitor the instantaneous frequencies emitted at any time and disentangle the dynamics of the direct and resonant ionization channels.
NASA Astrophysics Data System (ADS)
Baglio, M. C.; D'Avanzo, P.; Muñoz-Darias, T.; Breton, R. P.; Campana, S.
2013-11-01
Aims: We present a study of the quiescent optical counterpart of the accreting millisecond X-ray pulsar XTE J1814-338 that is aimed at unveiling the different components, which contribute to the quiescent optical emission of the system. Methods: We carried out multiband (BVR) orbital phase-resolved photometry of the system using the ESO Very Large Telescope (VLT) that is equipped with the FORS2 camera, covering about 70% of the 4.3 hour orbital period. Results: The optical light curves are consistent with a sinusoidal variability that are modulated with an orbital period with a semi-amplitude of 0.5-0.7 mag. They show evidence of a strongly irradiated companion star, which agrees with previous findings for this system. However, the observed colours cannot be accounted for by the companion star alone, suggesting the presence of an accretion disc during quiescence. The system seems to be fainter in all analysed bands compared to previous observations. The R band light curve displays a possible phase offset with respect to the B and V band. Through a combined fit of the multi-band light curve performed with a Markov chain Monte Carlo technique, we derive constraints on the companion star, disc fluxes, system distance, and companion star mass. Conclusions: The irradiation luminosity required to account for the observed day-side temperature of the companion star is consistent with the spin-down luminosity of a millisecond radio pulsar. Compared to our data with previous observations, which were collected over 5 years, the flux decrease and spectral evolution of the observed quiescent optical emission cannot be satisfactorily explained with the combined contribution of an irradiated companion star and of an accretion disc alone. The observed progressive flux decrease as the system gets bluer could be due to a continuum component that evolves towards a lower, bluer spectrum. While most of the continuum component is likely due to the disc, we do not expect it to become bluer in quiescence. Hence, we hypothesize that an additional component, such as synchrotron emission from a jet was significantly contributing in the data obtained earlier during quiescence and then progressively fading or moving its break frequency towards longer wavelengths. Based on observations made with ESO Telescopes at the Paranal Observatory under programme ID 383.D-0730(A).
Analysis of the iron Kα line from 4U 1728-34 with NuSTAR and Swift
NASA Astrophysics Data System (ADS)
Sleator, Clio; Tomsick, John; King, Ashley L.; Miller, Jon M.; Boggs, Steven E.
2016-01-01
We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We detected and removed four Type 1 X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body and cutoff power law. Residuals between 6-8 keV indicate strong evidence of a broad Fe Kα line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius Rin ≤ 1.77 ISCO. From this upper limit, we find that RNS ≤ 20 km, assuming M=1.4M⊙ and a=0.15 (where a=cJ/GM2 is calculated from the previously measured burst oscillation frequency). We discuss how this limit could be improved for neutron star LMXBs in the future.
Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks
NASA Astrophysics Data System (ADS)
Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.
2018-05-01
Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk viscosity for the parameters explored in this paper. Because of the low dust density in the gaps, the dust and gas components can become thermally decoupled and the gas becomes colder than the dust. The gaps seen in CO are due to a combination of gas temperature dropping at the location of the planet and of the underlying surface density profile. Both effects need to be taken into account and disentangled when inferring gas surface densities from observed CO intensity profiles; otherwise, the gas surface density drop at the planet location can easily be overestimated. CO line ratios across the gap are able to quantify the gas temperature drop in the gaps in observed systems. Finally, a CO cavity not observed in any of the models, only CO gaps, indicating that one single massive planet is not able to explain the CO cavities observed in transition disks, at least without additional physical or chemical mechanisms.
A MULTIWAVELENGTH STUDY OF STAR FORMATION IN THE VICINITY OF GALACTIC H II REGION Sh 2-100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samal, M. R.; Pandey, A. K.; Sagar, R.
We present multiwavelength investigation of morphology, physical-environment, stellar contents, and star formation activity in the vicinity of star-forming region Sh 2-100. It is found that the Sh 2-100 region contains seven H II regions of ultracompact and compact nature. The present estimation of distance for three H II regions, along with the kinematic distance for others, suggests that all of them belong to the same molecular cloud complex. Using near-infrared photometry, we identified the most probable ionizing sources of six H II regions. Their approximate photometric spectral type estimates suggest that they are massive early-B to mid-O zero-age-main-sequence stars andmore » agree well with radio continuum observations at 1280 MHz, for sources whose emissions are optically thin at this frequency. The morphology of the complex shows a non-uniform distribution of warm and hot dust, well mixed with the ionized gas, which correlates well with the variation of average visual extinction ({approx}4.2-97 mag) across the region. We estimated the physical parameters of ionized gas with the help of radio continuum observations. We detected an optically visible compact nebula located to the south of the 850 {mu}m emission associated with one of the H II regions and the diagnostic of the optical emission line ratios gives electron density and electron temperature of {approx}0.67 x 10{sup 3} cm{sup -3} and {approx}10{sup 4} K, respectively. The physical parameters suggest that all the H II regions are in different stages of evolution, which correlate well with the probable ages in the range {approx}0.01-2 Myr of the ionizing sources. The spatial distribution of infrared excess stars, selected from near-infrared and Infrared Array Camera color-color diagrams, correlates well with the association of gas and dust. The positions of infrared excess stars, ultracompact and compact H II regions at the periphery of an H I shell, possibly created by a WR star, indicate that star formation in Sh 2-100 region might have been induced by an expanding H I shell.« less
What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.
2013-01-01
Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.
Chromospheric activity on the late-type star V1355 Ori using Lijiang 1.8-m and 2.4-m telescopes
NASA Astrophysics Data System (ADS)
Pi, Qing-Feng; Zhang, Li-Yun; Chang, Liang; Han, Xian-Ming; Lu, Hong-Peng; Zhang, Xi-Liang; Wang, Dai-Mei
2016-10-01
We obtained new high-resolution spectra using the Lijiang 1.8-m and 2.4-m telescopes to investigate the chromospheric activities of V1355 Ori as indicated in the behaviors of Ca ii H&K, Hδ, Hγ, Hβ, Na i D1, D2, Hα and Ca ii infrared triplet (IRT) lines. The observed spectra show obvious emissions above the continuum in Ca ii H&K lines, absorptions in the Hδ, Hγ, Hβ and Na i D1, D2 lines, variable behavior (filled-in absorption, partial emission with a core absorption component or emission above the continuum) in the Hα line, and weak self-reversal emissions in the strong filled-in absorptions of the Ca ii IRT lines. We used a spectral subtraction technique to analyze our data. The results show no excess emission in the Hδ and Hγ lines, very weak excess emissions in the Na i D1, D2 lines, excess emission in the Hβ line, clear excess emission in the Hα line, and excess emissions in the Ca ii IRT lines. The value of the ratio of EW8542/EW8498 is in the range 0.9 to 1.7, which implies that chromospheric activity might have been caused by plage events. The value of the ratio E Hα/E Hβ is above 3, indicating that the Balmer lines would arise from prominence-like material. We also found time variations in light curves associated with equivalent widths of chromospheric activity lines in the Na i D1, D2, Ca ii IRT and Hα lines in particular. These phenomena can be explained by plage events, which are consistent with the behavior of chromospheric activity indicators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp
2016-05-01
We present the results of our ALMA Cycle 2 high angular resolution (0.″1–0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3–2 and HCO{sup +} J = 3–2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ∼1.1 mm (∼266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5–2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecularmore » emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ∼10 pc and ∼several × 10{sup 5} M {sub ⊙}, respectively. HCN-to-HCO{sup +} J = 3–2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ∼2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited ( v {sub 2} = 1f) J = 3–2 emission lines were detected for HCN and HCO{sup +} across the field of view.« less
NASA Astrophysics Data System (ADS)
Imanishi, Masatoshi; Nakanishi, Kouichiro; Izumi, Takuma
2016-05-01
We present the results of our ALMA Cycle 2 high angular resolution (0.″1-0.″2) observations of the nuclear region of the nearby well-studied type-2 active galactic nucleus (AGN), NGC 1068, at HCN J = 3-2 and HCO+ J = 3-2 emission lines. For the first time, due to a higher angular resolution than previous studies, we clearly detected dense molecular gas emission at the putative AGN location, identified as a ˜1.1 mm (˜266 GHz) continuum emission peak, by separating this emission from brighter emission located at 0.″5-2.″0 on the eastern and western sides of the AGN. The estimated intrinsic molecular emission size and dense molecular mass, which are thought to be associated with the putative dusty molecular torus around an AGN, were ˜10 pc and ˜several × 105 M ⊙, respectively. HCN-to-HCO+ J = 3-2 flux ratios substantially higher than unity were found throughout the nuclear region of NGC 1068. The continuum emission displayed an elongated morphology along the direction of the radio jet located at the northern side of the AGN, as well as a weak spatially-resolved component at ˜2.″0 on the southwestern side of the AGN. The latter component most likely originated from star formation, with the estimated luminosity more than one order of magnitude lower than the luminosity of the central AGN. No vibrationally excited (v 2 = 1f) J = 3-2 emission lines were detected for HCN and HCO+ across the field of view.
The detailed balance requirement and general empirical formalisms for continuum absorption
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
Two general empirical formalisms are presented for the spectral density which take into account the deviations from the Lorentz line shape in the wing regions of resonance lines. These formalisms satisfy the detailed balance requirement. Empirical line shape functions, which are essential to provide the continuum absorption at different temperatures in various frequency regions for atmospheric transmission codes, can be obtained by fitting to experimental data.
Visible and Near-Infrared Spectroscopy of Seyfert 1 and Narrow-Line Seyfert 1 Galaxies
NASA Astrophysics Data System (ADS)
Rodríguez-Ardila, Alberto; Pastoriza, Miriani G.; Donzelli, Carlos J.
2000-01-01
This paper studies the continuum and emission-line properties of a sample composed of 16 normal Seyfert 1 and seven narrow-line Seyfert 1 (NLS1) galaxies using optical and near-IR CCD spectroscopy. The continuum emission of the galaxies can be described in terms of a combination of stellar population, a nonstellar continuum of power-law form, and Fe II emission. A significative difference in the optical spectral index between NLS1's and normal Seyfert 1's is observed; the latter is steeper. Most NLS1's show Fe II/Hβ ratios larger than those observed in the other Seyfert 1's. In the IRAS band, both groups of galaxies have very similar properties. We have searched for the presence of optically thin gas in the broad-line region (BLR) of the galaxies by comparing the broad O I λ8446 and Hα emission-line profiles. Our analysis show that in the NLS1's, both profiles are similar in shape and width. This result contradicts the hypothesis of thin gas emission in the high-velocity part of the BLR to explain the ``narrowness'' of broad optical permitted lines in these objects. Evidence of narrow O I λ8446 emission is found in six galaxies of our sample, implying that this line is not restricted to a pure BLR phenomenon. In the narrow-line region, we find similar luminosities in the permitted and high-ionization lines of NLS1's and normal Seyfert 1's. However, low-ionization lines such as [O I] λ6300, [O II] λ3727, and [S II] λλ6717, 6731 are intrinsically less luminous in NLS1's. Physical properties derived from density- and temperature-sensitive line ratios suggest that the [O II] and [S II] emitting zones are overlapping in normal Seyfert 1's and separated in NLS1's. Based on observations made at CASLEO. Complejo Astronómico El Leoncito (CASLEO) is operated under agreement between the Consejo Nacional de Investigaciones Científicas y técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juán.
Calculation of far wing of allowed spectra: The water continuum
NASA Technical Reports Server (NTRS)
Tipping, R. H.; Ma, Q.
1995-01-01
A far-wing line shape theory based on the binary collision and quasistatic approximations that is applicable for both the low- and high-frequency wings of allowed vibrational-rotational lines has been developed. This theory has been applied in order to calculate the frequency and temperature dependence of the continuous absorption coefficient for frequencies up to 10,000 cm(exp -1) for pure H2O and for H2O-N2 mixtures. The calculations are made assuming an interaction potential consisting of an isotropic Lennard-Jones part and the leading long-range anisotropic part, and utilizing the measured line strengths and transition frequencies. The results compare well with existing data, both in magnitude and in temperature dependence. This leads us to the conclusion that although dimer and collision-induced absorptions are present, the primary mechanism responsible for the observed water continuum is the far-wing absorption of allowed lines. Recent progress on near-wing corrections to the theory and validations with recent laboratory measurements are discussed briefly.
Homogenized boundary conditions and resonance effects in Faraday cages
Hewitt, I. J.
2016-01-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called ‘Faraday cage effect’). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells. PMID:27279775
Homogenized boundary conditions and resonance effects in Faraday cages
NASA Astrophysics Data System (ADS)
Hewett, D. P.; Hewitt, I. J.
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called `Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
Homogenized boundary conditions and resonance effects in Faraday cages.
Hewett, D P; Hewitt, I J
2016-05-01
We present a mathematical study of two-dimensional electrostatic and electromagnetic shielding by a cage of conducting wires (the so-called 'Faraday cage effect'). Taking the limit as the number of wires in the cage tends to infinity, we use the asymptotic method of multiple scales to derive continuum models for the shielding, involving homogenized boundary conditions on an effective cage boundary. We show how the resulting models depend on key cage parameters such as the size and shape of the wires, and, in the electromagnetic case, on the frequency and polarization of the incident field. In the electromagnetic case, there are resonance effects, whereby at frequencies close to the natural frequencies of the equivalent solid shell, the presence of the cage actually amplifies the incident field, rather than shielding it. By appropriately modifying the continuum model, we calculate the modified resonant frequencies, and their associated peak amplitudes. We discuss applications to radiation containment in microwave ovens and acoustic scattering by perforated shells.
NASA Technical Reports Server (NTRS)
Carpenter, K. G.; Wing, R. F.; Stencel, R. E.
1985-01-01
The ultraviolet spectrum of Arcturus has been observed at high resolution with the IUE satellite. Line identifications, mean absolute 'continuum' flux measurements, integrated absolute emission-line fluxes, and measurements of selected absorption line strengths are presented for the 2250-2930 A region. In the 1150-2000 A region, identifications are given primarily on the basis of low-resolution spectra. Chromospheric emission lines have been identified with low-excitation species including H I, C I, C II, O I, Mg I, Mg II, Al II, Si I, Si II, S I, and Fe II; there is no evidence for lines of C IV, N V, or other species requiring high temperatures. A search for molecular absorption features in the 2500-2930 A interval has led to several tentative identifications, but only OH could be established as definitely present. Iron lines strongly dominate the identifications in the 2250-2930 A region, Fe II accounting for about 86 percent of the emission features and Fe I for 43 percent of the identified absorption features.
Laboratory simulation of photoionized plasma among astronomical compact objects
NASA Astrophysics Data System (ADS)
Fujioka, Shinsuke; Yamamoto, Norimasa; Wang, Feilu; Salzmann, David; Li, Yutong; Rhee, Yong-Joo; Nishimura, Hiroaki; Takabe, Hideaki; Mima, Kunioki
2008-11-01
X-ray line emission with several-keV of photon energy was observed from photoionized accreting clouds, for example CYGNUS X-3 and VELA X-1, those are exposed by hard x-ray continuum from the compact objects, such as neutron stars, black holes, or white dwarfs, although accreting clouds are thermally cold. The x-ray continuum-induced line emission gives a good insight to the accreting clouds. We will present a novel laboratory simulation of the photoionized plasma under well-characterized conditions by using high-power laser facility. Blackbody radiator with 500-eV of temperature, as a miniature of a hot compact object, was created.Silicon (Si) plasma with 30-eV of electron temperature was produced in the vicinity of the 0.5-keV blackbody radiator. Line emissions of lithium- and helium-like Si ions was clearly observed around 2-keV of photon-energy from the thermally cold Si plasma, this result is hardly interpreted without consideration of the photoionization. Atomic kinetics code reveals importance of inner-shell ionization directly caused by incoming hard x-rays.
Exploring a Massive Starburst in the Epoch of Reionization
NASA Astrophysics Data System (ADS)
Marrone, Daniel; Aravena, M.; Chapman, S.; De Breuck, C.; Gonzalez, A.; Hezavehe, S.; Litke, K.; Ma, J.; Malkan, M.; Spilker, J.; Stalder, B.; Stark, D.; Strandet, M.; Tang, M.; Vieira, J.; Weiss, A.; Welikala, N.
2016-08-01
We request deep multi-band imaging of a unique dusty galaxy in the Epoch of Reionization (EoR), selected via its millimeter-wavelength dust emission in the 2500-square-degree South Pole Telescope survey. Spectroscopically confirmed to lie at z=6.900, this galaxy has a large dust mass and is likely one of the most rapidly star-forming objects in the EoR. Using Gemini-S, we have identified z-band emission from this object that could be UV continuum emission at z=6.9 or from a foreground lens. Interpretation of this object, and a complete understanding of its meaning for the census of star formation in the EoR, requires that we establish the presence or absence of gravitational lensing. The dust mass observed in this source is also unexpectedly large for its era, and measurements of the assembled stellar population, through the UV-continuum slope and restframe optical color, will help characterize the stellar mass and dust properties in this very early galaxy, the most spectacular galaxy yet discovered by the SPT.
Overview of the observations of symbiotic stars
NASA Technical Reports Server (NTRS)
Viotti, Roberto
1993-01-01
The term Symbiotic stars commonly denotes variable stars whose optical spectra simultaneously present a cool absorption spectrum (typically TiO absorption bands) and emission lines of high ionization energy. This term is now used for the category of variable stars with composite spectrum. The main spectral features of these objects are: (1) the presence of the red continuum typical of a cool star, (2) the rich emission line spectrum, and (3) the UV excess, frequently with the Balmer continuum in emission. In addition to the peculiar spectrum, the very irregular photometric and spectroscopic variability is the major feature of the symbiotic stars. Moreover, the light curve is basic to identify the different phases of activity in a symbiotic star. The physical mechanisms that cause the symbiotic phenomenon and its variety are the focus of this paper. An astronomical phenomenon characterized by a composite stellar spectrum with two apparently conflicting features, and large variability has been observed. Our research set out to find the origin of this behavior and, in particular, to identify and measure the physical mechanism(s) responsible for the observed phenomena.
NASA Astrophysics Data System (ADS)
Fausnaugh, Michael; Agn Storm Team
2015-01-01
The AGN STORM collaboration recently completed an extensive reverberation mapping campaign, targeting NGC 5548 with observations spanning the hard X-rays to mid-infrared. This campaign represents a massive collaborative effort, with far UV continuum spectrophotometry obtained through an intensive HST COS program, and near-UV/optical broad band photometry obtained from Swift and over 25 ground-based telescopes (in BVR and griz). The campaign spanned the entire 2014 observing season with virtually daily cadence, which allows us to compare with unprecedented accuracy the detailed structure of the observed UV and optical continuum emission signals in this archetypal AGN. We find statistically significant time delays between lightcurves from different wavebands, and this result has implications for the temperature, ionization, and geometric configuration of the AGN's sub-parsec scale environment. We will present the UV/optical continuum lightcurves from this campaign, as well as an analysis of the wavelength-dependent structure of the time delays.
NASA Astrophysics Data System (ADS)
Banerjee, D.; Gasnault, O.
2008-07-01
The primary aim of the high-energy X-ray spectrometer (HEX) experiment on the Chandrayaan-1 mission to the Moon is to characterize the movement of volatiles on the lunar surface through the detection of the 46.5 keV line from 210Pb, a decay product of 222Rn. An important consideration for design and operation of HEX is to estimate the continuum background signal expected from the lunar surface, as well as its dependence on solar activity and lunar composition. We have developed a Monte Carlo code utilizing Geant4 for simulating the interaction of cosmic rays in the lunar regolith, and we estimated the variation in the continuum background in the energy region of interest for various lunar compositions. Dependence of the continuum background on solar activity was also evaluated considering ferroan anorthositic (FAN) composition. Our results suggest the viability of inferring lithologic characteristics of planetary surfaces based on a study of low-energy gamma ray emission.
Lyman continuum observations of solar flares
NASA Technical Reports Server (NTRS)
Machado, M. E.; Noyes, R. W.
1978-01-01
A study is made of Lyman continuum observations of solar flares, using data obtained by the EUV spectroheliometer on the Apollo Telescope Mount. It is found that there are two main types of flare regions: an overall 'mean' flare coincident with the H-alpha flare region, and transient Lyman continuum kernels which can be identified with the H-alpha and X-ray kernels observed by other authors. It is found that the ground level hydrogen population in flares is closer to LTE than in the quiet sun and active regions, and that the level of Lyman continuum formation is lowered in the atmosphere from a mass column density .000005 g/sq cm in the quiet sun to .0003 g/sq cm in the mean flare, and to .001 g/sq cm in kernels. From these results the amount of chromospheric material 'evaporated' into the high temperature region is derived, which is found to be approximately 10 to the 15th g, in agreement with observations of X-ray emission measures.
The ionizing radiation of Seyfert 2 galactic nuclei
NASA Technical Reports Server (NTRS)
Ho, Luis C.; Shields, Joseph C.; Filippenko, Alexei V.
1993-01-01
We report the discovery of a nonrandom trend in the dispersion of emission-line intensity ratios for Seyfert 2 galaxies. The sense of this pattern suggests the influence of a single physical parameter, the hardness of the ionizing continuum, which controls the heating energy per ionizing photon. We compare the observed line ratios with new photoionization calculations and find that the observed distributions can be reproduced if the ionizing continuum is parametrized by a power law. Our results also suggest an inverse correlation between luminosity and continuum hardness for Seyfert 2 nuclei; if true, this trend extends a similar pattern known in quasars and Seyfert 1 galaxies to active galactic nuclei of lower luminosity. Samples of Seyfert 2 nuclei with improved selection uniformity are desirable for elaboration of these findings.
NASA Technical Reports Server (NTRS)
Boggs, S. E.; Lin, R. P.; Coburn, W.; Feffer, P.; Pelling, R. M.; Schroeder, P.; Slassi-Sennou, S.
1997-01-01
The balloon-borne high resolution gamma ray and X-ray germanium spectrometer (HIREGS) was used to observe the Galactic center and two positions along the Galactic plane from Antarctica in January 1995. For its flight, the collimators were configured to measure the Galactic diffuse hard X-ray continuum between 20 and 200 keV by directly measuring the point source contributions to the wide field of view flux for subtraction. The hard X-ray spectra of GX 1+4 and GRO J1655-40 were measured with the diffuse continuum subtracted off. The analysis technique for source separation is discussed and the preliminary separated spectra for these point sources and the Galactic diffuse emission are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Gupta, A.; Page, K.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Yinghe; Lu, Nanyao; Xu, C. Kevin
We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the COmore » (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .« less
Mathur, S.; Gupta, A.; Page, K.; ...
2017-08-31
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. In conclusion, this model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, S.; Pogge, R. W.; Adams, S. M.
During the Space Telescope and Optical Reverberation Mapping Project observations of NGC 5548, the continuum and emission-line variability became decorrelated during the second half of the six-month-long observing campaign. Here we present Swift and Chandra X-ray spectra of NGC 5548 obtained as part of the campaign. The Swift spectra show that excess flux (relative to a power-law continuum) in the soft X-ray band appears before the start of the anomalous emission-line behavior, peaks during the period of the anomaly, and then declines. This is a model-independent result suggesting that the soft excess is related to the anomaly. We divide themore » Swift data into on- and off-anomaly spectra to characterize the soft excess via spectral fitting. The cause of the spectral differences is likely due to a change in the intrinsic spectrum rather than to variable obscuration or partial covering. The Chandra spectra have lower signal-to-noise ratios, but are consistent with the Swift data. Our preferred model of the soft excess is emission from an optically thick, warm Comptonizing corona, the effective optical depth of which increases during the anomaly. This model simultaneously explains all three observations: the UV emission-line flux decrease, the soft-excess increase, and the emission-line anomaly.« less
Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches
NASA Astrophysics Data System (ADS)
Mahdavi, Arash
A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon nanotubes and carbon nanocones subject to different loadings and boundary conditions. This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures. We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from collapsing approaches zero as the tube radius increases. We also demonstrate why collapse with a wide indenter may be difficult to observe in narrow tubes. A reduced-order model is developed for the dynamics of the carbon nanotube atomic force microscope probes. Bending behavior of the nanotube probe is modeled using Euler's elastica. A nonlinear moment-curvature relationship is implemeneted to account for the ovalization of the cross section of the nanotube during bending. Van der Waal forces acting between tube and the substrate is integrated over the surface of the tube and used as distributed follower forces acting on the equivalent elastica. Approximating the behavior of the nanotube with an elastica proved to be a very effiecient technique for modeling these nanostructures.
Effects of frequency shifts and visual gender information on vowel category judgments
NASA Astrophysics Data System (ADS)
Glidden, Catherine; Assmann, Peter F.
2003-10-01
Visual morphing techniques were used together with a high-quality vocoder to study the audiovisual contribution of talker gender to the identification of frequency-shifted vowels. A nine-step continuum ranging from ``bit'' to ``bet'' was constructed from natural recorded syllables spoken by an adult female talker. Upward and downward frequency shifts in spectral envelope (scale factors of 0.85 and 1.0) were applied in combination with shifts in fundamental frequency, F0 (scale factors of 0.5 and 1.0). Downward frequency shifts generally resulted in malelike voices whereas upward shifts were perceived as femalelike. Two separate nine-step visual continua from ``bit'' to ``bet'' were also constructed, one from a male face and the other a female face, each producing the end-point words. Each step along the two visual continua was paired with the corresponding step on the acoustic continuum, creating natural audiovisual utterances. Category boundary shifts were found for both acoustic cues (F0 and formant frequency shifts) and visual cues (visual gender). The visual gender effect was larger when acoustic and visual information were matched appropriately. These results suggest that visual information provided by the speech signal plays an important supplemental role in talker normalization.
Exact transition probabilities for a linear sweep through a Kramers-Kronig resonance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chen; Sinitsyn, Nikolai A.
2015-11-19
We consider a localized electronic spin controlled by a circularly polarized optical beam and an external magnetic field. When the frequency of the beam is tuned near an optical resonance with a continuum of higher energy states, effective magnetic fields are induced on the two-level system via the inverse Faraday effect. We explore the process in which the frequency of the beam is made linearly time-dependent so that it sweeps through the optical resonance, starting and ending at the values far away from it. In addition to changes of spin states, Kramers-Kronig relations guarantee that a localized electron can alsomore » escape into a continuum of states. We argue that probabilities of transitions between different possible electronic states after such a sweep of the optical frequency can be found exactly, regardless the shape of the resonance. In conclusion, we also discuss extension of our results to multistate systems.« less
Computational Toxicology: Application in Environmental Chemicals
This chapter provides an overview of computational models that describe various aspects of the source-to-health effect continuum. Fate and transport models describe the release, transportation, and transformation of chemicals from sources of emission throughout the general envir...
VizieR Online Data Catalog: M33 SNR candidates properties (Lee+, 2014)
NASA Astrophysics Data System (ADS)
Lee, J. H.; Lee, M. G.
2017-04-01
We utilized the Hα and [S II] images in the LGGS to find new M33 remnants. The LGGS covered three 36' square fields of M33. We subtracted continuum sources from the narrowband images using R-band images. We smoothed the images with better seeing to match the point-spread function in the images with worse seeing, using the IRAF task psfmatch. We then scaled and subtracted the resulting continuum images from narrowband images. We selected M33 remnants considering three criteria: emission-line ratio ([S II]/Hα), the morphological structure, and the absence of blue stars inside the sources. Details are described in L14 (Lee et al. 2014ApJ...786..130L). We detected objects with [S II]/Hα>0.4 in emission-line ratio maps, and selected objects with round or shell structures in each narrowband image. As a result, we chose 435 sources. (2 data files).
NASA Astrophysics Data System (ADS)
Fabbiano, Giuseppina
2017-09-01
Recent Chandra studies of Compton thick (CT) AGNs have led to the discovery of 1-2 kpc-scale extended hard (>3 keV) continuum and Fe Kα components, showing that these emissions are not confined to the immediate vicinity of the AGN (the CT torus ). This is an important discovery as it changes our perception of CT AGNs and their interaction with their host galaxies. It may provide a unique probe of the host ISM, and/or the interaction of a radio jet or wind, including ultra-fast outflows (UFOs), with a dense ISM. Suitable CT AGNs close enough to resolve this region are rare, but a Chandra archival investigation has identified NGC7212 as an optimal target. We propose 130ks with ACIS-S to provide the deep data needed for this investigation.
Two-dimensional Fano lineshapes: Excited-state absorption contributions
NASA Astrophysics Data System (ADS)
Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten
2018-05-01
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
The infrared spectrum of M8 E - Evidence for circumstellar CO
NASA Technical Reports Server (NTRS)
Larson, H. P.; Fink, U.; Hofmann, R.
1986-01-01
High-resolution spectroscopic observations of the compact infrared source M8 E are reported in the region from 3 to 5 microns. Very prominent CO absorption lines are observed in the v = 1-0 band at 4.7 microns. The velocity width and rotational temperature suggest that this CO absorption occurs in a highly excited region. The high background continuum flux level and the prominent appearance of the CO features suggest that the CO line-forming region must be in front of the dust emission region. A blister model for M8 E, which places most of the dust continuum emission behind the source, satisfies this requirement. According to this picture, the observed circumstellar CO spectrum shows a high rotational temperature and a large velocity dispersion because of the combined effects of the strong stellar wind and possible shock heating near the dust zone as the wind encounters the ambient molecular cloud.
NASA Astrophysics Data System (ADS)
Harris, W. M.; Nordsieck, K. H.; Scherb, F.; Mierkiewicz, E. J.
1997-07-01
We report on photopolarimetric observations of resonant emission from Carbon [CI(1657 Angstroms)] and scattered solar continuum from dust at 2800 Angstroms using the Wisconsin Imaging Survey Polarimeter (WISP). The WISP is a wide field (1.5deg x 4.8deg ) sounding rocket telescope originally designed for polarimetric observations of diffuse galactic light at a 1% photometric level. We will describe the initial results of our launch on 8 April, 1997 from the White Sands Missile range, including a discussion of the images obtained, and the results from supporting visible/near-infrared measurements of gas and dust from the Burrell Schmidt telescope, and spectroscopic observations of the CI(9850 Angstroms) metastable line from the McMath Pierce Solar Telescope. This research was supported by NASA grant NAG5-5091 and NSF grant AST-9615625.
Two-dimensional Fano lineshapes: Excited-state absorption contributions.
Finkelstein-Shapiro, Daniel; Pullerits, Tõnu; Hansen, Thorsten
2018-05-14
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
The Non-Stellar Infrared Continuum of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Alonso-Herrero, Almudena; Quillen, Alice C.; Simpson, Chris; Efstathiou, Andreas; Ward, Martin J.
2000-01-01
JHKL'M (1 - 5 micrometers) imaging of a sample of Seyfert 2 galaxies is presented. We have performed an accurate estimate of the near-infrared non-stellar nuclear fluxes. We confirm that the near-infrared nuclear continuum between 1 and 2.2microns of some Seyfert 2s is dominated by stellar emission, whereas the continuum emission at longer wavelengths (lambda = 3 - 5 micrometers) is almost entirely non-stellar in origin. The non-stellar spectral energy distributions (SED) in the infrared (up to 15 micrometers) of Seyfert galaxies show a variety of shapes, and they are well reproduced with the tapered disk models of Efstathiou & Rowan-Robinson (1995). We have used two models, one including an optically thin cone component found to fit the SED of NGC 1068, and a coneless model. Although our modelling of the SEDs does not allow us to favor either model to account for all the observed SEDs, we find that the viewing angle towards the central source is well constrained by both models. The galaxies in our sample have fitted values of the viewing angle in the range Theta(sub V) = 0 deg - 64 deg, for the assumed model parameters. We have also investigated non-stellar color-color diagrams (L' - M vs. H - M and L' - M vs. H - L'). The colors of the Seyfert galaxies with viewing angles Theta(sub v) less than 30 deg are better reproduced with the cone model. These diagrams provide a good means to separate Seyfert 2s with moderate obscuration (A(sub V) approx. less than 20 mag from hard X-ray observations) from those with high obscuration. The ground-based 4.8 microns and ISO 9.6 microns luminosities are well correlated with the hard X-ray luminosities of Seyfert ls and 2s. These continuum emissions appear as a good indicator of the AGN luminosity, at least in the cases of hard X-ray Compton-thin Seyfert galaxies (N(sub H) less than or = 10(exp 24)/sq cm). We finally stress the finding that some Compton thick galaxies show bright non-stellar emission at 5 microns This suggests that the near-infrared emission in Seyfert galaxies is produced in an extended component illuminated by the central source, that is more visible from all viewing angles, providing a good explanation for the differing N(sub H)/A(sub V) ratios found in some Seyfert 2s. We discuss possible implications of mid-infrared surveys for the search of counterparts of highly obscured hard X-ray sources.
Temperature dependence of the water vapor continuum absorption in the 3-5 μm spectral region
NASA Astrophysics Data System (ADS)
Klimeshina, T. E.; Rodimova, O. B.
2013-04-01
Asymptotic line wing theory allows one to construct the line shape describing the frequency and temperature dependence of the self-broadened H2O continuum in the 3-5 μm spectral region obtained experimentally by CAVIAR and NIST. The H2O transmission functions are adequately described as well, using this line shape up to temperatures of ˜675 K and pressures of ˜10 atm.
NASA Technical Reports Server (NTRS)
France, Kevin; McCray, Richard; Penton, Steven V.; Kirshner, Robert P.; Challis, Peter; Laming, J. Martin; Bouchet, Patrice; Chevalier, Roger; Garnavich, Peter M.; Fransson, Claes;
2011-01-01
We present the most sensitive ultraviolet observations of Supernova 1987 A to date. Imaging spectroscopy from the Hubble Space Telescope-Cosmic Origins Spectrograph shows many narrow (Delta v approximates 300 km/s) emission lines from the circumstellar ring, broad Delta v approximates 10-20 x 10(exp 3) km/s) emission lines from the reverse shock, and ultraviolet continuum emission. The high signal-to-noise ratio (>40 per resolution element) broad Ly-alpha emission is excited by soft X-ray and EUV heating of mostly neutral gas in the circumstellar ring and outer supernova debris. The ultraviolet continuum at lambda > 1350 A can be explained by H-I two-photon (2s(exp 2)S(sub 1/2)-l(exp 2)S(sub 1/2)) emission from the same region. We confirm our earlier, tentative detection of N V lambda 1240 emission from the reverse shock and present the first detections of broad He II lambda1640, C IV lambda 1550, and N IV ] lambda1486 emission lines from the reverse shock. The helium abundance in the high-velocity material is He/H = 0.14 +/- 0.06. The N V /H alpha line ratio requires partial ion-electron equilibration (T(sub e)/T(sub p) approximately equal to 0.14-0.35). We find that the N/C abundance ratio in the gas crossing the reverse shock is significantly higher than that in the circumstellar ring, a result that may be attributed to chemical stratification in the outer envelope of the supernova progenitor. The N/C abundance may have been stratified prior to the ring expUlsion, or this result may indicate continued CNO processing in the progenitor subsequent to the expUlsion of the circumstellar ring.
Are some BL Lac objects artefacts of gravitational lensing?
NASA Technical Reports Server (NTRS)
Ostriker, J. P.; Vietri, M.
1985-01-01
It is proposed here that a significant fraction of BL Lac objects are optically violently variable quasars whose continuum emission has been greatly amplified, relative to the line emission, by pointlike gravitational lenses in intervening galaxies. Several anomalous physical and statistical properties of BL Lacs can be understood on the basis of this model, which is immediately testable on the basis of absorption line studies and by direct imaging.
Low-redshift Lyman continuum leaking galaxies with high [O III]/[O II] ratios
NASA Astrophysics Data System (ADS)
Izotov, Y. I.; Worseck, G.; Schaerer, D.; Guseva, N. G.; Thuan, T. X.; Fricke, K. J.; Verhamme, A.; Orlitová, I.
2018-05-01
We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993 - 0.4317 and with high emission-line flux ratios O32 = [O III]λ5007/[O II]λ3727 ˜ 8 - 27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2 - 72 per cent. A narrow Lyα emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ˜153 km s-1 to ˜ 345 km s-1. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M⋆, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.
FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.-J.; Min, K.-W.; Seon, K.-I.
2012-07-20
We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less
Far-infrared spectrophotometry of SN 1987A - Days 265 and 267
NASA Technical Reports Server (NTRS)
Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.
1989-01-01
The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.
NASA Astrophysics Data System (ADS)
Fuente, A.; Agúndez, M.; Cernicharo, J.; Goicoechea, J. R.; Bachiller, R.
2017-03-01
The transitional disk around the Herbig Ae star, AB Auriga, has been imaged in the dust continuum emission at 1mm and in the line using the NOEMA interferometer (IRAM) (beam 1.5”). This is the first image of SO ever in a protoplanetary disk (PPD). Simultaneously, we obtained images of the ^{13}CO 2→1, C^{18}O 2→1 and H_{2}CO 3_{0,3} → 2_{0,2} lines. The dust continuum and C^{18}O emissions present the horseshoe morphology that is characteristic of the existence of a dust trap, proving that this disk is at the stage of forming planets. In contrast, SO presents uniform emission all over the disk. We interpret that the uniform SO emission is the consequence of the SO molecules being rapidly converted to SO_{2} and frozen onto the grain mantles at the high densities close to the disk midplane (> 10^{7} cm^{-3}). SO is the second S-bearing molecule detected in a PPD (the first was CS) and opens the possibility to study the sulphur chemistry in a proto-solar nebula analog. Sulfur is widespread in the Solar System and the comprehension of the sulfur chemistry is of paramount importance to understand the formation of our planetary system.
NASA Technical Reports Server (NTRS)
Baptista, Raymundo; Horne, Keith; Wade, Richard A.; Hubeny, Ivan; Long, Knox S.; Rutten, Rene G. M.
1998-01-01
Time-resolved eclipse spectroscopy of the nova-like variable UX UMa obtained with the Hubble Space Telescope/Faint Object Spectrograph (HST/FOS) on 1994 August and November is analysed with eclipse mapping techniques to produce spatially resolved spectra of its accretion disk and gas stream as a function of distance from the disk centre. The inner accretion disk is characterized by a blue continuum filled with absorption bands and lines, which cross over to emission with increasing disk radius, similar to that reported at optical wavelengths. The comparison of spatially resolved spectra at different azimuths reveals a significant asymmetry in the disk emission at ultraviolet (UV) wavelengths, with the disk side closest to the secondary star showing pronounced absorption by an 'iron curtain' and a Balmer jump in absorption. These results suggest the existence of an absorbing ring of cold gas whose density and/or vertical scale increase with disk radius. The spectrum of the infalling gas stream is noticeably different from the disc spectrum at the same radius suggesting that gas overflows through the impact point at the disk rim and continues along the stream trajectory, producing distinct emission down to 0.1 R(sub LI). The spectrum of the uneclipsed light shows prominent emission lines of Lyalpha, N v lambda1241, SiIV Lambda 1400, C IV Lambda 1550, HeII Lambda 1640, and MgII Lambda 2800, and a UV continuum rising towards longer wavelengths. The Balmer jump appears clearly in emission indicating that the uneclipsed light has an important contribution from optically thin gas. The lines and optically thin continuum emission are most probably emitted in a vertically extended disk chromosphere + wind. The radial temperature profiles of the continuum maps are well described by a steady-state disc model in the inner and intermediate disk regions (R greater than or equal to 0.3R(sub LI) ). There is evidence of an increase in the mass accretion rate from August to November (from V = 10 (exp -8.3 +/-0.1) to 10(exp -8.1 +/- 0.1 solar mass yr(exp -1)), in accordance with the observed increase in brightness. Since the UX UMA disc seems to be in a high mass accretion, high-viscosity regime in both epochs, this result suggests that the mass transfer rate of UX UMA varies substantially (approximately equal to 50 per cent) on time-scales of a few months. It is suggested that the reason for the discrepancies between the prediction of the standard disk model and observations is not an inadequate treatment of radiative transfer in the disc atmosphere, but rather the presence of addition important sources of light in the system besides the accretion disk (e.g., optically thin contiuum emission from the disk wind and possible absorption by circumstellar cool gas).
Radio Detection of the Fermi-LAT Blind Search Millisecond Pulsar J1311-3430
NASA Astrophysics Data System (ADS)
Ray, P. S.; Ransom, S. M.; Cheung, C. C.; Giroletti, M.; Cognard, I.; Camilo, F.; Bhattacharyya, B.; Roy, J.; Romani, R. W.; Ferrara, E. C.; Guillemot, L.; Johnston, S.; Keith, M.; Kerr, M.; Kramer, M.; Pletsch, H. J.; Saz Parkinson, P. M.; Wood, K. S.
2013-01-01
We report the detection of radio emission from PSR J1311-3430, the first millisecond pulsar (MSP) discovered in a blind search of Fermi Large Area Telescope (LAT) gamma-ray data. We detected radio pulsations at 2 GHz, visible for <10% of ~4.5 hr of observations using the Green Bank Telescope (GBT). Observations at 5 GHz with the GBT and at several lower frequencies with Parkes, Nançay, and the Giant Metrewave Radio Telescope resulted in non-detections. We also report the faint detection of a steep spectrum continuum radio source (0.1 mJy at 5 GHz) in interferometric imaging observations with the Jansky Very Large Array. These detections demonstrate that PSR J1311-3430 is not radio quiet and provide additional evidence that radio-quiet MSPs are rare. The radio dispersion measure of 37.8 pc cm-3 provides a distance estimate of 1.4 kpc for the system, yielding a gamma-ray efficiency of 30%, typical of LAT-detected MSPs. We see apparent excess delay in the radio pulses as the pulsar appears from eclipse and we speculate on possible mechanisms for the non-detections of the pulse at other orbital phases and observing frequencies.
Remeasurement of the H I Gunn-Peterson Effect toward QSO PKS 1937-101 with Keck Observations
NASA Astrophysics Data System (ADS)
Fang, Yihu; Fan, Xiaoming; Tytler, David; Crotts, Arlin P. S.
1998-04-01
We present the first measurement of the H I Gunn-Peterson effect using the Keck 10 m telescope, observing the high-redshift QSO PKS 1937-101 (z = 3.787). The high-resolution echelle (HIRES) spectra, with FWHM ~15 km s-1 and a signal-to-noise ratio (S/N) ~50 per spectral resolution element, allows us to resolve many weak lines down to NH I = 1012 cm-2, thus reducing the line-blanketing problem compared with previous data. Based on intensity-distribution analysis, we find that a maximum likelihood best fit yields a Gunn-Peterson type of opacity τGP = 0.113 +/- 0.020 in addition to a power-law Lyα absorption-line population with β of 1.7 down to NH I = 1012 cm-2. There remains systematic uncertainty in this result because of problems extrapolating the spectral continuum from the red side of the Lyα emission line. This is consistent with the previous study of the same QSO in low S/N data using weighted intensity function analysis (Fang & Crotts 1995). It indicates that this previous method succeeds in measuring the Lyα forest continuum level at low S/N, which is essential in extending the technique to possible fainter QSOs with minimum emission-line contamination for reliable continuum extrapolation. We further discuss problems of severe line blanketing, even in Keck spectra for QSOs at z >= 4.5, and show the effectiveness of the weighted intensity function method in measuring continuum levels in extremely crowded Lyα absorption spectra for redshifts as high as z > 5.
Optical fiber sources and transmission controls for multi-Tb/s systems
NASA Astrophysics Data System (ADS)
Nowak, George Adelbert
The accelerating demand for bandwidth capacity in backbone links of terrestrial communications systems is projected to exceed 1Tb/s by 2002. Lightwave carrier frequencies and fused-silica optical fibers provide the natural combination of high passband frequencies and low- loss medium to satisfy this evolving demand for bandwidth capacity. This thesis addresses three key technologies for enabling multi-Tb/s optical fiber communication systems. The first technology is a broadband source based on supercontinuum generation in optical fiber. Using a single modelocked laser with output pulsewidths of 0.5psec pulses, we generate in ~2m of dispersion-shifted fiber more that 200nm of spectral continuum in the vicinity of 1550nm that is flat to better than +/- 0.5 dB over more than 60nm. The short fiber length prevents degradation of timing jitter of the seed pulses and preserves coherence of the continuum by inhibiting environmental perturbations and mapping of random noise from the vicinity of the input pulse across the continuum. Through experiments and simulations, we find that the continuum characteristics result from 3rd order dispersion effects on higher-order soliton compression. We determine optimal fiber properties to provide desired continuum broadness and flatness for given input pulsewidth and energy conditions. The second technology is a novel delay-shifted nonlinear optical loop mirror (DS-NOLM) that performs a transmission control function by serving as an intensity filter and frequency compensator for <5psec soliton transmission systems. A theoretical and experimental study of the DS-NOLM as a transmission control element in a periodically amplified soliton transmission system is presented. We show that DS-NOLMs enable 4ps soliton transmission over 75km of standard dispersion fiber, with 25km spacing between amplifiers, by filtering the dispersive waves and compensating for Raman-induced soliton self-frequency shift. The third technology is all-fiber wavelength conversion employing induced modulational instability. We obtain wavelength conversion over 40nm with a peak conversion efficiency of 28dB using 600mW pump pulses in 720m of high-nonlinearity optical fiber. We show that the high- nonlinearity fiber enhances the phase-matching bandwidth as well as reducing the required fiber lengths and pump powers.
Observation of beta-induced Alfvén Eigenmode in J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Liu, Linzi; He, Jiyang; Hu, Qiming; Zhuang, Ge
2015-06-01
High-frequency oscillations have been frequently observed under the conditions of tearing modes and runaway electrons in J-TEXT Ohmic plasmas. It is found the frequencies of these oscillations range from 20 to 45 kHz, being consistent with the beta-induced Alfvén Eigenmodes (BAEs) with the same order of the low-frequency gap induced by finite beta effects and the coupling of the shear Alfvén wave with the compressional response of the plasma. The exciting conditions for BAEs are investigated, which indicate that runaway electrons, as well as magnetic perturbations contributed by magnetic islands, are indispensable in the excitation of BAEs. In addition, externally applied static resonant magnetic perturbations (RMPs) are used to excite BAEs successfully for the first time in J-TEXT, as indicated by high frequency oscillations (~30 kHz). Further studies show that BAEs can be excited only when the coil current of RMP is stronger than 4 kA, and the strength of BAEs becomes stronger with stronger RMP. To assess the verification of the BAEs, the frequencies of observed modes are compared to the calculated frequencies of the BAE frequency gap in the Alfvén continuum, namely the continuum accumulation point (CAP), and they are found to be close.
Bound states in the continuum on periodic structures: perturbation theory and robustness.
Yuan, Lijun; Lu, Ya Yan
2017-11-01
On periodic structures, a bound state in the continuum (BIC) is a standing or propagating Bloch wave with a frequency in the radiation continuum. Some BICs (e.g., antisymmetric standing waves) are symmetry protected, since they have incompatible symmetry with outgoing waves in the radiation channels. The propagating BICs do not have this symmetry mismatch, but they still crucially depend on the symmetry of the structure. In this Letter, a perturbation theory is developed for propagating BICs on two-dimensional periodic structures. The Letter shows that these BICs are robust against structural perturbations that preserve the symmetry, indicating that these BICs, in fact, are implicitly protected by symmetry.
NASA Technical Reports Server (NTRS)
Chartas, G.; Flanagan, K.; Hughes, J. P.; Kellogg, E. M.; Nguyen, D.; Zombek, M.; Joy, M.; Kolodziejezak, J.
1993-01-01
The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters, correcting for the reflectivity of the mirror and convolving with the detector response.
NASA Technical Reports Server (NTRS)
Chartas, G.; Flanagan, Kathy; Hughes, John P.; Kellogg, Edwin M.; Nguyen, D.; Zombeck, M.; Joy, M.; Kolodziejezak, J.
1992-01-01
The VETA-I mirror was calibrated with the use of a collimated soft X-ray source produced by electron bombardment of various anode materials. The FWHM, effective area and encircled energy were measured with the use of proportional counters that were scanned with a set of circular apertures. The pulsers from the proportional counters were sent through a multichannel analyzer that produced a pulse height spectrum. In order to characterize the properties of the mirror at different discrete photon energies one desires to extract from the pulse height distribution only those photons that originated from the characteristic line emission of the X-ray target source. We have developed a code that fits a modeled spectrum to the observed X-ray data, extracts the counts that originated from the line emission, and estimates the error in these counts. The function that is fitted to the X-ray spectra includes a Prescott function for the resolution of the detector a second Prescott function for a pileup peak and a X-ray continuum function. The continuum component is determined by calculating the absorption of the target Bremsstrahlung through various filters correcting for the reflectivity of the mirror and convolving with the detector response.
A Non-parametric Approach to Constrain the Transfer Function in Reverberation Mapping
NASA Astrophysics Data System (ADS)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming
2016-11-01
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (I.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
Spectrophotometry of Comet West
NASA Technical Reports Server (NTRS)
Ahearn, M. F.; Hanisch, R. J.; Thurber, C. H.
1980-01-01
Postperihelion observations of Comet West (1975n = 1976 VI) have been made with a Fourier transform spectrometer at heliocentric distances from 0.57 to 1.68 AU. Measurements were made of the emission bands of C2, CN, C3, CH, and NH2, as well as the emission lines of Na D and forbidden (O I), and the flux in the continuum in nine different bandpasses. Several ratios of the band strengths of CN have been used to determine the two free parameters in the fluorescence equilibrium model of CN of Danks and Arpigny (1973). From the values of the parameters it is inferred that the vibrational transition probability for the ground electronic state is between 0.025 and 0.075 per sec and that the ratio of oscillator strengths between the (0-0) bands of the violet and red systems is between 25 and 30. When corrected for field-of-view effects, NH2 shows no systematic variation in abundance relative to C2 while CH shows a small increase. The cometary continuum is found to be slightly redder than the solar continuum, consistent with results for other bright, dusty comets. The equivalent width of the Delta u = 0 sequence of C2 shows a marked decrease at r(H) = 1.2 AU.
A Deep X-Ray View of the Synchrotron-dominated Supernova Remnant G330.2+1.0
NASA Astrophysics Data System (ADS)
Williams, Brian J.; Hewitt, John W.; Petre, Robert; Temim, Tea
2018-03-01
We present moderately deep (125 ks) XMM-Newton observations of supernova remnant G330.2+1.0. This remnant is one of only a few known that fall into the “synchrotron-dominated” category, with the emission almost entirely dominated by a nonthermal continuum. Previous X-ray observations could only characterize the spectra of a few regions. Here, we examine the spectra from 14 regions surrounding the entire rim, finding that the spectral properties of the nonthermal emission do not vary significantly in any systematic way from one part of the forward shock to another, unlike several other remnants of this class. We confirm earlier findings that the power-law index, Γ, ranges from about 2.1–2.5, while the absorbing column density is generally between (2.0–2.6) × 1022 cm‑2. Fits with the srcut model find values of the roll-off frequency in the range of 1017.1–1017.5 Hz, implying energies of accelerated electrons of ∼100 TeV. These values imply a high shock velocity of ∼4600 km s‑1, favoring a young age of the remnant. Diffuse emission from the interior is nonthermal in origin as well, and fits to these regions yield similar values to those along the rim, also implying a young age. Thermal emission is present in the east, and the spectrum is consistent with a ∼650 km s‑1 shock wave encountering interstellar or circumstellar material with a density of ∼1 cm‑3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocharov, Leon; Usoskin, Ilya; Pohjolainen, Silja
We analyze the high-energy particle emission from the Sun in two extreme solar particle events in which protons are accelerated to relativistic energies and can cause a significant signal even in the ground-based particle detectors. Analysis of a relativistic proton event is based on modeling of the particle transport and interaction, from a near-Sun source through the solar wind and the Earth’s magnetosphere and atmosphere to a detector on the ground. This allows us to deduce the time profile of the proton source at the Sun and compare it with observed electromagnetic emissions. The 1998 May 2 event is associatedmore » with a flare and a coronal mass ejection (CME), which were well observed by the Nançay Radioheliograph, thus the images of the radio sources are available. For the 2003 November 2 event, the low corona images of the CME liftoff obtained at the Mauna Loa Solar Observatory are available. Those complementary data sets are analyzed jointly with the broadband dynamic radio spectra, EUV images, and other data available for both events. We find a common scenario for both eruptions, including the flare’s dual impulsive phase, the CME-launch-associated decimetric-continuum burst, and the late, low-frequency type III radio bursts at the time of the relativistic proton injection into the interplanetary medium. The analysis supports the idea that the two considered events start with emission of relativistic protons previously accelerated during the flare and CME launch, then trapped in large-scale magnetic loops and later released by the expanding CME.« less
Self-consistent continuum solvation for optical absorption of complex molecular systems in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timrov, Iurii; Biancardi, Alessandro; Andreussi, Oliviero
2015-01-21
We introduce a new method to compute the optical absorption spectra of complex molecular systems in solution, based on the Liouville approach to time-dependent density-functional perturbation theory and the revised self-consistent continuum solvation model. The former allows one to obtain the absorption spectrum over a whole wide frequency range, using a recently proposed Lanczos-based technique, or selected excitation energies, using the Casida equation, without having to ever compute any unoccupied molecular orbitals. The latter is conceptually similar to the polarizable continuum model and offers the further advantages of allowing an easy computation of atomic forces via the Hellmann-Feynman theorem andmore » a ready implementation in periodic-boundary conditions. The new method has been implemented using pseudopotentials and plane-wave basis sets, benchmarked against polarizable continuum model calculations on 4-aminophthalimide, alizarin, and cyanin and made available through the QUANTUM ESPRESSO distribution of open-source codes.« less
Line-dependent veiling in very active classical T Tauri stars
NASA Astrophysics Data System (ADS)
Rei, A. C. S.; Petrov, P. P.; Gameiro, J. F.
2018-02-01
Context. The T Tauri stars with active accretion disks show veiled photospheric spectra. This is supposedly due to non-photospheric continuum radiated by hot spots beneath the accretion shocks at stellar surface and/or chromospheric emission lines radiated by the post-shocked gas. The amount of veiling is often considered as a measure of the mass-accretion rate. Aim. We analysed high-resolution photospheric spectra of accreting T Tauri stars LkHα 321, V1331 Cyg, and AS 353A with the aim of clarifying the nature of the line-dependent veiling. Each of these objects shows a strong emission line spectrum and powerful wind features indicating high rates of accretion and mass loss. Methods: Equivalent widths of hundreds of weak photospheric lines were measured in the observed spectra of high quality and compared with those in synthetic spectra of appropriate models of stellar atmospheres. Results: The photospheric spectra of the three T Tauri stars are highly veiled. We found that the veiling is strongly line-dependent: larger in stronger photospheric lines and weak or absent in the weakest ones. No dependence of veiling on excitation potential within 0 to 5 eV was found. Different physical processes responsible for these unusual veiling effects are discussed in the framework of the magnetospheric accretion model. Conclusions: The observed veiling has two origins: (1) an abnormal structure of stellar atmosphere heated up by the accreting matter, and (2) a non-photospheric continuum radiated by a hot spot with temperature lower than 10 000 K. The true level of the veiling continuum can be derived by measuring the weakest photospheric lines with equivalent widths down to ≈10 mÅ. A limited spectral resolution and/or low signal-to-noise ratio results in overestimation of the veiling continuum. In the three very active stars, the veiling continuum is a minor contributor to the observed veiling, while the major contribution comes from the line-dependent veiling.
IRIS Ultraviolet Spectral Properties of a Sample of X-Class Solar Flares
NASA Astrophysics Data System (ADS)
Butler, Elizabeth; Kowalski, Adam; Cauzzi, Gianna; Allred, Joel C.; Daw, Adrian N.
2018-06-01
The white-light (near-ultraviolet (NUV) and optical) continuum emission comprises the majority of the radiated energy in solar flares. However, there are nearly as many explanations for the origin of the white-light continuum radiation as there are white-light flares that have been studied in detail with spectra. Furthermore, there are rarely robust constraints on the time-resolved dynamics in the white-light emitting flare layers. We are conducting a statistical study of the properties of Fe II lines, Mg II lines, and NUV continuum intensity in bright flare kernels observed by the Interface Region Imaging Spectrograph (IRIS), in order to provide comprehensive constraints for radiative-hydrodynamic flare models. Here we present a new technique for identifying bright flare kernels and preliminary relationships among IRIS spectral properties for a sample of X-class solar flares.
VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)
NASA Astrophysics Data System (ADS)
Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.
2007-11-01
We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).
Where is OH and Does It Trace the Dark Molecular Gas (DMG)?
NASA Astrophysics Data System (ADS)
Li, Di; Tang, Ningyu; Nguyen, Hiep; Dawson, J. R.; Heiles, Carl; Xu, Duo; Pan, Zhichen; Goldsmith, Paul F.; Gibson, Steven J.; Murray, Claire E.; Robishaw, Tim; McClure-Griffiths, N. M.; Dickey, John; Pineda, Jorge; Stanimirović, Snežana; Bronfman, L.; Troland, Thomas; PRIMO Collaboration
2018-03-01
Hydroxyl (OH) is expected to be abundant in diffuse interstellar molecular gas because it forms along with H2 under similar conditions and forms within a similar extinction range. We have analyzed absorption measurements of OH at 1665 MHz and 1667 MHz toward 44 extragalactic continuum sources, together with the J = 1–0 transitions of 12CO, 13CO, and C18O, and the J = 2–1 transition of 12CO. The excitation temperatures of OH were found to follow a modified lognormal distribution f({T}ex})\\propto \\tfrac{1}{\\sqrt{2π }σ }\\exp ≤ft[-\\tfrac{{[{ln}({T}ex})-{ln}(3.4{{K}})]}2}{2{σ }2}\\right], the peak of which is close to the temperature of the Galactic emission background (CMB+synchrotron). In fact, 90% of the OH has excitation temperatures within 2 K of the Galactic background at the same location, providing a plausible explanation for the apparent difficulty of mapping this abundant molecule in emission. The opacities of OH were found to be small and to peak around 0.01. For gas at intermediate extinctions (AV ∼ 0.05–2 mag), the detection rate of OH with a detection limit N(OH) ≃ 1012 cm‑2 is approximately independent of AV. We conclude that OH is abundant in the diffuse molecular gas and OH absorption is a good tracer of “dark molecular gas (DMG).” The measured fraction of DMG depends on the assumed detection threshold of the CO data set. The next generation of highly sensitive low-frequency radio telescopes, such as FAST and SKA, will make feasible the systematic inventory of diffuse molecular gas through decomposing, in velocity, the molecular (e.g., OH and CH) absorption profiles toward background continuum sources with numbers exceeding what is currently available by orders of magnitude.
The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7
NASA Astrophysics Data System (ADS)
Tobin, John J.; Bos, Steven P.; Dunham, Michael M.; Bourke, Tyler L.; van der Marel, Nienke
2018-04-01
We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L ⊙. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO (J=2\\to 1), C18O (J=2\\to 1), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R ‑1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M ⊙.
Tilting-filter measurements in dayglow rocket photometry.
Schaeffer, R C; Fastie, W G
1972-10-01
A rocket-borne photometer containing two tilting-filter channels for the measurement of the [OI] lambdalambda6300-A and 5577A emission lines in the day airglow is described. The results of one flight substantiate the employment of tilting filters to determine accurate corrections for background continuum and provide reliable height profiles of emission intensity down to approximately 90 km. Discussions on the calibration of the instrument and its baffling against sunlight are also presented.
The discovery of pulsed iron line emission from Centaurus X-3
NASA Technical Reports Server (NTRS)
Day, C. S. R.; Nagase, F.; Asai, K.; Takeshima, T.
1993-01-01
We present the first discovery of pulsed iron line emission from an X-ray binary, namely Cen X-3. Compared with the continuum pulsations, the iron line pulsations are shallow (50 percent change in amplitude), smeared (the profile is a single-peaked sinusoid) and phase-shifted (by about half a cycle). We also discuss the constraints on the origin of the line imposed by this discovery and by other observations.
Ultraviolet Imaging Telescope observations of the Crab Nebula
NASA Technical Reports Server (NTRS)
Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.
1992-01-01
We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.
REVIEWS OF TOPICAL PROBLEMS: Gamma astronomy of the Sun and study of solar cosmic rays
NASA Astrophysics Data System (ADS)
Kuzhevskiĭ, B. M.
1982-06-01
A detailed discussion is given of the various nuclear reactions proceeding in the Sun's atmosphere under the influence of flare-accelerated particles. The role of such reactions in formation of the line spectrum and continuum of gamma-rays from the disturbed and quiet Sun is discussed. The gamma-ray fluxes in individual lines and in the continuum are estimated. The possibility of applying data on gamma-ray emission from the Sun to analysis of particle acceleration in solar flares and the conditions of their ejection into interplanetary space is analyzed.
The Amazing COS FUV (1320 - 1460 A) Spectrum of (lambda) Vel (K4Ib-II)
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2010-01-01
The FUV spectrum (1320-1460 A) of the K4 lb-11 supergiant (lambda) Vel was observed with the Cosmic Origins Spectrograph (COS) on HST, as part of the Ayres and Redfield Cycle 17 SNAP program "SNAPing Coronal Iron". This spectrum covers a region not previously recorded in (lambda) Vel at high resolution and, in a mere 20 minutes of exposure, reveals a treasure trove of information. It shows a wide variety of strong emission lines, superposed on a bright continuum, with contributions from both atomic and molecular species. Multiple absorptions, including numerous Ni II and Fe II lines, are visible over this continuum, which is likely generated in the chromosphere of the star. Evidence of the stellar wind is seen in the P Cygni profiles of the CII lines near 1335 A and the results of fluorescence processes are visible throughout the region. The spectrum has remarkable similarities to that of (alpha) Boo (K1.5 III), but significant differences as well, including substantial FUV continuum emission, reminiscent of the M2 Iab supergiant (alpha) Ori, but minus the CO fundamental absorption bands seen in the spectrum of the latter star. However, fluoresced CO emission is present, as in the K-giant stars (alpha) Boo and (alpha) Tau (K5 III). The presence of hot plasma in the atmosphere of the star, indicated by previous GHRS observations of Si III] and C III] lines near 1900 A and FUSE observations of O VI 1032 A, is further confirmed by the detection in this COS spectrum of the Si IV UV 1 lines near 1400 A, though both lines are contaminated by overlying fluorescent H2 emission. We present the details of this spectrum, in comparison with stars of similar temperature or luminosity and discuss the implications for the structure of, and the radiative processes active in, the outer atmospheres of these stars.
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Brogan, C. L.; MacLeod, G. C.; Cyganowski, C. J.; Chibueze, J. O.; Friesen, R.; Hirota, T.; Smits, D. P.; Chandler, C. J.; Indebetouw, R.
2018-02-01
We report the first sub-arcsecond VLA imaging of 6 GHz continuum, methanol maser, and excited-state hydroxyl maser emission toward the massive protostellar cluster NGC 6334I following the recent 2015 outburst in (sub)millimeter continuum toward MM1, the strongest (sub)millimeter source in the protocluster. In addition to detections toward the previously known 6.7 GHz Class II methanol maser sites in the hot core MM2 and the UCHII region MM3 (NGC 6334F), we find new maser features toward several components of MM1, along with weaker features ∼1″ north, west, and southwest of MM1, and toward the nonthermal radio continuum source CM2. None of these areas have heretofore exhibited Class II methanol maser emission in three decades of observations. The strongest MM1 masers trace a dust cavity, while no masers are seen toward the strongest dust sources MM1A, 1B, and 1D. The locations of the masers are consistent with a combination of increased radiative pumping due to elevated dust grain temperature following the outburst, the presence of infrared photon propagation cavities, and the presence of high methanol column densities as indicated by ALMA images of thermal transitions. The nonthermal radio emission source CM2 (2″ north of MM1) also exhibits new maser emission from the excited 6.035 and 6.030 GHz OH lines. Using the Zeeman effect, we measure a line-of-sight magnetic field of +0.5 to +3.7 mG toward CM2. In agreement with previous studies, we also detect numerous methanol and excited OH maser spots toward the UCHII region MM3, with predominantly negative line-of-sight magnetic field strengths of ‑2 to ‑5 mG and an intriguing south–north field reversal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pérez, Laura M.; Chandler, Claire J.; Isella, Andrea
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations in the dust continuum (690 GHz, 0.45 mm) and {sup 12}CO J = 6-5 spectral line emission of the transitional disks surrounding the stars SAO 206462 and SR 21. These ALMA observations resolve the dust-depleted disk cavities and extended gaseous disks, revealing large-scale asymmetries in the dust emission of both disks. We modeled these disk structures with a ring and an azimuthal Gaussian, where the azimuthal Gaussian is motivated by the steady-state vortex solution from Lyra and Lin. Compared to recent observations of HD 142527, Oph IRS 48, and LkHα 330, these are low-contrastmore » (≲ 2) asymmetries. Nevertheless, a ring alone is not a good fit, and the addition of a vortex prescription describes these data much better. The asymmetric component encompasses 15% and 28% of the total disk emission in SAO 206462 and SR 21, respectively, which corresponds to a lower limit of 2 M {sub Jup} of material within the asymmetry for both disks. Although the contrast in the dust asymmetry is low, we find that the turbulent velocity inside it must be large (∼20% of the sound speed) in order to drive these azimuthally wide and radially narrow vortex-like structures. We obtain residuals from the ring and vortex fitting that are still significant, tracing non-axisymmetric emission in both disks. We compared these submillimeter observations with recently published H-band scattered light observations. For SR 21 the scattered light emission is distributed quite differently from the submillimeter continuum emission, while for SAO 206462 the submillimeter residuals are suggestive of spiral-like structure similar to the near-IR emission.« less
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Okuda, H.
1984-01-01
It is shown by means of plasma numerical simulations that long-wavelength ordinary mode electromagnetic radiation can be generated from short-wavelength electrostatic waves near the upper hybrid resonance frequency in an inhomogeneous plasma. A possible relation of this process to nonthermal continuum radiation in the magnetosphere is discussed.
Fermi-Compton scattering due to magnetopause surface fluctuations in Jupiter's magnetospheric cavity
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1981-01-01
The effects of boundary surface fluctuations on a spectrum of electromagnetic radiation trapped in a high Q (quality) cavity are considered. Undulating walls introduce small frequency shifts at reflection to the radiation, and it is argued that the process is entirely analogous to both Fermi (particle) acceleration and inverse Compton scattering. A Fokker-Planck formalism is pursued; it yields a diffusion equation in frequency for which the Green's function and steady-state solutions are found. Applying this analysis to the Jovian continuum radiation discovered by Voyager spacecraft, it is suggested that characteristic diffusion times are greater than 1 year, and that in order to account for the steep frequency spectra observed, an unidentified loss mechanism must operate in the cavity with a decay time constant approximately equal to the characteristic diffusion time divided by 28. A radiator-reactor model of the cavity is investigated to provide an estimate for the intrinsic luminosity of the low frequency (approximately 100 Hz) continuum source whose power is approximately 7 x 10 to the 6th W.
ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179
NASA Astrophysics Data System (ADS)
Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen
2017-08-01
We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitherer, Claus; Lee, Janice C.; Hernandez, Svea
We report on the detection of Lyman continuum radiation in two nearby starburst galaxies. Tol 0440-381, Tol 1247-232, and Mrk 54 were observed with the Cosmic Origins Spectrograph on board the Hubble Space Telescope . The three galaxies have radial velocities of ∼13,000 km s{sup −1}, permitting a ∼35 Å window on the restframe Lyman continuum shortward of the Milky Way Lyman edge at 912 Å. The chosen instrument configuration using the G140L grating covers the spectral range from 912 to 2000 Å. We developed a dedicated background subtraction method to account for the temporal and spatial background variations ofmore » the detector, which is crucial at the low flux levels around 912 Å. This modified pipeline allowed us to significantly improve the statistical and systematic detector noise and will be made available to the community. We detect Lyman continuum in all three galaxies. However, we conservatively interpret the emission in Tol 0440-381 as an upper limit due to possible contamination by geocoronal Lyman series lines. We determined the current star formation properties from the far-ultraviolet continuum and spectral lines and used synthesis models to predict the Lyman continuum radiation emitted by the current population of hot stars. We discuss various model uncertainties such as, among others, atmospheres and evolution models. Lyman continuum escape fractions were derived from a comparison between the observed and predicted Lyman continuum fluxes. Tol 1247-232, Mrk 54, and Tol 0440-381 have absolute escape fractions of (4.5 ± 1.2)%, (2.5 ± 0.72)%, and <(7.1 ± 1.1)%, respectively.« less
NASA Technical Reports Server (NTRS)
Stirpe, G. M.; Winge, C.; Altieri, B.; Alloin, D.; Aguero, E. L.; Anupama, G. C.; Ashley, R.; Bertram, R.; Calderon, J. H.; Catchpole, R. M.
1994-01-01
The Seyfert 1 galaxy NGC 3783 was intensely monitored in several bands between 1991 December and 1992 August. This paper presents the results from the ground-based observations in the optical and near-IR bands, which complement the data set formed by the International Ultraviolet Explorer (IUE) spectra, discussed elsewhere. Spectroscopic and photometric data from several observatories were combined in order to obtain well-sampled light curves of the continuum and of H(beta). During the campaign the source underwent significant variability. The light curves of the optical continuum and of H(beta) display strong similarities to those obtained with the IUE. The near-IR flux did not vary significantly except for a slight increase at the end of the campaign. The cross-correlation analysis shows that the variations of the optical continuum have a lag of 1 day or less with respect to those of the UV continuum, with an uncertainty of is less than or equal to 4 days. The integrated flux of H(beta) varies with a delay of about 8 days. These results confirm that (1) the continuum variations occur simultaneously or with a very small lag across the entire UV-optical range, as in the Seyfert galaxy NGC 5548; and (2) the emission lines of NGC 3783 respond to ionizing continuum variations with less delay than those of NGC 5548. As observed in NGC 5548, the lag of H(beta) with respect to the continuum is greater than those of the high-ionization lines.
IUE observations and interpretation of the symbiotic star RW Hya
NASA Astrophysics Data System (ADS)
Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.
The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with Teff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented.
Complex molecules in Sagittarius B2(N): The importance of grain chemistry
NASA Technical Reports Server (NTRS)
Miao, Yanti; Mehringer, David M.; Kuan, Yi-Jheng; Snyder, Lewis E.
1995-01-01
The complex molecules vinyl cyanide (CH2CHCN), methyl formate (HCOOCH3), and ethyl cyanide (CH3CH2CN) were observed in the Sgr B2 star-forming region with the BIMA millimeter wavelength array. A region with diameter less than 0.1 pc toward the Sgr B2(N) molecular core is found to be the major source of these molecules. Also, this source is coincident with continuum emission from dust and a center of H2O maser activity. Ultracompact (UC) H 11 regions are located within 0.1 pc. Strikingly, none of these molecules is detected toward Sgr B2(M), a core located 1 minute south of Sgr B2(N). The existence of complex molecules, a large mass of dust, high-velocity H2O masers, and UC H 11 regions strongly suggests that the Sgr B2(N) region has just begun to form stars, while the absence of strong dust emission and large molecules suggests Sgr B2(M) is more evolved. The detection of large molecules coincident with continuum emission from dust supports the idea found in current chemical models that grain chemistry is of crucial importance for the formation of these molecules.
A VLA 3.6 centimeter survey of N-type carbon stars
NASA Technical Reports Server (NTRS)
Luttermoser, Donald G.; Brown, Alexander
1992-01-01
The results are presented of a VLA-continuum survey of 7 N-type carbon stars at 3.6 cm. Evidence exists for hot plasma around such stars; the IUE satellite detected emission lines of singly ionized metals in the optically brightest carbon stars, which in solar-type stars indicate the existence of a chromosphere. In the past, these emission lines were used to constrain the lower portion of the archetypical chromospheric model of N-type carbon stars, that of TX Psc. Five of the survey stars are semiregular (1 SRa and 4 SRb) variables and two are irregular (Lb) variables. Upper limits of about 0.07 mJy are set of the SRb and Lb variables and the lone SRa (V Hya) was detected with a flux of 0.22 mJy. The upper limits for the six stars that are not detected indicate that the temperature in their winds is less than 10,000 K. Various scenarios for the emission from V Hya are proposed, and it is suggested that the radio continuum is shock-related (either due to pulsation or the suspected bipolar jet) and not due to a supposed accretion disk around an unseen companion.
Polarization of the changing-look quasar J1011+5442
NASA Astrophysics Data System (ADS)
Hutsemékers, D.; Agís González, B.; Sluse, D.; Ramos Almeida, C.; Acosta Pulido, J.-A.
2017-07-01
If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We measured the polarization of the changing-look quasar J1011+5442 in which the broad emission lines have disappeared between 2003 and 2015. We found a polarization degree compatible with null polarization. This measurement suggests that the observed change of look is not due to a change of obscuration hiding the continuum source and the broad line region, and that the quasar is seen close to the system axis. Our results thus support the idea that the vanishing of the broad emission lines in J1011+5442 is due to an intrinsic dimming of the ionizing continuum source that is most likely caused by a rapid decrease in the rate of accretion onto the supermassive black hole. Based on observations made with the William Herschel telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.
Spatial and Temporal Stability of Airglow Measured in the Meinel Band Window at 1191.3 nm
NASA Astrophysics Data System (ADS)
Nguyen, Hien T.; Zemcov, Michael; Battle, John; Bock, James J.; Hristov, Viktor; Korngut, Phillip; Meek, Andrew
2016-09-01
We report on the temporal and spatial fluctuations in the atmospheric brightness in the narrow band between Meinel emission lines at 1191.3 nm using a λ/Δλ = 320 near-infrared instrument. We present the instrument design and implementation, followed by a detailed analysis of data taken over the course of a night from Table Mountain Observatory. At low airmasses, the absolute sky brightness at this wavelength is found to be 5330 ± 30 nW m-2 sr-1, consistent with previous measurements of the inter-band airglow at these wavelengths. This amplitude is larger than simple models of the continuum component of the airglow emission at these wavelengths, confirming that an extra emissive or scattering component is required to explain the observations. We perform a detailed investigation of the noise properties of the data and find no evidence for a noise component associated with temporal instability in the inter-line continuum. This result demonstrates that in several hours of ˜100 s integrations the noise performance of the instrument does not appear to significantly degrade from expectations, giving a proof of concept that near-infrared line intensity mapping may be feasible from ground-based sites.
IUE observations and interpretation of the symbiotic star RW Hya
NASA Technical Reports Server (NTRS)
Kafatos, M.; Michalitsianos, A. G.; Hobbs, R. W.
1981-01-01
The IUE observations of the high excitation symbiotic star RW Hya (gM2 + pec) are discussed. Analysis of the intense UV continuum observed between 1100 A to 2000 A suggests this star is a binary system in which the secondary is identified as a hot subdwarf with T sub eff being approximately 100,000 K. A distance to the system of 1000 pc is deduced. The UV spectrum consists of mainly semiforbidden and allowed transition lines of which the CIV (1548 A, 1550 A) emission lines are particularly strong, and UV continuum at both shorter and longer wavelengths. Strong forbidden lines seem to be absent suggesting the presence of a nebula of high densities. Tidal interaction between the red giant primary and the hot subdwarf is suggested as a likely means to form the observed nebula. RW Hya is suggested as a possible source of soft X-ray emission from material accreting onto the surface of the hot subdwarf. Detection of such emission with HEAO-B would give information if this accretion is taking place via Roche lobe overlow or via capture from a stellar wind emitted by the primary. A general discussion of elemental and ionic abundances in the nebula is also presented.
The near-infrared radius-luminosity relationship for active galactic nuclei
NASA Astrophysics Data System (ADS)
Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita
2011-05-01
Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Wontae; Dec, John; Sjoeberg, Magnus
The temporal phases of autoignition and combustion in an HCCI engine have been investigated in both an all-metal engine and a matching optical engine. Gasoline, a primary reference fuel mixture (PRF80), and several representative real-fuel constituents were examined. Only PRF80, which is a two-stage ignition fuel, exhibited a ''cool-flame'' low-temperature heat-release (LTHR) phase. For all fuels, slow exothermic reactions occurring at intermediate temperatures raised the charge temperature to the hot-ignition point. In addition to the amount of LTHR, differences in this intermediate-temperature heat-release (ITHR) phase affect the fuel ignition quality. Chemiluminescence images of iso-octane show a weak and uniform lightmore » emission during this phase. This is followed by the main high-temperature heat-release (HTHR) phase. Finally, a ''burnout'' phase was observed, with very weak uniform emission and near-zero heat-release rate (HRR). To better understand these combustion phases, chemiluminescence spectroscopy and chemical-kinetic analysis were applied for the single-stage ignition fuel, iso-octane, and the two-stage fuel, PRF80. For both fuels, the spectrum obtained during the ITHR phase was dominated by formaldehyde chemiluminescence. This was similar to the LTHR spectrum of PRF80, but the emission intensity and the temperature were much higher, indicating differences between the ITHR and LTHR phases. Chemical-kinetic modeling clarified the differences and similarities between the LTHR and ITHR phases and the cause of the enhanced ITHR with PRF80. The HTHR spectra for both fuels were dominated by a broad CO continuum with some contribution from bands of HCO, CH, and OH. The modeling showed that the CO+ O{yields}CO{sub 2}+h{nu} reaction responsible for the CO continuum emission tracks the HTHR well, explaining the strong correlation observed experimentally between the total chemiluminescence and HRR during the HTHR phase. It also showed that the CO continuum does not contribute to the ITHR and LTHR chemiluminescence. Bands of H{sub 2}O and O{sub 2} in the red and IR regions were also detected during the HTHR, which the data indicated were most likely due to thermal excitation. The very weak light emission in the ''burnout'' phase also appeared to be thermal emission from H{sub 2}O and O{sub 2}. (author)« less
NASA Astrophysics Data System (ADS)
Hein, J. D.; Johnson, P. V.; Liu, X.; Malone, C. P.; Khakoo, M. A.
2014-12-01
Shemansky et al. (2009, Planetary and Space Science 57: 1659-1670) have reported observations of hydrogen atoms flowing out of the top of Saturn's sunlit thermosphere in a confined, distinct plume of ballistic and escaping orbits, and a continuous distribution of H atoms from the top of Saturn's atmosphere to at least 45 Saturn radii (RS) in the satellite orbital plane and to 25 RS azimuthally above and below the plane. These observations have revealed the importance of the excitation of H2 by low energy electrons. H2 is efficiently excited to the triplet states by low energy electrons, and all triplet excitations result in the dissociation of H2 and the production of hot H atoms. Because of this, the electron impact excitation of H2 is an important energy deposition mechanism in the upper atmospheres of Saturn and other giant planets. The a 3Σg+ - b 3Σu continuum transition, which dominates all other H2 transitions in the 168-190 nm region, provides a unique spectral window through which the triplet transition can be observed with the Cassini spacecraft. The excitation and emission cross sections of the a 3Σg+ state and other triplet states are required for the extraction of the triplet emission and excitation rates from the apparent emission rate measured by the spacecraft. These emission and excitation rates, in turn, help to determine the energy deposition rate by electron impact excitation. Unfortunately, large discrepancies exist between published measurements of the a 3Σg+ - b 3Σu continuum transition. In order to begin to address this issue, we have recently revisited the problem by measuring electron impact induced a 3Σg+ - b 3Σu emission cross sections. We have also measured direct excitation cross sections of the triplet a 3Σg+ state. Using these, we are able to partition the excitation function into its direct and cascade components. As stated above, these results will enable improved understanding of phenomena observed in Saturn's atmosphere. Acknowledgement: This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's PATM program, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.
A Calibrated Measurement of the Near-IR Continuum Sky Brightness Using Magellan/FIRE
NASA Astrophysics Data System (ADS)
Sullivan, Peter W.; Simcoe, Robert A.
2012-12-01
We characterize the near-IR sky background from 308 observations with the Folded-port InfraRed Echellette (FIRE) spectrograph at Magellan. A subset of 105 observations selected to minimize lunar and thermal effects gives a continuous, median spectrum from 0.83 to 2.5 μm, which we present in Table 2. The data are used to characterize the broadband continuum emission between atmospheric OH features and correlate its properties with observing conditions such as lunar angle and time of night. We find that the Moon contributes significantly to the inter-line continuum in Y and J bands, whereas the observed H-band continuum is dominated by the blended Lorentzian wings of multiple OH line profiles, even at R = 6000. Lunar effects may be mitigated in Y and J through careful scheduling of observations, but the most ambitious near-IR programs will benefit from allocation during dark observing time if those observations are not limited by read noise. In Y and J, our measured continuum exceeds space-based average estimates of the zodiacal light, but it is not readily identified with known terrestrial foregrounds. If further measurements confirm such a fundamental background, it would impact requirements for OH-suppressed instruments operating in this regime.
Detection of a Millimeter Flare from Proxima Centauri
NASA Astrophysics Data System (ADS)
MacGregor, Meredith A.; Weinberger, Alycia J.; Wilner, David J.; Kowalski, Adam F.; Cranmer, Steven R.
2018-03-01
We present new analyses of ALMA 12 m and Atacama Compact Array (ACA) observations at 233 GHz (1.3 mm) of the Proxima Centauri system with sensitivities of 9.5 and 47 μJy beam‑1, respectively, taken from 2017 January 21 through April 25. These analyses reveal that the star underwent a significant flaring event during one of the ACA observations on 2017 March 24. The complete event lasted for approximately 1 minute and reached a peak flux density of 100 ± 4 mJy, nearly a factor of 1000 times brighter than the star’s quiescent emission. At the flare peak, the continuum emission is characterized by a steeply falling spectral index with frequency F ν ∝ ν α with α = ‑1.77 ± 0.45, and a lower limit on the fractional linear polarization of | Q/I| =0.19+/- 0.02. Because the ACA observations do not show any quiescent excess emission, we conclude that there is no need to invoke the presence of a dust belt at 1–4 au. We also posit that the slight excess flux density of 101 ± 9 μJy observed in the 12 m observations, compared to the photospheric flux density of 74 ± 4 μJy extrapolated from infrared wavelengths, may be due to coronal heating from continual smaller flares, as is seen for AU Mic, another nearby well-studied M dwarf flare star. If this is true, then the need for warm dust at ∼0.4 au is also removed.
The Infrared-Radio Correlation of Dusty Star Forming Galaxies at High Redshift
NASA Astrophysics Data System (ADS)
Lower, Sidney; Vieira, Joaquin Daniel; Jarugula, Sreevani
2018-01-01
Far-infrared (FIR) and radio continuum emission in galaxies are related by a common origin: massive stars and the processes triggered during their birth, lifetime, and death. FIR emission is produced by cool dust, heated by the absorption of UV emission from massive stars, which is then re-emitted in the FIR. Thermal free-free radiation emitted from HII regions dominates the spectral energy density (SED) of galaxies at roughly 30 GHz, while non-thermal synchrotron radiation dominates at lower frequencies. At low redshift, the infrared radio correlation (IRC, or qIR) holds as a tight empirical relation for many star forming galaxy types, but until recently, there has not been sensitive enough radio observations to extend this relation to higher redshifts. Many selection biases cloud the results of these analyses, leaving the evolution of the IRC with redshift ambiguous. In this poster, I present CIGALE fitted spectral energy distributions (SEDs) for 24 gravitationally-lensed sources selected in the mm-wave from the South Pole Telescope (SPT) survey. I fit the IRC from infrared and submillimeter fluxes obtained with Herschel, Atacama Pathfinder Experiment (APEX), and SPT and radio fluxes obtained with ATCA at 2.1, 5.5, 9, and 30 GHz. This sample of SPT sources has a spectroscopic redshift range of 2.1
The high-energy view of the broad-line radio galaxy 3C 111
NASA Astrophysics Data System (ADS)
Ballo, L.; Braito, V.; Reeves, J. N.; Sambruna, R. M.; Tombesi, F.
2011-12-01
We present the analysis of Suzaku and XMM-Newton observations of the broad-line radio galaxy (BLRG) 3C 111. Its high-energy emission shows variability, a harder continuum with respect to the radio-quiet active galactic nucleus population, and weak reflection features. Suzaku found the source in a minimum flux level; a comparison with the XMM-Newton data implies an increase of a factor of 2.5 in the 0.5-10 keV flux, in the 6 months separating the two observations. The iron K complex is detected in both data sets, with rather low equivalent width(s). The intensity of the iron K complex does not respond to the change in continuum flux. An ultrafast, high-ionization outflowing gas is clearly detected in the Suzaku/X-ray Imaging Spectrometer data; the absorber is most likely unstable. Indeed, during the XMM-Newton observation, which was 6 months after, the absorber was not detected. No clear rollover in the hard X-ray emission is detected, probably due to the emergence of the jet as a dominant component in the hard X-ray band, as suggested by the detection above ˜100 keV with the GSO onboard Suzaku, although the present data do not allow us to firmly constrain the relative contribution of the different components. The fluxes observed by the γ-ray satellites CGRO and Fermi would be compatible with the putative jet component if peaking at energies E˜ 100 MeV. In the X-ray band, the jet contribution to the continuum starts to be significant only above 10 keV. If the detection of the jet component in 3C 111 is confirmed, then its relative importance in the X-ray energy band could explain the different observed properties in the high-energy emission of BLRGs, which are otherwise similar in their other multiwavelength properties. Comparison between X-ray and γ-ray data taken at different epochs suggests that the strong variability observed for 3C 111 is probably driven by a change in the primary continuum.
GBT CHANG-ES: Enhancing Radio Halos in Edge-on Galaxies Through Short-Spacing Corrections
NASA Astrophysics Data System (ADS)
Trent Braun, Timothy; Kepley, Amanda; Rand, Richard J.; Mason, Brian Scott; CHANG-ES
2018-01-01
We present L- and C-band continuum Stokes I data from the Green Bank Telescope (GBT) of 35 edge-on spiral galaxies that are part of the Continuum Halos in Nearby Galaxies, an EVLA Survey (CHANG-ES). CHANG-ES is an Expanded Very Large Array (EVLA) large program to measure radio continuum emission from the halos of 35 edge-on spiral galaxies in order to address a wide variety of science goals, including constraining the structure of magnetic fields, understanding the origins of radio halos, and probing both cosmic ray transport and cosmic ray driven winds. These goals can be reached by studying radio halo scale heights, spectral index variations with height, and the distribution of intensity and position angle of polarized emission. In particular, we are interested in modeling non-thermal presssure gradients in the gaseous halos of nearby galaxies to predict how they contribute to the decrease in the rotation of extraplanar gas with increasing height off of the galactic midplanes (lagging halos). Ultimately, the study of lagging halos will help us probe the efficacy of gas cycling between the disk and the halo in nearby galaxies. Crucial to this and the rest of the CHANG-ES analysis is the combination of the VLA data (B,C,D configurations in L-band and C,D configurations in C-band) with the GBT data in order to fill in the missing short-spacings in the u-v plane, which increases our sensitivity to large-scale emission and allows us to recover the total flux density. We present preliminary results from two methods of combining single-dish and interferometic data, namely the use of GBT data cubes as a model for the CASA task tclean and combining the Fourier transforms of the images as weighted sums in the u-v plane (feathering). Lastly, we detail our new data reduction pipeline for our wideband GBT continuum data, with an emphasis on the application of a least-squares basket-weaving technique used to remove striping image artifacts that notoriously plague single-dish maps.
NASA Astrophysics Data System (ADS)
González-Alfonso, Eduardo; Smith, Howard A.; Ashby, Matthew L. N.; Fischer, Jacqueline; Spinoglio, Luigi; Grundy, Timothy W.
2008-03-01
The ISO LWS far-infrared spectrum of the ultraluminous galaxy Mrk 231 shows OH and H2O lines in absorption from energy levels up to 300 K above the ground state, and emission in the [O I] 63 μm and [C II] 158 μm lines. Our analysis shows that OH and H2O are radiatively pumped by the far-infrared continuum emission of the galaxy. The absorptions in the high-excitation lines require high far-infrared radiation densities, allowing us to constrain the properties of the underlying continuum source. The bulk of the far-infrared continuum arises from a warm (Tdust = 70-100 K), optically thick (τ100μ m = 1-2) medium of effective diameter 200-400 pc. In our best-fit model of total luminosity LIR, the observed OH and H2O high-lying lines arise from a luminous (L/LIR ~ 0.56) region with radius ~100 pc. The high surface brightness of this component suggests that its infrared emission is dominated by the AGN. The derived column densities N(OH) gtrsim 1017 cm-2 and N(H2O) gtrsim 6 × 1016 cm-2 may indicate X-ray dominated region (XDR) chemistry, although significant starburst chemistry cannot be ruled out. The lower-lying OH, [C II] 158 μm, and [O I] 63 μm lines arise from a more extended (~350 pc) starburst region. We show that the [C II] deficit in Mrk 231 is compatible with a high average abundance of C+ because of an extreme overall luminosity to gas mass ratio. Therefore, a [C II] deficit may indicate a significant contribution to the luminosity by an AGN, and/or by extremely efficient star formation. Based on observations with the Infrared Space Observatory, an ESA project with instruments funded by ESA Member States (especially the principal investigator countries: France, Germany, Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.
No signatures of black hole spin in the X-ray spectrum of the Seyfert 1 galaxy Fairall 9
NASA Astrophysics Data System (ADS)
Yaqoob, T.; Turner, T. J.; Tatum, M. M.; Trevor, M.; Scholtes, A.
2016-11-01
Fairall 9 is one of several type 1 active galactic nuclei for which it has been claimed that the angular momentum (or spin) of the supermassive black hole can be robustly measured, using the Fe Kα emission line and Compton-reflection continuum in the X-ray spectrum. The method rests upon the interpretation of the Fe Kα line profile and associated Compton-reflection continuum in terms of relativistic broadening in the strong gravity regime in the innermost regions of an accretion disc, within a few gravitational radii of the black hole. Here, we re-examine a Suzaku X-ray spectrum of Fairall 9 and show that a face-on toroidal X-ray reprocessor model involving only non-relativistic and mundane physics provides an excellent fit to the data. The Fe Kα line emission and Compton-reflection continuum are calculated self-consistently, the iron abundance is solar, and an equatorial column density of ˜ 1024 cm- 2 is inferred. In this scenario, neither the Fe Kα line nor the Compton-reflection continuum provides any information on the black hole spin. Whereas previous analyses have assumed an infinite column density for the distant-matter reprocessor, the shape of the reflection spectrum from matter with a finite column density eliminates the need for a relativistically broadened Fe Kα line. We find a 90 per cent confidence range in the Fe Kα line full width at half-maximum of 1895-6205 km s- 1, corresponding to a distance of ˜3100 to 33 380 gravitational radii from the black hole, or 0.015-0.49 pc for a black hole mass of ˜1-3 × 108 M⊙.
NASA Technical Reports Server (NTRS)
Ueno, Shiro; Mushotzky, Richard F.; Koyama, Katsuji; Iwasawa, Kazushi; Awaki, Hisamitsu; Hayashi, Ichizo
1994-01-01
With the high sensitivity and spectral resolution of the Advanced Satellite for Cosmology and Astrophysics (ASCA) satellite, we have discovered strong emission lines from the H-like and/or He-like ions of Ne, Mg, Si, and S as well as Fe L and confirmed the complex structure of Fe K line emission in the Seyfert II galaxy NGC 1068. The continuum emission above 3 keV exhibits rather flat shape with no evidence of low energy absorption. The overall X-ray spectrum can be well explained with a model involving starburst activity plus an obscured active galactic nucleus.
SN 2013fs and SN 2013fr: exploring the circumstellar-material diversity in Type II supernovae
NASA Astrophysics Data System (ADS)
Bullivant, Christopher; Smith, Nathan; Williams, G. Grant; Mauerhan, Jon C.; Andrews, Jennifer E.; Fong, Wen-Fai; Bilinski, Christopher; Kilpatrick, Charles D.; Milne, Peter A.; Fox, Ori D.; Cenko, S. Bradley; Filippenko, Alexei V.; Zheng, WeiKang; Kelly, Patrick L.; Clubb, Kelsey I.
2018-05-01
We present photometry and spectroscopy of SN 2013fs and SN 2013fr in the first ˜100 d post-explosion. Both objects showed transient, relatively narrow H α emission lines characteristic of SNe IIn, but later resembled normal SNe II-P or SNe II-L, indicative of fleeting interaction with circumstellar material (CSM). SN 2013fs was discovered within 8 h of explosion; one of the earliest SNe discovered thus far. Its light curve exhibits a plateau, with spectra revealing strong CSM interaction at early times. It is a less luminous version of the transitional SN IIn PTF11iqb, further demonstrating a continuum of CSM interaction intensity between SNe II-P and SNe IIn. It requires dense CSM within 6.5 × 1014 cm of the progenitor, from a phase of advanced pre-SN mass loss beginning shortly before explosion. Spectropolarimetry of SN 2013fs shows little continuum polarization (˜0.5 per cent, consistent with zero), but noticeable line polarization during the plateau phase. SN 2013fr morphed from an SN IIn at early times to an SN II-L. After the first epoch, its narrow lines probably arose from host-galaxy emission, but the bright, narrow H α emission at early times may be intrinsic to the SN. As for SN 2013fs, this would point to a short-lived phase of strong CSM interaction if proven to be intrinsic, suggesting a continuum between SNe IIn and SNe II-L. It is a low-velocity SN II-L like SN 2009kr, but more luminous. SN 2013fr also developed an infrared excess at later times, due to warm CSM dust that requires a more sustained phase of strong pre-SN mass loss.
DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groves, Brent A.; Schinnerer, Eva; Walter, Fabian
2015-01-20
We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we findmore » that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.« less
The MUSCLES Treasury Survey. III. X-Ray to Infrared Spectra of 11 M and K Stars Hosting Planets
NASA Astrophysics Data System (ADS)
Loyd, R. O. P.; France, Kevin; Youngblood, Allison; Schneider, Christian; Brown, Alexander; Hu, Renyu; Linsky, Jeffrey; Froning, Cynthia S.; Redfield, Seth; Rugheimer, Sarah; Tian, Feng
2016-06-01
We present a catalog of panchromatic spectral energy distributions (SEDs) for 7 M and 4 K dwarf stars that span X-ray to infrared wavelengths (5 Å -5.5 μm). These SEDs are composites of Chandra or XMM-Newton data from 5-˜50 Å, a plasma emission model from ˜50-100 Å, broadband empirical estimates from 100-1170 Å, Hubble Space Telescope data from 1170-5700 Å, including a reconstruction of stellar Lyα emission at 1215.67 Å, and a PHOENIX model spectrum from 5700-55000 Å. Using these SEDs, we computed the photodissociation rates of several molecules prevalent in planetary atmospheres when exposed to each star’s unattenuated flux (“unshielded” photodissociation rates) and found that rates differ among stars by over an order of magnitude for most molecules. In general, the same spectral regions drive unshielded photodissociations both for the minimally and maximally FUV active stars. However, for O3 visible flux drives dissociation for the M stars whereas near-UV flux drives dissociation for the K stars. We also searched for an far-UV continuum in the assembled SEDs and detected it in 5/11 stars, where it contributes around 10% of the flux in the range spanned by the continuum bands. An ultraviolet continuum shape is resolved for the star ɛ Eri that shows an edge likely attributable to Si II recombination. The 11 SEDs presented in this paper, available online through the Mikulski Archive for Space Telescopes, will be valuable for vetting stellar upper-atmosphere emission models and simulating photochemistry in exoplanet atmospheres.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, X.; Hao, Q.; Ding, M. D.
Two-ribbon brightenings are one of the most remarkable characteristics of an eruptive solar flare and are often used to predict the occurrence of coronal mass ejections (CMEs). Nevertheless, it was recently called into question whether all two-ribbon flares are eruptive. In this paper, we investigate a two-ribbon-like white-light (WL) flare that is associated with a failed magnetic flux rope (MFR) eruption on 2015 January 13, which has no accompanying CME in the WL coronagraph. Observations by the Optical and Near-infrared Solar Eruption Tracer and the Solar Dynamics Observatory reveal that with the increase of the flare emission and the acceleration ofmore » the unsuccessfully erupting MFR, two isolated kernels appear at the WL 3600 Å passband and quickly develop into two elongated ribbon-like structures. The evolution of the WL continuum enhancement is completely coincident in time with the variation of Fermi hard X-ray 26–50 keV flux. An increase of continuum emission is also clearly visible at the whole FUV and NUV passbands observed by the Interface Region Imaging Spectrograph. Moreover, in one WL kernel, the Si iv, C ii, and Mg ii h/k lines display significant enhancement and non-thermal broadening. However, their Doppler velocity pattern is location-dependent. At the strongly bright pixels, these lines exhibit a blueshift, while at moderately bright ones, the lines are generally redshifted. These results show that the failed MFR eruption is also able to produce a two-ribbon flare and high-energy electrons that heat the lower atmosphere, causing the enhancement of the WL and FUV/NUV continuum emissions and chromospheric evaporation.« less
Binarity and Accretion in AGB Stars: HST/STIS Observations of UV Flickering in Y Gem
NASA Astrophysics Data System (ADS)
Sahai, R.; Sánchez Contreras, C.; Mangan, A. S.; Sanz-Forcada, J.; Muthumariappan, C.; Claussen, M. J.
2018-06-01
Binarity is believed to dramatically affect the history and geometry of mass loss in AGB and post-AGB stars, but observational evidence of binarity is sorely lacking. As part of a project to search for hot binary companions to cool AGB stars using the GALEX archive, we discovered a late-M star, Y Gem, to be a source of strong and variable UV and X-ray emission. Here we report UV spectroscopic observations of Y Gem obtained with the Hubble Space Telescope that show strong flickering in the UV continuum on timescales of ≲20 s, characteristic of an active accretion disk. Several UV lines with P-Cygni-type profiles from species such as Si IV and C IV are also observed, with emission and absorption features that are red- and blueshifted by velocities of ∼500 {km} {{{s}}}-1 from the systemic velocity. Our model for these (and previous) observations is that material from the primary star is gravitationally captured by a companion, producing a hot accretion disk. The latter powers a fast outflow that produces blueshifted features due to the absorption of UV continuum emitted by the disk, whereas the redshifted emission features arise in heated infalling material from the primary. The outflow velocities support a previous inference by Sahai et al. that Y Gem’s companion is a low-mass main-sequence star. Blackbody fitting of the UV continuum implies an accretion luminosity of about 13 L ⊙, and thus a mass-accretion rate >5 × 10‑7 M ⊙ yr‑1 we infer that Roche-lobe overflow is the most likely binary accretion mode for Y Gem.
Chandra ACIS-I particle background: an analytical model
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Mazzotta, P.; Bourdin, H.; Vikhlinin, A.
2014-06-01
Aims: Imaging and spectroscopy of X-ray extended sources require a proper characterisation of a spatially unresolved background signal. This background includes sky and instrumental components, each of which are characterised by its proper spatial and spectral behaviour. While the X-ray sky background has been extensively studied in previous work, here we analyse and model the instrumental background of the ACIS-I detector on board the Chandra X-ray observatory in very faint mode. Methods: Caused by interaction of highly energetic particles with the detector, the ACIS-I instrumental background is spectrally characterised by the superimposition of several fluorescence emission lines onto a continuum. To isolate its flux from any sky component, we fitted an analytical model of the continuum to observations performed in very faint mode with the detector in the stowed position shielded from the sky, and gathered over the eight-year period starting in 2001. The remaining emission lines were fitted to blank-sky observations of the same period. We found 11 emission lines. Analysing the spatial variation of the amplitude, energy and width of these lines has further allowed us to infer that three lines of these are presumably due to an energy correction artefact produced in the frame store. Results: We provide an analytical model that predicts the instrumental background with a precision of 2% in the continuum and 5% in the lines. We use this model to measure the flux of the unresolved cosmic X-ray background in the Chandra deep field south. We obtain a flux of 10.2+0.5-0.4 × 10-13 erg cm-2 deg-2 s-1 for the [1-2] keV band and (3.8 ± 0.2) × 10-12 erg cm-2 deg-2 s-1 for the [2-8] keV band.
Constraining the Active Galactic Nucleus Contribution in a Multiwavelength Study of Seyfert Galaxies
NASA Technical Reports Server (NTRS)
Melendez, M.; Kraemer, S.B.; Schmitt, H.R.; Crenshaw, D.M.; Deo, R.P.; Mushotzky, R.F.; Bruhweiler, F.C.
2008-01-01
We have studied the relationship between the high- and low-ionization [O IV] (lambda)25.89 microns, [Ne III] (lambda)15.56 microns, and [Ne II] (lambda)12.81 microns emission lines with the aim of constraining the active galactic nuclei (AGNs) and star formation contributions for a sample of 103 Seyfert galaxies.We use the [O IV] and [Ne II] emission as tracers for the AGN power and star formation to investigate the ionization state of the emission-line gas.We find that Seyfert 2 galaxies have, on average, lower [O IV]/[Ne II] ratios than Seyfert 1 galaxies. This result suggests two possible scenarios: (1) Seyfert 2 galaxies have intrinsically weaker AGNs, or (2) Seyfert 2 galaxies have relatively higher star formation rates than Seyfert 1 galaxies. We estimate the fraction of [Ne II] directly associated with the AGNs and find that Seyfert 2 galaxies have a larger contribution from star formation, by a factor of approx.1.5 on average, than what is found in Seyfert 1 galaxies. Using the stellar component of [Ne II] as a tracer of the current star formation, we found similar star formation rates in Seyfert 1 and Seyfert 2 galaxies.We examined the mid- and far-infrared continua and found that [Ne II] is well correlated with the continuum luminosity at 60 microns and that both [Ne III] and [O IV] are better correlated with the 25 micron luminosities than with the continuum at longer wavelengths, suggesting that the mid-infrared continuum luminosity is dominated by the AGN, while the far-infrared luminosity is dominated by star formation. Overall, these results test the unified model of AGNs and suggest that the differences between Seyfert galaxies cannot be solely due to viewing angle dependence.
Emission of dispersive waves from a train of dark solitons in optical fibers.
Marest, T; Mas Arabí, C; Conforti, M; Mussot, A; Milián, C; Skryabin, D V; Kudlinski, A
2016-06-01
We report the experimental observation of multiple dispersive waves (DWs) emitted in the anomalous dispersion region of an optical fiber from a train of dark solitons. Each DW can be associated to one dark soliton of the train, using phase-matching arguments involving higher-order dispersion and soliton velocity. For a large number of dark solitons (>10), we observe the formation of a continuum associated with the efficient emission of DWs.
Ultraviolet to optical spectral distributions of northern star-forming galaxies
NASA Technical Reports Server (NTRS)
Mcquade, Kerry; Calzetti, Daniela; Kinney, Anne L.
1995-01-01
We report spectral energy distribution from the UV to the optical for a sample of 31 northern star-forming galaxies. We also present measurements for emission-line fluxes, continuum levels, and equivalent widths of absorption features for each individual spectrum as well as averages for the eight galactic activity classes, including normal, starburst, Seyfert 2, blue compact dwarf, blue compact, Low-Inonization Nuclear Emission Regions (LINER), H II, and combination LINER-H II galaxies.
NASA Astrophysics Data System (ADS)
Seo, Jeong Hyun; Jeong, Heui Seob; Lee, Joo Yul; Yoon, Cha Keun; Kim, Joong Kyun; Whang, Ki-Woong
2000-08-01
We measured the time integrated vacuum ultraviolet (VUV) emission spectra of He-Ne-Xe gas mixture from a surface type alternating current (ac) plasma display panel cell. The measured emission lines are the resonance line (147 nm) from Xe*(1s4), the first continuum (150 nm) and the second continuum (173 nm) from Xe dimer excited states. The relative intensities of VUV spectral lines from Xe* and Xe2* are dependent on the He/Ne mixing ratio as well as the Xe partial and total pressure. The intensity of 147 nm VUV increases with the Ne content increase and Xe2* molecular emission increases with the He content increase. Infrared (IR) spectra and the time variation of VUV were measured to explain the reaction pathway and the effect of the mixing ratio of He/Ne on the spectral intensity. A detailed study for the decay time shows that the decay time of 147 nm has two time constants and the radiation of 150 and 173 nm results mainly from Xe*(1s5). The IR spectra shows that the contribution from Xe**(>6 s) to Xe*(1s5) and Xe*(1s4) in He-Xe is different from that of Ne-Xe. The change of IR intensity explains the spectral intensity variations of He-Xe and Ne-Xe discharge.
Can Flare Loops Contribute to the White-light Emission of Stellar Superflares?
NASA Astrophysics Data System (ADS)
Heinzel, P.; Shibata, K.
2018-06-01
Since the discovery of stellar superflares by the Kepler satellite, these extremely energetic events have been studied in analogy to solar flares. Their white-light (WL) continuum emission has been interpreted as being produced by heated ribbons. In this paper, we compute the WL emission from overlying flare loops depending on their density and temperature and show that, under conditions expected during superflares, the continuum brightening due to extended loop arcades can significantly contribute to stellar flux detected by Kepler. This requires electron densities in the loops of 1012‑1013 cm‑3 or higher. We show that such densities, exceeding those typically present in solar-flare loops, can be reached on M-dwarf and solar-type superflare stars with large starspots and much stronger magnetic fields. Quite importantly, the WL radiation of loops is not very sensitive to their temperature and thus both cool as well as hot loops may contribute. We show that the WL intensity emergent from optically thin loops is lower than the blackbody radiation from flare ribbons, but the contribution of loops to total stellar flux can be quite important due to their significant emitting areas. This new scenario for interpreting superflare emission suggests that the observed WL flux is due to a mixture of the ribbon and loop radiation and can be even loop-dominated during the gradual phase of superflares.
Ultra-micro analysis of liquids and suspensions based on laser-induced plasma emissions
NASA Astrophysics Data System (ADS)
Cheung, N. H.; Ng, C. W.; Ho, W. F.; Yeung, E. S.
1998-05-01
Spectrochemical analysis of liquids and suspensions using laser-induced plasma emissions was investigated. Nd:YAG pulsed-laser (532-nm) ablation of aqueous samples produced plasmas that were hot (few eV) and extensively ionized, with electron density in the 10 18 cm -3 range. Analyte line signals were initially masked by intense plasma continuum emissions, and would only emerge briefly above the background when the plume temperature dropped below 1 eV during the course of its very rapid cooling. In contrast, 193-nm laser ablation at similar fluence generated plasmas of much lower (<1 eV) temperature but comparable electron density. The plasma continuum emissions were relatively weak and the signal-to-background ratio was a thousand times better. This `cold' plasma was ideal for sampling trace amounts of biologically important elements such as sodium and potassium. By ablating hydrodynamically focused jets in a sheath-flow, and with acoustic normalization for improved precision, the single-shot detection limits of sodium and potassium were 8 and 50 fg, respectively. Using the sheath-flow arrangement, the amounts of sodium and potassium inside single human red blood cells were simultaneously determined for the first time. The intracellular contents for a given blood donor were found to vary significantly, with only very weak correlation between the amounts of sodium and potassium in individual cells.
Frequency distributions from birth, death, and creation processes.
Bartley, David L; Ogden, Trevor; Song, Ruiguang
2002-01-01
The time-dependent frequency distribution of groups of individuals versus group size was investigated within a continuum approximation, assuming a simplified individual growth, death and creation model. The analogy of the system to a physical fluid exhibiting both convection and diffusion was exploited in obtaining various solutions to the distribution equation. A general solution was approximated through the application of a Green's function. More specific exact solutions were also found to be useful. The solutions were continually checked against the continuum approximation through extensive simulation of the discrete system. Over limited ranges of group size, the frequency distributions were shown to closely exhibit a power-law dependence on group size, as found in many realizations of this type of system, ranging from colonies of mutated bacteria to the distribution of surnames in a given population. As an example, the modeled distributions were successfully fit to the distribution of surnames in several countries by adjusting the parameters specifying growth, death and creation rates.
Broad-band properties of the CfA Seyfert galaxies. III - Ultraviolet variability
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Pike, G. F.; Krolik, J. H.
1990-01-01
A total of 657 archived IUE spectra are used to study the UV variability properties of six members of the CfA Seyfert I galaxy sample. All show strong evidence for continuum and line variations and a tendency for less luminous objects to be more strongly variable. Most objects show a clear correlation at zero lag between UV spectral index and luminosity, evidence that the variable component is an accretion disk around a black hole which is systematically smaller in less luminous sources. No correlation is seen between the continuum luminosity and equivalent width of the C IV, Mg II, and semiforbidden C III emission lines when the entire sample is examined, but a clear anticorrelation is present when only repeated observations of individual objects are considered. This is due to a combination of light-travel time effects in the broad-line region and the nonlinear responses of lines to continuum fluctuations.
The photoionization mechanism of LINERs - Stellar and nonstellar
NASA Technical Reports Server (NTRS)
Ho, Luis C.; Filippenko, Alexei V.
1993-01-01
We present high quality spectroscopic observations of a sample of 14 LINERs. Starlight removal is achieved by the subtraction of a suitable absorption-line 'template' galaxy, allowing accurate measurements of emission lines. We use these line fluxes to examine the possible excitation mechanisms of LINERs. We suggest that LINERs with weak forbidden O I 6300-A emission may be H II regions photoionized by unusually hot O-type stars. LINERs with forbidden O I/H-alpha approximately greater than 1/6 may be powered by photoionization from a nonstellar continuum. This is supported by the detection of broad H-alpha emission, a correlation between line width and critical density, and pointlike X-ray emission in several of these objects.
Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Dwek, Eli,; Blair, William P.; Ghavamian, Parviz; Long, Knox S.
2010-01-01
Imaging and spectral observations of the Puppis A supernova remnant (SNR) with the Spitzer Space Telescope confirm that its IR emission is dominated by the thermal continuum emission of swept-up interstellar dust which is collisionally heated by the X-ray emitting gas of the SNR. Line emission is too weak to affect the fluxes measured in broadband observations, and is poorly correlated with the IR or X-ray emission. Modeling of spectra from regions both in the SNR and in the associated ISM show that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) of the ISM are destroyed within the SNR, along with nearly 25% of the mass of graphite and silicate dust grains.
The Westerbork SINGS survey. III. Global magnetic field topology
NASA Astrophysics Data System (ADS)
Braun, R.; Heald, G.; Beck, R.
2010-05-01
A sample of large northern Spitzer Infrared Nearby Galaxies Survey (SINGS) galaxies was observed with the Westerbork Synthesis Radio Telescope (WSRT) at 1300-1760 MHz. In Paper II of this series, we described sensitive observations of the linearly polarized radio continuum emission in this WSRT-SINGS galaxy sample. Large-scale magnetic field structures of two basic types are found: (a) disk fields with a spiral topology in all detected targets; and (b) circumnuclear, bipolar outflow fields in a subset. Here we explore the systematic patterns of azimuthal modulation of both the Faraday depth and the polarized intensity and their variation with galaxy inclination. A self-consistent and fully general model for both the locations of net polarized emissivity at 1-2 GHz frequencies and the global magnetic field topology of nearby galaxies emerges. Net polarized emissivity is concentrated into two zones located above and below the galaxy mid-plane, with the back-side zone suffering substantial depolarization (by a factor of 4-5) relative to the front-side zone in its propagation through the turbulent mid-plane. The field topology which characterizes the thick-disk emission zone, is in all cases an axisymmetric spiral with a quadrupole dependence on height above the mid-plane. The front-side emission is affected by only mild dispersion (10's of rad m-2) from the thermal plasma in the galaxy halo, while the back-side emission is affected by additional strong dispersion (100's of rad m-2) from an axi-symmetric spiral field in the galaxy mid-plane. The field topology in the upper halo of galaxies is a mixture of two distinct types: a simple extension of the axisymmetric spiral quadrupole field of the thick disk and a radially directed dipole field. The dipole component might be a manifestation of (1) a circumnuclear, bipolar outflow; (2) an in situ generated dipole field; or (3) evidence of a non-stationary global halo.
Ultraviolet continuum variability and visual flickering in the peculiar object MWC 560
NASA Technical Reports Server (NTRS)
Michalitsianos, A. G.; Perez, M.; Shore, S. N.; Maran, S. P.; Karovska, M.; Sonneborn, G.; Webb, J. R.; Barnes, Thomas G., III; Frueh, Marian L.; Oliversen, R. J.
1993-01-01
High-speed U-band photometry of the peculiar emission object MWC 560 obtained with the ground-based instrumentation, and V-band photometry obtained with the International Ultraviolet Explorer-Fine Error Sensor indicates irregular brightness variations are quasi-periodic. Multiple peaks of relative brightness power indicate statistically significant quasi periods existing in a range of 3-35 minutes, that are superposed on slower hourly varying components. We present a preliminary model that explains the minute and hourly time-scale variations in MWC 560 in terms of a velocity-shear instability that arises because a white dwarf magnetosphere impinges on an accretion disk. We also find evidence for Fe II multiplet pseudocontinuum absorption opacity in far-UV spectra of CH Cygni which is also present in MWC 560. Both CH Cyg and MWC 560 may be in an evolutionary stage that is characterized by strong UV continuum opacity which changes significantly during outburst, occurring before they permanently enter the symbiotic nebular emission phase.
The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies
NASA Technical Reports Server (NTRS)
Bicay, M. D.; Helou, G.
1990-01-01
A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.
Molecular Diagnostics of the Internal Motions of Massive Cores
NASA Astrophysics Data System (ADS)
Pineda, Jorge; Velusamy, T.; Goldsmith, P.; Li, D.; Peng, R.; Langer, W.
2009-12-01
We present models of the internal kinematics of massive cores in the Orion molecular cloud. We use a sample of cores studied by Velusamy et al. (2008) that show red, blue, and no asymmetry in their HCO+ line profiles in equal proportion, and which therefore may represent a sample of cores in different kinematic states. We use the radiative transfer code RATRAN (Hogerheijde & van der Tak 2000) to model several transitions of HCO+ and H13CO+ as well as the dust continuum emission, of a spherical model cloud with radial density, temperature, and velocity gradients. We find that an excitation and velocity gradients are prerequisites to reproduce the observed line profiles. We use the dust continuum emission to constrain the density and temperature gradients. This allows us to narrow down the functional forms of the velocity gradient giving us the opportunity to test several theoretical predictions of velocity gradients produced by the effect of magnetic fields (e.g. Tassis et. al. 2007) and turbulence (e.g. Vasquez-Semanedi et al 2007).
Resolving the Wind Structure of Eta Carinae
NASA Technical Reports Server (NTRS)
Gull, T.; Hillier, J.; Ishibashi, K.; Davidson, K.
2000-01-01
Space Telescope Imaging Spectrograph (STIS) spectral observations of Eta Carinae have resolved the wind structure of the star(s) from the central point source. These observations were done with a 52 x 0.1" aperture, resolving power of about 5000 and complete spectral coverage from 1640A to 10400A. Various broad stellar Lines are seen to change within the central 0.511 of the nebular region. The Balmer lines, relative to the continuum, drop in strength while some Fe II lines scale with the continuum. Other Fe II lines increase in intensity while still others decrease. The structure to the southeast of the central source shows considerable variation in the stellar line strengths. To the Northwest, the emission is dominated by the very bright nebular knots, Weigelt blobs B and D. Three sets of observations have been done: March 1998, February 1999 and March 2000 to monitor the spectral variations. The stellar, wind and nebular emission changes considerably during this two year period. This work was done under the STIS GTO and HST GO funding.
Uncertainties in extracted parameters of a Gaussian emission line profile with continuum background.
Minin, Serge; Kamalabadi, Farzad
2009-12-20
We derive analytical equations for uncertainties in parameters extracted by nonlinear least-squares fitting of a Gaussian emission function with an unknown continuum background component in the presence of additive white Gaussian noise. The derivation is based on the inversion of the full curvature matrix (equivalent to Fisher information matrix) of the least-squares error, chi(2), in a four-variable fitting parameter space. The derived uncertainty formulas (equivalent to Cramer-Rao error bounds) are found to be in good agreement with the numerically computed uncertainties from a large ensemble of simulated measurements. The derived formulas can be used for estimating minimum achievable errors for a given signal-to-noise ratio and for investigating some aspects of measurement setup trade-offs and optimization. While the intended application is Fabry-Perot spectroscopy for wind and temperature measurements in the upper atmosphere, the derivation is generic and applicable to other spectroscopy problems with a Gaussian line shape.